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1 Introduction

This work will investigate numerical solutions for the dynamo. Dynamo is the accepted

mechanism to explain the generation of a magnetic field. This generation takes place in

most cosmological bodies, but it has taken centuries for us to understand the mechanism.

Now, the dynamo theory is supported by calculations and experimental observations. In

simplest terms, the main dynamo mechanism involves the evolution of the velocity field

and the production of a magnetic field from this velocity field. However, there are still

ongoing discussions about the dynamo and different mechanisms and structures have

been proposed. Some of them are still hot topics in physics. In this work, we will

numerically simulate electrically conducting fluid motion to obtain dynamo in spherical

shells with two different approaches.

To begin our exploration into dynamo theory, we first give a historical introduction to

the magnetic field of the Earth and describe how data has been collected throughout

the centuries. Then, we discuss the Earth’s magnetic field and its structure. We also

explain the data collection regarding the past Earth’s magnetic field and the methods of

analysis.

In the second part of this work, we provide an introduction to fluid dynamics, since it

forms the roots of the dynamo mechanism. Fluid motion is one of the key elements in

the induction of the magnetic field and an introductory overview is given. The governing

equations of fluid motion are considered and two of the basic elements of these equations,

viscosity and stress tensor, are studied and explored. After this, we give a brief overview

of Navier-Stokes equation, some related topics and a few non-dimensional parameters,

which we will use later in the simulations.

In the third part, we give the basic equations of the dynamo theory together with elec-

trodynamics. The generation of the magnetic field is described by the induction equation

and we will derive it starting from the electrodynamics equations. Then we also give an

introduction to the heat equation, which is another key factor in the dynamo theory. At
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the end of this section, we discuss the generation of the magnetic field via the dynamo

mechanism.

The fourth part of this work outlines some important dynamo experiments. The struc-

ture, results and spectrum analysis of three significant experiments are given.

The next section contains results in the form of numerical solutions for the dynamo

and also interprets and analyzes these results. Firstly, we solve a gravitationally driven

dynamo and analyze the results of the numerical solutions. Then we solve convection

driven dynamos and compare these results with results from the gravitationally driven

dynamo.

In the last section, we introduce a phenomenological model in order to to comprehensively

explain the basic working principles of the induction equations and spectral analysis.

We also discuss the consistency of our phenomenological model with the results of the

numerical simulations of the previous section. Lastly, we summarize the work and make

final conclusions.



3

2 Theoretical Background

2.1 Introduction to the Earth’s Magnetic Field

In this section, we will summarize some basic concepts related with Earth’s magnetic

field. We will firstly start from the historical roots of geomagnetic research and continue

with properties, structure and measurements of the Earth’s magnetic field. We will also

have a look at the structure of Earth and its effects on the magnetic field. Lastly, we will

overview the magnetic reversals.

2.1.1 Historical introduction to geomagnetism

Research on geomagnetism has been ongoing for centuries. The first scientific book on the

subject of geomagnetism was written by Gilbert in 1600 ([Jacobs, 1987]). Prior to this

book, Petrus Peregrinus reported some experiments on magnetism in 1269 and this book

was then published in 1558 ([McElhinny and McFadden, 2000]). Later, a number of great

scientists also explored this topic, including Halley, Cavendish, Becquerel and Gauss.

Presently, there are many scientists studying geomagnetism and many scientific works

have been published on the topic. Before discussing developments in geomagnetism, we

shall introduce and discuss development of the first geomagnetic tool: the compass. This

tool forms the roots of geomagnetic research.

One of the first objects related to magnetism is the lodestone ([Jacobs, 1987]). The

lodestone is a naturally magnetized magnetite and attracts iron. It was first studied

scientifically by the Chinese. Despite their crude research, investigation of the lode-

stone by the Chinese led to the invention of the first compass in the first century A.D.

([Merrill and McElhinny, 1983], [Jacobs, 1987]). They discovered that a spoon made

from lodestone spun on a polished surface came to rest pointing in the same direction ev-

ery time ([Jacobs, 1987]). This was the earliest version of the compass. A Greek philoso-

pher named Thales was also interested in magnets. Thales became the first philosopher
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to study and observe magnets ([Merrill et al., 1998]). But Thales’ work was not as so-

phisticated as that of the Chinese people. The first compass resembling that of today

was described by Shen Kua. He also discussed the inclination of the compass. The

compass arrived in Europe ca. 12th century by the sea route in the hands of Arabs

([Merrill et al., 1998]). The first European reference to the compass was made by the

English monk Neckham in 1190 ([McElhinny and McFadden, 2000]). However European

people did not yet know about inclination angle and this was rediscovered in the 15th

century. An interesting difference between the early Chinese and European compass was

the pointing direction. The Chinese one pointed to the south and the European one to

the north ([Merrill et al., 1998]).

A Chinese Buddhist astronomer named I-Hising made the first observations and records

on magnetic declination about A.D. 720. However, declination was not known by the

European people until Georg Hartman’s observations in the early 15th century. Hartman

also continued his research on the Earth’s magnetic field and magnetic inclination was

first discovered by Hartman in 1544. Since he did not publish this study, it was redis-

covered by Robert Norman in 1576. Another interesting fact about the compass was the

crude consideration about its pointing direction. It was previously considered that the

compass pointed towards a point in "the heavens". In 1546, George Mercator realized

that the compass’ needle pointed to somewhere on Earth and could not point toward

"the heavens" ([Merrill et al., 1998]).

2.1.2 Basic properties of the geomagnetic field

Fig. 2.1 depicts the main elements of the geomagnetic field. The figure shows a 3-

dimensional space on the Earth. The x-y plane corresponds to the surface of the Earth

and the x-axis and y-axis points to the geographic north and east respectively . The third

element of the space, the z-axis, points downward. F represents the Earth’s total magnetic

field. H represents its projection onto the x-y plane. The angle I is the inclination of

the magnetic field from the horizontal and the angle D is the declination and shows the

deviation of a compass needle from the geographic north.

Fig. 2.2 shows an isogonic chart which depicts the variation in magnetic declination over

the Earth’s surface in 1990. The magnetic poles are clearly visible on this graph and the

declination angle changes due to the position on Earth. Around the geographic pole, the

declination angle can take high values and its maximum value over the Equator is around
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Fig. 2.1: The main elements of the geomagnetic field. The compass needle lies in the

magnetic meridian containing the total field F, which is at an angle I, termed the incli-

nation, to the horizontal. The inclination is reckoned positive downward and negative

upward (northern and southern hemisphere, respectively). The deviation, D, of a com-

pass needle from true north is referred to as the declination. The H and Z are horizontal

and vertical components of F, respectively ([Merrill et al., 1998]).

10◦. The reason for this is the 11◦ angle between the geographic pole and the geomagnetic

pole when measured from the center of the Earth. Magnetic declination can change over

time, an observation that was first made by Edmund Gunter in 1624. He measured the

declination angle of 6.25◦ east at Limehoue, London, 42 years after William Borough’s

measurement of 11.25◦ east. Gunter could not confirm his measurement because of his

death; however, his successors confirmed it and also found that the declination angle

changes over time. This angle increased to 24◦ west and then started to decrease in

the west again ([Jacobs, 1987]). This was the first evidence that the geomagnetic pole’s

position changes. This change is reminiscent of a rotation of the geomagnetic pole around

the geographic North Pole, since declination angle can take values between the maximums

of east and west angles and this angle gradually changes over time.

Gilbert, the writer of the first scientific book on geomagnetism, knew that the strength

of the magnetism also changes. However, he could not measure it. The first relative

measurement of the geomagnetic field was carried out in America by Baron Alexander

von Humboldt, who measured relative intensity in 1798. This was not considered a phys-

ical measurement since it did not utilize basic physical quantities. The first physical

measurement of magnetic intensity was made by Carl Friedrich Gauss in 1832 in Göt-

tingen, Germany ([Jacobs, 1987]). Following Gauss, this measurement has been made

at different locations all over the Earth and the technique only developed after the in-

vestments of electrical methods ([Jacobs, 1987]). The intensity of the Earth’s magnetic

field is measured in Tesla (T) units and its maximum value at the surface of the Earth
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Fig. 2.2: Isogonic chart showing the variation in magnetic declination over the Earth’s

surface (1990) ([Merrill et al., 1998]).

(measured at the south pole) is 70 µT ([McElhinny and McFadden, 2000]).

2.1.3 Earth’s magnetic field

The Earth’s magnetic field changes at every point. Measurement of the Earth’s magnetic

field F, includes both magnitude and direction. The magnitude and direction of F change

with time. After determining direction using inclination and declination angle, one can

calculate H and Z. These quantities are shown in fig. 2.1.

The Earth’s magnetic field can change very rapidly within seconds and also slowly over

decades. There are also changes taking place over millions of years and these slower

changes are referred to as the geomagnetic secular variation ([Merrill et al., 1998]) or

temporal variation. The main reason for these changes is the internal dynamics of the

Earth. Another causative factor is the solar wind. The solar wind carries many charged

particles, which can interact with the Earth’s magnetic field as well as create their own

magnetic fields. These charged particles constantly stream from the sun and affect the

Earth’s magnetic field each day. There are different factors affecting solar wind strength,

the main ones being the 11-year solar cycle, the seasons and latitude. The biggest effects

of the Sun on the Earth’s magnetic field are observed during major solar eruptions that

emit X-rays, ultraviolet radiation and high energy particles. Rarely, these effects can

reach the value 5000 nT, which represents 7 per cent of the highest measured value. This

interaction results in a change in the Earth’s magnetic field. These are the main causes

of the short term changes in the measured magnetic field ([Jacobs, 1987]).
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The magnetic field measurements can be classified into two groups: 1) quantitative mea-

surements, made by magnetometers, and 2) variations measurements, made by variome-

ters. Previously, we mentioned that Gauss made the first quantitative measurement of

the Earth’s magnetic field and developments in electrical technology brought forth new

techniques. Magnetic sensors can be divided into 5 groups: 1) Torsion magnetometers,

2) Nuclear magnetic resonance magnetometers, 3) Saturable-core magnetometers, 4) In-

duction magnetometers, and 5) Superconducting magnetometers. There are different

magnetometers made from these sensors, e.g., observatory variometers, declinometer,

QHM, BMZ, proton precession, Earth inductor, squid ([Jacobs, 1987], [Dyer, 2001]).

2.1.4 Earth’s magnetic field’s structure

We have mentioned the polar structure of the Earth’s magnetic field. This polar structure

takes a dipole form. In fig. 2.3, the radial component of the Earth’s magnetic field at

the Earth’s surface is illustrated and the dipole structure is easily observed. The radial

component of the Earth’s magnetic field has negative values at the northern hemisphere

and positive values at the southern hemisphere. One can also observe from the figure

that its magnitude is greater at the poles compared to points between the poles and the

Equator. This is the main property of the dipole field. However, fig. 2.3 also shows that

the Earth’s magnetic field is not a perfect dipole field. This field is comprised of 90%

dipole structure and 10% higher order multipoles ([Mueller and Stieglitz, 2003]). This

results mainly from internal dynamics, which will be discussed later.

Fig. 2.3: Isolines of the radial component of the Earth’s magnetic field at the surface

([Mueller and Stieglitz, 2003]).
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Fig. 2.4: Cross-section of the Earth’s magnetosphere ([Bone, 2007]).

Fig. 2.4 depicts the cross-section of the Earth’s magnetosphere. This picture was drawn

using probes carried by satellites ([Bone, 2007]). The first direcly recognizable property is

its asymmetric structure. This asymmetric structure arises due to the solar wind. If the

solar wind were not present, the Earth’s magnetosphere would look like a mostly dipolar

structure. However, the solar wind creates a pressure on the day-side of the Earth’s

magnetic field due to interactions of the solar wind particles with the magnetic field.

Fig. 2.4 also shows the magnetopause, which separates the Earth’s environment from

the interplanetary space. Because of the ten time faster motion of the Earth through

solar wind particles, the solar wind flow is supersonic. This supersonic nature creates

the bow shock, which is also shown in the figure. The bow shock is separated from the

magnetopause by magnetosheath.

There are other different interactions in this structure. If only the pressure due to the

solar wind were present, the magnetopause would resemble a water drop. This structure

is not observed, however, due to the existence of the plasma sheet. The plasma sheet is

the main cause of the open ends on the night-side of the Earth’s magnetosphere. This

open magnetic field, referred to as the geomagnetic tail, is considered to be connected

with the interplanetary magnetic field ([Merrill et al., 1998]).

An interesting phenomenon related to the Earth’s magnetic field is that the sunlight
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ionizes some atoms and creates the ionosphere. Some of these ionized charged particles

move along the magnetic field lines through the magnetosphere. Another interesting

phenomenon can occur at the plasma sheet. When some of the charged particles from

the solar wind are injected into the Earth’s high atmosphere, this creates the auroras

([Bone, 2007]). Another structure seen in fig. 2.4 is the Van Allen belts. Some of the par-

ticles from the solar wind ionosphere can become trapped in regions of the magnetosphere

These regions are called the Van Allen belts.

2.1.5 The main field

In 1600, Gilbert considered the Earth a great magnet ([Jacobs, 1987]). When a compass

is located around the Equator, it points approximately to the geographic North Pole and

when located close to the Poles, it can show different directions. This is one simple piece

of evidence that demonstrates that the Earth’s magnetic field is a vector quantity. As

mentioned previously, this magnetic field is affected by the Earth’s internal properties and

the solar wind. These two factors affect the magnetic field in different ways. The Earth’s

internal dynamics and crust are two of the important factors that affects the Earth’s

magnetic field. The solar winds, in general, affect the magnetic field via changes in the

ionosphere. In the ionosphere, both the Earth’s magnetic field and charged particles

traveling in the solar wind are at play. Their interaction changes the motion of charged

particles in different ways and this affects the Earth’s magnetic field. Thus, the Earth’s

magnetic field is the total of the magnetic field produced by the Earth’s core, crust,

ionosphere and other additional minimal effects. The largest contribution comes from

the core and this field is referred to as the main field. The approximate values for the

Earth’s magnetic field is 60µT at the Pole and 30µT at the Equator. The maximum

change in the magnetic field due to secular variation is about 1% per year. The changes

due to Earth’s crust, ionosphere and some other effects can vary between 1 nT and

thousands nT. Therefore, these changes only result in small fluctations, which do not

have a large overall effect on the main field.

Fig. 2.5 shows the power spectrum density (PSD) of the dipole variations. This graph

was obtained by using the measurements of the magnetic field and reversal recordings of

different laboratory groups; different colours in the graph represent different recordings.

There are three regions shown in the graph, each corresponding to different perceptions

about the various processes. The first region, reversal rate changes, shows the long-term

reversal rate of the dipole variations. The second region, average reversal crypto-chron
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Fig. 2.5: Power spectrum density of the dipole variations for the recording 0-160 Ma.

Each colour represents a different data set for the magnetic field and reversals as deter-

mined by different groups. The black, gray, blue, red, green, brown, orange and pink

dotted lines correspond to the work of Cande and Kent ([Cande and Kent, 1995]), in-

tensity study in work of Cande and Kent ([Cande and Kent, 1995]), Constable et al.

([Constable et al., 1998]), Valet and Meynadiner ([Valet and Meynadier, 1993]), Chan-

nel ([Channell, 1999]), Gyudo and Valet ([Guyodo and Valet, 1999]), McMillan et al.

([McMillan et al., 2004]), Korte and Constable ([Korte and Constable, 2005]), respec-

tively. For further information, refer to the original paper by Constable and Johnson

([Constable and Johnson, 2005]).

and excursion rate, shows the average reversal rate between 0.02 and 10Myr−1. There

is an inconsistency in this region between the black and red curves. In this region, the

PSD of the black curve is constant and reversals occur at each frequency with nearly

equal power distribution. The red curve has a slope of nearly 1/f . This inconsistency

may be due to the long-term paleointensity variations for different reversal rates. The

last region shows paleosecular variation (PSV), lengths of reversals and excursions. The

power falls off faster in this region, which is related to the changes for 0-50 ka time

intervals ([Constable and Johnson, 2005]).

In previous sections, we introduced the dipole property of the Earth’s magnetic field and

supported these properties with observational results. We also showed that there can be

many changes to this field and this field can be represented by using Maxwell’s equations.
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The best way to write the solution is to use spherical harmonics. The advantages for

using spherical harmonics as well as the description of spherical harmonics can be found

in books ([Jacobs, 1994]).

2.1.6 Earth’s structure

We have known for thousands of years that the Earth has a spherical shape. However,

less is known about its inner structure. The occurrence of earthquakes as well as magma

eruptions provides some information as to the Earth’s inner structure. Earthquakes send

out seismic waves in all directions. Larger intensity earthquakes send out seismic waves

and the velocity of these waves depend on the composition, mineralogy, temperature and

pressure of the Earth’s inner components. This helps us to learn more about the Earth’s

inner structure. Fig. 2.6 is a representative illustration of the Earth’s inner structure.

It is composed of 3 main parts: inner core, outer core and mantle. The crust forms the

outermost layer ([Brown et al., 1992]).

