Dubinin, E. M.; Fränz, M.; Pätzold, M.; Woch, J.; McFadden, J.; Halekas, J. S.; Connerney, J. E. P.; Jakosky, B. M.; Eparvier, F.; Vaisberg, O.et al.; Zelenyi, L.: Expansion and Shrinking of the Martian Topside Ionosphere. Journal of Geophysical Research: Space Physics 124 (11), pp. 9725 - 9738 (2019)
Dubinin, E. M.; Modolo, R.; Fränz, M.; Päetzold, M.; Woch, J.; Chai, L.; Wei, Y.; Connerney, J. E. P.; Mcfadden, J.; DiBraccio, G.et al.; Espley, J.; Grigorenko, E.; Zelenyi, L.: The Induced Magnetosphere of Mars: Asymmetrical Topology of the Magnetic Field Lines. Geophysical Research Letters 46 (22), pp. 12722 - 12730 (2019)
Han, Q.; Fan, K.; Cui, J.; Wei, Y.; Fränz, M.; Dubinin, E. M.; Chai, L.; Rong, Z.; Wan, W.; Andersson, L.et al.; Mitchell, D. L.; Connerney, J.E.P.: The Relationship Between Photoelectron Boundary and Steep Electron Density Gradient on Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics 124 (10), pp. 8015 - 8022 (2019)
Dubinin, E. M.; Fränz, M.; Pätzold, M.; Halekas, J. S.; Mcfadden, J.; Connerney, J. E. P.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.: Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations. Geophysical Research Letters 45 (6), pp. 2574 - 2579 (2018)
Dubinin, E. M.; Fränz, M.; Pätzold, M.; McFadden, J.; Halekas, J.S.; Connerney, J.E.P.; Jakosky, B.M.; Vaisberg, O.; Zelenyi, L.: Martian ionosphere observed by MAVEN. 3. Influence of solar wind and IMF on upper ionosphere. Planetary and Space Science 160, pp. 56 - 65 (2018)
Johnson, B. C.; Liemohn, M. W.; Fränz, M.; Ramstad, R.; Wieser, G. S.; Nilsson, H.: Influence of the Interplanetary Convective Electric Field on the Distribution of Heavy Pickup Ions Around Mars. Journal of Geophysical Research: Space Physics 123 (1), pp. 473 - 484 (2018)
Dubinin, E.; Fraenz, M.; Paetzold, M.; McFadden, J.; Mahaffy, P. R.; Eparvier, F.; Halekas, J. S.; Connerney, J. E.; Brain, D.; Jakosky, B. M.et al.; Vaisberg, O.; Zelenyi, L.: Effects of solar irradiance on the upper ionosphere and oxygen ion escape at Mars: MAVEN observations. Journal Geophysical Research 122, pp. 7142 - 7152 (2017)
Dubinin, E.; Fraenz, M.; Pätzold, M.; Andrews, D.; Vaisberg, O.; Zelenyi, L.; Barabash, S.: Martian ionosphere observed by Mars Express. 2. Influence of solar irradiance on upper ionosphere and escape fluxes. Planetary and Space Science 145, pp. 1 - 8 (2017)
Dubinin, E.; Fränz, M.; Pätzold, M.; McFadden, J.; Halekas, J.; DiBraccio, G.; Connerney, J.; Eparvier, F.; Brain, D.; Jakosky, B.et al.; Vaisberg, O.; Zelenyi, L.: The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations. Journal of Geophysical Research: Space Physics 122 (11), pp. 285 - 301 (2017)
Duru, F.; Gurnett, D. A.; Morgan, D. D.; Halekas, J.; Frahm, R. A.; Lundin, R.; Dejong, W.; Ertl, C.; Venable, A.; Wilkinson, C.et al.; Fraenz, M.; Nemec, F.; Connerney, J. E. P.; Espley, J. R.; Larson, D.; Winningham, J. D.; Plaut, J.; Mahaffy, P. R.: Response of the Martian ionosphere to solar activity including SEPs and ICMEs in a two-week period starting on 25 February 2015. Planetary and Space Science 145, pp. 28 - 37 (2017)
Fränz, M.; Echer, E.; Marques de Souza, A.; Dubinin, E.; Zhang, T. L.: Ultra low frequency waves at Venus: Observations by the Venus Express spacecraft. Planetary and Space Science 146, pp. 55 - 65 (2017)
Chai, L.; Wei, Y.; Wan, W.; Zhang, T.; Rong, Z.; Fränz, M.; Dubinin, E.; Zhang, H.; Zhong, J.; Han, X.et al.; Barabash, S.: An induced global magnetic field looping around the magnetotail of Venus. Journal Geophysical Research 121 (1), pp. 688 - 698 (2016)
Dubinin, E.; Fraenz, M.; Andrews, D.; Morgan, D.: Martian ionosphere observed by Mars Express, 1. Influence of the crustal magnetic fields. Planetary and Space Science 124, pp. 62 - 75 (2016)
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.