
The relationship between
supergranulation flows, magnetic field

evolution and network flares

Von der Fakultät für Elektrotechnik, Informationstechnik, Physik
der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von Raphael Attie

aus Bayonne, Frankreich

eingereicht am: 10.09.2014

Disputation am: 08.01.2015

1. Referentin oder Referent: Prof. Dr. Sami K. Solanki
2. Referentin oder Referent: Prof. Dr. Karl-Heinz Glaßmeier

Druckjahr: 2015



Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.

Dissertation an der Technischen Universität Braunschweig,
Fakultät für Elektrotechnik, Informationstechnik, Physik

ISBN 978-3-944072-09-8

uni-edition GmbH 2015
http://www.uni-edition.de
c© Raphael Attie

This work is distributed under a
Creative Commons Attribution 3.0 License

Printed in Germany



Publications and presentations

Publications

Attie, R., Innes, D., 2008, Explosive Event in the Quiet Sun Seen by XRT-EIS and
SUMER, in First Results From Hinode, (Eds.) S. A. Matthews, J. M. Davis, L. K.
Harra, vol. 397 of Astronomical Society of the Pacific Conference Series, pp. 155

Innes, D. E., Attie, R., Hara, H., Madjarska, M. S., 2008, EIS/ Hinode Observations of
Doppler Flow Seen through the 40 arcsec Wide-Slit, Sol. Phys., 252, 283-292

Attie, R., Innes, D. E., Potts, H. E., 2009, Evidence of photospheric vortex flows at
super- granular junctions observed by FG/SOT (Hinode), A&A, 493, L13-L16

Innes, D. E., Genetelli, A., Attie, R., Potts, H. E., 2009, Quiet Sun mini-coronal mass
ejections activated by supergranular flows, A&A, 495, 319-323

Attie, R., Innes, D. E., 2014, Magnetic Balltracking: tracking the photospheric mag-
netic flux, A&A (submitted)

Oral presentations and posters

Attie, R., Innes, D., Explosive Event in the Quiet Sun Seen by XRT-EIS and SUMER,
First Results From Hinode, Trinity College, Dublin, Ireland, August 20-24, 2007.
(Poster)

Attie, R., Innes, D., Coronal Heating by Small Scale Eruptive Events on Quiet sun
Investigated By Coaligned Observations From Soho and Hinode, AGU Fall Meeting,
San Francisco, USA, Dec. 10-14, 2007. (Poster)

Attie, R., Innes, D., Explosive Events in the Not-so-quiet Sun: The Hinode View, 12th
European Solar Physics Meeting, Freiburg, Germany, September, 8-12, 2008 (oral)

Attie, R., Innes, D., Coronal Heating from Not-so-quiet-Sun Explosive Events, Second
Hinode Science Meeting, Boulder, Colorado, USA, Sep. 29 - Oct. 3, 2008 (oral)

Attie, R., Innes, D., Potts, H., Soft X-ray Emission in the Quiet Sun Related to Mag-
netic Reconnection, 38th COSPAR Scientific Assembly, Bremen, Germany, July 15-18,
2010 (oral)

3



Publications

Attie, R., Innes, D., Predicting the All Clear: New perspectives from SoHO-Hinode-
Stereo observations, Prospects for surveys with SDO, All Clear Workshop, April 22-24,
2009, NCAR, Boulder, Colorado, USA (oral)

Attie, R. Potts, H., Innes, D. Tracking flow fields and magnetic flux with the SDO/HMI
pipeline, Solar Image Processing Workshop V, Sep. 12-16, 2010, Les Diablerets,
Switzerland (oral)

4



Contents

Summary 9

1 Introduction 11
1.1 The photospheric flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Multi-scale convection: from granulation to supergranulation . . . 11
1.1.2 Measuring the plasma flows . . . . . . . . . . . . . . . . . . . . 12

1.2 Photospheric magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Methods for analyzing photospheric observations 15
2.1 Local Correlation Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Balltracking: an efficient way to track the photospheric flows . . . . . . . 17

2.2.1 In a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Phase 1: rescaling 2D images into 3D surfaces . . . . . . . . . . 19
2.2.3 Phase 2: main tracking phase . . . . . . . . . . . . . . . . . . . 19
2.2.4 Phase 3: filling the gaps . . . . . . . . . . . . . . . . . . . . . . 26
2.2.5 Phase 4: calibration of the velocity field . . . . . . . . . . . . . . 32

2.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Effects of the input parameters . . . . . . . . . . . . . . . . . . 33
2.3.2 Random error due to sampling limitations . . . . . . . . . . . . 38

2.4 Advantages of Balltracking with respect to LCT . . . . . . . . . . . . . 41
2.5 Physical validation examples . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.1 Limitations for using the divergence and vorticity fields . . . . . 45
2.5.2 Extracting the boundaries of the convection cells . . . . . . . . . 46
2.5.3 Variability of the supergranular flows . . . . . . . . . . . . . . . 50
2.5.4 Comparison with the magnetograms . . . . . . . . . . . . . . . 50

2.6 Magnetic Balltracking: tracking the photospheric magnetic flux . . . . . 51
2.6.1 Phase 1: preprocessing of the magnetograms . . . . . . . . . . . 52
2.6.2 Phase 2: initialization . . . . . . . . . . . . . . . . . . . . . . . 53
2.6.3 Phase 3: main tracking phase . . . . . . . . . . . . . . . . . . . 53
2.6.4 Phase 4: detection of emerging flux . . . . . . . . . . . . . . . . 58
2.6.5 Primary application: segmentation of the magnetic features . . . 60

5



Contents

2.6.6 Secondary application: tracking magnetic field-lines . . . . . . . 63
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Practical applications on case studies 67
3.1 Balltracking on granulation . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Magnetic Balltracking on flux emergence . . . . . . . . . . . . . . . . . 76
3.2.1 Observation of flux emergence . . . . . . . . . . . . . . . . . . . 76
3.2.2 Detection and quantification . . . . . . . . . . . . . . . . . . . . 78
3.2.3 About the thresholding . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 User-friendly software for Balltracking and Magnetic Balltracking . . . . 80
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Soft-X-ray emission related to photospheric flows and coronal magnetic field 83
4.1 Multi-instrument observations . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Protocol for near 1-arcsec co-alignment . . . . . . . . . . . . . . . . . . 84

4.2.1 Registration of MDI data . . . . . . . . . . . . . . . . . . . . . 88
4.2.2 Registration of BFI/SOT dataset . . . . . . . . . . . . . . . . . . 88
4.2.3 Co-alignment of NFI/SOT with MDI high-res. . . . . . . . . . . 91
4.2.4 Co-alignment of NFI magnetograms with the Blue continuum im-

ages from BFI . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.5 Co-alignment of the SoHO and Hinode data . . . . . . . . . . . . 97
4.2.6 Overall co-alignment . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Calibration of the magnetograms from NFI/SOT . . . . . . . . . . . . . 97
4.3.1 Rejection of artifacts . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.2 Least-squares fits . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Flows, magnetic field, and X-ray emission . . . . . . . . . . . . . . . . . 102
4.4.1 Detection of X-ray transients . . . . . . . . . . . . . . . . . . . . 102
4.4.2 Transients in MDI-XRT FOV . . . . . . . . . . . . . . . . . . . 105
4.4.3 Transients in SOT-XRT FOV . . . . . . . . . . . . . . . . . . . . 105
4.4.4 Energy of the X-ray transients . . . . . . . . . . . . . . . . . . . 118

5 Discussion 127
5.1 Converging flux model . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1.1 Definition of the model parameters . . . . . . . . . . . . . . . . 129
5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.1.3 Comparisons of Eth and Wfree . . . . . . . . . . . . . . . . . . . . 131

5.2 Effect of the funnels and the vortices . . . . . . . . . . . . . . . . . . . . 131

6



Contents

5.2.1 Shearing motions . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.2 Large-scale vortices and funnels . . . . . . . . . . . . . . . . . . 134

5.3 Qualitative model of X-ray network flares . . . . . . . . . . . . . . . . . 135
5.3.1 Magnetic field configuration . . . . . . . . . . . . . . . . . . . . 135
5.3.2 Model of X-ray network flares . . . . . . . . . . . . . . . . . . . 136

5.4 Prospects for future studies . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4.1 Quiet Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4.2 Active Regions and large scale dynamics . . . . . . . . . . . . . 139

6 Conclusion 141

A Zeeman effect and measurement of photospheric magnetic field 143

B Object-oriented implementation of the Balltracking algorithms 147
B.1 GUI for Balltracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.2 GUI for Magnetic Balltracking . . . . . . . . . . . . . . . . . . . . . . . 148

B.2.1 module of Magnetic Balltracking and region-growing algorithm . 148
B.2.2 Module for field-lines tracking . . . . . . . . . . . . . . . . . . . 149
B.2.3 Computing power . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Bibliography 153

Acknowledgements 158

Curriculum Vitae 160

7





Summary

The quiet Sun may be the biggest laboratory to isolate and study physical elementary
processes of fundamental importance to space plasma. The advantage is the continuous
availability of small-scale events, carrying the micro-physics that is responsible for but
often hidden in larger-scale phenomena. By small-scale events, we mean spatial dimen-
sions of a few Mm at most, and durations of less than an hour.
The work presented here is an attempt to describe and understand the coupling between
the photospheric flows, the photospheric magnetic flux, and small-scale energetic tran-
sient events. The latter are observed in soft X-Ray, have an intensity of at least 1 order of
magnitude above the background level, and occur high up in the quiet Sun atmosphere.
After a brief introduction on photospheric observations in Chapter 1, Chapter 2 describes
new numerical methods to analyze them. These methods are summarized as followed:

• We adapted a highly efficient numerical method, called Balltracking, to derive the
photospheric flows from images of the granulation. The method is described in
detail and is compared to other algorithms.

• To study the dynamics of magnetic flux, and more precisely, its cancellation at
relevant sites, we developed a new tool called "Magnetic Balltracking", similar to
the Balltracking algorithm, to track and tag the photospheric magnetic elements
present in high-resolution magnetograms of both SoHO and Hinode. The algorithm
can detect and measure flux emergence and flux cancellation. It can also be applied
to track magnetic field lines in the framework of magnetic field extrapolation.

We present the main results of these new methods in Chapter 3:

• The balltracking algorithm is applied to observations in the blue continuum from
the Solar Optical Telescope (SOT) of Hinode. We reveal the existence of large-scale
photospheric vortex flows at the junctions of the supergranular lanes. Typical sizes
are 20 Mm in diameter, and last for a duration of at least 30 min, up to several hours.

• Applications of Magnetic Balltracking are shown on magnetograms from both SoHO
and Hinode, at high resolution (below 1 arcsec). An example of detection and quan-
tification of flux emergence is also presented, in combination with co-spatial obser-
vations of soft X-ray loops associated with the emergence.

In Chapter 4, the Balltracking and Magnetic Balltracking are used in a multi-instrument
study, to analyze the triggering mechanism of small-scale X-ray network flares.
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Summary

• Co-spatial and co-temporal observations in soft X-rays are used to identify transient
events in the low-corona. A total of 5 instruments (MDI and EIT from SoHO, SOT-
NFI, SOT-BFI, XRT from Hinode) and 7 independent datasets are involved in the
co-alignment. We present a detailed protocol on how all the datasets must be co-
aligned to an accuracy near 1 arcsec.

• With XRT, we identified several small-scale X-ray network flares. The energy re-
leased by these transient events ranges within 1024 − 1026 erg in a few minutes. 5
cases are analyzed in detail, and the conclusions are extended to the 11 most intense
events in a 4-hours time series, within an area of ∼1/8 the solar disk.

• Balltracking and Magnetic Balltracking are used to investigate what triggers the
network flares. Balltracking directly relates the flows with cancelling longitudinal
magnetic flux, while the cancelling flux is tracked and quantified with Magnetic
Balltracking. The cancellation is viewed as a result of magnetic reconnection. The
amount of longitudinal flux that has cancelled at the onset of the transient X-ray
events ranges from 10% to 40%. Illustrative magnetic field extrapolations show
possible field configurations and their relationships with the hot plasma released in
the low corona.

From this study, we identify two patterns of the horizontal flows that act as catalysts for
efficient magnetic reconnection, and appear as a necessary-but-not-sufficient condition in
triggering X-ray network flares:

• The first pattern has funnel-shaped streamlines of the horizontal flow in which the
magnetic flux is carried. Magnetic flux of opposite polarities move together and
inevitably reconnect. These horizontal funnels form in the network, usually along
supergranular lanes and end up at their intersection.

• The second pattern has large-scale vortices at the intersection of the network lanes,
in which distant magnetic features of opposite polarities are sucked in and ulti-
mately cancel. As the flux is swept in, it gets easily stressed, which explains the
higher energy released at these sites.

Finally, these results are discussed in Chapter 5:
The photospheric flows are usually pictured as acting randomly on the field until it reaches
a topology that can ignite an energy burst. Our new conclusions are confronted with ex-
isting models and, instead, emphasize that the identified flow patterns fulfill specific con-
ditions when carrying the magnetic field, which makes the energy release more efficient.
While we have performed this analysis in soft X-ray, similar work has been done in EUV
using lower-resolution instrumentation, and revealing small-scale CME-like eruptions, all
over the quiet Sun. It seems possible that the network flares observed so far may be the
X-ray counterpart of these EUV events. Statistical studies on the Solar Dynamic Obser-
vatory (SDO) are under investigation to test this hypothesis.
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1 Introduction

1.1 The photospheric flows

1.1.1 Multi-scale convection: from granulation to supergranulation

The photosphere of the quiet Sun is easily identified by the presence of small convection
cells, called "granules" or "granulation" (Fig.1.1). They are the result of a radiative-
convective process in the solar upper convection zone. Stein and Nordlund (1989) estab-
lished the first consistent model. The granulation rises from the ascension of plasma in
the density-stratified convection zone, where regions of higher temperatures have a larger
pressure scale height. When buoyant parcels of plasma ascend in the convection zone,
their higher pressure forces them to expand horizontally. This horizontal expansion is
blocked or deflected by the growth of neighboring convection cells. The radiative energy
loss makes the plasma overturn at the edge of the cells, where downflows are observed.
The granule is the idealized concept of this ascending and overturning parcel of fluid.
Temperature gradients from the center to the edge of the convection cells make the center
of the cells brighter in white light continuum than the edge. The latter are the so-called
"intergranular" lanes and appear darker.

The granules are dynamic objects in constant renewal. They move, grow, shrink, and
sometimes explode. The average velocity of these motions is ∼800 m s−1 (Roudier et al.
1999), and they can even be supersonic or close to it. They have a typical size of ∼1 Mm
and a typical lifetime of ∼6 min, that can last up to 20 min.

Figure 1.1: White light continuum image of the solar photosphere taken with MDI/SoHO, with a
close-up taken at higher resolution by SOT/Hinode. The latter shows the granulation.
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1 Introduction

In addition to the granulation, the photospheric convection also exists at larger scales.
Between 5 to 10 Mm, the mesogranulation was revealed by measuring the time-averaged
velocity field (∼60 m s−1 on average), with a minimum lifetime of 2 hr (November et al.
1981). At even greater scales, about 10 to 50 Mm, the "supergranulation" was reported
with a much greater lifetime of up to 2 days (Leighton et al. 1962), and horizontal velocity
up to a few hundred m s−1. Contrary to granules, mesogranules and supergranules are not
directly visible in photospheric images, and their existence is revealed in time-averaged
flow fields, and more indirectly on time-averaged observations of the solar magnetic field
(magnetograms). They are both believed to rise at deeper layers in the convection zone
(Stein and Nordlund 1989). Several convection theories are focusing on the supergran-
ulation as a genuine convective process (Simon and Weiss 1968, Vickers 1971, van der
Borght 1979, Gierasch 1985). However, the actual origin of mesogranulation and super-
granulation is still under debate. Indeed, mesogranulation is also thought of as an intrinsic
property of the granulation, and not a true scale of solar convection (Rieutord et al. 2000),
while supergranulation is believed to be caused by prograde waves with 6-9 days-period
(Gizon et al. 2003). A common origin of both mesogranulation and supergranulation was
proposed in a simplified model by Rast (2003), by considering the advection of small-
scale granular downflow plumes (Rast 1995). Using an N-body simulation, it was shown
that the collective interaction of the downflow plumes give rise to specific convection
scales, comparable to mesogranulation and supergranulation. Thus the theories up till
now are quite contradictory, and understanding the multi-scale solar convection is still a
great challenge.
In our framework, the supergranular flows are studied with particular attention, as they
are closely related to the magnetic field in the quiet Sun. Analyses of the photospheric
flows are used to study the coupling between the plasma motions and the magnetic field.
Indeed, as it will be shown in this thesis, this coupling often occurs at the footpoints of
relatively energetic releases of energy observed high up in the solar atmosphere.

1.1.2 Measuring the plasma flows

By using time series of images in white light, individual granules can easily be resolved
over a wide FOV and it is possible to measure an average "plane-of-sky" component of the
velocity field (in the plane of the CCD) by tracking the granular pattern. Near disk center,
effects of spherical projection become negligible and the plane-of-sky component of these
motions approximates to the horizontal component. Doppler shifts from photospheric
spectral lines can provide the vertical component of the photospheric flows (Leighton
et al. 1962). However, here, we concentrate on the horizontal flows. From now on,
unless stated otherwise, any mention of the photospheric flows will imply its horizontal
component.

The first assumption in tracking photospheric flows is to consider the granules as
tracers of the velocity field on top of which they are constantly flowing. Due to the very
dynamic evolution of the granules (growing, shrinking, colliding, exploding), granules
have intrinsic stochastic motions. For this reason, they introduce random errors in the
velocity field. As mentioned earlier, photospheric flows exist at different temporal, and
geometrical scales. Supergranules have a lifetime of up to 2 days and sizes of up to

12



1.2 Photospheric magnetic field

Figure 1.2: Magnetogram from MDI/SoHO. Full-disk (left) and at higher-resolution (right). The
black and white intensity correspond to opposite polarities of the longitudinal magnetic field

50 Mm. Typical mean velocities are about 400 m s−1. Thus by tracking faster-evolving
granules only 1 Mm wide, with an average lifetime of ∼6 min, it is a priori difficult to
reveal the supergranulation as it stays "hidden" within the granulation. Therefore time
averaging and spatial smoothing of the data are necessary to bring out the supergranular
scales of the flow. In addition, based on simulated velocity fields of granular motions,
Rieutord et al. (2001) found out that the granules become reliable tracers of the velocity
field only if their motions are averaged over at least 2.5 Mm, and on temporal scales of at
least 30 min. These are theoretical thresholds that we use as lower limits of the smoothing
and of the averaging of the velocity fields. Below these thresholds, the velocity still
contains too much of the stochastic motions of the granules, and it would not yield the
velocity field above which they evolve. For an exhaustive review on measurements and
theories of the Sun’s supergranulation, we refer to Rieutord and Rincon (2010).

1.2 Photospheric magnetic field

Measurements of the solar magnetic field are routine in the photosphere and it can also be
measured in the chromosphere. In the quiet Sun, where granules are observed, the weak-
est magnetic elements have a field strength of the order of a few 10−1 mT − 1 mT, and a
lifetime of the order of few minutes up to several hours. These values, however, are sub-
ject to instrumental selection. More details can be found in Stenflo et al. (1998), Emonet
and Cattaneo (2001). The coronal magnetic field can be measured locally, but more global
estimates of the coronal magnetic field vector are mostly obtained by indirect estimates
and extrapolation of the photospheric magnetic field. See for example Thalmann (2010).

In this study we are using magnetograms. They are obtained from direct measure-
ments of the polarimetric signal of the photospheric radiation, and only provide the ob-
server with the line-of-sight (LOS) component of the magnetic field, also referred to as the
longitudinal component. The Zeeman splitting is computed from the line shift of left and
right circularly polarized light, using the Stokes parameters V and I. A brief development
of the Zeeman effect is given in the appendix A. More detailed descriptions can be found
in Stix (1989), del Toro Iniesta (2003) and Condon and Shortley (1963). In the present
thesis, we use the magnetograms of the Michelson Doppler Imager (MDI) onboard SoHO

13



1 Introduction

(Scherrer et al. 1995) (Fig.1.2), and of the Narrow-band-Filter Imager (NFI) of the Solar
Optical Telescope (SOT) onboard Hinode (Tsuneta et al. 2008).

The present thesis focuses on analyzing the relationships between the photospheric
flows, the magnetic field and eruptive events outside active regions, in the so-called "quiet
Sun". To do so, we have adapted an existing algorithm to measure the photospheric flows,
and we developed a new algorithm to track the magnetic flux. They are presented in
Chapters 2 and 3. In Chapter 4, we use these algorithms in a multi-instrument analysis of
small eruptive events observed in soft-X-ray. The results are discussed in Chapter 5.

14



2 Methods for analyzing photospheric
observations

Different techniques and algorithms are used to derive the photospheric flows by tracking
the motions of granules, such as the Local Correlation Tracking (LCT) originally devel-
oped by November and Simon (1988), the Coherent Structure Tracking (Roudier et al.
1999), and the "Balltracking" (Potts et al. 2004). In Section 2.1 and 2.2, we present two
of them, the "Local Correlation Tracking" (LCT)", and the "Balltracking", with a special
emphasis on the latter which was chosen for the present thesis. In Section 2.3 we carry
out an error analysis of the Balltracking, followed by a description of its computational
advantages in Section 2.4. Section 2.5 presents a qualitative validation of our version of
the code. In the last section, we present a new technique of our own, designed to track the
magnetic flux from the magnetograms, called "Magnetic Balltracking".

2.1 Local Correlation Tracking

One of the first algorithms that were used to track the motions of granules is Local Cor-
relation Tracking (LCT) developed by November and Simon (1988).
It consists in calculating the correlation of small parts of images within a time series.
These small parts are like "tracking windows" or "tracking areas" (Fig.2.1). The algo-
rithm takes the intensity in these tracking areas as the random variable X. X1

j is a specific
value of X for the jth pixel in the first image. X2

j+k is the intensity at the j + kth pixel of

the second image. If the mean intensity of the selected part of an image f is X f , with N
pixels, its standard deviation is defined as:

σX f =

√√
1

N − 1

N∑
i=1

(X f
i − X f )2 (2.1)

The correlation between the selected part of image 1 and image 2 would then be :

R(k) =
σX1X2

σX1σX2
(2.2)
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2 Methods for analyzing photospheric observations

More explicitly, it gives :

R(k) =

N∑
i=1

[
(X1

i − X1)(X2
i+k − X2)

]
√√

N∑
i=1

(X1
i − X1)2

√√
N∑

i=1

(X2
i − X2)2

(2.3)

The local correlations are computed between image 1 and image 2, within several
tracking areas, until it covers the whole image. In each area, the local correlation is
recalculated for as many different pixel k (Eq.2.3) as necessary to cover the whole window.
Fig.2.1 illustrates how they are used for the simple case of granules whose shape does
not vary in time. For simplicity, the inter-granular space has been exaggerated, and we
represent only iso-contours of granules and granules of equal intensity.

Figure 2.1: Illustration on how the tracking areas are set on images containing moving granules.
t1 and and t2 are the time of respectively, image 1 and image 2. j and k in yellow, are the center of
the granules at the respective times.

Next, we consider one tracking area. At t1, the position of the center of a feature is the jth

pixel. At t2, the feature has moved and its center is at the mth pixel, with 1 ≤ m ≤ N. In this
case, the correlation coefficient is computed for k = 1, ...,N and is maximum for k = m.
The vector defined by the position of the jth and the mth pixel defines the displacement
of the feature from the first to the second image. Dividing the displacement by the time
difference, we derive the velocity vector. Doing the same for all the time series will give
a time series of velocity fields. From Fig.2.1 one can see that the size of the tracking
areas must be chosen carefully. If it is chosen too small, the displaced feature may fall
outside the tracking area, or the noise gets too high to resolve any displacement. In either
case, the algorithm eventually fails as the correlation R(k) gets too low. If the window is
chosen too large, the resolution of the velocity field will be degraded. In practice, some
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2.2 Balltracking: an efficient way to track the photospheric flows

smoothing is applied to the data falling within the tracking window and several tests are
sometimes necessary to set a reasonable size of the tracking windows. This can be a
disadvantage with large data sets of hundreds or even thousands of images. In addition,
with images from MDI/SoHO (Scherrer et al. 1995), the granules are not resolved as much
as they need to be. This motivated Potts et al. (2004) to develop an alternate method called
"Balltracking" which overcomes this limitation, and which we present in detail in the next
section.