Fig. 2.6: Earth’s structure ([Rose and Kindersley, 2000]).

Further details on these components will follow after a short description of the formation

of the Earth. Scientific evidence shows that the Sun, Earth and other components of the

solar system were formed from the remaining solar nebula of the supernova explosion.

There is a similarity in the abundances of the elements in these. These abundances are
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also affected by gravitational interactions, other types of interactions and the positions

and sizes of the components of the solar system. These parameters and interactions also

determine the abundances of the elements in the Earth’s components.

The solid inner core is the centremost part of the Earth. Its radius is about 1200km,

which is comparable with the radius of the Moon (1700km) ([Fix, 2004]). However, the

density of the inner core is much higher than the average values of the Earth and Moon.

This is because it is constituted from iron-nickel alloy and also some sulfur-iron alloy

([Pater and Lissauer, 2001]). Some models predict that the temperature of the inner

core is 5000 − 7500K, but these are only model results and therefore not fully reliable

([McFadden, 2007]). Directly after formation, the Earth was more or less uniform in

terms of composition and the distribution of chemicals. Later, due to the gravitational

interaction, dense materials sank down to the center of the Earth. The denser elements

(iron and nickel) accumulated at the center and over time, with the help of pressure,

these elements constituted an alloy and solidified. Another property of the inner core

is its differential rotation. Seismic studies have provided some evidence showing that

the inner core rotates 1◦ of longitude per year faster than the other parts of the Earth

([Fix, 2004]).

The Earth’s outer core completely surrounds the inner solid core and it is liquid. Its

shape looks like a spherical shell and it begins at the 1200km point where the inner core

ends. The transition region is termed the inner core boundary (ICB). This liquid outer

core continues to 3500km, where the mantle starts. This region between the outer core

and the mantle is called the core mantle boundary (CMB). The outer core is also mainly

composed of iron, but density calculations estimate that there should be a 10% lighter

elements composition. The models predict an outer core temperature between 3000 and

5000K ([McFadden, 2007]). Due to this high temperature, nearly all elements are in

their ionized forms. This means that the outer core is completely electrically conducting

and the motion of this electrically conducting material produces a magnetic field, which

will be described in detail later.

The mantle can be subdivided into the lower mantle, transition zone and upper mantle,

with all maintaining a spherical shell shape. The lower mantle lies in the radius between

3500 and 5700km ([McFadden, 2007]). Seventy percent of the mass of the solid Earth

is located in the lower mantle, which is mainly composed of magnesium silicate rocks

([Schubert et al., 2001]). This region is mostly solid; however, high temperatures (900−
3000K) provide a slow flow within the lower mantle. The next stage is the transition
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zone, which lies between the radius of 5700 and 5960km ([McFadden, 2007]). This region

is defined due to seismic wave velocity discontinuity and is mostly composed of olivine

and pyroxene-garnet ([Schubert et al., 2001]). The last subdivision of the mantle is the

upper mantle, which lies between the radius of 5960 and 6335km. This regions begins

25km below the crust. It is composed of olivine, pyroxene and some magnesium and iron

([McFadden, 2007]).

2.1.7 The effects of Earth’s crust on the magnetic field

The main source of the Earth’s magnetic field is dynamo action in the core. As mentioned

earlier, the crust also affects the magnetic field and this effect can be both constructive

and destructive. There are two main reasons for this effect. The first reason is related to

the magnetic susceptibility of the rocks. This effect can change depending on whether

the magnetic susceptibility is positive or negative. If the rocks are diamagnetic (negative

magnetic susceptibility), then the effect is destructive. On the other hand, for paramag-

netic, ferromagnetic or ferrimagnetic rocks, the effect is constructive . We will elaborate

on these effects later in the next section. The second reason for the constructive or

destructive effect is permanent magnetization. Permanent magnetization occurs if the

temperature is below Curie isotherm. This effect is observed for cooled lavas. When hot-

ter rocks are cooled under the magnetic field, then there will be a frozen magnetization

inside the rocks and this will also contribute the Earth’s magnetic field. Since the Earth’s

magnetic field changes with time, this effect is can also be constructive or destructive.

Fig. 2.7: The radial component of the Earth’s magnetic field at the Earth’s core-mantle

boundary reveals a strong dipole component ([Buffett, 2009]).

Fig. 2.7 depicts reproduced large-scale patches of magnetic fluxes at the Earth’s core-

mantle boundary. These are similar to structures inferred at the Earth’s core-mantle
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boundary from surface observations. As with the Earth’s surface fig. 2.3, the dipole

field is still the strongest. However, its dipolar structure is changed compared to at the

surface. Higher moments are also in play, which can be easily seen from the patterns

around the Equator. Comparing fig. 2.3 with fig. 2.7, higher moments’ contributions

can be observed.

The mentioned effects of the crust on the Earth’s magnetic field are region-dependent,

intense and have a short wavelength. It is not always possible to calculate the crust effects;

however, taking advantage of these properties, one can find them in some cases. To do

so, ship or aircraft data are used. In general, if the isolation of the field is determined

within a region, then it is said that these fields originate from the crust.

2.1.8 Paleomagnetism

The study of magnetism in fossil records of the Earth magnetism is called paleomag-

netism. The crust’s magnetic field discussed above is related to this topic. At the end of

the 18th century, it was known that some rocks possessed magnetization and this mag-

netization could affect the compass. In the 19th century, intense magnetization in rock

exposures were explained this way. The first studies made by Delesse and Melloni deter-

mined that some recent lavas were magnetized parallel to the Earth magnetization. At

the beginning of the 20th century, David and Brunhes reported that some older lavas were

magnetized approximately anti-parallel to the Earth’s magnetic field. Later confirmation

of this study led people to conclude that the polarity of the Earth’s magnetic field had

reversed ([McElhinny and McFadden, 2000]). These findings became the starting points

for paleomagnetism.

Paleomagnetism makes use of a few magnetic materials inside formed rocks. These

magnetic materials mainly consist of different iron oxides and sulphides. Primary mag-

netization occurs when the rock formation process is complete. This provides the main

source of the knowledge about the magnetic field of the Earth. After the formation of a

rock, this primary magnetization can be partly or wholly damaged and new magnetiza-

tion may occur. These new magnetizations are referred to as secondary magnetization.

They can cause a sort of "noise" for magnetic field measurements and should not be

utilized. Eliminating these confounding effects of secondary magnetization is one of the

main problems in paleomagnetism research ([Jacobs, 1994]). The magnetic materials in

rocks are used to find both the magnitude and direction of the Earth’s magnetic field.
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Some archaeological materials are also used to measure the Earth’s past magnetic field

and this technique is called archeomagnetism ([McElhinny and McFadden, 2000]).

The materials have different magnetic properties, and are classified according to these

properties as: diamagnetic, paramagnetic, ferromagnetic and ferrimagnetic. Diamag-

netism is common to all substances. It occurs due to the motion of orbital electrons.

The motion of electrons under a magnetic field produces a negative induced magnetic

moment. This reduces the total magnetic field, which is called diamagnetism. Although

diamagnetism is valid for all substances, it becomes negligible in the presence of any

other magnetic effect. The magnetic susceptibility of the diamagnetic materials is neg-

ative and is of the order of 10−5. If a material has a net positive magnetic moment,

this magnetic moment is aligned in the direction of the applied magnetic field. This

alignment, known as paramagnetism, contributes to the magnetic field in a positive way

and its value lies between 10−5 and 10−3. On the other hand, some magnetic mate-

rials can strongly contribute to the magnetic field. This material is then said to be

ferromagnetic. Ferromagnetic materials have more valance electrons, and these electrons

and their spins are aligned with the applied magnetic field. This is also observed if

the external magnetic field is zero. However, for this to occur, the temperature of the

substance should be less than the Curie temperature. Above the Curie temperature, all

electrons move freely and no magnetization is present in the material. These alignments

are in general found in domains. In some cases, these domains can cancel each others’

effect and then an antiferromagnetism phenomenon occurs. Occasionally, due to these

random alignments, the magnetic property is reduced and this is named ferrimagnetism

([McElhinny and McFadden, 2000]). Magnetite is an iron-oxides and a ferrimagnetic ma-

terial. Its naturally magnetized form is called the lodestone, a material which initiated

the study of magnetism (Section 2.1.1). In paleomagnetism, magnetite is one of key

materials for studying magnetic field records.

2.1.9 Processes of magnetization in rocks

There are different processes of magnetization in rocks and understanding these types

of magnetization are important for defining reversals. The following section will briefly

describe these processes.

The first type of magnetization is called thermoremanent magnetization (TRM). In TRM,

rocks from lavas cool from a temperature higher than the Curie temperature. The iron



16 2 Theoretical Background

oxides in these rocks align in the direction of the Earth’s magnetism. After cooling,

magnetization due to this alignment becomes "frozen" inside the rocks. Other types of

magnetization are referred to as depositional and post-depositional remanent magnetiza-

tion (DRM and PDRM). These types of magnetization require sediments of magnetized

particles. These magnetized particles are eroded from previously formed rocks. During,

deposition, these magnetized particles are aligned in the direction of Earth’s magnetic

field; this procedure is named DRM. If the remanent magnetization is free to rotate

in the sediments, then they can be aligned later, which is referred to the PDRM. The

next type of magnetization is termed isothermal remanent magnetization (IRM), which

occurs when magnetic materials acquire magnetization without heating. Viscous rema-

nent magnetization (VRM) is a type of magnetization closely connected to IRM. This

type of magnetization occurs in slowly occurring IRM. As time passes, more parts of

the magnetic material become magnetized in the VRM process. The last type of mag-

netization is chemical remanent magnetization (CRM). After the formation of certain

rocks, their magnetization grains will grow due to chemical changes. After reaching its

critical volume, the rock’s magnetization aligns with the Earth’s magnetic field and this

magnetization will be dated at this time ([Jacobs, 1994]).

2.1.10 Magnetic field reversals

We have geomagnetic records dating back to the 19th century from scientists and mariners.

However, records of the Earth’s magnetic reversals are different because they occur over

thousands to millions of years . Paleomagnetism has provided some indirect data on

magnetic reversals. These data show that magnetic pole reversals have occurred many

times. This is one of the great successes of paleomagnetism. As shown in fig. 2.3, Earth’s

magnetic field is mainly dipole. Therefore, a nearly 180◦ change in the axial dipole field

is defined as a magnetic field reversal of the Earth ([McElhinny and McFadden, 2000]).

The paleomagnetic observations can create problems for interpreting and/or predicting

the occurrence of reversals.

Self-reversals can also occur after the first magnetization in the magnetized rocks. After

some time passes from the magnetic alignment along the Earth’s magnetic field, domains

inside the magnetized substance can be produced. These domains reverse due to interac-

tions with the main and first magnetization. So, these self-reversals should be carefully

analyzed. However, this procedure hardly occurs and most of the reversals shown in

chronology are real reversals ([McElhinny and McFadden, 2000]).
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There are some tests that can be conducted to determine the reliability of reversal data.

Firstly, there should be an agreement between the magnetization polarity of the igneous

rock and the baked rock for studies of the baked contacts. Secondly, different rocks around

the world should show an agreement in polarity. Lastly, polarity reversals should be found

in sequences. These are considered the basic requirements for defining a magnetic reversal

([McElhinny and McFadden, 2000]).

Fig. 2.8: Time scale for geomagnetic reversals. The polarity similar to present-day is

represented by black and the reverse represented by white one ([Cox, 1969]).

Fig. 2.8 shows the magnetic polarity reversals of the Earth. The black parts correspond

to polarity similar to present day and white parts correspond to reversed ones. The first

row shows the dates, the second and third rows show data for the direction of magnetic

field (the normal and reversed magnetic fields, respectively). The 4th and 5th rows show

black and white representations. The 6th row shows the age boundaries and the 7th row

names the reversal events. The last row shows the names of epochs. The time-scale dates

back to 4.5 million ages. In the previous magnetizations, the error in measurements are

too great, so the data is not exact. This figure shows some of the studied reversals and

it is clear that magnetic reversals are common occurrences throughout the history of the

Earth.
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2.2 Fluid Dynamics

In this section, we will start with the properties of the different phases of materials. Then

we will continue with the analyze of the fluid motion by considering viscosity and stress

tensor and we will give the derivation of Navier-Stokes equation. Then we will consider

Reynolds number and its relation with fluid flow. Lastly, we will overview the vorticity

and Coriolis force.

2.2.1 Solids, liquids and gases

The distinction between solids, liquids and gases is not always clear. Liquids and gases

can be combined into one class called fluids. The basic difference between solids and

fluids is that solids have a preferred shape, while fluids do not.

If one applies force to a solid or fluid, the solid will take back its original form after

withdrawal of the force; the fluid, however, will not. Some substances show simultaneous

properties of both solids and fluids, such as jelly, polymer solutions and egg whites. These

substances are said to be viscoelastic ([Kundu and Cohen, 2002]). For these substances,

there is order among the molecules, but this order is different than solids and is not as

regular. In fluids, there is not any order among molecules.

The difference between liquids and gases is related to the environment. Pressure is a

key factor for discrimination of fluids. In the absence of pressure, all liquids will turn to

gases. However, in the presence of pressure, a gas expands and occupies the available

volume, while a liquid does not.

Fig. 2.9: A schematic sketch of the force between simple un-ionized molecules with

respect to distance d between the centers of the molecules ([Batchelor, 1967]).

Fig. 2.9 shows how the force between molecules changes with respect to the distance d

between the centers of the molecules. As shown in the figure, the force is repulsive for
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distances smaller than the d0, and attractive for greater distances. The distance d0, where

the force between molecules is zero, is different for different types of molecules. In solids,

d0 is smaller and the minimum point on this graph is lower. This is due to the strong

attraction among the molecules of solids. As a substance changes from solid to liquid and

gas, d0 becomes greater and the minimum of this curve approaches zero. Therefore, at a

fixed temperature, since the force for solids is stronger, the movements of the molecules

due to temperature are small. Since a solid preserves its form, the movements should be

very small compared to d0. For liquids, this motion should be at the order of d0 since

the molecules can change their order. Lastly, for gases, the bonds between the molecules

are really weak and molecules move independently from one another. In this case, the

movements of molecules should be much bigger than d0.

Thus, a solid is defined as the form of a substance that has strong molecular interactions,

an ordered molecular arrangement and small thermal motions of the molecules compared

to d0. For a liquid, the molecular interactions are mid-range between a solid and gas; the

molecules are partially ordered; and thermal motion is at the order of d0. Lastly, a gas

has weak molecular interactions, no order at all in molecular arrangement and a much

larger thermal motion than d0 [Batchelor, 1967].

2.2.2 Fluid flow and kinematic viscosity

Fig. 2.10: Viscous stresses in a simple flow ([Acheson, 1990]).

Fig. 2.10 illustrates simple shear flow. Molecules flow in a fluid and there is an interaction

among these molecules, as previously shown in fig. 2.9. This interaction, in combination

with collisions, plays a crucial role in determining the motion of the fluid. This is a really

complicated process. However, there is simple way of handling this. First, consider

velocity as a function of u(y). As shown in fig. 2.10, u(y) also increases as y increases.

Due to mentioned interactions, the faster part of fluid motion forces the remaining slower
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part of fluid to move faster and the slower part of the fluid also forces the remaining faster

part of fluid to move slower. This is represented by the bold arrows in fig. 2.10. The

mentioned shear stress can be expressed in terms of velocity gradient as

τ = µ
du

dy
(2.1)

where µ is related with the properties of the fluid and is called the coefficient of viscosity

([Acheson, 1990]). This relation is valid for Newtonian viscous fluids. The main property

of Newtonian fluids is that the proportionality of flow to the viscosity is linear. For non-

Newtonian fluids, viscosity is not constant and can be nonlinear and time dependent.

There are many different properties of these fluids, which will not be discussed. Referring

back to Newtonian fluids, the coefficient of viscosity can be defined in a more common

way: as kinematic viscosity ν

ν = µ/ρ (2.2)

where ρ is the density of the fluid. In general, these are dependent on substance and

temperature.

Fig. 2.10 shows only one aspect of fluid flow. However, in general, fluids flow on surfaces

and these surfaces affect flow. To understand this point, we should consider boundaries

and corresponding boundary layers. Fig. 2.11 shows the motion of fluid on a boundary

surface. After a point, a boundary layer is produced and in that layer, the velocity

gradient is not equal to zero. In the other parts of the fluid motion, flow is steady and

the velocity gradient is much smaller than the velocity gradient at the boundary layer.

If the boundary surface is fixed, then there is not any motion in the surface and no-slip

boundary conditions are valid. The velocity should decrease gradually to zero as one

approaches the boundary layer.

Fig. 2.11: Fluid flow on a boundary layer ([Acheson, 1990]).

If there is no boundary layer, this is referred to as free-slip boundary conditions. In some
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cases with boundaries, free-slip boundary conditions can also be used. In these cases,

the viscosity of the fluid should be very small and this small viscosity produces a really

thin boundary layer. The thin boundary layer, in general, does not affect the motion of

the fluid overall. In some cases, however, even if the viscosity is really small, turbulences

may arise due to the boundary layer. When these turbulences are observed, usage of

free-slip boundary conditions will fail ([Acheson, 1990]).

