Schüssler, M.; Cameron, R. H.; Charbonneau, P.; Dikpati, M.; Hotta, H.; Kitchatinov, L.: Editorial to the Topical Collection: Solar and Stellar Dynamos: a New Era. Space Science Reviews 220, p. 2 (2023)
Weisshaar, E.; Cameron, R. H.; Schüssler, M.: No evidence for synchronization of the solar cycle by a "clock". Astronomy and Astrophysics 671, p. A87 (2023)
Baumgartner, C.; Birch, A. C.; Schunker, H.; Cameron, R. H.; Gizon, L.: Impact of spatially correlated fluctuations in sunspots on metrics related to magnetic twist. Astronomy and Astrophysics 664, p. A183 (2022)
Bekki, Y.; Cameron, R. H.; Gizon, L.: Theory of solar oscillations in the inertial frequency range: Amplitudes of equatorial modes from a nonlinear rotating convection simulation. Astronomy and Astrophysics 666, p. A135 (2022)
Bekki, Y.; Cameron, R. H.; Gizon, L.: Theory of solar oscillations in the inertial frequency range: Linear modes of the convection zone. Astronomy and Astrophysics 662, p. A16 (2022)
Bhatia, T. S.; Cameron, R. H.; Solanki, S. K.; Peter, H.; Przybylski, D.; Witzke, V.; Shapiro, A.: Small-scale dynamo in cool stars. I. Changes in stratification and near-surface convection for main-sequence spectral types. Astronomy and Astrophysics 663, p. A166 (2022)
Biswas, A.; Karak, B. B.; Cameron, R.: Toroidal Flux Loss due to Flux Emergence Explains why Solar Cycles Rise Differently but Decay in a Similar Way. Physical Review Letters 129, p. 241102 (2022)
Gottschling, N.; Schunker, H.; Birch, A.; Cameron, R. H.; Gizon, L.: Testing solar surface flux transport models in the first days after active region emergence. Astronomy and Astrophysics 660, A6 (2022)
Gottschling, N.; Schunker, H.; Birch, A. C.; Cameron, R.; Gizon, L.: Testing solar surface flux transport models in the first days after active region emergence. Astronomy and Astrophysics 660, p. A6 (2022)
Jeffers, S. V.; Cameron, R. H.; Marsden, S. C.; Boro Saikia, S.; Folsom, C. P.; Jardine, M. M.; Morin, J.; Petit, P.; See, V.; Vidotto, A. A.et al.; Wolter, U.; Mittag, M.: The crucial role of surface magnetic fields for stellar dynamos: ϵ Eridani, 61 Cygni A, and the Sun. Astronomy and Astrophysics 661, p. A152 (2022)
Witzke, V.; Shapiro, A. I.; Kostogryz, N. M.; Cameron, R.; Rackham, B. V.; Seager, S.; Solanki, S. K.; Unruh, Y. C.: Can 1D Radiative-equilibrium Models of Faculae Be Used for Calculating Contamination of Transmission Spectra? The Astrophysical Journal 941, p. L35 (2022)
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".