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1 Introduction

This work will investigate numerical solutions for the dynamo. Dynamo is the accepted
mechanism to explain the generation of a magnetic field. This generation takes place in
most cosmological bodies, but it has taken centuries for us to understand the mechanism.
Now, the dynamo theory is supported by calculations and experimental observations. In
simplest terms, the main dynamo mechanism involves the evolution of the velocity field
and the production of a magnetic field from this velocity field. However, there are still
ongoing discussions about the dynamo and different mechanisms and structures have
been proposed. Some of them are still hot topics in physics. In this work, we will
numerically simulate electrically conducting fluid motion to obtain dynamo in spherical

shells with two different approaches.

To begin our exploration into dynamo theory, we first give a historical introduction to
the magnetic field of the Earth and describe how data has been collected throughout
the centuries. Then, we discuss the Earth’s magnetic field and its structure. We also
explain the data collection regarding the past Earth’s magnetic field and the methods of

analysis.

In the second part of this work, we provide an introduction to fluid dynamics, since it
forms the roots of the dynamo mechanism. Fluid motion is one of the key elements in
the induction of the magnetic field and an introductory overview is given. The governing
equations of fluid motion are considered and two of the basic elements of these equations,
viscosity and stress tensor, are studied and explored. After this, we give a brief overview
of Navier-Stokes equation, some related topics and a few non-dimensional parameters,

which we will use later in the simulations.

In the third part, we give the basic equations of the dynamo theory together with elec-
trodynamics. The generation of the magnetic field is described by the induction equation
and we will derive it starting from the electrodynamics equations. Then we also give an

introduction to the heat equation, which is another key factor in the dynamo theory. At
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the end of this section, we discuss the generation of the magnetic field via the dynamo

mechanism.

The fourth part of this work outlines some important dynamo experiments. The struc-

ture, results and spectrum analysis of three significant experiments are given.

The next section contains results in the form of numerical solutions for the dynamo
and also interprets and analyzes these results. Firstly, we solve a gravitationally driven
dynamo and analyze the results of the numerical solutions. Then we solve convection
driven dynamos and compare these results with results from the gravitationally driven

dynamo.

In the last section, we introduce a phenomenological model in order to to comprehensively
explain the basic working principles of the induction equations and spectral analysis.
We also discuss the consistency of our phenomenological model with the results of the
numerical simulations of the previous section. Lastly, we summarize the work and make

final conclusions.



2 Theoretical Background

2.1 Introduction to the Earth’s Magnetic Field

In this section, we will summarize some basic concepts related with Earth’s magnetic
field. We will firstly start from the historical roots of geomagnetic research and continue
with properties, structure and measurements of the Earth’s magnetic field. We will also
have a look at the structure of Earth and its effects on the magnetic field. Lastly, we will

overview the magnetic reversals.

2.1.1 Historical introduction to geomagnetism

Research on geomagnetism has been ongoing for centuries. The first scientific book on the
subject of geomagnetism was written by Gilbert in 1600 ([Jacobs, 1987]). Prior to this
book, Petrus Peregrinus reported some experiments on magnetism in 1269 and this book
was then published in 1558 (|[McElhinny and McFadden, 2000]). Later, a number of great
scientists also explored this topic, including Halley, Cavendish, Becquerel and Gauss.
Presently, there are many scientists studying geomagnetism and many scientific works
have been published on the topic. Before discussing developments in geomagnetism, we
shall introduce and discuss development of the first geomagnetic tool: the compass. This

tool forms the roots of geomagnetic research.

One of the first objects related to magnetism is the lodestone (|Jacobs, 1987]). The
lodestone is a naturally magnetized magnetite and attracts iron. It was first studied
scientifically by the Chinese. Despite their crude research, investigation of the lode-
stone by the Chinese led to the invention of the first compass in the first century A.D.
([Merrill and McElhinny, 1983, [Jacobs, 1987]). They discovered that a spoon made
from lodestone spun on a polished surface came to rest pointing in the same direction ev-
ery time ([Jacobs, 1987]). This was the earliest version of the compass. A Greek philoso-

pher named Thales was also interested in magnets. Thales became the first philosopher
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to study and observe magnets (|[Merrill et al., 1998]). But Thales’ work was not as so-
phisticated as that of the Chinese people. The first compass resembling that of today
was described by Shen Kua. He also discussed the inclination of the compass. The
compass arrived in Europe ca. 12th century by the sea route in the hands of Arabs
([Merrill et al., 1998]). The first European reference to the compass was made by the
English monk Neckham in 1190 ([McElhinny and McFadden, 2000]). However European
people did not yet know about inclination angle and this was rediscovered in the 15"
century. An interesting difference between the early Chinese and European compass was
the pointing direction. The Chinese one pointed to the south and the European one to
the north (|[Merrill et al., 1998]).

A Chinese Buddhist astronomer named I-Hising made the first observations and records
on magnetic declination about A.D. 720. However, declination was not known by the
European people until Georg Hartman’s observations in the early 15" century. Hartman
also continued his research on the Earth’s magnetic field and magnetic inclination was
first discovered by Hartman in 1544. Since he did not publish this study, it was redis-
covered by Robert Norman in 1576. Another interesting fact about the compass was the
crude consideration about its pointing direction. It was previously considered that the
compass pointed towards a point in "the heavens". In 1546, George Mercator realized
that the compass’ needle pointed to somewhere on Earth and could not point toward
"the heavens" (|[Merrill et al., 1998]).

2.1.2 Basic properties of the geomagnetic field

Fig. 2.1 depicts the main elements of the geomagnetic field. The figure shows a 3-
dimensional space on the Earth. The x-y plane corresponds to the surface of the Earth
and the x-axis and y-axis points to the geographic north and east respectively . The third
element of the space, the z-axis, points downward. F represents the Earth’s total magnetic
field. H represents its projection onto the x-y plane. The angle I is the inclination of
the magnetic field from the horizontal and the angle D is the declination and shows the

deviation of a compass needle from the geographic north.

Fig. 2.2 shows an isogonic chart which depicts the variation in magnetic declination over
the Earth’s surface in 1990. The magnetic poles are clearly visible on this graph and the
declination angle changes due to the position on Earth. Around the geographic pole, the

declination angle can take high values and its maximum value over the Equator is around
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X North (geographic)

F1G. 2.1: The main elements of the geomagnetic field. The compass needle lies in the
magnetic meridian containing the total field F, which is at an angle I, termed the incli-
nation, to the horizontal. The inclination is reckoned positive downward and negative
upward (northern and southern hemisphere, respectively). The deviation, D, of a com-
pass needle from true north is referred to as the declination. The H and Z are horizontal

and vertical components of F, respectively (|[Merrill et al., 1998|).

10°. The reason for this is the 11° angle between the geographic pole and the geomagnetic
pole when measured from the center of the Earth. Magnetic declination can change over
time, an observation that was first made by Edmund Gunter in 1624. He measured the
declination angle of 6.25° east at Limehoue, London, 42 years after William Borough’s
measurement of 11.25° east. Gunter could not confirm his measurement because of his
death; however, his successors confirmed it and also found that the declination angle
changes over time. This angle increased to 24° west and then started to decrease in
the west again (|Jacobs, 1987|). This was the first evidence that the geomagnetic pole’s
position changes. This change is reminiscent of a rotation of the geomagnetic pole around
the geographic North Pole, since declination angle can take values between the maximums

of east and west angles and this angle gradually changes over time.

Gilbert, the writer of the first scientific book on geomagnetism, knew that the strength
of the magnetism also changes. However, he could not measure it. The first relative
measurement of the geomagnetic field was carried out in America by Baron Alexander
von Humboldt, who measured relative intensity in 1798. This was not considered a phys-
ical measurement since it did not utilize basic physical quantities. The first physical
measurement of magnetic intensity was made by Carl Friedrich Gauss in 1832 in Got-
tingen, Germany (|Jacobs, 1987]). Following Gauss, this measurement has been made
at different locations all over the Earth and the technique only developed after the in-
vestments of electrical methods ([Jacobs, 1987]). The intensity of the Earth’s magnetic

field is measured in Tesla (T) units and its maximum value at the surface of the Earth



6 2 THEORETICAL BACKGROUND

S\ 77T

- ; %
T 7 '\'1‘.,.;:"
e . y

Fi1G. 2.2: Isogonic chart showing the variation in magnetic declination over the Earth’s
surface (1990) ([Merrill et al., 1998]).

(measured at the south pole) is 70 pT" ([McElhinny and McFadden, 2000]).

2.1.3 Earth’s magnetic field

The Earth’s magnetic field changes at every point. Measurement of the Earth’s magnetic
field F, includes both magnitude and direction. The magnitude and direction of F change
with time. After determining direction using inclination and declination angle, one can

calculate H and Z. These quantities are shown in fig. 2.1.

The Earth’s magnetic field can change very rapidly within seconds and also slowly over
decades. There are also changes taking place over millions of years and these slower
changes are referred to as the geomagnetic secular variation ([Merrill et al., 1998]) or
temporal variation. The main reason for these changes is the internal dynamics of the
Earth. Another causative factor is the solar wind. The solar wind carries many charged
particles, which can interact with the Earth’s magnetic field as well as create their own
magnetic fields. These charged particles constantly stream from the sun and affect the
Earth’s magnetic field each day. There are different factors affecting solar wind strength,
the main ones being the 11-year solar cycle, the seasons and latitude. The biggest effects
of the Sun on the Earth’s magnetic field are observed during major solar eruptions that
emit X-rays, ultraviolet radiation and high energy particles. Rarely, these effects can
reach the value 5000 n'T, which represents 7 per cent of the highest measured value. This
interaction results in a change in the Earth’s magnetic field. These are the main causes

of the short term changes in the measured magnetic field (|Jacobs, 1987]).
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The magnetic field measurements can be classified into two groups: 1) quantitative mea-
surements, made by magnetometers, and 2) variations measurements, made by variome-
ters. Previously, we mentioned that Gauss made the first quantitative measurement of
the Earth’s magnetic field and developments in electrical technology brought forth new
techniques. Magnetic sensors can be divided into 5 groups: 1) Torsion magnetometers,
2) Nuclear magnetic resonance magnetometers, 3) Saturable-core magnetometers, 4) In-
duction magnetometers, and 5) Superconducting magnetometers. There are different
magnetometers made from these sensors, e.g., observatory variometers, declinometer,

QHM, BMZ, proton precession, Earth inductor, squid (|Jacobs, 1987], [Dyer, 2001]).

2.1.4 Earth’s magnetic field’s structure

We have mentioned the polar structure of the Earth’s magnetic field. This polar structure
takes a dipole form. In fig. 2.3, the radial component of the Earth’s magnetic field at
the Earth’s surface is illustrated and the dipole structure is easily observed. The radial
component of the Earth’s magnetic field has negative values at the northern hemisphere
and positive values at the southern hemisphere. One can also observe from the figure
that its magnitude is greater at the poles compared to points between the poles and the
Equator. This is the main property of the dipole field. However, fig. 2.3 also shows that
the Earth’s magnetic field is not a perfect dipole field. This field is comprised of 90%
dipole structure and 10% higher order multipoles ([Mueller and Stieglitz, 2003]). This

results mainly from internal dynamics, which will be discussed later.

F1G. 2.3: Isolines of the radial component of the Earth’s magnetic field at the surface
([Mueller and Stieglitz, 2003]).
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F1G. 2.4: Cross-section of the Earth’s magnetosphere (|[Bone, 2007]).

Fig. 2.4 depicts the cross-section of the Earth’s magnetosphere. This picture was drawn
using probes carried by satellites (|[Bone, 2007]). The first direcly recognizable property is
its asymmetric structure. This asymmetric structure arises due to the solar wind. If the
solar wind were not present, the Earth’s magnetosphere would look like a mostly dipolar
structure. However, the solar wind creates a pressure on the day-side of the Earth’s
magnetic field due to interactions of the solar wind particles with the magnetic field.
Fig. 2.4 also shows the magnetopause, which separates the Earth’s environment from
the interplanetary space. Because of the ten time faster motion of the Earth through
solar wind particles, the solar wind flow is supersonic. This supersonic nature creates
the bow shock, which is also shown in the figure. The bow shock is separated from the

magnetopause by magnetosheath.

There are other different interactions in this structure. If only the pressure due to the
solar wind were present, the magnetopause would resemble a water drop. This structure
is not observed, however, due to the existence of the plasma sheet. The plasma sheet is
the main cause of the open ends on the night-side of the Earth’s magnetosphere. This
open magnetic field, referred to as the geomagnetic tail, is considered to be connected

with the interplanetary magnetic field ([Merrill et al., 1998]).

An interesting phenomenon related to the Earth’s magnetic field is that the sunlight
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ionizes some atoms and creates the ionosphere. Some of these ionized charged particles
move along the magnetic field lines through the magnetosphere. Another interesting
phenomenon can occur at the plasma sheet. When some of the charged particles from
the solar wind are injected into the Earth’s high atmosphere, this creates the auroras
(|Bone, 2007]|). Another structure seen in fig. 2.4 is the Van Allen belts. Some of the par-
ticles from the solar wind ionosphere can become trapped in regions of the magnetosphere

These regions are called the Van Allen belts.

2.1.5 The main field

In 1600, Gilbert considered the Earth a great magnet ([Jacobs, 1987]). When a compass
is located around the Equator, it points approximately to the geographic North Pole and
when located close to the Poles, it can show different directions. This is one simple piece
of evidence that demonstrates that the Earth’s magnetic field is a vector quantity. As
mentioned previously, this magnetic field is affected by the Earth’s internal properties and
the solar wind. These two factors affect the magnetic field in different ways. The Earth’s
internal dynamics and crust are two of the important factors that affects the Earth’s
magnetic field. The solar winds, in general, affect the magnetic field via changes in the
ionosphere. In the ionosphere, both the Earth’s magnetic field and charged particles
traveling in the solar wind are at play. Their interaction changes the motion of charged
particles in different ways and this affects the Earth’s magnetic field. Thus, the Earth’s
magnetic field is the total of the magnetic field produced by the Earth’s core, crust,
ionosphere and other additional minimal effects. The largest contribution comes from
the core and this field is referred to as the main field. The approximate values for the
Earth’s magnetic field is 60uT" at the Pole and 30uT at the Equator. The maximum
change in the magnetic field due to secular variation is about 1% per year. The changes
due to Earth’s crust, ionosphere and some other effects can vary between 1 nT and
thousands nT. Therefore, these changes only result in small fluctations, which do not

have a large overall effect on the main field.

Fig. 2.5 shows the power spectrum density (PSD) of the dipole variations. This graph
was obtained by using the measurements of the magnetic field and reversal recordings of
different laboratory groups; different colours in the graph represent different recordings.
There are three regions shown in the graph, each corresponding to different perceptions
about the various processes. The first region, reversal rate changes, shows the long-term

reversal rate of the dipole variations. The second region, average reversal crypto-chron
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F1a. 2.5: Power spectrum density of the dipole variations for the recording 0-160 Ma.
Each colour represents a different data set for the magnetic field and reversals as deter-
mined by different groups. The black, gray, blue, red, green, brown, orange and pink
dotted lines correspond to the work of Cande and Kent (|Cande and Kent, 1995]), in-
tensity study in work of Cande and Kent ([Cande and Kent, 1995]), Constable et al.
(|Constable et al., 1998]), Valet and Meynadiner ([Valet and Meynadier, 1993]), Chan-
nel (|Channell, 1999]), Gyudo and Valet (|Guyodo and Valet, 1999]), McMillan et al.
([McMillan et al., 2004]), Korte and Constable ([Korte and Constable, 2005]), respec-
tively. For further information, refer to the original paper by Constable and Johnson
(|[Constable and Johnson, 2005]).

and excursion rate, shows the average reversal rate between 0.02 and 10Myr~!. There
is an inconsistency in this region between the black and red curves. In this region, the
PSD of the black curve is constant and reversals occur at each frequency with nearly
equal power distribution. The red curve has a slope of nearly 1/f. This inconsistency
may be due to the long-term paleointensity variations for different reversal rates. The
last region shows paleosecular variation (PSV), lengths of reversals and excursions. The
power falls off faster in this region, which is related to the changes for 0-50 ka time

intervals (|Constable and Johnson, 2005]).

In previous sections, we introduced the dipole property of the Earth’s magnetic field and
supported these properties with observational results. We also showed that there can be

many changes to this field and this field can be represented by using Maxwell’s equations.
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The best way to write the solution is to use spherical harmonics. The advantages for
using spherical harmonics as well as the description of spherical harmonics can be found
in books ([Jacobs, 1994]).

2.1.6 Earth’s structure

We have known for thousands of years that the Earth has a spherical shape. However,
less is known about its inner structure. The occurrence of earthquakes as well as magma
eruptions provides some information as to the Earth’s inner structure. Earthquakes send
out seismic waves in all directions. Larger intensity earthquakes send out seismic waves
and the velocity of these waves depend on the composition, mineralogy, temperature and
pressure of the Earth’s inner components. This helps us to learn more about the Earth’s
inner structure. Fig. 2.6 is a representative illustration of the Earth’s inner structure.
It is composed of 3 main parts: inner core, outer core and mantle. The crust forms the

outermost layer ([Brown et al., 1992]).

o Mantle
2 contimdes aoun
to owuter core

Ohiter core n{

molten metal

Solid metal

F1G. 2.6: Earth’s structure ([Rose and Kindersley, 2000]).

Further details on these components will follow after a short description of the formation
of the Earth. Scientific evidence shows that the Sun, Earth and other components of the
solar system were formed from the remaining solar nebula of the supernova explosion.

There is a similarity in the abundances of the elements in these. These abundances are
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also affected by gravitational interactions, other types of interactions and the positions
and sizes of the components of the solar system. These parameters and interactions also

determine the abundances of the elements in the Earth’s components.

The solid inner core is the centremost part of the Farth. Its radius is about 1200km,
which is comparable with the radius of the Moon (1700km) (|Fix, 2004|). However, the
density of the inner core is much higher than the average values of the Earth and Moon.
This is because it is constituted from iron-nickel alloy and also some sulfur-iron alloy
([Pater and Lissauer, 2001]). Some models predict that the temperature of the inner
core is 5000 — 7500K, but these are only model results and therefore not fully reliable
([McFadden, 2007]). Directly after formation, the Earth was more or less uniform in
terms of composition and the distribution of chemicals. Later, due to the gravitational
interaction, dense materials sank down to the center of the Earth. The denser elements
(iron and nickel) accumulated at the center and over time, with the help of pressure,
these elements constituted an alloy and solidified. Another property of the inner core
is its differential rotation. Seismic studies have provided some evidence showing that
the inner core rotates 1° of longitude per year faster than the other parts of the Earth
([Fix, 2004]).