2.2.3 Stress tensor

Eq. 2.1 is valid for flow shown in the fig. 2.10. In the general case, however, velocity can

depend on all components, and not solely on y. Then eq. 2.1 must be generalized and

in this case, τ replaced by stress tensor τij . For a fluid at rest, stress is independent of

orientation and can be written as

τij = −pδij (2.3)

where p is the thermodynamic pressure and δij is the Kronecker delta. If i = j it is equal

to 1; otherwise it is equal to zero. This means that only diagonal components of the

stress tensor survives and the other components are zero for fluids at rest.

For a moving fluid, the stress tensor is not a diagonal tensor. Shear forces are present

due to the motion of the fluid and the non-diagonal elements are different than zero. So,

stress tensor can be written as

τij = −pδij + σij (2.4)

In this equation, p is still thermodynamic pressure, but there are some differences from

the previous equation. Thermodynamic pressure is defined in the equilibrium state and

since the fluid is in motion, the system is not in equilibrium. This makes some differences

in the definition of pressure. However if the relaxation time of the molecules is small

enough compared with the time scale of flow, one can still assume it to be equal to

thermodynamic pressure by ignoring some tiny effects.

The σij in the eq. 2.4 is called the deviatoric stress tensor. As stated in the previous

section, the deviatoric stress tensor should be proportional to velocity gradient. To find

this dependence on the velocity gradients, firstly we decompose velocity gradient into

symmetric and antisymmetric components as

∂ui
∂xj

=
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1
2

(
∂ui
∂xj

− ∂uj
∂xi

)
(2.5)
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In this equation, the antisymmetric part (second term from the right side) is related

to rotations and cannot contribute to the stress. So the stresses comes from only the

symmetric part, called the strain tensor. Then σij is proportional to the symmetric part

of the velocity gradient and we can write

σij = Kijmn
1
2

(
∂um
∂xn

+
∂un
∂xm

)
(2.6)

where Kijmn is a tensor with 81 components. We do not need to calculate all these 81

constants. If we assume the case of an isotropic medium and symmetric stress tensor,

only a few of them will survive and using tensor algebra, we can write that

σij =
(
µδimδjn + µδinδjm + λδijδmn

) 1
2

(
∂um
∂xn

+
∂un
∂xm

)
(2.7)

The right-most term gives λ∇ · ~u and for incompressible fluids, ∇ · ~u = 0. If fluids are

compressible, they allow for some phenomena like shock waves. We will not deal with

such issues in this work.

After some simple algebra for incompressible fluids, we get

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.8)

Then we obtain the equation for stress

τij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.9)

This equation gives the stress for an incompressible fluid and it has two parts: pressure

and stresses due to velocity gradients ([Kundu and Cohen, 2002]).

2.2.4 Navier-Stokes equation

The Navier-Stokes equation gives the relationship between the acceleration of fluid and

effecting forces. By the definition of acceleration, there is a difference in fluid dynamics

due to the motion of the fluid. Since the fluid moves and its velocity changes with respect

to position, acceleration of the fluid is different than the ordinary definition of classical

acceleration ~a = ∂~u/∂t. If we consider ~u = ~u(~x, t) and take the total time derivative of

velocity, we obtain
D~u

Dt
=
∂~u

∂t
+ ~u · ∇~u (2.10)
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This operator D/Dt has different names, such as total time, material, substantial or

particle derivative ([Kundu and Cohen, 2002]). The first part of this operator ∂/∂t cor-

responds to the local rate of change with respect to time. The second part ~u · ∇ cor-

responds to advection, which is present because of the motion of fluid. If this motion

changes with respect to position, then this advection term plays a role. If this operator

is applied in the presence of heat, then the second term is named convection.

Now we must determine the force on an infinitesimal volume of fluid. In the previous

section, we obtained the stress on it. We can decompose stress into normal and shear

stresses and the relationship between force and stress is

τn =
dFn
dA

τs =
dFs
dA

(2.11)

If we consider the forces in x1 direction, then we can write

dFx1 =

(
τ11 +

∂τ11

∂x1

dx1

2
− τ11 +

∂τ11

∂x1

dx1

2

)
dx2dx3 (2.12)

+

(
τ21 +

∂τ21

∂x2

dx2

2
− τ21 +

∂τ21

∂x2

dx2

2

)
dx1dx3

+

(
τ31 +

∂τ31

∂x3

dx3

2
− τ31 +

∂τ31

∂x3

dx3

2

)
dx1dx2

=

(
∂τ11

∂x1
+
∂τ21

∂x2
+
∂τ31

∂x3

)
dx1dx2dx3

=
∂τj1
∂xj

dx1dx2dx3

Using eq. 2.9, we can write the force on an infinitesimal volume of an incompressible

fluid as
~F = −∇p+ µ∇2~u (2.13)

Eq. 2.10 corresponds to the acceleration of a fluid according to Newton’s second law.

We also know the force from eq. 2.13. Then, by using Newton’s second law ~F = m~a for

this fluid with mass density ρ, we can write an equation concerning change in velocity in

the presence of gravity as

ρ
∂~u

∂t
+ ρ~u · ∇~u = −∇p+ ρ~g + µ∇2~u (2.14)

This is the Navier-Stokes equation, which describes how velocity of a incompressible fluid

evolves ([Kundu and Cohen, 2002]). We can also write this equation in a similar form

by using the definition of kinematic viscosity ν = µ/ρ

∂~u

∂t
+ ~u · ∇~u = −1

ρ
∇p+ ~g + ν∇2~u (2.15)
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2.2.5 Reynolds number

The left hand side of eq. 2.15 corresponds to inertial forces and ν∇2~u corresponds to

viscous forces. We can use dimensions of these two forces to be able to compare them.

The inertial forces are of the order fin ∼ u2/l where l is a typical geometric length scale.

The viscous forces are of the order fvis ∼ ν|~u|/l2⊥ where l⊥ is a characteristic length scale

perpendicular to the streamlines ([Davidson, 2001]). If we consider the length scales

equal, then we can define the ratio of these as Reynolds number and it is

Re =
ul

ν
. (2.16)

If Re is small, then the contribution of viscous forces in the Navier-Stokes equation

is high. In the contrary case, the viscous forces are small and play a lesser role. If

we consider the characteristic length scale of the flows and calculate Re, it would be

really high. In this case, we can consider the viscous forces unimportant. However, this

consideration is inaccurate since most flows have turbulent properties. This is valid even

for very small Re cases and relates to the boundary layers.

Fig. 2.12: Development of the boundary layer and turbulence on a flat plate for a fluid

([Davidson, 2001]).

Fig. 2.12 depicts the development of the boundary layer. As shown in the figure, at

the beginning of fluid flow, the boundary layer is thin. As flow occurs over time, it

becomes thicker. At a point, the size of the boundary layer δ becomes large enough and

flow becomes turbulent. This δ corresponds to the l⊥ characteristic length scale in the

calculation of the order of viscous forces. Another length scale in the calculation of Re

is the typical geometric length scale l. This is the span of the boundary surface. If we

consider these two lengths as characteristics lengths in the calculation of Re, we obtain a
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more convenient way to consider Re. In the calculation of eq. 2.16 and the considerations

after it, we have taken the lengths as equal and used the geometric length scale. This

was the misleading part in the first conclusions about Re, where viscosity was considered

an ignorable factor. Now it is obvious that viscous forces are always important and their

importance is observed when the chosen length scale and span of the boundary layer are

suitable sizes.

Fig. 2.13: Characteristic flows in the presence of a cylinder with respect to different Re

([Davidson, 2001]).

Fig. 2.13 shows characteristic flows in the presence of a cylinder at different Re. In

this example, the flow is laminar if Re < 104. But there are different types of laminar

flows. For small Re, there is symmetry in the flow. If Re << 1, flow resembles inviscid

flow. When the order of Re is just above unity, steady vortices appear. The symmetry

of flow is lost if Re > 10. This is shown in the example where Re ∼ 100. In this case,

periodic vortices known as Karman’s vortex street appear. The laminar structure of flow

disappears around 104. At this value, there is still a vortex street, but it is not as regular

as Karman’s. At really high Re, 106, this street structure is lost and some small vortices

can be observed ([Davidson, 2001]).
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2.2.6 Vorticity

In eq. 2.5 we mentioned that the antisymmetric part of this equation 1
2

(
∂ui
∂xj

− ∂uj

∂xi

)
is

related to rotations. Now we will deal with these rotations as well as vorticity. Vorticity

is defined as ([Davidson, 2001])

~ω = ∇× ~u (2.17)

and its components can be written as ([Kundu and Cohen, 2002])

ω1 =
∂u3

∂x2
− ∂u2

∂x3
ω2 =

∂u1

∂x3
− ∂u3

∂x1
ω3 =

∂u2

∂x1
− ∂u1

∂x2
(2.18)

As it is easily seen these are twice the related antisymmetric components. These anti-

symmetric components of the stress tensor are the source of shear forces. If ∂ui
∂xj

= ∂uj

∂xi
,

there is no rotation and ~ω = 0 ([Kundu and Cohen, 2002]). However if one of these is

greater than the other, there will be a rotation.

By dropping the gravitational force in the Navier-stokes equation and using the relation-

ship ∇(u2/2) = (~u · ∇)~u+ ~u× ~ω, we can write

∂~u

∂t
= −∇

(
p/ρ+ u2/2

)
+ ν∇2~u+ ~u× ~ω (2.19)

For steady inviscid fluids C =
(
p/ρ+ u2/2

)
is constant. This is Bernoulli’s theorem

and C is Bernoulli’s function. Here, if we take the curl of this equation, we obtain the

vorticity equation as ([Davidson, 2001])

∂~ω

∂t
= ν∇2~ω +∇× (~u× ~ω) (2.20)

2.2.7 Coriolis force

There are additional effects in a rotating reference frame and to see these, we will

firstly look at the transformation of a vector between a rotating reference frame and

an inertial one. Similar derivations can be found in books and in the reference lists of

([Batchelor, 1967],[Kundu and Cohen, 2002],[Pedlosky, 1979]). Fig. 2.14 shows two co-

ordinate systems: the rotating one S′ (q1, q2, q3) has angular velocity ~Ω with respect to

the inertial one S (x1, x2, x3). In the rotating frame, we can write an ordinary vector ~A

as
~A = A1q̂1 +A2q̂2 +A3q̂3 (2.21)
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Fig. 2.14: Rotating coordinate system S′ is represented with respect to inertial reference

frame S. ([Dreizler and Ludde, 2010]).

If this vector changes with time, the observers in both reference frames will see this

change. However, there will be some differences, which can be understood by writing the

time derivative of ~A explicitly(
d ~A

dt

)
i

=
dA1

dt
q̂1 +

dA2

dt
q̂2 +

dA3

dt
q̂3 +A1

dq̂1
dt

+A2
dq̂2
dt

+A3
dq̂3
dt
. (2.22)

The first three terms on the right side of the equation are due to changes in the rotating

frame and the last three correspond to changes in the unit vectors due to rotation. The

length of the unit vectors is always unity and the only change is in their directions. Now

let us consider q̂1 and call the angle between it and ~Ω as ψ. The parallel component

of q̂1 to the ~Ω, |q̂1|cosψ, will not change with rotation. Only |q̂1|sinψ will change due

to rotation and dsinψ
dt = dsinψ

dθ
dθ
dt where θ is the angle of rotation and |~Ω| = dθ

dt . As the

reference frame rotates, only the direction of the |q̂1|sinψ will change. Its magnitude

will be constant throughout the motion. So we can write dq̂1
dt = ~Ω × q̂1. Then for all

components we have(
d ~A

dt

)
i

=

(
d ~A

dt

)
r

+A1
~Ω× q̂1 +A2

~Ω× q̂2 +A3
~Ω× q̂3 (2.23)

=

(
d ~A

dt

)
r

+ ~Ω× ~A.

This equation gives the transformation between observed vectors in an inertial and a

rotating reference frame for any vector. If the vector ~A is the vector showing the position

of an object ~r, we have the relation for the velocities as follows(
d~r

dt

)
i

=

(
d~r

dt

)
r

+ ~Ω× ~r (2.24)



28 2 Theoretical Background

and this can also be written as ~ui = ur + ~Ω× ~r. For the accelerations, we have(
d~ui
dt

)
i

=

(
d~ui
dt

)
r

+ ~Ω× ~ui. (2.25)

Using the definition of velocity in eq. 2.25, we obtain(
d~ui
dt

)
i

=

(
d(~ur + ~Ω× ~r)

dt

)
r

+ ~Ω× (ur + ~Ω× ~r). (2.26)

If ~Ω is constant, we have

~ai = ~ar + 2~Ω× ur + ~Ω× ~Ω× ~r. (2.27)

The extra terms on the right side of the equation are present due to the Coriolis and

centripetal forces. Then, for a rotating reference frame, the Navier-Stokes equation

becomes
∂~u

∂t
+ ~u · ∇~u = −1

ρ
∇p− 2~Ω× ur − ~Ω× ~Ω× ~r + ~g + ν∇2~u (2.28)

The centripetal force is mostly unimportant and can be written as ~Ω×~Ω×~r = −∇(Ω2r′2/2)

where r′ is the distance measured from the axis of rotation. This gradient term can be

included in the pressure term and after redefining a new pressure, one can totally omit

this term ([Tritton, 1988]).

We can compare the Coriolis force with inertial and viscous forces. There are two non-

dimensional numbers for this purpose and they are called the Rossby and Ekman number,

respectively. Then the Ekman and Rossby numbers are

E = ν/Ωl2 Ro = U/Ωl. (2.29)

These numbers, E and Ro, are special for rotating systems. Since rotating systems are

noninertial frames, there are some other forces present and in the above derivation we

have obtained them. One of them is the Coriolis force and these numbers compare the

strength of the Coriolis force with inertial and viscous forces. For smaller E, the effect

of viscous forces are weak compared to the Coriolis force and vice versa. For smaller Ro,

the effect of inertial forces are weak compared to the Coriolis force and vice versa.
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In this section, we will start with the origin of cosmological magnetic fields and give an

introduction to the dynamo theory. We will also consider electromagnetic relations and

derive the induction equation. Then we will give the basics for the dynamo theory and

the effect of the heat equation on it. Lastly we will discuss the dynamo mechanism.

2.3.1 Origin of cosmological magnetic fields

Previous sections only mentioned the Earth’s magnetic field. Earth is not alone in the

universe, however, and most cosmological bodies have magnetic fields. Planets, the Sun,

stars, some of the moons of the planets and even the galaxies have their own magnetic

fields. The origins of these magnetic fields have been debated for a long time and many

different theories have been proposed.

Firstly, let us consider the sources of the magnetic fields. There are two possible sources.

The first one is the magnetization of matter. This can have different origins, however,

the main source of this magnetization is electron spin alignment. The second source

for the magnetic field is electric current, which is explained by one of the basic laws of

electrodynamics. Due to Faraday’s law of induction, electric currents can induce magnetic

field.

The first potential source, magnetization, cannot explain the origin of these magnetic

fields for several reasons. To be able to produce a strong magnetic field, a material should

have the ferromagnetic property. However, in most cases, the temperature of the fluid

producing the magnetic field is higher than the Curie temperature. Since ferromagnetic

properties cannot exist above this temperature, magnetization cannot be the origin of

cosmological magnetic fields. We know that for the Earth and Sun, there are reversals

and these reversals take place repeatedly throughout the history of these cosmological

bodies. These reversals also cannot be explained by magnetization.

The second possibility, induction of magnetic field from electric current, is likely the

source of cosmological magnetic fields. Since the temperature of the Sun is much higher

than ionization temperature, all atoms constituting the Sun are in ionized form. So an

electrical current is generated due to the thermally and gravitationally driven motion

of these charged particles. This current induces magnetic field. A similar phenomenon
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occurs at the cores of the Earth, other planets and the moons of these planets. There

are some differences between solar and planetary induction of magnetic fields, mostly

due to high temperature and the fast motion of the Sun and stars. The induction

of a magnetic field due to the motion of electrically conducting fluid is described by

dynamo theory. The first self-exited dynamo theory was proposed by von Siemens (1866)

([Krause and Radler, 1980]). However, in 1919, Larmor made a proposal that Earth’s

magnetic field is generated by dynamo action at the Earth’s core due to the motion of

the liquid metal in the core. This dynamo action is a complicated procedure and will

be described in the following sections. Before, we will overview Maxwell’s eqautions and

the induction equation.

2.3.2 Maxwell’s equations

Maxwell’s equations and Lorentz force are the main components of electrodynamics.

Maxwell’s equations describe how electric field ~E and magnetic field ~B changes and

Lorentz force describes how these fields affect charged particles. There are four Maxwell

equations and each describes different electromagnetic phenomena.

