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Abstract

The thesis “Multi-spacecraft analysis of the solar coronalplasma” deals with two different
approaches in the analysis of the solar corona: an observational and a theoretical one.

The first approach aims at the reconstruction of the 3D structure of phenomena in the
solar corona using data obtained by multiple spacecraft. Weused observations from three
spacecraft: Solar Terrestrial Relation Observatory (STEREO) A and B and Solar Dynamic
Observatory. The observed and analyzed solar phenomena were prominences and CMEs.
For the analysis of the observed phenomena we extended and applied a 3D stereoscopic
reconstruction method, called MBSR (Multi-view B-spline Stereoscopic Reconstruction)
which was developed as part of this thesis. The MBSR method has a large spectrum of
possible applications to solar phenomena, from coronal loops to coronal mass ejections
(CME). We applied the MBSR method to two eruptive prominences which evolved into
CMEs.

In one of the events a bright patch of low polarized radiationwas observed in corona-
graph images of the CME core, which was presumably caused by aHα resonant scatter-
ing. This effect is not common since at the usual coronal temperatures at the height of the
analyzed CME, one expects the plasma to be fully ionized. Thepolarization ratio method
failed to retrieve a meaningful location of the bright patch. Therefore, we applied the
MBSR method and determined its probable 3D position in the CME core. For the second
event we make use of simultaneous data from three space probes to reconstruct the 3D
location of the highest ridge of a rising prominence and the core and leading edge of the
CME which evolved from it. We follow the evolution of the eruption from the time of
the initial rise of the prominence until the CME core leaves the field of view of the COR1
coronagraph. We calculate various parameters which characterize the 3D curves, such as
the propagation direction, the rise velocity, the angular width of the prominence and of
the CME core and their rotation.

The second approach is related to the extrapolation of the coronal magnetic field from
a photospheric magnetogram using the NLFFF (non-linear force-free field) model. It is
generally accepted that coronal loops observed in EUV images outline magnetic field
lines. The results from many conventional magnetic field extrapolations show, however,
large discrepancies between the extrapolated magnetic field lines and the observed coronal
loops, typically they deviate by angles of the order of 20 degrees. We therefore introduced
an additional observational constraint to the extrapolation scheme by requiring the field
also reproduces 3D reconstructed coronal loops. This is achieved by minimizing the local
angles between the extrapolated magnetic field and the tangents to the coronal loops. We
call this new method stereoscopic - nonlinear force-free field (S-NLFFF) extrapolation
method because the shape of the coronal loops is reconstructed from EUV images by
stereoscopy. In the thesis we present the S-NLFFF method andtests of it with synthetic
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data.
The thesis is structured in six chapters: in Chapter 1 we givean introduction to the

studied solar coronal phenomena; in Chapter 2 we present themethods which we devel-
oped for analyzing prominences, coronal loops and CMEs as well as those for computing
the coronal magnetic field. Already existing methods employed here are also described.
in Chapter 3 we present the spacecraft and instruments whichwe have used for our data
analysis. Chapter 4 presents the application of the MBSR code and the analysis of two
coronal events. In Chapter 5 we present the tests for S-NLFFFmodel. Chapter 6 contains
conclusions and a brief outlook.
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Glossary

Acronyms

AIA Atmospheric Image Assembly
AR Active Region
AW Angular Width
CME Coronal Mass Ejections
COR Coronagraph
DEM Differential Emission Measure
EM Emission Measure
EUV Extreme Ultra Violet
EUVI Extreme Ultra Violet Imager
HEEQ Heliospheric Earth Equatorial
HI Heliospheric Imager
LE Leading Edge
LOS Line Of Sight
LTE Local Thermodynamic Equilibrium
MBSR Multi-view B-spline Stereoscopic Reconstruction
MHD Magnetohydrodynamics
NLFFF NonLinear Force Free Field
PCTR Prominence to Corona Transition Region
PIL Photospheric Inversion Line
POS Plane Of Sky
SDO Solar Dynamic Observatory
SECCHI Sun-Earth-Connection Coronal and Heliospheric Investigation
S-NLFFF Stereoscopy-NonLinear Force Free Field
SOHO Solar and Heliospheric Observatory
STEREO Solar Terrestrial Relation Observatory
STPLN STEREO Plane
SW Solar Wind
UV Ultra Violet
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1 Physics of the solar corona

1.1 Introduction

The corona is the outer most layer of the solar atmosphere1. It starts at around 3000
km above the solar surface, but it does not have a well defined outer boundary. During
a total solar eclipse, the solar corona can be observed very accurately. However, solar
eclipses are relatively rare and short-lived events. Therefore, ground-based instruments
which replace the Moon by an artificial occulter were constructed after the beginning of
the 20th century.
The solar corona is highly influenced by the magnetic activity of the photosphere. We can
observe this influence in Fig. 1.1 which shows two different snapshots of the solar corona
during solar eclipses.

Figure 1.1: Images taken during two solar eclipses. The upper image was recorded in
2001 during maximum solar activity (http://www.mreclipse.com). In the lower
panel we see an eclipse during minimum solar activity recorded in 1998
(http://solar-center.stanford.edu).

1The solar atmosphere is composed of four layers: the photosphere, the chromosphere, the transition
region and the corona.
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1.1 Introduction

A strong magnetic activity at the photosphere corresponds to streamers, i.e. bright
regions of closed field line oriented in all different directions. As the coronal plasma is
trapped on magnetic field lines, the appearance of the coronais as in the upper panel of
Fig. 1.1. In contrast, at low magnetic activity, coronal magnetic field is dominated by a
bipolar configurations and the appearance of the coronal streamers is more elongated at
the equatorial plane (lower panel of Fig. 1.1).

The coronal radiation in white-light, as observed during eclipses, has two compo-
nents: F-corona and K-corona. The F-corona (F for Fraunhofer) is mostly present from
approximately 2 R⊙ (solar radii) and is due to the scattering of the photospheric light at
the interplanetary dust particles. The spectrum of the F-corona shows the dark Fraunhofer
absorption lines of the photospheric spectrum. The K-corona (K for “Kontinuum”) is due
to the scattering of the photospheric light on the free electrons. Its continuous spectrum
resembles the photospheric spectrum without the absorption lines (Stix 2002).

Another component of the solar corona is the E-corona (E fromemission) which is due
to the spectral emission (from radio waves to extreme ultra violet and X-rays) produced
by highly ionized atoms at temperatures of millions of Kelvin. Fig. 1.2 shows two images
of the solar corona in two emission wavelengths. In most emission lines the plasma is

Figure 1.2: The left image shows the Sun in the emission line at λ = 195 Å of Fe XII recorded by
EUVI onboard STEREO (http://cdaw.gsfc.nasa.gov). The right image was recorded
by the Yohkoh spacecraft. It shows the Sun in the wavelength range between 3−45 Å
of soft X-rays (http://solar.physics.montana.edu).

optically thin and hot with temperatures larger than 10 000 K, in a steady state and in
ionization2 and thermal equilibrium.

Some of the processes which contribute to the emission in thecorona are:

• Spontaneous emission occurs when an electron falls from a higher energy level
(En) to a lower energy level (Em) with the emission of a photon with the energy

2The ionization equilibrium is the equilibrium between the collisional ionization and the radiative and
di-electronic recombination (Aschwanden 2004).
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1 Physics of the solar corona

hν = En − Em.

• Free-free emission (also called bremsstrahlung) occurs when an electron with en-
ergy Ee is non-elastically scattered off an ion and emits a photon with the energy
hν = Ee − E f , whereE f is the energy of the out coming electron.

• Radiative recombination occurs when a free electron recombines with an ion. When
the energy of the free electron is higher than the energy level in which was trapped
(En), a photon is emitted with the energyhν = 1

2mev2 − En.

• Di-electronic recombination occurs when a free electron iscaptured into an excited
state and at the same time a bound electron is excited followed by a decay of one or
both of the electrons into a lower energy level.

For the theoretical understanding of the physics of the corona on large scales, we have
to introduce the laws of magnetohydrodynamics. By “large scales” we here mean scales
well beyond the ion gyroradius and the ion inertial length atwhich the coronal plasma
can be described as a fluid. Typically, the above mentioned ion scales are only a few
kilometers and well below the spatial resolution of currentsolar telescopes.

1.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD) describes the dynamics of a highly conductive fluid (“hy-
dro”) in a magnetic field (“magneto”).

MHD can be applied to fluids which fulfill certain criteria (Priest 1982):

• The fluid is electrically conductive.

• Plasma can be considered as a single fluid.3

• Plasma is electrically neutral (n+ − n− << n+,≈ n− with the number densities of
positive and negative ions).

• The evolution of the plasma is considered to be slow in the sense that its time-scale
of evolution is larger than the collision times and its length-scale is larger than the
mean free paths of individual particles, ions and electrons. The plasma is assumed
to be in local thermodynamic equilibrium (LTE).

• Since material and phase speeds involved are much lower thanthe speed of light,
the plasma evolution is treated non-relativistically.

The magnetohydrodynamic equations combine the non-relativistic approximation of
Maxwell’s equations and the Navier-Stokes equation for thedynamics of the neutral
plasma extended by the Lorentz-force term, the adiabatic gas law, the continuity equa-
tion of the plasma and Ohm’s law. As we are interested more in the magnetic field’s
behavior, we will present only the electromagnetic equations.

3The single fluid condition may be used due to the slow evolution of the electrons and the ions.
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1.2 Magnetohydrodynamics

In the reduced form of Maxwell equations, the non-relativistic assumption above al-
lows us to neglect the displacement current from Ampere’s law:

∇ × B = µ0j , (1.1)

∇ × E = −
∂B
∂t
, (1.2)

∇ · B = 0 , (1.3)

whereE andB are the electric and magnetic field,j represents the current density and
µ0 is the magnetic permeability in vacuum. The Ohm’s law gives the relation between the
current density and the total electric field:

j = σ(E + v × B) , (1.4)

wherev is the flow velocity andσ is the electric conductivity assumed here to be
isotropic.

A very important equation for solar physics which describesthe evolution of the mag-
netic field with time when the velocity field is known, is the induction equation. The
induction equation can be obtain from Maxwell’s equations combined with Ohm’s law.
Rewriting the Ohm’s law (Eq. 1.4) as−E = v × B − j/σ, applying the curl operator on
the new equation, then inserting into it the Faraday (Eq. 1.2) and Ampere’s law (Eq. 1.1)
and using the vector triple product, we obtain the inductionequation:

∂B
∂t
= ∇ × (v × B) +

1
µ0σ
∇2B , (1.5)

We can introduceη = 1/(µ0σ), which is called the magnetic diffusivity. The induction
equation is valid in this form for a constantσ. The ratio between the two terms from the
right hand side of the induction equation (1.5) is called magnetic Reynolds number and
indicates when one of the two terms can be omitted to lowest order:

Rm =
|∇ × (v × B)|
|η∆B|

. (1.6)

For a typical length scalel0 and velocityV0, Reynolds number can be approximated
with Rm ≈

V0l0
η

.
WhenRm << 1 the Lorentz force is small and we are in the diffusive limit. In this

case, the time change of the magnetic field is characterized by the diffusive term,η∇2B =
ηB/(l0)2. In this diffusive limit, the magnetic field can move freely through the plasma.
For a certain length scalel0, magnetic field diffuses according to a diffusion time scale
given byτd = l20/η. In a fully ionized plasma the diffusion time scale depends on the

plasma temperatures,τd ≈ 10−9
[

l0
Mm

]2 [

T
K

]−3/2
s. For the solar corona, where the typical

length scale isl0 = 106 m and typical temperature isT = 106 K, we obtain a diffusion
time scale ofτd ≈ 1012s≈ 31710 years.
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1 Physics of the solar corona

For a typical velocity in the corona of≈ 103 ms−1, the Reynolds number amounts to
Rm =

l0
V0
τd � 1010. Therefore, for the corona the conducting limitapplies(Rm >> 1).