The Earth’s outer core completely surrounds the inner solid core and it is liquid. Its
shape looks like a spherical shell and it begins at the 1200km point where the inner core
ends. The transition region is termed the inner core boundary (ICB). This liquid outer
core continues to 3500km, where the mantle starts. This region between the outer core
and the mantle is called the core mantle boundary (CMB). The outer core is also mainly
composed of iron, but density calculations estimate that there should be a 10% lighter
elements composition. The models predict an outer core temperature between 3000 and
5000K (|[McFadden, 2007]). Due to this high temperature, nearly all elements are in
their ionized forms. This means that the outer core is completely electrically conducting
and the motion of this electrically conducting material produces a magnetic field, which

will be described in detail later.

The mantle can be subdivided into the lower mantle, transition zone and upper mantle,
with all maintaining a spherical shell shape. The lower mantle lies in the radius between
3500 and 5700km ([McFadden, 2007]). Seventy percent of the mass of the solid Earth
is located in the lower mantle, which is mainly composed of magnesium silicate rocks
([Schubert et al., 2001]). This region is mostly solid; however, high temperatures (900 —

3000K) provide a slow flow within the lower mantle. The next stage is the transition
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zone, which lies between the radius of 5700 and 5960km (|[McFadden, 2007]). This region
is defined due to seismic wave velocity discontinuity and is mostly composed of olivine
and pyroxene-garnet ([Schubert et al., 2001]). The last subdivision of the mantle is the
upper mantle, which lies between the radius of 5960 and 6335km. This regions begins
25km below the crust. It is composed of olivine, pyroxene and some magnesium and iron

([McFadden, 2007]).

2.1.7 The effects of Earth’s crust on the magnetic field

The main source of the Earth’s magnetic field is dynamo action in the core. As mentioned
earlier, the crust also affects the magnetic field and this effect can be both constructive
and destructive. There are two main reasons for this effect. The first reason is related to
the magnetic susceptibility of the rocks. This effect can change depending on whether
the magnetic susceptibility is positive or negative. If the rocks are diamagnetic (negative
magnetic susceptibility), then the effect is destructive. On the other hand, for paramag-
netic, ferromagnetic or ferrimagnetic rocks, the effect is constructive . We will elaborate
on these effects later in the next section. The second reason for the constructive or
destructive effect is permanent magnetization. Permanent magnetization occurs if the
temperature is below Curie isotherm. This effect is observed for cooled lavas. When hot-
ter rocks are cooled under the magnetic field, then there will be a frozen magnetization
inside the rocks and this will also contribute the Earth’s magnetic field. Since the Earth’s

magnetic field changes with time, this effect is can also be constructive or destructive.

F1G. 2.7: The radial component of the Earth’s magnetic field at the Earth’s core-mantle
boundary reveals a strong dipole component (|Buffett, 2009]).

Fig. 2.7 depicts reproduced large-scale patches of magnetic fluxes at the Earth’s core-

mantle boundary. These are similar to structures inferred at the Earth’s core-mantle
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boundary from surface observations. As with the Earth’s surface fig. 2.3, the dipole
field is still the strongest. However, its dipolar structure is changed compared to at the
surface. Higher moments are also in play, which can be easily seen from the patterns
around the Equator. Comparing fig. 2.3 with fig. 2.7, higher moments’ contributions

can be observed.

The mentioned effects of the crust on the Earth’s magnetic field are region-dependent,
intense and have a short wavelength. It is not always possible to calculate the crust effects;
however, taking advantage of these properties, one can find them in some cases. To do
so, ship or aircraft data are used. In general, if the isolation of the field is determined

within a region, then it is said that these fields originate from the crust.

2.1.8 Paleomagnetism

The study of magnetism in fossil records of the Earth magnetism is called paleomag-
netism. The crust’s magnetic field discussed above is related to this topic. At the end of
the 18" century, it was known that some rocks possessed magnetization and this mag-
netization could affect the compass. In the 19** century, intense magnetization in rock
exposures were explained this way. The first studies made by Delesse and Melloni deter-
mined that some recent lavas were magnetized parallel to the Earth magnetization. At
the beginning of the 20" century, David and Brunhes reported that some older lavas were
magnetized approximately anti-parallel to the Earth’s magnetic field. Later confirmation
of this study led people to conclude that the polarity of the Earth’s magnetic field had
reversed ([McElhinny and McFadden, 2000]). These findings became the starting points

for paleomagnetism.

Paleomagnetism makes use of a few magnetic materials inside formed rocks. These
magnetic materials mainly consist of different iron oxides and sulphides. Primary mag-
netization occurs when the rock formation process is complete. This provides the main
source of the knowledge about the magnetic field of the Earth. After the formation of a
rock, this primary magnetization can be partly or wholly damaged and new magnetiza-
tion may occur. These new magnetizations are referred to as secondary magnetization.
They can cause a sort of "noise" for magnetic field measurements and should not be
utilized. Eliminating these confounding effects of secondary magnetization is one of the
main problems in paleomagnetism research ([Jacobs, 1994]). The magnetic materials in

rocks are used to find both the magnitude and direction of the Earth’s magnetic field.
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Some archaeological materials are also used to measure the Earth’s past magnetic field

and this technique is called archeomagnetism ([McElhinny and McFadden, 2000]).

The materials have different magnetic properties, and are classified according to these
properties as: diamagnetic, paramagnetic, ferromagnetic and ferrimagnetic. Diamag-
netism is common to all substances. It occurs due to the motion of orbital electrons.
The motion of electrons under a magnetic field produces a negative induced magnetic
moment. This reduces the total magnetic field, which is called diamagnetism. Although
diamagnetism is valid for all substances, it becomes negligible in the presence of any
other magnetic effect. The magnetic susceptibility of the diamagnetic materials is neg-
ative and is of the order of 107°. If a material has a net positive magnetic moment,
this magnetic moment is aligned in the direction of the applied magnetic field. This
alignment, known as paramagnetism, contributes to the magnetic field in a positive way
and its value lies between 107° and 1073. On the other hand, some magnetic mate-
rials can strongly contribute to the magnetic field. This material is then said to be
ferromagnetic. Ferromagnetic materials have more valance electrons, and these electrons
and their spins are aligned with the applied magnetic field. This is also observed if
the external magnetic field is zero. However, for this to occur, the temperature of the
substance should be less than the Curie temperature. Above the Curie temperature, all
electrons move freely and no magnetization is present in the material. These alignments
are in general found in domains. In some cases, these domains can cancel each others’
effect and then an antiferromagnetism phenomenon occurs. Occasionally, due to these
random alignments, the magnetic property is reduced and this is named ferrimagnetism
(IMcElhinny and McFadden, 2000]). Magnetite is an iron-oxides and a ferrimagnetic ma-
terial. Its naturally magnetized form is called the lodestone, a material which initiated
the study of magnetism (Section 2.1.1). In paleomagnetism, magnetite is one of key

materials for studying magnetic field records.

2.1.9 Processes of magnetization in rocks

There are different processes of magnetization in rocks and understanding these types
of magnetization are important for defining reversals. The following section will briefly

describe these processes.

The first type of magnetization is called thermoremanent magnetization (TRM). In TRM,

rocks from lavas cool from a temperature higher than the Curie temperature. The iron
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oxides in these rocks align in the direction of the Earth’s magnetism. After cooling,
magnetization due to this alignment becomes "frozen" inside the rocks. Other types of
magnetization are referred to as depositional and post-depositional remanent magnetiza-
tion (DRM and PDRM). These types of magnetization require sediments of magnetized
particles. These magnetized particles are eroded from previously formed rocks. During,
deposition, these magnetized particles are aligned in the direction of Earth’s magnetic
field; this procedure is named DRM. If the remanent magnetization is free to rotate
in the sediments, then they can be aligned later, which is referred to the PDRM. The
next type of magnetization is termed isothermal remanent magnetization (IRM), which
occurs when magnetic materials acquire magnetization without heating. Viscous rema-
nent magnetization (VRM) is a type of magnetization closely connected to TRM. This
type of magnetization occurs in slowly occurring IRM. As time passes, more parts of
the magnetic material become magnetized in the VRM process. The last type of mag-
netization is chemical remanent magnetization (CRM). After the formation of certain
rocks, their magnetization grains will grow due to chemical changes. After reaching its
critical volume, the rock’s magnetization aligns with the Earth’s magnetic field and this

magnetization will be dated at this time ([Jacobs, 1994]).

2.1.10 Magpnetic field reversals

We have geomagnetic records dating back to the 19t" century from scientists and mariners.
However, records of the Earth’s magnetic reversals are different because they occur over
thousands to millions of years . Paleomagnetism has provided some indirect data on
magnetic reversals. These data show that magnetic pole reversals have occurred many
times. This is one of the great successes of paleomagnetism. As shown in fig. 2.3, Earth’s
magnetic field is mainly dipole. Therefore, a nearly 180° change in the axial dipole field
is defined as a magnetic field reversal of the Earth ([McElhinny and McFadden, 2000]).
The paleomagnetic observations can create problems for interpreting and/or predicting

the occurrence of reversals.

Self-reversals can also occur after the first magnetization in the magnetized rocks. After
some time passes from the magnetic alignment along the Earth’s magnetic field, domains
inside the magnetized substance can be produced. These domains reverse due to interac-
tions with the main and first magnetization. So, these self-reversals should be carefully
analyzed. However, this procedure hardly occurs and most of the reversals shown in

chronology are real reversals (|[McElhinny and McFadden, 2000]).
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There are some tests that can be conducted to determine the reliability of reversal data.
Firstly, there should be an agreement between the magnetization polarity of the igneous
rock and the baked rock for studies of the baked contacts. Secondly, different rocks around
the world should show an agreement in polarity. Lastly, polarity reversals should be found

in sequences. These are considered the basic requirements for defining a magnetic reversal
(IMcElhinny and McFadden, 2000]).
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F1G. 2.8: Time scale for geomagnetic reversals. The polarity similar to present-day is

represented by black and the reverse represented by white one (|Cox, 1969)).

Fig. 2.8 shows the magnetic polarity reversals of the Earth. The black parts correspond
to polarity similar to present day and white parts correspond to reversed ones. The first
row shows the dates, the second and third rows show data for the direction of magnetic
field (the normal and reversed magnetic fields, respectively). The 4*" and 5 rows show
black and white representations. The 6! row shows the age boundaries and the 7th row
names the reversal events. The last row shows the names of epochs. The time-scale dates
back to 4.5 million ages. In the previous magnetizations, the error in measurements are
too great, so the data is not exact. This figure shows some of the studied reversals and
it is clear that magnetic reversals are common occurrences throughout the history of the

Earth.
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2.2 Fluid Dynamics

In this section, we will start with the properties of the different phases of materials. Then
we will continue with the analyze of the fluid motion by considering viscosity and stress
tensor and we will give the derivation of Navier-Stokes equation. Then we will consider
Reynolds number and its relation with fluid flow. Lastly, we will overview the vorticity

and Coriolis force.

2.2.1 Solids, liquids and gases

The distinction between solids, liquids and gases is not always clear. Liquids and gases
can be combined into one class called fluids. The basic difference between solids and

fluids is that solids have a preferred shape, while fluids do not.

If one applies force to a solid or fluid, the solid will take back its original form after
withdrawal of the force; the fluid, however, will not. Some substances show simultaneous
properties of both solids and fluids, such as jelly, polymer solutions and egg whites. These
substances are said to be viscoelastic ([Kundu and Cohen, 2002|). For these substances,
there is order among the molecules, but this order is different than solids and is not as

regular. In fluids, there is not any order among molecules.

The difference between liquids and gases is related to the environment. Pressure is a
key factor for discrimination of fluids. In the absence of pressure, all liquids will turn to
gases. However, in the presence of pressure, a gas expands and occupies the available

volume, while a liquid does not.
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F1G. 2.9: A schematic sketch of the force between simple un-ionized molecules with

respect to distance d between the centers of the molecules ([Batchelor, 1967]).

Fig. 2.9 shows how the force between molecules changes with respect to the distance d

between the centers of the molecules. As shown in the figure, the force is repulsive for
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distances smaller than the dg, and attractive for greater distances. The distance dg, where
the force between molecules is zero, is different for different types of molecules. In solids,
do is smaller and the minimum point on this graph is lower. This is due to the strong
attraction among the molecules of solids. As a substance changes from solid to liquid and
gas, dg becomes greater and the minimum of this curve approaches zero. Therefore, at a
fixed temperature, since the force for solids is stronger, the movements of the molecules
due to temperature are small. Since a solid preserves its form, the movements should be
very small compared to dy. For liquids, this motion should be at the order of dy since
the molecules can change their order. Lastly, for gases, the bonds between the molecules
are really weak and molecules move independently from one another. In this case, the

movements of molecules should be much bigger than dj.

Thus, a solid is defined as the form of a substance that has strong molecular interactions,
an ordered molecular arrangement and small thermal motions of the molecules compared
to dg. For a liquid, the molecular interactions are mid-range between a solid and gas; the
molecules are partially ordered; and thermal motion is at the order of dy. Lastly, a gas
has weak molecular interactions, no order at all in molecular arrangement and a much

larger thermal motion than dy [Batchelor, 1967].

2.2.2 Fluid flow and kinematic viscosity

F1G. 2.10: Viscous stresses in a simple flow ([Acheson, 1990]).

Fig. 2.10 illustrates simple shear flow. Molecules flow in a fluid and there is an interaction
among these molecules, as previously shown in fig. 2.9. This interaction, in combination
with collisions, plays a crucial role in determining the motion of the fluid. This is a really
complicated process. However, there is simple way of handling this. First, consider
velocity as a function of u(y). As shown in fig. 2.10, u(y) also increases as y increases.

Due to mentioned interactions, the faster part of fluid motion forces the remaining slower



20 2 THEORETICAL BACKGROUND

part of fluid to move faster and the slower part of the fluid also forces the remaining faster
part of fluid to move slower. This is represented by the bold arrows in fig. 2.10. The

mentioned shear stress can be expressed in terms of velocity gradient as

T = ud—y (2.1)

where p is related with the properties of the fluid and is called the coefficient of viscosity
(|[Acheson, 1990]). This relation is valid for Newtonian viscous fluids. The main property
of Newtonian fluids is that the proportionality of flow to the viscosity is linear. For non-
Newtonian fluids, viscosity is not constant and can be nonlinear and time dependent.
There are many different properties of these fluids, which will not be discussed. Referring
back to Newtonian fluids, the coefficient of viscosity can be defined in a more common

way: as kinematic viscosity v
v=p/p (2:2)

where p is the density of the fluid. In general, these are dependent on substance and

temperature.

Fig. 2.10 shows only one aspect of fluid flow. However, in general, fluids flow on surfaces
and these surfaces affect flow. To understand this point, we should consider boundaries
and corresponding boundary layers. Fig. 2.11 shows the motion of fluid on a boundary
surface. After a point, a boundary layer is produced and in that layer, the velocity
gradient is not equal to zero. In the other parts of the fluid motion, flow is steady and
the velocity gradient is much smaller than the velocity gradient at the boundary layer.
If the boundary surface is fixed, then there is not any motion in the surface and no-slip
boundary conditions are valid. The velocity should decrease gradually to zero as one

approaches the boundary layer.

}I A

INVISCID
MAINSTREAM

Fic. 2.11: Fluid flow on a boundary layer ([Acheson, 1990]).

If there is no boundary layer, this is referred to as free-slip boundary conditions. In some
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cases with boundaries, free-slip boundary conditions can also be used. In these cases,
the viscosity of the fluid should be very small and this small viscosity produces a really
thin boundary layer. The thin boundary layer, in general, does not affect the motion of
the fluid overall. In some cases, however, even if the viscosity is really small, turbulences
may arise due to the boundary layer. When these turbulences are observed, usage of

free-slip boundary conditions will fail (JAcheson, 1990]).

2.2.3 Stress tensor

Eq. 2.1 is valid for flow shown in the fig. 2.10. In the general case, however, velocity can
depend on all components, and not solely on y. Then eq. 2.1 must be generalized and
in this case, 7 replaced by stress tensor 7;; . For a fluid at rest, stress is independent of

orientation and can be written as
Tij = —Doij (2.3)

where p is the thermodynamic pressure and ¢;; is the Kronecker delta. If i = j it is equal
to 1; otherwise it is equal to zero. This means that only diagonal components of the

stress tensor survives and the other components are zero for fluids at rest.

For a moving fluid, the stress tensor is not a diagonal tensor. Shear forces are present
due to the motion of the fluid and the non-diagonal elements are different than zero. So,
stress tensor can be written as

Tij = —Pij + 0ij (2.4)

In this equation, p is still thermodynamic pressure, but there are some differences from
the previous equation. Thermodynamic pressure is defined in the equilibrium state and
since the fluid is in motion, the system is not in equilibrium. This makes some differences
in the definition of pressure. However if the relaxation time of the molecules is small
enough compared with the time scale of flow, one can still assume it to be equal to

thermodynamic pressure by ignoring some tiny effects.

The o0;; in the eq. 2.4 is called the deviatoric stress tensor. As stated in the previous
section, the deviatoric stress tensor should be proportional to velocity gradient. To find
this dependence on the velocity gradients, firstly we decompose velocity gradient into

symmetric and antisymmetric components as

Gui 1 8u2 6uj 1 8u1 8uj
_ 2t - _ 2.
6$j 2 <8$J + 8;1%) + 2 <81L‘J 6%) ( 5)
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In this equation, the antisymmetric part (second term from the right side) is related
to rotations and cannot contribute to the stress. So the stresses comes from only the
symmetric part, called the strain tensor. Then o;; is proportional to the symmetric part
of the velocity gradient and we can write

1 ( ou,, ouy,
a,;j_Kijm%( Um | OU ) (2.6)

0x, O,

where Kjjm, is a tensor with 81 components. We do not need to calculate all these 81
constants. If we assume the case of an isotropic medium and symmetric stress tensor,

only a few of them will survive and using tensor algebra, we can write that

1 (0u, Ou,

The right-most term gives AV - 4 and for incompressible fluids, V - & = 0. If fluids are
compressible, they allow for some phenomena like shock waves. We will not deal with

such issues in this work.

