Kramar, M.; Inhester, B.: Inversion of coronal Zeeman and Hanle Observations to reconstruct the coronal magnetic field. Memorie della Società Astronomica Italiana 78 (1), pp. 120 - 125 (2007)
Wiegelmann, T.; Neukirch, T.; Ruan, P.; Inhester, B.: Optimization approach for the computation of magnetohydrostatic coronal equilibria in spherical geometry. Astronomy and Astrophysics 475, pp. 701 - 706 (2007)
Inhester, B.; Wiegelmann, T.: Nonlinear force-free magnetic field extrapolations: comparisonof the Grad-Rubin and Wheatland-Sturrock-Roumeliotis algorithm. Solar Physics 235, pp. 201 - 221 (2006)
Kramar, M.; Inhester, B.; Solanki, S. K.: Vector tomography for the coronal magnetic field. I. Longitudinal Zeeman effect measurements. Astronomy and Astrophysics 456, pp. 665 - 673 (2006)
Wiegelmann, T.; Inhester, B.; Kliem, B.; Valori, G.; Neukirch, T.: Testing non-linear force-free coronal magnetic field extrapolations with the Titov-Démoulin equilibrium. Astronomy and Astrophysics 453, pp. 737 - 741 (2006)
Wiegelmann, T.; Inhester, B.; Sakurai, T.: Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Solar Physics 233, pp. 215 - 232 (2006)
Raouafi, N.-E.; Mancuso, S.; Solanki, S. K.; Inhester, B.; Mierla, M.; Stenborg, G.; Delaboudiniere, J. P.; Benna, C.: Shock wave driven by an expanding system of loops. Astronomy and Astrophysics 424 (3), pp. 1039 - 1048 (2004)
Wiegelmann, T.; Inhester, B.: Magnetic modelling and tomography: First steps towards a consistent reconstruction of the solar corona. Solar Physics 214, pp. 287 - 312 (2003)
Wilhelm, K.; Inhester, B.; Newmark, J. S.: The inner solar corona seen by SUMER, LASCO/C1, and EIT: Electron densities and temperatures during the rise of the new solar cycle. Astronomy and Astrophysics 382, pp. 328 - 341 (2002)
Portier-Fozzani, F.; Inhester, B.: 3D Coronal structures and their evolutions measured by Stereoscopy, consequences for Space Weather and the STEREO mission. Space Science Reviews 97 (1/4), p. 51 (2001)
Srivastava, N.; Schwenn, R.; Inhester, B.; Martin, S. F.; Hanaoka, Y.: Factors related to the origin of a gradual coronal mass ejection associated with an eruptive prominence on 1998 June 21-22. Astrophysical Journal 534, pp. 468 - 481 (2000)
Innes, D. E.; Inhester, B.; Srivastava, N.; Brekke, P.; Harrison, R. A.; Matthews, S. A.; Noëns, J. C.; Schmieder, B.; Thompson, B. J.: Multi-wavelength observations of the onset phase of a coronal mass ejection. Solar Physics 186, pp. 337 - 361 (1999)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".