One equation is Gauss’s law. It is related to Coulomb’s law, which describes electrostatic

force. Coulomb’s law originated from experimental observations related to the force

between two small charged bodies. The force on test particle with charge qt is ~F = qt ~E

and electric field at ~x due to charge q, which is at position ~x′ is

~E = kq
~x− ~x′

|~x− ~x′|3
(2.30)

Gauss’s law concerns the integration of an electric field over a surface which encloses a

volume. It states that integration of the normal component of ~E over an entire surface

gives zero if there is no charge inside the enclosed volume and 4πq if there is a charge q.

If there is a charge q inside the volume we can write Gauss’s law as∮
S

~E · ~nda = 4πq (2.31)

where ~n is the unit vector perpendicular to the surface S. Using the divergence theorem∮
S
~A · ~nda =

∫
V ∇ · ~Ad3x and q =

∫
V ρ(~x)d

3x where ρ is the charge density, we can also

write this law in differential form as

∇ · ~E = ρ/ε0 (2.32)
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where ε0 is the permittivity of free space. This is the differential and more commonly

used form of Gauss’s law ([Jackson, 1962]).

The second and third of the Maxwell’s equations are related to magnetism and can be

obtained by considering the induction of a magnetic field from current density ~J(~x). The

induced magnetic field due to current density is

~B =
∫

~J(~x′)× ~x− ~x′

|~x− ~x′|3
d3x′ (2.33)

= ∇×
∫ ~J(~x′)
|~x− ~x′|

d3x′.

This equation directly requires that

∇ · ~B = 0 (2.34)

and this is one of the Maxwell’s equations. Conceptually, this equation means that there

are no magnetic monopoles. The third of the Maxwell’s equations can be obtained by

taking the curl of eq. 2.33. The result of this curl is

∇× ~B = µ0
~J +∇

∫
∇ · ~J(~x′)
|~x− ~x′|

d3x′. (2.35)

where µ0 is the permeability of free space. If we consider steady currents ∇ · ~J = 0, eq.

2.35 in that limit reduces to Ampere’s law. If we consider currents varying with time,

using the continuity equation ∇· ~J = ∂ρ
∂t and the definition of the electric field, we obtain

∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
. (2.36)

This equation is Ampere’s law with Maxwell’s displacement current µ0ε0
∂ ~E
∂t . The equa-

tion describes how the curl of a magnetic field depends on the current density and time

variation of the electric field ([Jackson, 1962]).

The last equation is related to the magnetic flux F and electromotive force ε. The

electromagnetic force is the integral sum of the electric field over the closed circuit

ε =
∮
C

~E · d~l. (2.37)

This circuit creates a magnetic field around it and the magnetic flux linking it is

F =
∫
S

~B · ~nda (2.38)
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where S represents the open surface bounded by C and ~n is the unit normal to this surface.

Faraday’s experiments and observations concerning magnetic flux and electromotive force

gave the formula

ε = −dF
dt
. (2.39)

This formula shows that time variation in magnetic flux is proportional to the electro-

motive force. It also reveals that the change in magnetic flux can deduce electromotive

force. This is the basic principle for some electronic tools, i.e. electric dynamo, electric

motors. Using the Stoke’s theorem, eq. 2.39 can be written as

∇× ~E = −∂
~B

∂t
(2.40)

and this is the differential form of Faraday’s law.

In addition to Maxwell’s equations, we need another relationship to get a comprehensive

formulation for electromagnetism: the Lorentz force. Lorentz force defines the interaction

between charged particles and electromagnetic fields and is given by

~f = q( ~E + ~v × ~B) (2.41)

where q is the charge of the particle and ~v is its velocity.

Maxwell’s equations, the continuity equation and Lorenz force are the basic equations

for electromagnetism.

2.3.3 Induction equation

As stated in the introductory part of this chapter, dynamo theory proposes an explanation

for the produced magnetic field of cosmological bodies. Within the framework of dynamo

theory, there is a flowing electrically charged fluid and this flow induces magnetic field.

Maxwell’s equations must be modified for the induction procedure due to some properties

of the flowing fluid’s structure. One of the basic assumptions of this structure is that it

has no net electrical charge. In this assumption, Maxwell’s displacement current µ0ε0
∂ ~E
∂t

is zero and then we obtain ~J = σ( ~E + ~u× ~B). Another effect of this assumption is that
∂ρ
∂t can be considered zero and the continuity equation becomes ∇ · ~J = 0. Then by

using ~J = σ( ~E + ~u × ~B), ∇ × ~E = −∂ ~B
∂t , ∇ × ~B = −µ~J and ∇ · ~B = 0 we can write

([Davidson, 2001])
∂ ~B

∂t
= ∇× (~u× ~B) +

1
µσ

∇2 ~B (2.42)
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where σ is electrical conductivity and µ is the permeability of the conducting medium.

This equation is sometimes called the induction equation. In dynamo theory, this equa-

tion describes how a magnetic field is induced from the velocity field. The first term on

the right-hand side of the equation gives the relationship for the generation of the mag-

netic field from the velocity field. The second term stands for diffusivity of the magnetic

field. We can write the induction equation in a non-dimensional form as

∂ ~B

∂t
= ∇× (~u× ~B) +

E

Pm
∇2 ~B (2.43)

where Pm = ν/η = νµσ is the magnetic Prandtl number and is the ratio of the kinematic

viscosity to the magnetic diffusivity. To obtain this non-dimensional form one can use d,

Ω, lΩ and µ0ρl
2Ω2 as length, time, velocity and magnetic field scale. Here Ω is the angular

speed and d is the typical length, in general it is the distance between the boundaries.

2.3.4 The dynamo theory

The dynamo theory describes the process of magnetic field generation by the inductive

action of a conducting fluid. This occurs, in general, via stretching and twisting of mag-

netic field lines, which converts mechanical energy to magnetic energy ([Davidson, 2001]).

This procedure is the known source of the magnetic field for most of the cosmological

bodies.

The conversion of mechanical energy to magnetic energy is described by the induction

equation, which was introduced in the previous section. This equation gives the source

of the magnetic field in fluid motion for fluids, including electrically conducting material.

The fluid is usually above the Curie temperature and, at that temperature, metals are

in ionized form. Due to this ionization, electrically charged particles move with the

fluid. According to this motion, there is a current and this current produces a magnetic

field. Both the current and the magnetic field are in the same medium and Lorentz force

should affect the fluid. This force must be included in the Navier-Stokes equation, and

it becomes
∂~u

∂t
+ (~u · ~∇)~u+ 2~Ω× ~u = ∇φ+ (∇× ~B)× ~B + E∇2~u. (2.44)

where φ corresponds to the pressure and the term due to ~Ω × ~Ω × ~u since this term

corresponds to the total divergence. To obtain this non-dimensional form one can use

the scaling used in the non-dimensionalization of the induction equation. This equation

and the induction equation form the basis of the dynamo theory. The Navier-Stokes
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equation and the induction equation describe how the velocity field and magnetic field

evolve, respectively. The velocity field depends on the effects of the Coriolis, pressure,

Lorentz and viscous forces. Both the velocity and magnetic field depend on each other. So

these two equations are coupled and must be solved simultaneously. This is only possible

with computer simulations. In some cases, the Navier-stokes equation can include more

terms and then more equations must be considered in these circumstances.

2.3.5 Heat equation and its effect on the dynamo

There is a temperature difference between the inner and outer boundary for most of

the cases, including Earth and Sun. Due to this difference, heat flows from the high

temperature boundary condition to the low temperature boundary condition. This heat

flow is defined by the heat equation

∂T

∂t
+ ~u · ∇T =

1
Pr

∇2T (2.45)

where T represents temperature and Pr is the Prandtl number. Pr = ν/κ is the ratio

of momentum diffusivity to thermal diffusivity and κ is the thermal diffusivity. Here

one can also use abovementioned scaling with temperature scaling ∆T , the temperature

difference between the boundaries.

The temperature difference in a fluid changes the density of the fluid and this density

change produces another force due to gravitational interactions. In general, the inner

boundary has a higher temperature than the outer boundary. Then, the density at the

outer boundary is higher than the inner boundary. In the case of spherical geometry,

gravitation force pulls the higher density material towards the center. So there must

be another term in the Navier-Stokes equation due to this density difference. In the

non-dimensional form, we can write the modified Navier-Stokes equation as

∂~u

∂t
+ (~u · ~∇)~u+ 2~Ω× ~u = ∇φ+ (∇× ~B)× ~B + E∇2~u+

ERa

Pr

~r

ro
T (2.46)

where ~r is the radius vector, ro is the outer boundary radius and Ra is the Rayleigh

number. This non-dimensional equation is also obtained using previously mentioned

scalings. The Rayleigh number describes the relationship between buoyancy and viscosity

and is defined as Ra = gβ∆Td3/νκ. In this definition, g stands for gravitation, β is the

expansion coefficient of the fluid.

The heat equation can also be used to describe the buoyancy variable. If density changes

due to some other effects, this density change can also have effects. Then we can add a
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source term for buoyancy in eq. 2.45. This time, a modification to the Rayleigh number

is needed. So, other effects concerning density changes can also be described by this

equation. We will use the buoyancy variable in subsequent sections and due to its usage,

we will make modifications to Ra as well.

2.3.6 The dynamo mechanism

The dynamo takes place mainly in the fluid part of cosmological bodies. In general, this

fluid is highly conducting and can stretch and twist a magnetic field ([Davidson, 2001]).

The stretching, twisting and folding of a magnetic flux tube is shown in fig. 2.15. As

shown in the figure, the flux tube is first stretched to twice its size. Then, this stretched

flux is twisted and finally folded. This is a schematic representation of conversion of

mechanical energy to magnetic energy.

Fig. 2.15: A schematic sketch of the stretching and twisting of a magnetic field. (a) A

torus carrying magnetic flux F is stretched to twice its size (b). (c) The twisted version of

the stretched magnetic field. (d) The folded version of it. ([Childress and Gilbert, 1995]).

By considering a velocity field that is steady on average, it is possible to obtain dynamo

action. For dynamo action, the following properties are needed and these can differ due

to the structure of the system. The first necessary key property is a large magnetic

Reynolds number Rm, which is defined as Rm = µσul. At the very least, it should be

greater than 5π ([Davidson, 2001]). Otherwise, the dynamo will lose its magnetic energy

due to ohmic losses and the magnetic field will disappear. This can be understood from

the induction equation. If we multiply the induction equation by the magnetic field, after

some arrangements, we get the energy relation as

∂

∂t

(
B2

2µ

)
= −∇ · ( ~E × ~B/µ)− ~J · ~E. (2.47)

In this equation, the first term corresponds to the Poynting flux and if we integrate over
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all space, it is equal to zero. Then by using ~E = ~J/σ − ~u× ~B we can get

∂EB
∂t

=
1
µ

∫
~u ·
[
~B × (∇× ~B)

]
dV − 1

σ

∫
J2dV (2.48)

where EB =
∫
B2

2µ dV is the magnetic energy and the first term on the right side of the

equation corresponds to the rate of the working Lorentz force. The second term is the

Joule or Ohmic dissipation. So the work done by the Lorentz force must be greater than

the dissipation for a non-decaying dynamo.

Fig. 2.16: (a) A poloidal magnetic field. (b) The generation of an azimuthal magnetic

field from a poloidal magnetic field. (c) The generation of a poloidal magnetic field from

an azimuthal one ([Russell, 1999]).

The second key point is that an axisymmetric dynamo is not possible. We can separate

the field into an azimuthal and poloidal field, i.e. ~B = ~Bp + ~Bθ. Using the induction

equation and this separation, we can show that an axisymmetric velocity field cannot

intensify a poloidal magnetic field ([Davidson, 2001]). The poloidal magnetic field gen-

erates an azimuthal magnetic field and this azimuthal magnetic field can also generate

poloidal magnetic field. The last step cannot be axisymmetric. Thus, an axisymmetric

dynamo is not possible. The mechanisms for generation of these fields are α and Ω effects.

The α effect is the generation of a poloidal magnetic field from an azimuthal magnetic

field. We can see this procedure from a schematic shown in fig. 2.16. In this figure, a

poloidal magnetic field at the beginning is affected by differential rotation. Differential

rotation causes a velocity field which rotates faster in the inner boundary and this faster

velocity field changes the orientation of the magnetic flux tubes. An azimuthal magnetic

field is generated due to this change in orientation. There can also be some eddies or

small scale motions in the fluid. The last picture in fig. 2.16 shows these eddies and small

scale motions of the fluid. These small scale motions can change the orientation of the

magnetic fluxes The small-scale magnetic fields can also arrange themselves to align in

the main magnetic field, which is poloidal. This procedure can be shown by dividing the
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magnetic field into two components: main magnetic field, which can be considered as the

average magnetic field and small scale magnetic field, i.e. ~B = ~B0 +~b. Here ~B represents

the total magnetic field, ~B0 represents the main magnetic field and ~b represents the small

scale or fluctuating magnetic field. Then, using the induction equation, we can obtain

∂ ~B0/∂t = ∇× (~u0 × ~B0) + α∇× ~B0 + 1/(µσ)∇2 ~B0. (2.49)

This extra term in the induction equation is the mathematical representation of the α

effect. This is one of the generally accepted mechanisms for magnetic field generation in

dynamo theory and is known as α− Ω dynamo ([Davidson, 2001]).

There are also some other dynamo mechanisms. One of them is α2 dynamo. If we do

not consider differential rotation, then the generation of the azimuthal magnetic field

due to differential rotation is eliminated. In α2 dynamos, we can consider that azimuthal

magnetic field can be generated from the poloidal magnetic field via small scale motions.

Then, these small scale motions appear and again generate a poloidal magnetic field.

This is the basic working principle for the α2 dynamo ([Davidson, 2001]).
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2.4 Dynamo Experiments

Some laboratory dynamo experiments have been conducted. Here, we will mention three

of them: Riga, Karlsruhe and the von Karman sodium experiment. These are the three

successful experiments.

Fig. 2.17: The radial magnetic field and propeller rotation rate of the Riga experiment

during one run in July 2003 ([Gailitis et al., 2004]).

(a) (b)

Fig. 2.18: PSD of (a) azimuthal and (b) axial magnetic fields for the Riga experiment

for the run in June 2003 ([Gailitis et al., 2004]).

The Riga experiment has been carried out with two electric motor propellers. The

setup consists of three concentric cylinders for different flow structures. The flowing

fluid is sodium with a total volume 2m3. The central flow has azimuthal and axial

velocity components and these flow components are the main factors generating the

magnetic field. There are published results for this experiment ([Gailitis et al., 2004],

[Gailitis et al., 2003], [Gailitis et al., 2001]). Fig. 2.17 shows the results of one exper-

imental run in the Riga experiment. In this graph, the radial magnetic field and the

rotation rate of the propeller are shown. The PSDs of this run for the axial and az-

imuthal magnetic fields are shown in 2.18. Both have nearly 1/f frequency dependence

in the low frequency range. In the high frequency range, the frequency dependence
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changes to 1/f11/3.

Fig. 2.19: The x-component magnetic field from the von Karman sodium experiment

([Bourgoin et al., 2002]).

Fig. 2.20: The PSD of the x-component magnetic field from the von Karman sodium

experiment ([Bourgoin et al., 2002]).

The second experiment that we will mention is the von Karman sodium experiment.

There is a cylindrical vessel with diameter 40cm for this experiment. Two coaxial

impellers generate the flow. One can find published researches on this experiment

([Monchaux et al., 2009], [Volk et al., 2006], [Bourgoin et al., 2006]). We will consider

the experiment result shown in fig. 2.19. In this figure, only one of the magnetic field

measurements is considered: the measurement close to the 8Hz propeller. The other pro-

peller runs at 17Hz and produces similar results. As seen in fig. 2.19, the x-component

of the magnetic field is fluctuating.

Fig. 2.20 shows the PSD of the magnetic field shown in fig. 2.19. Again, there is 1/f

frequency dependence in the low frequency range and 1/f11/3 dependence in the high

frequency range. This frequency dependence is similar to the previously shown Riga

experiment results.

The third experiment is the Karlsruhe experiment. In this experimental setup, there are
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Fig. 2.21: TheBy3 component of the magnetic field taken from the result of the Karlsruhe

experiment ([Muller et al., 2002]).

Fig. 2.22: The PSD of the By3 component of the magnetic field measured at different

sensors [Muller et al., 2002].