After some simple algebra for incompressible fluids, we get

8ui 8uj
i = . 2.8
7ij = K (@:L“j * 8%‘) (28)
Then we obtain the equation for stress
ou;  Ou,
Tij = —Pdij + pu (8351 T a;) : (29)
7 A

This equation gives the stress for an incompressible fluid and it has two parts: pressure

and stresses due to velocity gradients ([Kundu and Cohen, 2002]).

2.2.4 Navier-Stokes equation

The Navier-Stokes equation gives the relationship between the acceleration of fluid and
effecting forces. By the definition of acceleration, there is a difference in fluid dynamics
due to the motion of the fluid. Since the fluid moves and its velocity changes with respect
to position, acceleration of the fluid is different than the ordinary definition of classical
acceleration @ = 0u/0t. If we consider @ = @(Z,t) and take the total time derivative of
velocity, we obtain

Da  ou
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This operator D/Dt has different names, such as total time, material, substantial or
particle derivative ([Kundu and Cohen, 2002]). The first part of this operator 9/9t cor-
responds to the local rate of change with respect to time. The second part @ - V cor-
responds to advection, which is present because of the motion of fluid. If this motion
changes with respect to position, then this advection term plays a role. If this operator

is applied in the presence of heat, then the second term is named convection.

Now we must determine the force on an infinitesimal volume of fluid. In the previous
section, we obtained the stress on it. We can decompose stress into normal and shear

stresses and the relationship between force and stress is

dF, dF
™= qA T A (2.11)
If we consider the forces in x; direction, then we can write
Oty dzy oty dry
dF,, = —_— = ——— | daod 2.12
T <T11 + 9z 2 T+ 921 2 T2dT3 ( )

87'21 dl‘z 87'21 dw?
—_— = - ——= | dx1d
+ <T21+ Dg 2 To1 + O2s 2 r1dxs

0731 dz3 0131 dzxs
—_— — ——— ] dx1d
+ <T31 + Ds 2 T31 + 25 2 z1dzo

_ 87’11 87’21 87'31
B <8:L‘1 + 8%2 + 6953

) d.’L‘lde dl’3

= (ggjdxldxgdmg

Using eq. 2.9, we can write the force on an infinitesimal volume of an incompressible
fluid as

F = —Vp+uVia (2.13)
Eq. 2.10 corresponds to the acceleration of a fluid according to Newton’s second law.
We also know the force from eq. 2.13. Then, by using Newton’s second law F = ma for
this fluid with mass density p, we can write an equation concerning change in velocity in
the presence of gravity as

—

ou
P ot
This is the Navier-Stokes equation, which describes how velocity of a incompressible fluid

+ pit - Vil = =Vp + pg + uV>3i (2.14)

evolves ([Kundu and Cohen, 2002]). We can also write this equation in a similar form
by using the definition of kinematic viscosity v = u/p
ou

1
a+ﬁ-va':—;vp+g*+uv2ﬁ (2.15)
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2.2.5 Reynolds number

The left hand side of eq. 2.15 corresponds to inertial forces and v¥V?2# corresponds to
viscous forces. We can use dimensions of these two forces to be able to compare them.
The inertial forces are of the order f;, ~ u?/l where [ is a typical geometric length scale.
The viscous forces are of the order fy;s ~ v|i|/ li where [ is a characteristic length scale
perpendicular to the streamlines ([Davidson, 2001]). If we consider the length scales
equal, then we can define the ratio of these as Reynolds number and it is

Re= —. (2.16)

14

If Re is small, then the contribution of viscous forces in the Navier-Stokes equation
is high. In the contrary case, the viscous forces are small and play a lesser role. If
we consider the characteristic length scale of the flows and calculate Re, it would be
really high. In this case, we can consider the viscous forces unimportant. However, this
consideration is inaccurate since most flows have turbulent properties. This is valid even

for very small Re cases and relates to the boundary layers.

e ’-}3"']
Laminar 2 Turbulent = ’Dq-.
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F1G. 2.12: Development of the boundary layer and turbulence on a flat plate for a fluid
(|Davidson, 2001]).

Fig. 2.12 depicts the development of the boundary layer. As shown in the figure, at
the beginning of fluid flow, the boundary layer is thin. As flow occurs over time, it
becomes thicker. At a point, the size of the boundary layer § becomes large enough and
flow becomes turbulent. This § corresponds to the [ characteristic length scale in the
calculation of the order of viscous forces. Another length scale in the calculation of Re
is the typical geometric length scale [. This is the span of the boundary surface. If we

consider these two lengths as characteristics lengths in the calculation of Re, we obtain a
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more convenient way to consider Re. In the calculation of eq. 2.16 and the considerations
after it, we have taken the lengths as equal and used the geometric length scale. This
was the misleading part in the first conclusions about Re, where viscosity was considered
an ignorable factor. Now it is obvious that viscous forces are always important and their
importance is observed when the chosen length scale and span of the boundary layer are

suitable sizes.

_,"7;—_\\‘\.__-"—

Re <1

:\x‘\/f.:

F1G. 2.13: Characteristic flows in the presence of a cylinder with respect to different Re
(|[Davidson, 2001]).

Fig. 2.13 shows characteristic flows in the presence of a cylinder at different Re. In
this example, the flow is laminar if Re < 10%. But there are different types of laminar
flows. For small Re, there is symmetry in the flow. If Re << 1, flow resembles inviscid
flow. When the order of Re is just above unity, steady vortices appear. The symmetry
of flow is lost if Re > 10. This is shown in the example where Re ~ 100. In this case,
periodic vortices known as Karman’s vortex street appear. The laminar structure of flow
disappears around 10%. At this value, there is still a vortex street, but it is not as regular
as Karman’s. At really high Re, 10%, this street structure is lost and some small vortices
can be observed (|Davidson, 2001]).
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2.2.6 Vorticity

In eq. 2.5 we mentioned that the antisymmetric part of this equation % <g;”_ — 31;]: is
J i

related to rotations. Now we will deal with these rotations as well as vorticity. Vorticity
is defined as (|Davidson, 2001])
W=V xu (2.17)

and its components can be written as ([Kundu and Cohen, 2002])

o= us Ouz o _Ouw Ouz 0w Ow (2.18)
1_3562 81‘3 2_3563 81‘1 3_3561 81‘2 .

As it is easily seen these are twice the related antisymmetric components. These anti-

. . ou;
symmetric components of the stress tensor are the source of shear forces. If g;‘c"_ = %,
J [

there is no rotation and & = 0 ([Kundu and Cohen, 2002|). However if one of these is

greater than the other, there will be a rotation.

By dropping the gravitational force in the Navier-stokes equation and using the relation-

ship V(u?/2) = (@ - V)i + @ X &, we can write

o
8—1‘ - v (p/p + u2/2> S VPTG X D (2.19)
For steady inviscid fluids C' = <p/ p+u?/ 2) is constant. This is Bernoulli’s theorem
and C is Bernoulli’s function. Here, if we take the curl of this equation, we obtain the

vorticity equation as ([Davidson, 2001])

?;: =UvVA5 4+ V x (i x &) (2.20)

2.2.7 Coriolis force

There are additional effects in a rotating reference frame and to see these, we will
firstly look at the transformation of a vector between a rotating reference frame and
an inertial one. Similar derivations can be found in books and in the reference lists of
([Batchelor, 1967],[Kundu and Cohen, 2002],[Pedlosky, 1979]). Fig. 2.14 shows two co-
ordinate systems: the rotating one S’ (q1, g2, ¢3) has angular velocity O with respect to
the inertial one S (x1,x2,x3). In the rotating frame, we can write an ordinary vector A
as

fT = A1g1 + AsGo + A3qs (2.21)
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F1c. 2.14: Rotating coordinate system S’ is represented with respect to inertial reference
frame S. (|Dreizler and Ludde, 2010]).

If this vector changes with time, the observers in both reference frames will see this
change. However, there will be some differences, which can be understood by writing the
time derivative of A explicitly

dq

Al— + Ay—= 4+ As—. 2.22
ar BT Mg T T ATy, (2.22)

dt dt q1 dt q2 +

7

(dﬁ) _ddy, dAy dAy

The first three terms on the right side of the equation are due to changes in the rotating
frame and the last three correspond to changes in the unit vectors due to rotation. The
length of the unit vectors is always unity and the only change is in their directions. Now
let us consider ¢; and call the angle between it and Q as 1. The parallel component
of ¢ to the Q, |G1|cos, will not change with rotation. Only |G;|siny will change due
to rotation and % = %%

reference frame rotates, only the direction of the |g;|siny will change. Its magnitude

where 6 is the angle of rotation and |Q] = 49 As the

will be constant throughout the motion. So we can write %1 =0 x G1- Then for all

components we have

dt dt
dA .
= = Qx A
(dt) + %

This equation gives the transformation between observed vectors in an inertial and a

)

dA dA ~ 5 5
< ) ) <> + A1 x 1+ A2 x Go + A3Q x G (2.23)

rotating reference frame for any vector. If the vector A is the vector showing the position

of an object 7, we have the relation for the velocities as follows

dar dar -
<dt> ‘ = (dt) + QAxr (2.24)
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and this can also be written as i; = u, + 2 X 7. For the accelerations, we have

dii; dii; -
Ll = ! Q x ;. 2.2

Using the definition of velocity in eq. 2.25, we obtain
di; (i, + 9 < =
(;) =<W> + O x (up 4+ 9 x 7). (2.26)

If O is constant, we have

Gi=ay +20 xu. + 9 x Q x 7. (2.27)

The extra terms on the right side of the equation are present due to the Coriolis and

centripetal forces. Then, for a rotating reference frame, the Navier-Stokes equation

becomes 5
" 1 B o
a—?—i—ﬁ‘Vﬁ:——Vp—2qur—QxQxF+§+VV26 (2.28)
p
The centripetal force is mostly unimportant and can be written as QxQx7 = —V (%2 /2)

where 7’ is the distance measured from the axis of rotation. This gradient term can be
included in the pressure term and after redefining a new pressure, one can totally omit
this term (|Tritton, 1988]).

We can compare the Coriolis force with inertial and viscous forces. There are two non-
dimensional numbers for this purpose and they are called the Rossby and Ekman number,

respectively. Then the Ekman and Rossby numbers are
E =v/Q? Ro =U/QI. (2.29)

These numbers, E and Ro, are special for rotating systems. Since rotating systems are
noninertial frames, there are some other forces present and in the above derivation we
have obtained them. One of them is the Coriolis force and these numbers compare the
strength of the Coriolis force with inertial and viscous forces. For smaller F, the effect
of viscous forces are weak compared to the Coriolis force and vice versa. For smaller Ro,

the effect of inertial forces are weak compared to the Coriolis force and vice versa.



2.3 Dynamo Theory

In this section, we will start with the origin of cosmological magnetic fields and give an
introduction to the dynamo theory. We will also consider electromagnetic relations and
derive the induction equation. Then we will give the basics for the dynamo theory and

the effect of the heat equation on it. Lastly we will discuss the dynamo mechanism.

2.3.1 Origin of cosmological magnetic fields

Previous sections only mentioned the Earth’s magnetic field. Earth is not alone in the
universe, however, and most cosmological bodies have magnetic fields. Planets, the Sun,
stars, some of the moons of the planets and even the galaxies have their own magnetic
fields. The origins of these magnetic fields have been debated for a long time and many

different theories have been proposed.

Firstly, let us consider the sources of the magnetic fields. There are two possible sources.
The first one is the magnetization of matter. This can have different origins, however,
the main source of this magnetization is electron spin alignment. The second source
for the magnetic field is electric current, which is explained by one of the basic laws of
electrodynamics. Due to Faraday’s law of induction, electric currents can induce magnetic

field.

The first potential source, magnetization, cannot explain the origin of these magnetic
fields for several reasons. To be able to produce a strong magnetic field, a material should
have the ferromagnetic property. However, in most cases, the temperature of the fluid
producing the magnetic field is higher than the Curie temperature. Since ferromagnetic
properties cannot exist above this temperature, magnetization cannot be the origin of
cosmological magnetic fields. We know that for the Earth and Sun, there are reversals
and these reversals take place repeatedly throughout the history of these cosmological

bodies. These reversals also cannot be explained by magnetization.

The second possibility, induction of magnetic field from electric current, is likely the
source of cosmological magnetic fields. Since the temperature of the Sun is much higher
than ionization temperature, all atoms constituting the Sun are in ionized form. So an
electrical current is generated due to the thermally and gravitationally driven motion

of these charged particles. This current induces magnetic field. A similar phenomenon
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occurs at the cores of the Earth, other planets and the moons of these planets. There
are some differences between solar and planetary induction of magnetic fields, mostly
due to high temperature and the fast motion of the Sun and stars. The induction
of a magnetic field due to the motion of electrically conducting fluid is described by
dynamo theory. The first self-exited dynamo theory was proposed by von Siemens (1866)
([Krause and Radler, 1980]). However, in 1919, Larmor made a proposal that Earth’s
magnetic field is generated by dynamo action at the Earth’s core due to the motion of
the liquid metal in the core. This dynamo action is a complicated procedure and will
be described in the following sections. Before, we will overview Maxwell’s eqautions and

the induction equation.

2.3.2 Maxwell’'s equations

Maxwell’s equations and Lorentz force are the main components of electrodynamics.
Maxwell’s equations describe how electric field E and magnetic field B changes and
Lorentz force describes how these fields affect charged particles. There are four Maxwell

equations and each describes different electromagnetic phenomena.

One equation is Gauss’s law. It is related to Coulomb’s law, which describes electrostatic
force. Coulomb’s law originated from experimental observations related to the force
between two small charged bodies. The force on test particle with charge ¢ is F = qtﬁ

and electric field at & due to charge g, which is at position Z’ is
(2.30)

Gauss’s law concerns the integration of an electric field over a surface which encloses a
volume. It states that integration of the normal component of E over an entire surface
gives zero if there is no charge inside the enclosed volume and 4mq if there is a charge q.

If there is a charge ¢ inside the volume we can write Gauss’s law as
fé E - fida = 4mq (2.31)
S

where 7 is the unit vector perpendicular to the surface S. Using the divergence theorem
fS A - itda = fV V - Ad®z and q= fv p(Z)d3z where p is the charge density, we can also

write this law in differential form as

V- E =p/e (2.32)
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where ¢ is the permittivity of free space. This is the differential and more commonly

used form of Gauss’s law ([Jackson, 1962]).

The second and third of the Maxwell’s equations are related to magnetism and can be

obtained by considering the induction of a magnetic field from current density J(Z). The

induced magnetic field due to current density is

B = / J(@) x hd%’ (2.33)

This equation directly requires that
V-B=0 (2.34)

and this is one of the Maxwell’s equations. Conceptually, this equation means that there
are no magnetic monopoles. The third of the Maxwell’s equations can be obtained by
taking the curl of eq. 2.33. The result of this curl is

V- J(T)

V x B = poJ + v/ o 3. (2.35)

|

where pg is the permeability of free space. If we consider steady currents V - J = 0, eq.

2.35 in that limit reduces to Ampere’s law. If we consider currents varying with time,

using the continuity equation V - J = % and the definition of the electric field, we obtain

. . oF
V X B =pupJ + ,U()EOE. (2.36)

This equation is Ampere’s law with Maxwell’s displacement current Moﬁo%- The equa-
tion describes how the curl of a magnetic field depends on the current density and time

variation of the electric field (|Jackson, 1962]).

The last equation is related to the magnetic flux F' and electromotive force . The

electromagnetic force is the integral sum of the electric field over the closed circuit

e = ]{ E-dl. (2.37)
C

This circuit creates a magnetic field around it and the magnetic flux linking it is

F = / B -iida (2.38)
S
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where S represents the open surface bounded by C' and 7 is the unit normal to this surface.
Faraday’s experiments and observations concerning magnetic flux and electromotive force

gave the formula

_dr
dt -’

This formula shows that time variation in magnetic flux is proportional to the electro-

E =

(2.39)

motive force. It also reveals that the change in magnetic flux can deduce electromotive
force. This is the basic principle for some electronic tools, i.e. electric dynamo, electric
motors. Using the Stoke’s theorem, eq. 2.39 can be written as

oB

VxE=—">" (2.40)

and this is the differential form of Faraday’s law.

In addition to Maxwell’s equations, we need another relationship to get a comprehensive
formulation for electromagnetism: the Lorentz force. Lorentz force defines the interaction

between charged particles and electromagnetic fields and is given by

—

f=q(E+7xB) (2.41)
where ¢ is the charge of the particle and ¥ is its velocity.

Maxwell’s equations, the continuity equation and Lorenz force are the basic equations

for electromagnetism.

2.3.3 Induction equation

As stated in the introductory part of this chapter, dynamo theory proposes an explanation
for the produced magnetic field of cosmological bodies. Within the framework of dynamo
theory, there is a flowing electrically charged fluid and this flow induces magnetic field.
Maxwell’s equations must be modified for the induction procedure due to some properties

of the flowing fluid’s structure. One of the basic assumptions of this structure is that it

has no net electrical charge. In this assumption, Maxwell’s displacement current uoég%g
is zero and then we obtain .J = o(E 4 @ x B). Another effect of this assumption is that

% can be considered zero and the continuity equation becomes V - J = 0. Then by

using J = o(E + @ x B), VXE:—%?, VxB=—pJand V-B = 0 we can write
([Davidson, 2001])

OB I R



2.3 DYNAMO THEORY 33

where ¢ is electrical conductivity and p is the permeability of the conducting medium.
This equation is sometimes called the induction equation. In dynamo theory, this equa-
tion describes how a magnetic field is induced from the velocity field. The first term on
the right-hand side of the equation gives the relationship for the generation of the mag-
netic field from the velocity field. The second term stands for diffusivity of the magnetic
field. We can write the induction equation in a non-dimensional form as

dB

o =V x (@ B) + E 25 (2.43)

Pm

where Pm = v/n = vuo is the magnetic Prandtl number and is the ratio of the kinematic
viscosity to the magnetic diffusivity. To obtain this non-dimensional form one can use d,
Q, 1Q and pgpl?Q? as length, time, velocity and magnetic field scale. Here € is the angular

speed and d is the typical length, in general it is the distance between the boundaries.