In this case the evolution of the magnetic field is described by ∂B
∂t = ∇ × (v × B) which

means that the plasma can move freely along the field lines butfor motion perpendicular
to the magnetic field lines the plasma and the field are intimately tied together. This is the
so-called frozen-in flux condition.

1.3 Plasma beta

Plasmaβ is the ratio of the plasma pressure over the magnetic pressure. Gary (2001)
calculated the plasma beta in different regions of the solar atmosphere, above a solar
active region. For these calculations, he combined a potential field magnetic model with
various density and temperature observations at different heights. The resulting profile
of the plasma beta with height above an active region from thephotosphere is presented
in Fig. 1.3. The gray area indicates the range of estimatedβ values. The left boundary

Figure 1.3: Approximate range of the plasma beta versus height above an active region in the
solar atmosphere adapted from Gary (2001). The left boundary (black thick line)
corresponds to the sunspot region while the right boundary corresponds to the plage
area of the active region (Gary 2001).

of the gray area in Fig. 1.3 corresponds to a sunspot umbra. Because of the very strong
magnetic field over the umbral area, the plasma beta remains less than unity at all heights
down to the photosphere. The right hand side boundary in Fig.1.3 corresponds to plage
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1.4 Creation and the emergence of the magnetic flux

areas which occupy most of the active region (AR). Accordingto this model (Fig. 1.3),
in plage areas,β may rise to 100 which is the value assumed to dominate below the solar
surface. But at coronal heights, above the transition region, β decreases well below unity.

If we consider a coronal temperatureT = 2 · 106 K and a number densityn = 1.2 ·
1016 m−3, typical for bright loops from active regions (Reale 2010),we obtain a plasma
pressure of

p = nKBT = 0.5 Pa, (1.7)

whereKB = 1.38 · 1023 JK−1 is the Bolzmann constant. For a magnetic field ofB =
100 G= 10−2 T, the plasma beta becomes

β =
p

B2/2µ0
=

2µ0p
B2
= 0.01 , (1.8)

whereµ0 is the vacuum permeability.

1.4 Creation and the emergence of the magnetic flux

The coronal magnetic field is generated below the solar surface. In order to understand
how the magnetic field is created we need a short introductionto the inner layers of the
Sun. The interior of the Sun is composed of three main layers,the core, the radiative zone
and the convective zone. Much of the knowledge about these layers has been gained from
modeling stellar evolution and more recently from helioseismological observations.

The coreextends from the Sun’s center to approximately 0.2 R⊙. Here, the energy
is generated by nuclear fusion of hydrogen. The temperatureand the density drops (see
Fig. 1.4) from 15· 106 K at the center to≈ 5 · 106 K at the outer boundary of the core,
which causes the nuclear reaction rate to decrease towards the core boundary. The energy
generated by fusion process is mainly set free in the form of high energy photons and
neutrinos.

The radiative zonesurrounds the core and extends to approximately 0.7 R⊙. In this
layer the high-energy photons produced inside the core are radiated to the outer layers of
the Sun. The time for a photon to arrive at the outer boundary of this zone is very long
due to its repeated scattering at free electrons. The temperature continues to drop from
5 · 106 K at the core boundary to 2· 106 K at the outer boundary of the radiative zone (see
Fig. 1.5).

The tachoclineis a very thin layer centered at∼ 0.7 R⊙ and with a thickness of∼
0.04 R⊙ (Charbonneau et al. 1999). Helioseismic observations haveshown that at this
interface region, between the radiative zone and the convective zone, the rotation which
is approximately solid below, becomes latitude dependent (so called differential rotation)
towards the surface, in the way that the Sun’s equator rotates≈ 28% faster than the pole
regions.

The convection zoneis the subsequent region which reaches up to the photosphere
(see Fig. 1.4). The negative outward temperature gradient of three orders of magnitude
provides the gravitationally unstable condition for an intense convection and an efficient
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1 Physics of the solar corona

Figure 1.4: The internal structure of the Sun (adapted from
http://www.astro.cornell.edu/academics/courses/astro201/sun_inside.htm).

Figure 1.5: The radial temperature (left) and density (right) profiles in the Sun
(adapted from http://solarscience.msfc.nasa.gov/interior.shtml).

transport of energy (Fig. 1.5). This layer is of great importance for the creation, suste-
nance and emergence of the magnetic flux in the outer layers.

At the bottom of the convection zone which coincides with thetachocline, the mag-
netic flux is generated by differential rotation (Fisher et al. 2000). The mechanism which
generates and maintains the magnetic flux is considered to bea self-excited dynamo
(Solanki et al. 2006). An essential ingredient of the solar dynamo is differential rotation.
The essential conditions for the dynamo to work are:

1. high magnetic Reynolds number (Eq. 1.6). For the convection zone the typical
value is estimated to be 500 (Brun 2004) in order to keep the magnetic flux frozen
in the plasma movement.

16



1.4 Creation and the emergence of the magnetic flux

2. non-axisymmetric field and flow4. The flow in the convection zone can be decom-
posed into a mean flow and a turbulent one.

3. the differential rotation is axisymmetric with respect to the solarrotation axis and
anti-symmetric with respect to the equatorial plane.

The models which deal with the solar dynamo solve the magnetohydrodynamic equa-
tions, the induction equation and the equation of motion (Priest 1982). The magnetic field
can be separated into its poloidal (Bp) and toroidal (Bt) component (Charbonneau 2010).
Making use of the mean-field theory (the separation of fields into an average and a fluc-
tuating part) applied to the induction equation, the two components of the magnetic field
are revealed as solutions of the induction equation (Dikpati and Gilman 2009).

One concept which is considered to drive the solar convective zone dynamo is the
so calledα − Ω effect combined with the meridional circulation of the convection zone
(Dikpati and Gilman 2009). To illustrate the concept consider a poloidal field as an initial
seed magnetic field. TheΩ effect consists of a wrapping of the initial poloidal magnetic
field by the differential rotation around the Sun (see Fig. 1.6 a).

Figure 1.6: Idealized evolution steps of the dynamo action in the convection zone of the Sun taken
from Dikpati and Gilman (2009).

4According to Cowling theorem a rotationally symmetric magnetic field (like a dipole field) cannot be
maintain by dynamo (Solanki et al. 2006).
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1 Physics of the solar corona

By this action the field changes into a strong toroidal field (see Fig. 1.6 b). The
toroidal field is transported to the surface of the Sun by the convective motions. During
the transport through the convective zone the toroidal fieldexhibits a kink due to the
Coriolis force (α effect) (see Fig. 1.6 c, d).

Meridional flow (see Fig. 1.6 g) transport the magnetic fluxesfrom the Sun’s surface
along meridian lines polward. Some of the flux is then transported from the poles to the
equator below the surface (Dikpati and Gilman 2009). Various observations have proven
the existence of a poleward meridional flow of about 10-20 m s−1 in the near-surface layer.
The observation could not reveal the equatorward return flowexpected below the near
surface layer. Dikpati and Gilman (2009) argue that the return flow must exist because
the mass cannot pile up at the solar poles.
As we mentioned earlier, the plasma is transported from interior of the Sun to its surface
(photosphere) by convection. The temperature gradient in most of the convective zone
is nearly adiabatic except close to the surface where it becomes super-adiabatic. The
adiabatic temperature gradient is a direct consequence of the convective motion. The
super-adiabatic gradient near the surface is due to the cooling of the surface plasma by
radiation into space. The observable consequence of convection at the photosphere is the
appearance of the granulation (see Fig. 1.7), organized in so-called convective cells.

Figure 1.7: View of sunspots, pores and granules (in the remaining area outside sunspots and
pores) recorded with the SOT (Solar Optical Telescope) on board Hinode spacecraft
(adapted from http://www.nasa.gov).

As a result of the convective motion in the cells at the surface, the magnetic flux
penetrating the surface is pushed into the inter-granular downflow lanes between the con-
vection cells (Solanki et al. 2006).

Sunspots (Fig. 1.7) are the manifestation of large magneticflux concentrations at
the solar surface (Solanki et al. 2006). From an azimuthallyoriented magnetic flux tube
located in the deep convection zone, strands of magnetic fluxbecome detached and rise to
the surface where they emerge and form bipolar magnetic regions and sunspots (Solanki
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et al. 2006).
Well below solar surface, the sunspot flux tube can be modeledin ideal MHD by a

thin flux tube surrounded by field-free plasma. The flux tube isthin in the sense that
its diameter is smaller than the other physical relevant length scales (Fisher et al. 2000).
The forces acting on the dynamic flux tube are the buoyancy force, the Coriolis force, the
magnetic tension force, the hydrodynamic drag force. The enhanced magnetic pressure in
the flux tube is compensated by a reduced density which gives rise to an upward buoyancy
force (Solanki et al. 2006, Parker 1975).

1.5 The magnetic field in the solar corona

While below the solar surfaceβ is large and the magnetic field is pushed around almost
passively by the convective flow, in the solar corona this condition changes. In the corona
β << 1 and we find that the magnetic field imposes its shape on a variety of coronal
structures. We can find the magnetic field in the shape of coronal loops and streamers, of
plumes in the “open” field of the coronal holes or as arcades inthe prominence systems.
The plasma density variation along the field lines in these phenomena is often assumed to
be in a hydrostatic equilibrium. This allows to deduce the temperatures from the variation
of the plasma density with height (Aschwanden 2004).

Sometimes, coronal loops or magnetic arcades in prominencestructures are observed
to be in steady state for a quite long period of time. The respective regions of the corona
can therefore be assumed to be close to a magneto-hydrostatic equilibrium. In this case,
the main forces acting on a plasma volume element, the plasmapressure, the gravity force
and Lorenz force, are in balance:

−∇p+ ρg+ j × B = 0 . (1.9)

Here p andρ are the plasma pressure and density,j is the current density andB is the
magnetic field.