52 cylindrical vortex generators which are connected to three different loops. Different

sensors measure magnetic fields at different positions. Detailed information concerning

this experiment and its specially designed configuration can be found in different papers

([Muller et al., 2002], [Stieglitz and Muller, 2001]). In fig. 2.21, the By3 component of

the magnetic field from the cited paper is shown in that work. The By3 component shows

some fluctuations and the PSD of a similar time series measured at different flow rates

are shown in fig. 2.22. The flow rates are 136m3/h, 125m3/h, 120m3/h, 116m3/h and

106m3/h. Five different PSDs result from these different flow rates because as flow rate

changes, properties of PSD change. For the fastest flow rate, 4 different power laws show

the frequency dependence of the PSD. These are 1/f , f3/2, 1/f3 and 1/f5. As frequency

increases, these power laws follow one another for the flow rate 136m3/h. These power

laws are not valid for other flow rates. However, 1/f is a general power law for all flows.
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We have seen that different power laws describe frequency dependence in these dynamo

experiments. However, in general, 1/f power law for the low frequency regime is valid for

all three experiments. These experiments are vastly different from the Earth’s dynamo,

where heat conditions, shapes, fluid type and many other factors are all different. How-

ever, the dynamo experiments all have one thing in common: the success of a dynamo

experiment relies on the generation of a magnetic field that does not decay.
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3 Numerical Dynamo Simulations

There are several classifications of the dynamo mechanism. In one classification, we use

the α−Ω and α2 dynamos as generation mechanisms of the magnetic field. The α−Ω dy-

namo is the most widely accepted and is used in research. The α2 dynamo is another type

of magnetic field generation and both were introduced in Section 2.4.6. There are many

studies on α2 type of generation ([Soward and Jones, 2005], [Barenghi and Jones, 1991],

[Barenghi, 1992], [Hollerbach and Ierley, 1991]).

Another classification arises due to the driving force of fluid motion. This classification

includes convection driven dynamo, gravitational dynamo and precession driven dynamo.

The most popular and accepted one is convection driven dynamo and there is a lot of

published research on this mechanism ([Kutzner and Christensen, 2002], [Soward, 1974]),

[Jones and Roberts, 2000], [Childress and Soward, 1972], [Christensen and Aubert, 2006],

[Olson and Christensen, 2006], [Busse et al., 1998], [Jones, 2000], [Soward, 1974]). In the

convection driven dynamo, there is a temperature difference between the boundaries.

This temperature difference causes density differences and gravitation pulls the higher

density part and convection takes place. This is the main idea behind the convection

driven dynamo. The second one, gravitational dynamo, is not as popular as convection

driven dynamo, but there is a similarity between them. Both employ the heat equa-

tion. It is used as the heat transfer equation in convection driven dynamo and as the

buoyancy transport equation in gravitational dynamo. Similar to the convection driven

dynamo, convection and gravitation are also at play in the gravitational dynamo. The

difference between these two dynamo types is related to the source of the density dif-

ference. It is observed due to the solidification of higher density material in the inner

boundary. The name "gravitational dynamo" was given by another author and we have

followed him. It is also said compositional convection dynamo for this mentioned type.

There is also an abundance of published research on gravitational dynamo ([Olson, 2007],

[Lister and Buffett, 1995], [Loper, 2007]). Lastly, precession driven dynamo is different

compared to the first two because the driving force in the dynamo is precession. The
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heat equation effect is ignored in this consideration and a force due to the precession is

included. This was first carried out by Tilgner and further research has explored this

mechanism ([Tilgner, 2005], [Wu and Roberts, 2008], [Zhang et al., 2010]).

A third classification type of the dynamo mechanism is referred to as kinematic dynamo.

In this classification, the Lorentz force in the Navier-stokes equation is removed and only

kinematic forces effects on the motion of the fluid are considered. There is also published

research on this topic ([Tilgner, 1997], [Pekeris et al., 1973], [Roberts, 1972]).

Here, we will only model gravitationally driven and convection driven dynamos. The

abovementioned stretching and twisting take place due to the forces in the Navier-Stokes

equation. Stretching and twisting are essential for the generation of the magnetic field,

but we do not need to consider these separately because their calculations are carried

out numerically within our models.

3.1 Gravitational dynamos

To investigate the gravitational numerical geodynamo, the following dimensionless equa-

tions are simultaneously solved: the Navier-Stokes equation, buoyancy transport equa-

tion, magnetic induction equation and continuity equations for mass and magnetic field.

∂~u

∂t
+ (~u · ~∇)~u+ 2ẑ × ~u = ∇φ− E2Ra

Pr
T
~r

r0
+ (∇× ~B)× ~B + E∇2~u

∂T

∂t
+ (~u · ~∇)T =

E

Pr
∇2T − Eε

∂ ~B

∂t
+∇× ( ~B × ~u) =

E

Pm
∇2 ~B

~∇ · ~u = 0 ~∇ · ~B = 0

where B, u, φ, T and ε are the magnetic field, fluid velocity, pressure perturbation,

buoyancy variable and buoyancy source, respectively. E, Pr, Pm and Ra are the Ek-

man, Prandtl, magnetic Prandtl and Rayleigh numbers, respectively. In the numerical

solutions, the ratio of inner to outer radii d = ri/ro is fixed at 0.35; the dimensionless

outer radius r0 = 1/0.65; and the variable modeling the buoyancy source ([Olson, 2007])

ε is fixed at 1. This buoyancy source is inserted in these equations to represent the solid-

ification in the inner boundary. Nondimensionalization is achieved by using the radius

ratio d as the length scale and the inverse of angular speed 1/Ω as the time scale. The

fluid velocity is scaled by dΩ and the magnetic field is scaled by (µ0ρ0d
2Ω2)1/2 where



44 3 Numerical Dynamo Simulations

ρ0 is the outer core mean density. The buoyancy variable T is scaled by Ṫ0d2

ν where

Ṫ0 is the time derivative of the spatially uniform slowly increasing part of the light el-

ement concentration in the outer core. We consider the same physical model described

in ([Olson, 2007]). It is a model for a rotating spherical shell with its gap filled with

fluid and its motion driven by gravitational convection. Here, we change the boundary

conditions and add a buoyancy source term. To better fit gravitational or compositional

convection, we employ the following boundary conditions: fixed buoyancy variable at the

inner boundary T = 1 at r = ri and zero flux through the outer boundary ∂T/∂t = 0 at

r = ro. Both velocity boundary conditions are taken as no slip and magnetic boundary

conditions are considered to be electrically insulating.

Here, we will again define the dimensionless numbers, since there are changes in some

of the definitions. The Ekman number, the ratio of viscous forces to Coriolis forces, is

defined as E = ν
d2Ω

where ν is the kinematic viscosity. The Prandtl number, the ratio of

kinematic viscosity to thermal diffusivity, is defined as Pr = ν
κ where κ is the diffusivity

of the buoyancy variable. The magnetic Prandtl number, the ratio of kinematic viscosity

to magnetic diffusivity, is defined as Pm = ν
η where η = 1/µ0σ is the magnetic diffusivity

and σ is the electrical conductivity. The Rayleigh number, the ratio of buoyancy forces

to the product of thermal and momentum diffusivities, is defined as Ra = αg0d5Ṫ0

ν2κ
where

α = (ρ0 − ρLe)/ρ0, ρLe is the light element end member mixture and the subscript Le

represents light element concentration and g0 is the gravity at the core-mantel boundary.

This last parameter Ra controls the strength of the buoyancy forces, which drives the

convection. In gravitational dynamos cooling of the core and solidification of iron and

nickel result in an increase in the partition of the light elements in the liquid near the inner

core boundary. As the light elements concentration increases, the density of the liquid at

the inner core boundary decreases, which enhances the buoyancy forces ([Olson, 2007]).

To be able to comment on the time scale of this dynamo model within the geomagnetic

time scale, we can use the dipole free decay time. The dimensionless dipole free decay

time is

td =
Pm

E

(
r0
πd

)2

. (3.1)

The dipole decay time corresponds to approximately 20 kyr for Earth ([Olson, 2007]).

The equations were solved using the spectral method described in Tilgner’s work with a

resolution of 33 Chebychev polynomials in radius and spherical harmonics of degree up to

128 ([Tilgner, 1999]). From these solutions, we get different outputs, but we will mostly
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use: the axial component of dipole moment, kinetic and magnetic energies and radial

component of the velocity and magnetic field. The kinetic and magnetic energies were

calculated through the formulas Ekin = 1
2

∫
~u2d3x and Emag = 1

2

∫
~B2d3x, respectively.

From these energies, we extracted the root mean square values of the velocity field and

magnetic field urms and Brms. Then we calculated the PSD of these rms values and

obtained power laws. We also showed the radial component of the velocity field at

r = (ri+ ro)/2 and in the equatorial plane and the magnetic field on the outer boundary

and in the equatorial plane. Some of the results of this section were previously published

([Tanriverdi and Tilgner, 2011]). Following the numerical solution of the equations, we

will comment on the results.

(a) (b)

(c) (d)

Fig. 3.1: Numerical results of the reversing gravitational dynamo at Ra = 1 · 106,

Pm = 20, E = 6.5 · 10−5 and Pr = 1. a) Time series of the kinetic energy. b) Time

series of the magnetic energy. c) PSD of urms. d) PSD of Brms.

Fig.3.1, fig.3.2 and fig.3.3 show the results and the analysis of the simulation for Ra =

1 · 106, Pm = 20, E = 6.5 · 10−5, P r = 1. Fig.3.1 shows the time series of the magnetic

and kinetic energy and PSDs of urms and Brms. We see that the power spectrum of

the rms velocity field has 1/f dependence for low frequencies and the power spectrum of

the rms magnetic field decreases as 1/f2 for the same frequency interval. For the high

frequency spectrum, there are different power laws and these are detailed in tab. 3.1.

Another output of this solution is depicted in fig.3.2 which shows the axial component
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Fig. 3.2: Time series of the dipole moment at Ra = 1 · 106, Pm = 20, E = 6.5 · 10−5

and Pr = 1.

(a) (b)

(c) (d)

Fig. 3.3: Structure of the reversing gravitational dynamo at Ra = 1 · 106, Pm = 20,

E = 6.5·10−5 and Pr = 1. a) Radial component of the velocity field ur at r = (ri+ro)/2.

b) Radial component of the magnetic field Br on the core mantle boundary. c) Radial

component of the velocity field ur in the equatorial plane. d) Radial component of the

magnetic field Br in the equatorial plane.

of the dipole moment versus time. It has positive values at some time intervals, and

negative values at others. This pattern is repeated many times over the simulation time

and means that there are many magnetic reversals for this solution. To compare these

reversals, we can use the decay time formula given by eq.3.1. The dipole decay time for

this solution is td = 702. If we use the value for the estimated decay time for Earth in this

simulation, the whole simulation time corresponds to 57kyr. Earth’s dipole decay time is

approximately 20kyr. On the other hand, we observe many reversals in the simulation.
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This shows that the decay does not takes place and the velocity field generates enough

magnetic field.

Fig.3.3 shows the radial components of the velocity field at r = (ri + ro)/2 and in the

equatorial plane and the magnetic field on the core mantle boundary and in the equatorial

plane. In the equatorial plane, we see two cyclonic and two anticyclonic vortices in the

velocity field. The velocity field at r = (ri + ro)/2 also shows these vortices. The

magnetic field on the core mantle boundary shows a structure similar to a dipole field.

In the equatorial plane, we see cross sections of two magnetic flux tubes. However, the

structure of these flux tubes is not as smooth as those observed in the velocity field.

This should be related to the magnetic Prandtl number. Since it is bigger than 1 in our

simulations, magnetic diffusivity takes place slowly and the structures of these flux tubes

are not as smooth as vortices in the velocity field. To be able to compare the simulation

to Earth’s magnetic field, we should consider the magnetic field over the mantle. If we

consider the magnetic field over the mantle, the magnetic field will be smoother and,

similar to the Earth’s magnetic field, its structure will look more like a dipole field.

(a) (b)

(c) (d)

Fig. 3.4: Numerical results of the reversing gravitational dynamo at Ra = 1 · 105,

Pm = 20, E = 6.5 · 10−5 and Pr = 1. a) Time series of the kinetic energy. b) Time

series of the magnetic energy. c) PSD of urms. d) PSD of Brms.

Fig.3.4, fig.3.5 and fig.3.6 show the results and the analysis of the simulation for Ra =

1·105, Pm = 20, E = 6.5·10−5, P r = 1. Fig.3.4 shows the time series of the magnetic and
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Fig. 3.5: Time series of the dipole moment at Ra = 1 · 105, Pm = 20, E = 6.5 · 10−5

and Pr = 1.

(a) (b)

(c) (d)

Fig. 3.6: Structure of the reversing gravitational dynamo at Ra = 1 · 105, Pm = 20,

E = 6.5·10−5 and Pr = 1. a) Radial component of the velocity field ur at r = (ri+ro)/2.

b) Radial component of the magnetic field Br on the core mantle boundary. c) Radial

component of the velocity field ur in the equatorial plane. d) Radial component of the

magnetic field Br in the equatorial plane.

kinetic energy and PSDs of urms and Brms. We see that the PSD of urms is constant for

low frequencies and the PSD of Brms reduces with 1/f2 for the same frequency interval.

The most interesting difference between fig.3.1 and fig.3.4 is that the power law for the

PSD of urms has changed from 1/f to constant for low frequencies. There are different

power laws for the high frequency spectrum and these are detailed in tab. 3.1.

Another output of this solution is the axial component of the dipole moment, which is
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shown in fig.3.5. Similar to the previous solution, there are many magnetic reversals for

this solution. The dipole decay time is again td = 702 and this time, the whole simulation

time corresponds to 712kyr. There are more than 30 reversals in the simulation. Again,

the velocity field generates enough magnetic field and the dissipation due to the Joule

dissipation does not takes place.

Fig.3.6 shows the radial components of the velocity field at r = (ri + ro)/2 and in the

equatorial plane and the magnetic field on the core mantle boundary and in the equatorial

plane. The number of vortices are doubled in the velocity field if compared to the previous

case. We see four cyclonic and four anticyclonic vortices in the equatorial plane. In the

velocity field, this structure with four paired vortices is also seen at r = (ri + ro)/2. The

magnetic field on the core mantle boundary again shows a structure similar to the dipole

field and will be smoothed if we consider the field over the mantle. The magnetic field

shows two paired flux tubes in the equatorial plane. However these are not as smooth as

in the velocity field.

(a) (b)

(c) (d)

Fig. 3.7: Numerical results of the nonreversing gravitational dynamo at Ra = 5 · 104,

Pm = 20, E = 6.5 · 10−5 and Pr = 1. a) Time series of the kinetic energy. b) Time

series of the magnetic energy. c) PSD of urms. d) PSD of Brms.

Fig.3.7, fig.3.8 and fig.3.9 show the results and the analysis of the simulation for Ra =

5 · 104, Pm = 20, E = 6.5 · 10−5, P r = 1. Fig.3.7 shows the time series of magnetic

and kinetic energy and PSDs of urms and Brms. There is a repeated structure in both
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Fig. 3.8: Time series of the dipole moment at Ra = 5 · 104, Pm = 20, E = 6.5 · 10−5 and

Pr = 1.

(a) (b)

(c) (d)

Fig. 3.9: Structure of the nonreversing gravitational dynamo at Ra = 5 · 104, Pm = 20,

E = 6.5·10−5 and Pr = 1. a) Radial component of the velocity field ur at r = (ri+ro)/2.

b) Radial component of the magnetic field Br on the core mantle boundary. c) Radial

component of the velocity field ur in the equatorial plane. d) Radial component of the

magnetic field Br in the equatorial plane.

kinetic and magnetic energies, which shows itself as peaks in the spectra. Other than

these peaks, the PSD of urms is more or less constant for the low frequency interval and

the PSD of Brms decreases as 1/f2 for the same frequency interval. Different power laws

governing the high frequency intervals are presented in tab. 3.1 in detail.

The axial component of the dipole moment is shown in fig.3.8. In contrast to the previous

solutions, there are no magnetic reversals for this solution and the axial component of the

dipole moment is always a negative value. The decrease in the Rayleigh number results
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with a nonreversing result. The dipole decay time is again td = 702 and this time, the

whole simulation time corresponds to 142kyr.

Fig.3.9 shows the radial components of the magnetic field on the core mantle boundary

and in the equatorial plane and the velocity field at r = (ri+ ro)/2 and in the equatorial

plane. In the velocity field, there are six cyclonic and six anticyclonic vortices, which are

easily observed in the equatorial plane. At r = (ri + ro)/2, we also see this columnar

structure in the velocity field. The magnetic field on the core mantle boundary again

shows a structure similar to the dipole field and will be much smoother if we consider the

field over the mantle. The magnetic field also shows paired flux tubes in the equatorial

plane. However, these have a different structure than the velocity field vortices. Again

this difference is related with Pm.

(a) (b)

Fig. 3.10: Numerical results of the reversing gravitational dynamo at Ra = 1 · 106,

Pm = 5.75, 6, 13, 20, 25, 35, E = 6.5 · 10−5 and Pr = 1. a) PSD of urms. b) PSD of

Brms.

Fig.3.10 shows a set of PSD graphs of urms and Brms at Ra = 1 · 106, E = 6.5 · 10−5,

Pr = 1 and Pm = 5.75, 6, 13, 20, 25, 35. The PSDs of urms show 1/f dependence on

f for low frequencies and the PSDs of Brms decrease as 1/f2 for the same frequency

interval. It is obvious that the low frequency power law does not depend on Pm.