2.2 Balltracking: an efficient way to track the photospheric
flows

2.2.1 In a nutshell

Compared to LCT, the Balltracking algorithm aims at handling the noise better, and at im-
proving the computing time for large data sets (Potts et al. 2004). This algorithm considers
the intensity of the images as a geometrical height. The granules become tridimensional
geometrical tracers, and define a constantly evolving carpet full of bumps, that could also
be compared to an agitated sea.
Next, user-defined balls are dispatched on this surface. The initial depth at which the balls
are dropped depends on the Signal-to-Noise ratio (S/N) and the contrast of the data. The
balls are given a constant size, a mass, and damping characteristics are associated with
the whole system. Within the 3D box, a user-defined gravity is set, and the balls obey an
equation of motion, involving a numerical buoyancy, a gravity force (different from the
solar gravity), and a damping force. The latter is mainly used for tuning the stability of
the balls on noisy data. Each ball rests on several data points (pixels) in the image, and
each data point (indexed as i) exerts an elementary buoyancy force. This force is radi-
ally oriented toward the ball center, and is acting on a submerged point at a known radial
depth di. In what follows, the index i always refers to the ith pixel among all the pixels
over which the ball is floating. The three forces governing the motion of the balls can
simply be expressed with the vectorial equation:

mv̇ =
∑

i

fi(di) − mgez − γv (2.4)

where v is the velocity of the ball, v̇ its time derivative,
∑
i

fi(di) is the sum over all the

elementary buoyancy forces exerted by the data point at the ith pixel. The user-defined
gravity field g sets the maximum acceleration that a ball can possibly reach. It is oriented
downward, in a 3D cartesian frame of reference where ez is a unit vector pointing upward.
γ is the damping coefficient. At this stage, v does not correspond to the velocity of the
granules that the balls are meant to track. The general principle for deriving the velocity
of the granules is sketched in Fig.2.2, where the forces and the integration of the position
of one ball is represented across two consecutive images at the times t1 and t2. On this
sketch, the velocity of a tracked granule (drawn as a blue wave moving from left to right)
would be the difference between the final positions of the balls, after a few integration
steps of Eq.2.4 in each image, X2

final − X1
final, divided by the time interval between two
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Figure 2.2: General concept of the Balltracking algorithm for one ball. The ball, while floating
on the data surface, is pushed by the granules, represented by the blue wave. The blue squares
represent the pixels drawn at a height equal to the associated image intensity. Only a few of them
are represented.

consecutive frames.
In this thesis, the original algorithm defined in Potts et al. (2004) has been re-written, with
further developments of our own, and with the help of its original authors. In the next four
sections (§ 2.2.2 to § 2.2.5), we describe our version of the algorithm that we have divided
in four main phases.
To clear out any semantic confusion in what follows, the words "image" and "frame" are
used interchangeably: they both designate a two-dimensional map of scalar values, or of
vector quantities.
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2.2 Balltracking: an efficient way to track the photospheric flows

2.2.2 Phase 1: rescaling 2D images into 3D surfaces

The intensity of the images of the granulation is given in Data Number units (DN units),
and typically ranges over hundreds of DN. Since the balls are spheres designed to track
circular tracers (the idealized granules), the conversion of the intensity into a vertical axis
must be consistent with the horizontal dimensions of the granules. More precisely, the
vertical amplitude obtained from the difference between the bright summits and the dark
edges of the granules must be of the same order of magnitude as the average width of
the granules (∼1 Mm). This can be achieved easily by considering that the horizontal
gradient of their emission is somewhat related to their spatial dimension. In the basic
picture of radiative-convective phenomena, the convected hot material reaches the top
of the convection cell before it cools by radiative loss and flows down to the edge. A
two dimensional cut in the vertical plane would show a nearly circular pattern. Thus we
consider that the vertical extension of this process is of the same order of magnitude as its
horizontal extension. Potts et al. (2004) chose to set the vertical dimension as the intensity
re-scaled by the standard deviation of the intensity of the image, which corresponds to the
average deviation of the intensity from the mean of the image. The image may also be
subtracted by its mean, in order to conveniently define the average surface level at an
altitude of zero. Fig.2.3 shows this conversion. The upper panel contains the original
and calibrated data from SOT/Hinode (Tsuneta et al. 2008), with a spatial light curve
taken across the middle of the image. The amplitude of the intensity is spanning over
hundreds of DN. The bottom panel shows the same data subtracted by the mean value of
the intensity, and divided by the standard deviation σ ≈ 230 DN. The re-scaled intensity
now spans over a few times the standard deviation, and counted in units of the latter
(σ-units) on Z-axis, which is here plotted with the same aspect radio as the X-axis (the
geometric length of 1 px equals the geometric length of 1σ). If we consider the maximum
amplitude, the "tallest" features in the image are about 4 σ-high. In the images, the
average width of the granules (1 Mm) corresponds to ∼6 px, which makes this scaling
very appropriate. Fig.2.4 presents the result of the conversion from the 2D image to the
3D surface, using Hinode data.

2.2.3 Phase 2: main tracking phase

Here we review the equations and geometry as used in the original algorithm from Potts
et al. (2004). Some notations may vary to maintain consistency with other notations
used throughout this thesis. Nonetheless, the final equations are equivalent to the ones
at the end of the original paper (Potts et al. (2004), annex A.2, Eq.A.14). Since the
algorithm is designed to track granules represented in 3D, a pre-requisite of the code is to
know their geometrical characteristics in the images. From this geometry, the appropriate
characteristics of the balls are defined, as well as the scaling parameters for Eq.2.4.
First, we need to define the buoyancy force fi, in a form consistent with the data. We
consider one ball in equilibrium on a flat surface, floating at a maximum depth Dp as
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Figure 2.3: Top: Original, non-scaled image (left) of the granulation taken by Hinode with a
light curve (top right) taken across the x-axis (yellow lines on the left images). The units are Data
Number (DN). Bottom: Same image subtracted by its mean, and scaled to its standard deviation σ.
The intensity (bottom right) is spanning over a few times the standard deviation, and is considered
as the vertical dimension Z.

shown in Fig.2.5, in which we use the following definitions:

Rs : Sphere radius
Dp : Maximum penetration depth

di(θ) : Radial penetration depth at pixel i
θw : Angle at surface piercing point

Ai(θ) : Area of the spherical annulus (red) at radial depth di(θ)
fi(θ) : arbitrary buoyancy force applied on the ball center due to the pressure forces applied on Ai
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Figure 2.4: Preprocessing of the images before Balltracking. Top: 2D sample of an image of the
granulation. Bottom: Same sample converted to a 3D surface.
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θ

Ai ≈ 2πR2
s sin θ dθ

fi

dθ
θw Rs

di Dp

ez Z-axis

pixel i

Figure 2.5: Description of the geometry of a ball as used in Balltracking. The ball is floating on
a flat surface. The blue squares represent pixels in the image.

The algorithm uses dimensionless parameters. Each quantity defined in Fig.2.5 is scaled
by characteristic parameters:

dc : characteristic length (pixel size)
tc : characteristic time (time interval between each image)

and the dimensionless parameter associated with Fig.2.5 defines as:

R̃s ≡ Rs/dc (2.5)

D̃p ≡ Dp/Rs (2.6)

d̃i ≡ di/Rs (2.7)

Now we must define the pressure on an elementary spherical annulus of width Rs dθ at
a radial penetration depth di (shown in red in Fig.2.5) making an angle θ with the vertical
axis of the ball, and equal to:

di = Rs −
Rs − Dp

cos θ
(2.8)
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2.2 Balltracking: an efficient way to track the photospheric flows

In units of sphere radius Rs, di gives:

d̃i = 1 −
1 − D̃p

cos θ
(2.9)

We now define the pressure applied to the annulus as:

Pi = k d̃i (2.10)

where k is the force scaling factor. In the present situation, we are only interested in
tracking the position of the center of the balls. All the forces must be defined in relation
to this point. Additional effects like spinning motions are of no interest in this framework.
The total arbitrary buoyancy, by definition, is oriented upward, so we only express the
elementary buoyancy force fi as a function of di. Due to the symmetry around the vertical
axis on the flat surface, and considering the pressure applied on the whole area Ai of an
elementary spherical annulus, we have:

fi = Pi cos θ Ai

= k d̃i cos θ Ai

= k
(
1 −

1 − D̃p

cos θ

)
2πR2

s cos θ sin θ dθ

(2.11)

Now we derive the force scaling factor k in terms of the parameters introduced above,
by using the equilibrium between the gravity force and the total buoyancy force. The
gravity force is not related to the solar gravity. It is another factor intrinsic to the algo-
rithm, noted g, used only to balance the buoyancy force. The total buoyancy force is
obtained by integrating fi over all the submerged elementary annuli.

mg =

∫
0

θw

fi dθ (2.12)

= 2πkR2
s

[
1
2

sin2 θ + (1 − D̃p) cos θ
]θw

0

(2.13)

where θw is the angle between the bottom vertical axis of the sphere and the surface, which
satisfies:

cos θw =
Rs − Dp

Rs
= 1 − D̃p (2.14)

(2.15)

Finally, we obtain an equation for k:

k =
mg

πR2
s D̃p

2 (2.16)
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2 Methods for analyzing photospheric observations

The above derivation is only used to find a suitable definition of k, which is a con-
stant characteristics of the balls, and does not depend on how the surface is shaped. A
horizontal surface allows the easiest calculations. The horizontal motion arises from the
asymmetric topology of a non-flat surface.

On discrete data, there is a finite number of data points Nd acting on the ball, and the
total buoyancy force fb is defined as:

fb =

Nd∑
i=1

kd̃i

=

Nd∑
i=1

mg

πR2
s D̃p

2 d̃i

(2.17)

Note that k scales the buoyancy force. The latter is thus proportional to the arbitrary
gravity g, and is also scaled by the level at which the ball is in equilibrium when it is
floating on a flat surface (Eq.2.13 ). This level is set by D̃p.
For stability we need to introduce a damping force that slows down the balls proportion-
ally to their velocity such that in the absence of other forces, the velocity satisfies:

m
dv
dt

= −γv

v = v0 exp
(
−t

T̃d

) (2.18)

in which T̃d = m/γ is the characteristic damping time, and v0 is the initial velocity.
Note that this is also the solution of the homogenous form of Eq.2.4, which accounts
for the effect of the damping force. So if we know the initial velocity, the displacement
x(t1) − x(t0) between two consecutive times t1 and t0 can be integrated analytically as:

x(t1) − x(t0) =

∫ t1

t0
v(t)dt (2.19)

=

∫ t1

t0
v0 exp

(
−t

T̃d

)
dt (2.20)

= v0 exp
(
−t1

T̃d

)
T̃d

[
1 − exp

(
−(t1 − t0)

T̃d

)]
(2.21)

= v1T̃d

[
1 − exp

(
−δt

T̃d

)]
(2.22)

where v1 = v0 exp
(
−t1

T̃d

)
according to Eq.2.18, and δt = t1 − t0.

In fact, the damping force is used to maintain some stability (Potts et al. 2004). It is
applied only after the buoyancy force acts on the balls. Before it is applied, the velocity
change between two time steps derives as:

δv = δt (fb − gez) (2.23)
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2.2 Balltracking: an efficient way to track the photospheric flows

The positions of the balls are updated at each new image by integrating Eq.2.23 itera-
tively. At the end of each integration step, the damping is applied using Eq.2.22. In fact,
each integration of the positions is decomposed in four consecutive calculations:

• The buoyancy force is calculated with Eq.2.17.

• The new velocity is integrated with the buoyancy force calculated above, according
to Eq.2.23.

• The new position is integrated according to Eq.2.22.

• The damped velocity is calculated explicitly using Eq.2.18 so it is used as the initial
velocity at the next time step.

In the algorithm, δt = 1, as one image corresponds to one time step. For simplicity,
the mass of the balls is set to 1. The balls have no initial velocity (v0 = 0), and are initially
positioned in the first image at x1 ≡ (x1, y1, z1). z1 is set at a height that satisfies that the
bottom point of each ball is submerged by 0.5 Dp. The horizontal spacing of the balls
is equal to one ball diameter (2 Rs) which ensures that the balls do not overlap at the
beginning of the tracking.
In what follows we associate the time t with the image number n, so that v(t) ≡ vn and
fb(t) ≡ fbn. If we unroll the integration of the velocities and positions at the first image,
the four steps described above give:

fb1 = k
Nd∑
i=1

di1 (2.24)

v1 = fb1 − gez (2.25)

x1 = x0 + v1 T̃d

[
1 − exp

(
−1

T̃d

)]
(2.26)

v∗1 = v1 exp
(
−1

T̃d

)
(2.27)

where we have introduced the asterisk symbol ∗ to distinguish the damped velocity at the
fourth step from its non-damped value at the second step. At the next image we will have:

fb2 = k
Nd∑
i=1

di2 (2.28)

v2 = v∗1 + fb2 − gez (2.29)

x2 = x1 + v2 T̃d

[
1 − exp

(
−1

T̃d

)]
(2.30)

v∗2 = v2 exp
(
−1

T̃d

)
(2.31)

Henceforth, the integration of the position at the nth frame knowing the velocity and
position at the (n − 1)th frame, with δt = n2 − n1 = 1 gives:
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2 Methods for analyzing photospheric observations

fbn = k
Nd∑
i=1

din (2.32)

vn = v∗n−1 + fbn − gez (2.33)

xn = xn−1 + vn T̃d

[
1 − exp

(
−1

T̃d

)]
(2.34)

vn = v∗n exp
(
−1

T̃d

)
(2.35)

With real data, the surface is defined by the intensity of the image, which is not flat,
thus we define Dp as a characteristic depth. If the ball floats at a different depth than Dp,
the vertical component of the buoyancy force will move the ball to satisfy the equilibrium
defined in Eq.2.13. In the meantime, the two horizontal components of the total buoyancy
force move the ball horizontally. When the ball falls in the intergranular lanes, it will
settle in and follow the net motion of the set of granules that define these lanes. These
steps are presented in Fig.2.6.

2.2.4 Phase 3: filling the gaps

At the end of the integration of the ball positions, there can be places where they overlay.
By continuity, this also creates gaps larger than the initial spacing between the balls at
the initialization (one ball diameter between the centers of the nearest neighbors), which
leaves parts of the images not sampled. Potts et al. (2004) "regulated" this in two steps
before each new integration of the positions of the balls:

• Neighboring balls will eventually settle to the same local minima, causing an "over-
population" at different grid points of the frame where the balls overlay (see the
overlaying circles in Fig.2.8). Such balls are detected by computing the histogram
of the position of all the balls. These balls and their position on the grid are flagged
for relocation.

• For any empty grid point, it is filled with one of the previously flagged balls. The
positions of the relocated balls are also flagged when differentiating the final posi-
tions: this ensures that the differentiation does not act on the previous positions of
relocated balls (as these could have been anywhere before their relocation).

In the original version of the code, we realized that the number of gaps and of overlays
were not balanced: after the two steps above, there were still much more of the former
than there were of the latter. This is illustrated in Fig.2.7 where we have plotted the gaps
(black) before (top) and after (bottom) the two steps of the "gap filling" procedure, at a
given time. Note that because of the original square grid spacing (one ball diameter of,
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Figure 2.6: Status of Balltracking at two different times. Top: The balls are placed on the 3D
surface. Bottom: the balls have moved over 6 images of the granulation, recorded every 2 min.
The color scaling and Z-scaling are in units of standard deviation (σ-units)
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here, 4 px), the gaps are drawn as squares of 4× 4 px2. One can see that there is still a sig-
nificant part of the grid that is not populated. The number of empty blocks (black) is given
in the title of each image. Here it is initially equal to 287, and reduces to 140. This leaves
in this case 22% of the initial grid not sampled, and this discrepancy stays throughout the
whole time series. According to the continuity principle, this should not be the case, as
the gaps are created only because some balls converge to the same areas and overlay, (the
image on the bottom should be blank). In Potts et al. (2004), this was compensated using
weighted average so this effect was minimized. In our implementation of the code, we re-
alized that the balance between gaps and overlays could easily be enforced, ensuring that
the number of relocated balls from the overlays is always enough to re-fill all the gaps.
This was solved using a more consistent communication between the two steps described
above, that is consistent with the continuity principle, and, in a least proportion, by taking
into account the possible loss of balls due to edge effects. This also ultimately results in
a finer sampling of the images, which allows us to make a consistent error analysis (more
on that in Section 2.3).

In addition to the two steps that minimizes the number of gaps, Potts et al. (2004)
improved the statistics by tracking the granules back in time, starting from the last image,
and tracking the motions back to the first image. The timeline of the final positions is
reversed to recover the real timeline. This tracking is referred to as the "backward track-
ing". This provides a different set of sampled grid points, that is added to the first one, the
latter being referred to as the "forward tracking". This was kept in our version of the code.
Indeed, even if our modifications made the initial sampling grid better preserved across
the images (i.e, no additional gaps are created), we cannot guarantee that the balls sample
evenly all the pixels of all the local minima (the intergranular lanes) during the forward
tracking. This in fact depends on the data themselves. With the backward tracking, the
balls eventually follow different tracks than in the forward tracking, and this increases the
quality of the sampling.

Nonetheless, this method only tracks the motion of the flow by tracking the intergran-
ular lanes. Whether we use the forward or the backward tracking, the balls will only track
the darker intergranular lanes, and not the bright center of the granules. This again leaves
these parts of the data surface not sampled. Therefore, in the present thesis, another im-
provement was made to fill these gaps: by considering the inverted images (referred to as
the "back-side" images), the local minima map to the centroids of the granules which were
the local maxima in the non-inverted images (the "top-side" image). The Balltracking ap-
plied to both sets of images provides a finer sampling of the flows. Fig.2.9 shows a sample
of the tracking on both sides, in 3D, of the larger image in Fig.2.8 (yellow rectangle). The
latter pictures how the image is actually sampled by the balls after merging both sets of
the final positions. After a few integration steps, the balls have settled in the integranular
lanes during the top-side tracking (green circles in Fig.2.8, and Fig.2.9, top), and in the
centroids of the granules in the back-side image (red circles in Fig.2.8, and Fig.2.9, top).
Since the pixels at, and around the centroid of the granules are different from the pixels at
the intergranular lanes, the data sampled during the "top-side" tracking are independent
from the data sampled during the"back-side" tracking. The resulting velocity fields can
be averaged to reduce the error, provided that both sets of results are calibrated properly.
This is discussed in the next section.
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Figure 2.7: Illustration of the gaps filling step in phase 3 of Balltracking, showing how the image
is actually sampled. The black blocks are the gaps, i.e, areas of the grid without any ball. Top:
287 gaps appear at the end of the integration of the balls positions. Bottom: after re-filling the
gaps, there are still 140 empty blocks. The field-of-view is the same as the one in Fig.2.8.
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Figure 2.8: Image of the granulation with the final positions of the balls after a few integration
steps. In this colormap, the black areas correspond to the minimum "height", i.e, the intergranular
lanes. The balls from the top-side tracking (green circles) have settled in them. The clearer, white
areas are the granules, in which the balls from back-side tracking (red circles) have also settled at
the centroid. The yellow rectangle corresponds to the field-of-view pictured in Fig.2.9.
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Figure 2.9: Illustration of the top-side tracking (top) and back-side tracking (bottom). The field-
of-view corresponds to the yellow rectangle in the larger frame in Fig.2.8.

31



2 Methods for analyzing photospheric observations

2.2.5 Phase 4: calibration of the velocity field

One must not confuse the velocity in Eqs.2.18 to 2.33 as the final output velocity. Instead,
we output the final positions of the balls after the integration in each frame (Eq.2.35).
These positions are, in fact, calculated in a Lagrangian frame of reference (the equation
of motion follows each single ball), whereas the so-called "velocity field" (also referred
to as "flow fields") must be calculated in a Eulerian frame of reference (the velocity of the
fluid is observed at fixed locations) in a post-processing phase. Potts et al. (2004) does
the conversion as follows:

• The final positions of the balls at two consecutive frames are differentiated.

• The average positions of the balls between these two frames are used as the grid
points of the Euler frame of reference.

• Spatial smoothing and time averaging are applied over the velocity fields, in order
to clear out the fast and stochastic small-scale motions of the granules, as discussed
in Section 1.1.

• The conversion of the velocity to physical units is done at the end of the computa-
tion, by multiplying its two horizontal components Vx and Vy by the pixel size dc

and dividing by the time interval tc between the images (which will be sometimes
referred to as the instrumental "cadence" of the imager).

Note that the conversion above assumes a cartesian frame of reference, with a constant
length of the pixel size projected onto the solar surface. This is, in fact, a tangential
approximation of the spherical frame of reference valid only within a limited field-of-
view (FOV). In the present thesis, we consider FOVs of, respectively, ∼600 arcsec-wide
with MDI/SoHO, and of ∼250 arcsec with SOT/Hinode. The error on the pixel size of
the farthest pixel of the CCD, induced by the solar spherical curvature, with respect to
the pixel in the middle of the CCD, is of ∼10%, and of ∼1%, respectively. Only the
results from SOT, and the co-spatial sub-region of the MDI’s CCD is used in this thesis
for quantitative analyses. Higher precision within wider FOVs, provided that enough
granules are resolved, will need to account for a more precise map of the coordinates of
all the pixels. Regardless, as we will see in Section 2.3, the random error intrinsic to the
tracking of granules is much greater, which makes such corrections (i.e, the use of more
precise maps of coordinates) unnecessary within the scope of this thesis.

In addition, since the balls take some time to settle in the local minima (the intergran-
ular lanes), the velocities are, on average, underestimated. Therefore another calibration
step is necessary to compensate for this systematic error. This was originally carried out
by using the results from LCT (Section 2.1) to properly rescale the results from Balltrack-
ing by a linear coefficient (Potts et al. 2004). In the present thesis, we chose to use a
more independent method. It consists in applying a known uniform velocity, in a specific
direction, either the East-West direction (X-axis) or the North-South direction (Y-axis),
by shifting subsets of the images. This emulates a constant large-scale drift, which would
be picked-up as an offset on the average velocity. Balltracking is then performed on the
drifting subsets. This process is repeated for different values of the drift velocity. Next,
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2.3 Error analysis

Vx and Vy are averaged over the FOV of these subsets. Repeating the operation at the dif-
ferent values of the drift velocity reveals that the calculated velocity has a linear response
to the drift. The calibration consists in dividing or multiplying1 the velocity by this linear
coefficient.
This coefficient depends on the characteristics of the data, like the pixel size, the noise
level, the filter, the cadence of the imager, or the input parameters of the algorithm. If
these conditions do not change, the same calibration coefficient can be used. Should any
of them be changed at any time, this calibration should be carried out again. This includes
the "top-side" and "back-side" tracking. The calibration must be done in each case. An ex-
ample of this calibration for MDI and SOT is given in Fig.2.10. Note the linear response,
and the different coefficients associated with each tracking (top-side and back-side). The
linear response (here R2 > 0.99 in all cases) is the necessary condition for this calibration,
and the flow fields, to be meaningful. The value of the calibration coefficient is also an
estimator of how fast the balls are able to respond to the changes of the flow fields. This
property is discussed in more details in the next section.

2.3 Error analysis

The results of the top-side and back-side tracking are not strictly identical. They exhibit
some discrepancies which can be used to estimate the measurement error. Because the
method of using a top-side and back-side tracking is an improvement to the original al-
gorithm, this error analysis not only measures the precision of the final output, it also
quantifies the dependency of the results on the input parameters, and further justifies how
to choose them. This is done in Section 2.3.1. In Section 2.3.2, we will use the theoretical
model derived by Potts et al. (2004) to find out more about the accuracy of the tracking,
which is the measure of how close the output velocity fields are to the true value of the
flow fields underneath the granules. Note that we used the terms, "precision" and "accu-
racy", as distinct, and as defined in textbooks of error analysis (see for instance Bevington
1969, § 1.1). This distinction will be kept throughout this document.

In what follows, unless stated otherwise, the use of "pixel size" and "resolution" are
used interchangeably as we rule out any manipulation that would decrease the pixel size
without any gain in resolution, or increase the pixel size without the equal loss in resolu-
tion.

2.3.1 Effects of the input parameters

In order to assess how each parameter affects the results, we first need a formal definition
of the measurement error of the velocity.
One measurement of the velocity at the ith grid point (xi, yi) is the set of its 2 components:
(Vx(xi, yi) , Vy(xi, yi)), in units of "px/frame". The top-side tracking (T ) and the back-side
tracking (B), respectively, provide two independent measurements: (Vx(xi, yi) , Vy(xi, yi))T

and (Vx(xi, yi) , Vy(xi, yi))B, respectively. The discrepancy on the velocity components at

1Whether the velocity is either divided or multiplied by the calibration coefficient depends on how the
user orders the measurements and the reference data in the linear fit.
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Figure 2.10: Linear fit for the calibration of the velocity with images from two different instru-
ments: SOT/Hinode (top) and MDI/SoHO (bottom).

the ith grid point defines as:

δVx = Vx(xi, yi)T − Vx(xi, yi)B (2.36)
δVy = Vy(xi, yi)T − Vy(xi, yi)B (2.37)

and referred to as δVk(xi, yi) with k = x, y. In what follows, for simplicity and unless
stated otherwise, the index k always refers to the x and y component of the velocity.
In terms of velocity magnitude we will have:

δ|V | = |V |(xi, yi)T − |V |(xi, yi)B (2.38)

where |V | =
√

V2
x + V2

y .

The above discrepancies are random, and their distributions across the N grid points
(xi, yi)i=1,...N approximate the normal distribution centered on zero.
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Figure 2.11: Distribution of the discrepancies (gray bars) and the fitted normal distribution (red)
for the two components of the velocity Vx and Vy.

Then we define the standard error in the 2 components of the velocity as the standard
deviation of the discrepancies, noted σVk , such that:

σVk =

√√
1

N − 1

N∑
i=1

(
δVk(xi, yi) − δVk

)2
(2.39)

where δVk is the mean discrepancy over the N grid points which is negligible with respect
to the velocity magnitude. In Fig.2.11, we show an example of the standard error on the
velocity magnitude (σ|V |) from real data (SOT/hinode). Here σ|V | = 0.06 px/frame and
δ|V | = 2 10−3 , from a flow field with a mean velocity magnitude of |V | = 0.3 px/frame.

Since the same algorithm is used to track the velocity at each grid point (xi, yi), and
there is no interaction between the balls, the measurements at each grid point are indepen-
dent from each other. In addition, the top-side and back-side tracking are also independent
as the features that are being tracked are different. Indeed, on the "top-side" images, the
balls settle in the local minima of the intergranular lanes and track the motions of the
latter, whereas on the "back-side" images, they track the centroid of the granules. Thus
by averaging the results of the tracking on both sides as:

V∗k (x, y) =
Vk(x, y)T + Vk(x, y)B

2
(2.40)
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the standard error of the mean measurements σ∗Vk
at each grid point reduces to:

σ∗Vk
=
σVk
√

2
(2.41)

In Fig.2.11, this reduces the standard error σ|V | to σ∗|V | ∼ 0.04, and to a percentage error
σ∗|V |

|V |
of 13%. We can now estimate the velocity components within a 1σ-uncertainty by:

Vk(x, y) = V∗k (x, y) ± σ∗Vk
(2.42)

The above derivations are applied to real data, using images from SOT with a pixel
size of 0.16 Mm, and a field-of-view 500 × 500 px2. The velocity field is the result of
a time average of 1 hr and of a gaussian smoothing over a full-width-at-half-maximum
(FWHM) of 24 px (∼4 Mm). Each velocity map is binned, with a square bin size equal to
the FWHM in order to provide uncorrelated samples (the value at each bin is the average
of all the values within). σ∗Vk

is calculated after different runs of Balltracking on the
same series of images, with different sets of input parameters. To give more generalized
results for comparisons in future studies, the uncertainty is normalized. In order to avoid
divisions by zeros, it is normalized to the mean velocity magnitude 〈 |V(x, y)| 〉 (where
〈 〉 represents the spatial average over x and y), which is always positive, and the standard
error is expressed as a standard "relative error", noted σ∗nVk

and expressed as a percentage
in Fig.2.12. In addition to these results, each change in parameters space requires a new
calibration. The calibration coefficients of the top-side and back-side tracking are plotted
in Fig.2.13. We remind that these values also measure how fast the balls react to the
velocity changes in the flows. The closer they are to 1, the faster they react. Below
are the interpretations of these results for each input parameter, which complements the
discussion on the choice of parameters in the original paper (see Potts et al. 2004, §2.4).