1.5.1 Active region loops

1.5.1.1 Introduction

Active regions (AR) are localized regions on the solar surface from which strong mag-
netic fields emerge, most often in two nearby areas of opposite polarity. During the ac-
tive region development, the intense changes of the magnetic configuration (flux emer-
gence, flux cancellation, changing in magnetic topology) can trigger dynamic processes
like flares or coronal mass ejections (CMEs) (Aschwanden 2004). Due to their bipolar
nature, active regions mostly form closed magnetic field lines (Aschwanden 2004). Ac-
tive regions loops are magnetic flux tubes filled with a sufficient amount of hot plasma
so that they radiate effectively in extreme ultra violet (EUV) wavelengths. In EUV im-
ages recorded by solar telescopes, the flux tubes are often observed to emerge from the
low corona/chromosphere with at least one foot point rooted in an activeregion. Due
to the lowβ of the solar corona, the plasma is well confined by the magnetic field. The
low β in the corona allows to approximate a stationary magnetic coronal loop as an iso-
lated mini-atmosphere in hydrostatic equilibrium (Aschwanden 2004) which has nearly
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the same temperature along its arc length (Petrie 2006), butvaries between different flux
tubes. The material inside the flux tubes is assumed as a compressible fluid moving and
transporting energy only along the flux tubes (Reale 2010). Different conditions at the
two foot-points can induce a considerable plasma and heat flow along the loop from one
foot-point to the other (e.g. siphon flow).

1.5.1.2 Observations and models

Coronal loops are only visible on the solar disk in EUV and shorter wavelengths. Hence
they could only be discovered after spacecraft equipped with EUV telescopes could es-
cape the Earth’s atmosphere. The first images of coronal loops were made by the Skylab
spacecraft launched in 1973. The emission of plasma from theflux tubes at temperatures
sampled by different EUV wavelength gives rise to the classification of cool, warm and
hot loops (Reale 2010). Cool coronal loops are detected in ultraviolet (UV) lines emitted
in thermodynamic equilibrium at temperatures between 105 K and 106 K. Warm loops
have temperatures between 106 K and 1.5 · 106 K and are observed better in EUV lines
and the hot loops emits around or above 2· 106 K and are visible in X-ray observations.

The three type of loops can be part of the same bundle of loops emanating from one
active region, while each of them emits at different wavelengths. An image recorded at a
certain wavelength monitors the line-of-sight (LOS) integration of the radiation emitted
by all the loops in that particular wavelength band.

The observed line intensity (Iλi j ) emitted by the transition from an atomic level (j) to
another (i) at the wavelengthλi j from an ionX+m is given by (Aschwanden 2004)

Iλi j =
~νi j

2i

∫

Nj(X
+m)A ji dh [Kg m−2s−3] , (1.10)

whereνi j = c/λi j is the wave frequency,A ji is the Einstein coefficient for spontaneous
emission,Nj(X+m) is the number density of the emitting ionX+m in the state of the upper
level j andh is the line-of-sight coordinate. In the corona, in general,collisional excitation
and ionization dominate over radiative processes. The population of the level j can be
rewritten as

Nj(X
+m) =

Nj(X+m)

N(X+m)
N(X+m)
N(X)

N(X)
N(H)

N(H)
Ne

Ne . (1.11)

1. Nj (X+m)
N(X+m) is the ratio of the number density of the ionX+m excited at levelj relative to
the total number density of the ionX+m.

2. N(X+m)
N(X) represents the ratio of the number density of ionX+m relative to the total

number density of the elementX.

3. N(X)
N(H) = AX is the element abundance relative to that of hydrogen.

4. N(H)
Ne

is the ratio of hydrogen number density to the electron density. For a fully
ionized plasma, this ratio is≈ 0.83.
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The line intensity then can be written as

Iλi j = AX

∫

C(T, λi j ,Ne)NeNHdh , (1.12)

C(T, λi j ,Ne) =
~νi j

2

A ji

Ne

Nj(X+m)

N(X+m)
N(X+m)
N(X)

. (1.13)

C(T, λi j ,Ne) is the contribution function which contains all the relevant atomic physics
parameters and is peaked in a narrow temperature range through the temperature depen-
dence ofN(X+m)/N(X). The temperature here is consideredT = Te = Tion. The separation
of the ratio N(X)

N(H) = AX from the contribution function arises from the assumption that the
abundances are constant along the line-of sight. An alternative definition of the contribu-
tion function is

Gi j (T, λi j ,AX,Ne) = AXC(T, λi j ,Ne) . (1.14)

Based on observational data of a certain line intensityI (λi j ) at wavelengthλi j , the
contribution function can be calculated from the CHIANTI spectral code (Dere et al.
1997).

The most commonly used EUV lines for coronal observations are the emission lines
of iron at different ionization levels. Fig. 1.8 shows coronal loops from an AR in different
emission lines.

Figure 1.8: Coronal loops observed on 01 August 2010 with theAIA telescope on board the
SDO spacecraft in the wavelengths ofλ = 171Å (top left), λ = 193 Å (top
right), 211 Å (middle left), 335 Å (middle right), 94 Å (bottom left) and
131 Å (bottom middle) (adapted from http://sdo.gsfc.nasa.gov/data/aiahmi/) and with
XRT (X Ray Telescope) on board Hinode spacecraft (bottom right) (adapted from
http://www.solarmonitor.org).
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Typically, EUV intensity measurements are reduced to the differential emission mea-
sure (DEM) which is defined as the derivative of the emission measure (EM) with re-
spect to the temperature (DEM(T) = dEM(T)/dT = NeNH(dT/dh)−1. It is used in the
approximation of local thermodynamic equilibrium and estimates the emitted intensity
in terms of the local temperature and its gradient. Under theassumption of the den-
sity profile N(h) = Ne(h) ≈ NH(h), the differential emission measure is expressed as
DEM(T) = N2

e(dT/dh)−1 wheredT/dh is the gradient of the temperature along the LOS.
The line intensity can be written in terms of the DEM as

I i j =
1
4π

∫

Gi j (T, λi j ,AX,Ne)DEM(T)dT . (1.15)

With the CHIANTI code which consists of an atomic database and a suite of computer
programs to calculate the optically thin emission spectrumof a large number of EUV lines
(Landi et al. 2013), the differential emission measure of various EUV lines can be fitted
to the observational data. This way information about the density and temperature at the
emission site can be obtained. From the variation of emission measure with temperature
dEM(T)/dT ≈ N2

e(∆h/∆T), the squared average density can be estimated as it should be
directly proportional todEM(T)/dT and inversely proportional to the local loop diam-
eter∆h. This relation,N2

e(T) = (dEM(T)/dT)(∆T/∆h) can be estimated for a range of
temperaturesT (Aschwanden 2004).

Using observations of the DEM of coronal loops, Winebarger et al. (2011) suggested
a stationary heating model of active region loops. They claim to be able to reproduce
the density-sensitive spectral lines from the core of the ARand the DEM of the loops.
Their model is based on the assumptions that the potential field extrapolation replicates
the geometry of the AR core and the heating along a loop is constant.

The evolution of observational instruments and the increase in computational power
allows the development of analysis techniques which revealthe physical characteristics
in more detail. Using the DEM technique, Aschwanden (2011) developed an automatic
code for the analysis of the temperature distribution not only over the entire Sun but also
for structures like active region loops. Using observations from six different EUV wave-
lengths emitted from different iron ions, Aschwanden (2011) could built a temperature
map for an active region (see Fig. 1.9). The authors concluded that the highest temper-
ature in the active region is found in the core with values between 8− 10 · 106 K (white
part of the Fig. 1.9) while at the periphery of the AR, the temperatures are 1.5-2.5·106 K.

Under the assumption of local thermodynamic and hydrostatic equilibrium one can
calculate the total emission measure (EM) of a loop from the integration of a known
DEM over the whole temperature range. In such a calculation one has to take into ac-
count the LOS integration over all observed loops as the coronal plasma in the corona can
be assumed to be optically thin in most EUV lines. One common assumption in these
calculations is that the loops are isothermal.

A way to derive the temperature of the loop is to observe a coronal loop in two EUV
emission lines. The observed intensities depend on the emission measure at the effective
loop temperature and on instrument characteristics (Vaiana et al. 1973). The ratio of
the two emission measures depends on the temperature and is independent of the local
density if the pair of EUV lines are suitably chosen. The emission measure method is
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Figure 1.9: Temperature map derived using differential emission measure technique taken from
Aschwanden (2011).

limited by the capability to separate the background emission of the solar surface or of
other overlapping loops from the emission of the loop to be investigated. This difficulty
also arises when the diagnostic is applied to loops above thelimb (Reale 2010) because
of scattering from the non-negligible coronal background.

Coronal loop models often treat the flux tubes as monolithic (static) and at equilibrium
(Reale 2010) with a uniform temperature along the loop. Theyare assumed to be heated
and cooled as an homogeneous unit (Klimchuk 2009). From observations, most of these
loops live longer than their cooling time where the cooling time can be determined from
observations. The cooling time depends on temperature, density and the length of the
loop (Klimchuk 2009).

The structured (dynamic) types of loops are multi-strandedbundles often below obser-
vational resolution. The strands are dynamic, behave independently and are assumed to
be heated impulsively. Averaged over the entire bundle, theentire loop appears to evolve
slowly (Klimchuk 2009).

From observations at a pixel size larger than 1 arcsec, one often cannot distinguish
clearly between different loops. With the launch of Solar Dynamic Observatory (SDO), it
has become possible to continuously image the low corona in EUV wavelengths at a pixel
size of 0.6 arcsec. Another instrument with an even higher resolution (0.1 arcsec/pixel)
is High-resolution Coronal Imager (HI-C). Peter et al. (2013) did not find the substruc-
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tures in Hi-C observations that are expected from the existence of resolvable loop bundles.
Their conclusion was that the observed loops are either monolithic with diameter of typ-
ically 2 to 3 arcsec, or the loops are multi-stranded with thestrand diameter below the
HI-C resolution. According to their calculations, they derived a diameter of a strand to be
about 15 km.

The heating mechanism of coronal loops and of the corona has been the topic of
intensive research since a couple of years. The details of the conversion of magnetic
energy which forms the dominant energy reservoir into thermal energy is still unsolved
(Reale 2010). Currently there are two main mechanisms of coronal loop heating dis-
cussed, namely Direct Current (DC) heating through moderate and frequent explosive
events (nanoflares) and Alternating Current (AC) heating byAlfvén waves (Reale 2010).

Winebarger et al. (2011) classified loop and heating models according to the number
of strands which exist in a flux tube. If a coronal loop is composed of only one strand and
the heating events occur infrequently, the temperature anddensity along the strand will
strongly vary in time. The heating mechanism is then assumedto be the “nanoflare heat-
ing” mechanism. If the heating occurs almost continuously the temperature and density
along the loop will reach an equilibrium and time variationsin temperature and density
are moderate. If the flux tube consists of few strands which encounter heat pulses almost
simultaneously, the intensity of the loop will evolve in thesame manner as the individual
strands evolve. This heating scenario is called “short nanoflare storm” (Winebarger et al.
2011). A “long nanoflare storm” scenario takes place in the case that many sub-resolution
strands are heated individually and randomly. The entire loop then evolves more smoothly
in time according to the average strand.

Klimchuk (2009) concluded that EUV loops with temperature≃ 106 K are composed
of multiple strands which are heated by storms of nanoflares.In the case of loops with
temperatures> 2·106 K, the author found no clear evidence whether the nanoflare heating
mechanism applies.