Fig.3.11 shows a set of PSD graphs of urms and Brms at Ra = 1 · 105, E = 6.5 · 10−5,

Pr = 1 and Pm = 20, 30, 35, 50, 70, 100. The PSDs of urms are more or less constant for

low frequencies and the PSDs of Brms decrease as 1/f2 for the same frequency interval.

Again, there is no Pm dependence of the low frequency power law.

Fig.3.12 shows a set of PSD graphs of urms andBrms atRa = 5·104, E = 6.5·10−5, P r = 1

and Pm = 7, 8, 10, 12, 15, 20, 30. The PSDs of urms are more or less constant for low
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(a) (b)

Fig. 3.11: Numerical results of the reversing gravitational dynamo at Ra = 1 · 105,

Pm = 20, 30, 35, 50, 70, 100, E = 6.5 · 10−5 and Pr = 1. a) PSD of urms. b) PSD of

Brms.

(a) (b)

Fig. 3.12: Numerical results of the nonreversing gravitational dynamo at Ra = 5 · 104,

Pm = 7, 8, 10, 12, 15, 20, 30, E = 6.5 · 10−5 and Pr = 1. a) PSD of urms. b) PSD of

Brms.

frequencies and the PSDs of Brms decrease as 1/f2 for the same frequency interval.

Similar to the previous cases, the low frequency power law does not depend on Pm.

Table Tab.3.1 provides detailed information on the simulation results shown in fig.3.10,

fig.3.11 and fig.3.12. Nearly in all cases for low frequencies, the power law for Brms is

-2 and in the corresponding frequency interval, the power law for urms changes with Ra.

If Ra = 1 · 106, the power law is -1 and if Ra = 1 · 105 or Ra = 5 · 104 , the power law

is 0. Later in this work, we will explain this situation with a simple model. In the high

frequency range, the situation is different. The relationship between the power laws for

high frequencies can be stated as the power law of urms at high frequencies is less than

the power law of Brms by a approximate value 2 in the same interval. But this is not valid

in all cases, which makes it harder to obtain a general relationship. Table 3.1 also shows
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Ra Pm Λ Re Rm Ro
Lf PL Hf PL Lf PL Hf PL

(Brms) (Brms) (urms) (urms)

1 · 106

5.75 2.02 77.8 226 0.505 -2 -9 -1 -10

6 2.74 82.4 264 0.535 -2 -8 -1 -10

13 73 65.5 362 0.426 -2 -7 -1 -9

20 171 59.9 467 0.389 -2 -6 -1 -8.5

25 243 57.5 538 0.374 -2 -6 -1 -8.5

35 408 55.6 703 0.361 -1.6 -5.5 -1 -8

1 · 105

20 16.2 20.3 53.7 0.132 -2 -9 0 -12

30 51 20.5 82.3 0.134 -2 -9 0 -12

35 68.9 20.5 95.5 0.133 -2 -9 0 -11

50 130 20.3 134 0.132 -2 -9 0 -11

70 231 19.9 181 0.130 -2 -8 0 -10

100 386 19.6 249 0.127 -2 -7 0 -11

5 · 104

7 0.313 14.9 10.1 0.0969 -2 -11 0 -13

8 0.408 14.9 11.7 0.0973 -2 -11 0 -13

10 0.508 14.9 14.5 0.097 -2 -11 0 -13

12 0.778 14.8 17.2 0.0964 -2 -11 0 -13

15 0.455 15 22 0.0977 -2 -11.5 0 -15

20 0.614 15 29.3 0.0976 -2 -7.5 0 -15

30 16.8 13.1 33.5 0.0851 -2 -9 0 -14

Tab. 3.1: Gravitational dynamo simulation results. The first two column show control

parameters Ra and Pm. Since two of the parameters are constant for these results, they

are not shown and E = 6.5 · 10−3 and Pr = 1. The next four columns show output

parameters Λ, Re, Rm and Ro. The 7th and 8th columns show low frequency interval

power law (Lf PL) and high frequency interval power law (Hf PL) for the spectrum of

Brms, respectively. The 9th and 10th columns show similar power laws for the spectrum

of urms.
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the Reynolds number Re = Ro/E, Elsasser number Λ = B2
rmsPm/E, magnetic Reynolds

number Rm = u2
rmsPm/E and Rosby number Ro = urms. It is seen that mostly Ro

decreases as Pm increases. This case can be explained by a simple consideration. Pm is

the ratio of kinematic viscosity to magnetic diffusivity, so as it increases, we can consider

increasing kinematic viscosity. If the kinematic viscosity is higher, it is expected that

more kinetic energy will disappear, which will result in decreasing Ro. However, this

consideration is valid if Pm has reached a saturation value for the dynamo. This also

explains the decrease in Re since it is proportional to Ro. As Pm increases, Rm also

increases due to the direct proportionality to Pm. In Λ, the situation is different and

depends on both urms or Ro and Pm; its value is determined due to an increased or

decreased rate in these values.

Fig. 3.13: Comparison of some calculated parameters of the Earth compared to the

simulations’ values. There are four input parameter values. There are huge differences

between the Earth’s parameters and the simulations’ parameters. This is also true for

the output parameters. In the bottom panel, we see some estimated numbers related to

the Earth’s core ([D. Schmitt, 2009]).

Fig. 3.13 provides some of the values of parameters related with the dynamo mechanism

estimated for Earth. This mechanism is the source of the Earth magnetic field as men-

tioned earlier. As evident in the figure, there are huge differences in these parameters

when comparing estimates for Earth to our simulations. This shows that we are far from

the real Earth case. However, these simulations help us gain a better understanding of

the dynamo mechanism. In our simulations, E = 6.5 · 10−5 and Pr = 1. If we compare

these values with the estimated values for Earth, we see that the parameter values are
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nearly the same for Pr. This shows that the ratio of viscosity to the magnetic diffusivity

is almost equal. E is much greater than the estimated Earth values. Hence, the effect

of viscous forces compared to Coriolis forces is much greater. In our simulations shown

in table 3.1, we have taken Ra as 5 · 104, 1 · 105 and 1 · 106. These values are much

smaller than the estimated Earth values. Since Ra measures the ratio among buoyancy

and diffusivity, the effect of buoyancy forces compared to the diffusive forces is smaller

in the simulations than the estimated Earth effects. For Pm, the situation is different

compared to Ra, and Pm takes values between 5−100. This time our simulation param-

eters are much greater. This means that in the simulations, viscous forces are too great

compared to those estimated for Earth. Re takes values between 19 − 80. Then this

means that the ratio of the inertial forces to the viscous forces is much smaller than the

estimated Earth ratio. For Ro, the simulation values are greater than estimated Earth

values. This means that the inertial to Coriolis force ratio is greater in the simulations.

In the simulations, Λ values include the estimated Earth values. Then, in some cases,

the ratio of Lorentz force to Coriolis force is equal to the estimated ratios and in other

cases, it is slightly greater. For Rm, our simulation results are within the range of the

estimated Earth values. So the ratio of induction to magnetic diffusivity is of the order

of estimated values. A more detailed table can be found at the end of this work.

The dipole graph for our simulations are not similar to the Earth’s estimated dipole. If

we consider the case at the surface of the Earth in our simulations, we also obtain a

dipole structure for the magnetic field. However, our results do not resemble the dipole

shown in fig. 2.7. Based on the large differences between the input parameters and some

other effects, this is not an unexpected result.

An interesting coincidence between the Earth’s estimates and our simulations is evident

in our power laws for Brms. The frequency value f ≈ 10−3 from our calculations is nearly

equal to the Earth’s estimate of 5Ma−1. This comparison is done using the dipole decay

time. If we examine the PSD graph shown in fig. 2.5, we see that the frequency at that

value starts to fall and the power law for this decrease is nearly 1/f2. In this graph,

this decrease is observed in the third region. In most cases in our simulations, f ≈ 10−3

is the starting value of the 1/f2 power law or the decay at that frequency has already

started and the 1/f2 power law is observed.

Thus, there is coincidental consistency between the calculated Earth PSD graph and our

simulations. We also see another power law in fig. 2.5 just after the 1/f2 power law and

it is approximately the 1/f7 power law. This value was also seen in some of cases in our
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simulations.

3.2 Convection driven dynamos

In the previous section, we showed the results of the dynamo driven by gravitational con-

vection. Here we will examine a different situation. We will take the buoyancy source as

zero, ε = 0, in the eqs. 3.1 and use fixed temperature boundary conditions on both inner

and outer boundary conditions. This configuration gives a dynamo driven by convec-

tion due to the temperature difference. We will solve eqs. 3.1 with the abovementioned

conditions. This new configuration changes one of the control parameters. Here, we

have scaled temperature by ∆T , the temperature difference between the inner and outer

boundaries. This new scaling gives us the Rayleigh number Ra = αg0d3∆T
κν . All other

control parameters and scalings are the same as previously described. The numerical so-

lutions for different configurations of control parameters are given below. These solutions

will be compared with the results of the gravitational dynamo.

(a) (b)

(c) (d)

Fig. 3.14: Numerical results of the reversing dynamo at Ra = 5 · 105, Pm = 20, E =

6.5 · 10−5, P r = 1. a) Time series of the kinetic energy. b) Time series of the magnetic

energy. c)PSD of urms. d ) PSD of Brms.

Fig.3.14, fig.3.15 and fig.3.16 show the results and the analysis of the simulation at

Ra = 5 · 105, Pm = 20, E = 6.5 · 10−5, P r = 1. At Ra = 1 · 106, the numerical solution
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Fig. 3.15: Time series of the dipole moment at Ra = 5 · 105, Pm = 20, E = 6.5 · 10−5

and Pr = 1.

(a) (b)

(c) (d)

Fig. 3.16: Structure of the reversing dynamo at Ra = 5 · 105, Pm = 20, E = 6.5 ·
10−5, P r = 1. a) Radial component of the velocity field ur at r = (ri + ro)/2. b) Radial

component of the magnetic field Br on the core mantle boundary. c) Radial component

of the velocity field ur in the equatorial plane. d) Radial component of the magnetic

field Br in the equatorial plane.

resulted in infinities. So we have taken Ra as 5 · 105 and will compare this case with

the previous gravitational dynamo at Ra = 1 · 106. Fig.3.14 shows the time series of

the magnetic and kinetic energy and PSDs of urms and Brms. The PSD of urms is

nearly constant for low frequencies and the PSD of Brms decreases as 1/f2 for the same

frequency interval. For the gravitational dynamo at Ra = 1·106, we have 1/f dependence

on f for the PSD of urms. This is the first difference between these two cases. Different

power laws for the high frequency spectrum are detailed in tab. 3.2.
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The axial component of the dipole moment is shown in fig.3.15. Magnetic reversals are

easily observed, which is nearly identical to the gravitational dynamo results. The dipole

decay time is again td = 702 and the whole simulation time corresponds to 19kyr.

In fig.3.16, we see radial components of the the velocity field at r = (ri + ro)/2 and

in the equatorial plane and the magnetic field on the core mantle boundary and in the

equatorial plane. There are six cyclonic and six anticyclonic vortices in the velocity field.

However, they are irregular and this is observed in the equatorial plane. The velocity field

at r = (ri + ro)/2 also shows this structure, but the columnar structure is not smooth.

The magnetic field on the core mantle boundary shows a structure different than a dipole

field and it is difficult to say anything about the field over the mantle. The magnetic

field in the equatorial plane is really complicated. But one can still see the effects of the

columns of the velocity field. Comparing these results to the gravitational dynamo, we

see that the situation is totally different. The deviations from a dipole in the magnetic

field are much greater in this solution with respect to the gravitational one.

(a) (b)

(c) (d)

Fig. 3.17: Numerical results of the reversing dynamo at Ra = 1 · 105, Pm = 20, E =

6.5 · 10−5, P r = 1. a) Time series of the kinetic energy. b) Time series of the magnetic

energy. c)PSD of urms. d ) PSD of Brms.

Fig.3.17, fig.3.18 and fig.3.19 are the results and the analysis of the simulation at Ra =

1 · 105, Pm = 20, E = 6.5 · 10−5, P r = 1. Fig.3.17 shows the time series of the magnetic

and kinetic energy and PSDs of urms and Brms. The PSD of urms is constant for the low
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Fig. 3.18: Time series of the dipole moment at Ra = 1 · 105, Pm = 20, E = 6.5 · 10−5

and Pr = 1.

(a) (b)

(c) (d)

Fig. 3.19: Structure of the dynamo at Ra = 1 · 105, Pm = 20, E = 6.5 · 10−5, P r = 1.

a) Radial component of the velocity field ur at r = (ri + ro)/2. b) Radial component of

the magnetic field Br on the core mantle boundary. c) Radial component of the velocity

field ur in the equatorial plane. d) Radial component of the magnetic field Br in the

equatorial plane.

frequency interval and the PSD of Brms decreases as 1/f2 for the same frequency interval.

These properties are the same as the gravitational dynamo case for the same control

parameters, as shown in fig. 3.4. There are different power laws for high frequencies,

which can be found in tab. 3.2.

The axial component of the dipole moment is shown in fig.3.18. Again, there are magnetic

reversals just like the gravitational dynamo case. The dipole decay time is td = 702 and

the whole simulation time corresponds to 44kyr.
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Fig.3.19 shows the radial components of the the velocity field at r = (ri+ro)/2 and in the

equatorial plane and the magnetic field on the core mantle boundary and in the equatorial

plane. In the velocity field, there are four cyclonic and four anticyclonic vortices This is

observable in both cases: on the equatorial plane and at r = (ri + ro)/2. However this

structure is irregular. The magnetic field is complex on the core mantle boundary and is

hardly reminiscent of a dipole field. The magnetic field also has a complex structure in the

equatorial plane. It is really difficult to construct any similarities between the magnetic

and velocity fields. In the gravitational dynamo simulation, we also had four columnar

structures in the velocity field. However, the situation is different for the magnetic field;

here, it is much more complicated than the gravitational dynamo for the same control

parameters.

(a) (b)

(c) (d)

Fig. 3.20: Numerical results of the reversing dynamo at Ra = 5 · 104, Pm = 20, E =

6.5 · 10−5, P r = 1. a) Time series of the kinetic energy. b) Time series of the magnetic

energy. c) PSD of urms. d) PSD of Brms.

Fig.3.20, fig.3.21 and fig.3.22 provide the results and the analysis of the simulation at

Ra = 5 · 104, Pm = 20, E = 6.5 · 10−5, P r = 1. Fig.3.20 shows the time series of the

magnetic and kinetic energy and PSDs of urms and Brms. The PSD of urms is more or

less constant for low frequencies and the PSD of Brms declines with 1/f2 for the same

frequencies. Apart from the peaks and repeated structures, this solution has similar

properties to the gravitational dynamo. For high frequencies, there are different power
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Fig. 3.21: Time series of the dipole moment at Ra = 5 · 104, Pm = 20, E = 6.5 · 10−5

and Pr = 1.

(a) (b)

(c) (d)

Fig. 3.22: Structure of the dynamo at Ra = 5 · 104, Pm = 20, E = 6.5 · 10−5, P r = 1.

a) Radial component of the velocity field ur at r = (ri + ro)/2. b) Radial component of

the magnetic field Br on the core mantle boundary. c) Radial component of the velocity

field ur in the equatorial plane. d) Radial component of the magnetic field Br in the

equatorial plane.

laws as detailed in tab. 3.2.

Fig.3.21 shows the axial component of the dipole moment. This solution results in some

magnetic reversals. However, the gravitational dynamo case for the same configuration

had no magnetic reversals. The dipole decay time is again td = 702, and this time the

whole simulation time corresponds to 256kyr.

Fig.3.22 shows the radial components of the velocity field at r = (ri + ro)/2 and in
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Ra Pm Λ Re Rm Ro
Lf PL Hf PL Lf PL Hf PL

(Brms) (Brms) (urms) (urms)

5 · 105

5 26.1 79.6 206 0.517 -2 -8 0 -10

10 110 73.5 351 0.478 -2 -7 -1&0 -9

20 292 69.4 627 0.451 -2 -6 -1&0 -8

30 516 67.5 888 0.439 -1.6 -6 -1&0 -8

1 · 105

5 0.035 32.6 34.6 0.212 -2 -10 0 -12

10 17.8 30.1 58.9 0.196 -2.5 -8 0 -10

20 57 28.7 107 0.187 -2 -8 0 -9

30 150 27.1 144 0.176 -2.5 -8 0 -9

5 · 104

10 0.021 19.3 24.2 0.125 -2 -10 0 -14

20 18.9 17.6 40.2 0.114 -2 -8 0 -10

30 48.1 16.7 54.9 0.109 -2 -8 -0.6 -9

Tab. 3.2: Convention driven dynamo simulation results. The first two column show

control parameters Ra and Pm. Since two of the parameters are constant for these results,

they are not shown and E = 6.5 · 10−3 and Pr = 1. The next four columns show output

parameters Λ, Re, Rm and Ro. The 7th and 8th columns show low frequency interval

power law (Lf PL) and high frequency interval power law (Hf PL) for the spectrum of

Brms, respectively. The 9th and 10th columns show similar power laws for the spectrum

of urms.

the equatorial plane and the magnetic field on the core mantle boundary and in the

equatorial plane. There is a complicated structure in the velocity field r = (ri + ro)/2.