2.3.4 The dynamo theory

The dynamo theory describes the process of magnetic field generation by the inductive
action of a conducting fluid. This occurs, in general, via stretching and twisting of mag-
netic field lines, which converts mechanical energy to magnetic energy (|Davidson, 2001]).

This procedure is the known source of the magnetic field for most of the cosmological
bodies.

The conversion of mechanical energy to magnetic energy is described by the induction
equation, which was introduced in the previous section. This equation gives the source
of the magnetic field in fluid motion for fluids, including electrically conducting material.
The fluid is usually above the Curie temperature and, at that temperature, metals are
in ionized form. Due to this ionization, electrically charged particles move with the
fluid. According to this motion, there is a current and this current produces a magnetic
field. Both the current and the magnetic field are in the same medium and Lorentz force
should affect the fluid. This force must be included in the Navier-Stokes equation, and
it becomes .

ZL—F(ﬁ-ﬁ)ﬁ—i—ZﬁxU:V(b—i—(Vxé)><§—|—EV211‘. (2.44)
where ¢ corresponds to the pressure and the term due to O x O x @ since this term
corresponds to the total divergence. To obtain this non-dimensional form one can use
the scaling used in the non-dimensionalization of the induction equation. This equation

and the induction equation form the basis of the dynamo theory. The Navier-Stokes
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equation and the induction equation describe how the velocity field and magnetic field
evolve, respectively. The velocity field depends on the effects of the Coriolis, pressure,
Lorentz and viscous forces. Both the velocity and magnetic field depend on each other. So
these two equations are coupled and must be solved simultaneously. This is only possible
with computer simulations. In some cases, the Navier-stokes equation can include more

terms and then more equations must be considered in these circumstances.

2.3.5 Heat equation and its effect on the dynamo

There is a temperature difference between the inner and outer boundary for most of
the cases, including Earth and Sun. Due to this difference, heat flows from the high
temperature boundary condition to the low temperature boundary condition. This heat
flow is defined by the heat equation

%—f +i-VT = %WT (2.45)
where T' represents temperature and Pr is the Prandtl number. Pr = v/k is the ratio
of momentum diffusivity to thermal diffusivity and x is the thermal diffusivity. Here
one can also use abovementioned scaling with temperature scaling AT, the temperature

difference between the boundaries.

The temperature difference in a fluid changes the density of the fluid and this density
change produces another force due to gravitational interactions. In general, the inner
boundary has a higher temperature than the outer boundary. Then, the density at the
outer boundary is higher than the inner boundary. In the case of spherical geometry,
gravitation force pulls the higher density material towards the center. So there must
be another term in the Navier-Stokes equation due to this density difference. In the
non-dimensional form, we can write the modified Navier-Stokes equation as
ol ERa 7

a+(ﬁﬁ)ﬁ+2ﬁ><ﬁ:v¢>+(v><1§)><1§+Ev2z7+ P ol (2.46)

where 7 is the radius vector, r, is the outer boundary radius and Ra is the Rayleigh
number. This non-dimensional equation is also obtained using previously mentioned
scalings. The Rayleigh number describes the relationship between buoyancy and viscosity
and is defined as Ra = gB3ATd?/vk. In this definition, g stands for gravitation, 3 is the

expansion coefficient of the fluid.

The heat equation can also be used to describe the buoyancy variable. If density changes

due to some other effects, this density change can also have effects. Then we can add a
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source term for buoyancy in eq. 2.45. This time, a modification to the Rayleigh number
is needed. So, other effects concerning density changes can also be described by this
equation. We will use the buoyancy variable in subsequent sections and due to its usage,

we will make modifications to Ra as well.

2.3.6 The dynamo mechanism

The dynamo takes place mainly in the fluid part of cosmological bodies. In general, this
fluid is highly conducting and can stretch and twist a magnetic field (|Davidson, 2001]).
The stretching, twisting and folding of a magnetic flux tube is shown in fig. 2.15. As
shown in the figure, the flux tube is first stretched to twice its size. Then, this stretched
flux is twisted and finally folded. This is a schematic representation of conversion of

mechanical energy to magnetic energy.

(©)
IS

F1G. 2.15: A schematic sketch of the stretching and twisting of a magnetic field. (a) A
torus carrying magnetic flux F is stretched to twice its size (b). (c¢) The twisted version of

the stretched magnetic field. (d) The folded version of it. ([Childress and Gilbert, 1995]).

By considering a velocity field that is steady on average, it is possible to obtain dynamo
action. For dynamo action, the following properties are needed and these can differ due
to the structure of the system. The first necessary key property is a large magnetic
Reynolds number Rm, which is defined as Rm = poul. At the very least, it should be
greater than 57 (|Davidson, 2001]). Otherwise, the dynamo will lose its magnetic energy
due to ohmic losses and the magnetic field will disappear. This can be understood from
the induction equation. If we multiply the induction equation by the magnetic field, after

some arrangements, we get the energy relation as

g () =-V-(ExB/u)—J E. (2.47)

In this equation, the first term corresponds to the Poynting flux and if we integrate over
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all space, it is equal to zero. Then by using E= f/a — @ x B we can get

ok 1 = — 1

B:/a.[Bx(vXB)]dv—/ﬂdv (2.48)
ot 7 o

where Ep = [ %jdV is the magnetic energy and the first term on the right side of the

equation corresponds to the rate of the working Lorentz force. The second term is the

Joule or Ohmic dissipation. So the work done by the Lorentz force must be greater than

the dissipation for a non-decaying dynamo.

e )
B G >

(a) (b) (©

FiG. 2.16: (a) A poloidal magnetic field. (b) The generation of an azimuthal magnetic
field from a poloidal magnetic field. (c¢) The generation of a poloidal magnetic field from

an azimuthal one (|Russell, 1999]).

The second key point is that an axisymmetric dynamo is not possible. We can separate
the field into an azimuthal and poloidal field, i.e. B = ép + é@. Using the induction
equation and this separation, we can show that an axisymmetric velocity field cannot
intensify a poloidal magnetic field (|Davidson, 2001]). The poloidal magnetic field gen-
erates an azimuthal magnetic field and this azimuthal magnetic field can also generate
poloidal magnetic field. The last step cannot be axisymmetric. Thus, an axisymmetric
dynamo is not possible. The mechanisms for generation of these fields are o and {2 effects.
The « effect is the generation of a poloidal magnetic field from an azimuthal magnetic
field. We can see this procedure from a schematic shown in fig. 2.16. In this figure, a
poloidal magnetic field at the beginning is affected by differential rotation. Differential
rotation causes a velocity field which rotates faster in the inner boundary and this faster
velocity field changes the orientation of the magnetic flux tubes. An azimuthal magnetic
field is generated due to this change in orientation. There can also be some eddies or
small scale motions in the fluid. The last picture in fig. 2.16 shows these eddies and small
scale motions of the fluid. These small scale motions can change the orientation of the
magnetic fluxes The small-scale magnetic fields can also arrange themselves to align in

the main magnetic field, which is poloidal. This procedure can be shown by dividing the
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magnetic field into two components: main magnetic field, which can be considered as the
average magnetic field and small scale magnetic field, i.e. B = By+ b. Here B represents
the total magnetic field, go represents the main magnetic field and b represents the small

scale or fluctuating magnetic field. Then, using the induction equation, we can obtain
8B/t =V x (ily x Bo) + aV x By + 1/(uc)V?By. (2.49)

This extra term in the induction equation is the mathematical representation of the «
effect. This is one of the generally accepted mechanisms for magnetic field generation in

dynamo theory and is known as a — € dynamo ([Davidson, 2001]).

There are also some other dynamo mechanisms. One of them is o? dynamo. If we do
not consider differential rotation, then the generation of the azimuthal magnetic field
due to differential rotation is eliminated. In o dynamos, we can consider that azimuthal
magnetic field can be generated from the poloidal magnetic field via small scale motions.
Then, these small scale motions appear and again generate a poloidal magnetic field.

This is the basic working principle for the a? dynamo ([Davidson, 2001]).
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2.4 Dynamo Experiments

Some laboratory dynamo experiments have been conducted. Here, we will mention three
of them: Riga, Karlsruhe and the von Karman sodium experiment. These are the three

successful experiments.
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F1G. 2.17: The radial magnetic field and propeller rotation rate of the Riga experiment
during one run in July 2003 (|Gailitis et al., 2004]).
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F1G. 2.18: PSD of (a) azimuthal and (b) axial magnetic fields for the Riga experiment
for the run in June 2003 (|Gailitis et al., 2004]).

The Riga experiment has been carried out with two electric motor propellers. The
setup consists of three concentric cylinders for different flow structures. The flowing
fluid is sodium with a total volume 2m3. The central flow has azimuthal and axial
velocity components and these flow components are the main factors generating the
magnetic field. There are published results for this experiment (|Gailitis et al., 2004],
[Gailitis et al., 2003], |Gailitis et al., 2001]). Fig. 2.17 shows the results of one exper-
imental run in the Riga experiment. In this graph, the radial magnetic field and the
rotation rate of the propeller are shown. The PSDs of this run for the axial and az-
imuthal magnetic fields are shown in 2.18. Both have nearly 1/f frequency dependence

in the low frequency range. In the high frequency range, the frequency dependence
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changes to 1/f11/3,
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F1G. 2.19: The x-component magnetic field from the von Karman sodium experiment
(|Bourgoin et al., 2002]).

F1G. 2.20: The PSD of the x-component magnetic field from the von Karman sodium
experiment ([Bourgoin et al., 2002]).

The second experiment that we will mention is the von Karman sodium experiment.
There is a cylindrical vessel with diameter 40cm for this experiment. Two coaxial
impellers generate the flow. One can find published researches on this experiment
([Monchaux et al., 2009|, [Volk et al., 2006|, [Bourgoin et al., 2006]). We will consider
the experiment result shown in fig. 2.19. In this figure, only one of the magnetic field
measurements is considered: the measurement close to the 8 Hz propeller. The other pro-
peller runs at 17H z and produces similar results. As seen in fig. 2.19, the x-component

of the magnetic field is fluctuating.

Fig. 2.20 shows the PSD of the magnetic field shown in fig. 2.19. Again, there is 1/f
frequency dependence in the low frequency range and 1/ f1Y/3 dependence in the high
frequency range. This frequency dependence is similar to the previously shown Riga

experiment results.

The third experiment is the Karlsruhe experiment. In this experimental setup, there are
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F1G. 2.21: The B3 component of the magnetic field taken from the result of the Karlsruhe
experiment ([Muller et al., 2002]).
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F1G. 2.22: The PSD of the Byz component of the magnetic field measured at different
sensors [Muller et al., 2002].

52 cylindrical vortex generators which are connected to three different loops. Different
sensors measure magnetic fields at different positions. Detailed information concerning
this experiment and its specially designed configuration can be found in different papers
([Muller et al., 2002|, [Stieglitz and Muller, 2001]). In fig. 2.21, the B3 component of
the magnetic field from the cited paper is shown in that work. The B,3 component shows
some fluctuations and the PSD of a similar time series measured at different flow rates
are shown in fig. 2.22. The flow rates are 136m3/h, 125m3/h, 120m?/h, 116m?/h and
106m3/h. Five different PSDs result from these different flow rates because as flow rate
changes, properties of PSD change. For the fastest flow rate, 4 different power laws show
the frequency dependence of the PSD. These are 1/f, f3/2,1/f% and 1/f%. As frequency
increases, these power laws follow one another for the flow rate 136m3/h. These power

laws are not valid for other flow rates. However, 1/f is a general power law for all flows.
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We have seen that different power laws describe frequency dependence in these dynamo
experiments. However, in general, 1/ f power law for the low frequency regime is valid for
all three experiments. These experiments are vastly different from the Earth’s dynamo,
where heat conditions, shapes, fluid type and many other factors are all different. How-
ever, the dynamo experiments all have one thing in common: the success of a dynamo

experiment relies on the generation of a magnetic field that does not decay.
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3 Numerical Dynamo Simulations

There are several classifications of the dynamo mechanism. In one classification, we use
the a—Q and a? dynamos as generation mechanisms of the magnetic field. The a— ) dy-
namo is the most widely accepted and is used in research. The a? dynamo is another type
of magnetic field generation and both were introduced in Section 2.4.6. There are many
studies on a? type of generation ([Soward and Jones, 2005|, [Barenghi and Jones, 1991],
[Barenghi, 1992]|, [Hollerbach and Ierley, 1991]).

Another classification arises due to the driving force of fluid motion. This classification
includes convection driven dynamo, gravitational dynamo and precession driven dynamo.
The most popular and accepted one is convection driven dynamo and there is a lot of
published research on this mechanism (|[Kutzner and Christensen, 2002|, [Soward, 1974]),
[Jones and Roberts, 2000], [Childress and Soward, 1972], [Christensen and Aubert, 2006],
[Olson and Christensen, 2006|, |[Busse et al., 1998|, [Jones, 2000], [Soward, 1974]). In the
convection driven dynamo, there is a temperature difference between the boundaries.
This temperature difference causes density differences and gravitation pulls the higher
density part and convection takes place. This is the main idea behind the convection
driven dynamo. The second one, gravitational dynamo, is not as popular as convection
driven dynamo, but there is a similarity between them. Both employ the heat equa-
tion. It is used as the heat transfer equation in convection driven dynamo and as the
buoyancy transport equation in gravitational dynamo. Similar to the convection driven
dynamo, convection and gravitation are also at play in the gravitational dynamo. The
difference between these two dynamo types is related to the source of the density dif-
ference. It is observed due to the solidification of higher density material in the inner
boundary. The name "gravitational dynamo" was given by another author and we have
followed him. It is also said compositional convection dynamo for this mentioned type.
There is also an abundance of published research on gravitational dynamo (|Olson, 2007],
[Lister and Buffett, 1995|, [Loper, 2007]). Lastly, precession driven dynamo is different

compared to the first two because the driving force in the dynamo is precession. The
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heat equation effect is ignored in this consideration and a force due to the precession is
included. This was first carried out by Tilgner and further research has explored this
mechanism (|Tilgner, 2005|, [Wu and Roberts, 2008|, [Zhang et al., 2010]).

A third classification type of the dynamo mechanism is referred to as kinematic dynamo.
In this classification, the Lorentz force in the Navier-stokes equation is removed and only
kinematic forces effects on the motion of the fluid are considered. There is also published
research on this topic (|Tilgner, 1997|, |Pekeris et al., 1973|, [Roberts, 1972]).

Here, we will only model gravitationally driven and convection driven dynamos. The
abovementioned stretching and twisting take place due to the forces in the Navier-Stokes
equation. Stretching and twisting are essential for the generation of the magnetic field,
but we do not need to consider these separately because their calculations are carried

out numerically within our models.

3.1 Gravitational dynamos

To investigate the gravitational numerical geodynamo, the following dimensionless equa-
tions are simultaneously solved: the Navier-Stokes equation, buoyancy transport equa-

tion, magnetic induction equation and continuity equations for mass and magnetic field.

- . E2 = N _
(;L_,_(ﬁ.v)ﬁ+22xﬁ = V¢ — P]faT;—i—(VxB)xB—i-EVQﬁ
oT - E
— 4+ (@ V)T = —=—V?T-FE
8t+(u V) Prv €
OB S E _sx
V-Z=0 V-B=0

where B, u, ¢, T and € are the magnetic field, fluid velocity, pressure perturbation,
buoyancy variable and buoyancy source, respectively. E, Pr, Pm and Ra are the Ek-
man, Prandtl, magnetic Prandtl and Rayleigh numbers, respectively. In the numerical
solutions, the ratio of inner to outer radii d = r;/7, is fixed at 0.35; the dimensionless
outer radius g = 1/0.65; and the variable modeling the buoyancy source ([Olson, 2007])
€ is fixed at 1. This buoyancy source is inserted in these equations to represent the solid-
ification in the inner boundary. Nondimensionalization is achieved by using the radius
ratio d as the length scale and the inverse of angular speed 1/ as the time scale. The

fluid velocity is scaled by df2 and the magnetic field is scaled by (,uopodZQQ)l/ 2 where
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Tod?
v

Ty is the time derivative of the spatially uniform slowly increasing part of the light el-

po is the outer core mean density. The buoyancy variable T is scaled by where
ement concentration in the outer core. We consider the same physical model described
in ([Olson, 2007]). It is a model for a rotating spherical shell with its gap filled with
fluid and its motion driven by gravitational convection. Here, we change the boundary
conditions and add a buoyancy source term. To better fit gravitational or compositional
convection, we employ the following boundary conditions: fixed buoyancy variable at the
inner boundary 7' =1 at r = r; and zero flux through the outer boundary 07'/0t = 0 at
r = ro. Both velocity boundary conditions are taken as no slip and magnetic boundary

conditions are considered to be electrically insulating.

Here, we will again define the dimensionless numbers, since there are changes in some
of the definitions. The Ekman number, the ratio of viscous forces to Coriolis forces, is
defined as F' = 475 where v is the kinematic viscosity. The Prandtl number, the ratio of
kinematic viscosity to thermal diffusivity, is defined as Pr = ¥ where & is the diffusivity
of the buoyancy variable. The magnetic Prandtl number, the ratio of kinematic viscosity
to magnetic diffusivity, is defined as Pm = % where 7 = 1/ppo is the magnetic diffusivity
and o is the electrical conductivity. The Rayleigh number, the ratio of buoyancy forces

to the product of thermal and momentum diffusivities, is defined as Ra = where

agod®Ty
V2K
a = (po — pre)/po, pre is the light element end member mixture and the subscript Le
represents light element concentration and gg is the gravity at the core-mantel boundary.
This last parameter Ra controls the strength of the buoyancy forces, which drives the
convection. In gravitational dynamos cooling of the core and solidification of iron and
nickel result in an increase in the partition of the light elements in the liquid near the inner

core boundary. As the light elements concentration increases, the density of the liquid at

the inner core boundary decreases, which enhances the buoyancy forces (|Olson, 2007]).