In another study Petrie (2006) analyzed the coronal loop widths and pressure scale
heights using the approach of isothermal monolithic flux tubes with a steady-state plasma
flow. He studied how the cross-section of the loop varies withheight solving the mass
flow conservation equation with the flux tube expansion takeninto account. Motivated by
Landi and Feldman (2004), who found that static loop models overestimate the foot-point
emission by orders of magnitude, Reale (2010) concluded thenecessity of introducing
non-uniformity in the cross-section of the loop.

1.5.2 Prominences

1.5.2.1 Introduction

Prominences consist of dense, partially ionized plasma clouds with several thousand km
above the solar surface sustained by the coronal magnetic field and embedded in the hot,
highly ionized solar corona. When observed in detail, prominences are build from fine
threads partially filled with cool material which outline magnetic flux tubes (Arregui et al.
2012). In general the main body of the prominence has a three part structure (the spine,
the barbs, the legs). The spine is the main axis of the prominence, the legs are placed at
the two ends of the spine and the barbs (see Fig. 1.10b) are finestriations which extend
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from the main axis sideways down to the chromosphere (Mackayet al. 2010).

Figure 1.10: a) Cut from an image recorded in Hα emission by the BBSO (Big Bear Solar Ob-
servatory) showing dark filaments/prominences and b) a dark filament with barbs
recorded in Hα emission by the BBSO.

The plasma which forms the prominences is kept in equilibrium by the magnetic field
against gravity. Observers often distinguish between prominence and filament. The term
prominence is used when it is observed above the solar limb asbright structure in the
emission of hydrogen (see Fig. 1.10a) and helium. When observed on the solar disk a
prominence appears dark and is also called a filament (see Fig. 1.10a). The dark ap-
pearance of prominences in Hα on the solar disk is due to the absorption of the incident
radiation from the photosphere by the cool filament material(Solanki et al. 2006). Be-
cause prominences and filaments appear so different, it was not realized in the beginning
of their observations that they are one and the same phenomenon. In the thesis I will use
both terms synonymously.

Filaments are formed above photospheric inversion lines (PIL) between opposite mag-
netic polarities along a so-called filament channel, which is defined as the volume in which
the filament will form and live. A necessary condition for thefilaments to form is that the
horizontal filament magnetic field has a component along the PIL (Martin 2000). Chro-
mospheric fibrils (horizontal fine threads of plasma distributed over the solar surface) are
often aligned with the surface horizontal field. Consequently, the fibrils cannot be normal
to the PIL (filament channel) in sections where filaments may form. It is possible that a
filament channel exists without being filled with chromospheric material (Martin 2000).
Another condition for the formation of prominences is the existence of closed magnetic
field arcades across the filament channel which connect the opposite polarities (Martin
1990). The sense of rotation of the obliqueHα fibrils relative to the PIL or to the filament
axis defines the chirality of the filament (see Fig. 1.11). Typically, this sense of rotation is
also shown by the barbs. The two senses of chirality are called dextral and sinistral (see
Fig. 1.11). Fig. 1.10b shows an example of a filament with a sinistral chirality. Chirality
is correlated with the sign of the magnetic helicity of the prominence flux tube. In gen-
eral, negative magnetic helicity dominates in the northernhemisphere of the corona, while
positive helicity dominates in the southern hemisphere (Pevtsov et al. 2003). In a similar
way, the sense of the chirality differs in the two hemispheres. Studying the chirality of
2310 filaments, Pevtsov et al. (2003) found that almost 80% ofthe filaments follow the
hemispheric helicity rule.
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Figure 1.11: Sketch illustrating the chirality rule of filaments. The configuration from the left
hand side is dominant in the southern hemisphere while the one from the right hand
site is dominant in the northern hemisphere. The arrow represents the spine of the
prominence while the lateral lines stands for the barbs.

Prominence foot points are rooted in the chromosphere, while most of the prominence
mass resides in coronal heights. The mechanism by which the magnetic prominence
structure is filled with cool plasma is still unclear.

The magnetic field plays a key role not only in the formation ofthe filament but also
in its evolution and disappearance/eruption. Instabilities in the magnetic field can trigger
eruptions of prominences which may evolve as coronal mass ejections (CMEs).

1.5.2.2 Observations

Prominences were observed long before the spacecraft era, first, during solar eclipses.
The reddish color of prominences in these observations is due to the Hα (λ = 6562.8 Å )
emission of the prominence plasma (see Fig. 1.12).

Figure 1.12: Crop of an image taken during an eclipse from 1991, which shows a prominence
(http://www.company7.com/meade/gallery/11b.html).

Many of the prominence observations are made in this wavelength (see Fig. 1.10) and
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in the EUV (extreme ultra violet) wavelength of He II (λ = 304 Å ). At 304 Å , filaments
appear dark because of He II self-absorption.

In contrast, the brightness of the prominence with respect to the background when ob-
served off-limb is due to the emission of the prominence plasma or to thescattering of the
radiation emitted from the solar surface (see Fig. 1.13). The region which surrounds the
prominence and where the temperature gradient is very high (from prominence tempera-
tures to coronal temperatures) is called prominence to corona transition region (PCTR).

Figure 1.13: Composition of images of the same prominence observed in different EUV (extreme
ultra-violet) wavelengths. From left to right at wavelength: λ = 131Å, 304 Å, 171Å,
193Å. The images were recorded by AIA onboard SDO (www.thesuntoday.org).

In some cases, the prominences can be observed in EUV emission lines of ionized
iron at λ = 171, 193, 131 Å. These lines corresponds to equilibrium temperatures of
T = 0.6, 1.2 , 10 · 106 K, respectively (Parenti et al. 2012). In these wavelengths, promi-
nences appear dark also when observed above the limb. The bright background is in these
observations provided by coronal emission. An explanationof the prominence emission
for the low line intensity at these wavelengths has been given by Anzer and Heinzel (2005)
who propose two responsible mechanisms. One mechanism is the absorption of a fraction
of the coronal radiation from behind the prominence (when observed along LOS). The
second explanation is the low emission from the prominence material (Parenti et al. 2012)
in these hot coronal EUV lines.

Labrosse et al. (2010) proposed two models of the prominencestructure which can ex-
plain observations in UV-EUV wavelengths. In one model, theprominence has a cool core
surrounded by a thin transition layer which is hot enough to emit in the EUV spectrum.
The second model assumes that the prominence is structured in isothermal threads with
different temperatures some of which are hot enough to emit at UV-EUV wavelengths.

The prominences have been classified from their first observations. Secchi (1875) di-
vided them into quiescent and active prominences. Petit (1925) separates prominences
into five types: eruptive, tornado, quiescent, sunspot-related or active. Tandberg-Hanssen
(1963) introduced a classification based on relative intensities of spectral lines from promi-
nences observed in emission above the solar limb (Tandberg-Hanssen 1977).

Another classification of the prominences is based on their location and on the strength
of the magnetic field. This classification distinguishes active region (AR) filaments (see
Fig. 1.14, upper right image) and polar crown prominences, magnetic field configuration
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(dextral or sinistral), structures (as observed at limb) (arch-like or horizontal threads (see
Fig. 1.14, bottom images) (Chifu et al. 2012).

Figure 1.14: Different types of prominences. Images on the left side images were recorded SOT
onboard Hinode, top right image by BBSO, bottom right image by EIT (Extreme
ultraviolet Imaging Telescope) on board the SOHO (Solar andHeliospheric Obser-
vatory) spacecraft.

The strength and the dynamics of the magnetic field has significant impact on the
morphology and lifetime of the prominences. The magnetic field in the active region is
stronger and more dynamic than in quiet Sun regions. As a consequence, it is observed
that the lifetime of the prominences above active regions isshorter than those which form
in a weak magnetic field. This is the background for the classification in active and qui-
escent prominences. AR prominences/filaments can last from a few hours to days, while
quiescent prominences can last for weeks (Gosain and Schmieder 2010).

The dimensions of prominences can vary significantly. Quiescent prominences can
reach 105 km in length, 104 km in thickness and 105 km in height (Labrosse et al. 2010).
while the AR prominences are smaller and barely reach 104 km in height (Filippov and
Den 2000).

The typical temperature of prominences is substantially lower than typical coronal
temperatures in which the prominence is suspended. Typicaltemperatures of prominence
plasma spans between 6000 K and 80000 K (Anzer and Heinzel 2008).

It is considered that the temperature varies between threads, but also along each thread,
which makes the determination of the temperature difficult. According to Park et al.
(2013) the most common way to calculate the temperature in the core of a prominence
is by measuring the absorption width of a spectral line. Ionization and excitation pro-
cesses of the atoms in the prominence plasma depend on the temperature. Besides the
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thermal contribution to the line width one has to take into account the non-thermal broad-
ening which might be due to unresolved LOS (line-of-sight) motions induced by waves
or turbulence (Labrosse et al. 2010). In this case, the Doppler width is given by:

∆λD =
λ

c

√

2kT
m
+ ξ2 , (1.16)

where∆λD is the observed line width,λ is the diagnostic wavelength at rest,T is the ion
temperature,m is the mass of the ion andξ is a non-thermal turbulent velocity. Using
observations of emissions from ions/atoms of different mass, e.g., Hα and Ca II, and
applying formula (1.16), Park et al. (2013) found temperatures between 4· 103 and 2· 104

K and non-thermal velocities (NTV) between 4 and 11 km s−1. Using even more spectral
lines, Parenti and Vial (2007) derived NTV inside a prominence at different temperatures.
The temperature was considered to be the LTE emission temperature of the observed
line. They covered the range between 104 and 2.5 · 106 K. The analysis was performed
for a quiet-Sun region (considered as reference region) andtwo different locations of a
quiescent prominence. From their analysis, Parenti and Vial (2007) found that in the
quiet region the turbulent motions are increasing with temperature and reach a peak in
the transition region atT = 6 · 105 K. They decrease at larger altitudes and coronal
temperatures. The prominence velocities were found to be lower than those found in
quiet-Sun regions forT = 6 · 105 K. There was also a difference in between the two
locations of the prominence studied. While at one location,the plasma showed an increase
of turbulence motion between 3· 104 K < T < 2 · 105 K, the velocity remained almost
unchanged in the other region.

Using the observations from Parenti and Vial (2007), Anzer and Heinzel (2008) de-
rived the PCTR temperature of the prominence along a 1D profile through the prominence.
Assumptions of their model are a constant electron pressurein the entire system and the
minimum temperature of 2.3 · 104 K in the center of the prominence. A fit of the theoret-
ically calculated DEM with the observed one yields a width ofonly 1.9 · 104 km for the
prominence along LOS.

The electron densities vary along the prominence and between different types of
prominences. Most of the prominence densities observations revealed values between
109 and 1011 cm−3 (Labrosse et al. 2010).

Using the line-ratio technique, Parenti and Vial (2007) derived densities at two differ-
ent locations on a quiescent prominence of the order of 6·108 - 3.6 ·109 cm−3.