There are six cyclonic and six anticyclonic vortices that are observed in the equatorial

plane and at r = (ri + ro)/2. However, two of the anticyclonic vortices are weak and

hard to notice. This property is similar to the gravitational dynamo case. The magnetic

field on the core mantle boundary is different than a dipole field. The magnetic field

in the equatorial plane has a different structure than the velocity field and it is hard to

construct a relationship between them. The magnetic field structure has changed from

the gravitational dynamo to this solution. Dipole property has been lost.

Table tab.3.2 provides detailed information from the simulation results of the different
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configurations. The power law for Brms at low frequencies is -2 in most cases. Within

the same frequency interval, the power law for urms is constant. At high frequencies,

the situation is more complicated. There is no clear relationship. If we compare these

results with the gravitational dynamo, we see two main differences. The first one is that

the -1 power law for urms is not observed in these solutions. The second difference is

that we have a few cases which deviate from the -2 power law for Brms. This table also

shows the Elsasser number Λ, Reynolds number Re, magnetic Reynolds number Rm

and Rosby number Ro. The results show that Ro decreases as Pm increases. Since Re

is proportional to Ro, as Pm increases, Re also decreases. Λ and Rm increase as Pm

increases due to direct proportionality. A more detailed table is located at the end of

this work.

Now let us consider the simulation input and output parameters. In our simulations, we

have taken E = 6.5 · 10−5 and Pr = 1. If we compare these values to the estimated

ones for Earth, we see that our parameter for Pr is in the same range as estimates. This

means that the ratio of viscosity to the magnetic diffusivity is nearly the same. The

E is much bigger than the estimate. So, there is a much larger effect of viscous forces

compared to the Coriolis forces. Ra is set to the values 5 ·104, 1 ·105 and 5 ·105 and these

values are much smaller than the estimated Earth values. This means that the ratio of

buoyancy forces due to the temperature difference between the outer boundary and inner

boundary of the liquid core and diffusive forces is much smaller than the estimated Earth

values. So, the effect of the buoyancy force is smaller in our simulations. Pm changes

between 5 and 30 and this is also greater than the estimated Earth values. This means

that the viscous forces compared to the magnetic diffusive forces are stronger. Elsasser

number Λ values include estimated Earth values. Then the ratio of Lorentz force to

Coriolis force is in our simulation is either equal to our greater than the estimated ratios.

Re is much smaller and this shows that the inertial forces compared to the viscous forces

are also much smaller. Our simulation results for Rm are within the range of estimated

Earth values. So the ratio of induction to magnetic diffusivity is of the order of estimated

values. The other parameter, Ro, is greater and the ratio of inertial forces to the Coriolis

force is greater.

The dipole graphs from our simulations are not quite similar to the Earth’s dipole shown

in fig.2.7. If one considers the case over the crust in our simulations, it is still hard to

obtain a dipole structure for the magnetic field. This may be due to differences in the

input parameters between our simulations and those estimated for Earth.
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If we consider the frequency f ≈ 10−3 from our calculations, this value is nearly equal

to 5Ma−1 for the Earth, similar to the results of previously shown gravitational dynamo

simulations. Again this comparison is done using the dipole decay time. Then, if we

compare our PSD graphs with the one shown in fig. 2.5, this frequency coincides with

the third region in the graph. Here, the power law for the decay is approximately 1/f2.

This is same power law as that obtained from our simulations. Just after the 1/f2 power

law, another power law in fig. 2.5 is approximately 1/f7. We also observed this value in

some cases in our simulations.
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Eqs. 3.1 ,the dynamo equations, form a complex structure. Here, the velocity is the

solution to the Navier-Stokes equation. The velocity is also present in the induction

equation and heat or buoyancy source equation. There are many factors that affect the

velocity field, an observation which can be easily seen from the Navier-Stokes equation

and for stable dynamo solutions. These effects result in a fluctuating velocity field. We

can replace the fluctuating variable, in this case velocity field, with a stochastic random

variable and use this variable in the other equations. For this purpose, we will consider

only the solution of the induction equation and can write it as

∂ ~B

∂t
+∇× ( ~B × ~v) = λ∇2 ~B (4.1)

where λ is the magnetic diffusivity, ~v is the velocity and ~B is the magnetic field. In

this section we will use phenomenological models and a random variable for the velocity

field in order to analyze changes in the magnetic field. After determining the changes

in the magnetic field due to this random variable, we will also calculate the PSD of the

magnetic field. We will apply two phenomenological models, a single magnetic mode and

several magnetic modes. Some of the results presented in this section have already been

published ([Tanriverdi and Tilgner, 2011]).

4.1 A single magnetic mode

Mean field magnetohydrodynamics have provided a most fruitful simplification of the

induction equation ([Krause and Radler, 1980]). In this approach, the effect of small

scale fluctuations on the large scales are not computed exactly, but are modeled, in the

simplest case, as an α−effect. We have also previosly mentioned on this effect. The

number of magnetic degrees of freedom which need to be retained is thus reduced; in an

extreme simplification, only one mode remains. If we call B the amplitude of that mode,
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α̃(t) and β the coefficients describing the α−effect and its quenching, respectively, and µ

is a coefficient related to magnetic dissipation, the simplest model reproducing the main

features of the induction equation is:

∂tB = α̃(t)B − βB3 − µB. (4.2)

α̃ is allowed to be time dependent in order to reflect a time dependent velocity field. The

reduction of the α−effect by the term βB3 models the retroaction of the magnetic field

on the velocity field via the Lorentz force (which is quadratic in the magnetic field) in the

Navier-Stokes equation. We now consider α(t) = α̃(t) − µ to be a random process with

mean square 〈α2〉 and remove the dimensions from eq. 4.2 by expressing time in multiples

of 〈α2〉−1 and the magnetic field amplitude in multiples of (〈α2〉/β)1/2. The adimensional

quantities t′, α′ and B′ are given by t′ = t〈α2〉, α′ = α/〈α2〉 and B′ = B
√
β/〈α2〉. In

the remainder of this section, all quantities are understood to be non-dimensional and

the primes are omitted for convenience. The non-dimensional variables then obey the

equation:

∂tB = α(t)B −B3 (4.3)

in which α(t) is a random variable with 〈α2〉 = 1. As long as B is small, the solution to

this equation is

B(t) = B(0) exp

(∫ t

0
α(τ)dτ

)
. (4.4)

For times small enough so that the exponent can be considered small, we have

B(t)−B(0)
B(0)

≈
∫ t

0
α(τ)dτ. (4.5)

Taking the Fourier transform of this equation, it follows that the spectrum of B is,

apart from frequency independent factors, the same as the spectrum of α divided by

the square of the angular frequency, ω2. For example, if the spectrum of α is a white

noise, the spectrum of B behaves as ω−2. For large times t, eqs. 4.4 and 4.3 become a

poor approximation, which means that the ω−2 will not be observable below some cutoff-

frequency. If the mean of α, 〈α〉, is different from zero, B will be large enough for the

nonlinear term in eq. 4.3 to become dominant after a time to the order of 〈α〉−1. In that

regime, and concentrating on slow fluctuations, eq. 4.3 reduces to B2 = α. Considering

again the example of α(t) with a white noise, we find a spectrum of B, which is a white

noise, too. The transition in the spectrum of B from ω0 to ω−2 occurs at a frequency

which increases with increasing 〈α〉 because eq. 4.5 fails at earlier times t.
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(a) (b)

(c) (d)

Fig. 4.1: Numerical solution of Eq.(4.3) for 〈α〉 = 0. a) Time series of α. b) Time series

of B. c) PSD of α. d) PSD of B; the straight line indicates the power law 1/f2.

(a) (b)

(c) (d)

Fig. 4.2: Numerical solution of Eq.(4.3) for 〈α〉 = 1 and α has been filtered. a) Time

series of α. b) Time series of B. c) PSD of α and straight line indicates the power law

1/f4. d) PSD of B; the straight lines indicate the power laws 1/f2 and 1/f6.
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In order to test these ideas, we have solved eq. 4.3 numerically using the Runge-Kutta

method. The first solution is shown in fig. 4.1. Fig. 4.1a shows the time series of α

generated from a Gaussian random number generator with a mean of zero. Fig. 4.1c

depicts the PSD of α, which is white noise. Fig. 4.1b shows the numerical solution

for B and its PSD is shown in fig. 4.1d. The PSD obeys the 1/f2 power law where

f = ω/(2π). We previously concluded that if α has a white noise spectrum, then a

1/f2 factor results from integration, and finally we get the result 1/f2 for the PSD of B.

Hence, the simulation results and our considerations are consistent.

As a second example, we will use the random number α(t) with a white noise spectrum

and 〈α〉 = 1. However, this time we have filtered the high frequency fluctuations. The

random number α(t) was generated by sending the output of a Gaussian deviate random

number generator through a Butterworth filter ([Moreau], [Rabiner and Gold, 1975]).

This filter uses a function in the form 1/(1+ (f/fc)2n) and passes frequencies lower than

fc. Here fc is the cut off frequency and n is the order of the filter, which defines power

law in the filtering. The filter was adjusted such that its output had a spectrum as a

function of frequency f in 1/(1+(f/f1)4) with f1 = 50. The time series of α(t) is shown

in fig. 4.2a. Its PSD is shown in fig. 4.2c and here, the 1/f4 power law due to filtering

is easily observable. Fig. 4.2b shows the numerical solution for B and its PSD is given

in fig. 4.2d. There we see the 1/f6 power law for high frequencies. In this frequency

interval, integration gives a 1/f2 factor and multiplication with 1/f4 gives this 1/f6

power law. Then as we proceed to the low frequencies we see the 1/f2 power law, which

comes from the integration of white noise. This is exactly the same as with the previous

example. If we look at the lowest frequency range for B, we observe a section of white

noise. Since the mean of α(t) is 1, it affects the integration. We have also mentioned

that in this range, the nonlinear term B3 plays a role because it is no longer small. This

explains the white noise in the PSD of B at low frequencies.

Fig. 4.3 shows the PSD of three numerical solutions of B, with one of them being the

second example discussed above for 〈α〉 = 1. We used the same random number sequence

for α in all three cases. The changing variable for these three examples is the mean of α,

which takes values of 1,5 and 15. From our previous considerations, we know that the

mean of α affects the low frequency range. This effect is easily observed in fig. 4.3. As

the mean of α increases, the white noise range for the spectrum of B increases. This is

what we expected. In the high frequency range, the arguments of the second example

are valid for all three cases.
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Fig. 4.3: The PSD of B, the solution of eq. 4.3, as a function of frequency f for 〈α〉 = 1

(red), 5 (green) and 15 (blue). The straight lines indicate the power laws 1/f2 and 1/f6.

4.2 Several magnetic modes

We will now investigate several magnetic modes and the conditions under which the single

mode model is applicable to more general systems. We will show that the predictions of

the single mode model are recovered in the limit of small fluctuations.

The precise form of the dynamical system used as a model does not really matter for the

following analysis, but a specific system must be chosen for the numerical examples. In

order to stay as close as possible to the previous section, let us assume ∇ · ~v = 0 and

rewrite the left hand side of eq. 4.1 as ∂tBi +
∑

j vj∂jBi −
∑

j Bj∂jvi. We then proceed

through the same steps as before, but replace the combination of velocity and derivation

with a random variable in which we absorb the dissipative term and the right hand side,

remove dimensions, and model saturation via a cubic term. This leads to the following

system:

∂tBi + (α1(t) + α2(t) + α3(t))Bi − αi(t)(B1 +B2 +B3) = −B3
i , i = 1, 2, 3, (4.6)

in which αi(t) are random variables. This system bears only a metaphorical relation

with the original induction equation and will be used to exemplify three different cases:

1)if the fluctuations of the αi(t) are small compared with the mean of the αi(t), 2)if the

fluctuations of the αi(t) are large and 3)if the fluctuations of the αi(t) are of the same

order as the mean of the αi(t).

In case 1, where the fluctuations of the αi(t) are small compared with the mean of the

αi(t), the solution of (4.6) will be close to the solution of the time independent system
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in which each αi(t) in (4.6) is replaced by its mean 〈αi〉. Let us assume 〈α1〉 = 〈α2〉 =

〈α3〉 < 0. An eigenvalue analysis of the left hand side of (4.6) then reveals one neutral

mode and two modes with equal and positive growth rate. In the presence of small

fluctuations, the neutral mode will not contribute significantly to the dynamics. If the

initial conditions and nonlinear term select an arbitrary direction in the space spanned

by the two degenerate growing modes, we expect (4.6) to behave the same as the single

mode model. However, there are some differences.

(a) (b)

(c) (d)

Fig. 4.4: Numerical solution of eq.(4.6) for 〈αi〉 = −10. a) Time series of α1. b) Time

series of
√∑

B2
i . c) PSD of α1. d) PSD of

√∑
B2
i ; the straight line indicates the 1/f2

power law.

Fig. 4.4 shows the numerical solution of eq. 4.6. In this solution, 〈α2
i 〉 = 1, 〈αi〉 = −10

and its spectrum is white noise. The time series of αi is shown in fig. 4.4a and its PSD

is shown in fig. 4.4c. The numerically obtained solution of
√∑

B2
i is shown in fig. 4.4b.

The numerical solution yields the 1/f2 type of power law for
√∑

B2
i , which is shown in

fig. 4.4d. If we compare this solution with the one shown in fig. 4.2, the results appear

similar. The exceptions are that there is not a 1/f4 dependence in the high frequency

regime for α and
√∑

B2
i has a 1/f6 dependence. Similar to the solution in 4.2, here

we also observe white noise for the low frequency regime and the 1/f2 power law for the

high frequency regime, as expected. The white noise in the PSD of
√∑

B2
i is related to

the mean of α and we explained this feature in the previous section.
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On the other hand, if the fluctuations of αi are large compared to their means, the

dynamics are no longer dominated by a single mode and the analysis provided in the

previous section breaks down. In this case, the other modes start to show themselves

and analysis becomes much more complicated than the single mode computation. The

spectrum of the fluctuations of
√∑

B2
i may now be different due to these complicated

interactions. Now we will attempt to analyze this complicated structure both numerically

and analytically.

(a) (b)

Fig. 4.5: a) Time series of α with mean -0.01. b) PSD of α; the straight line indicates

the 1/f power law.

Fig. 4.5 shows the time series of αi and its PSD at 〈αi〉 = −0.01 and 〈α2
i 〉 = 1. Here

we see that its PSD obeys the 1/f power law and is chosen due to the existence of the

velocity field’s 1/f power law in some of the gravitational dynamo simulations. The

random number sequence is obtained by applying the method of ([Kasdin, 1995]). In

this method, the response function is hk =
(
α
2 + k − 1

)
hk−1

k together with h0 = 1. In

this equation, α gives the power law. This response function is used to obtain a 1/fα

power law in the PSD from a Gaussian deviate random number sequence. In our case, we

need a 1/f power law, and we have taken α as 1. This method is also used to obtain the

other random number sequences for 〈αi〉 = −0.3 and 〈αi〉 = −5 with 〈α2
i 〉 = 1. These

values will also have the 1/f power law in their power spectrum. Fig. 4.5 is a typical

example for the αi, which will be used in the next calculations. The only difference will

be the mean of αi and this difference does not effect its spectrum.

Fig. 4.6 shows some examples of solutions of eq. 4.6. Let us first consider the case in

which the fluctuations of αi are small compared to their mean. The time series and PSD

of
√∑

B2
i are shown in fig. 4.6c and fig. 4.6f for 〈αi〉 = −5. Since the fluctuations are

small in this case, it should then behave in a similar way to the single mode model: at the

lowermost frequencies, the PSD of
√∑

B2
i must decay in the same way as the PSD of

αi, i.e. 1/f in the present example. However, there is a difference in this case compared
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(a) (b) (c)

(d) (e) (f)

Fig. 4.6: Numerical solutions of eq.(4.6) for 〈αi〉 = −0.01,−0.3,−5. a) Time series of√∑
B2
i for 〈αi〉 = −0.01. b) Time series of

√∑
B2
i for 〈αi〉 = −0.3. c) Time series of√∑

B2
i for 〈αi〉 = −5. d) PSD of

√∑
B2
i for 〈αi〉 = −0.01; straight lines indicate the

1/f and 1/f3 power laws. e) PSD of
√∑

B2
i for 〈αi〉 = −0.3; straight lines indicate the

1/f2 and 1/f3 power laws. f) PSD of
√∑

B2
i for 〈αi〉 = −5; straight lines indicate the

1/f and 1/f3 power laws.

to the single mode and we will discuss this difference later. Above a frequency of the

order of 〈αi〉, there must be a factor f2 between the power laws followed by the PSD of√∑
B2
i and αi. This implies a spectrum in 1/f3 for

√∑
B2
i in the example considered

here. These predictions fit the spectrum shown in fig. 4.6f for 〈αi〉 = −5. We will leave

the example with the 1/f2 power law to the end and look at the time series and PSD of√∑
B2
i shown in fig. 4.6a and fig. 4.6d for 〈αi〉 = −0.01. Our previous considerations

for high frequencies are still valid, but with a few changes. In this high frequency interval,

we have the 1/f3 power law and this continues until the frequencies reach the order of

〈αi〉 = −0.01. Then we have the 1/f power law and this is due to the other modes as well

as nonlinear effects. Now let us look at the last case: 〈αi〉 is close to 〈α2
i 〉. The time series

and PSD of
√∑

B2
i are shown in fig. 4.6b and fig. 4.6e for 〈αi〉 = −0.3. Again, we have

the 1/f3 power law for high frequencies. However, the situation is completely different

for low frequencies. In this case, we have the 1/f2 power law, which cannot be explained
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Fig. 4.7: cosθ at 〈αi〉 = −0.01 (green), -0.3 (blue) and -5 (red).

by the single mode considerations. Single mode calculations give the 1/f or 1/f3 power

laws. This 1/f2 power law for low frequencies is an important result for this work since it

gives the combination seen in the gravitational dynamo simulations: the 1/f power law

for urms and the 1/f2 power law for Brms. We could only obtain this combination by

considering several modes; the single mode calculations did not give this solution. This

several magnetic mode model reproduced the power laws of the our dynamo simulations

for low frequencies without solving the Navier-Stokes equation. This means that we do

not need to know the individual interactions in the Navier-Stokes equation in order to

obtain the PSD of Brms. The important parameters are the |〈αi〉|/〈α2
i 〉 ratio and the

power law(s) of the fluctuations.