Sphere radius (R̃s) The uncertainty σ∗nVk
is minimized down to ∼12% at R̃s = 2 px. At

higher values, the uncertainty slightly increases by a few percents. The optimum value
of R̃s directly relates to the size of the features we need to track, and to the resolution of
the images: the size of the balls need to be small enough to settle between the granules
(top-side tracking), and within the granule centroid (back-side tracking). Thus too great
a radius defeats the purpose. Too small a radius can nearly double the uncertainty with
σ∗nVk

(1.2) = 21%, because the balls do not have enough pixels under them to really track
anything coherent: the motions remain dominated by the small-scale random noise of the
images, regardless of the amount of time and spatial average.

Gravity (g) It is used to maintain stability. The buoyancy forces are proportional to
it (Eq.2.18). In Fig.2.12, σ∗nVk

significantly increases at g > 1. If it is too high, the
balls move faster than the changes in the flow. Hence the increase of the standard error
from σ∗nVk

(0.2) ' 10% to σ∗nVk
(1.5) ' 25%. Values lower than 0.8 should be avoided

too, despite the apparent "better precision" implied by the graphs of σ∗nVk
(g). Indeed, as

mentioned earlier, there is a difference between "precision" and "accuracy". Consider
Eqs.2.16 and 2.17 and the extreme case of g = 0. The buoyancy forces would vanish
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too, and all the balls would stand still. The discrepancies between the top-side and the
back-side would subsequently be zero, and so would σ∗nVk

. The latter corresponds to a
very "precise" measurement, but it also corresponds to the worse accuracy with respect
to the real motions of the granules that are definitely moving! See Fig.2.13, in which the
lower the value of g, the greater the calibration coefficients, which we mention earlier is
to be interpreted as greater reaction times (i.e, the balls react more slowly). If the balls
were rigidly following the granules, the calibration coefficients would be closer to 1.
So, decreasing g slows down the balls, and increases their reaction time to the changes in
the flows. Therefore g should be set to the highest possible value that doe not get σ∗nVk

to
increase significantly. According to Fig.2.12, 0.8 ≥ g ≥ 1.

Number of intermediate frames Nint Due to the granules mean life time of 5 min, a
time interval of 2 min between the images is a bit low: the shape and positions of the
granules can significantly evolve between two consecutive frames. Before the integration
at the next image, with a damping time of, e.g., T̃d = 1, the balls would still have ∼36%
(damping by e−1 in Eq.2.33) of their last calculated velocity, in the absence of other forces.
This affects the next displacements that they are supposed to catch. This influence is of
course lower at a higher cadence (i.e, smaller time interval between the images) because
the granules would evolve less between two consecutive images. To compensate for a low
cadence (i.e, a large time interval between the images), Potts et al. (2004) linearly interpo-
lates intermediate images to give the balls more time to track the granules, and make them
anticipate the changes in the next image. Note that this does not improve the time resolu-
tion of the velocity map, as the missing information cannot be created, but this improves
the precision of the measurements. In Fig.2.12, with 2 intermediate frames between the
real images (the ones actually recorded by the instrument), the uncertainty decreases from
20% (0 interpolated frame) to 13%. In Fig.2.13, note that with no interpolated frame, the
tracking is really slow at catching up the displacements with αT,B > 3. At 3 intermediate
frames, αT,B < 2. So increasing the number of interpolated frames decreases the reaction
time, in the same manner as the gravity g does. With a low cadence of 2 min, we need 2
to 3 intermediate frames. Interpolating more images than this does not improve the pre-
cision, neither does it improve the balls reaction time significantly, while it still increases
the computational time.

Characteristic damping times (T̃d, T̃dz) The damping forces are necessary to stabilize
the balls against rapid changes in the data, such as short wavelength noise (Potts et al.
2004). In addition, the stochastic motions of the granules are also short wavelength data
with respect to the size of the field-of-view, and they are everything but noise: the aver-
age motions that rises from these stochastic displacements are precisely the useful data
embedded in the final velocity fields (Section 2.2.5). T̃d and T̃dz are the times after which
the horizontal and vertical velocity decreases by e in the absence of other forces, and
it physically means that the balls have a "limited memory" of their past motions, which
preserves some of the stochastic behavior that we need. Their effects on the final results
are similar to the effects of g: they establish a compromise between stability and reac-
tion time. Lower values reduce σ∗nVk

(Fig.2.12), but also reduce the responsiveness of the
tracking according to Fig.2.13. Note that the damping times are in units of time interval
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Inputs Rs T̃d T̃dz D̃p Nint σ∗nVk

value 2 3 0.3 0.2 3 13%

Table 2.1: Chosen value of each input parameter of Balltracking for the images of SOT/Hinode
used in this thesis.

between the frames. Interpolating images reduces this time interval. Note also the range
of T̃dz. It needs to be one order of magnitude less than T̃d (Potts et al. 2004). Here we
choose T̃d = 3 and T̃dz = 0.3. A very simple explanation for this difference is to compare
the situation with a surfboard on a wave. To follow the motions of the wave at a given
buoyancy, the surfboard is optimized so it is easier to glide horizontally than vertically.
This is modeled by giving it a lot of damping in the vertical axis (low T̃dz), and much
less horizontal damping (T̃d > T̃dz). Another comparison would be with the paraglider:
in order to follow the horizontal component of the wind more efficiently than the verti-
cal component, the paraglider acts on the strings of his parachute to increase the vertical
damping with respect to the horizontal damping, which is precisely what we need to do.

Characteristic penetration depth (D̃p) It corresponds to the depth of submergence of
the ball at which the latter is in equilibrium on a flat surface. D̃p = 0 means that the ball
is not submerged at all. D̃p = 1 means it is entirely below the surface. On real data,
it corresponds to an average penetration depth. To maximize the number of data points
under the sphere, the latter should not be more than half submerged. It should not be too
emerged either. Otherwise there are too few data points to compute coherent buoyancy
forces, which reduces the reaction time. From Figs. 2.12 and 2.13, we can see that the
penetration depth should be set to: 0.2 ≤ D̃p ≤ 0.3.

Table 2.1 wraps up the best input values and the uncertainty for the tested series of
images from SOT. These data will be used for science studies in the next chapters.

The discussion above showed how the precision can be improved by an appropriate
choice of parameter values which reduces σ∗nVk

. However, no matter how great the preci-
sion can get, the accuracy of the final results is constrained by physical limitations of the
granules themselves. This is explained in the following section.

2.3.2 Random error due to sampling limitations

As mentioned in Section 1.1, Rieutord et al. (2001) observe that tracking granules gives
relevant underlying flows only at spatial scales of more than 2.5 Mm and on temporal
scales of at least 30 min. Thus observations of the velocity fields below these values may
not be meaningful. At these thresholds, Potts et al. (2004) estimate from a theoretical
model (see § 3.1 of the publication for a complete derivation) that whatever the tracking
algorithm used, for 1 min cadenced data, with an instrumental resolution of 1.2 arcsec
(MDI data), and assuming perfect tracking of the granules, the random error on the de-
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Figure 2.12: Standard errors on the velocity components Vx and Vy, normalized to the mean
velocity magnitude, for different values of the input parameters of Balltracking. The plots share
the same vertical axis scaling, and the same legend as the one in the top left panel.
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rived velocity flows would be ∼150 m s−1. This uncertainty accounts for the finite scale
of the granulation, in time and space, which makes the measurements spatially and tem-
porally correlated. In sampling theory, it means that the effective number of independent
data points is smaller than the number of samples taken by the instrument. Therefore, to
keep the random error low enough for meaningful analysis at a given resolution in time
and space, the spatial smoothing and time averaging must be chosen with caution.

As a look-up table for the next chapters, Fig.2.14 displays the theoretical random error
on the velocity field derived with Balltracking using MDI and SOT data, as a function of
both the time average and the spatial smoothing. The difference in the error between MDI
and SOT observations is mainly due to a finer resolution of SOT, whose effect on the error
compensates the effect of its lower cadence. In this example, the SOT cadence is 2 min,
and the MDI cadence is 1 min. For typical photospheric flow fields of ∼400 m s−1 (on
everage), and using the same time average (1 hr) and spatial smoothing (4 Mm) used in our
error analysis in the previous section, Fig.2.14 gives an error of ∼60 m s−1, i.e, a relative
error of 15%. Note that this is a measure of the accuracy, which is of the order of the
precision calculated earlier (13%). This means that the true accuracy is impaired by these
measurement errors, and it also means that no matter how precise the measurements are,
our results will have at least 15% error. A better accuracy will be obtained at the expense
of either time resolution or spatial resolution, or of both. Note that the theoretical random
error analytically derived by Potts et al. (2004) is not related to the tracking algorithm.
It is a theoretical limitation, intrinsic to the granules and to the instrumentation used to
record the images, regardless of the tracking technique used to process the data.

2.4 Advantages of Balltracking with respect to LCT

Balltracking and LCT are different methods to measure flow fields, that theoretically,
given perfect data, and within the error bars of their respective measurement errors, are
supposed to output the same results. However, with real images, the data can be biased by
cosmic rays, hot or dead pixels, missing data, etc... across which LCT and Balltracking
behave differently. In addition, on large data sets, there are intrinsic differences. These
differences lead to significant advantages when using Balltracking. Some of the advan-
tages were discussed by Potts et al. (2004) but our own implementation of the code offer
other ones, which we describe below:

• The top-side and back-side tracking that we have used in this thesis provide a unique
way to estimate the tracking precision from real data, which is not possible with
LCT, whose precision and accuracy is assessed using simulations and by compar-
isons with other algorithms (Potts et al. 2004, Roudier et al. 1999).

• The original algorithm was using explicit "for-loops" over each single ball in the
integration of the positions, as well as in the "gap filling" phase (Section 2.2.4).
The whole code was written in the Matlab language. By vectorizing these codes
(i.e, the removal of "for-loop" using faster matrix linear algebra), and by writing
the core of the algorithm in Fortran and C, we have reduced the compute time by
more than one order of magnitude, which makes possible real time analyses for
long-term surveys (hours of observation take less than a minute to be computed).
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Figure 2.14: Theoretical random error on the velocity fields derived from Balltracking, at different
time averages and spatial smoothings, for SOT (top) and MDI (bottom). For this calculation, the
SOT images are taken every 2 min, while MDI images are taken every minute. The instrumental
characteristics used here (time cadence and pixel size of the images) are given in the figure titles.
Adapted from Potts et al. (2004).
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Figure 2.15: Example of a velocity field output by Balltracking for the whole FOV of SOT/Hinode
(∼216 × 107 arcsec2 ∼157 × 78 Mm2). Time average is 4 hr. Smoothing is applied with FWHM
of 4 Mm. The axes are in heliocentric coordinates. At disk center, 1 arcsec ≈ 0.16 Mm. The red
rectangle is ∼26 Mm-wide, and encompasses a small supergranule. The corresponding close-up
is displayed in Fig.2.17.

• We also made the code more suitable for parallel computing. The forward and
backward tracking, as well as the top-side and back-side tracking, can be carried out
independently until their final output are averaged. The very simple independent
equations of motion, and the quite low usage of memory make the whole code
more suitable for execution within a cheap Graphical Processing Unit (GPU) and its
hundreds of cores, instead of more expensive CPUs of usually less than 8 cores. The
benefit in computational time between both hardwares will increase as the volumes
of data will increase in the future.

2.5 Physical validation examples

Ultimately, the output obtained with Balltracking must be consistent with what is already
known about the photospheric flows. It is necessary not only to validate the algorithm
itself, but to make sure that we have re-written it and tuned it properly. One way to
do it is first to consider the large-scale flows. When averaging over several hours and
over a few Mm, the large-scale convection cells (i.e, the supergranules) should be easily
visible. Fig.2.15 is a 4 hr-averaged velocity field obtained with Balltracking on images
of SOT/Hinode, and smoothed over 4 Mm (FWHM). The associated divergence field is
plotted in Fig.2.16. Fig.2.17 is a close-up on a supergranule (black rectangle in Fig.2.15).
The streamlines of the flow are overlaid on a colored background of the magnitude of
the horizontal velocity (Vh). In this 2D view, the center of the convection cell, and its
boundaries are characterized by a slower velocity (red).
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Figure 2.16: Divergence of the velocity field in Fig.2.15. The black rectangle is at the same
location. The divergence is normalized to the maximum value.
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Figure 2.17: Close-up of the supergranule in Fig.2.15. The colored background is the magnitude
of the horizontal velocity Vh. The black lines are the streamlines, and the arrows indicate the
direction of the flow.
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2.5.1 Limitations for using the divergence and vorticity fields

In Fig.2.15, one identifies a bounded network formed by the convergence of the flows
of neighboring supergranules. It is less visible in the divergence field Fig.2.16, where
it is seen as blurry dark lanes in regions of negative divergence, although to locate the
regions of convergence of the flow, the divergence field would have been somewhat more
natural, by definition, than using only a graphical proxy consisting in a map of hundreds
of arrows. The fact that, surprisingly, the divergence field only gives a very blurry picture
of the boundaries of the supergranules is due to the complex structure of the small scale
flows, and to the random error that impairs the scalar field of local derivatives like the
divergence and the vorticity.
In fact, these random errors simply originate from the propagation of those defined in
Eqs.2.39 and 2.41 and can be calculated using the general rules of error propagation (e.g.
Taylor 1996, Chapter 3 and 5). For this, let us consider the velocity components impaired
by the standard error σ∗Vk

. The divergence field of our 2D velocity vector field is defined
by:

∇ · V =
∂Vx

∂x
+
∂Vy

∂y
(2.43)

Written numerically, with a grid spacing equal to unity, the divergence is computed as
∇ · V = ∆Vx + ∆Vy where ∆Vk is the difference between two adjacent grid points of the
velocity component Vk. If we define the ith and i + 1th grid points at the coordinates (xi, yi)
and (xi+1, yi+1), according to Eq.2.42 we have Vki = V∗ki

± σ∗Vk
and Vki+1 = V∗ki+1

± σ∗Vk
.

Accounting for the quadratic propagation of the uncertainty σ∗V , any differentiation of a
given velocity component between two adjacent grid points will derive as:

∆Vk = Vki+1 − Vki

= V∗ki+1
− V∗ki

±

√
σ∗2Vx

+ σ∗2Vy
(2.44)

Here we have used a forward difference, but the results regarding the error are the same
with a backward or central difference.
For simplicity we assume that in the disk center the x and y component are equivalent
regarding the random error, and so σ∗Vx

∼σ∗Vy
≡ σ∗Vk

. In the divergence field, we use
differentiation and sum, so the errors σ∗Vk

are added quadratically four times.
This finally gives:

∇ · Vi = Vxi+1 − Vxi + Vyi+1 − Vyi

∇ · Vi = V∗xi+1
− V∗xi

+ V∗yi+1
− V∗yi

±

√
2σ∗2Vx

+ 2σ∗2Vy

∇ · Vi = ∇ · V∗i ±
√

4σ∗2Vk

∇ · Vi = ∇ · V∗i ± 2σ∗Vk

∇ · Vi = ∇ · V∗i ± σdiv (2.45)

where we have introduced the "true" value of the divergence ∇·V∗i , impaired by a random
error σdiv which is the quadratic sum of the random errors in 4 independent values used in
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the differentiation of the velocity components. We have hereby proved that the divergence
field can only be derived with an uncertainty σdiv = 2σ∗Vk

, which is twice the error in the
velocity fields. The proof of the uncertainty in the vorticity ∇ × V yields the same result,
as it involves the same number of data samples (and neglecting second order errors).

We have shown earlier that the relative error in the velocity is typically between 10%
and 20% (Table 2.1) with a smoothing of the order of few Mm and time averages of ∼1 hr.
Then the relative error at 1σ in the divergence field would range between 20% to 40%,
which explains why Fig.2.16 is not very helpful to locate the supergranular boundaries
accurately. This can only be down-scaled by larger smoothing and longer time averages,
which would significantly degrade the spatial and time resolution of the velocity fields.
This is not possible in this study since we are interested in features of a few Mm, with a
time resolution of ∼1 hr.

Yet we still need to extract the network formed by the large convection cells. Indeed, a
step forward in the physical validation of Balltracking is to compare them with the magne-
tograms, which also outline the magnetic network at the boundaries of the supergranules.
This process is explained in the next section.

2.5.2 Extracting the boundaries of the convection cells

In the photosphere of the quiet Sun, the flows continuously sweep out the magnetic flux
toward the supergranular boundaries where it accumulates, and forms a magnetic net-
work on supergranular scales (Simon and Leighton 1964). Extracting the boundaries of
the large scale flows allows a direct comparison with this magnetic network, from an in-
dependent dataset (the magnetograms). This is done by using an algorithm that detects
the boundaries of the supergranules from the flow fields. It was developed by Potts and
Diver (2008a), and summarized as follows:
The position of test particles are computed by integrating a given velocity field, back in
time. The test particles back-track the streamlines of the flows, until they reach a final
position. If the velocity field is consistent with the topology of supergranular flows, test
particles lying initially within the same supergranule would all converge toward its center.
At the end of the integration, the final position (x f , y f ) of the particles are mapped to their
initial position (xi, yi), so that x f ≡ x f (xi, yi), and y f ≡ y f (xi, yi). Then we use Eq.2.46
which gives the relative variation L(xi, yi) of the final distance of initially neighboring
particles, with respect to the difference between their initial separation:

L(xi, yi) =

√(
∆x f

∆xi

)2

+

(
∆y f

∆yi

)2

(2.46)

where ∆x f , ∆y f are the difference between the final horizontal coordinates of the test
particles with initial separation ∆xi,∆yi, and mapped to their initial coordinates (xi, yi).
For instance, in the algorithm of Potts and Diver (2008a), the central differences are used
to derive ∆x f and ∆y f at a given pixel i, so that:

∆x f (xi, yi) = x f (xi + 1, yi) − x f (xi − 1, yi) (2.47)
∆y f (xi, yi) = y f (xi, yi + 1) − y f (xi, yi − 1) (2.48)
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At the edges of the frame, single-sided differences are used. Thus L(xi, yi), at a given
pixel i, depends on the final coordinates of the two pairs of particles that left the four
nearest neighbors. Typically, ∆xi = ∆yi = 2 px when one uses central differences, and
∆xi = ∆yi = 1 px with single-sided differences.

One can see that if there is no motion at all, the final positions are identical to the
initial positions, and so x f = xi, y f = yi, ∆x f = ∆xi, ∆y f = ∆yi, and thus L(xi, yi) = 1. On
the other hand, two pairs of neighboring test particles, initially positioned at two different
sides of a thin supergranular lane, would end up at completely different positions, e.g, the
top of adjacent supergranules. In this situation, the difference between the final positions,
divided by the difference between the initial positions, is maximum (considering the ab-
solute value). This difference is minimal for two pairs of neighboring particles starting
from within the same supergranule, and converging to the same center. The scalar value
of L(xi, yi) is a relative distance, without physical dimension. The greater its value at (xi,
yi) is, the more apart the test particles, initially around this starting point, at the end of the
integration on the time-reversed velocity field.

The algorithm initially positions one test particle at every pixel, and outputs a 2D
map of the lanes (see Fig.2.20) which outlines the sharp boundaries of the large-scale
convection cells. These lanes are simply the loci of greater convergence of the flow. Note
that this is a much sharper representation of the convection cells than the one in Fig.2.16,
where we use the same velocity field to process both figures. The true nature of the
flow, and the number of integration steps will affect the sharpness of these boundaries,
as all the test particles may not have reached the top of the convection cell at the end of
the integration. Fig.2.18 contains four snapshots of this integration in the same close-up
shown in Fig.2.17 which encompasses the flow field of a supergranule. The test particles
are positioned on a regular grid. Each test particle belongs to a streamline from where
they start to backtrack the flows. After 5 integration steps, the boundaries of large-scale
convection cells start to emerge. After 10 steps, the boundaries of the convection cells
have joined up. Beyond this, increasing the number of integration steps only sharpens the
image, which is useful to us for later use as contour maps of the supergranular lanes, on
top of other co-spatial observations.

The first and last step of this algorithm, in a wider FOV (same as Figs.2.15 and 2.16),
are visible in Fig.2.19. The trajectories that the test particles follow during the integration
are also displayed (thin black lines). The red dots are the initial (top) and final positions
(bottom) of the test particles. The color scaling, and the associated color-bars in the
images of the lanes give, as explained above, the relative traveled distance between the
test particles, with respect to their initial position (see Eq.2.46). As explained earlier,
when two particles originating from 2 contiguous pixels travel together, over the same
distance, the intensity of L(xi, yi) is low. When they are advected in opposite directions,
e.g., when they originate from either side of a narrow lane, the intensity is higher.

In Fig.2.20 (top), some supergranular cells of different sizes appear to be merged to
other ones, forming even bigger cells, like if their boundaries were partially "resolved" by
the algorithm. This comes from the limited resolution of the velocity field. The merging
of cells on these maps occurs when the time averaging and/or the spatial smoothing is
too high, so that it reveals the bigger convection patterns, but leaves the smaller ones
somewhat blurry. Another reason is that the flows may really not have clear convection

47



2 Methods for analyzing photospheric observations

Relative distance

X (px)

Integration steps: 40

Y
(p

x
)

X (px)

Integration steps: 10

Integration steps: 5

Y
(p

x
)

Integration steps: 1

0 10 20 30 40 50

0 50 100 1500 50 100 150

0 50 100 1500 50 100 150

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

Figure 2.18: Snapshots at several integration steps of the lane-recognition algorithm.
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Figure 2.19: Top: test particles are positioned on a regular grid. Each particle will backtrack the
flow along the streamlines (black thin lines). Here, the particles are represented on a coarser grid
than the actual computation grid (1 particle per pixel). Bottom: contour map of the convection
cells (black thick lines), output by the algorithm, are overlaid on the streamlines.

boundaries, in which case these "blurry" lines have a physical meaning. This problem is
the same as making a picture of boiling water. The longer the time exposure, the more
merged the cells appear. Similarly, regardless of the time exposure, smoothing the picture
afterwards blurs the boundaries as well. We also mentioned that averaging the velocity
field (in time and space) is necessary to reduce the random error. The drawback is that the
scales of the flows that can be revealed cannot be much smaller than the averaging scales.
No matter how perfect is the segmentation used afterwards to reveal the convection cells,
the latter will only be approximate components of the actual flow fields.

49



2 Methods for analyzing photospheric observations

2.5.3 Variability of the supergranular flows

The "segmentation" equation defined by Eq.2.46 that provides a map of the supergranular
boundaries only operates on "snapshots" of the reversed velocity field. Yet it is important
to account for the variability of the flows over time. Indeed, the integration is done along
the streamlines of the reversed velocity. In stationary flows, the streamlines and the tra-
jectories are equivalent but the photospheric flows are time-dependent, which is why we
choose to produce a time series of dynamic velocity fields. In order to account for the
variability of the flow within the longer period of observations used in this thesis (several
hours), we produce time series of velocity fields from which we integrate several snap-
shots of the supergranular lanes, and that are finally averaged.
For example, in Fig.2.20, we have used a running average of 13 velocity fields within
4 hr. Each of the velocity fields is an average over 40 min, with a time interval of 16 min
between each of the 13 frames. From each of them, a map of the lanes is produced.
Fig.2.20 (bottom) shows the average of the 13 maps of the lanes. In such a figure, the
spatial spreading of the lanes carries the variability of the velocity field, in both time and
space, in a single map. As a consequence of the averaging, the lanes that are wide-spread
are lighter (lower relative distance), and come from more dynamic flows compared to
steadier flows that exhibit sharper, darker averaged lanes. Compare it with Fig.2.20 (top)
which shows the lanes computed from a single 4 hr-average flow field. The lanes are
much sharper. Averaging the flows over 4 hr leaves only the most persistent boundaries,
but we have no information on their variations over that time interval.

In this thesis, we use this new visualization method to relate the fine structures of the
photospheric convection to the evolution of the magnetic field.

2.5.4 Comparison with the magnetograms

We now have a map of the regions where the flows converge. When available, we can
overlay the average magnetograms on the images of the supergranular lanes. MDI/SOHO
provides magnetograms and continuum images of the granulation using the same CCD,
so the magnetograms and the map of the lanes are already co-aligned.
In Fig.2.21, the lanes are plotted as yellow contour lines over the magnetograms, av-
eraged over the same time (4 hr). Note how the magnetic flux concentrates toward the
supergranular lanes. This averaged magnetogram outlines a pattern (known as the "net-
work"), aligned with the supergranular lanes (yellow), which are expected to spatially
coincide (Leighton et al. 1962, Simon and Leighton 1964). For this reason, we will some-
times refer to these "lanes" as "supergranular lanes" or "network lanes", interchangeably.
We also interpret this alignment of the supergranular lanes and the magnetic network as
a qualitative validation of a consistent implementation of all the algorithms that we have
described in this chapter.
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Figure 2.20: Averaged maps of the supergranular lanes. Top: 4 hr-average from the velocity field
shown in Fig.2.15. Bottom: average map from the time series of thirteen 40 min-average velocity
fields, with a time interval of 16 min. The axes are in heliocentric coordinates. The FOV on the
top image is the same as on the bottom image.

2.6 Magnetic Balltracking: tracking the photospheric mag-
netic flux

One aspect of understanding the origin of small-scale X-ray emission, and more gener-
ally, the dynamics of the low corona of the quiet Sun, is to quantify the evolution of the
small-scale magnetic flux. This section presents our singular attempt at investigating the
evolution of the broad variety of small-scale magnetic features. The latter are not different
from those that have been routinely observed in the quiet photosphere, and which were
given various names, e.g, pores, knots, magnetic patches.
For a detailed review on their various observational characteristics, see for example Solanki
(1993, § 5.6) and the references therein.

Using a method derived from Balltracking, we have developed a new technique to
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Figure 2.21: Supergranular lanes represented by the yellow contours on the magnetograms from
MDI/SoHO. The gray colormap is scaled between −15 G and +15 G to enhance the contrast. The
axes are in heliocentric coordinates.

track the evolution of the individual magnetic features from magnetograms, called "Mag-
netic Balltracking", with a precision of one px to a few px. This method uses the same
basic concept and equations of motion of the "normal" Balltracking that we have pre-
sented earlier. We remind that the latter is suited to track features (like granules) whose
apparent geometry and displacements are relatively well constrained within three dimen-
sions of similar sizes. The magnetic features that are picked up in the high-resolution
Stokes V/I filtergrams (∼0.3 arcsec per pixel) from NFI-SOT (Tsuneta et al. 2008) in the
quiet Sun, as well as the MDI magnetograms, satisfy these conditions. The so-called
"filtergrams" are called "magnetograms" once they have been calibrated into Gauss units
(whose procedure will be explained later in this document).