To be able to comment on the time scale of this dynamo model within the geomagnetic

time scale, we can use the dipole free decay time. The dimensionless dipole free decay

Pm (7 2
ty= (o) 3.1
== (Wd) (3.1)

The dipole decay time corresponds to approximately 20 kyr for Earth (|Olson, 2007]).

time is

The equations were solved using the spectral method described in Tilgner’s work with a
resolution of 33 Chebychev polynomials in radius and spherical harmonics of degree up to

128 ([Tilgner, 1999]). From these solutions, we get different outputs, but we will mostly
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use: the axial component of dipole moment, kinetic and magnetic energies and radial
component of the velocity and magnetic field. The kinetic and magnetic energies were
calculated through the formulas Ey;, = % f @W2d3z and Enag = % f ]§2d3:c, respectively.
From these energies, we extracted the root mean square values of the velocity field and
magnetic field u,,s and Bpy,s. Then we calculated the PSD of these rms values and
obtained power laws. We also showed the radial component of the velocity field at
r = (r;+7,)/2 and in the equatorial plane and the magnetic field on the outer boundary
and in the equatorial plane. Some of the results of this section were previously published

(|Tanriverdi and Tilgner, 2011]). Following the numerical solution of the equations, we

will comment on the results.

N -
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F1G. 3.1: Numerical results of the reversing gravitational dynamo at Ra = 1 - 109,
Pm =20, E = 6.5-107° and Pr = 1. a) Time series of the kinetic energy. b) Time
series of the magnetic energy. ¢) PSD of . d) PSD of Byps.

Fig.3.1, fig.3.2 and fig.3.3 show the results and the analysis of the simulation for Ra =
1-10%, Pm = 20,E = 6.5-107°, Pr = 1. Fig.3.1 shows the time series of the magnetic
and kinetic energy and PSDs of ;s and B,s. We see that the power spectrum of
the rms velocity field has 1/f dependence for low frequencies and the power spectrum of
the rms magnetic field decreases as 1/f? for the same frequency interval. For the high

frequency spectrum, there are different power laws and these are detailed in tab. 3.1.

Another output of this solution is depicted in fig.3.2 which shows the axial component
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FIG. 3.2: Time series of the dipole moment at Ra = 1-10%, Pm = 20, E = 6.5-107°
and Pr = 1.

FIG. 3.3: Structure of the reversing gravitational dynamo at Ra = 1- 10, Pm = 20,
E =6.5-10"° and Pr = 1. a) Radial component of the velocity field u, at r = (r;+7,)/2.
b) Radial component of the magnetic field B, on the core mantle boundary. ¢) Radial
component of the velocity field u, in the equatorial plane. d) Radial component of the

magnetic field B, in the equatorial plane.

of the dipole moment versus time. It has positive values at some time intervals, and
negative values at others. This pattern is repeated many times over the simulation time
and means that there are many magnetic reversals for this solution. To compare these
reversals, we can use the decay time formula given by eq.3.1. The dipole decay time for
this solution is t5 = 702. If we use the value for the estimated decay time for Earth in this
simulation, the whole simulation time corresponds to 57kyr. Earth’s dipole decay time is

approximately 20kyr. On the other hand, we observe many reversals in the simulation.
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This shows that the decay does not takes place and the velocity field generates enough

magnetic field.

Fig.3.3 shows the radial components of the velocity field at » = (r; + 7,)/2 and in the
equatorial plane and the magnetic field on the core mantle boundary and in the equatorial
plane. In the equatorial plane, we see two cyclonic and two anticyclonic vortices in the
velocity field. The velocity field at » = (r; + r,)/2 also shows these vortices. The
magnetic field on the core mantle boundary shows a structure similar to a dipole field.
In the equatorial plane, we see cross sections of two magnetic flux tubes. However, the
structure of these flux tubes is not as smooth as those observed in the velocity field.
This should be related to the magnetic Prandtl number. Since it is bigger than 1 in our
simulations, magnetic diffusivity takes place slowly and the structures of these flux tubes
are not as smooth as vortices in the velocity field. To be able to compare the simulation
to Earth’s magnetic field, we should consider the magnetic field over the mantle. If we
consider the magnetic field over the mantle, the magnetic field will be smoother and,

similar to the Earth’s magnetic field, its structure will look more like a dipole field.

Ty 100 W,

(c) (d)

FIG. 3.4: Numerical results of the reversing gravitational dynamo at Ra = 1 - 10,
Pm =20, E =6.5-107° and Pr = 1. a) Time series of the kinetic energy. b) Time
series of the magnetic energy. ¢) PSD of wupps. d) PSD of Byps.

Fig.3.4, fig.3.5 and fig.3.6 show the results and the analysis of the simulation for Ra =
1-10°, Pm = 20, E = 6.5-107°, Pr = 1. Fig.3.4 shows the time series of the magnetic and
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FiG. 3.5: Time series of the dipole moment at Ra = 1-10°, Pm = 20, E = 6.5-107°
and Pr = 1.
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FIG. 3.6: Structure of the reversing gravitational dynamo at Ra = 1-10°, Pm = 20,
E =6.5-107° and Pr = 1. a) Radial component of the velocity field u, at r = (r;+7,)/2.
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b) Radial component of the magnetic field B, on the core mantle boundary. ¢) Radial
component of the velocity field u, in the equatorial plane. d) Radial component of the

magnetic field B, in the equatorial plane.

kinetic energy and PSDs of ;s and Bjp,s. We see that the PSD of w5 is constant for
low frequencies and the PSD of By, reduces with 1/f? for the same frequency interval.
The most interesting difference between fig.3.1 and fig.3.4 is that the power law for the
PSD of s has changed from 1/f to constant for low frequencies. There are different

power laws for the high frequency spectrum and these are detailed in tab. 3.1.

Another output of this solution is the axial component of the dipole moment, which is
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shown in fig.3.5. Similar to the previous solution, there are many magnetic reversals for
this solution. The dipole decay time is again t; = 702 and this time, the whole simulation
time corresponds to 712kyr. There are more than 30 reversals in the simulation. Again,
the velocity field generates enough magnetic field and the dissipation due to the Joule

dissipation does not takes place.

Fig.3.6 shows the radial components of the velocity field at r = (r; + 7,)/2 and in the
equatorial plane and the magnetic field on the core mantle boundary and in the equatorial
plane. The number of vortices are doubled in the velocity field if compared to the previous
case. We see four cyclonic and four anticyclonic vortices in the equatorial plane. In the
velocity field, this structure with four paired vortices is also seen at r = (r; +1,)/2. The
magnetic field on the core mantle boundary again shows a structure similar to the dipole
field and will be smoothed if we consider the field over the mantle. The magnetic field
shows two paired flux tubes in the equatorial plane. However these are not as smooth as

in the velocity field.

(c) (d)

FIG. 3.7: Numerical results of the nonreversing gravitational dynamo at Ra = 5 - 10%,
Pm =20, E =6.5-107° and Pr = 1. a) Time series of the kinetic energy. b) Time
series of the magnetic energy. ¢) PSD of wuyy,s. d) PSD of Byps.

Fig.3.7, fig.3.8 and fig.3.9 show the results and the analysis of the simulation for Ra =
5-10% Pm = 20,FE = 6.5-107%,Pr = 1. Fig.3.7 shows the time series of magnetic

and kinetic energy and PSDs of ;s and B,,,s. There is a repeated structure in both
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FIG. 3.8: Time series of the dipole moment at Ra = 5-10%, Pm = 20, F = 6.5-10° and

FIG. 3.9: Structure of the nonreversing gravitational dynamo at Ra = 5-10%, Pm = 20,
E =6.5-10"° and Pr = 1. a) Radial component of the velocity field u, at r = (r;+7,)/2.
b) Radial component of the magnetic field B, on the core mantle boundary. ¢) Radial
component of the velocity field u, in the equatorial plane. d) Radial component of the

magnetic field B, in the equatorial plane.

kinetic and magnetic energies, which shows itself as peaks in the spectra. Other than
these peaks, the PSD of u,.,,s is more or less constant for the low frequency interval and
the PSD of B,,,s decreases as 1/f? for the same frequency interval. Different power laws

governing the high frequency intervals are presented in tab. 3.1 in detail.

The axial component of the dipole moment is shown in fig.3.8. In contrast to the previous
solutions, there are no magnetic reversals for this solution and the axial component of the

dipole moment is always a negative value. The decrease in the Rayleigh number results
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with a nonreversing result. The dipole decay time is again t; = 702 and this time, the

whole simulation time corresponds to 142kyr.

Fig.3.9 shows the radial components of the magnetic field on the core mantle boundary
and in the equatorial plane and the velocity field at r = (r; +7,)/2 and in the equatorial
plane. In the velocity field, there are six cyclonic and six anticyclonic vortices, which are
easily observed in the equatorial plane. At r = (r; + 15)/2, we also see this columnar
structure in the velocity field. The magnetic field on the core mantle boundary again
shows a structure similar to the dipole field and will be much smoother if we consider the
field over the mantle. The magnetic field also shows paired flux tubes in the equatorial
plane. However, these have a different structure than the velocity field vortices. Again

this difference is related with Pm.

FIG. 3.10: Numerical results of the reversing gravitational dynamo at Ra = 1 - 10,
Pm = 5.75,6,13,20,25,35, E = 6.5-107° and Pr = 1. a) PSD of uys. b) PSD of
Birms.

Fig.3.10 shows a set of PSD graphs of tms and Byy,s at Ra = 1-10%, E = 6.5-107°,
Pr =1 and Pm = 5.75,6,13,20,25,35. The PSDs of u,s show 1/f dependence on
f for low frequencies and the PSDs of B,,s decrease as 1/f? for the same frequency

interval. It is obvious that the low frequency power law does not depend on Pm.

Fig.3.11 shows a set of PSD graphs of s and By, at Ra = 1-10%, E = 6.5-107,
Pr =1 and Pm = 20, 30, 35,50, 70, 100. The PSDs of u,,s are more or less constant for
low frequencies and the PSDs of B,,s decrease as 1/f2 for the same frequency interval.

Again, there is no Pm dependence of the low frequency power law.

Fig.3.12 shows a set of PSD graphs of s and Byps at Ra = 5-104, E = 6.5:1075, Pr =1
and Pm = 7,8,10,12,15,20,30. The PSDs of ;s are more or less constant for low
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PSD

FIG. 3.11: Numerical results of the reversing gravitational dynamo at Ra = 1 - 10°,
Pm = 20,30,35,50,70,100, E = 6.5-107° and Pr = 1. a) PSD of t.y,s. b) PSD of
Brms~

PSD

FiG. 3.12: Numerical results of the nonreversing gravitational dynamo at Ra = 5 - 10,
Pm = 7,8,10,12,15,20,30, E = 6.5-107° and Pr = 1. a) PSD of t.,s. b) PSD of
Brms~

frequencies and the PSDs of B,,s decrease as 1/f? for the same frequency interval.

Similar to the previous cases, the low frequency power law does not depend on Pm.

Table Tab.3.1 provides detailed information on the simulation results shown in fig.3.10,
fig.3.11 and fig.3.12. Nearly in all cases for low frequencies, the power law for B, is
-2 and in the corresponding frequency interval, the power law for u,,,s changes with Ra.
If Ra = 1-10, the power law is -1 and if Ra = 1-10° or Ra = 5- 10 , the power law
is 0. Later in this work, we will explain this situation with a simple model. In the high
frequency range, the situation is different. The relationship between the power laws for
high frequencies can be stated as the power law of u,,s at high frequencies is less than
the power law of B,,s by a approximate value 2 in the same interval. But this is not valid

in all cases, which makes it harder to obtain a general relationship. Table 3.1 also shows
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LfPL | Hf PL | Lf PL | Hf PL
Ra Pm A Re | Rm Ro
(Brms) (Brms) (urms) (Urms)

5.75 | 2.02 77.8 | 226 0.505 -2 -9 -1 -10
6 2.74 | 82.4 | 264 0.535 -2 -8 -1 -10
13 73 65.5 | 362 0.426 -2 -7 -1 -9

1-106
20 171 59.9 | 467 0.389 -2 -6 -1 -8.5
25 243 | 57.5 | 538 | 0.374 -2 -6 -1 -8.5
35 408 | 55.6 | 703 | 0.361 -1.6 -5.5 -1 -8
20 16.2 | 20.3 | 53.7 | 0.132 -2 -9 0 -12
30 51 20.5 | 82.3 | 0.134 -2 -9 0 -12
35 68.9 | 20.5 | 95.5 | 0.133 -2 -9 0 -11

1-10°
50 130 | 20.3 | 134 | 0.132 -2 -9 0 -11
70 231 19.9 | 181 0.130 -2 -8 0 -10
100 386 19.6 | 249 0.127 -2 -7 0 -11
7 0.313 | 14.9 | 10.1 | 0.0969 -2 -11 0 -13
8 0.408 | 14.9 | 11.7 | 0.0973 -2 -11 0 -13
10 0.508 | 14.9 | 14.5 | 0.097 -2 -11 0 -13
5-10* 12 0.778 | 14.8 | 17.2 | 0.0964 -2 -11 0 -13
15 0.455 15 22 0.0977 -2 -11.5 0 -15
20 0.614 15 29.3 | 0.0976 -2 -7.5 0 -15
30 16.8 13.1 | 33.5 | 0.0851 -2 -9 0 -14

TAB. 3.1: Gravitational dynamo simulation results. The first two column show control
parameters Ra and Pm. Since two of the parameters are constant for these results, they
are not shown and E = 6.5-1073 and Pr = 1. The next four columns show output
parameters A, Re, Rm and Ro. The 7th and 8th columns show low frequency interval
power law (Lf PL) and high frequency interval power law (Hf PL) for the spectrum of

Bims, respectively. The 9th and 10th columns show similar power laws for the spectrum

Of u?“ms-
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the Reynolds number Re = Ro/E, Elsasser number A = B2 _Pm/FE, magnetic Reynolds

ms
2

number Rm = uz,,,

Pm/E and Rosby number Ro = uppms. It is seen that mostly Ro
decreases as Pm increases. This case can be explained by a simple consideration. Pm is
the ratio of kinematic viscosity to magnetic diffusivity, so as it increases, we can consider
increasing kinematic viscosity. If the kinematic viscosity is higher, it is expected that
more kinetic energy will disappear, which will result in decreasing Ro. However, this
consideration is valid if Pm has reached a saturation value for the dynamo. This also
explains the decrease in Re since it is proportional to Ro. As Pm increases, Rm also
increases due to the direct proportionality to Pm. In A, the situation is different and
depends on both u.,s or Ro and Pm; its value is determined due to an increased or

decreased rate in these values.

Control parameters (Input)

Parameter Definition Force balance Model value Earth value
Rayleigh number Ra = agoATd/vk buoyancy/diffusivity 1 —-50Rac > Ragi
Ekman number E =v/Qd? viscosity/Coriolis 10¢-10* 107"
Prandtl number Pr= v/« viscosity/thermal diff. 2:1072-10% 0.1 -1
Magnetic Prandtl  Pm = v/ viscosity/magn. diff. 107" —10® 10°® —10°°
Parameter Definition Force balance Model value Earth value
Elsasser number A = B?/upnQ)  Lorentz/Coriolis 0.1 —100 0.1 -10
Reynolds number  Re = ud/v inertia/viscosity <500 108 - 10°
Magnetic Reynolds Rm = ud/n induction/magn. diff. 50 — 10® 102 — 10°
Rossby number Ro = u/Qd inertia/Coriolis 3-107%-102 107 -10"°

Earth core values: d ~ 2-10°m, u~ 2-10"*ms™', v x 10¥ m?s~'

FiGc. 3.13: Comparison of some calculated parameters of the Earth compared to the
simulations’ values. There are four input parameter values. There are huge differences
between the Earth’s parameters and the simulations’ parameters. This is also true for
the output parameters. In the bottom panel, we see some estimated numbers related to
the Earth’s core (|D. Schmitt, 2009]).

Fig. 3.13 provides some of the values of parameters related with the dynamo mechanism
estimated for Earth. This mechanism is the source of the Earth magnetic field as men-
tioned earlier. As evident in the figure, there are huge differences in these parameters
when comparing estimates for Earth to our simulations. This shows that we are far from
the real Earth case. However, these simulations help us gain a better understanding of
the dynamo mechanism. In our simulations, £ = 6.5-107° and Pr = 1. If we compare

these values with the estimated values for Earth, we see that the parameter values are
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nearly the same for Pr. This shows that the ratio of viscosity to the magnetic diffusivity
is almost equal. E is much greater than the estimated Earth values. Hence, the effect
of viscous forces compared to Coriolis forces is much greater. In our simulations shown
in table 3.1, we have taken Ra as 5-10% 1-10° and 1-10°. These values are much
smaller than the estimated Earth values. Since Ra measures the ratio among buoyancy
and diffusivity, the effect of buoyancy forces compared to the diffusive forces is smaller
in the simulations than the estimated Earth effects. For Pm, the situation is different
compared to Ra, and Pm takes values between 5—100. This time our simulation param-
eters are much greater. This means that in the simulations, viscous forces are too great
compared to those estimated for Earth. Re takes values between 19 — 80. Then this
means that the ratio of the inertial forces to the viscous forces is much smaller than the
estimated Earth ratio. For Ro, the simulation values are greater than estimated Earth
values. This means that the inertial to Coriolis force ratio is greater in the simulations.
In the simulations, A values include the estimated Earth values. Then, in some cases,
the ratio of Lorentz force to Coriolis force is equal to the estimated ratios and in other
cases, it is slightly greater. For Rm, our simulation results are within the range of the
estimated Earth values. So the ratio of induction to magnetic diffusivity is of the order

of estimated values. A more detailed table can be found at the end of this work.

The dipole graph for our simulations are not similar to the Earth’s estimated dipole. If
we consider the case at the surface of the Earth in our simulations, we also obtain a
dipole structure for the magnetic field. However, our results do not resemble the dipole
shown in fig. 2.7. Based on the large differences between the input parameters and some

other effects, this is not an unexpected result.

An interesting coincidence between the Earth’s estimates and our simulations is evident
in our power laws for Byys. The frequency value f ~ 10~3 from our calculations is nearly
equal to the Earth’s estimate of 5Ma~!. This comparison is done using the dipole decay
time. If we examine the PSD graph shown in fig. 2.5, we see that the frequency at that
value starts to fall and the power law for this decrease is nearly 1/f2. In this graph,
this decrease is observed in the third region. In most cases in our simulations, f ~ 1073
is the starting value of the 1/f2 power law or the decay at that frequency has already

started and the 1/f2 power law is observed.