Observations show that the plasma which forms a prominence is very dynamic. It
is continuously entering and exiting the filament on a time scale shorter than the fila-
ment life time (Martin 1998). Flow velocities normal to the LOS in a prominence have
been derived by tracking plasma irregularities. The line-of-sight (LOS) velocity can be
obtained through Doppler shift measurements, which has thedisadvantage that the bulk
spectral shift is proportional to some average of all velocities along the LOS. Labrosse
et al. (2010) reports of observations by the tracking methodof counter-streaming flows
of about 5 - 20 km s−1. From the Doppler shift method, values of±15 km s−1 have been
obtained. Analyzing Hα time-sequence images, Chae et al. (2008) observed horizontal
flows in a prominence at a speed of 10 km s−1 which after a few minutes became vertical
flows with a velocity of 35 km s−1.
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1.5.2.3 Models

There are many models which are trying to explain the formation and evolution of the
prominences. Some models assume that filaments are supported by a nearly force-free
flux rope which stretches horizontally above the PIL. One of the early models has been
described by Kuperus and Raadu (1974). Their model is essentially two-dimensional
with a magnetic field arcade bridging the PIL. At elevated altitudes, the arcade field ends
in an x-point which suspends a plasmoid above. The plasmoid is again surrounded by
a magnetic arcade which prevents the plasmoid to lift (bootstrap field). The filament
plasma is thought to reside in the upwardly bent pockets of the plasmoid magnetic field
such that it cannot sink down to the surface. The system consist of three magnetically
well separated regions: a low density zone of the bootstrap arcade field in the corona,
a high density plasmoid above the x-point and a low density arcade below the x-point.
In the plasmoid region the magnetic field is closed and in the 2D model of Kuperus and
Raadu unconnected to the photosphere while above and below the filament, the magnetic
field is closed and connected at the photosphere. The field is basically force-free except
for the vicinity x-point.

van Ballegooijen and Martens (1989) have demonstrated how the Kuperus-Raadu con-
figuration can be obtained through surface motion combined with steady reconnection at
the x-point above the neutral line. The surface motion is a combination of shear along the
neutral line and convergence towards the neutral line to achieve the required reconnection
rate. The consequence is the formation of a helical flux tube which is able to support the
prominence. This process is illustrated in Fig. 1.15.

Figure 1.15: Schematic of flux cancellation in a sheared magnetic field taken from (van Balle-
gooijen and Martens 1989). The rectangle represents part ofthe photospheric plane.
The dash line represents the PIL. (a) Initial potential field; (b) sheared magnetic field
produced by flows along the neutral line; (c) the magnetic shear is increased further
due to flows toward the neutral line; (d) reconnection produces long loop AD and a
shorter loop CB which subsequently submerges; (e) overlying loops EF and GH are
pushed to the neutral line; (f) reconnection produces the helical loop EH and a shorter
loop GF which again submerges (van Ballegooijen and Martens1989).

The initial magnetic field has a simple unsheared arcade configuration and is located
normal to the PIL (see Fig. 1.15 a). By applying a foot point shear across the PIL the
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necessary field component along PIL is generated. An additional converging motion to-
ward the PIL then leads to reconnection and the formation of aclosed helical flux tube
detached from the surface (see Fig. 1.15 b). The shear motions near quiescent promi-
nences are considered to be due to the differential rotation. The newly created small loop
below the flux tube may eventually submerge because its strong curvature and converging
foot points which will give rise to a downward magnetic tension. van Ballegooijen and
Martens (1989) proposed that by siphon flow cool plasma is transported along the helical
fields and forms the prominence. Increasing shear will enhance the magnetic pressure due
to an increased field component along the PIL, which causes the entire arcade system to
flare. Sudden eruptions can only be modeled by a three-dimensional system (Mikíc and
Lee 2006).

1.5.3 Coronal Mass Ejections (CMEs)

1.5.3.1 Introduction

Probably the first observation of a coronal mass ejection wasrecorded in 1860 by G.
Tempel during a total solar eclipse. Even if the method of recording was a simple drawing,
Eddy (1974) concluded that the pictures show a major coronaltransient. In 1975, Hildner
et al. (1975) were the first who used the term “coronal mass ejection”. A CME is a
sudden release of plasma which caries a frozen-in magnetic flux and which propagates
and expands from the Sun into the interplanetary space (Aschwanden 2004).

A typical CMEs has a three-parts structure which comprises aleading edge (LE), a
dark cavity and a bright core (Illing and Hundhausen 1986). An example of a typical
coronagraph observation is shown in Fig. 1.16.

Figure 1.16: A typical three-parts structure of a CME. Figure adapted from
http://sohowww.nascom.nasa.gov.
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The bright core
The core is usually associated with plasma material expelled from the active region

flares or prominence eruptions. The cool prominence plasma is then often swept away
with the CME and forms an amorphous high-density core more orless at the center of the
CME cloud.

The dark cavity
This part has a circular or semi-circular shape surroundingthe bright core. The cavity

is often interpreted as an expanding helical flux tube, whichhas its extremities connected
to the solar surface.

The leading edge
There are alternative explanations given in the literaturefor the leading edge of a

CME. One of them considers the leading edge being shaped by the background coronal
magnetic field lines filled with plasmas which piled up by a shock or compression wave
at the forefront of the CME. Another interpretation is that the overlying arcades of the
erupting flux rope are stretched resulting in a compression of the coronal plasma on the
outer side of the field line, thus producing a local density enhancement (Chen 2011).
The source site of CMEs are regions with closed magnetic fieldwhere free magnetic en-
ergy has been accumulated and is released during an eruption. It is therefore not surprising
that the occurrence of CMEs is strongly correlated with the number of sunspots (Gopal-
swamy 2010) and with the solar magnetic activity. Often, they are also associated with
the sources of flares in active regions. The CME-flare relation is however not a one-to-one
relation and several studies have shown that sometimes flares are produced well before
or after a CME. Also, some CMEs are not associated with a flare at all. The statistical
correlation between sunspot numbers, flares and CMEs is displayed in Fig. 1.17.

Figure 1.17: Daily CME and soft X -ray flare rates compared with daily sunspot number taken
from Gopalswamy (2010).

During the minimum activity of the Sun, CME sources are distributed over all lati-
tudes. As the activity of the Sun increases, one can observe apreference of CME occur-
rence at equatorial latitudes (Webb and Howard 2012).
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CMEs are visible in optical wavelengths by Thomson scattering of the sunlight at the free
electrons of the plasma cloud. Since the scattering cross section is small, the intensity
of the scattered light is several orders of magnitude below the direct sunlight. Carefully
designed instruments are required to limit the internal scatter of the direct sunlight of the
instrument so that CME clouds becomes visible.
Since the Thomson scattering cross section per volume is proportional to the electron den-
sity, the intensity of the scattered light allows to estimate the CME mass. Vourlidas et al.
(2010) calculated the density, mass and kinetic energy of several thousand CMEs during
Solar cycle 23 (from 1996 to 2009) using data from the SOHO/LASCO instrument. The
values for the CME mass spans between≈ 109 kg and≈ 1013 kg, the average electron
column density varies between≈ 1013 cm−2 and≈ 1016 cm−2 and for the energy between
1019 J and 1025 J.
The speed of CMEs just after launch varies from about some 10 km s−1 to very rapid
CMEs with 3000 km s−1 (Gopalswamy 2010, Webb and Howard 2012). The speed listed
in CME catalogs and calculated by some authors is often the speed of the CME projected
on the plane of sky (POS)5 which underestimates the real 3D speed. It was observed that
during minimum solar activity, slow CMEs tend to be accelerated in the interplanetary
medium to 400 km s−1, the speed of the ambient solar wind. In contrast, at maximumso-
lar activity, CMEs often start at high initial velocities and then tend to be decelerated. This
is probably a consequence of an interaction with the solar wind (SW). It is well known
that SW velocities vary with the solar cycle. At minimum solar activity, we have a distinct
slow SW of around 400 km s−1 in the solar equatorial plane embedded in a dilute fast SW
of about 700 km s−1 at higher latitudes. The slow solar wind plane coincides with the
interplanetary current sheet. At higher solar activity, the current sheet warps so that slow
and fast SW is found at almost all latitudes. When a CME is released into interplanetary
space it encounters a drag force from the ambient solar wind which depends on velocity
difference so that the CME velocity approaches the SW speed (Cargill 2004).

1.5.3.2 Observations

A strong development in CME observations started with the launch of dedicated space-
craft missions. The first undebated evidence of a CME was obtained in 1971 by coro-
nagraph observations on board OSO-7 (Orbiting Solar Observatory) (Webb and Howard
2012). Many other missions like Skylab, P78-1, SMM (Solar Maximum Mission) fol-
lowed with a continuous improvement of the space and time resolution of observations,
(see Webb and Howard 2012, and references therein). In 1996 anew mission was launched,
SOHO (Solar and Heliospheric Observatory) with the concentric LASCO (Large Angle
and Spectrometric Coronagraphs) C1, C2 and C3 instruments (Brueckner et al. 1995).
Since 1998 only the C2 and C3 coronagraphs have been operating and have covered the
solar corona from 2.2 to 32 R⊙. Another set of coronagraphs presently recording the solar
corona in white-light are on board the STEREO (Solar Terrestrial Relations Observatory)
spacecraft. The STEREO instrument suite comprises the concentric coronagraphs COR1
and COR2 and the off-axes heliospheric imagers HI1 and HI2 (Howard et al. 2008a).
These four instruments cover a field of view from 1.4 to 330 R⊙. Fig. 1.18 displays a se-

5The plane of sky (POS) is the plane perpendicular to the optical axis of a telescope as seen in a recorded
image.
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1 Physics of the solar corona

Figure 1.18: A series of historical CMEs observations recorded with different coronagraphs dur-
ing recent decades illustrating the progress in coronagraph instrument taken from
Schwenn et al. (2006).

34



1.5 The magnetic field in the solar corona

ries of historical and recently observed images of solar coronal mass ejections. The series
clearly demonstrates the progress made over the years in resolving the fine structure of
CME clouds.
Data from ground-based coronagraphs can be used complementary to the space-based ob-
servations. For example, the coronagraph MK4 of Mauna Loa Solar Observatory (MLSO)
takes polarized brightness images of the solar corona every3 minutes but it can observe
only during day time and with clear sky. The MLSO coronagraphhas a field of view from
1.12 to 2.9 R⊙. It is the only coronagraph which can observe the corona as close to the
solar surface as 1.12 R⊙.
Chen (2011) classifies the CMEs in two categories, “narrow” and “normal” and identifies
for each of them a certain source mechanism. He define narrow CMEs as those with an
angular width (AW) of 10 degrees and less and with an elongated jet-like shape. They
are mostly observed to be launched in coronal holes where themagnetic field is open. He
proposed that the CMEs are caused by reconnection of coronalloops which migrate or
emerge into the coronal holes. In contrast, normal CMEs are considered to be produced
by flux-rope eruptions which produce the common three part structure (see Fig. 1.16).
The CMEs which propagate along the Sun-observer line, either toward or away the ob-
server are called halo CMEs. A halo CMEs may produce a geomagnetic storm if two
conditions are fulfilled: the CME reaches Earth and its magnetic field has a southward
component (Gopalswamy et al. 2007) facilitating in this waythe reconnection6 with the
dawn side of the Earth’s magnetic field.
Another important parameter is the dawn to dusk electric field which depends on the solar
wind velocity and the southward component of the CME magnetic field (Gonzalez et al.
1994). As a result of the reconnection, the CME particles enter into the magnetosphere
and increase the total particle energy of the ring current7. The perturbations in the ring
current which surrounds the Earth will lead to the geomagnetic storm perturbations on the
Earth’s surface (Bothmer and Daglis 2007).
Besides coronagraphs, the recording of the solar radio emission is also used to detect
CMEs. According to Gary and Keller (2004), the radio emission of CMEs is due to ther-
mal free-free emission, plasma emission and gyro-emission. The observations of thermal
free-free emission (bremsstrahlung induced by scatteringof electrons at ions) in radio
wavelengths gives information about the temperature and the electron density in the CME
cloud. The imaging of CME radio emission at different wavelengths reveals the three
part structure of a CME (leading edge, cavity and core) also seen in white light (Bastian
and Gary 1997). The observations of CMEs in radio frequencies can be obtained from
space-based and ground-based observatories. Radio observations have the advantage that
a CME can be monitored right from the time it is launched on thesolar disk while it is still
hidden behind the occulter in white light observations (Bastian and Gary 1997). Other ad-
vantages according to Bastian and Gary (1997) are that radioobservations are sensitive to
a broad range of temperatures and are sensitive to emission from non-thermal electrons.