We have divided the Magnetic Balltracking into 4 phases, presented in the next 4
sections (§ 2.6.1 to § 2.6.4). In the last two sections (§ 2.6.5 and § 2.6.6), we present two
practical applications of the Magnetic Balltracking.

2.6.1 Phase 1: preprocessing of the magnetograms

With Magnetic Balltracking, the aim is to make the balls able to track the magnetic fea-
tures. The main change from the "standard" Balltracking is to account for the signed
values of the magnetograms, and for the more contrasted intensity, spanning typically
over more than 2 orders of magnitude in the quiet Sun (from a few G to hundreds of G).
So we have to rescale the magnetograms in order to rescale the magnetic features verti-
cally into "holes" of reasonable depth, either positively or negatively signed, which will
allow the balls to settle inside them. This is the purpose of the following preprocessing
(see also Figs.2.22 and 2.23).

To start with, let us consider a single magnetogram as a scalar field Bz(x, y), like the
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one in Fig.2.22 (top). Bz is first reverse-scaled (non linearly) into:

B∗z = max(
√
|Bz|) −

√
|Bz|

B∗z is then offset by its mean value and normalized to its standard deviation σB∗z :

B∗zn =
B∗z− < B∗z >

σB∗z

B∗zn is displayed in Fig.2.22 (bottom), with an intensity spanning over a few units, which is
of the order of the horizontal size of the magnetic features that we want to track. This re-
scaled intensity can be seen as a geometrical height. In a 3D plot (Fig.2.23), the magnetic
features look like holes into which the balls can settle easily.

2.6.2 Phase 2: initialization

Once the magnetograms are rescaled, the balls are initially positioned at the pixels whose
absolute intensity in the original (not rescaled) magnetogram is above a given threshold.
This initialization is illustrated in Fig.2.24 (top) where the balls center are plotted on the
original magnetograms (small red crosses).
With the magnetograms from NFI/SOT, the threshold is usually set between 10 G and
20 G. These values are chosen so we do not track random noise. In addition, this saves
some computational time by reducing the number of balls which is much smaller than the
total number of pixels. In the Magnetic Balltracking, we do not make assumptions on the
size of the magnetic features, and the minimum length between the ball centers, within
each magnetic feature, is 1 px at any time.

Once the balls are positioned on the magnetic features, or "magnetic holes", the po-
larity of these features is retrieved from the signed intensity of the original magnetogram,
at the positions of the ball (i.e, at the coordinates of their center). This polarity (plus or
minus) is stored, and is a constant associated with each ball. It is referred to as the initial
"ball polarity". Next, a few integration steps, typically 10 to 20 depending on the size of
the features, are performed between the first and second frame, so the balls have time to
converge down into the local minima.

Because a segmentation algorithm will be used on the tracked magnetic features (more
on that later), it is not necessary to have several balls within the same feature. If several
balls have converged to the same local minima, only one ball is kept. After this stage,
it is still possible to have one large magnetic feature being tracked by several balls, if
for instance the feature has several local minima. This is illustrated in Fig.2.24 (bottom).
Note that this significantly reduces the number of balls between the first (top) and the next
frame (bottom), as much as the computational time.

2.6.3 Phase 3: main tracking phase

After the initialization, the next frames are loaded, and the balls track the local minima
(the "magnetic holes") like they do within intergranular lanes with the Balltracking.
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Figure 2.22: Preprocessing of the Magnetic Balltracking. Top: Initial NFI filtergram Bz, cali-
brated into Gauss units, scaled between −40 G and +40 G. Bottom: B∗zn obtained after rescaling
Bz.
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Figure 2.23: Top: B∗zn in 3D, using the same data as in the bottom of Fig.2.22, with the intensity
used as a geometrical height. The colormap is scaled exactly as the intensity. Bottom: same as the
top figure, with balls that have settled in the "magnetic holes" after a few integration steps. The
position of these balls on the original 2D magnetograms are shown in Fig.2.24.
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Figure 2.24: Initialization of the Magnetic Balltracking. Top: The values in the original magne-
togram Bz are used to dispatch the balls on pixels above 20 G (red crosses). Bottom: New positions
of the balls, after integrating the equations of motion, on the same magnetogram.
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In the original magnetograms, the local minima of the rescaled frame correspond, respec-
tively, to the local maxima and minima of the signed intensity (plus and minus, respec-
tively) of the magnetic flux. At any time, the position of the ball is known, and each ball
is tagged with a unique number. The positions can be plotted on-the-fly, so that one can
check by eye the quality of the tracking. An example of the main tracking phase is visible
in the snapshots of Fig.2.25.

When a magnetic feature is moving too rapidly, the balls do not have time to settle in
the local minima. In this situation, at worst, they may be delayed by a few frames, and
several integration steps between each frame are necessary to make sure that the balls do
not get lost. This gives them more time to "catch up" on the fastest features. Typically, for
magnetograms taken at cadences of up to 3 min, 10 to 20 intermediate integration steps
of the equation of motion are used between each frame. This may or may not be the
same number of intermediate steps used for the initialization phase, these are indeed two
independent "tuning" parameters.

For large connected magnetic features, the shape of the magnetic features looks like a
carpet full of holes, where each hole can be filled with a ball (see Fig.2.23). This is very
convenient to track clustering flux, as it has been reported quite often that large magnetic
patches cluster into several pieces that are swept out by the supergranular flows (Solanki
1993). The algorithm can follow each of these clustering pieces.

At each tracking step, the polarity under the current position of the ball center is com-
pared to the ball polarity. The tracking of a ball ends as soon as this polarity is reversed
with respect to the initial one (the ball polarity). This strategy has several advantages.
Indeed, to "see" a reversed polarity, a ball needs either to keep tracking down to the noise
level until the first opposite value appears (this current value is taken in the original mag-
netograms), or it needs to encounter a magnetic feature of opposite polarity. Each of
these two conditions are described below separately. If none are fulfilled, the ball keeps
tracking until the last magnetogram is processed.

Condition 1: tracking down to the noise level

Tracking down to the noise level makes the algorithm use the true sensitivity of the instru-
ment. Indeed, even if the initialization step uses a threshold, the features are tracked until
they cannot be detected by the instrument, i.e, to values below the threshold. Should we
ever need to track the faintest magnetic features from the beginning, the threshold may
simply be lowered down to the noise level, which has the only consequence of increasing
the computing time (more balls will be added).

Another advantage is that this allows any ball to track any faint feature with weak flux,
which seems like skimming under and above the noise level, and which makes it disappear
for about 1 or 2 frames. When it happens, the ball simply drifts on the flat surface with
whatever momentum and inertia it had from the previous state, which makes it stay on
its last track for a limited time (determined by the damping time Td). This limited time
sometimes (but not always) is enough to keep track of the weak flickering flux that we
observe in NFI/SOT. If not even the weakest flux is detected after this limited time, which
means that the ball is floating over pure random noise, the sign of the intensity in the
original magnetograms eventually reverses, in which case the ball is removed.
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Condition 2: no crossing of reverse polarity

Another issue we had to solve is how to prevent the ball from crossing a feature with
positive flux to a neighboring one with negative flux. This would occur for example if the
ball is in a local minima, and if it has kept enough momentum to reach another close-by
local minima of opposite polarity at the next integration step. This can also occur, if the
close-by local minima move quickly toward the ball, like for example in the case of the
two footpoints of a loop being submerged.
This problem can be thought of as a "numerical tunnel effect", in the sense that at one
time a ball is in a magnetic hole, and at the next, it has crossed a barrier and lies within
the second magnetic hole.
The solution is as follows: because the true polarity of each pixel is known from the orig-
inal magnetogram, the local minima are always associated with a polarity, which is com-
pared to the initial ball polarity (see § 2.6.2) at the end of each integration step. Should a
ball lie in a magnetic hole with a polarity opposite to the ball polarity, the ball is removed.

Condition 1 and 2 are checked independently for each ball. If any of these two condi-
tions is fulfilled for a given ball, its tracking ends, so that the lifetime of a ball corresponds
to the lifetime of the magnetic feature tracked so far. This does not end the whole algo-
rithm which continues as long as other balls remain.

Note also that the magnetic features may exist at very irregular places (see Fig.2.24,
top), and consequently, the balls usually get moved to very irregular locations. Therefore,
contrary to Balltracking (see § 2.2.5), the conversion of the velocity initially calculated in
a Lagrangian frame of reference, to a Eulerian frame of reference, cannot happen. In other
words, this method tracks and follows the individual motions of the magnetic features. It
cannot output a "flow field", with the values of the velocity at any given time on fixed
positions, on a regular grid. This is simply because there are parts of the frame where the
magnetic flux is not detected, and thus, there is no velocity to be defined there. At best,
such Eulerian flow fields can only be derived locally, in regions where there are enough
magnetic features that allow a "reasonable" sampling.

2.6.4 Phase 4: detection of emerging flux

The algorithm permanently scans for new pixels that would rise above the initialization
threshold. When it happens, new balls are added on these areas so that emerging flux can
be tracked. The rest of the tracking is exactly the same as for the other balls. Thus, the
balls are able to detect emerging flux, and track them until the flux disappears again. An
example is given with the ball 5450 in Fig.2.25 (starting from frame 5, near the upper
right corner, seen as a small yellow cross). It is tracking emerging flux that, before frame
5, was below the initialization threshold of 10 G. When the magnetic feature emerges
above 10 G, this new ball locks onto it and tracks it until the last frame. This phase makes
the algorithm useful not only to track the flux visible from the start, until its cancellation,
but also to track the emerging one.

In this thesis, we use the positions of the balls for two purposes. The first one is to
track the time-dependent displacements of the local extrema of the flux. These positions
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Figure 2.25: Magnetic Balltracking of a small field of view of NFI, at different time steps. The
numbers bound to the crosses (yellow) are the tags that are unique to each ball.
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are then used in a segmentation algorithm to integrate the flux over the area of the tracked
features. The second purpose is to track magnetic field lines when performing magnetic
field extrapolation. These two applications are explained in the next two sections.

2.6.5 Primary application: segmentation of the magnetic features

As mentioned earlier, the magnetic features can be very clustered in the quiet Sun, and
quantifying the evolution of each bit of such magnetic structures that can be near the limit
of the instrumental resolution is quite challenging. As explained in the previous sections,
the Magnetic Balltracking tracks the time-dependent positions of the local extrema of in-
dividual magnetic features. Thus the next step in describing their evolution is to integrate
the magnetic flux of these features. An easy way to do this is by applying a "region extrac-
tion" algorithm. The technique is also known as "region growing", and has many names
and variations that depend on the scientific field in which this segmentation technique is
applied. It is one of the basic algorithms detailed in textbooks of digital image processing
(see for example Gonzalez and Woods 2008, Chapter 10, § 10.4).

This "region growing", here, consists in extracting the magnetic features that have
been tracked, from the rest of the magnetograms, so we can easily integrate the intensity
of the flux over the extracted area. We use the tracked positions (the final positions of the
balls in each frame) that we call "seed points". For each position (or each "seed point"),
the difference between the intensity of the neighboring pixels and the one of the initial
pixel (the seed) is compared to a given threshold. If the comparison is true (in the log-
ical sense), it is added to a list of pixels connected with each other, including the seed,
which "grows" a region and thus segments the magnetic feature from the rest of the mag-
netogram. If the comparison is false, the pixel is not added to the list. The region stops
growing when there are no more connected pixels. The output of the region-growing al-
gorithm is a binary mask: an array of logical values, co-spatial with the magnetograms,
where the pixels in the grown region are set to 1, and the other pixels are set to 0. These
masks can directly be used to extract the features from the magnetogram in order to in-
tegrate the flux of the tracked features. Such extracted features are visible in Fig.2.26,
which used the tracked positions (i.e, the seeds) previously illustrated in Fig.2.25 as the
input of this segmentation.

As mentioned in the previous section, several balls may track wide magnetic features,
with as many balls as there are local extrema in it. As the position of these balls are used as
seed points, they will ultimately extract the same connected pixels, and output identical
masks. So we have to get rid of the duplicates, which we do by using a logical "or"
(equivalent to a logical "union") between all the extracted masks. If the same masks of
connected pixels are output for different balls, the logical "or" reduce them to one unique
mask before integrating the flux. This makes sure that, when looping over the extracted
regions to integrate their flux, we do not integrate it over the same region more than once.

Finally, each magnetogram is integrated over these masks. This gives the flux of each
tracked feature, in each single frame. Repeating this for all the magnetograms provides
the time-dependent flux of all the tracked features, including the emerging one if any has
been detected during the tracking. The ball numbers are like tags of the magnetic features,
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Figure 2.26: Region of the magnetograms extracted using the region-growing algorithm onto the
balltracked seed-points of Fig.2.25.
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Figure 2.27: Absolute value of the integrated intensity over the positive and negative areas, for
the balls used in Fig.2.25, and using their respective masks in Fig.2.26. The X-axis is the time
axis, in units of frames, with one frame taken every 2 min.

which gives also the ability to select them individually. This way we can choose which one
to extract with the region-growing algorithm, but it is also possible to simply take all of the
tracked features for more global statistical analyzes. The result of this integration is given
in the graph of Fig.2.27 for features manually selected with the tags (i.e, the ball numbers)
in Fig.2.26. The X-axis is in unit of frames, with 2 min between each frame. Notice the
emerging flux that has been detected by the ball 5450 during phase 4, and that has been
automatically extracted by the segmentation algorithm. In Fig.2.27, the raw results are
plotted, and show discontinuities and oscillations. These are caused by the too coarse time
sampling of the magnetograms (taken every 2 minutes). A possible source of oscillations
in the different curves could be a side effect of the p-modes oscillations (Leighton et al.
1962), and that would contaminate the spectro-polarimetric measurements. As an indirect
consequence we expect the signed intensity in the magnetograms to skim above and below
the threshold set in the region-growing algorithm. However the current limitations of our
segmentation algorithm makes this explanation still very speculative. In this hypothesis
however, when the balls track areas with low intensity, the time-dependent fluxes such as
the ones in Fig.2.27 may oscillate at p-modes frequencies close to 3.3 mHz (i.e, a period
of 5 min).

One limitation of this method is that it cannot grow a region using too low thresholds,
otherwise, close but probably non-connected regions may be added to the list of "good"
pixels. This leads to a wrong segmentation, and ultimately a biased estimation of the flux.
This could probably be solved using a more sophisticated segmentation algorithm. For
consistency, we use thresholds close, but not necessarily equal to the thresholds used in
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2.6 Magnetic Balltracking: tracking the photospheric magnetic flux

the previous phases of the Magnetic Balltracking (defined in phase 2). They are between,
typically, 5 G and 15 G. We found these values by "try and error" and they turned out to
be optimal in the very clustered flux of the quiet Sun. A direct unfortunate consequence
is that no flux is integrated below these thresholds.

Other algorithms designed to track magnetic features exist, such as in Démoulin and
Berger (2003) and Welsch et al. (2004), which are focused in deriving averaged velocity
flows in magnetized regions. The Magnetic Balltracking, instead, is used here to track
and tag individual features, which we use to quantify the flux in clustered field where a
more global approach does not provide enough resolution. Indeed, as we have already
mentioned, the displacements are calculated in the Lagrangian frame of reference, and
are averaged neither in space, nor in time, which makes our method offer nearly as much
resolution as given by the instruments.

Another application of the Magnetic Balltracking is the time-dependent and coher-
ent tracking of magnetic field lines obtained from magnetic field extrapolations. This is
presented in the next section.

2.6.6 Secondary application: tracking magnetic field-lines

The magnetic field vector B in the corona can be obtained by extrapolating the measure-
ments in the photosphere, using magnetograms (longitudinal component of B) or vector
magnetograms (3D B) as the boundary condition (see Thalmann 2010, Chapter 2). The
extrapolation models often used are the ones assuming force-free conditions, in which the
currents J are aligned with the magnetic field (J = αB), so that the J × B force vanishes,
and where the linear coefficient α defines three extrapolation schemes:

• α = 0 : Potential field extrapolation (no current).

• α = constant : Linear Force-Free Extrapolation (LFFE)

• α = α(z) where z is the altitude above the photosphere : Non-Linear Force-Free
Extrapolation (NLFFE).

Another application of the Magnetic Balltracking is the time-dependent tracking of
3D magnetic field lines obtained from an extrapolation method like the ones mentioned
above. As described earlier, the algorithm tracks the local maxima of the magnetic flux,
and tags the corresponding magnetic elements by a unique number (the ball number),
which is kept during its whole lifetime. If the positions of the corresponding balls are
used as the footpoints of 3D magnetic field lines, one can automatically track, and trace
the field lines passing through the local maxima, while the latter are being advected by
the flows.
For example, by using an extracted set of magnetic features as footpoints, one can track
a group of closed field-lines (or even a flux tube), and distinguish, over time, which ones
have reconnected, or reconfigured, to other field-lines from one magnetogram to the next,
and which ones have not, and therefore we keep track of the evolution of the magnetic
topology.

Since we dispose here of magnetograms, the LFFE is used for illustrative purposes
only, and for demonstrating the capabilities of the Magnetic Balltracking. We also use
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2 Methods for analyzing photospheric observations

LFFE with α = 0 for potential field solutions. Our algorithm is an implementation of the
solution from Seehafer (1978), where the magnetograms are used as the bottom boundary
condition. They also are mirrored on each side to satisfy the condition of flux balance.
Thus extrapolated magnetic field near the edges of the magnetograms is less meaningful,
since it accounts for much less information than the field extrapolated from the center
of the magnetograms. We do not intend to justify the validity of force-free, or potential
conditions in the quiet Sun, but we use the method only to emphasize the applications of
the Magnetic Balltracking. More details on the implementation of LFFE are in Wiegel-
mann et al. (2005a,b). For more discussion on the force-free conditions in magnetic field
extrapolation, one can also refer to Metcalf et al. (1995), Schrijver and van Ballegooijen
(2005).
An example of field line tracking is shown in Fig.2.28, using the tracking shown in the
previous figures. One can see the small magnetic features, moving around from one frame
to another, where a magnetic field-line is automatically drawn from the balltracked posi-
tions of the local maxima.

While tracking field lines cannot represent the whole information contained in an ex-
trapolated 3D vector magnetic field, we believe it is a much more consistent method when
dealing with time series, compared to other methods.
Indeed, from discussions with users and developers of extrapolation techniques (Wiegel-
mann et al. 2005b, Thalmann 2010), the two methods usually used to draw field lines are
either based on an arbitrary selection of field-lines, designating the footpoints by hand, or
using thresholding.
In the former method, one eventually changes the footpoints to obtain the representation
that "looks right". In the latter method, all the pixels above a certain threshold, or a coarser
grid within them, are used as footpoints. In none of the two methods the time-dependency
is explicitly taken into account. Regardless of the extrapolation method used, the Mag-
netic Balltracking is able to take the time into account when representing time-dependent
magnetic field configurations.

2.7 Summary

In this chapter, we have presented our implementation of an efficient method to measure
the photospheric flow fields, called "Balltracking". We also used a segmentation algo-
rithm that reveals the supergranular boundaries, out of which we were able to represent
the finer dynamic of the supergranular convection by applying it to running averages of the
velocity fields. From the Balltracking, we have developed a by-product, called "Magnetic
Balltracking" that tracks the magnetic features down to their finest scales. This new algo-
rithm allows us to quantify the evolution of the magnetic flux, and to make time-consistent
tracking of magnetic field lines. In the next chapter, we present science studies that make
use of Balltracking and of Magnetic Balltracking, with observations of the higher layers
of the quiet Sun atmosphere.
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Figure 2.28: Time-series of magnetograms (gray-scaled background) with magnetic field-lines
from a 3D extrapolation. The snapshots are displayed every 5 frames (15 min). Green,blue and
red correspond (respectively) to α = +0.04, 0, −0.04 Mm−1 . The axes are in SOT pixels. 1 px ≈
0.2 arcsec ≈ 0.15 Mm.
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3 Practical applications on case
studies

3.1 Balltracking on granulation

3.1.1 Observations

The Balltracking algorithm was first used for tracking the photospheric flows using con-
tinuum images (Potts et al. 2004) from MDI/SoHO. We have adapted the algorithm to
process images obtained with the Broad-Band Filter imager of Hinode (BFI). For this
analysis, the instrument provided three time series of de-rotated images of the quiet photo-
sphere, i.e, outside of active regions. They both share the same FOV of ∼110×110 arcsec2

(∼86 × 86 Mm2):

• 1-hour time series of blue continuum (granulation) and Ca ii images on 10 April
2007 between 17:00 and 18:00 UTC with a cadence of 2 min at disk center.

• 4-hours of contiguous G-band and blue continuum images on 07 Nov 2007 between
1:00 and 5:00 UTC near disk center at a 3 min cadence.

• Ca ii images were also taken during the blue continuum time series at the same
cadence. They come from the same optical assembly as the granulation images, and
co-spatial the granulation images. They are used as a scalar proxy of the magnetic
field (Simon and Leighton 1964) co-spatial with the velocity fields derived with
Balltracking.

The three datasets were first binned onboard to 0.1 arcsec per pixel (binning 2x2) and
then corrected for dark currents, flat-fielding, and instrumental jitter using standard cal-
ibration procedures written in Solarsoft. For better computational efficiency, we binned
the calibrated images by another factor 2 giving a final pixel size of 0.2 arcsec, which is
still 3 times smaller than the resolution of MDI, and resulting in images of 512× 512 px2.
With the continuum images, the average width of the visible intergranular lanes is about
2 px, which is the radius that we set for the balls. We also used the Na I stokes V/I of the
Narrow-Band-Filter imager (NFI/Hinode) for preliminary estimates of the longitudinal
magnetic field.
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Figure 3.1: Uncertainty on the velocity measurements σv at a 45 min time averaging for three
values of spatial smoothing, with respect to different instrumental cadences (i.e, time interval
between each image).

Since our datasets have a cadence of 2 min and 3 min, the uncertainty on the derived
velocities has been recalculated for each, following the definition in Potts et al. (2004):

σv =
σu
√

nrnt
(3.1)

where nr and nt (respectively) are the effective spatial and temporal numbers of samples,
and σu is the standard deviation of a Gaussian distribution approximating the velocity
distributions of the granules. It is set to 800 m s−1 (Roudier et al. 1999). Our velocity
fields were spatially smoothed over 4 Mm for both datasets. The results from the 1-hour
and 5-hour observation series were averaged over 30 min and 45 min, respectively. The
choice of 4 Mm is a compromise between a better accuracy of the velocity measurements
and a spatial resolution high enough to distinguish the motions in narrow network lanes.
Fig.3.1 shows the random error σv on any of the 2 components of the horizontal velocity
flow as a function of the instrumental cadence, for different spatial smoothing, and aver-
aging over 45 min. The uncertainty on the velocity flows averaged over 45 min from the
3 min cadence dataset is then ∼80 m s−1. At a 2 min cadence and for a 30 min average (not
shown here), the uncertainty is similar.

Nevertheless, considering that the mean lifetime of the granules is ∼5 min, we believe
that the granular motions cannot be properly sampled at cadences of 2 and 3 min. More-
over, the removal of the instrumental jitter needs at least 2 images during the time over
which the features do not change significantly. It cannot be guaranteed in these datasets.
For these reasons, quantitative results may not be reliable. However, since we consider
features on greater scales in time and space than the granular motions, the shape of the
underlying velocity field, hypothetically, can still be properly revealed (Potts et al. 2004).
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3.1 Balltracking on granulation

To test this hypothesis, we have compared the effects of different cadences on the final
result of Balltracking. As a test, we used another time series of images of 3 hr from 11
November 2007, with a cadence of 20 s from which 3 datasets with a cadence of, respec-
tively, 1, 2, and 3 min were extracted. They were balltracked, smoothed, and averaged
over 4 Mm and 30 min with the same sets of input parameters in Balltracking, and the
same calibration coefficient (see § 2.2.5) derived from the 1 min-cadence data. Here, the
use of the same calibration coefficient is only to set a reference point for the comparison.
The velocity distributions are shown in Fig.3.2. The upper panel shows that they are well
fitted by a Rayleigh distribution with mean velocities of about, respectively, 370 m s−1,
270 m s−1, 220 m s−1 which decreases with the instrumental cadence. Therefore, lower-
ing the cadence from 1 min to 3 min acts as a low-frequency filter in Balltracking, which
only picks up slower granules with lifetimes greater than 5 min. We can compensate this,
however, by calibrating the velocity fields with three different calibration coefficients as-
sociated with the three different cadences (§ 2.2.5). This is shown in the bottom panel of
Fig.3.2. There are now very little differences between these distributions, although they
are not strictly identical, with mean velocities of, respectively, about 370 m s−1, 370 m s−1,
and 380 m s−1. The mean velocities of the first two flow fields are indeed equal. If we
account for the measurement errors of ∼13% (§ 2.3), these three domains of measure-
ments overlap, which supports our initial hypothesis that even the 3 min-cadence images
can still be used to derive meaningful flow fields.

Fig.3.3 represents the distribution of the velocities of the 10 April 2007 dataset. The
modal2 and mean velocities are equal to, respectively, 335 m s−1 and 420 m s−1. It is im-
portant to note that, by smoothing over 4 Mm, and by averaging over 30 min, our velocities
are lower than the usual average speed measured in granular flows. A perfect tracking of
the granular flow needs less smoothing and averaging. When the latter are reduced, the
modal and mean velocities indeed increase toward higher values that are more consistent
with the results in Wang et al. (1995), Berger et al. (1998), and Roudier et al. (1999).
For example, the latter measure modal velocities of granules greater than 600 m s−1, using
temporal windows of 5 min. In our framework, the granules are only used as tracers of
the underlying velocity flow. Therefore, the smoothing and averaging must be increased
to reduce the uncertainty introduced by the stochastic nature of the granular motions.

3.1.2 Results

The velocity flows derived from Balltracking on both datasets are shown in Figs.3.4
(April’s dataset) and 3.5 (November’s dataset). The black arrows are made of several
small segments so they can bend along the streamlines to show the direction of the flow
(see also close-up in Fig. 3.8). The light blue lanes in the background are the emphasized
borders of the supergranular cells derived from the automated lanes recognition algorithm
(Potts and Diver 2008a) (see § 2.18). A large-scale converging vortex flow is clearly visi-
ble in each dataset (in the red rectangles). The first one is ∼15 Mm and the second one is
somewhat larger ∼20 Mm, although it is not clear where to set the limit of the influence
of these vortices. Both of them are located at supergranular junctions as indicated by
the blue network lanes. Their relative positions in each field of view are similar but this

2The modal velocity is the most probable velocity, at the maximum of the probability density.
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Figure 3.2: spatial distributions of the horizontal velocity magnitude using test data at 3 different
cadences (1, 2, and 3 minutes), on 11 November 2007.
Top: the calibration of the velocity used, as a reference point, the 1 min-cadenced data to calibrate
the three velocity fields. Bottom: the velocity fields are calibrated independently, to get three
calibration coefficients associated with the three instrumentals cadences.
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Figure 3.3: Distribution of the balltracked velocities for the 2007 April 10 dataset. Time average
is 30 min and spatial smoothing is at a FWHM of 4 Mm

is only a coincidence. However, these observations were made at similar latitudes and
longitudes (near disk center). How it affects the occurrence of these vortex flows may be
investigated with more observations to get reliable statistics.