Thus, there is coincidental consistency between the calculated Earth PSD graph and our
simulations. We also see another power law in fig. 2.5 just after the 1/f? power law and

it is approximately the 1/f7 power law. This value was also seen in some of cases in our
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simulations.

3.2 Convection driven dynamos

In the previous section, we showed the results of the dynamo driven by gravitational con-
vection. Here we will examine a different situation. We will take the buoyancy source as
zero, € = 0, in the eqgs. 3.1 and use fixed temperature boundary conditions on both inner
and outer boundary conditions. This configuration gives a dynamo driven by convec-
tion due to the temperature difference. We will solve eqgs. 3.1 with the abovementioned
conditions. This new configuration changes one of the control parameters. Here, we
have scaled temperature by AT, the temperature difference between the inner and outer
boundaries. This new scaling gives us the Rayleigh number Ra = %. All other
control parameters and scalings are the same as previously described. The numerical so-
lutions for different configurations of control parameters are given below. These solutions

will be compared with the results of the gravitational dynamo.
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FIG. 3.14: Numerical results of the reversing dynamo at Ra = 5 - 10°, Pm = 20,E =

6.5-107%, Pr = 1. a) Time series of the kinetic energy. b) Time series of the magnetic
energy. ¢)PSD of uppms. d ) PSD of Byys.

Fig.3.14, fig.3.15 and fig.3.16 show the results and the analysis of the simulation at
Ra =5-10°,Pm =20,FE =6.5-107°,Pr = 1. At Ra = 1-10°, the numerical solution
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F1G. 3.15: Time series of the dipole moment at Ra = 5-10°, Pm = 20,E = 6.5-107°
and Pr = 1.

FiG. 3.16: Structure of the reversing dynamo at Ra = 5-10°,Pm = 20,F = 6.5 -
1073, Pr = 1. a) Radial component of the velocity field u, at 7 = (r; + 7,)/2. b) Radial
component of the magnetic field B, on the core mantle boundary. ¢) Radial component
of the velocity field w, in the equatorial plane. d) Radial component of the magnetic

field B, in the equatorial plane.

resulted in infinities. So we have taken Ra as 5 - 10° and will compare this case with
the previous gravitational dynamo at Ra = 1-10%. Fig.3.14 shows the time series of
the magnetic and kinetic energy and PSDs of wpms and Bppm,s. The PSD of wpps is
nearly constant for low frequencies and the PSD of B,,s decreases as 1/f? for the same
frequency interval. For the gravitational dynamo at Ra = 1-10°, we have 1/ f dependence
on f for the PSD of ;. This is the first difference between these two cases. Different

power laws for the high frequency spectrum are detailed in tab. 3.2.
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The axial component of the dipole moment is shown in fig.3.15. Magnetic reversals are
easily observed, which is nearly identical to the gravitational dynamo results. The dipole

decay time is again t; = 702 and the whole simulation time corresponds to 19kyr.

In fig.3.16, we see radial components of the the velocity field at r = (r; + r,)/2 and
in the equatorial plane and the magnetic field on the core mantle boundary and in the
equatorial plane. There are six cyclonic and six anticyclonic vortices in the velocity field.
However, they are irregular and this is observed in the equatorial plane. The velocity field
at 1 = (r; + 1,)/2 also shows this structure, but the columnar structure is not smooth.
The magnetic field on the core mantle boundary shows a structure different than a dipole
field and it is difficult to say anything about the field over the mantle. The magnetic
field in the equatorial plane is really complicated. But one can still see the effects of the
columns of the velocity field. Comparing these results to the gravitational dynamo, we
see that the situation is totally different. The deviations from a dipole in the magnetic

field are much greater in this solution with respect to the gravitational one.
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FIG. 3.17: Numerical results of the reversing dynamo at Ra = 1-10°, Pm = 20,E =
6.5-107°, Pr = 1. a) Time series of the kinetic energy. b) Time series of the magnetic
energy. ¢)PSD of uypms. d ) PSD of Byps.

Fig.3.17, fig.3.18 and fig.3.19 are the results and the analysis of the simulation at Ra =
1-10%, Pm =20,E =6.5-107°, Pr = 1. Fig.3.17 shows the time series of the magnetic
and kinetic energy and PSDs of w5 and Byy,s. The PSD of w4, is constant for the low
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FIG. 3.18: Time series of the dipole moment at Ra = 1-10°, Pm = 20,E = 6.5-107°
and Pr = 1.

FIG. 3.19: Structure of the dynamo at Ra = 1-10%, Pm = 20, E = 6.5- 1075, Pr = 1.
a) Radial component of the velocity field u, at r = (r; + r,)/2. b) Radial component of
the magnetic field B, on the core mantle boundary. c¢) Radial component of the velocity
field w, in the equatorial plane. d) Radial component of the magnetic field B, in the

equatorial plane.

frequency interval and the PSD of B,,,s decreases as 1/ f2 for the same frequency interval.
These properties are the same as the gravitational dynamo case for the same control
parameters, as shown in fig. 3.4. There are different power laws for high frequencies,
which can be found in tab. 3.2.

The axial component of the dipole moment is shown in fig.3.18. Again, there are magnetic
reversals just like the gravitational dynamo case. The dipole decay time is ¢4 = 702 and

the whole simulation time corresponds to 44kyr.
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Fig.3.19 shows the radial components of the the velocity field at r = (r;+7,)/2 and in the
equatorial plane and the magnetic field on the core mantle boundary and in the equatorial
plane. In the velocity field, there are four cyclonic and four anticyclonic vortices This is
observable in both cases: on the equatorial plane and at r = (r; + 7,)/2. However this
structure is irregular. The magnetic field is complex on the core mantle boundary and is
hardly reminiscent of a dipole field. The magnetic field also has a complex structure in the
equatorial plane. It is really difficult to construct any similarities between the magnetic
and velocity fields. In the gravitational dynamo simulation, we also had four columnar
structures in the velocity field. However, the situation is different for the magnetic field;
here, it is much more complicated than the gravitational dynamo for the same control

parameters.
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FIG. 3.20: Numerical results of the reversing dynamo at Ra = 5 - 10*, Pm = 20, E =
6.5-107% Pr = 1. a) Time series of the kinetic energy. b) Time series of the magnetic
energy. ¢) PSD of ups. d) PSD of Bjps.

Fig.3.20, fig.3.21 and fig.3.22 provide the results and the analysis of the simulation at
Ra = 5-10% Pm = 20,E = 6.5-107°, Pr = 1. Fig.3.20 shows the time series of the
magnetic and kinetic energy and PSDs of u;,s and By,s. The PSD of ;.5 is more or
less constant for low frequencies and the PSD of B,,s declines with 1/f? for the same
frequencies. Apart from the peaks and repeated structures, this solution has similar

properties to the gravitational dynamo. For high frequencies, there are different power
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F1G. 3.21: Time series of the dipole moment at Ra = 5-10%* Pm = 20, F = 6.5-107°
and Pr = 1.
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FiG. 3.22: Structure of the dynamo at Ra = 5 - 10*, Pm = 20, E = 6.5-107°, Pr = 1.
a) Radial component of the velocity field u, at r = (r; +7,)/2. b) Radial component of
the magnetic field B, on the core mantle boundary. c¢) Radial component of the velocity
field u, in the equatorial plane. d) Radial component of the magnetic field B, in the

equatorial plane.

laws as detailed in tab. 3.2.

Fig.3.21 shows the axial component of the dipole moment. This solution results in some
magnetic reversals. However, the gravitational dynamo case for the same configuration
had no magnetic reversals. The dipole decay time is again t; = 702, and this time the

whole simulation time corresponds to 256kyr.

Fig.3.22 shows the radial components of the velocity field at » = (r; + r,)/2 and in
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LfPL | Hf PL | Lf PL | Hf PL
Ra Pm A Re | Rm Ro
(Brms) (Brms) (Ur‘ms) (urms)
5 26.1 79.6 | 206 | 0.517 -2 -8 0 -10
10 110 73.5 | 351 | 0.478 -2 -7 -1&0 -9
5-10°
20 292 69.4 | 627 | 0.451 -2 -6 -1&0 -8
30 516 67.5 | 888 | 0.439 -1.6 -6 -1&0 -8
5 0.035 | 32.6 | 34.6 | 0.212 -2 -10 0 -12
10 17.8 | 30.1 | 58.9 | 0.196 -2.5 -8 0 -10
1-10°
20 57 28.7 | 107 | 0.187 -2 -8 0 -9
30 150 271 | 144 | 0.176 -2.5 -8 0 -9
10 0.021 | 19.3 | 24.2 | 0.125 -2 -10 0 -14
5-104 20 18.9 176 | 40.2 | 0.114 -2 -8 0 -10
30 48.1 16.7 | 54.9 | 0.109 -2 -8 -0.6 -9

TaB. 3.2: Convention driven dynamo simulation results. The first two column show
control parameters Ra and Pm. Since two of the parameters are constant for these results,
they are not shown and E = 6.5-1073 and Pr = 1. The next four columns show output
parameters A, Re, Rm and Ro. The 7th and 8th columns show low frequency interval
power law (Lf PL) and high frequency interval power law (Hf PL) for the spectrum of

Byms, respectively. The 9th and 10th columns show similar power laws for the spectrum

Of urms .

the equatorial plane and the magnetic field on the core mantle boundary and in the
equatorial plane. There is a complicated structure in the velocity field r = (r; + r,)/2.
There are six cyclonic and six anticyclonic vortices that are observed in the equatorial
plane and at r = (r; + r,)/2. However, two of the anticyclonic vortices are weak and
hard to notice. This property is similar to the gravitational dynamo case. The magnetic
field on the core mantle boundary is different than a dipole field. The magnetic field
in the equatorial plane has a different structure than the velocity field and it is hard to
construct a relationship between them. The magnetic field structure has changed from

the gravitational dynamo to this solution. Dipole property has been lost.

Table tab.3.2 provides detailed information from the simulation results of the different
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configurations. The power law for B,,,s at low frequencies is -2 in most cases. Within
the same frequency interval, the power law for u,,,s is constant. At high frequencies,
the situation is more complicated. There is no clear relationship. If we compare these
results with the gravitational dynamo, we see two main differences. The first one is that
the -1 power law for u,,,s is not observed in these solutions. The second difference is
that we have a few cases which deviate from the -2 power law for B,.,,s. This table also
shows the Elsasser number A, Reynolds number Re, magnetic Reynolds number Rm
and Rosby number Ro. The results show that Ro decreases as Pm increases. Since Re
is proportional to Ro, as Pm increases, Re also decreases. A and Rm increase as Pm
increases due to direct proportionality. A more detailed table is located at the end of

this work.

Now let us consider the simulation input and output parameters. In our simulations, we
have taken £ = 6.5-107° and Pr = 1. If we compare these values to the estimated
ones for Earth, we see that our parameter for Pr is in the same range as estimates. This
means that the ratio of viscosity to the magnetic diffusivity is nearly the same. The
E is much bigger than the estimate. So, there is a much larger effect of viscous forces
compared to the Coriolis forces. Ra is set to the values 5-10%, 1-10° and 5-10° and these
values are much smaller than the estimated Earth values. This means that the ratio of
buoyancy forces due to the temperature difference between the outer boundary and inner
boundary of the liquid core and diffusive forces is much smaller than the estimated Earth
values. So, the effect of the buoyancy force is smaller in our simulations. Pm changes
between 5 and 30 and this is also greater than the estimated Earth values. This means
that the viscous forces compared to the magnetic diffusive forces are stronger. Elsasser
number A values include estimated Earth values. Then the ratio of Lorentz force to
Coriolis force is in our simulation is either equal to our greater than the estimated ratios.
Re is much smaller and this shows that the inertial forces compared to the viscous forces
are also much smaller. Our simulation results for Rm are within the range of estimated
Earth values. So the ratio of induction to magnetic diffusivity is of the order of estimated
values. The other parameter, Ro, is greater and the ratio of inertial forces to the Coriolis

force is greater.

The dipole graphs from our simulations are not quite similar to the Earth’s dipole shown
in fig.2.7. If one considers the case over the crust in our simulations, it is still hard to
obtain a dipole structure for the magnetic field. This may be due to differences in the

input parameters between our simulations and those estimated for Earth.
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If we consider the frequency f = 1073 from our calculations, this value is nearly equal
to 5Ma~! for the Earth, similar to the results of previously shown gravitational dynamo
simulations. Again this comparison is done using the dipole decay time. Then, if we
compare our PSD graphs with the one shown in fig. 2.5, this frequency coincides with
the third region in the graph. Here, the power law for the decay is approximately 1/f2.
This is same power law as that obtained from our simulations. Just after the 1/f2 power
law, another power law in fig. 2.5 is approximately 1/f7. We also observed this value in

some cases in our simulations.
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4 Phenomenological Models

Egs. 3.1 ,the dynamo equations, form a complex structure. Here, the velocity is the
solution to the Navier-Stokes equation. The velocity is also present in the induction
equation and heat or buoyancy source equation. There are many factors that affect the
velocity field, an observation which can be easily seen from the Navier-Stokes equation
and for stable dynamo solutions. These effects result in a fluctuating velocity field. We
can replace the fluctuating variable, in this case velocity field, with a stochastic random
variable and use this variable in the other equations. For this purpose, we will consider

only the solution of the induction equation and can write it as
—— 4V x (Bx%) =AV’B (4.1)

where A is the magnetic diffusivity, ¢ is the velocity and B is the magnetic field. In
this section we will use phenomenological models and a random variable for the velocity
field in order to analyze changes in the magnetic field. After determining the changes
in the magnetic field due to this random variable, we will also calculate the PSD of the
magnetic field. We will apply two phenomenological models, a single magnetic mode and
several magnetic modes. Some of the results presented in this section have already been

published ([Tanriverdi and Tilgner, 2011]).

4.1 A single magnetic mode

Mean field magnetohydrodynamics have provided a most fruitful simplification of the
induction equation ([Krause and Radler, 1980]). In this approach, the effect of small
scale fluctuations on the large scales are not computed exactly, but are modeled, in the
simplest case, as an a—effect. We have also previosly mentioned on this effect. The
number of magnetic degrees of freedom which need to be retained is thus reduced; in an

extreme simplification, only one mode remains. If we call B the amplitude of that mode,
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a(t) and 3 the coefficients describing the a—effect and its quenching, respectively, and p
is a coefficient related to magnetic dissipation, the simplest model reproducing the main

features of the induction equation is:
OB = a(t)B — 3B* — uB. (4.2)

@ is allowed to be time dependent in order to reflect a time dependent velocity field. The
reduction of the a—effect by the term B3B3 models the retroaction of the magnetic field
on the velocity field via the Lorentz force (which is quadratic in the magnetic field) in the
Navier-Stokes equation. We now consider a(t) = &(t) — p to be a random process with
mean square (a?) and remove the dimensions from eq. 4.2 by expressing time in multiples
of (&?)~1 and the magnetic field amplitude in multiples of ({(o2)/3)'/?. The adimensional
quantities ¢/, o/ and B’ are given by t' = t(a?), o/ = a/{a?) and B’ = B/B/{a?). In
the remainder of this section, all quantities are understood to be non-dimensional and
the primes are omitted for convenience. The non-dimensional variables then obey the
equation:

OB =a(t)B — B? (4.3)

in which a(t) is a random variable with (a?) = 1. As long as B is small, the solution to

this equation is
B(t) = B(0) exp ( /0 a(T)dT) . (4.4)

For times small enough so that the exponent can be considered small, we have

B(t) — B(0) / !

—— ~ [ a(r)dr. (4.5)
B(0) 0

Taking the Fourier transform of this equation, it follows that the spectrum of B is,

apart from frequency independent factors, the same as the spectrum of « divided by

the square of the angular frequency, w?.

For example, if the spectrum of « is a white
noise, the spectrum of B behaves as w™2. For large times ¢, eqs. 4.4 and 4.3 become a
poor approximation, which means that the w™2 will not be observable below some cutoff-
frequency. If the mean of «, (), is different from zero, B will be large enough for the
nonlinear term in eq. 4.3 to become dominant after a time to the order of (a)~!. In that
regime, and concentrating on slow fluctuations, eq. 4.3 reduces to B> = a.. Considering
again the example of «(¢) with a white noise, we find a spectrum of B, which is a white

2

noise, too. The transition in the spectrum of B from w® to w2 occurs at a frequency

which increases with increasing («) because eq. 4.5 fails at earlier times ¢.
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F1G. 4.1: Numerical solution of Eq.(4.3) for (a) = 0. a) Time series of a. b) Time series

of B. ¢) PSD of a.. d) PSD of B; the straight line indicates the power law 1/f2.
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F1G. 4.2: Numerical solution of Eq.(4.3) for (a) = 1 and « has been filtered. a) Time

series of a. b) Time series of B. ¢) PSD of a and straight line indicates the power law

1/f% d) PSD of B; the straight lines indicate the power laws 1/f% and 1/ fS.
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In order to test these ideas, we have solved eq. 4.3 numerically using the Runge-Kutta
method. The first solution is shown in fig. 4.1. Fig. 4.1a shows the time series of «
generated from a Gaussian random number generator with a mean of zero. Fig. 4.1c
depicts the PSD of «, which is white noise. Fig. 4.1b shows the numerical solution
for B and its PSD is shown in fig. 4.1d. The PSD obeys the 1/f2 power law where
f = w/(27). We previously concluded that if o has a white noise spectrum, then a
1/f? factor results from integration, and finally we get the result 1/f2 for the PSD of B.

Hence, the simulation results and our considerations are consistent.

As a second example, we will use the random number «(t) with a white noise spectrum
and (o) = 1. However, this time we have filtered the high frequency fluctuations. The
random number a(t) was generated by sending the output of a Gaussian deviate random
number generator through a Butterworth filter (|[Moreau|, |[Rabiner and Gold, 1975]).
This filter uses a function in the form 1/(1+ (f/f.)*") and passes frequencies lower than
fe. Here f. is the cut off frequency and n is the order of the filter, which defines power
law in the filtering. The filter was adjusted such that its output had a spectrum as a
function of frequency f in 1/(1+4 (f/f1)*) with fi = 50. The time series of a(t) is shown
in fig. 4.2a. Its PSD is shown in fig. 4.2c and here, the 1/f* power law due to filtering
is easily observable. Fig. 4.2b shows the numerical solution for B and its PSD is given
in fig. 4.2d. There we see the 1/f% power law for high frequencies. In this frequency
interval, integration gives a 1/f2 factor and multiplication with 1/f* gives this 1/f6
power law. Then as we proceed to the low frequencies we see the 1/f2 power law, which
comes from the integration of white noise. This is exactly the same as with the previous
example. If we look at the lowest frequency range for B, we observe a section of white
noise. Since the mean of «a(t) is 1, it affects the integration. We have also mentioned
that in this range, the nonlinear term B3 plays a role because it is no longer small. This

explains the white noise in the PSD of B at low frequencies.