6Magnetic reconnection can be defined as change in the topology of the magnetic field lines (Schrijver
and Siscoe 2009).

7The ring current is an electric current flow of a torus shape around Earth in the equatorial plane (Daglis
1999).
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1.5.3.3 CME models

The huge plasma cloud of a CME, at some distance from the Sun may reach a size which
even exceeds the Sun. The processes relevant for structuring a CME on much less vis-
ible scales of a few 1000 km are still the object of speculations. The number of source
models has grown with the number and resolution of CME observations but also because
a physical idea for the source process was required for the growing number of attempts
to numerically simulate CME eruptions. The goals of these simulations was to identify a
source mechanism from the acceleration or the shape of the post-eruption CME cloud.

• Flux cancellation model

The concept of flux cancellation was initially introduced toexplain the formation
of a flux rope and of the prominences (Amari et al. 2010). Basedon magnetograms
and Hα observations, Martin et al. (1985) defined flux cancellationas the mutual
disappearance of different polarity flux at the inversion line.
As mentioned in Section 1.5.2.2, in numerical studies of a series of force-free equi-
libria, van Ballegooijen and Martens (1989) found that flux cancellation at the neu-
tral line together with a strong shear of the coronal magnetic field above will give
rise to the formation of a flux rope (FR). These FRs can supportprominence ma-
terial as a result of the helical configuration of their magnetic field. If magnetic
flux is continuously convected to the neutral line and disappears (see Fig. 1.15) the
prominences will rise when this configuration eventually loses equilibrium.
Linker et al. (2003) have simulated an MHD model of the entireprocess from the
initiation of a CME to its propagation through interplanetary space. They start
with a spherically symmetric solar pre-eruption configuration consisting of a hel-
met streamer surrounded by a solar wind on open field lines (see Fig. 1.19a).

(a) (b) (c) (d)

Figure 1.19: MHD simulation of a helmet streamer eruption triggered by flux
cancellation taken from Linker et al. (2003). The stripes shows
projected field lines at subsequent stages of the eruption simula-
tion.

In order to trigger a CME, they apply a shear flow at the surfacealong the inver-
sion line which enhances the magnetic energy of the streamer. Just like in the van
Ballegooijen and Martens (1989) model, Linker et al. (2003)applied a surface flow
component toward the inversion line to mimic the flux cancellation. A flux rope
builds up as a consequence of the continuous flux cancellation which enhance the
magnetic pressure in its interior.
During the erupting phase a current sheet was observed to form at coronal heights
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below the flux rope (see Fig. 1.19c) and a certain percentage of the magnetic energy
is transformed in kinetic energy allowing the plasma in the flux-rope to move out-
ward into the SW as a CME. From the analysis of the time evolution of the system,
Linker et al. (2003) could see how fast the streamer becomes unstable in depen-
dence of the strength of the surface motion.
Linker et al. (2003) extended the calculations in order to investigate the subsequent
propagation of the CME to 1 A.U.. They could reproduce the formation of a shock
wave in front of the CME.

• Breakout model

This model by Antiochos et al. (1999) assumes a preexisting axisymmetric quadrupo-
lar potential field with three neutral lines in the photosphere. The configuration is
shown in Fig. 1.20a.

(a) (b)

(c) (d)

Figure 1.20: Field lines at different stages of the breakout model taken from
Antiochos et al. (1999). The field is symmetric about the axis
of rotation and the equator, so only one quadrant is shown. The
photospheric boundary surface is indicated by the light gray grid.
Magnetic field lines are colored (red, green, or blue) according
to their flux topology. The two types of blue field lines indicate
unsheared field (light blue) and low-lying (dark blue) field that
is sheared later in the simulation. (a) Initial potential magnetic
field. (b) Force-free field after a shear of n/8. The field lines
shown correspond to those in (a) and are traced from the same
footpoint position on the photosphere as in (a). (c) As above, but
for a shear of 3π/8. (d) As above, but for a shear ofπ/2. Figures
adapted from Antiochos et al. (1999).

It has a central arcade (blue) at the equator and two more arcades at higher lati-
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tudes symmetrical to the equator (green field lines). There is also a bootstrapping
polar flux overlying the entire three arcade structures (thered lines in Fig. 1.20)
(Antiochos et al. 1999). In order to determine the energy of the system required
to drive a CME, Antiochos et al. (1999) simulated the excitation process by two
different methods. One is by calculating a sequence of force-free equilibria adapted
to an increasing shear of the photosphere near the equator. The second method uses
an ideal 2.5D MHD code with identical initial and boundary conditions as the first
method.
The force-free field code calculates iteratively the minimum energy state for each
given value of the surface shear. As the shear increases, theminimum energy field
configurations shows an increasing amount of flux from the inner arcade to recon-
nect with the outer bootstrapping flux until the latter is entirely used up and allows
the equatorial arcade flux to break through into the interplanetary space. In the

(a) (b)

(c) (d)

Figure 1.21: MHD solution after a shear of (a)π/8, (b)π/4 , (c) 3π/8, and (d)
π/2 . The field lines shown are the same as those in Fig. 1.20.
Figures adapted from Antiochos et al. (1999).

ideal MHD calculations the plasma is kept in hydrostatic equilibrium with a given
temperature and density. The values of plasma beta in their computational box are
below unity near the bottom boundary, but much higher than unity near the null
point at the top of the equatorial arcade. As photospheric boundary condition a
slow continuous shear motion was applied with latitudinal profile as in the previous
experiment. The MHD solution for each shear phase are shown in Fig. 1.21 a,b,c,d.
Since in ideal MHD reconnection cannot occur, the shearing of the innermost ar-
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cades just enhances their magnetic pressure and makes them grow in size pushing
the bootstrapping field upwards. The interface between the opposing flux system
evolves from a null point to a single extended current sheet.
According to observations, CMEs are more common at the site with multiple flux
systems which supports the breakout model. Some CMEs triggered by prominence
eruptions could be well explained by this model (see Forbes et al. 2006, and refer-
ences therein). Lynch et al. (2005) performed a 3D MHD simulation of the breakout
process. As initial magnetic field they consider an elongated bipolar active region
embedded in a background dipole field (see Fig. 1.22 - upper left).

Figure 1.22: Time evolution of the breakout model with field lines
from a meridional plane. Figure taken from Lynch et al.
(2005).
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Using resistive MHD, they allow the sheared inner flux and theoverlying restraining
flux to reconnect. The plasma parameters are considered spherically symmetric.
The initial plasma beta is less than one in the entire computational domain. The
shear motion applied has no horizontal divergence so that the normal component of
the magnetic field at the surface remains constant during simulation (Lynch et al.
2005). As a result of the imposed shear, the magnetic pressure increases above
the neutral line and pushes up the arcade field lines. Consequently, the null point
is distorted into a thin current sheet (see Fig. 1.22 - middleright). The model
allows magnetic reconnection at the moment when the null point current sheet is
compressed to the scale of the numerical grid. As a result of reconnection, the
expansion of the flux rope increases rapidly until the flux rope finally erupts.

• Emerging flux model

From active region observations it was found that the emergence of new magnetic
flux was well correlated with the occurrence of flares and CMEs(Miki ć and Lee
2006).
The emerging flux as a trigger mechanism for CMEs was proposedby Chen and
Shibata (2000). The basic idea of this model is that the reconfiguration of the mag-
netic field topology as a consequence of the emerging flux may cause the initiation
of a CME. The authors tested their model with a 2D resistive MHD simulation. The
initial setup consist of a flux rope which supports the prominence material. The
flux rope is embedded in a 2D arcade. The emerging flux has opposite polarity to
the overlying arcade field and breaks through the photosphere either at the neutral
line or asymmetrically in one of the two polarity regions. Inthe model, the contri-
bution of gravity force is neglected, the temperature is considered uniform and the
resistivity depends on the local current density. The configurations of the two cases
are sketched in Fig. 1.23. If the flux emergence occurs symmetrically inside the

Figure 1.23: Diagram of two configurations of CME triggeringby emerging flux
adapted from Chen (2011). (a,b) Emerging flux inside the filament
channel cancels the pre-existing loops, which results in the in situ de-
crease of the magnetic pressure. Lateral magnetized plasmas are driven
convergent to form a current sheet; (c,d) Emerging flux outside the fil-
ament channel reconnects with the large coronal loop, whichresults in
the expansion of the loop. The underlying flux rope then risesand a
current sheet forms near the magnetic null point Chen (2011).
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filament channel (see Fig. 1.23a) it reconnects with the arcade field below the flux
rope as shown in Fig. 1.23a. The consequence of this small scale reconnection will
be a diffusion zone of magnetic pressure below the flux rope along withthe forma-
tion of a current sheet and inward motion of the plasma (arrows in Fig. 1.23b) into
the diffusion zone. The flux rope eventually moves upward and finally produces the
CME ejection. In a second setup, Chen (2011) consider the fluxemerging asym-
metrically on one side of the neutral line. It reconnects with the overlying field as
shown in Fig. 1.23c. The reconnection now occurs at one flank of the arcade. The
simulations show that this process sufficiently destabilizes the system so that again
the flux rope is rapidly ejected.
Leake et al. (2014) developed an alternative 3D MHD model of aflux emergence
event. In their model, a twisted flux rope rises from below thesurface and encoun-
ters a dipole-arcade field above. In order to catch details ofthe emergence process
properly, the model includes the convection zone, the photosphere/chromosphere
and the corona as separately simulated layers. In three different simulations with
the same initial field geometry they vary the strength of the coronal preexisting
arcade field. Fig. 1.24 shows the evolution of the emerging flux rope towards erup-
tion.

Figure 1.24: Simulation of an eruption of a coronal flux rope taken from Leake et al.
(2014). The horizontal slice shows the vertical magnetic field at the
surface. The gray lines originate on the bottom boundary andrepresent
the field of the initial dipole configuration. The blue lines are part of
the emerging flux rope (Leake et al. 2014).

