Grensing, D.; Marsch, E.; Steeb, W.-H.: Magnetic and electric properties of the Hubbard model for the f.c.c. Lattice. Physical Review B 17, pp. 2221 - 2232 (1978)
Marsch, E.; Steeb, W.-H.; Grensing, D.: One-Dimensional Hubbard Model With Nearest and Second Nearest Neighbour Hopping in the Hartree-Fock Approximation. J. Phys. F: Metal Phys. 7, pp. 401 - 406 (1977)
Rosenbauer, H.; Schwenn, R.; Marsch, E.; Meyer, B.; Miggenrieder, H.; Montgomery, M.; Mühlhäuser, K.-H.; Pilipp, W.; Voges, W.; Zink, S. K.: A Survey on Initial Results of the Helios Plasma Experiment. J. Geophys. 42, pp. 561 - 580 (1977)
Marsch, E.: Force-force correlation function method for the ideal resistance of the Hubbard model. J. Phys. C: Solid State Phys. 9, pp. L117 - L120 (1976)
Steeb, W.-H.; Marsch, E.: Thermodynamics of a two-point doubly degenerate Hubbard model in the half-filled case. Phys. Stat. Sol. (b) 78, pp. K39 - K44 (1976)
Steeb, W.-H.; Marsch, E.: A new upper bound for the free energy of the Hubbard model based on the cluster approach. Phys. Stat. Sol. (b) 69, pp. K149 - K152 (1975)
Solanki, S. K.; Marsch, E.: Solar Space Missions: present and future. In: Formation and Evolution of Cosmic Structures: Reviews in Modern Astronomy, Volume 21, pp. 229 - 248 (Ed. Röser, S.). Wiley-VCH, Weinheim (2009)
Marsch, E.: Waves and turbulence in the solar corona. In: The Sun and the Heliosphere as an Integrated System, pp. 283 - 317 (Eds. Poletto, G.; Suess, S. T.). Kluwer Academic Publishers, Dordrecht, The Netherlands (2004)
Marsch, E.; Axford, W. I.; McKenzie, J. F.: Solar Wind. In: The Dynamic Sun, pp. 374 - 402 (Ed. Dwivedi, B.). Cambridge University Press, Cambridge (2003)
Marsch, E.: Solar Wind: Kinetic Properties. In: Encyclopedia of Astronomy and Astrophysics, pp. 2862 - 2866 (Ed. Murdin, P.). Institut of Physics Publishing, Nature Publishing Group (2001)
The main research fields of the department "Sun and Heliosphere" are covered by the research groups "Solar and Stellar Coronae", "Solar Lower Atmosphere and Magnetism", "Solar and Stellar Magnetohydrodynamics" and "Solar Variability and Climate".
How does our star heat its outer atmosphere, the solar corona, to unimaginable temperatures of up to 10 million degrees Celsius? With unprecedented observational data from ESA's Solar Orbiter spacecraft and powerful computer simulations, ERC starting grant awardee Pradeep Chitta intends to bring new momentum to the search for the coronal heating mechanism.
The research group “Solar Lower Atmosphere and Magnetism” (SLAM) studies the conditions and dynamic processes in the atmospheric layer between the solar surface (photosphere) and the overlying chromosphere, an approximately 2000 km thick gas layer.