Fig. 4.3 shows the PSD of three numerical solutions of B, with one of them being the
second example discussed above for (a) = 1. We used the same random number sequence
for a in all three cases. The changing variable for these three examples is the mean of «,
which takes values of 1,5 and 15. From our previous considerations, we know that the
mean of « affects the low frequency range. This effect is easily observed in fig. 4.3. As
the mean of « increases, the white noise range for the spectrum of B increases. This is
what we expected. In the high frequency range, the arguments of the second example

are valid for all three cases.
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F1G. 4.3: The PSD of B, the solution of eq. 4.3, as a function of frequency f for (o) =1
(red), 5 (green) and 15 (blue). The straight lines indicate the power laws 1/f2 and 1/f°.

4.2 Several magnetic modes

We will now investigate several magnetic modes and the conditions under which the single
mode model is applicable to more general systems. We will show that the predictions of

the single mode model are recovered in the limit of small fluctuations.

The precise form of the dynamical system used as a model does not really matter for the
following analysis, but a specific system must be chosen for the numerical examples. In
order to stay as close as possible to the previous section, let us assume V - ¥ = 0 and
rewrite the left hand side of eq. 4.1 as 0;B; + Z]- v;0;B; — Zj Bj0;v;. We then proceed
through the same steps as before, but replace the combination of velocity and derivation
with a random variable in which we absorb the dissipative term and the right hand side,
remove dimensions, and model saturation via a cubic term. This leads to the following

system:
OB + (a1(t) + az(t) + a3(t))B; — ai(t) (B + By + B3) = —B} |, i=1,2,3, (4.6)

in which «;(t) are random variables. This system bears only a metaphorical relation
with the original induction equation and will be used to exemplify three different cases:
1)if the fluctuations of the a;(t) are small compared with the mean of the a;(t), 2)if the
fluctuations of the «;(t) are large and 3)if the fluctuations of the «;(t) are of the same

order as the mean of the a;(t).

In case 1, where the fluctuations of the a;(t) are small compared with the mean of the

a;(t), the solution of (4.6) will be close to the solution of the time independent system
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in which each «;(t) in (4.6) is replaced by its mean (a;). Let us assume (aq) = (o) =
(ag) < 0. An eigenvalue analysis of the left hand side of (4.6) then reveals one neutral
mode and two modes with equal and positive growth rate. In the presence of small
fluctuations, the neutral mode will not contribute significantly to the dynamics. If the
initial conditions and nonlinear term select an arbitrary direction in the space spanned
by the two degenerate growing modes, we expect (4.6) to behave the same as the single

mode model. However, there are some differences.

1 — i
(c) (d)
F1G. 4.4: Numerical solution of eq.(4.6) for («;) = —10. a) Time series of a;. b) Time

series of />~ B2. ¢) PSD of a;. d) PSD of /> BZ; the straight line indicates the 1/ f?

power law.

Fig. 4.4 shows the numerical solution of eq. 4.6. In this solution, (a?) = 1, (a;) = —10
and its spectrum is white noise. The time series of «; is shown in fig. 4.4a and its PSD

is shown in fig. 4.4c. The numerically obtained solution of /> Bf is shown in fig. 4.4b.

The numerical solution yields the 1/f? type of power law for /> BZ-Q, which is shown in
fig. 4.4d. If we compare this solution with the one shown in fig. 4.2, the results appear
similar. The exceptions are that there is not a 1/f* dependence in the high frequency
regime for a and (/> B? has a 1/f® dependence. Similar to the solution in 4.2, here
we also observe white noise for the low frequency regime and the 1/f? power law for the
high frequency regime, as expected. The white noise in the PSD of />~ B? is related to

the mean of o and we explained this feature in the previous section.
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On the other hand, if the fluctuations of «; are large compared to their means, the
dynamics are no longer dominated by a single mode and the analysis provided in the
previous section breaks down. In this case, the other modes start to show themselves
and analysis becomes much more complicated than the single mode computation. The
spectrum of the fluctuations of /> BZZ may now be different due to these complicated
interactions. Now we will attempt to analyze this complicated structure both numerically

and analytically.

?
G b b M Lo 2N s

F1G. 4.5: a) Time series of o with mean -0.01. b) PSD of «; the straight line indicates
the 1/f power law.

Fig. 4.5 shows the time series of a; and its PSD at (a;) = —0.01 and (a?) = 1. Here
we see that its PSD obeys the 1/f power law and is chosen due to the existence of the
velocity field’s 1/f power law in some of the gravitational dynamo simulations. The
random number sequence is obtained by applying the method of ([Kasdin, 1995]). In
this method, the response function is hy = (% + k- 1) hkk_l together with hg = 1. In

this equation, « gives the power law. This response function is used to obtain a 1/f¢
power law in the PSD from a Gaussian deviate random number sequence. In our case, we
need a 1/f power law, and we have taken o as 1. This method is also used to obtain the
other random number sequences for (o;) = —0.3 and (a;) = —5 with (a?) = 1. These
values will also have the 1/f power law in their power spectrum. Fig. 4.5 is a typical
example for the «;, which will be used in the next calculations. The only difference will

be the mean of o; and this difference does not effect its spectrum.

Fig. 4.6 shows some examples of solutions of eq. 4.6. Let us first consider the case in
which the fluctuations of «; are small compared to their mean. The time series and PSD
of /> B? are shown in fig. 4.6¢ and fig. 4.6f for (a;) = —5. Since the fluctuations are
small in this case, it should then behave in a similar way to the single mode model: at the
lowermost frequencies, the PSD of /> BZ? must decay in the same way as the PSD of

aj, i.e. 1/f in the present example. However, there is a difference in this case compared
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F1G. 4.6: Numerical solutions of eq.(4.6) for (a;) = —0.01,—0.3, —5. a) Time series of
> B? for (a;) = —0.01. b) Time series of /> B? for (a;) = —0.3. ¢) Time series of

> B? for (o) = —5. d) PSD of 1/> B? for (a;) = —0.01; straight lines indicate the
1/f and 1/f3 power laws. e) PSD of /> B? for {a;) = —0.3; straight lines indicate the

1/f% and 1/f3 power laws. f) PSD of /> B? for (a;) = —5; straight lines indicate the
1/f and 1/f3 power laws.

to the single mode and we will discuss this difference later. Above a frequency of the
order of («;), there must be a factor f? between the power laws followed by the PSD of
\/>" B? and «;. This implies a spectrum in 1/f3 for 1/>° B2 in the example considered
here. These predictions fit the spectrum shown in fig. 4.6f for (a;) = —5. We will leave
the example with the 1/f2? power law to the end and look at the time series and PSD of
\/>" B? shown in fig. 4.6a and fig. 4.6d for (a;) = —0.01. Our previous considerations
for high frequencies are still valid, but with a few changes. In this high frequency interval,
we have the 1/f2 power law and this continues until the frequencies reach the order of
(aj) = —0.01. Then we have the 1/ f power law and this is due to the other modes as well
as nonlinear effects. Now let us look at the last case: (q;) is close to (a?). The time series
and PSD of /> B? are shown in fig. 4.6b and fig. 4.6e for (a;) = —0.3. Again, we have
the 1/f3 power law for high frequencies. However, the situation is completely different

for low frequencies. In this case, we have the 1/f? power law, which cannot be explained
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F1G. 4.7: cosf at (a;) = —0.01 (green), -0.3 (blue) and -5 (red).

by the single mode considerations. Single mode calculations give the 1/f or 1/f3 power
laws. This 1/f2? power law for low frequencies is an important result for this work since it
gives the combination seen in the gravitational dynamo simulations: the 1/f power law
for w,ms and the 1/ f? power law for Bys. We could only obtain this combination by
considering several modes; the single mode calculations did not give this solution. This
several magnetic mode model reproduced the power laws of the our dynamo simulations
for low frequencies without solving the Navier-Stokes equation. This means that we do
not need to know the individual interactions in the Navier-Stokes equation in order to
obtain the PSD of B,s. The important parameters are the |(a;)|/(a?) ratio and the

power law(s) of the fluctuations.

In order to further support the applicability of the single mode model, we also computed
the angle between the instantancous vector B(t) = (Bi(t), Ba(t), Bs(t)) and its mean
(B). The cosine of that angle cosd = (B) - B(t)/\/|(B)|? |B(t)[? is shown in fig. 4.7.
for (a;) = —5, it is in the statistically stationary state and stays larger than 0.99. This
result means that in this case, (B) and B(t) are nearly in the same direction. So the
other modes rarely affect the result. However cosf is scattered over a large interval for
(a;) = —0.01 and —0.3. In these cases, the fluctuations of «; are large compared to their
means and different exponents unrelated to the single mode model become possible. So

several modes appear and its effect is bigger than in the (o;) = —5 case.

Let us summarize these results in terms of the |(a;)|/(a?) ratio. Our simulations show
that if [{a;)|/(a?) > 5, the single mode considerations are dominant and we have the
1/f and 1/f3 power laws. If [(a;)|/(a?) ~ 0.3, the other modes appear and we have the
1/f? and 1/f3 power laws. If [{a;)|/(a?) ~ 0.01, the other modes are observed and we
have the 1/f and 1/f3 power laws. If |{a;)|/(a?) increases or decreases from 0.3, the

1/f? power law will gradually change to the 1/f power law. Here, the importance of 0.3
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is related to the structure of the induction equation. The frequency at which the power
law changes depends on (c;). There is a linear relationship between them and f ~ («;)

gives the approximate value of that frequency.

4.3 Spectral analyses

Now we will conduct further analysis in attempt to explain the origin of the power laws
for the PSDs shown in fig. 4.6. The numerical solution yields nearly the same solution
for two components of B and a negative solution for the third component. However.
these small changes and sign differences do not affect the PSD of any of the components
of B. Because of this, we will consider only the B; component of B in deeper spectral

analysis. From eq. 4.6, we can write the following for B
OBy = —(aa(t) + as(t)) - By — B} + oy (t) - (By + Bs). (4.7)

In the numerical solution, we integrate the right side of the equation. We know that the
PSD of By is the multiple of the PSD of right hand side and a factor 1/f2. This factor
1/f? comes from the integration. So we should firstly look at and analyze the PSD of
the right hand side of eq. 4.7. Hereafter, we will use some abbreviations. We will use
rhs, D, @ and @) for the right hand side, the first term —(ag(t) + as(t)) - Bi, the second
term —B; and the third term a4 (t) - (B + B3) on the right hand side, respectively. We

will show different combinations of these terms with an addition.

F1G. 4.8: PSDs of the rhs (red line), D+@ (pink line), O+@ (orange line), @+
(green line), (D (blue line), @ (turquoise line), @ (black line). Straight lines show the
1/f, 1/f3 and f power laws. a) {a;) = —0.01. b) (a;) = —0.3. ¢) {a;) = —5.

To analyze rhs, we have calculated all combinations of the terms on the rhs. These calcu-
lated spectra are shown in fig. 4.8. We will determine which regime (which combinations
of @, @ and @) gives the true PSD of rhs. The PSD of a function, in this case rhs,
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has complicated properties. It depends on the function type and multiplications and
additions can have different effects as well. These effects are complex and can depend on
the variances and means of the multiplicatives and additives. Fig. 4.8a shows the PSDs
of all combinations of D), @ and @) at (o;) = —0.01. At high frequencies, the PSD of rhs
is same as the PSD of D+@). In this interval, the PSD of @) is low compared to the other
two terms and does not affect the PSD of rhs. The powers of @) and @) are nearly equal
and they both contribute to the PSD of rhs. For the low frequency regime, the PSD of rhs
(indicated by the red line) is distinct from all other lines. In this case, no simplification is
possible; the only PSD of rhs is itself. In this interval, the PSD of rhs is totally different
than the other combinations and its power is less than either of them. Since it exhibits
such a complicated property, we will try to explain this later with a detailed analysis. In
fig. 4.8b, we see again the PSDs of the same combinations at (a;) = —0.3. This case is
not very different from the first case. If we consider the high frequency interval, the PSD
of rhs is same as the PSD of D)+@). If we consider the low frequency interval, again it is

only the PSD of rhs itself. The difference between this case and the first lies in the power

law in the low frequency interval. It is f at (o;) = —0.01 and constant at (a;) = —0.3.
This gives the corresponding 1/f and 1/f? power laws for /> B2. Fig. 4.8c shows
the PSDs of the same combinations at (a;) = —5. Here, we cannot easily separate the

frequency into high and low frequency intervals. The PSD of rhs changes its dependence
on the different combinations of @), @ and @) at a lower frequency than the changing
point of the power law of the PSD of rhs. This time change occurs at f = 0.8, which is
clearly lower than the frequency of the turning point of the PSD of rhs. At frequencies
higher than 0.8, the PSD of rhs is same as the PSD of D+@). At lower frequencies, it is
same as the PSD of rhs itself. Now, to be able to understand the different and complex

F1G. 4.9: PSDs of the @+@ from direct spectrum calculation (red line) and from the

correlation (green line) at (o;) = —5. The straight lines represent f and 1/f.

structure of the low frequency interval, we will first consider low frequencies of the PSD
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at (a;) = —5. Its different and complicated structure, which can be easily seen in fig.
4.9, deserves a detailed analysis. We will start with a relatively simpler structure in this
analysis. The PSD of D+@®) also shows a f power law and it includes two terms. It
is obviously simpler than full rhs. Since the PSD of D+@) is different than either the
PSDs of D or @ alone, there must be a different relationship among the PSDs in this
combination. To be able to understand this different relationship, let us start by writing

analytical expressions for PSD of it

o0 o0 o0
- / (s + ag) - By - e~ tdt — / BY ety — | / 5. et (4.8)
— 00 —0o0 — 00

[o.¢] oo
+| / (a2 + az) - By -e”™"dt]|* +2- / / (a2 +a3) - Bi(t) - et B3(¢) - et dtdt’
—0 —00

In this equation, we see that there is a cross term in addition to the PSDs of (D and @).
We can use the correlation function to calculate PSD by using the relationship between
the correlation and PSD (|Press et al., 1992|)

oo
G(f)H*(f) = / corr(g, h) - e~ tdt. (4.9)

—o0
So after calculating the correlation among (ag + a3) - By and B? we take the Fourier
transform to obtain the PSD of these multiplicands. We will use this to calculate the
PSD of this multiplication. In this calculation, none of the individual terms give the
correct result. The addition of all these terms gives the result that is shown in fig. 4.9.

It is obvious that both results in the calculation of PSD are in good agreement.

10* 10*

F1G. 4.10: PSDs of the rhs from direct spectrum calculation (red line) and from the
correlation (green line). The straight line represents 1/f. a) (a;) = —0.01 b) (o) = —0.3
c¢) (a;) = —b.

We also calculated rhs’ PSD using correlation at (o) = —0.01, (o;) = —0.3 and (a;) =
—5 and observed the same relationship. In fig. 4.10, we see the PSD of rhs from both
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direct PSD calculation and correlation calculation. There is also agreement between these
two calculation types. This means that all three terms on the right hand side affects the
PSD and this effect is observed due to all individual terms and their correlations in the

low frequency interval.
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5 Conclusion

In this work, we investigated numerical simulations of the dynamo and conducted spectral
analysis. The dynamo is the accepted mechanism for the generation of the magnetic field
in the fluid cores of the cosmological bodies. The generation of the magnetic field takes
place in the relevant fluid part of the Earth and also in other cosmological bodies, such
as stars, planets and some of the moons in the solar system. The main dynamo process
concerns the evolution of the velocity field and subsequent production of a magnetic
field from this velocity field. This process can be described by three equations. Within
the core, electrically conducting fluid moves under different forces; these forces and the
motion of the fluid are described by the Navier-Stokes equation. So it is evident that
the Navier-Stokes equation defines how the velocity field evolves under pressure, viscous,
Coriolis, Lorentz and buoyancy forces. The induction equation is another important
equation because it defines the evolution of the magnetic field. In the induction equation,
the evolution of the magnetic field depends on the dissipation of the magnetic field
and generation of a magnetic field from the velocity field. The third equation, the
heat or buoyancy transport equation, describes the evolution of heat or the buoyancy
variable. There are also some other basic relationships arising from the incompressibility
of the fluid and the solenoid structure of the magnetic field, which are defined based
on the properties of the fluid and structure of the magnetic field, respectively. All the
abovementioned equations must be simultaneously solved, a feat which is only possible
with computer simulations. Present day computer technology does not enable us to
define control parameters within our simulations that are equal to those estimated for

Earth. We can only simulate the equations within a narrow range of control parameters.

In this work, we considered two cases for the dynamo process: gravitationally driven
dynamos and convection driven dynamos. The difference is seen in the heat equation. It
is used as the heat transfer equation in convection driven dynamo and as the buoyancy
transport equation in gravitational dynamo. In both cases, convection and gravitation are

also at play. The difference between these two dynamo types is related to the source of the
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density difference. In the convection driven dynamos it is temperature difference between
the boundaries and in the gravitationally driven dynamos it is the solidification of higher
density material in the inner boundary. We obtained successful results for both scenarios
and also observed magnetic reversals. The dynamo simulations showed that magnetic
field generation and reversals are possible from the motion of a conducting fluid. We can
understand these magnetic field generation and reversals in a better way by exploring
the simulations and the mechanisms described in the work in more detail. Hence, we also
conducted spectral analysis. These analyses showed that the distribution of power density
over different frequencies can also change with the configuration of control parameters.
There are some significant results from the power spectral analysis. One important
finding was that the power density decreased with increasing frequency for the magnetic
field. This means that long term variations are most important and the contribution of
short term variations are less effective. We also observed an agreement between the power
law of the PSD of the magnetic field in our simulations with the calculated one for Earth
by paleomagnetic research. This agreement occurred at the frequency interval, which
shows paleosecular variations, lengths of reversals and excursions. This PSD graph is
shown in Section 2.1.5. However, it is hard to say if the —2 power law at low frequencies
is related to reversals since we also observed this power law in nonreversing cases. Then
it should be related to paleosecular variations or excursions. The power distribution
in the velocity field was different than the magnetic field. In most cases, we observed
nearly equally distributed power in the low frequency range. This shows that due to the
forces in the Navier-Stokes equation there are equally distributed fluctuations at small
frequencies and each of these fluctuations contribute to the power. This explains our
observation of nearly white noise in the low frequency range in most cases. However, in
some cases we observed the —1 power law, such as in the highest Ra case. We also know
that Ra is the ratio of buoyancy force to diffusive forces. The increase in the ratio of
buoyancy force against diffusive ones changed this structure and the effect of diffusive
forces is weakened and we observed the —1 power law. If we consider high frequency
interval it was different for both the velocity and magnetic fields. The power laws change
in many ways in the high frequency interval and a white noise structure was observed in

the highest frequency interval.