Fig.3.6 sketches how photospheric material (represented by a segmented arrow that
can bend) are dragged towards the vortex flow. Fig.3.7 is the Eulerian representation of
the velocity field centered on the vortex of Fig.3.5 (red square).

The colored background is the vorticity, normalized to its maximum value. It should
only be considered qualitatively (see § 2.5.1). We do not see the beginning of the vortex
flow in the first dataset, and it seems to continue longer than the 1 hr time series. In the
2nd dataset, the onset seems to be between 2:30 and 3:10 and to continue past 05:00,
which is the end of the time series.

3.1.3 Discussion

We demonstrate the occurrence of steady photospheric vortex flow located at supergranu-
lar junctions of the quiet Sun chromospheric network. Their influence extends to a radius
of at least 7 Mm from the center of the vortex. The first observations of vortex flow was
reported by Brandt et al. (1988) and it had a radius of 2.5 Mm. At granular scales, excess
of vorticity has also been observed at the intersections of granular lanes (Zirker 1993,
Wang et al. 1995). Magnetic bright points following spirals have been reported by Bonet
et al. (2008, 2010). Long-lived vortices are of primary interest because these are the ones
in which mixed polarity magnetic fields can become entwined. In the quiet Sun, mag-
netic fields are swept by the supergranular flows to the boundaries and along the lanes to
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Figure 3.4: Velocity vector fields of 2007 April 10 centered on 18:15 UTC (top) and 18:45 UTC
(bottom). The FOV is ∼85 × 85 Mm2. Red square : 15 × 15 Mm2. The mean velocity on this flow
map is ∼ 300 m s−1.
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Figure 3.5: Velocity vector fields of 2007 November 7 centered on 04:09 UTC (top) and 05:15
UTC (bottom). The FOV is ∼85 × 85 Mm2. Red square : 15 × 15 Mm2. The mean velocity on this
flow map is ∼ 300 m s−1
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Figure 3.6: Sketch of an idealized vortex flow in the Lagrangian frame of reference, at three
different times T1, T2, T3, increasing from left to right. The concentric circles are fixed, and used
as reference. The red arrow heads show the direction of the tangential velocity. The segmented
arrows represent massless chained corks advected by the flows, which make the arrows able to
"bend" in the presence of differential velocity in the vortex, like in the red squares in Figs.3.4, 3.5
and 3.8.
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Figure 3.7: Eulerian representation of the flow in the red square of Fig.3.5. The colored back-
ground is the normalized vorticity.

74



3.1 Balltracking on granulation

0 5 10 15 20
X (Mm)

0

5

10

15

20

Y
 (

M
m

)

0 5 10 15 20

0

5

10

15

20

Figure 3.8: Zoomed-in velocity field of Fig.3.5 with contours of the Ca ii emission (red) averaged
over 45 min. The contours are taken above 900 DN s−1. The FOV corresponds to the red square
in Fig.3.5 and to the patch represented in Fig.3.9

.

the core of the vortex, provoking flux cancellation and CME-like eruptions (Innes et al.
2009). Figs. 3.8 and 3.9 illustrate the possible connection between the magnetic flux and
the vortex flow, in which the magnetic flux looks like it is not just swept out at random
places of the supergranular boundaries, but it is literally sucked in at the center of the
vortex (red contours in Fig. 3.8) where it seems to accumulate (Fig.3.9).

In Fig.3.9, the black and white colors represent opposite polarities of the line of sight
magnetic field. The positive (white) polarity near the image center coincides with the Ca ii
emission at the center of the vortex in Fig.3.8. In the time series, it is possible to see the
negative polarity (black spot indicated by the yellow arrow) moving clockwise around the
positive polarity.
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Figure 3.9: Na I stokes V (FG/SOT) from the November dataset at 3 different times centered on
the vortex flows. The FOV of ∼20x20 Mm2 is designated by the red square in Fig.3.8. The yellow
arrow points at a unipolar (black) magnetized fluid element. The dashed cross is a graphical fixed
reference to help visualize the relative motions.

Future observations must be done at higher cadence in order to reduce the uncertainty and
to derive quantitative parameters such as the angular velocity and the magnetic helicity
(Welsch and Longcope 2003).

3.2 Magnetic Balltracking on flux emergence

3.2.1 Observation of flux emergence

The observations were made on September 26th, 2008, and consist of high-resolution,
1 min-cadence continuum images and magnetograms from MDI (pixel size of 0.6 arcsec),
and co-spatial images from Hinode/XRT (Golub et al. 2007) in soft X-ray (pixel size
of 1 arcsec), at ∼30 s-cadence. The time series last 4 hours, between 15:00 UT until
19:00 UT. Details on the co-alignment are given in the next chapter as a part of a broader
science study.

The flux emergence is associated with the rise of X-ray loops observed at the same
location, and shown in Fig.3.10 (pointed by the orange arrows). The snapshots are taken in
a FOV of 60×60 Mm2. Balltracking was used to derive the flow fields, and the associated
supergranular network lanes are drawn as blue contours. At 15:12 UT, the flux is barely
visible in the internetwork, until it emerges as a very clustered, mixed-polarity flux after
16:00 UT (left arrows). The clustered flux then drifts away, and is finally observed with
one clearly visible X-ray loop, at 17:55. At 18:12 UT another X-ray loop seems to connect
the negative-polarity footpoint (green) from the left side of the network lane in the middle
of the frame, to the positive one (red) on the other side. A second, weaker emergence is
seen near the bottom right part of the snapshots, starting at 16:42, and also give rise to
X-ray loops, visible at 19:05 UT. The time scale of these emergences is a few hours. It
is consistent with the time scales of the supergranular flows, here between 300 m s−1 and
400 m s−1 on average. At this velocity, the fluid elements, and the magnetic flux that they
advect take several hours to travel from the internetwork to the lanes (blue). The amount
of flux of the emerged bipoles that are observed at the footpoints of the X-ray loops is
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Figure 3.10: Flux emergence observed at two different places within the displayed field of view.
Red/green contours are positive/negative flux (respectively). Thin unfilled contours are at 10 G,
filled contours are at 50 G. The orange arrows point at emerging flux regions that are followed by
the rise of X-ray loops

.
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measured with the Magnetic Balltracking, the results are presented in the next section.

3.2.2 Detection and quantification

The Magnetic Balltracking is performed on the FOV of Fig.3.10, followed by the region-
growing algorithm. As explained in § 2.6 and § 2.6.5, each ball can act as an identifier
of a whole magnetic feature. This makes it easier to detect and isolate only the emerging
flux. To do so, we simply associate the tags of the balls that were tracking these features
to the flux that is integrated by region-growing. By selecting only the ones with a positive
time derivative of the flux, we isolate the features that emerge. In the present case, we
selected only the flux that had increased by a factor 10 at the end of the time series, with
respect to the value at first detection. This is sufficient to isolate the emerging flux seen
in Fig.3.10. The results are plotted in Fig.3.11. The threshold of the detection was set
to 20 G, which is about the noise level of the magnetograms in MDI. The pixels with an
intensity below this value are ignored by the region-growing.

The first emergence (top) is balanced at the beginning (15:00), during ∼40 min with
a positive and a negative flux of a bit less than 2 × 1018 Mx. It is unbalanced during
∼2.5 hr, until it is balanced again at ∼18:15 with an unsigned flux of ∼1019 Mx. The X-ray
emission increases by factor ∼2.6 of the background intensity, ∼1 hr after the emergence
is first detected at 15:00, from ∼1200 DN s−1 up to ∼3200 DN s−1 after 18:303.

In the second case of emergence (Fig.3.11, bottom), the magnetic flux is about 50%
weaker than in the first region, with a maximum positive and negative flux (respectively)
between 3.5×1018 Mx and 4.5×1018 Mx. The flux is unbalanced for roughly the first 2 hr,
between ∼16:40 and ∼18:40, although the flux balance is not obvious afterwards. Like in
the previous case, this flux emergence is followed by the rise of an X-ray loop. The X-ray
emission increases by about 50% from a background level of 1000 DN s−1 at 15:00, up to
∼1500 DN s−1 after 19:00 when the X-ray loop is visible (Fig.3.10, bottom right panel).
Note that in the first and second case, there is an X-ray data gap between 18:36 and 19:02.
The X-Ray gap is filled with the first value available after the gap (19:02), which is only
an arbitrary cosmetic correction.

In order to illustrate further the dynamic topology of the emergence, and to show a
science application of the Magnetic Balltracking, we use LFFE to display 3D magnetic
loops, and compare them against the X-ray loops. This is represented in Fig.3.12. Similar
comparisons have already been done in Wiegelmann et al. (2005b), except that in Fig.3.12,
the field lines are drawn using our method of field-lines tracking (§ 2.6.6). The local
maxima of the flux, as it emerges, are tracked and used as footpoints for plotting the field
lines. Because we make no assumption on the currents, three different values of α are
used (including the potential solution α = 0), which are represented by three colors (for
α = −0.04, 0,+0.04 Mm−1). For a better visibility of the loops, only the field lines closing
in the chosen FOV are automatically kept. This is why some footpoints appear to have
missing field lines. For a different value of α, the field line was simply not closing in the
present FOV and are ignored when plotting them. The purpose here is to demonstrate
an application of the Magnetic Balltracking, it is not an analysis of the coronal magnetic
field, although this can still illustrate how different the solutions can get for different

3 DN s−1: Data Number per Second.
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3.2 Magnetic Balltracking on flux emergence
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Figure 3.11: Top: evolution of the X-ray intensity (black line) and the magnetic flux in the region
of emerging flux on the left part of the snapshots in Fig.3.10. The colors of the curves of the flux
are consistent with the contours. Red is positive flux, green is negative flux (in absolute value).
Bottom: Same as the top panel, for the second region of flux emergence in the bottom right of the
snapshots in Fig.3.10. There is an X-ray data gap between 18:40 and 19:02 which has been filled
in by the first available value after the gap.
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3 Practical applications on case studies

values of the currents, which is well known.
In Fig.3.10, the X-ray loop reaches the other side of the blue network lane at 18:12 (see the
group of 3 orange arrows), whereas from Fig.3.12 we see that magnetic field lines appear
already connected at the same footpoints, at 15:54 UT, before the X-ray loop becomes
visible. As the flux emerges, more field-lines are integrated on the emerging and moving
magnetic footpoints. Over several hours, we can keep track of these field lines, and see
what they become in relation with the X-ray emission. By simply using the tracked local
maxima, which represent only one point for each small clustered magnetic feature, we
obtain several lines that match the geometry of the X-ray loop.

3.2.3 About the thresholding

As mentioned in Section 2.6, the threshold of the algorithm was set close to the noise
level of the instrument (20 G). In the present case, the threshold in the region-growing
algorithm is the same. Nevertheless, note that these two thresholds are defined indepen-
dently (see § 2.6.2 and § 2.6.5). Otherwise we would loose the flexibility of choosing for
instance only stronger flux in the region-growing algorithm (Active Regions, Ephemeral
Active Regions, ...), in a specific FOV, and maybe weaker flux in another FOV (quiet Sun,
coronal holes,...). Furthermore, isolating flux emergence would be more complicated, as
the latter needs a low background level in the extracted feature in order to be able to define
an emergence. Thus, in practice, it is more efficient to track at the lowest possible thresh-
olds in order to detect as many features as possible (if not all) on the one hand. On the
other hand, the threshold of the region-growing algorithm depends on the science study,
and one can perform different region growing on the initially tracked features, without
running the main tracking phase at different thresholds over and over again. This saves
significant computing time, which is an issue in pipelined computations, e.g, for the long
data sets of the Solar Dynamic Observatory (SDO).

3.3 User-friendly software for Balltracking and Magnetic
Balltracking

To use the different algorithms in the most flexible manner, and to suit a broad range of
different science studies in the future, several modules were created. The Balltracking, the
Magnetic Balltracking, the region-growing algorithm, and the tracking of the field lines
have been implemented using object-oriented programming. The algorithms are made
user-friendly by simply invoking the different modules when they are needed, and do not
require any programming skills. For example, a user can apply Magnetic Balltracking
to track the magnetic elements in the magnetograms from whichever instrument, and use
the tracked positions in whatever extrapolation models the user possesses. Independently,
one can use co-spatial observations of the granulation and derive the photospheric flows
with the Balltracking module. These modules are presented in the appendix B.
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3.3 User-friendly software for Balltracking and Magnetic Balltracking

Figure 3.12: MDI magnetograms, with associated 3D extrapolated field lines, overlaid by XRT
images (transparent red colortable). The 3 different colors of field lines, (respectively) red, blue,
green, correspond to α = −0.04, 0,+0.04 Mm−1. Both views must be considered, as some field
lines can appear open in one view, whereas they are closed from another one, and vice versa. The
yellow contour lines are the supergranular lanes.
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3.4 Summary

Our implementation of Balltracking on photospheric observations from Hinode data re-
vealed the existence of large scale vortex flows with diameters of ∼15 Mm to ∼20 Mm.
The shape of the supergranular cells was better described with the help of a specific seg-
mentation algorithm developed by Potts and Diver (2008a), and out of which we were
able to observe that these vortex flows are centered on the junction of supergranular lanes.

Additionally, the use of Magnetic Balltracking on MDI data allowed us to detect,
track, and quantify the evolution of emerging flux between 1018 Mx to 1019 Mx on a very
fine scale of a few Mm, and that are followed by the rise of soft X-ray loops within
a few hours. The use of our time-dependent field-lines tracking and of magnetic field
extrapolation techniques provided proxies of the magnetic topology that better describes
the relationship between the supergranular flows, the flux emergence, and the coronal
emission.

The present results are the first case studies of a broader spectrum of investigations of
the relationship between the different layers of the solar atmosphere. Such investigations
are presented in more detail in the following chapter.
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4 Soft-X-ray emission related to
photospheric flows and coronal
magnetic field

The study of the quiet-Sun has always been limited by the instrumental resolution that
is too coarse to reveal the dynamical processes at finer scales. Since the beginning of
the SoHO-Hinode era, it is possible to combine long time series with high resolution,
simultaneous and co-spatial analyses, from the photosphere, up to the low corona. Finer
processes can now be revealed. For example, Innes et al. (2009) revealed the occurrence
of small-scale (few Mm) CME-like eruptions using Extreme Ultra-Violet (EUV) obser-
vations from STEREO, and the role of the supergranular flows underneath as a possible
triggering mechanism is still under investigation (Innes and Teriaca 2013).
In the previous chapters, we have described several methods that provide independent
analyses of the solar atmosphere, such as the photospheric flows, the longitudinal mag-
netic field and its coronal extrapolation, and the observations of the low corona in soft-
X-ray. The present chapter provides an additional description by combining all these
methods to build a consistent multi-layer analysis of the solar atmosphere. We aim at
describing the relationship between the photosphere and the corona, by relating the pho-
tospheric flows and the evolution of the magnetic flux to the soft X-ray emission. In
Sections 4.1 and 4.2 we describe the observations and their co-alignment.The calibration
of the NFI-SOT magnetograms is explained in Section 4.3. In Section 4.4 we present
several multi-layer case studies of small-scale X-ray events in the low corona, with the
underlying photospheric flows and magnetic flux.

4.1 Multi-instrument observations

Four instruments were involved in co-spatial observations on 26 September, 2008. Each
of them provided an 8 hr time series of data, from 15:00 UT to 23:00 UT. They were
pointing near disk center. Due to a long data gap in the middle of these observations,
this study focuses on the first 4-hour time series. In what follows, the times are given in
Universal Time (UT). The observations were carried out as follows:

1. Hinode/XRT (Golub et al. 2007) took images of the quiet Sun in soft X-ray with the
C-Poly filter at a cadence of 30 s, at full resolution over a FOV of 384×384 arcsec2,
with a CCD pixel size of ∼1 arcsec. The C-Poly filter covers a temperature range of
about 1 MK < T < 100 MK. Removal of instrumental bias such as pedestal, dark
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4 Soft-X-ray emission related to photospheric flows and coronal magnetic field

current, vignetting and misalignments due to satellite jitter were carried out using
the XRT software in Solarsoft ("xrt_prep.pro" and "xrt_jitter.pro"). Despite the
calibration, contamination spots are still present in the images. Their position were
retrieved before co-alignment, using the dedicated procedure of the XRT software
("xrt_tup_contam.pro"), which builds maps of the contamination spots. We used
them to acknowledge possible bias when integrating the X-ray fluxes.

2. The Broad-band Filter Imager (BFI) of the Solar Optical Telescope (SOT/Hinode)
provided a time series of blue continuum images. Each image was successively
taken at two different intervals: 30 s and 90 s. Out of this time series, we extracted
two time series with a cadence of 2 min each, the first time series being 30 s ahead
of the second one, with the same total duration (4 hr). The FOV of BFI is ∼214 ×
112 arcsec2 with a pixel size binned and summed onboard to 0.22 arcsec. For co-
alignment purposes, BFI also took Ca ii images with the same observing parameters.

3. From the Narrow-band Filter Imager (NFI) of SOT, we took filtergrams of the
Stokes V/I every 2 min. The pixel size is 0.3 arcsec. The calibration of SOT data
(both NFI and BFI) was done using the dedicated routine "fg_prep.pro" in Solarsoft.
By eye, we could not identify any effect of the bubble-shape aberration (Tsuneta
et al. 2008).

4. SoHO/MDI (Scherrer et al. 1995) took a time series of high-resolution continuum
images and high-resolution (high-res.) magnetograms of the LOS magnetic field.
Here the pixel size is ∼0.6 arcsec, whereas the resolution is ∼1.2 arcsec (2 px). Each
time series is taken at a cadence of 1 min. The calibrated continuum images from
MDI (level 1.8) were flat-fielded using the method presented in Potts and Diver
(2008b), using a time series taken the day after the present observations, and made
of more than a thousand images. The instrumental focus and Y-axis offset of the
data used for the flat-field are the same as our data. In addition to the high-res. data,
MDI provided full-disk observations at a lower resolution (4 arcsec) which are used
for co-alignment.

5. Images from the full-disk SoHO/EIT (Extreme-Ultra-Violet Imaging Telescope)
(Delaboudinière et al. 1995) are also used for co-aligning the other instruments.

The regions observed by each instrument are presented in Fig.4.1 and 4.2, with (re-
spectively for each figure) EIT and XRT data as the background image. There was no EIT
image available at the beginning of the time series, so the displayed image is the closest
available, at 19:12, in the 195Å wavelength.

4.2 Protocol for near 1-arcsec co-alignment

This study describes small-scale events happening in both the photosphere and the low-
corona, and observed with different instruments. This demands near 1-arcsec accurate
co-alignment, whereas the pointing coordinates of Hinode are given with an uncertainty
of more than 5 arcsec.
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4.2 Protocol for near 1-arcsec co-alignment

Figure 4.1: EIT full disk context image at 19:12. XRT and MDI FOVs are shown in white rectan-
gles.

When dealing with more than two instruments, the pointing uncertainty of each one adds
up, and a fine co-alignment becomes even more complex. For this reason a protocol must
be defined and followed carefully. At each step of the co-alignment one must determine
the remaining uncertainty, so that in the end, the cumulated uncertainty on the overall
co-alignment can be estimated. The present co-alignment consisted in aligning all the
observations using MDI data as the reference, as it has the best pointing accuracy (below
1 arcsec). The EIT full disk image taken at the same time as the MDI full disk (19:12) is
also used as an intermediate frame of co-alignment. Pointing information is given in the
FITS headers of the MDI and EIT data, and is used to directly co-align both instruments.
The chart in Fig.4.3 illustrates the different steps of the co-alignment, which are detailed
in the next paragraphs. For consistency, we must define some technical vocabulary that
will be used often in this chapter:

• Frame: any bi-dimensional observation. Frames can either be images (continuum,
EUV,...), 2D flow fields, magnetograms or filtergrams.

• FITS headers: the data are all provided in FITS files. They contain the observations
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4 Soft-X-ray emission related to photospheric flows and coronal magnetic field

Figure 4.2: Full XRT FOV of the 4-hour time series. MDI and NFI/SOT are shown in white
rectangles. The width of the MDI FOV is larger than XRT’s.

and associated meta-data describing relevant information such as the pointing coor-
dinates, time, roll angle of the instrument, etc... these meta-data are called the FITS
header, or header information.

• Co-alignment: co-aligning two frames consists in positioning them at the same
position with respect to a common frame of reference. Once co-aligned, the center
of both frames have the same coordinates in this frame of reference, and their X
and Y axis are parallel. With this definition, two frames can have different sizes
(different FOV), but still be co-aligned. We sometimes will use the terms "co-
aligned" and "co-spatial", interchangeably.

• Registration: co-alignment of several images of a time series. To register a time
series is equivalent as having all of its images co-aligned with each other.

Following these definitions, two (or more) time series are co-aligned if all the images
within them are co-aligned, regardless of which time series they belong to.
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4 Soft-X-ray emission related to photospheric flows and coronal magnetic field

4.2.1 Registration of MDI data

MDI took continuum images and magnetograms at a fixed position with respect to the
solar disk. Consequently the observed surface moves with respect to the CCD, at the
speed of the solar differential rotation. Yet it is necessary to have MDI observations
co-rotating with the solar surface. We call this step the "de-rotation4". As the same CCD
takes co-spatial continuum images and magnetograms, both datasets need to be de-rotated
in the exact same manner. Because Hinode is on a polar orbit around Earth, and SoHO
is on the Lagrange point L1, the MDI data need to be interpolated to the Earth view by
reducing its magnification by a factor of 1.01. This corresponds to the ratio between the
distances Earth-Sun and L1-Sun.

Our de-rotation algorithm uses the pointing coordinates given in the FITS header, the
time (UT) of each frame, and the orbital parameter of the Sun-Earth orbit to compute the
amount of de-rotation needed using the empirical formula of the solar differential rotation
from Howard et al. (1990), which gives the angular velocity ω at the latitude φ:

ω = A + Bsin2φ + Csin4φ (µrad s−1) (4.1)

with A = 2.89, B = −0.43, C = −0.37, in µrad s−1. Equation 4.1 would yield an angular
rotation that varies across the vertical axis of the images. Yet the registration we need to
perform must use the same frame of reference for all the pixels. So the rotation rate at the
local latitude φ at which the central pixel of the CCD is pointing is used to de-rotate the
whole frame. Finally, the data are interpolated to the de-rotated coordinates. Doing so,
the differential flows (from the differential rotation) are preserved when tracking the flow
fields, and the latter are calculated in a frame of reference that is "rigidly" co-rotating with
the solar surface.

4.2.2 Registration of BFI/SOT dataset

During an observing sequence, the Hinode pointing follows the solar rotation at the speed
of the solar differential rotation. In addition, the SOT instrument has an onboard correla-
tion tracker. The latter takes images of a small FOV (11 × 11 arcsec2) of the granulation,
with a high-speed (580 Hz) camera, and performs a real-time correlation tracking between
them to derive their relative displacement, and correct the pointing accordingly through
the Image Stabilization System. The camera operates at 580 Hz, but the corrections are
sent to the Stabilization System at a slower rate (every 40 s according to Tsuneta et al.
2008, § 6.1). This keeps the CCD in a small frame of reference moving with this group of
granules. The drawback is that within the 11 × 11 arcsec2 FOV of the correlation tracker
(∼8 × 8 Mm2 near disk center), which is not even half the average size of a supergranule,
there are less than a hundred granules, and so their group motion is not necessarily the
same as the one of the granulation seen in a wider FOV (see for instance Figs.3.4 and 3.5
in Chapter 3). This forces us to register the images more accurately.

4the term "tracking" is sometimes used to describe this step on continuum images, whereas "de-rotation"
often refers to the removal of solar rotation in dopplergrams. However, to avoid confusion in the present
context of flow tracking where the term is used many times (Local Correlation Tracking, Balltracking,
Magnetic Balltracking, etc...), we speak of "de-rotation" to specifically designate the removal of the effects
of solar rotation in continuum images and magnetograms

88



4.2 Protocol for near 1-arcsec co-alignment

The blue continuum images from BFI are separated in two time series, each have a
cadence of 2 min. When considering both time series together, the interval between two
images changes alternatively from 90s to 30s. As the granules have a mean lifetime of ∼5-
6 min, most of the granules are still present when changing from one image to the next.
Thus it is reasonable to co-align the images by pairs, using cross-correlation. Starting
with image 1, image 2 is aligned to it. Image 2 becomes the new reference for image
3, etc... The co-aligned time series can then be separated again to obtain two co-aligned
time series with a regular cadence of 2 min, more suitable for Balltracking. This is done
with the routine dedicated to the registration of SOT images, called "fg_rigidalign.pro" in
Solarsoft. It computes the displacements in the X and Y direction, using a fixed FOV in
the images. This FOV must be taken as large as possible. Indeed, the default behavior of
this procedure is to consider a small FOV of 256×256 px2 to perform the cross-correlation,
which here corresponds to about one eighth of our image. The main reason of using a
smaller FOV as default and not all the pixels of the image is for computational efficiency.
This default setup does not give enough accuracy, and can on the contrary worsen the
co-alignment. In the BFI images, 256 px corresponds to ∼50 arcsec, which is close to the
average size of supergranules. Yet on scales of a few hours, a supergranule has an intrinsic
motion relative to the whole FOV of the image, which can move up to several arcsec over
a few hours. Therefore, using a too small FOV in the procedure would only change the
frame of reference of the onboard correlation tracker, that moves with a small group of
granules, to another frame of reference (the moving supergranule), somewhat slower, but
still in motion with respect to the whole FOV. Either way, any velocity field derived from
tracking granules in these registered images would be biased. Note that because of the
limited lifetime of the granules, these small effects are impossible to check by eye, but
they significantly impairs the velocity fields.
These effects are quantified for the 4 hr-time-series and are reported in Fig.4.4. Compare
it with Fig.4.5 that shows the misalignments when using the entire image in the cross-
correlation, and note the difference of several pixels in the original shifts. Each figure also
displays the result of the alignment-check (right panel). The latter is done by calculating
the remaining displacement on each co-aligned dataset, but using the whole available
FOV and not just the smaller region. In Fig.4.4, we see that using the smaller region
is not enough to make the images steady with respect to each other, with up to 4 px of
remaining shift (right panel) between the last and the first image. This also means that
the smaller region had a significant net motion different from its surrounding. For this
reason, it is important to take the whole image and not a reduced FOV, when using cross-
correlation to co-align these images. The remaining alignment error between the frames
after this registration is less than ±0.2 arcsec.
Note that so far, the cross-correlation we used only picks up displacements in the X and Y
direction. Another misalignment can remain if the images are tilted with respect to each
other. As defined earlier, ideal co-alignment requires to have not only the centers of the
frames aligned, but their axes must be parallel. The corrections of tilt effects are treated
in the next sections.
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4 Soft-X-ray emission related to photospheric flows and coronal magnetic field

Figure 4.4: Left: Misalignment curve of the misaligned images, using a small region of
256x256px2 centered on the images. Right: curve of alignment-check using the entire FOV of
the aligned images. The shifts are given with respect to the first frame. 1 px ≈ 0.2 arcsec

Figure 4.5: Left: Misalignment curve of the misaligned images using the entire FOV. Right: curve
of alignment-check using the entire FOV of the aligned images. The shifts are given with respect
to the first frame. Note the reduced y-scale relative to the right panel in Fig.4.4. 1 px ≈ 0.2 arcsec
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4.2.3 Co-alignment of NFI/SOT with MDI high-res.

