European Solar Physics Online Seminar

Following an initiative by the University of Oslo the MPS will participate in the "European Solar Physics Online Seminar" series (ESPOS). Details can be found here: https://folk.uio.no/tiago/espos/
The aim of this video conference series is to promote ideas more widely with a specialized audience, and give some exposure to cutting-edge research for students and other young researchers that do not regularly travel to conferences. The ESPOS series is planned to take place every second Thursday at 11am.

Speaker: Bart de Pontieu
At the interface between the Sun's surface and million-degree outer atmosphere or corona lies the chromosphere. At 10,000K it is much cooler than the corona, but also many orders of magnitude denser. The chromosphere processes all magneto-convective energy that drives the heating of the million-degree outer atmosphere or corona, and requires a heating rate that is at least as large as that required for the corona. Yet many questions remain about what drives the chromospheric dynamics and energetics and how these are connected to the transition region and corona. The Interface Region Imaging Spectrograph (IRIS) is a NASA small explorer satellite that was launched in 2013 to study how the Sun's magneto-convection powers the low solar atmosphere. I will review recent results from IRIS in which observations and models are compared to study the role of small-scale magnetic fields in the generation of violent jets and how these jets feed plasma into the transition region and hot corona. [more]
We study small-scale brightenings in Ca II 8542 Å line-core images to determine their nature and effect on localized heating and mass transfer in active regions. To that end, we analyzed high-resolution 2D spectroscopic observations of an active region acquired with the GREGOR Fabry-Perot Interferometer attached to the 1.5-meter GREGOR telescope onTenerife, Spain. The ground-based data were complemented with AIA and HMI images from SDO. Inversions of the spectra were carried out using NICOLE. We identified three brightenings of sizes up to 2”x2”. We found evidence that the brightenings belonged to the footpoints of a microflare (MF). The properties of the observed brightenings disqualified the scenarios of Ellerman bombs or IRIS bombs. However, this MF shared some common properties with flaring active-region fibrils or flaring arch filaments (FAFs): (1) FAFs and MFs are both apparent in chromospheric and coronal layers according to the AIA channels, and (2) both show flaring arches with lifetimes of about 3.0-3.5 min and lengths of about 20”. Moreover, the inversions revealed heating by 600 K at the footpoint location in the ambient chromosphere during the impulsive phase. Bidirectional flows were present in the footpoints of the MF. [more]
Go to Editor View