The flux tube rises from the convection zone to the surface andpartly reconnects
with the overlying arcades. Initially, the reconnection does not influence the emer-
gence of the flux tube. As the flux tube continues to emerge further into the corona,
the flux of the overlying arcade is partially canceled by the continuous reconnec-
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tion with the emerging field. As the reconnection between thebootstrap flux and
the rising flux tube continues, the acceleration of the flux rope increases. The flux
rope however in the simulation rises only until it reaches the upper boundary of the
computational box (see Fig. 1.24) due to inadequate boundary conditions. Leake
et al. (2014) assumes that in a more realistic scenario the flux rope will erupt and
evolve into a CME.
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corona

In this Chapter, we will present and apply two main methods used for the 3D reconstruc-
tion of solar phenomena. One method is called Multi-view B-spline Stereoscopic Re-
construction (MBSR) which for the 3D reconstruction uses the principle of stereoscopy.
This method was developed initially for two views by Bernd Inhester. We have extended
and applied the method for three view reconstructions. Stereoscopy is a method based
on geometry which uses images taken from different view directions. It is widely used
for the reconstruction of coronal loops, prominences and different parts of coronal mass
ejections. An application of the MBSR is presented in Chapter 4. The second method
which can be used for the 3D reconstruction of coronal loops is the non-linear force-free
field (NLFFF) extrapolation method. We have extended and tested this method in order to
be able to find a good agreement between the modeled and observed magnetic field. The
extended field extrapolation method is called S-NLFFF and ispresented in Section 2.5.
The tests of the new method are presented in Chapter 5.

2.1 Introduction

The measurement of magnetic field in the corona is not an easy task. We discuss here
only two methods to indirectly determine the coronal magnetic field.

A method which yields a quantitative estimate of the coronalfield is the extrapolation
from solar surface field observations. It is based on the assumption of a force-free coronal
field and requires a nonlinear boundary value problem to be solved.

The second method to constrain the coronal field is the stereoscopic reconstruction of
EUV loops which are assumed to be aligned with the coronal field. The 3D reconstruc-
tion of these loops mainly constrains the geometry of the coronal field. The method is
somewhat restricted to the vicinity of active regions wherethe EUV loops are mostly ob-
served. Yet, this is valuable information because active regions supply most of the coronal
magnetic flux through the solar surface.

Each of the two approaches have their limitations. EUV loop stereoscopy does not
yield the magnetic field strength but only the shape of some, often few, individual field
lines. However, it provides observational constraints forthe magnetic field at altitudes
well above the photospheric surface and therefore could well serve to stabilize the ex-
trapolation at these altitudes. The three-dimensional stereoscopic reconstruction is prone
to some typical errors, basically of geometrical origin when the view angle between the
two stereo projections is small and where the loop tangent tends to become orthogonal to
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the epipolar plane normal. The epipolar planes define the local reconstruction geometry
(Inhester 2006, Aschwanden 2011).

One of the shortcomings of the NLFFF method is the fact that the boundary conditions
for the extrapolation are often incomplete and contaminated with errors (see Section 2.4).
As a result, there is an obvious misalignment between the extrapolated and observed field
lines. In a study which compared the results from extrapolation with observations, a typi-
cal discrepancy between the orientation of reconstructed flux tubes and extrapolated field
lines was found to be about 20 degrees (De Rosa et al. 2009). Because of these discrepan-
cies between models and observations, we propose and test a coronal field reconstruction
method which combines the conventional NLFFF extrapolation with 3D data from indi-
vidual loops as they can be obtained from stereoscopic reconstruction. In Section 2.5.1 of
this chapter we describe our approach and in Chapter 5, the new method is tested using
boundary values and simulated loops from a known force-freefield.

2.2 Stereoscopy

2.2.1 Introduction

Stereoscopic reconstruction is used in many fields like engineering, medicine, cinematog-
raphy, etc., and the level of difficulty can differ according to the object which has to be
reconstructed. A stereoscopic reconstruction needs observations from at least two view
directions. The reconstruction can be performed for point-like, curve-like and surface-like
objects. The reconstruction of polygonal surfaces is typically reduced to the reconstruc-
tion of the edges and corners. This is not possible for curvedsurfaces. An example of
difficult surfaces to be reconstructed are human faces where one needs more information
from the images like texture, colors and the direction of light sources.

In solar physics if two simultaneous viewpoints are not available, one can make use
of the solar rotation to perform stereoscopic reconstruction. The reconstruction can be
achieved from a pair of images from the same view point but at different times (t1, t2).
The separation in time has to be short enough so that intrinsic time variations of the
reconstructed object can be neglected. This method is called rotation stereoscopy. Promi-
nences being a rather stable structure which can sometimes last for months (Kuperus and
Tandberg-Hanssen 1967) are a suitable phenomenon for rotational stereoscopy. This does
not apply to its small scale structures. Coronal loops, on the other hand, have a much
shorter life time, from hours to days (Lenz 1999), which restricts severely the time be-
tween the two images used for the reconstruction.

With the launch of the STEREO spacecraft, stereoscopic reconstruction started to be
highly used for solar phenomena. Usually it was performed from the two view direc-
tions provided by the telescopes onboard STEREO. As the angle between the spacecraft
increased, stereoscopic reconstructions could be performed from three view directions,
where the third view was supplied by other spacecraft, e.g.,SOHO or SDO.

In the ideal case, from a projected pair of curve-like objects from the Sun (e.g. coronal
loops or the outer edge of prominences) we can obtain a unique3D curve as a result of the
intersection of their backward projection on the Sun (Inhester 2006). Two-view directions
are sufficient for a 3D reconstruction from an ideal data set. The use of more than two
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views brings more accuracy to the reconstruction if the dataare noisy.
The leading edge projection of a CME in the images is used for the reconstruction of

the CME surface. Their reconstruction, however, yields a curve which is not necessarily
located on the true 3D surface because in the images the projection of different locations
of the 3D surface (Inhester 2006) is recorded (see detailed explanations in Chapter 4,
Section 4.2.5). Here, if more views are available, the reconstruction lies closer to the real
3D object.

The three main steps for stereoscopic reconstruction are identification, matching and
reconstruction. The basis for all stereoscopic reconstructions is the epipolar geometry
(Inhester 2006).

2.2.2 The epipolar geometry

The epipolar geometry defines the geometry of stereoscopic reconstruction. It is inde-
pendent of the object to be reconstructed, but depends on theintrinsic parameters of the
recording instruments (Hartley and Zisserman 2003). Usingthe epipolar geometry, the
reconstruction can be reduced from a 3D problem to a set of 2D problems. The elements
which define the epipolar geometry are (see Fig. 2.1) (Inhester 2006):

Figure 2.1: Orientation of epipolar planes in space and the respective epipolar lines in the images
for two observers (e.g., space craft) looking at the Sun. Figure taken from Inhester
(2006).

• The stereo base lineis the line between the two observers

• The stereo base angleis the angle subtended by the two view directions

• The stereo base planeis the plane defined by the two observers and the Sun’s
center.
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• The epipolar plane is the plane uniquely defined by a 3D object point to be re-
constructed and the positions of the two observers. Different 3D object points to
be reconstructed may lie on different epipolar planes but share the same stereo base
line.

• The epipolar linesare the projections of the epipolar planes onto each of the ob-
server images. For e.g., the ray [O1,M] throughM1 in image 1 lies on the epipolar
plane described byπ = (O1,O2,M). Since ray [O2,M] lies on the planeπ, the
projection pointM2 in image 2 is found on the (epi-line1 from Im2 of Fig. 2.2)
intersection line between the epipolar planeπ and the plane of image 2 (Fig. 2.2).

Figure 2.2: Sketch of the point correspondence on an epipolar line; A point M1 from Im1 back-
projects to a ray in 3D space defined by the observer O1 and M1. This ray together
with the line connecting observer O1 with observer O2 define the epipolar planeπ. The
projection of this epipolar plane on the image Im2 will be imaged as a line (epi-line).
The 3D point M which projects to M1 must lie on this ray, so the image of M in the
second view must lie onepi-lineof Im2.

The epipolar lines constrain the search of corresponding points in a stereo image
pair to a search along a line and not on the entire image plane (Hartley and Zisser-
man 2003).

• The epipoleof image 1, for e.g., is the intersection between the stereo base line and
the prolongation of the epipolar lines from image 1.

The epipolar coordinate system is defined in the epipolar geometry in which all the trans-
formations are performed in order to obtain the 3D location of the reconstructed object.

Identification and matching
After the object to be reconstructed was chosen, one has to correctly identify the

projection of the 3D object in both images. For solar phenomena (loops, prominences,

1epi-lineis the short-hand for epipolar line.
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2.2 Stereoscopy

coronal mass ejections) which might be the object of a 3D reconstruction, one often has to
process the images in order to find the correct correspondence. For example, a common
image processing step is the background subtraction. Sincewe often observe optically
thin lines in EUV and/or coronograph images, the image brightness measures the emis-
sivity integrated along the line of sight. With the background subtraction, we remove
some of the contributions from other sources than the one we want to reconstruct.

Two corresponding points from two images may not have exactly the same bright-
ness. After the images were “cleaned” from background contributions and/or noise, an
automatic way to find a match point in image 2 of a point from image 1, is to parse along
the epipolar line in image 2 and to calculate the intensity difference between the point of
image 1 and each point from the epipolar line of image 2. The corresponding point will be
found when the intensity difference is a minimum. Another way to find a corresponding
point is by visual inspection using the epipolar constraint. The process, in both cases, has
to be reversible, i.e. it should be independent on weather weidentify a point in image 1
first and search for it in image 2 or vice versa. The choice of the corresponding points
from the images used for reconstruction is called tie-pointing.

2.2.3 Reconstruction

A 3D reconstruction requires a camera model which describesthe camera optics. A sim-
ple camera model is sufficient for the long focal-lengths optics used in solar physics. In

r
φ f γ xi

yi
ρ

Image
plane

x

y

Optical axis

3D object

Figure 2.3: Sketch of a simple camera model.