Experimental results for spectrum analysis are much different compared to simulation
results. In the experiments, the flows or rotation rate of the propellers are either steady
or depend on simple rules. This must be one reason for the lack of variations in the

velocity field. There are other differences among the simulations and experiments due to
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the differences in the control parameters and the shape of the flowing fluid. Resultantly,
these fluctuations and differences affect the generation of the magnetic field. These are

the possible reasons for the difference between experimental and simulation results.

In the last chapter, we investigated phenomenological models. These models were suc-
cessful in explaining the power laws. We used only the induction equation in these
models and considered the velocity field to be a fluctuating stochastic variable. We chose
its power law based on the obtained laws in the dynamo simulations. The analytical con-
siderations explained some cases but there were some instances in which our analytical
considerations were not enough. The white noise for the velocity field and the —2 power
law for the magnetic field combination was obtained by a single magnetic mode model.
The —1 power law for the velocity field and the —2 power law for the magnetic field
combination was obtained only by several magnetic modes model. Our starting consid-
erations were not sufficient to explain this last combination. At the end, we concluded
that all terms in the induction equation contribute to the power distributions in differ-
ent ways. Even their correlations are important and we gave analytical and simulated

evidence for them.

To sum it up in its entirety, this work contributes to the understanding of the dynamo
mechanism. Our gravitationally driven and convection driven dynamo simulations were
conducted based on previous works. We analyzed dynamo mostly from the spectral point
of view and also investigated a explanatory phenomenological model. The results of
this model and dynamo simulations help us to understand magnetic field generation and
reversals as well as power spectrum analysis. However, future research and simulations in
the dynamo mechanism require improvements in order to obtain results more close to the
Earth’s case. We will continue our research to obtain more accomplished understanding

and results.
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A Simulation results

The following 5 pages contain the simulation results. There is some extra information
than previously given tables. The first piece of information is the run duration time.
It is given in Earth years. To determine run duration time, we firstly calculated dipole
decay time tg; = PTm <%)2 and the fraction of the total run duration to the calculated
dipole decay time. Then we obtained the result by multiplying this fraction by Earth’s
dipole decay time 20kyr. We also added another part to represent reversing dynamos.
In another column time average of the dipole moment is represented. The table also
shows Byns and Up,s values. Bjp,s is new information compared with previous tables.
However, u,m,s is equal to Ro and we have shown this value in previous tables. Lastly, we
have shown the resolution and the time interval of the simulations. We also have shown
more simulations similar to the previous situations including some decaying cases. From

these shown simulations we can make an extra comment on the reversals that as Pm

increases the possibility to have a reversal increases.

In tab. A.1, gravitational dynamos at E = 6.5-1073, Pr = 1, Ra = 1-10% and Ra = 5-10°
with different Pm values are shown. In tab. A.2, gravitational dynamos at £ = 6.5-1073,
Pr =1, Ra = 1-10° with different Pm values are represented. In tab. A.3, gravitational
dynamos at £ = 6.5-1073, Pr = 1, Ra = 3-10° and Ra = 5 - 10* with different Pm
values are present. In tab. A.4, we see convection driven dynamos at £ = 6.5 - 1073,
Pr=1,Ra=>5-10° and Ra = 1-10° and Ra = 5 - 10* with different Pm values. The
last table tab. A.5 shows gravitational dynamos with different . In this table E takes
values between 1-107% and 1- 1072, Ra can take values between 5 - 10° and 1 - 10° and
Pm can take values from 3 to 20. It is obvious that non-decaying dynamo simulations
can be carried out in these parameter ranges. However, in some cases, oscillations are so
slow that it is not possible to obtain the usual PSD analysis and corresponding power

laws.
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Ra E t LfPL | HfPL | Lf PL | Hf PL
) Pm Rev Bg Birms Urms A Re Rm Rsl.
(10%) | (107%) (kyr) (Brms) | (Brms) | (trms) | (Urms)
4.75 - - - - - - - - - - - - rltl
5 655 r 5.26-107° | 1.56-107% | 4.86-10"* | 0.00002 | 74.8 | 182 -2 -12 - -13 rlt2
5.5 435 r —1.61-107° | 2.29-1072 | 4.86-107" 0.442 | 74.7 | 200 -2 -11 - -13 rlt2
5.75 || 456 r —6.04-107° | 4.79-1072 | 5.05-107* 2.03 77.8 | 226 -2 -9 -1 -10 rlt2
100 6.5 6 342 r 2.68-107* | 5.45-1072 | 5.35-10! 2.74 82.4 | 265 -2 -8 -1 -10 rlt2
13 112 r —3.06-1072 | 1.91-107" | 4.26-107! 73 65.5 | 362 -2 -7 -1 -9 rlt2
20 32.1 r 7.20-107% | 2.36-107' | 3.89-1071! 172 59.9 | 467 -2 -6 -1 -8.5 rlt2
25 138 r ~5.82-107* | 2.52-107! | 3.74-107* 244 57.5 | 538 -2 -6 -1 -8.5 rlt2
35 14.1 r —6.84-107* | 2.76-107! | 3.61-107* 409 55.6 | 703 -1.6 -5.5 -1 -8 rlt2
7 - - - - - - - - - - - - r2t3
8 99.7 r 5.22-107% | 1.05-1072 | 3.49-10"* | 0.135 | 53.6 | 150 -2 -8 -1 -8 r2t2
50 65 10 69.9 r 3.83-107* | 8.18-1072 | 3.35-107! 10.3 51.5 | 172 -2 -8 -1 -10 r2t2
15 28.4 r —4.99-107* | 4.05-1072 | 1.35-107" 3.79 | 20.8 | 42.3 -2 -7 -0.8 -9 r2t2
20 17.4 r 1.55-1073% | 7.25-1072 | 1.32-107! 16.2 20.3 | 53.7 -2 -6.5 -1 -9 r2t2
30 17 r —-1.21-107* | 2.05-107t | 2.78-107¢ 194 42.8 | 357 -2 -6.5 -1 -9 r2t2

TAB. A.1:  Gravitational dynamo simulation results. Columns from left to right: The first three columns show Rayleigh, Ekman and
magnetic Prandtl numbers Ra, E and Pm respectively. The 4" column depicts run duration corresponding to Earth’s dipole decay
time in years. The 5! column represents the magnetic reversals (r:reversing, non:non-reversing). The 6! column is the time average
of dipole moment. The 7 and 8" columns are Byrms and tpms respectively (in our case Ro = uppms due to scalings). The next three
columns are three output parameters: Elsasser, Reynolds and magnetic Reynolds numbers A, Re and Rm, respectively. The next four
columns show power laws for Brms and Upms in low and high frequencies Lf PL and Hf PL, respectively. The last colums stands for
resolution (r1:33-64-64, r2:33-128-128 for spatial resolution and t1:5-1073, t2:5-10* and t3:1-1073 for the time step). The dashes

correspond to either decaying cases or non-calculable situations. In all cases, the magnetic Prandtl number is set to 1, Pr = 1.




83

A SIMULATION RESULTS

T =dd ‘T 07 195 S1 LOQUINU JIPUDLT 21PUHDUL Y] ‘SOSDI JID U] “SUOUDNIS 9)QDINIIDI-UOU LO §9SDI bULinoop 4oylo 03 puodsaltod
saysop Y[ “(dos awng oyj 40f ¢ 0T - T:67 PUD ;_0T - G&1 ‘0T - G} pup uoynjosas [pyvds 1of §71-8G1-66:¢4 ‘79-19-66:T4) u0yn0saL
40f spunys swnjod 3sv) vy [, fippargoadsas ‘Tg [H puv T4 [T sowuanboif ybry puv moj ur SUin pup SWig uof smp) somod moys suwnjod
anof 1xau oy J, fijpargoadsas ‘WY pup Yy ‘Y s4oquinu spjoufioy dgoubviw pup sploufioy] ‘UossvSIA 1S40 UDLDA INAIN0 9ILY] 4D SUWUNJOD

201 1ToU Y], “(sbuypos 01 anp SWn = oy 250 Uno ui) fppargdadsas SUin pup SWAg oup sUWN)0D puv oYL -Judwow 2jodip fo

28 Yyl

obpapaD 2uiY) Y] S UWNJ0D 4,9 Y[, “(DursidnaL-uouIUOU BUISIINALL) SJDSLI0L DYIULDUWL DY) SPUISILADL UWNJ0D Y[ "S4vafi UL 2UiL)

WS
fivdap ajodip s, ypuvg 01 burpuodsaliod uowvInp un. sp0dap uwinjod .y Y[, fjpandedsal wg puv F ‘DY SiaQuInU Ipuvld 21aubDUL

pup uvwys ‘ybro)finy moys suwinjod a94y) 3541 Y ybre 03 3] WoLf SUWNIOL) SYNSIL UOWDINUWLS OWDUSLD [DUODPADLY 1Ty "dV],

121 - 0 L- - 6¥¢ | 961 | 98¢ | ;_0T-2&1 | ;~OT-8S'T | ,_01-¥€8 1 829 || 001
121 01~ 0 8- - 18T | 66T | 1€¢ | ;—0T-0€T | {—OT-LFT | ¢ 01-221 1 Lv6 0L
121 I1- 0 6- ¢ VT | €0¢ | 08T | {_0T-2€T | {_0T-08T | ¢ OT-80°T 1 ze1 0
121 1~ 0 6 z 666 | G0G | 689 | {_OT-€€T | (OT-€I'T | , 0T 66G 1 961 e
121 1- 0 6- z €e8 | G606 | 18 | {_OL-¥E€T | ;_0T-G0'T | ¢ O 68F— 1 81 0%
€351 1- 0 6- - 089 | €0C | 98¢ | (_OT-€€T | ,_0T-L96 | ¢ 01 10°G— 1 a2 T
121 l- 0 6- - L€S | €02 | ©9T | (—01-C€T | ;_01-GTL | ¢ 0I-GG'T 1 60. 0% c9 01
TH1d - 0 01- ¢ €ch | 806 | 6L°€ | {_OT-CGET | 0T S0¥% | ,_OL 66F— 1 061€ || ST
1411 - 0 ¢'6 z €0V | 1 | SP'T | {_OT-LE&T | ,01-29C | , 01 6£C— 1 00%T || ¥I
T311 - 0 01- z 68 | 1 | S9T | {_OT-LET | ,0T-€LC | ,_01-09€ 1 01z || ¢¢1
TH1d 1- 0 01- z '8¢ | 1% | 086°0 | ;0T 8€T | ,—0T-0LT | 5 0T-1LT 1 9¢¢ e1
418! l- 0 01- - L9€ | €18 | 99270 | ;_0T-8€'T | ;0T 8T'T | 01 T¥1 1 0LL% || ¢c1
T91 - - - - - - - - - - - - 48
(sueam) | () | () | (5g) (145y) (¢—01) | (;01)
e Td4H | Id 41| 1d fH | 1d £1 B v o T i Ao 3 ud o vy




A SIMULATION RESULTS

84

Ra E P % R B 5 A " R LfPL | Hf PL | Lf PL | Hf PL Rl
m eVv. d rms Urms e m Sl.
(10%) | (107%) (kyr) (Brms) | (Brms) | (trms) | (wrms)
8 - - - - - - - - - - - - r2tl
9 619 r 1.28-107% | 1.45-1072 | 2.58-10"* | 0.292 | 39.6 | 91.9 -2 -9 0 -11 r2t1
30 6.5 10 98 r 3.01-107* | 6.96-1072 | 2.48-10"* | 7.45 | 38.2 | 94.9 -2 -9 -1 -11 r2t2
20 23.2 r 2.48-1072% | 1.40-107' | 2.32-107! 60 35.7 | 166 -2 -7 -1 -9 r2t2
30 129 r —1.54-107% | 6.01-1072 | 851-1072 | 16.7 | 13.1 | 33.5 -2 -7 -0.8 -10 r2t2
7 1340 | non || —6.56-1072 | 1.70-1072 | 9.69-1072 | 0.313 | 14.9 | 10.1 -2 -11 0 -13 r2t1
8 188 | non || —6.54-1073 | 1.82-1072 | 9.73-1072 | 0.408 | 15 | 11.7 -2 -11 0 -13 r2t3
10 857 | non || —5.65-1072 | 1.82-1072 | 9.70-1072 | 0.508 | 14.9 | 14.5 -2 -11 0 -13 r2t1
5 6.5 12 114 non || —5.62-1072 | 2.05-1072 | 9.64-1072 | 0.778 | 14.8 | 17.2 -2 -11 0 -13 r2t3
15 232 non || —3.21-1072 | 1.40-1072 | 9.77-1072 | 0.455 | 15 22 -2 -11 0 -15 r2tl
20 149 | non || —2.57-107% | 1.41-1072 | 9.76-1072 | 0.614 | 15 | 29.3 -2 -11 0 -15 r2t1
30 129 r —1.54-107% | 6.01-1072 | 851-1072 | 16.7 | 13.1 | 33.5 -2 -9 0 -14 r2t1

TaB. A.3: Gravitational dynamo simulation results. Columns from left to right: The first three columns show Rayleigh, Ekman and

magnetic Prandtl numbers Ra, E and Pm respectively. The 4" column depicts run duration corresponding to Earth’s dipole decay

m“: @wb

column represents the magnetic reversals (r:reversing, non:non-reversing). The
ﬂis muk

time in years. The columm is the time average

of dipole moment. The and columns are Byps and upms respectively (in our case Ro = upms due to scalings). The next three
columns are three output parameters: Elsasser, Reynolds and magnetic Reynolds numbers A, Re and Rm, respectively. The next four
colummns show power laws for Brms and Upms in low and high frequencies Lf PL and Hf PL, respectively. The last colums stands for
resolution (r1:33-64-64, r2:33-128-128 for spatial resolution and t1:5-1073, t2:5-10~% and t3:1-1073 for the time step). The dashes

correspond to either decaying cases or non-calculable situations. In all cases, the magnetic Prandtl number is set to 1, Pr = 1.
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Ra E t LfPL | Hf PL | Lf PL | Hf PL
Pm Rev. Ba Brms Urms A Re Rm Rsl.

(10%) | (107%) (kyr) (Brms) | (Brms) | (Urms) | (wrms)
500 0.1 20 0.45 | non || —8.06-107° | 1.46-10"2 | 1.95-10"? 42.5 195 75.8 -2 -12 -1 -11 r2t2
3 78.8 | non || —3.73-1072 | 1.02-1072 | 4.52-1072 0.315 452 | 6.14 -2 -12 0 -13 rlt2
1 5 54.4 | non || —5.96-107% | 2.19-1072 | 4.34-1072 2.4 434 | 9.43 -2 -9 0 -14 r1t2
10 223 | non || —7.81-1073 | 4.04-1072 | 3.92-1072 16.3 39.2 15.4 -2 -8 0 -10 rlt2
100 0.1 20 217 | non || —1.60-107* | 1.62-107% | 4.62-107° 0.525 0.46 | 0.0004 - - - - r2t1
3 - - - - - - - - - - - - r2t4
0.3 10 20.4 | non 9.20-107° | 9.86-107* | 8.24-107% | 0.0324 | 275 | 2.26 -2 -8 0 -12 r2t1
20 7.86 r —2.86-107° | 7.09-1073 | 8.68-1073 3.35 28.9 | 5.02 -3 -7 -1 -7 r2t1
95 0.3 3 423 | non || —2.58-107°% | 6.73-107°% | 841-1073 | 45-107% | 28.1 | 0.71 - - - - rlt2
10 - - - - - - - - - - - - r2t1

41 0.3
20 14.7 | non 8.81-107° | 3.64-10"* | 3.20-1072 | 0.0089 | 10.7 | 0.68 - - - - r2t1
30 1 10 20.2 | non || —2.04-1072 | 4581072 | 1.73-1072 21 17.3 | 2.98 - - - - rlt2
" 10 14 2346 r 3.80-107* | 6.76-1072 | 2.29-107¢ 6.41 229 | 732 -2 -10 0 -12 rltl
20 52.3 r 4.06-107% | 1.17-107! | 2.21-107! 27.5 22.1 | 97.6 -2 -8 0 -10 r2t2
TAB. A.5:  Gravitational dynamo simulation results. Columns from left to right: The first three columns show Rayleigh, Ekman

and magnetic Prandtl numbers Ra, E and Pm respectively. The 4" column depicts run duration corresponding to Earth’s dipole
decay time in years. The 5" column represents the magnetic reversals (r:reversing, non:non-reversing). The 6" column is the time
average of dipole moment. The 7 and 8™ columns are Brms and Upms respectively (in our case Ro = upms due to scalings). The
next three columns are three output parameters: Elsasser, Reynolds and magnetic Reynolds numbers A, Re and Rm, respectively.
The next four columns show power laws for Brms and Uqms in low and high frequencies Lf PL and Hf PL, respectively. The last
colums stands for resolution (r1:33-64-64, r2:33-128-128 for spatial resolution and t1:5-1073, t2:5-107%, ¢3:1-1073 and t4:5- 1072

for the time step). The dashes correspond to either decaying cases or non-calculable situations. In all cases, the magnetic Prandtl

number is set to 1, Pr = 1.
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You have been a prisoner

of a little pond
I am the ocean

and its turbulent flood
Come merge with me

leave this world of ignorance
Be with me,

I will open the gate to your love.

Mevlana Celaleddin-i Rumi
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