NFI shares the same CCD as BFI, so both instrument cannot record data at the exact same
time. In addition, as we explained earlier, the pointing corrections are sent every 40 s
to the image stabilization system, while the NFI data are taken every 2 min. Since the
small group of granules tracked by the correlation tracker can move at random, the jitter
detected in BFI cannot be used here to correct the jitter in NFI. However, each NFI frame
can be co-aligned with the MDI high-res. magnetograms taken every minute. Thanks
to their very accurate pointing, they offer for each NFI filtergram a very adequate frame
of reference for cross-correlation. The time difference between a NFI filtergram and a
MDI magnetogram is 30 s at most. Within this time, most of the visible features barely
evolve, so we can cross-correlate the MDI-NFI data. Cross-correlating images here only
find the best possible alignment by horizontal and vertical translations, because the cross-
correlation is done in cartesian space, which is common practice.

Nevertheless, the NFI and MDI are two instruments onboard two different spacecrafts
(Hinode and SoHO). Here we assume that the MDI CCD vertical axis is parallel to the
solar rotation axis (North-South axis), so the angle between the NFI and MDI reference
frames must be checked. This is done by cross-correlation in polar space. Here we define
the term "tilt angle" as the angle between the North-South axis of the CCD of SOT and
the one of the MDI CCD (assimilated as the solar rotation axis). The value of the NFI
tilt angle is given in the FITS header. However, these are nominal values, and it does not
always correspond to the real positioning of the axes of the CCD. This is illustrated in
Fig.4.6 where the NFI frame were rotated according to the values in the FITS headers.
Some misalignment between MDI and NFI is visible, and it increases as one looks away
from the frame center (see the green arrows), which is symptomatic of an inaccurate
tilt angle. In the FITS header, the tilt angle was ∼ 0.4 degrees. We fixed this by cross-
correlating the frames in polar space. By calculating the cross-correlation at several angles
around the nominal values (FITS header tilt angles), with a resolution of 0.05 degrees, we
end up with a more accurate tilt angle of 0.65 degrees. As shown in Fig.4.7, the NFI
and MDI frames are better co-aligned with this new angle. The data in Figs. 4.6 and 4.7
are averaged over 30 min. The uncertainty of the co-alignment, including the cartesian
cross-correlation, is ±0.3 arcsec.
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4 Soft-X-ray emission related to photospheric flows and coronal magnetic field

4.2.4 Co-alignment of NFI magnetograms with the Blue continuum
images from BFI

The NFI observations and the blue continuum images from BFI also need co-alignment.
For this we need the BFI Ca ii images as intermediate co-alignment frames.The Ca ii im-
ages will also be co-aligned with the NFI magnetograms.

BFI Ca ii and Blue continuum

The granulation seen in blue continuum with BFI, and the small magnetic cells observed
in the NFI magnetograms, are, geometrically speaking, completely different features. In
the Ca ii emission line, the granulation is seen at hotter temperatures, and their brightness
appears reversed (Evans and Catalano 1972, Suemoto et al. 1987). It is identified as "re-
versed granulation" in Rutten et al. (2004) and reproduced in simulations in Leenaarts and
Wedemeyer-Böhm (2005). The intensity is anti-correlated with the photospheric granula-
tion when taking into account a time delay. This time delay is between 2 and 3 min after
which the Ca ii /Blue anti-correlation is maximum. In addition, the brightest features in
Ca ii are geometrically similar to the magnetic features in the NFI filtergrams. We use
this property to cross-correlate the Ca ii images with the blue continuum images (both
from BFI) in a similar manner as Rutten et al. (2004). In our data, the time difference
between Ca ii images does not exceed 90 s, which is also the case for the blue continuum
images. In addition, these 2 time series are shifted with each other by ∼30 s in time, so
we can select, for each blue continuum image, a Ca ii image taken after a delay between
2 min and 3 min, and perform a co-alignment by pair. Note that this method only works
in quiet Sun, where the granulation is observed with both instruments. Fig.4.8 contains
samples of 2 different parts of the images. The Ca ii images (red and green contours),
are co-aligned onto their time-corresponding blue continuum image (background image).
The Ca ii intensity has been reverse-scaled in order to compare more directly the gran-
ules (bright) and inter-granules (dark) of the continuum image. The red contours are the
maximum intensity of the reversed Ca ii, whereas the green contours are taken at a lower
level for comparisons with the intergranular lanes. This co-alignment is achieved with an
uncertainty of ±0.4 arcsec between the two series.

BFI Ca ii and NFI magnetograms

The Ca ii images are also sensitive to the magnetic field, which is seen as a higher intensity
in the Ca ii images, and define a low-chromospheric network, similar enough to the one
observed in both NFI and MDI magnetograms. Averaging both the Ca ii and NFI images
over a few minutes is enough to obtain a well contrasted and similar patterns to cross-
correlate. The result of the co-alignment is displayed in Fig.4.9, and the error is estimated
at ±0.2 arcsec,i.e, the pixel size of BFI.
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4.2 Protocol for near 1-arcsec co-alignment

Figure 4.8: Sample of co-aligned blue continuum image (gray-scaled background in arbitrary
units) with contours of the Ca ii image (red and green. The contrast in the blue continuum image
has been enhanced for better visibility of the granular pattern. Red contours are near the maximum
intensity of the Ca ii image and encompass the maximum intensity of the blue continuum image.
Green contours are at lower intensity and encompass the darker intergranular lanes in the blue
continuum image.
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4.3 Calibration of the magnetograms from NFI/SOT

Instrument pairs BFI-NFI NFI-MDI MDI-EIT EIT-XRT

Alignment error ( arcsec) 0.6 0.3 0.3 0.5

Table 4.1: Co-alignment random error between the different instruments of Hinode and SoHO.
BFI, NFI, and XRT are onboard Hinode. MDI and EIT are onboard SoHO

Finally, the shifts between the pairs Blue continuum - Ca ii , and Ca ii - magnetograms
(NFI) are summed up to obtain the shifts between the pair Blue continuum (BFI) - mag-
netograms (NFI). This results in a co-alignment uncertainty of about ±0.6 arcsec.

4.2.5 Co-alignment of the SoHO and Hinode data

The full-disk, low-resolution MDI magnetogram at 18:59 is used as an intermediate ref-
erence map (see Fig.4.3), mapped to Earth view, and is interpolated to have the same
pixel size as the MDI high-res. magnetogram. The latter, recorded at the same time, is
co-aligned to the full disk magnetogram using cross-correlation, with an uncertainty of
±0.3 arcsec.

We estimate the uncertainty of the coordinates of the disk center of both full disk
images of MDI and EIT (SoHO) to be negligible compared to the other alignment uncer-
tainties. The alignment of XRT involved the full disk EIT image at 195 Å. This wave-
length (among 4 different ones available in EIT) offered the best resemblance with the
features visible in XRT. Both regions are taken at the same reference time (18:59). The
XRT image could be co-aligned to the EIT image by cross-correlation, as many resolved
features were present in both datasets (Fig.4.10). This co-alignment is determined within
±0.5 arcsec.

We then used the shifts of XRT in the EIT frame of reference to project them into the
MDI frame of reference, using the coordinates of the disk center in the headers. The XRT
images are then co-aligned with the MDI high-res. data.

4.2.6 Overall co-alignment

To summarize, following the methodology of the co-alignment chart in Fig.4.3, we have
co-aligned the data series within the co-alignment uncertainty given in Table 4.1.

Note that these are random co-alignment errors. Hence the co-alignment error be-
tween any different pair of instruments is obtained by taking the quadratic sum of the
relevant errors in Table 4.1. For example between BFI and XRT, frames are co-aligned
within a 1σ-uncertainty that quadratically sums up to ±0.9 arcsec.

4.3 Calibration of the magnetograms from NFI/SOT

The observations from the Narrow-band Filter Imager (NFI) are actually the measure-
ments of the line ratio Stokes V/I, which we referred to as "filtergrams". In our data, they
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4 Soft-X-ray emission related to photospheric flows and coronal magnetic field

Figure 4.10: Alignment of XRT (red contours) on EIT (green-scaled background). The field of
view of XRT is smaller than EIT, this causes the square shape of the XRT outer contours.
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4.3 Calibration of the magnetograms from NFI/SOT

are given in unphysical, arbitrary units (arb. unit), and with a polarity opposite to those of
the MDI magnetograms (i.e, the positive values in MDI correspond to negative values in
the NFI filtergrams, and vice versa). An accurate calibration of the filtergrams into units
of magnetic field requires the data from the spectro-polarimeter (SP) from SOT/Hinode
which provides the line profiles (Chae et al. 2007). Unforturnately, SP observations are
not available for the period of time of interest, and we have to revert to another method.
Instead, we convert the filtergrams into physical units (G) using the high-resolution MDI
magnetograms (SoHO), in a similar manner to Parnell et al. (2008). Note that because
our original data were given in different arbitrary units than the one in the latter, our cali-
bration factor will be different. The calibration consists in fitting the NFI data to the MDI
data to derive a linear calibration factor, which is used to rescale the units of the NFI filter-
grams, which forces both data series to have the same flux density. We remind the reader
that the magnetograms used here are bidimensional spatial distributions of the approxi-
mated line-of-sight magnetic field. Near the disk center, it is considered parallel to the
heliocentric Z-axis (pointing toward the observer), and referred to as Bz, indexed by the
name of the instrument with which it is measured (e.g., Bz MDI, Bz NFI). Once calibrated,
the NFI filtergrams will also be referred to as "magnetograms".

4.3.1 Rejection of artifacts

The NFI uses a CCD that is divided in two parts. In our data, we have noticed that the
left-side of the CCD exhibits some time-dependent, and spatially non-uniform artifacts,
which impairs the data. It is best visible when averaging the absolute value |V/I|, as shown
in Fig.4.11. The Stokes I and V are divided onboard to save telemetry, and thus we cannot
assess the effect of the removal of dark current and offset signals in both I and V, which
makes it difficult to explain the artifact in Fig.4.11. Furthermore, V/I being a line ratio,
flat-fielding issues are, by definition, minimized (Stokes I and V are recorded by the CCD
almost simultaneously, with a time interval negligible with respect to the time sampling
rate of the V/I time series). Because the error stops right at the middle of the CCD, the
effect of the air bubbles in the tunable filters are ruled out, as the latter are known to be
somewhat circular blemishes that tend to be near the edges of the CCD (for more details,
see Tsuneta et al. 2008, § 8). Indeed, when present, the effect of the air bubbles are visible
in the images of BFI (Broad-band Filter Imager), which shares the same CCD with NFI.
In our case, the BFI images were blemish-free.

This artifact was so far undocumented, and here, it affects about one third of the left
half of the CCD. The fact that it is time-dependent, and that it stops precisely at the middle
of the CCD makes the data on the left side less reliable for calibration than the data on the
right side. Therefore only the latter is used to compute the calibration coefficient.

4.3.2 Least-squares fits

As said earlier, the polarity of the original data are opposite to those of MDI. For simplic-
ity, we first invert the NFI data, which will now be referred to as V/I NFI. Thus note that
the correlations derived below are, in fact, anti-correlation with respect to the original,
non-inverted data.
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Figure 4.11: Average filtergram of the absolute value |V/I| (NFI/SOT). The left part of the frame
exhibit a non-uniform background signal that stops at the middle of the CCD. The right part is not
affected by this error.

All the NFI data are resampled with the MDI pixel size of 0.6 arcsec. In addition, the
resolution is degraded so it is the same as MDI (2 px = 1.2 arcsec), using a gaussian con-
volution kernel with a FWHM of 1.2 arcsec. Next, in order to decrease the noise level in
the MDI magnetograms (∼25 G), we averaged both co-spatial data series over simultane-
ous time windows of 30 min. This decreases the MDI noise level to ∼5G. Hence the NFI
calibration only considers the pixels satisfying |Bz MDI| ≥ 5 G. Fig.4.12 (top) shows the ar-
eas that were finally used (i.e, the pixels in the magnetic patches within the red contours).
In Fig.4.12 (bottom) we have plotted Bz MDI against V/I NFI, pixel to pixel (gray dots).
Note the spread of these data. Regardless of other instrumental effects (e.g, cross-talk and
doppler shifts in the line profiles), the spread of the scatter plot is mostly caused by the un-
certainty of our co-alignment, which makes the NFI frames jitter around the MDI frames
within a rather small, but non-negligible distance of ∼0.6 arcsec (i.e, displacements of
±0.3 arcsec, see § 4.2.3 or Table 4.1). Indeed, even a displacement of 1 px is enough to
make a high flux density of a feature in one instrument correspond to a low flux in another
instrument, this is particularly around the sharp edges of the magnetic features. However,
we can minimize this spread by taking the mean of the several V/I NFI values that are mea-
sured at the same value of Bz MDI (graphically in Fig.4.12, bottom, this means we average
all the values that lie on the same horizontal lines). We obtain N = 164 independent
pairs of data, plotted as black dots. Note that these points are much less spread out. They
are fitted by the red line in Fig.4.12 (bottom). The correlation coefficient is r ≈ 0.997,
the calibration coefficient equals β = 0.75 ± 0.01, and the 1σ-uncertainty is σBz = 4 G.
Finally, we can rescale the original NFI filtergrams and get proper "magnetograms" using
Bz NFI = β × V/I NFI. One should recall, however, that we initially inverted the filtergrams
before the calibration. If the latter is applied at once, on the original non-inverted data,
β should be inverted and we would use β = −0.75. We estimate the noise level in these
calibrated magnetograms to be ∼4 G
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Figure 4.12: Top: NFI filtergram scaled between −50 G and +50 G with the red contours of the
MDI magnetograms at |Bz MDI| = 5 G. The data are averaged over 4 hr.
Bottom: The light-gray crosses are the " px to px" data. The dark dots are the averages of the
V/I NFI values that were at the same Bz MDI values (same horizontal lines). These data are fit-
ted with a least-squares regression (red line). The fit parameters are defined as the slope β, the
1σ-uncertainty σBz and the correlation coefficient r.
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4 Soft-X-ray emission related to photospheric flows and coronal magnetic field

4.4 Flows, magnetic field, and X-ray emission

Here we investigate in more details the relationship between the photospheric flows, the
magnetic field, and transient X-ray brightenings. First, we need to define the latter. This
is detailed in the next section.

4.4.1 Detection of X-ray transients

Fig.4.13 shows the supergranular lanes (blue contours) derived from the 4-hours aver-
aged flow map of MDI, on top of the averaged absolute-running-difference of the XRT
images, normalized by the 4 hr-average image. Magnetic contours (red and green) from
the averaged MDI magnetogram outline the "magnetic context" of the whole time series.
The XRT averaged running-difference enhances all the transient events that occur over
4 hr of observations. The running difference uses a time interval of 3 min between the
differentiated images. This processed image, defined as Idiff , formally derives as :

Idiff =

∑N
i=1 |Ii+∆n − Ii|

N I
(4.2)

where I is the 4 hr-average XRT image, Ii is the ith original image in a time series of
N = 240 images, and ∆n is the number of frames between two subtracted images. Here,
∆n = 6 with a time interval of 30 s between each frame. Normalizing by the average
image I has a "flat-fielding" effect, and enhances the contrast of the features even further.
Thus Idiff has no dimension and is expressed as a normalized intensity ratio. The choice
of the ideal time interval was made iteratively, by checking which interval reveals best all
the short-lived emission, while smoothing out the long-lasting hot structures like X-ray
loops, sigmoids, etc... So any X-ray emission still visible in Idiff comes from a source
whose emission significantly increases over the background over the time interval ∆n of
a few minutes or less, and which we call "transients". The latter term is, in fact, relative
to the duration of the experiment (4 hr). In Idiff, X-ray loops with variable emission may
also still be visible.
Next, we look at the events with a rise in the X-ray light curve of more than 15% above the
background level, and that last less than an hour. We found 12 transients satisfying these
criteria. They are located in the white rectangles in Fig.4.13. There are 6 transients in
the MDI FOV, outside the NFI FOV. In the latter, 6 other transients were detected and are
located in the wider regions A, B, C, and D which will be treated separately. Some small
dots are also visible, and have all the characteristics of cosmic rays (1 pixel wide, present
in 1 frame only with saturating intensity). The automated removal of the cosmic rays with
the XRT software of Solarsoft is not possible as it also affects the transients of interest.
All the transients are located on the network, and are associated with barely resolved
bipoles. In this respect they are quite similar to the ones studied in Krucker et al. (1997).
We also notice that they are all associated with bipolar structure. The magnetic flux from
the MDI magnetograms was too weak to quantify its evolution accurately with Magnetic
Balltracking, which here can only be applied to the better resolved magnetograms of
SOT/NFI.
Note also that, at this point, we cannot relate these events to those of Innes et al. (2009),

102



4.4 Flows, magnetic field, and X-ray emission

as we do not have co-spatial and co-temporal observations to check any EUV counterpart
to the observed X-ray transients.

The analysis of the transients is separated in two parts, starting with the ones in the
MDI FOV, and followed by those in the SOT FOV with the associated magnetic flux
measurements.
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4.4 Flows, magnetic field, and X-ray emission

4.4.2 Transients in MDI-XRT FOV

The light curves of the X-ray intensity for each transient are plotted in Fig.4.14. The
beginning and the end of the flaring phase is set to the threshold of 15% above the back-
ground emission (red crosses). The size of the emitting sources (encompassed by the
white rectangles in Fig.4.13) is ∼4 XRT pixels (2.8 Mm). The associated flow fields are
shown in Fig.4.15, where they are averaged over 1 hr and smoothed over 4 Mm. We can
see that the emitting sources E1 to E6 are not just over the network (Fig.4.13), but within
groups of converging streamlines which are literally "funneling" the photospheric mate-
rial right at the footpoints of the X-ray emission. In addition, we can see that they do
not occur at random places within the network. Instead, they are located near the inter-
sections of the supergranular network lanes (which we see as the "crossroads" of several
blue lanes), with the exception of E2, which may be located in the middle of a network
lane (Fig.4.13). These specific locations of the transients can be explained by looking at
the detailed view of the streamlines in Fig.4.15. They seem to be the result of at least two
combined effects: the first one is the expected motion of the magnetic flux toward the net-
work. The second one is that the funneled flows in the network push flux concentrations
together, as they penetrate deeper and deeper into the funnels’ streamlines, which join up
eventually at the intersection of supergranular flows. This is particularly intriguing with
the site E3 caught in one of the funnels of neighboring supergranules whose streamlines
get intertwined to form a supergranular vortex flow of about 25 arcsec (∼18 Mm).

4.4.3 Transients in SOT-XRT FOV

Balltracking was applied to the 2 min-cadence blue continuum data sets from Hinode/SOT.
The velocity fields were smoothed over 4 Mm and averaged over 60 min, and we derived
the supergranular network lanes of each flow field. The different "snapshots" of the lanes
were averaged over the whole time series, providing a context map of the flows and of the
network, in the manner described in Sections 2.5.3 and 2.5.4, and which is displayed in
Fig.4.16 (blue lanes). Region A and B contain somewhat elongated features. In regions
C and D we identified 4 sites of X-ray transients, tagged in white (C1, C2, D1, D2). The
location of their emission peaks are tagged with white crosses. Note the preferred sites of
the X-ray transients, with respect to the supergranular lanes: C1, C2, and D2 lie right on
top of the intersection of the lanes. D1 is at the middle of a lane,i.e, at mid-course between
two intersections. A complementary view of the flow is given in Fig.4.17, averaged over
4 hr, in which the colored background represents the magnitude of the horizontal velocity.
The transients are located in the funneled streamlines like we observed previously in the
MDI FOV.

Below we describe in more details the observations in the four selected regions. Note
that region A and B are observed with the left half of the NFI CCD. There, and as men-
tioned in Section 4.3.1, calibration issues prevented us from quantitative measurements
of the magnetic flux using Magnetic Balltracking. This was only possible in region C and
D.
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4.4 Flows, magnetic field, and X-ray emission
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Figure 4.15: Close-ups on the flow at the sites of the events E1 till E6 shown in Fig.4.13. Flows
are averaged over 1 hr and smoothed over 4 Mm.
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4 Soft-X-ray emission related to photospheric flows and coronal magnetic field

Region A and B

The bright elongated X-ray emission is located on the edge of a small supergranule
(Fig.4.16, region A). In Fig.4.17, we displayed the map of the velocity magnitude with
the streamlines. Note the imbalance between the greater magnitude of the northern flows
(in region A), compared to the rest of area. In the close-up in Fig.4.18 (top), with a bet-
ter temporal resolution (1 hr), we also observe this imbalance. The flow in the northern
supergranule (above the upper white arrow) is quite fast, above 400 m s−1 on average,
compared to the small supergranule between the two arrows, with a velocity of less than
300 m s−1. This imbalance results in the faster flow pushing the streamlines southward,
which might explain the somewhat irregular shape of the slower supergranule. Fig.4.19
(top) is a close-up around the maximum X-ray emission with the vectors (blue arrows) of
the 60 min averaged velocity field, and the contours of the magnetic flux. The positions
of the blue arrows are integrated along the streamlines, with more arrows where the flow
is more converging, like in funnels, and less arrows where the flow is diverging. Their
length is proportional to the velocity magnitude (the latter can be inferred from Fig.4.18).
We did not see a clear correlation between the magnetic flux and the X-ray emission as a
function of time, but one notices that the X-ray thread ends up in the strongest magnetic
features of opposite polarities, which suggests it is a poorly resolved X-ray loop. The
strongest magnetic concentrations under the footpoints of the X-ray loop appear to be
caught in funnels (see the long arrows in the top panels in Figs.4.18 and 4.19 pointing at
both of them). This is more visible with the southern funnel, which is longer and wider.
The northern one is smaller than the smoothing FWHM of the velocity field (4 Mm) so
any particular shape below this size may not be meaningful.

In region B (Fig.4.19, bottom), the brighter soft X-ray emission is also located above5

a funnel in which a magnetic bipole appears to be caught. It appears more clearly in
Fig.4.18 (bottom). The "entrance" of this funnel is more than 10 Mm wide, which is
greater than the FWHM (4 Mm) of the smoothing of the flows, and it is visible in both the
1 hr average flow field and in the 4 hr average in Fig.4.17, which makes the description of
this funnel more meaningful than the one in region A.
The X-ray emission is slightly fainter than in region A, with only a few Data Number per
second (defined as DN s−1 in the color bar) but also more variable, such that it remains
visible in the absolute running-difference. In this case, it is unclear whether the bright
X-ray emission originates from a coronal loop connecting the opposite polarities, or from
an X-ray jet. Either way, one footpoint would be located deep inside the funnel, near the
middle of the bipole pointed by the yellow arrow.

Region C and D

In what follows, the Magnetic Balltracking combined with the region growing algorithm
(§ 2.6.5) was used to measure the flux disappearance underneath the transients. The
tracked magnetic features are tagged with red crosses in the magnetograms of Fig.4.21.
Note that in all the case studies, including those in region D (Fig.4.29), we can only

5While the blue arrows of the photospheric flows are plotted on top of the X-ray image in the back-
ground, we remind that the X-ray emission originate from the low corona, and thus it is described as being
"above" the photospheric flows, i.e, in higher layers of the atmosphere.
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Figure 4.18: Velocity magnitude in region A (top) and B (bottom), plotted with the streamlines of
the flow (black continuous lines). The velocity field is the same as the ones used in Fig.4.19. The
white arrows point at the funnel-shaped streamlines, at the same coordinates as the yellow arrows
in Fig.4.18.
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4 Soft-X-ray emission related to photospheric flows and coronal magnetic field

Figure 4.19: Close-ups on region A (top) and region B (bottom), with vectors (blue) of the the
60 min average velocity field. The gray background is the XRT image taken at 16:13 UT (top) and
17:46 UT (bottom). Thin magnetic contours at |Bz NFI| = 10 G, filled contours at |Bz NFI| > 60 G,
red for positive polarity, green for negative polarity. The lengths of the blue arrows are scaled
linearly with the magnitude of the flow (the latter are displayed in Fig.4.19), while the body of
the arrows can bend to follow the streamlines. Areas with more arrows correspond to a higher
convergence of the streamlines. The yellow arrows point at a funneled-shaped streams, they are
plotted at the same positions as the white arrow in Fig.4.18.
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4.4 Flows, magnetic field, and X-ray emission

extract the positive flux. The negative flux is indeed spread out over too many magnetic
elements that cluster out and merge repeatedly, and which covers much larger areas than
the disappearing positive flux does. Thus it is not possible to extract any coherent feature
of negative flux with the region-growing algorithm which would otherwise extract a much
bigger feature with much more flux than the one really involved in the flux disappearance.
Indeed, when used locally to track individual magnetic patches, this technique is only
meaningful if the tracked magnetic patches keep a coherent shape over time6. In region
C, the magnetic threshold in the region growing algorithm needed to be set to 10 G. So a
small percentage of flux may not be accounted for during the spatial integration. However,
in region D, we could set it closer to the noise level.

Several snapshots showing the three transients in region C are displayed in Fig.4.20
(one event per row), with the blue arrows of the 60 min-averaged flow fields, and the
X-ray images in the background. The two X-ray outbursts tagged C2a and C2b occur
at the same place but at two different times. The three transients are observed between
concentrations of positive and negative flux.

