Chifu, I.; Wiegelmann, T.; Inhester, B.: Coronal magnetic field modeling using stereoscopic constraints. 15th European Solar Physics Meeting, Budapest, Hungary (2017)
Wiegelmann, T.: 3D-Coronal magnetic fields. Theoretical and observational approaches to the solar magnetic field: Achievements and remaining problems - conference in honor of Prof. Takashi Sakurai's career -, Tokyo, Japan (2016)
Wiegelmann, T.: The Magnetic Field of the Sun. AG 2016, Splinter meeting: The Role and Interaction of Stellar Magnetic Fields: From the Stellar Surface to the Interstellar Medium, Bochum, Germany (2016)
Wiegelmann, T.: Coronal modelling for Solar Orbiter. 16th Solar Orbiter SWT Meeting Numerical modeling support for Solar Orbiter (special MADAWG session), Göttingen, Germany (2015)
Wiegelmann, T.: Solar magnetic activity and space weather. Workshop and Research visit on: The synergy of magnetic reconnection and waves in evolution of the solar corona, Weihai, China (2015)
Wiegelmann, T.: Solar coronal magnetic fields: Source region for space weather activity. 4. Nationaler Weltraumwetterworkshop, Neustrelitz, Germany (2015)
Wiegelmann, T.; The Sunrise Team: Selfconsistent magnetostatic modelling of the solar atmosphere from Sunrise/IMAX measurements. AG Annual Meeting 2014, Bamberg, Germany (2014)
A star’s chemical composition strongly influences the ultraviolet radiation it emits into space and thus the conditions for the emergence of life in its neighbourhood.
A single star has provided information about the collision of the Milky Way with the dwarf galaxy Gaia-Enceladus. The event likely took place approximately 11.5 billion years ago.