In order to further support the applicability of the single mode model, we also computed

the angle between the instantaneous vector ~B(t) = (B1(t), B2(t), B3(t)) and its mean

〈 ~B〉. The cosine of that angle cosθ = 〈 ~B〉 · ~B(t)/
√
|〈 ~B〉|2 | ~B(t)|2 is shown in fig. 4.7.

for 〈αi〉 = −5, it is in the statistically stationary state and stays larger than 0.99. This

result means that in this case, 〈 ~B〉 and ~B(t) are nearly in the same direction. So the

other modes rarely affect the result. However cosθ is scattered over a large interval for

〈αi〉 = −0.01 and −0.3. In these cases, the fluctuations of αi are large compared to their

means and different exponents unrelated to the single mode model become possible. So

several modes appear and its effect is bigger than in the 〈αi〉 = −5 case.

Let us summarize these results in terms of the |〈αi〉|/〈α2
i 〉 ratio. Our simulations show

that if |〈αi〉|/〈α2
i 〉 ≥ 5, the single mode considerations are dominant and we have the

1/f and 1/f3 power laws. If |〈αi〉|/〈α2
i 〉 ≈ 0.3, the other modes appear and we have the

1/f2 and 1/f3 power laws. If |〈αi〉|/〈α2
i 〉 ≈ 0.01, the other modes are observed and we

have the 1/f and 1/f3 power laws. If |〈αi〉|/〈α2
i 〉 increases or decreases from 0.3, the

1/f2 power law will gradually change to the 1/f power law. Here, the importance of 0.3
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is related to the structure of the induction equation. The frequency at which the power

law changes depends on 〈αi〉. There is a linear relationship between them and f ≈ 〈αi〉
gives the approximate value of that frequency.

4.3 Spectral analyses

Now we will conduct further analysis in attempt to explain the origin of the power laws

for the PSDs shown in fig. 4.6. The numerical solution yields nearly the same solution

for two components of ~B and a negative solution for the third component. However.

these small changes and sign differences do not affect the PSD of any of the components

of ~B. Because of this, we will consider only the B1 component of ~B in deeper spectral

analysis. From eq. 4.6, we can write the following for B1

∂tB1 = −(α2(t) + α3(t)) ·B1 −B3
1 + α1(t) · (B2 +B3). (4.7)

In the numerical solution, we integrate the right side of the equation. We know that the

PSD of B1 is the multiple of the PSD of right hand side and a factor 1/f2. This factor

1/f2 comes from the integration. So we should firstly look at and analyze the PSD of

the right hand side of eq. 4.7. Hereafter, we will use some abbreviations. We will use

rhs, 1©, 2© and 3© for the right hand side, the first term −(α2(t)+α3(t)) ·B1, the second

term −B3
1 and the third term α1(t) · (B2 +B3) on the right hand side, respectively. We

will show different combinations of these terms with an addition.

(a) (b) (c)

Fig. 4.8: PSDs of the rhs (red line), 1©+ 2© (pink line), 1©+ 3© (orange line), 2©+ 3©
(green line), 1© (blue line), 2© (turquoise line), 3© (black line). Straight lines show the

1/f , 1/f3 and f power laws. a) 〈αi〉 = −0.01. b) 〈αi〉 = −0.3. c) 〈αi〉 = −5.

To analyze rhs, we have calculated all combinations of the terms on the rhs. These calcu-

lated spectra are shown in fig. 4.8. We will determine which regime (which combinations

of 1©, 2© and 3©) gives the true PSD of rhs. The PSD of a function, in this case rhs,
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has complicated properties. It depends on the function type and multiplications and

additions can have different effects as well. These effects are complex and can depend on

the variances and means of the multiplicatives and additives. Fig. 4.8a shows the PSDs

of all combinations of 1©, 2© and 3© at 〈αi〉 = −0.01. At high frequencies, the PSD of rhs

is same as the PSD of 1©+ 3©. In this interval, the PSD of 2© is low compared to the other

two terms and does not affect the PSD of rhs. The powers of 1© and 3© are nearly equal

and they both contribute to the PSD of rhs. For the low frequency regime, the PSD of rhs

(indicated by the red line) is distinct from all other lines. In this case, no simplification is

possible; the only PSD of rhs is itself. In this interval, the PSD of rhs is totally different

than the other combinations and its power is less than either of them. Since it exhibits

such a complicated property, we will try to explain this later with a detailed analysis. In

fig. 4.8b, we see again the PSDs of the same combinations at 〈αi〉 = −0.3. This case is

not very different from the first case. If we consider the high frequency interval, the PSD

of rhs is same as the PSD of 1©+ 3©. If we consider the low frequency interval, again it is

only the PSD of rhs itself. The difference between this case and the first lies in the power

law in the low frequency interval. It is f at 〈αi〉 = −0.01 and constant at 〈αi〉 = −0.3.

This gives the corresponding 1/f and 1/f2 power laws for
√∑

B2
i . Fig. 4.8c shows

the PSDs of the same combinations at 〈αi〉 = −5. Here, we cannot easily separate the

frequency into high and low frequency intervals. The PSD of rhs changes its dependence

on the different combinations of 1©, 2© and 3© at a lower frequency than the changing

point of the power law of the PSD of rhs. This time change occurs at f = 0.8, which is

clearly lower than the frequency of the turning point of the PSD of rhs. At frequencies

higher than 0.8, the PSD of rhs is same as the PSD of 1©+ 2©. At lower frequencies, it is

same as the PSD of rhs itself. Now, to be able to understand the different and complex

Fig. 4.9: PSDs of the 1©+ 2© from direct spectrum calculation (red line) and from the

correlation (green line) at 〈αi〉 = −5. The straight lines represent f and 1/f .

structure of the low frequency interval, we will first consider low frequencies of the PSD
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at 〈αi〉 = −5. Its different and complicated structure, which can be easily seen in fig.

4.9, deserves a detailed analysis. We will start with a relatively simpler structure in this

analysis. The PSD of 1©+ 2© also shows a f power law and it includes two terms. It

is obviously simpler than full rhs. Since the PSD of 1©+ 2© is different than either the

PSDs of 1© or 2© alone, there must be a different relationship among the PSDs in this

combination. To be able to understand this different relationship, let us start by writing

analytical expressions for PSD of it

| −
∞∫

−∞

(α2 + α3) ·B1 · e−iwtdt−
∞∫

−∞

B3
1 · e−iwtdt|2 = |

∞∫
−∞

B3
1 · e−iwtdt|2 (4.8)

+|
∞∫

−∞

(α2 + α3) ·B1 · e−iwtdt|2 + 2 ·
∞∫∫
−∞

(α2 + α3) ·B1(t) · e−iwtB3
1(t′) · eiwt′dtdt′

In this equation, we see that there is a cross term in addition to the PSDs of 1© and 2©.

We can use the correlation function to calculate PSD by using the relationship between

the correlation and PSD ([Press et al., 1992])

G(f)H∗(f) =

∞∫
−∞

corr(g, h) · e−iftdt. (4.9)

So after calculating the correlation among (α2 + α3) · B1 and B3
1 we take the Fourier

transform to obtain the PSD of these multiplicands. We will use this to calculate the

PSD of this multiplication. In this calculation, none of the individual terms give the

correct result. The addition of all these terms gives the result that is shown in fig. 4.9.

It is obvious that both results in the calculation of PSD are in good agreement.

(a) (b) (c)

Fig. 4.10: PSDs of the rhs from direct spectrum calculation (red line) and from the

correlation (green line). The straight line represents 1/f . a) 〈αi〉 = −0.01 b) 〈αi〉 = −0.3

c) 〈αi〉 = −5.

We also calculated rhs’ PSD using correlation at 〈αi〉 = −0.01, 〈αi〉 = −0.3 and 〈αi〉 =

−5 and observed the same relationship. In fig. 4.10, we see the PSD of rhs from both



4.3 Spectral analyses 77

direct PSD calculation and correlation calculation. There is also agreement between these

two calculation types. This means that all three terms on the right hand side affects the

PSD and this effect is observed due to all individual terms and their correlations in the

low frequency interval.
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5 Conclusion

In this work, we investigated numerical simulations of the dynamo and conducted spectral

analysis. The dynamo is the accepted mechanism for the generation of the magnetic field

in the fluid cores of the cosmological bodies. The generation of the magnetic field takes

place in the relevant fluid part of the Earth and also in other cosmological bodies, such

as stars, planets and some of the moons in the solar system. The main dynamo process

concerns the evolution of the velocity field and subsequent production of a magnetic

field from this velocity field. This process can be described by three equations. Within

the core, electrically conducting fluid moves under different forces; these forces and the

motion of the fluid are described by the Navier-Stokes equation. So it is evident that

the Navier-Stokes equation defines how the velocity field evolves under pressure, viscous,

Coriolis, Lorentz and buoyancy forces. The induction equation is another important

equation because it defines the evolution of the magnetic field. In the induction equation,

the evolution of the magnetic field depends on the dissipation of the magnetic field

and generation of a magnetic field from the velocity field. The third equation, the

heat or buoyancy transport equation, describes the evolution of heat or the buoyancy

variable. There are also some other basic relationships arising from the incompressibility

of the fluid and the solenoid structure of the magnetic field, which are defined based

on the properties of the fluid and structure of the magnetic field, respectively. All the

abovementioned equations must be simultaneously solved, a feat which is only possible

with computer simulations. Present day computer technology does not enable us to

define control parameters within our simulations that are equal to those estimated for

Earth. We can only simulate the equations within a narrow range of control parameters.

In this work, we considered two cases for the dynamo process: gravitationally driven

dynamos and convection driven dynamos. The difference is seen in the heat equation. It

is used as the heat transfer equation in convection driven dynamo and as the buoyancy

transport equation in gravitational dynamo. In both cases, convection and gravitation are

also at play. The difference between these two dynamo types is related to the source of the
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density difference. In the convection driven dynamos it is temperature difference between

the boundaries and in the gravitationally driven dynamos it is the solidification of higher

density material in the inner boundary. We obtained successful results for both scenarios

and also observed magnetic reversals. The dynamo simulations showed that magnetic

field generation and reversals are possible from the motion of a conducting fluid. We can

understand these magnetic field generation and reversals in a better way by exploring

the simulations and the mechanisms described in the work in more detail. Hence, we also

conducted spectral analysis. These analyses showed that the distribution of power density

over different frequencies can also change with the configuration of control parameters.

There are some significant results from the power spectral analysis. One important

finding was that the power density decreased with increasing frequency for the magnetic

field. This means that long term variations are most important and the contribution of

short term variations are less effective. We also observed an agreement between the power

law of the PSD of the magnetic field in our simulations with the calculated one for Earth

by paleomagnetic research. This agreement occurred at the frequency interval, which

shows paleosecular variations, lengths of reversals and excursions. This PSD graph is

shown in Section 2.1.5. However, it is hard to say if the −2 power law at low frequencies

is related to reversals since we also observed this power law in nonreversing cases. Then

it should be related to paleosecular variations or excursions. The power distribution

in the velocity field was different than the magnetic field. In most cases, we observed

nearly equally distributed power in the low frequency range. This shows that due to the

forces in the Navier-Stokes equation there are equally distributed fluctuations at small

frequencies and each of these fluctuations contribute to the power. This explains our

observation of nearly white noise in the low frequency range in most cases. However, in

some cases we observed the −1 power law, such as in the highest Ra case. We also know

that Ra is the ratio of buoyancy force to diffusive forces. The increase in the ratio of

buoyancy force against diffusive ones changed this structure and the effect of diffusive

forces is weakened and we observed the −1 power law. If we consider high frequency

interval it was different for both the velocity and magnetic fields. The power laws change

in many ways in the high frequency interval and a white noise structure was observed in

the highest frequency interval.

Experimental results for spectrum analysis are much different compared to simulation

results. In the experiments, the flows or rotation rate of the propellers are either steady

or depend on simple rules. This must be one reason for the lack of variations in the

velocity field. There are other differences among the simulations and experiments due to
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the differences in the control parameters and the shape of the flowing fluid. Resultantly,

these fluctuations and differences affect the generation of the magnetic field. These are

the possible reasons for the difference between experimental and simulation results.

In the last chapter, we investigated phenomenological models. These models were suc-

cessful in explaining the power laws. We used only the induction equation in these

models and considered the velocity field to be a fluctuating stochastic variable. We chose

its power law based on the obtained laws in the dynamo simulations. The analytical con-

siderations explained some cases but there were some instances in which our analytical

considerations were not enough. The white noise for the velocity field and the −2 power

law for the magnetic field combination was obtained by a single magnetic mode model.

The −1 power law for the velocity field and the −2 power law for the magnetic field

combination was obtained only by several magnetic modes model. Our starting consid-

erations were not sufficient to explain this last combination. At the end, we concluded

that all terms in the induction equation contribute to the power distributions in differ-

ent ways. Even their correlations are important and we gave analytical and simulated

evidence for them.

To sum it up in its entirety, this work contributes to the understanding of the dynamo

mechanism. Our gravitationally driven and convection driven dynamo simulations were

conducted based on previous works. We analyzed dynamo mostly from the spectral point

of view and also investigated a explanatory phenomenological model. The results of

this model and dynamo simulations help us to understand magnetic field generation and

reversals as well as power spectrum analysis. However, future research and simulations in

the dynamo mechanism require improvements in order to obtain results more close to the

Earth’s case. We will continue our research to obtain more accomplished understanding

and results.
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A Simulation results

The following 5 pages contain the simulation results. There is some extra information

than previously given tables. The first piece of information is the run duration time.

It is given in Earth years. To determine run duration time, we firstly calculated dipole

decay time td = Pm
E

(
r0
πd

)2
and the fraction of the total run duration to the calculated

dipole decay time. Then we obtained the result by multiplying this fraction by Earth’s

dipole decay time 20kyr. We also added another part to represent reversing dynamos.

In another column time average of the dipole moment is represented. The table also

shows Brms and urms values. Brms is new information compared with previous tables.

However, urms is equal to Ro and we have shown this value in previous tables. Lastly, we

have shown the resolution and the time interval of the simulations. We also have shown

more simulations similar to the previous situations including some decaying cases. From

these shown simulations we can make an extra comment on the reversals that as Pm

increases the possibility to have a reversal increases.

In tab. A.1, gravitational dynamos at E = 6.5·10−3, Pr = 1, Ra = 1·106 and Ra = 5·105

with different Pm values are shown. In tab. A.2, gravitational dynamos at E = 6.5·10−3,

Pr = 1, Ra = 1 ·105 with different Pm values are represented. In tab. A.3, gravitational

dynamos at E = 6.5 · 10−3, Pr = 1, Ra = 3 · 105 and Ra = 5 · 104 with different Pm

values are present. In tab. A.4, we see convection driven dynamos at E = 6.5 · 10−3,

Pr = 1, Ra = 5 · 105 and Ra = 1 · 105 and Ra = 5 · 104 with different Pm values. The

last table tab. A.5 shows gravitational dynamos with different E. In this table E takes

values between 1 · 10−4 and 1 · 10−2, Ra can take values between 5 · 106 and 1 · 105 and

Pm can take values from 3 to 20. It is obvious that non-decaying dynamo simulations

can be carried out in these parameter ranges. However, in some cases, oscillations are so

slow that it is not possible to obtain the usual PSD analysis and corresponding power

laws.
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You have been a prisoner

of a little pond

I am the ocean

and its turbulent flood

Come merge with me

leave this world of ignorance

Be with me,

I will open the gate to your love.

Mevlana Celaleddin-i Rumi
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