The results of the Magnetic Balltracking are given in Figs.4.22, 4.24 and, 4.26. The
light curves of the X-ray transients (black) are integrated spatially over the emitting
sources. The red curves are the magnetic fluxes derived from the Magnetic Balltracking.
The red dashed vertical lines point at the local maximum of the flux, and which defines
the beginning of the flux disappearance. The black vertical lines show the beginning and
the end of the transient, defined as the time during which the light curve is 15% greater
than the averaged background emission. We can see that all the X-ray brightenings in
region C occur after the underlying magnetic positive flux has started to decrease.

Transient C1 In Fig.4.22, the flux is maximum at 15:13 with ∼1.1×1017 Mx. It has
decreased by ∼25% after 2 min, when the first X-ray burst starts (15:15), with an emis-
sion peak at ∼80 DN s−1. It is followed by a more intense peak at ∼15:24, counting
∼160 DN s−1, while the underlying positive magnetic feature has almost disappeared, al-
though neighboring clustered flux is still visible. A third burst, peaking above∼120 DN s−1

occurs soon after the data gap, at 15:43, whereas the tracked magnetic feature has com-
pletely disappeared, although the area is constantly being refilled with new incoming flux.
Fig.4.23 shows the 60 min-averaged flows, with the streamlines and the velocity magni-
tude. The contours of the X-ray image are taken at the time of the maximum emission
(15:24). One clearly sees its brightest emission located at the tip of a funnel, which is
also near the intersection of the supergranular flows (Fig.4.16), where the velocity is quite
slow, below 150 m s−1.

Transient C2a Two balls are used to track the magnetic features underneath the tran-
sient at 16:50 (Fig.4.20 and 4.21, 2nd row). At first it is a single magnetic feature that
ends up broken up in two pieces. When they breakup, the fluxes of both tracked features

6This does not mean that Magnetic Balltracking cannot track the magnetic features that are merging and
breaking up. In fact, tracking those features is precisely why we created it in the first place. The limitation
we have stated comes from the segmentation, and the nature of the data, when one wants to integrate the
flux. It is possible that vector magnetograms would give more consistent shapes that would be easier to
extract, for both positive and negative fluxes.
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18:22
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Figure 4.20: X-ray images (gray reversed-colortable) and contours of the NFI magnetograms in
region C of Fig.4.16. Red/green (respectively) is positive/negative polarity. Filled contours at +/-
40 G, thin contours at +/-10 G. The black arrows are the velocity vectors to show the direction of
the flow. Their length is scaled linearly with the magnitude of the flow. The yellow arrows point at
the location of the X-ray transient (C1, C2a, C2b).
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Figure 4.21: NFI magnetograms as used in the Magnetic Balltracking to track the flux underneath
the transients C1, C2a, and C2b, respectively from top to bottom. The red cross shows which
magnetic element was tracked.
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Figure 4.22: X-ray light curves with associated evolution of canceling magnetic flux for the tran-
sient C1. The two black vertical lines define the duration of the X-ray transient, i.e, the time during
which the emission is 15% above the average background emission.

are summed up. By doing this, we consider these two magnetic features as a single en-
tity, which the algorithm can extract. In Fig.4.24, the maximum of the positive flux is at
16:41 with ∼1.5×1017 Mx, and decreases by ∼15% over 4 min when the transient begins
at 16:45. The X-ray emission is maximum at 16:51, with 650 DN s−1.
In Figs.4.16 and 4.25, one observes that its brightest emission is less than 3 Mm from
the northern intersection of supergranular lanes, within the funnels of a flow field whose
magnitude is greater than 350 m s−1.

Transient C2b

In Fig.4.26, the positive magnetic flux is maximum at 18:02 with ∼2.6×1017 Mx. The
X-ray transient starts at ∼18:14 while the magnetic flux has decreased by ∼20%. The X-
ray emission is maximum at 18:22 (240 DN s−1). Fig.4.27 provides an interesting picture
of the X-ray transient occurring near the center of a vortex flow formed at the northern
intersection of the network lanes. The locations of C2a and C2b are close to each other,
less than 2 Mm (which is below the 4 Mm resolution of the flow field).

Transient D1 D1 is located in a small funnel (smaller than 4 Mm). The X-ray transient
is visible in the second and third snapshot of Fig.4.28. Its location within the flow is also
visible as red and white contours in Fig.4.31. Like with C2a, we used two balls to track
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Figure 4.23: Flow field around 15:30 (C1), averaged over 60 min. The white contours are from
the X-ray image at 15:24. X-ray contour levels set to 10 and 15 DN s−1.

and integrate the disappearing flux (Fig.4.29). In Fig.4.30 (top), the local maximum of
the magnetic flux is at 16:19 with ∼5.2×1016 Mx. It has decreased by ∼20% at 16:27 at the
beginning of the X-ray transient. The X-ray emission is maximum at 16:33 (195 DN s−1).
The threshold in the region-growing algorithm was set to 8 G. We note, however, a sec-
ondary, conspicuous maximum of the positive flux, at 16:31, whereas the extracted area
of the magnetic feature was still decreasing.

Transient D2 Like in region A, most of the X-ray emission in region D comes from
barely resolved X-ray loops in the center of the two first snapshots of Fig.4.28. However
the transient D2 is located near the footpoints of these loops. The transient D2 is actually
visible in the third snapshot of Fig.4.28. The magnetic elements (positive flux) tracked
around the time of the flux disappearance are shown in Fig.4.29 (red crosses). Fig.4.30
shows that the flux is maximum at 16:25 with ∼3.4×1016 Mx. It has decreased by ∼25%
at 16:31, when the X-ray transient begins. The X-ray emission is maximum at 16:36
(265 DN s−1). The threshold is set right above the noise level, ∼5 G, as the disappearing
magnetic feature was well isolated from the rest of the magnetic features. Like with
transient D2, exactly at the same time, we note a secondary maximum of the positive flux,
at 16:31.
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Figure 4.24: X-ray light curves with associated evolution of canceling magnetic flux for the tran-
sient C2a.

The simultaneous appearance of a secondary maximum of the magnetic flux in tran-
sient D1 and D2 at 16:31 comes from oscillations in the whole FOV, and are not specific
to these magnetic features. Indeed, in both cases, the 8 G and 5 G thresholds are close to
the noise level of these magnetograms (∼4 G), and the background intensity in the magne-
tograms in the whole FOV oscillates with an amplitude of a few G. So the oscillations are
more visible here because the flux density of the tracked features is weaker, on average,
and integrated over smaller areas than in the previous cases.

This transient (D2) is observed right at the intersection of supergranular lanes ac-
cording to Figs.4.16 and 4.31. The streamlines seem to twist as they converge. This
vortical structure is caused by the unbalanced velocity from either side of the supergran-
ular boundaries. The velocity is on average greater than 550 m s−1 within 5 Mm from the
supergranular lanes of the lower left supergranule, while it is considerably slower, less
than 450 m s−1) in the other supergranules.

Although here we have described the five X-ray transients in the presence of "disap-
pearing" magnetic flux, their occurrence within flux of opposite polarity make us believe
it is in fact magnetic cancellation resulting from magnetic reconnection.

4.4.4 Energy of the X-ray transients

Quiet Sun soft X-ray sources in the magnetic network have already been reported in
Krucker et al. (1997), and called "network flares". Because of their observational sim-
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Figure 4.25: Flow field around 16:50 (C2a), averaged over 40 min. The white contours are from
the X-ray image at 16:50. Levels set between 15 and 40 DN s−1.

ilarities (time and spatial scales), we followed the same method to calculate the energy
released by these X-ray sources. We assume a temperature T = 1.2 MK and we inte-
grate a synthetic coronal spectrum using the CHIANTI package (Dere et al. 1997, 2009),
with the XRT response functions corresponding to the C-poly filter, provided by the XRT
software in Solarsoft. The emission measure is calculated using the relation

ICpoly

obs (T ) ∼ EM(T )
∫
ν(Cpoly)

Jν(ν,T ) ε(ν)dν (4.3)

where ICpoly

obs (T ) is the observed intensity at a given temperature T, EM(T ) is the emis-
sion measure, Jν the synthetic spectrum from CHIANTI, calculated with the procedure
"isothermal.pro", and ε the spectral response of XRT associated with the C-poly filter.
The integral on the right hand side of equation 4.3 is the "temperature response", and is
shown in Fig.4.32.

EM(T ) is defined along the line-of-sight, and is proportional to the squared density of
the electrons ne

2 times the depth dz.

EM(T ) ≈ ne
2dz (cm−5) (4.4)
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Figure 4.26: X-ray light curves with associated evolution of canceling magnetic flux for the tran-
sient C2b.

The electron density is therefore ne =
√

EM(T )/dz (cm−3). If we assume that particles
have been heated from chromospheric temperatures to provide the X-ray emission, and
are filling a cubic volume of side length dz = d, then the total number of particles in the
volume would be:

N = ned3 =
√

EM(T )d5 (4.5)

Hence the thermal energy of an X-ray emitting source at temperature T on the solar
surface, as used for the network flares in Krucker et al. (1997),

Eth =
3
2

NkT ≈
3
2

kT
√

EM(T ) d5 (4.6)

We only have observations through one filter. So it is not possible to obtain the temper-
ature using filter ratio, and we chose the temperature (1.2 MK) by pure analogy. However,
the energy defined in 4.6 has a very weak dependence on the temperature between 1 MK
and 10 MK. This is shown in Fig.4.33 where we used ICpoly

obs (T ) = 1 DN to compute the en-
ergy dependence versus the temperature. For this, we used a source size of d = 0.15 Mm
(the pixel size of XRT).

Over a large temperature range of 1 to 10 MK, the energy varies by 50%. It seems
very unlikely that the temperature(s) of the source exceeds this temperature range. The
uncertainty in the thermal energy depends much more on the shape and the size of the
source, by a factor of d2.5 according to equation 4.6, rather than on the choice of the
temperature, provided it stays in the range 1-10 MK. While the horizontal extension of
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Figure 4.27: Flow field around 18:00 (C2b), averaged over 40 min. The white contours are from
the X-ray image at 18:22. Levels set between 10 and 25 DN s−1.

the source of several pixels, is a known parameter, its dimension in the line-of-sight (dz)
is unknown. From this we expect an uncertainty of at least one order of magnitude on the
energy calculated thereafter.

To compute the energy from the XRT images, the intensity at each pixel is inserted in
equation 4.3 to obtain the emission measure EM(T ). The emission measure is spatially
integrated over a square with side length d. The latter is measured as the averaged Full-
Width-at-Half-Maximum of the 2D emitting structure at its maximum emission. The
background emission measure is retrieved by averaging EM(T ) over the time preceding
the flaring phase of the transients. We remind that the flaring phase was previously defined
as when the X-ray intensity is 15% above the background. EM(T ) is then integrated over
the time of the flaring phase, and the background is subtracted. We finally obtain a net
increase in emission measure ∆EM(T ) which represents the amount of materials heated
to the temperature T, which is inserted in equation 4.6. This process was repeated for each
transient, in the MDI FOV and SOT FOV.
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Figure 4.28: Snapshots of the X-ray time-series in region D. The yellow arrows point at the
location of the X-ray transients. Transient D1 is pointed by the top arrow and transient D2 by the
bottom arrow.
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Figure 4.29: NFI magnetograms as used in the Magnetic Balltracking to track the flux underneath
the transient D1 and D2. The red crosses show which magnetic elements were tracked.
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Figure 4.30: X-ray light curves for the transients in region D, with the associated underlying flux
cancellation.
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Figure 4.31: Flow field in region D around 16:30, averaged over 40 min. The red contours are
from the X-ray image (Fig.4.28) at 16:31, white contours at 16:34. Contour levels are set between
10 and 20 DN s−1.

Results

The results are summarized in tables 4.2 and 4.3, and discussed below. Other parameters
relevant to understanding the energetics will be defined and discussed in the next chapter.

The energies of the network flares in the NFI FOV are on average smaller (1025 erg,
Table 4.3) by one order of magnitude than the ones in the MDI FOV (1026 erg, Table 4.2).
In each case there is an uncertainty of one order of magnitude due to the longitudinal
source size dz (in the direction of the line-of-sight) that is unknown. The smaller energy
in the NFI FOV is mainly due to the smaller dimensions of the sources (at least, on the
horizontal dimensions). This difference from one instrument to the other is explained by
the fact that Hinode is given a specific "target-region" when planning the observations. In
the present case, we asked for "quiet Sun". Therefore, the Hinode science plan induced a
selection effect as the pointing was on a region with smaller, less energetic sources than
MDI. The latter has a wider FOV and includes relatively more energetic events. With
these results, we can calculate the contribution of these network flares to the coronal
heating.
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4.4 Flows, magnetic field, and X-ray emission

Figure 4.32: Temperature response of XRT with the C-poly filter.

Figure 4.33: Thermal energy as a function of the temperature for ICpoly

obs (T ) = 1 DN and
d = 0.15 Mm.
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4 Soft-X-ray emission related to photospheric flows and coronal magnetic field

Transient E1 E2 E3 E4 E5 E6

Eth(1025 ergs) 20.4 38.3 23.7 6.7 16.3 30.3

d ( Mm) 1.1 1.3 1.7 1.0 1.1 1.2

Table 4.2: Thermal energy released from sources E1 till E6 assuming a temperature T = 1.2 MK.

Transients Eth (1025 erg) d ( Mm) ∆φp/φp (%) treac (min) ∆ttr (min)

C1 1.3 0.4 30 3 29

C2a 1.8 0.4 10 4.5 14

C2b 1.2 0.4 20 12 20

D1 1.9 0.5 35 8 12

D2 2.6 0.7 40 6.5 17

Table 4.3: Parameters associated with the X-ray transients. Eth: thermal energy released from the
transients in region C and D. d: source size. ∆φp/phip: percentage of positive flux cancellation.
treac: reaction time, i.e, time between the beginning of the X-ray transient and the beginning of
the magnetic cancellation. ∆ttr: transient lifetime. A temperature T = 1.2 MK is assumed when
computing the energy.

Coronal heating

Here we calculate the average energy flux released by the transients in the NFI FOV, the
least energetic, and the energy flux released in the MDI FOV, whose X-ray sources are
more intense by about one order of magnitude.

• The NFI FOV covers an area of 6×103 Mm2 of the quiet Sun, during 4 hr of observa-
tions. The total energy flux averaged over this area and this time duration, released
by the 5 transients C1,C2a, C2b, D1, and D2 is of the order of 10 erg s−1 cm−2.

• The MDI FOV (minus the area covered by the NFI FOV) covers an area of 3.5 104 Mm2.
Which gives an averaged energy flux released by the 6 transients E1 to E6 of the
order of 102 erg s−1 cm−2.

Note that we only selected transient events whose emission suddenly increases by 15%
above the background emission within minutes. They do not represent all the possible
sources of X-ray emission. Nevertheless, based on the 11 transients studied here, we have
estimated that the average energy flux is between 10 and 102 erg s−1 cm−2 in the quiet Sun.
This is 102 to 103 times less than the minimum coronal heating requirement of the quiet
Sun (between 104 and 105 erg s−1 cm−2) (Withbroe and Noyes 1977, Aschwanden 2004).
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5 Discussion

In the previous chapter, we have described the relationship between 11 X-ray network
flares, and the photospheric flows underneath. With SOT/NFI, we could also quantify
the cancellation of the magnetic flux which was followed by the flaring of the X-ray
transients. For the 6 other transients, the lower resolution and lower signal-to-noise ra-
tio of the MDI magnetograms only showed bipolar magnetic fields at the flaring sites.
Yet we could still define similar patterns in the flows that seem to drive the magnetic
flux in an inevitable cancellation. These patterns are sketched in the cartoon of Fig.5.1
that summarizes in a single simplified picture the processes observed for the 11 X-ray
transients. Flux cancellation is also observed at more occasions than we observe X-ray
transients. However, we have selected here the strongest X-ray transients observed in the
MDI and Hinode FOV. They were all related to magnetic cancellation. Flux cancellation
not associated with X-ray transient can be explained by submergence, and during which
reconnection may not occur, or by reconnection in the photosphere.

In Fig.5.1, we represent the flaring sites at the places where the streamlines of the flow
converge. These are the intersection of the supergranular boundaries. As they converge
from either side of the network lanes, the streamlines form a funnel. Eventually, the
supergranular flow becomes unbalanced, and the velocity in one side of a supergranular
lane is greater than in its neighboring supergranule. Consequently, antagonistic flows
become asymmetrical with respect to ideal boundaries. The streamlines are reshaped
accordingly, and the direction of the resulting flow is determined by the average flow,
with streamlines of the "dominant" supergranules pushing back the "weaker" ones. As
long as the weaker flow does not accelerate, the directions are kept, and structures like
large-scale vortex flows persist. Otherwise, they get disrupted and are barely visible in
long-time-average flow fields. When the flow is more balanced, streamlines converge
symmetrically to the intersection, forming funnels leading into the intersection.

In the next section, we discuss the possible effects of the observed topology of the
flow on the dynamics of the magnetic flux.

5.1 Converging flux model

The mechanism by which the flux decreases is likely to be magnetic reconnection, in a
manner that falls within the converging flux model described in Priest et al. (1994). While
this model describes the triggering mechanism of X-ray bright points (BPs) at larger scales
than the present events, our observations are a priori similar: two magnetic fragments of
opposite polarities approach each other, cancel out, while an intense X-ray emission is
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Figure 5.1: Sketch of the different steps leading to an X-ray transient. The hexagonal dashed
lines represent idealized supergranular boundaries. The black lines are streamlines of the flow.
The blue arrows show the main orientation of the flow. Bigger arrows symbolize faster flows than
the smaller arrows. The yellow stars represent X-ray transient events. The green and red thick
contours represent magnetic features of opposite polarity.
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observed. The model explains the energy release as a result of the interaction of the mag-
netic fragments with the background field, which eventually leads to the formation of a
current sheet and magnetic reconnection in the higher layers. It is followed by photo-
spheric reconnection, resulting in the decrease of the magnetic flux of both fragments.
In what follows, we use the Magnetic Balltracking to measure the parameters defined
in this model, and to calculate the estimated energy released during the reconnection.
We compare it with the energy Eth released during the eruption of X-ray network flares
(Table.4.3).

5.1.1 Definition of the model parameters

For each event in the NFI FOV, the key parameters of the model are calculated with
Magnetic Balltracking. They are:

• The approach speed −ȧ of the fragment where 2 a is the distance between the cen-
ter of two fragments of opposite polarities. Calculating this quantity requires the
tracking of the two fragments. As mentioned in the previous chapter, for each of
the transients in the NFI FOV, only the positive flux was coherent enough to be
extracted by region growing. Although the closest negative patches are wider and
clustered out into several pieces, we can still track their positions using a few balls.
Their averaged position is more precise and much steadier than the position of a
single fragment, and we use this averaged position to derive the relative approach
speed ȧ of the fragment of positive flux with respect to the fragments of negative
flux.

• The interaction distance d∗, defined as the distance at which the reconnection in
the higher layers would first occur, and projected onto the photosphere. It can be
expressed as:

d∗ =

√
f

πB0
(5.1)

where f is the flux of the fragment, and B0 is the intensity of the horizontal back-
ground field. In the model, the parameters are defined assuming symmetry, i.e, with
the unsigned flux of both fragment being strictly equal. This is not true in our ob-
servations and causes an error of more than one order of magnitude. Instead, we
can directly use the results of Magnetic Balltracking to measure d∗. We use the
geometric definition of d∗, which is the distance between the center of the two can-
celing fragments and the point (projected onto the photosphere) where the fragment
of positive flux starts interacting with the fragment of negative flux. In our data, this
is taken as the point (in time and space) when the flux is at its maximum, which is
a few minutes before the X-ray transient starts.

• The magnetic fragment width w which is measured with the region-growing algo-
rithm, by taking the average diameter of the extracted area of the fragment.

• The cancellation time τc which is the time it takes for the flux of the fragments to
completely cancel. It is defined as:

τc =
w
ȧ

(5.2)
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Transients Wfree ( erg) EFp ( erg) d∗ (Mm) ȧ (m.s−1) w (Mm) τc( min)

C1 3 1023 1 1024 0.9 600 1.5 32

C2a 3 1023 1 1024 1.2 800 1.6 24

C2b 8 1021 1 1025 1.4 500 1.6 51

D1 6 1022 3 1023 1.1 500 1.6 57

D2 9 1020 1 1023 0.7 500 0.9 28

Table 5.1: Parameters related to the converging flux model in Priest et al. (1994). Wfree is the
"free" magnetic energy in excess of a potential field configuration. d∗ is the interaction distance, ȧ
is the absolute value of the approach speed, w is the average fragment width. τc is the cancellation
time. EFp is the energy released within sheared flows.

With the above quantities, the free energy stored in the current sheet Wfree in excess of
a potential field is defined as:

Wfree =
B2

0d∗3

2µ
Fs(a/d∗) (5.3)

where µ is the permeability, Fs(a/d∗) is a scaling factor (determined numerically) that
depends on the ratio of a and d∗ (Priest et al. 1994, Eq.3.28). The scaling factor varies
rapidly with a/d∗. It is equal, respectively, to 0.6, 2.5, and 4.4 when a/d∗ = 0.5, 0.2, and
0.1 (a/d∗ decreases when the fragments approach each other). We use the value of a/d∗

at the start time of the reconnection, which is here assumed to be at the beginning of the
X-ray network flares. In what follows, a horizontal background field B0 of 5 G is used.
This value is consistent with what we get from potential field extrapolation right above
the photosphere in the regions of interest.

5.1.2 Results

The values of the above quantities are summarized in table 5.1. The interaction distance
d∗ varies from 0.7 Mm to 1.4 Mm. Figs.5.2 and 5.3 represent the positive magnetic flux
cancellation (red continuous line) calculated in the previous chapter, along with the dis-
tance ratio a/d∗ (black discontinuous line) which is used in Fs(a/d∗) to scale the free
energy Wfree. The red discontinuous vertical line shows where the flux cancellation starts,
which by definition corresponds to a/d∗ = 1. The black vertical line marks the beginning
of the X-ray transient and sets where we take the value of a/d∗ to compute the scaling
factor Fs. a/d∗ equals (resp.) about 0.6, 0.7, 1.0, 0.8, 1.0 at the start of the transient C1,
C2a C2b, D1, and D2 (resp.). It scales Wfree by Fs = 4 10−1, 2 10−1, 3 10−3, 5 10−2, 2 10−3

(resp.). Finally we obtain Wfree of the order (resp.) 1023, 1023, 1021, 1022, 1020 erg. So the
free energy in the transient C2b, D1, and D2 is significantly scaled down. This is due
to the fact that the X-ray transient starts too soon after the fragment has moved past the
interaction distance (i.e, a/d∗ is close to one).
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We note however that, apart from C1, the vertical flux of the fragment beneath the tran-
sient is unbalanced, with a ratio of negative flux over positive flux equal to 10, and up
to 80 in D2. So this is far from the symmetric topology assumed in the model (which
assumes a symmetry with respect to the vertical axis). Assuming a symmetric geometry,
the reconnection occurs with the horizontal field, which is here quite low (5 G), which
results in quite small free energy compared to the thermal energy Eth.

5.1.3 Comparisons of Eth and Wfree

The thermal energy Eth measured from the X-ray emission and the free magnetic energy
Wfree calculated with the flux convergence model are compared in the bar plot in Fig.5.4.
The third energy 〈Fp〉 will be discussed in the next section. As we mentioned in the
previous paragraph, the main source of errors in the calculation of the free energy lies in
the actual field topology (unbalance between the positive flux and negative flux) which
might be quite different from the ideal case (symmetrical), which affects the estimation
of Wfree as a function of B2

0. We also recall that there is an uncertainty of one order of
magnitude when calculating Eth (due to the source height). Nonetheless, on average,
the thermal energies are all greater than the free energy. This is particularly clear with
C2b, D1, and D2 where the free energy is negligible compared to the thermal energy.
Therefore, even if within 1 order of magnitude, the piecewise potential field configuration
invoked in the converging flux model provides sufficient energy for a later release during
the transients C1 and C2a, it is very unlikely to do so in C2b, D1, and D2. Therefore one
must investigate other possible sources of energy.

5.2 Effect of the funnels and the vortices

5.2.1 Shearing motions

Galsgaard and Nordlund (1996) have studied the effect of the shearing of an initial ho-
mogenous magnetic field. It was shown that the longer systematic shearing acts on the
field, the greater the free energy. This is caused by the exponential growth of currents
caused by the field lines bending and converging to a more confined area.
In our observations, we have emphasized the presence of supergranular vortices and
twisted funnels. In fact, these are the sites of higher shear than in the relatively more
laminar flow of the internetwork. In such configurations, we can consider the time and
spatial scales of the funnels and the vortices observed at the erupting sites in region C and
D, and apply them to the model of average energy dissipation per unit area and per unit
time in Galsgaard and Nordlund (1996), roughly equal to the average Poynting flux 〈Fp〉

so that, in centimetre-gram-second (cgs) units:

〈Fp〉 =
B2

z Vd tan(φ)
4π

(5.4)

where Bz is the intensity of the vertical magnetic field, Vd is the velocity advecting the
field lines, and φ is the inclination angle of the field lines. Here, we use Bz =< Bz NFI >,
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Figure 5.2: Evolution of the positive flux with a/d∗ for the transients in region C. From top to
bottom respectively, transient C1, C2a, and C2b. The vertical discontinuous red line is at the
maximum of the flux, and a/d∗ = 1. In C1, that maximum is at 0 min so the red line is not plotted.
The black vertical line marks the beginning of the X-ray transient.
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Figure 5.3: Same as Fig.5.2 for the transients in region D.

i.e, the mean vertical magnetic field of the fragment with canceling flux. We consider the
fragments tracked in region C and D.
tan(φ) is approximated by :

tan(φ) ∼ φ ∼ Vdtd/L (5.5)

where td is the characteristic time of the shear motions acting on the field lines. L is
the characteristic size of the region over which the Pointing flux is integrated. We take
L = 5 Mm, which is the characteristic length of the funnels along which the magnetic
fragments are transported.

The above quantities were already calculated in § 5.1.1 (Table 5.1). In fact, we use
td = τc as a lower limit, where τc was defined as the cancellation time, i.e, the time it takes
for the flux to vanish. Vd is set to the approach speed ȧ.

Finally, we integrate the energy flux 〈Fp〉 over the region of sheared flow (of size
L) and over the cancellation time τc to get an order of magnitude estimate of the total
dissipated energy EFp from the magnetic fragments caught in the vortices and the funnels.
EFp is represented by the third bar plot in Fig.5.4. The energy appears greater than in
the converging flux model. However, if we account for the uncertainty in determining the
horizontal component of the field in the converging flux model, there is no clear difference
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Figure 5.4: Bar plot of the thermal energy Eth, the free energy W f ree of the converging flux model,
and the average Poynting flux 〈Fp〉 for the transients in region C and D.

between Wfree and EFp in the cases C1 and C2a. Nonetheless, the fact that Eq.5.4 accounts
for the actual observed flux (and not the extrapolated horizontal component) leaves much
less uncertainty than in the converging flux model, and it becomes clear with C2b, D1,
D2 that EFp is greater than Wfree.

Galsgaard and Nordlund (1996) emphasized that persistent shearing may be the source
of a bursty regime of the energy release, and we believe that this indeed is the case for tran-
sient C2a and C2b which occur near the center of a vortex flow (see Figs.4.20,4.25,4.27).

5.2.2 Large-scale vortices and funnels

Due to the presence of large-scale vortices and twisted funnels transporting the magnetic
flux to the junctions of the lanes, we can also comment on the results of the simulations
from Amari et al. (2000, 2003, 2010) with non-zero-helicity magnetic field, that are spe-
cific implementations of the more general Flux Cancellation Model from van Ballegooi-
jen and Martens (1989). Although it is applied to coronal mass ejections, the initial states
used in the model are in many aspects the same as observed here. In these simulations, the
amount of total flux that cancels is within a broad range of 6% to 30%. This broad range
is believed to be caused by the different amount of shear given to the magnetic field at
the initial state. In the real situation, vortices and funnels are shearing the magnetic field,
and a broad range of cancelled magnetic flux could be expected as well. In the 5 X-ray
transients that we analyzed (C1, C2a, C2b, D1, D2), the amount of cancelled flux ranges
between 10% to 40% (see ∆φp/φp in Table 4.3). Note that this is only the longitudinal
flux, and we do not make any assumption on the amount of cancellation of the transverse
component of the flux. In the simulations, the flux cancellation is due to small-scale mix-
ing and reconnection that is followed by the formation of a flux rope, which gets disrupted
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in the end. While we have no direct observations of the flux rope, the presence of funnels
and the vortices at the pre-interactive phase of the converging flux model are conditions
quite similar to the simulations, where the same topology of the flows is used.

The energy release is believed to occur through Joule dissipation. The kinetic energy
is only indirectly converted into magnetic energy by stressing the magnetic field. Several
experiments emulating different driver speeds on interacting fragments were carried out
in Galsgaard and Nordlund (1996), Galsgaard et al. (2000), Galsgaard and Parnell (2005)
and showed that viscous dissipation was much smaller than Joule dissipation. However,
there is one aspect that could make these experiments more realistic, which lies in the
dual nature of the photospheric flows. In all the experiments, the magnetic fragment was
advected by the flow using an imposed speed. In a real situation, the velocity of the motion
of the magnetic fragment is faster than the supergranular flows. Indeed, the approach
speed ȧ in Table 5.1 can be up to 800 m s−1, a typical value for magnetic elements in the
quiet Sun (Berger et al. 1998), whereas the mean velocity in supergranular flows and the
large-scale vortex flows do not exceed a few hundred of m s−1 (Attie et al. 2009).

5.3 Qualitative model of X-ray network flares

To summarize the previous discussions, we use the same base description of the converg-
ing flux model, with the evolution of the piecewise potential field, 3D-extrapolated for
illustrative purposes. Next, we tune this model by including the effects of funnels and
vortices. This aims at qualitatively describing the mechanisms that lead to the 11 X-ray
network flares that we observed.

5.3.1 Magnetic field configuration

Following the assumption of piecewise potential evolution in the converging flux model,
we use a potential field extrapolation on the NFI magnetograms in region C (Fig.5.5).
The footpoints of the field-lines (yellow) were tracked using Magnetic Balltracking (see
§ 2.6.6). The streamlines of the horizontal flows are shown with blue lines. Here we show
three snapshots at three different times (increasing from top to bottom), viewed from two
different perspectives (left to right). One sees elongated loops in which smaller loops (a
few Mm) are nested. In sites of larger dimensions, like in bright points or active regions,
such configurations are known to give rise to so-called "bald patches", where the coronal
field becomes tangential to low-lying magnetic loops (Titov et al. 1993, Fletcher et al.
2001).

In the context of the converging flux model, this would eventually result in the re-
connection of the small loops with the higher ones (the background field). However, the
present extrapolation is not able to show this exact process clearly, but in the third snap-
shot (16:49), near the X-ray transient C2a seen as red contours, the small green loops
in Fig.5.5 are nested within the larger (yellow) overlying loops which could possibly be
involved in the reconnection. A very similar configuration is observed around the tran-
sient C2b (not shown here). Here (at 16:49), the green loops are rooted in the funnels of
the flow, in the same fragments that merge and cancel out under the transient C2a (see
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Figs.4.20 and 4.24). Earlier at 15:03 and 15:45, they were connected to different frag-
ments (see the leftmost green loop above the red contours), i.e, before the magnetic flux
cancellation.
We remind that we did not select the footpoints at random pixels within the fragment. For
tracking the green loops, we have ball-tracked their footpoints, starting at an early phase
(15:03). Henceforth, they cluster out and merge again: 3 green loops on 3 fragments at
15:03, 6 green loops on 6 fragments at 15:45, 2 green loops on 2 fragments at 16:49,
which results in a smaller patch of loops, heading toward the opposite flux (16:49) that
is located northward, at the end of the funnels (see the blue streamlines near the green
lines).

The extrapolation also reveals that some large loops have one footpoint in the northern
vortex at the northern junction, near the flaring site of transient C2a, and another footpoint
in the internetwork, where the flow is more laminar. This configuration can eventually
lead to the braiding of these magnetic field lines, and the increase of magnetic stress. We
have shown in the previous section that this can be the source of much more energy than
in the case of a potential field configuration.

Note also that qualitatively this extrapolation does not change when using linear force
free extrapolation. The green lines are still connected to the same fragments. Only the
longest lines are affected, and the ones in the vortex flows are still connected to the elon-
gated white magnetic patch (positive polarity) seen in the three snapshots.

5.3.2 Model of X-ray network flares

With the above description, we can finally describe the different steps that lead to the quiet
Sun network flares that we have observed in the NFI FOV. Because the other network
flares observed in the MDI FOV have the same characteristics (bipolar field underneath,
located at the intersection of the supergranular lanes), this description may also apply to
transient E1 to E6 (Fig.4.13).

1. Emergence phase
The magnetic flux emerges as small elements, in the internetwork, and appear con-
nected with the other small magnetic patches around, some of them are connected
with magnetic patches in the network. This is illustrated in the early phase of tran-
sient C2a in Fig.5.5 by the green magnetic field lines at 15:03. Some green lines
appear connected to areas with no flux, but this an effect of the scaling of the image.
The field there is weak, and barely visible in the snapshots (it is about 10 G).

2. Pre-interactive phase
The magnetic elements follow the funneled streamlines, that are converging toward
the vortex. The flux eventually clusters, merges again, and gets squeezed in as the
funnels get tighter near the junction. In the presence of vortical flows, magnetic
stress is increased and the energy eventually builds up.

3. Energy release
The reconnection of the small core field with the overlying coronal field lines in
"bald patches" frees plasma into the higher coronal loops, they are observed in
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Figure 5.5: Potential magnetic configuration in region C at three different times (from top to
bottom), from 2 different viewing angles (left and right). The orange star in the corner moves
rigidly with the axes. The blue lines are the streamlines of the 1 hr-averaged flows. The yellow
lines are the extrapolated magnetic field lines. The green lines are the magnetic field lines of the
fragments involved in the cancellation for the transient C2a, seen as red contours at 16:49.
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X-ray as network flares. From the extrapolations, we cannot be sure of the true
topology of the magnetic field; the plasma can be released either to larger coronal
loops, or to the interplanetary magnetic field and populate the solar wind.

4. Flux cancellation
As a result of photospheric reconnection enforced by the flows, the flux rapidly
decreases. As the interaction distance is very small, the phase of energy release
may overlap with the flux cancellation.

From this we can conclude that the quiet Sun network flares require a specific flow
pattern sketched in Fig.5.1. Funnels and vortices appear as the elementary flow structures
that facilitate the compression of the magnetic elements, causing an increase of the flux
density when the magnetic elements have the same polarity. They increase the probability
of reconnection and subsequent cancellation when bipolar features are trapped in them.
Funnels and vortices may be necessary-but-not-sufficient flow patterns to trigger the net-
work flares. Thus one can anticipate the preferred (if not unique) sites of these localized
soft X-ray emission, whatever their actual nature is (micro-, nano-, flares, jets, micro-jets,
mini CMEs, etc...). This shall be investigated in future statistical studies.

5.4 Prospects for future studies

5.4.1 Quiet Sun

In Pietarila Graham et al. (2009), the higher resolution magnetograms from Hinode/SOT
allowed an unprecedented quantitative, multi-scale study of the magnetic flux in the quiet
Sun. More precisely, the self-similar pattern of the magnetic flux is quantified. This self-
similar pattern holds for several orders of magnitudes, and includes the small scales in
which our study lies, and down to 20 km (below granular scales) using MHD simulations.
In addition, we note that one common characteristic between granulation and supergranu-
lation is that they sweep out, mix and disrupt the magnetic field in their respective bound-
aries. At granular scales, the flow is much faster than the supergranular flow, up to more
than 1000 m s−1 (Berger et al. 1998) while Brandt et al. (1988) already reported vortical
flows in the granulation (see also Bonet et al. 2010). Thus, down-scaling the sketch in
Fig.5.1, we can imagine that energy release within the smaller granular lanes also occurs,
but at a faster rate and at smaller spatial scales as a result of the same interactions de-
scribed in the network flares. This shall be investigated through statistical studies using
high-resolution instrumentation to resolve the finest structures of the convective flows.
In addition, EUV transient events were reported in Innes et al. (2009) with similar scales
(time and size) as the network flares. They are associated with propagating dim clouds,
and/or propagating dim shock-waves, which makes them observationally equivalent to
CMEs but on the scale of the network flares. The topology of the flows underneath also
satisfied the necessary condition that we have assessed here, i.e, presence of vortical flow
underneath the eruptions. Combined statistical studies of both EUV transient events and
X-ray network flares is a key to better understand the dynamics of the quiet Sun, including
their contribution to the coronal heating and to the solar wind. Such a survey is possible
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with the combined use of the Atmospheric Imaging Assembly (AIA) and the Helioseismic
and Magnetic Imager (HMI) onboard the Solar Dynamic Observatory (SDO).

5.4.2 Active Regions and large scale dynamics

We have explained that X-ray transients can be seen as a by-product of small core-fields
reconnecting with the wider coronal loops, and allowing the plasma confined in the lower
layers, to populate the higher and hotter layers of the low corona. Without mentioning
any geometrical or energetic scales, these observations are in many aspects identical to
the triggering mechanism observed in Active Regions (ARs) at much larger scales. The
relationship between flares and CMEs, with the longitudinal magnetic flux was investi-
gated by Machado et al. (1988), and later on by Moore et al. (1999), while the so-called
Flux Cancelation Model (van Ballegooijen and Martens 1989) was the first model intro-
duced to describe this relationship. In Machado et al. (1988), the disruption of small
core-fields are believed to be caused by magnetic reconnection with more distant coro-
nal field. These small core-fields are several orders of magnitude higher than the ones
involved in the quiet Sun network flares, yet the mechanisms leading to their massive
release of energy are qualitatively similar. It has also been reported that the rotation of
sunspots greatly affects the productivity of flares (Zhang et al. 2008, Yan et al. 2008).

More recently (Wedemeyer-Böhm et al. 2012), chromospheric swirls resembling "mag-
netic tornadoes" have been described as energy channels that reach the upper solar at-
mosphere, and it has been suggested that they would be the result of rotating magnetic
structures. Although these swirls are chromospheric structures, could the supergranular
vortex flows that we revealed in this thesis be their photospheric trigger? To what extent
are the funnels and the vortices reshaping the Sun’s magnetic field topology? Could these
flow patterns originate from the deeper layers of the solar atmosphere?

In fact, we are still missing a great component of the solar plasma flows, which are
the very long time and spatial scales of the flows underneath Active Regions. We have
good hope that these missing blocks will be provided by the inversions of time-distance
Helioseismology to derive the flows at greater depths (Gizon et al. 2010), and which can
use the photospheric flows as boundary conditions, using HMI/SDO. This will provide
more realistic 3D flow maps deeper below the photosphere.
More importantly, this could provide a more detailed description of the dynamics of the
plasma flows over the solar disk, during the rising phase of this new solar cycle, with a
significant impact on describing the Sun-Earth relationships.
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In the present thesis, we have used a new tracking technique called Balltracking to de-
rive the photospheric flow fields of the quiet Sun, using images of the granulation. This
technique was applied for the first time on Hinode data, which revealed the existence
of large-scale photospheric vortex flow at the junction of the supergranular boundaries.
Typical dimensions are 20 to 30 Mm in diameter, with a duration of at least 30 min. In
addition, we developed a similar algorithm called "Magnetic Balltracking" to track the
magnetic flux at unprecedented time (∼1 min) and spatial resolutions (below 1 arcsec).
The algorithm is able to detect and quantify both flux emergence and flux cancellation, as
well as tracking magnetic field lines in combination with magnetic field extrapolation.
With combined observations of MDI and Hinode, we analyzed 11 X-ray network flares,
that are intense X-ray emission occurring within a few Mm and lasting ∼15 min. These
network flares release between 10 to 100 erg s−1 cm−2 in the quiet Sun. With Magnetic
Balltracking, we detected and quantified the cancellation of the longitudinal magnetic
flux underneath these X-ray transients, and specific patterns in the flow field were iden-
tified. The magnetic flux decreases by 10 to 40% before the X-ray transient starts. The
flaring sites are located either in the funnel-shaped streamlines of the horizontal flows, or
in large-scale vortices at the junction of the supergranular lanes. The transients are not
observed in the absence of such patterns, which we defined as necessary-but-not-sufficient
conditions to activate the network flares.
These results and the associated software have motivated future projects: the statistical
studies of quiet Sun events, in both X-ray and EUV, and of more energetic processes in
and around Active Regions, using Hinode and the Solar Dynamic Observatory (SDO).
With the Balltracking algorithm combined with Magnetic Balltracking, we are able to
provide a unique survey of the interaction between the plasma flows and the magnetic
flux over nearly the whole solar disk.
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A Zeeman effect and measurement of
photospheric magnetic field

We briefly summarize the quantum origin of the Zeeman effect and how it affects the
polarimetric signal. The equations that follow are expressed in CGS units.
First, we consider the total orbital angular momentum L, the total spin angular momentum
S, and the total angular momentum J of a n-particles system :

L ≡
n∑

i=1

li (A.1)

S ≡
n∑

i=1

si (A.2)

J ≡ L + S (A.3)

li, si are the individual orbital angular momentum and the spin angular momentum of the
ith particule. The eigenvalues of the these operators acting on the quantum state |ls jm j〉

are defined by :

L2|ls jm j〉 = ~2 l(l + 1) |ls jm j〉

S2|ls jm j〉 = ~2 s(s + 1) |ls jm j〉

J2|ls jm j〉 = ~2 j( j + 1) |ls jm j〉

Jz|ls jm j〉 = ~m j |ls jm j〉

(A.4)

The Hamiltonian H of the system is:

H ≡ H0 + HB (A.5)

where H0 is the Hamiltonian in the absence of external magnetic field, and acting on the
quantum state |ls jm j〉

H0|ls jm j〉 = E j|ls jm j〉 (A.6)

HB is the magnetic Hamiltonian due to an external magnetic field B.

HB = µ · B (A.7)

where the terms in B2 are neglected, thus restricting the development to weak field, which
is accurate enough for the quiet Sun. µ is defined as the intrinsic magnetic moment of the
atom:

µ = µ0(J + S) (A.8)
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with µ0 =
hνL
B , and νl ≡

e0B
4πmec

the larmor frequency, with me the mass of the electron, c
the speed of light in vacuum, and e0 the charge of the electron.

We can express J + S in terms of J2, S2 and L2:

J + S =
(J + S) · J

J2 J (A.9)

From the definition (A.3) of J, to the square , we have S · J = 1
2(J2 + S2 − L2) from

which we obtain a practical definition of µ :

µ = µ0(3/2 +
J2 + S2 − L2

J2 ) J · B (A.10)

If we conveniently arrange the axis so the z-axis is in the direction of B, and using equation
A.4, the diagonal elements of the magnetic Hamiltonian give :

〈ls jm j|HB|ls jm j〉 = m j µ0gB (A.11)

where we introduced the Landé factor g = 3
2 +

s(s + 1) − l(l + 1)
2 j( j + 1) , for j , 0.

In weak field approximation, the non-diagonal terms of the hamiltonian are negligible
with respect to the diagonal terms. We finally obtain the eigenvalues for H:

〈ls jm j|H0 + HB)|ls jm j〉 = (E j + m jgµ0B) (A.12)

There is a separation of the level of energy E j in 2 j + 1 degenerated components, as
illustrated in figure A.1. Each new energy level depends on both j and m j. Quantum
selection rules are such that the difference between the quantum number of the upper
level ju and the lower level jl obeys ∆ j = 0,±1, and the atomic transition such that
ju = jl = 0 is not allowed. The difference in wavelength of the new atomic transitions is
also changed. If we define m ju, gu and m jl,gl, as the quantum numbers m j and the Landé
factor for the upper and lower energy level of the transition, we have :

∆λ = (m jlgl − m jugu) λB

λB ≡
λ2

0e0

4πmec2 B
(A.13)

λB is called the Zeeman wavelength splitting. When the total spin s = 0, the Landé factor
equals to unity, and m jl − m ju = 1 which gives ∆λ = λB. The splitting is referred as the
"normal" Zeeman triplet for historical reasons. All the other cases are called "anomalous"
splitting. λB also defines the unity in the Lorentz units of Zeeman splitting.

Equation A.13 shows that by measuring the Zeeman splitting, one can infer the strength
of the magnetic field.
In the solar atmosphere, the spectral lines are broadened due to Doppler shifts and colli-
sions, such that the splitting can only be inferred with polarimetric measurements of the
Stokes parameters I, V. We define the angles (θ, φ) where θ is the inclination angle of B
with respect to the line-of-sight, and φ the azimuth angle. In this geometry, the triplet
consists of three different states of polarization:
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Figure A.1: Splitting of the unperturbed energy level (no magnetic field, left) for the quantum
number j, into 2j+1 degenerated components due to the magnetic field (right).

• The π component, unshifted, and linearly polarized along the direction of B. It
partly bears the transverse field through Stokes Q and U where Q ∝ B2sin2θ cos 2φ
and U ∝ B2 sin 2θ sin 2φ. As we do not dispose of such measurements for the
present study, it is not discussed further.

• The two σ components, shifted, can be elliptically or even linearly polarized and
are also present in transverse effect.

A common technique to infer the Zeeman splitting is called the Center-of-Gravity
method (COG), and consists in computing the residual intensity profile from spectro-
polarimetric data. Further details can be found for recent instrumentation like Hinode in
Chae et al. (2007), while details on the general technique can be found in Rees and Semel
(1979) and the references therein.
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B Object-oriented implementation of
the Balltracking algorithms

The Balltracking algorithm was originally programmed in Matlab for MDI, and for very
specific purposes. In addition, the constant interaction of the input data and the results,
their visualization, along with their interpretation, as well as inherent debugging, pre-
vented the code from being implemented in low-level programming language like C or
Fortran.

In our implementation, however, the main algorithm was written in C and Fortran, and
interfaced with Matlab using MEX functions so we can easily interact with it using high-
level programming, while keeping the low-level efficiency of Fortran and C. The original
code could only be used by users experienced with Matlab programming. Therefore, the
code needed to be completely reviewed for our purposes, and we chose to implement the
code so that everyone could use it. The advantage of using Matlab with respect to using
IDL is that it is highly object-oriented. Thus it is intrinsically programmed to ease the
design and programming of GUIs (Graphical User Interfaces). All the algorithm used
in this thesis has a GUI that any user is free to use, without any knowledge of Matlab
programming. The output of the algorithms are made cross-platform, and are in forms of
fits files essentially using the CFITSIO library, so it can also be used in IDL, or any other
software recognizing fits files.

B.1 GUI for Balltracking

Figure B.1 is a snapshot of the user-friendly GUI for using Balltracking. Different mod-
ules are present and are used for quick look on hydrodynamic-related analyzes of the flow
maps (divergence, curl, streamlines, etc...), although they can be ignored by the user who
only wishes to restrict to the Balltracking part. In the figure, each entry of the interface
has a legend which shows what they do in the algorithm. Most of the functionalities and
parameters visible on the interface were detailed in the first chapter. Usage of the basic
functionalities of the interface is meant to be intuitive provided that the basic principles of
Balltracking are known. For example, to perform only the Balltracking part, and output
the averaged flows, one would only focus on the panel "pre-processing" and "Smoothing
parameters" of this GUI. Note that Balltracking itself is done before any averaging, which
gives the flexibility to compute the flow maps at several scales, with only one run of Ball-
tracking. Mandatory inputs are the information regarding the path and names of the data,
the geometric parameters of the balls, and the averaging parameters of the flow maps.
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Put the basename that an 
“ls” command would take 
to recognize the proper 

list of files: “ 
basename*.fits”.

1 and 240 means to select 
the 1st and 240th file in 

the returned list.
Radii of1/2.8 - 1/1.2: 

keep periodic 
features between 1.2 

px and 2.8. 
Radii of 0 and 1 : no 

fourier filtering

Generate drifting 
subsets for calibration, 
drift rate = -rotat. rate. 

Files will be in  
subdirectories.

Spacing = space between 
neighbor. balls (initial position)

Td : Damping time
Dp : Characteristic 

penetration distance

Euler : bad balls replaced
Lagrange : bad balls not 

replaced
Flow fields are relevant 
after spatial and time 

average. Cadence is the 
time between each flow 

field

Running average: 
Average of  the time 

series of lanes. 
True average : 

lanes made from flow 
field averaged over 
whole time series 

(time average = end 
frame-start frame+1)

centers:
Will overlay an 

averaged position of 
the center of 

diverging flow (like 
supergranular cell)

Integrate position of test 
particles released from an 

initial regular grid onto the tue 
averaged flow field (very 

slow). Display the result on 
separate button

 (it avoids losing computation)

Check the box and fill in the 
fields for close-up on required 

map(divergence, lanes, ...). 
Default is to take whole 

available FOV.

Time series can be explored 
using manual slider

Use of background images is possible in combination with lanes + velocity arrows. Bytescaling possible on the bottom right.
Check the “use bkg” box to activate the overlay on the future map (lanes and/or velocity arrows).

Standard matlab toolbox are accepted when entered in the ʻcolortableʼ panel. default is the ʻhotʼ (red) colortable.

Streamlines will be computed in the  selected xrange/yrange. If not selected, user is  asked to select its own 
FOV on the last displayed map. So, one map at least needs to be here. I recommend the running or true 
average lanes.

Figure B.1: Graphical User Interface (GUI) for user-specific science studies with Balltracking.
The GUI is programmed with Matlab, but its usage does not require any knowledge of the Matlab
language

The job is started by clicking on the button "Make velocities fields". When it finishes, the
user is notified and the fits files are exported in subdirectories of the images’ directory. To
compute the supergranular lanes on the previous output (the fits files of the flow map), one
simply computes the lanes in the panel "Lanes recognition". The results can be visualized
as averaged maps, or by looking at the time series of the individual maps. We remind that
each individual map is an average on at least 30-min of tracking. Once again, here, the
images of the lanes are made as FITS files.

B.2 GUI for Magnetic Balltracking

B.2.1 module of Magnetic Balltracking and region-growing algorithm

Figure B.2 is the graphical interface of Magnetic Balltracking. It also contains the module
of the region-growing algorithm in the bottom. The upper panel has many parameters in
common with the previous interface of the normal Balltracking. However, here, the user
can perform different case studies on different FOVs within the same magnetogram.
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Figure B.2: Graphical User Interface (GUI) for Magnetic Balltracking.

B.2.2 Module for field-lines tracking

To track magnetic field-lines like in figure 2.28, one uses the interface of figure B.3 right
after the module of Magnetic Balltracking. The field lines are drawn from a user-supplied
3D arrays defining the magnetic field vector in the solar atmosphere. If such an array is
not (yet) available, we have embedded the analytical solution of the Linear-Force-Free
Extrapolation (LFFE) from Seehafer (1978) combined with a 4th order Runge-Kutta inte-
gration of the equation of field-lines:

∂r
∂τ

= B

The foot-points of the lines are directly taken from the output of the previous interface
B.2. From the latter, the "targeted balls", tagged with a unique number, can define a more
customized subset of foot-points although we tend to avoid this, as the algorithm aims at
reducing the arbitrary choice of field lines to draw. The panel on the right is only here to
display co-spatial observations at different layers of the atmosphere (X-ray, EUV, etc...)
to relate the magnetic field lines with emission in X-ray, EUV, etc... like it is performed
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Figure B.3: Graphical User Interface (GUI) for the field-line tracking.

throughout this thesis. Again, this module is only here to give the user some confidence
on the quality of the output. Bad data in the input may give incorrect extrapolated field
lines, and this can be corrected early enough with these little modules.

B.2.3 Computing power

One could argue that computing a lot of field lines in a 3D vector field in Matlab or IDL
could be time consuming. However, the equation of the field-lines are independent of
each other. This is used to parallelize their computation, which significantly improves the
processing time in multi-cpu architecture. Furthermore, using GPU (Graphics Processing
Unit) parallel computation in addition to CPU parallel computation, the processing can
be even faster. This is why we experimented on six identical GPUs (generation of year
2006-2007) to assemble an experimental GPU cluster in our institute. With this, we man-
aged to speed up by more than 40 times the processing of 3D magnetic field vectors from
MDI/SoHO magnetograms and NFI/Hinode magnetograms, using the embedded solution
of LFFE (including potential field extrapolation, α = 0). Current technology of GPUs
has significantly improved in the last four years and speed-up of at least 2 orders of mag-
nitudes are expected. Figure B.4 shows the speed-up of GPU computation against pure
CPU computation, at increasing size of the 3D box. The speed up goes up to 43 when the
height NZ = 192 px. The GPU cards were too old to compute a bigger box. However, this
was enough for our study, and it made our interface even more suitable for systematically
printing out quick visualizations of the results.
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