Fig. 2.3 we present a simple camera model which relates the image coordinates (x, y) of
an object relative to the optical axis to anglesφ andγ of the ray from the observerr to the
object,

tanφ =
ρ

f
=

√

x2 + y2

f
, (2.1)

tanγ =
y
x
, (2.2)

where f is the focal length of the instrument. Here,x, y are expressed in the same units
as the focal length. Hence a single image only gives us the direction angles (φ, γ), not the
distance of the object. The distanceρ, thex coordinate and they coordinate are dependent
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2 3D reconstruction in the solar corona

on the two orientation angles:

ρ = f tanφ , (2.3)

x = ρ cosγ , (2.4)

y = ρ sinγ . (2.5)

We assume that the optical axis is directed to the Sun’s center, the origin of our 3D
coordinate system. The Sun’s rotation axisΩ̂ projects to they axis of the image 2.4. This

Ω̂

σi

(xi, yi)
Image plane

Figure 2.4: Sketch of the projection of the solar disk on the image plane, its rotation axiŝΩ and
the epipolar plane. The distanceσi is the distance of the object along the epipolar line
(disparity).

orientation is chosen in most solar observations. We consider a 3D object point∆r which
projects to the image coordinates (x, y). The unit vector to the observer is defined by

r̂ =
r
|r |
. (2.6)

Thex axis on the image must be perpendicular toΩ̂ and tor

êx =
Ω̂ × r

|Ω̂ × r |
. (2.7)

They axis on the image must be perpendicular toêx andr

êy = r̂ × êx . (2.8)

The angleφ between the optical axis and the ray to the object is

tanφ =
|(1− r̂ r̂ ) · ∆r |
|r | − r̂ · ∆r

=

√

(êx∆r )2 + (êy∆r )2

|r | − r̂ · ∆r
(2.9)

and the angleγ,

tanγ =
êy · ∆r
êx · ∆r

. (2.10)

Here, all unit vectorŝr , êx, êy are known from the telescope position. In order to sim-
plify the problem, we can replace the projective geometry bythe affine one. The affine
geometry considers all the rays to be parallel and it can be used when the distances are
very large compared to the focal length (like for the distance between the Sun and the
STEREO telescopes). In Eq. (2.9) the denominator is then replaced by|r | − r̂ · ∆r → |r |.
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2.2 Stereoscopy

2.2.3.1 Stereo case

In general, for performing stereoscopic reconstructions from two vantage points the sepa-
ration angle between the two view directions should deviatesufficiently from 0◦ or 180◦

so that the images contain independent information. Close to these limiting angles, it is
often easy to identify corresponding features in both images. The more the viewing angle
deviates from 0◦ or 180◦, the identification of the same feature in both images startsto
become more difficult. However, the geometrical errors of the reconstruction decrease
and reaches a minimum when the stereo base angle approaches 90 ◦ (Inhester 2006).

Our task is to find∆r from the image coordinate pairs (x1, y1) and (x2, y2) of two
images. The first step is to find the epipolar plane of the object. We label the planes
by the distancez, which is the distance from the Sun’s center to the intersection point
between the epipolar plane and the solar rotational axisΩ̂ (see Fig. 2.5).

r1

r2

Ω̂

z

Sun’s center

Figure 2.5: Sketch of the intersection between the epipolarplane and the solar rotation axisΩ̂.

The epipolar plane (z) is defined by

(z) = {x|x = zΩ̂ + α1(r1 − zΩ̂) + α2(r2 − zΩ̂);α1, α2 ∈ IR} . (2.11)

The normal vector to the epipolar plane is

n(z) = (r1 − zΩ̂) × (r2 − zΩ̂) . (2.12)

Given the image coordinates (xi , yi) of an object in two imagesi=1, 2, we can find the
labelz of the respective epipolar plane by defining

di ∝ xiêxi + yiêyi − f r̂ i (2.13)

as the ray of unknown length from the observeri to the object which has to lie in the
epipolar plane.
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0 = di · n(z) (2.14)

= di · (r1 − zΩ̂) × (r2 − zΩ̂)

= di · [r1 × r2 − z(r1 + r2) × Ω̂] or

z=
di · r1 × r2

di · (r1 + r2) × Ω̂
(2.15)

Note that the length ofdi does not matter. If this formula does not give the samez for
d1 andd2 then the image coordinates (x1, y1) and (x2, y2) do not correspond.

After we have determined the epipolar plane of the object at∆r , the 3D reconstruction
reduces to a 2D problem. The origin of our 2D coordinate system in the epipolar plane
is at the intersection between the epipolar plane and the Sun’s rotation axis, i.e. zΩ̂.
Rewriting Eq. (2.12) we get for∆r the following expression:

∆r = α1r̃1 + α2r̃2 + zΩ̂ , (2.16)

r̃ i = r i − zΩ̂ , (2.17)

wherer̃ i is the observer’s position in the epipolar plane.
From the decomposition of∆r (see Appendix for details) we obtain two equations for

α1 andα2.

|r̃ i |
σi

f ′
=

[

ˆ̃ei +
σi

f ′
ˆ̃r i(1− ˆ̃ei ˆ̃ei)

]

(α1r̃1 + α2r̃2), i = 1 and 2 (2.18)

which can be solved forα1 andα2. For positions close to the heliographic equator,r̃ i ˆ̃ei ≈

0 and the second and third term in the square brackets on the right hand side can be
neglected if affine geometry is assumed. Then approximately

αi ∼
|r̃ i |

r̃ i · ˆ̃ei

σi

f ′
. (2.19)

2.2.3.2 Reconstruction errors

The instruments have finite resolution and therefore the image coordinates (x, y) are also
uncertain. This at first has an impact on the calculation of the epipolar plane parameterz
in Eq. (2.15). For a typical arrangement of the STEREO spacecraft, both in the ecliptic
plane at approximately the same distancersc from the Sun, we have:

r1 × r2 ∼ ẑr2
scsinδ̃ , (2.20)

(r1 + r2) × Ω̂ ∼ 2rsccos(̃δ/2)êp , (2.21)

whereêp is normal to (r1 + r2) andẑ is the ecliptic normal direction. The spacecraftrsc is
positioned at approximately 1 A.U. from the Sun andδ̃ is the angle between the spacecraft
at the Sun center. Sinceêyi ∼ ẑ ‖ (r1 × r2), we can simply derive the error inz from Eq.
(2.15) assumingdi = − f r̂ i to lowest order,δd ∼ δxex + δyey is the error ind:

|δz| ≃
∣

∣

∣

∣

∣

δyi ẑ · (r1 × r2)
f r̂ i · (r1 + r2) × ẑ

∣

∣

∣

∣

∣

. (2.22)
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The error for the reconstruction of∆r in the epipolar plane is best shown from the sketch
2.6.

pointing error

depth error

δw δw

δ̃

Figure 2.6: Sketch of the reconstruction errors in the epipolar plane.

If we consider an errorδxi expressed in the image coordinates,

depth error≃
δw

sin(δ̃/2)
=
δxi

f
rsc

sin(δ̃/2)
, (2.23)

pointing error≃
δw

cos(̃δ/2)
=
δxi

f
rsc

cos(̃δ/2)
, (2.24)

sinceδw/rsc = δx/ f corresponds to the angular error. Note that the depth error dramati-
cally increases if̃δ becomes small while the pointing error decreases ifδ̃→ 180◦.

2.2.3.3 Reconstruction of loops

The reconstruction of loops differs from that of a single point because a loop typically
intersects a range of epipolar planes (Fig. 2.7). Hence the agreement in the epipolar
plane parameterz cannot be used to check the correspondence of the object in the two
images. Rather we can use the range of the epipolar parameterz covered by a loop. This
range should be identical from both images if a loop is identified correctly in the images.
However, in practical measurements, the foot points often cannot be determined exactly
because one of the foot points either lies behind the horizonfrom one view direction or is
immersed in bright EUV moss structures on the solar surface.Still, the epipolar parameter
zmax of the loop top can be used.
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Figure 2.7: Sketch of epipolar planes intersected by a loop.

Another problem with loops which intersect some epipolar lines twice (typically E-W
oriented loops) is that even if the loop itself is identified correctly in both images, its two
legs may be mixed up. The back projection of a loop from its twoimages often gives two
possible solutions from the intersection of the two projection surfaces (Fig. 2.8). One of
the solutions is the correct one and the other solution is usually called a “ghost” loop.

projection
surface

Figure 2.8: Sketch of the projection surfaces.

Error estimate of the reconstructed loop curve follow in essence the error estimates of
a single point reconstruction, except that the error volumehas to be projected tangentially
to the loop. It turns out that the error often is largest at theloop top where the correct and
the “ghost” solution come close, i.e. in the epipolar planezmax (for downward bent loops)
or zmin (for upward bent loops), respectively. Here, the loop projections are parallel to the
epipolar line in the respective image and the disparity (i.e., the position along the epipolar
line) is less well determined.

2.3 Multi-view B-spline Stereoscopic Reconstruction (MBSR)

Due to localization errors of the curve projection in the images, the stereoscopically re-
constructed 3D curve often needs to be smoothed by fitting a 3Dpolynomial or spline
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2.3 Multi-view B-spline Stereoscopic Reconstruction (MBSR)

curve. We have developed a method in which the B-spline (see Section 2.26) fit is embed-
ded in the reconstruction. Instead of calculating pairwisereconstructions from multiple
views which have to be somehow averaged finally, our method isable to reconstruct a loop
curve from its tie-pointed image projections on two or more views directly. It is designed
to yield a 3D B-spline as approximation to the reconstructedloop curve, the projections
of which optimally matches all tie-points in the images. There is no need to arrange the
tie-points from different images pairwise on identical epipolar lines along theloop which
would be necessary for a point-by-point reconstruction of acurve. No association of tie
points in different images is necessary. After the tie-pointing step, thereconstruction is
performed using all tie-points from all images in one go. Thelocal error depends only on
how well the tie points are positioned and the 3D reconstruction result is approximated
by the 3D spline curve which projects closest to the tie-points in the images.

2.3.1 B-spline curve

A B-spline (base-spline) curvec(s) is a piecewise polynomial curve constructed of base
splinesBi,k(s) (de Boor 1985). The final shape of the curve is determined by weights
qi to eachBi,k. These weights can geometrically be interpreted as controlpointsqi , i =
Nmin; Nmax. For a given polynomial orderk, a B-spline curvec(s) is defined as a linear
combination of control pointsqi and B-spline (basis-spline) functions:

c(s) =
Nmax
∑

i=Nmin

Bi,k(s)qi . (2.25)

Each base splineBi,k is made up of piecewise polynomial segments of degreek and
has a limited support of [si , si+k+1]. They are constructed recursively as follows:

• For the casek = 0 we have

Bi,0(s) =















1 if s ∈ [si, si+1]

0 otherwise

• Fork > 0 we recurse

Bi,k(s) = mi,k(s)Bi,k−1(s) + (1−mi+1,k(s))Bi+1,k−1(s) , (2.26)

mi,k(s) =
s− si

si+k − si
, si < si+k . (2.27)

For an extended curve, the range of curve parameters is divided into N intervals
s ∈ [si , si+1] wherei = 0,N. Each interval [si , si+1] is influenced byk + 1 base functions
Bi,k, Bi−1,k, ..., Bi−k,k and is therefore influenced byk+ 1 control pointsqi , qi+1, ...., qi−k.

In our model we use cubic B-splines withk = 3. The intervals have unit length. From
the recursive formula (2.26) we can build the resulting polynomials inside each interval.
For the fixed interval [si , si + 1], the curve can explicitly be written as polynomial of
σ = s− si

c(s) =
1
6

(

1 σi σ
2
i σ

3
i

)
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Cubic B-splines are continuous functions and have two continuous derivatives. The
B-spline curve which fits the tie-points should also be sufficiently smooth. This require-
ment is also justified by the physics of loops. They representmagnetic field lines and the
magnetic stresses will straighten field lines as much as possible. The spline curve has to
satisfy therefore two constraints: a minimum distance to the data points and a sufficient
smoothness. Our multi-view reconstruction is therefore based on a least-squares evalu-
ation of the distances between tie-pointsxi, j in image j and the projectionP j · c(si, j; q)
of the reconstructed 3D curvec(s) onto imagej on the one hand and the integrated sec-
ond derivative of the curve representing its lack of smoothness on the other hand. The
least-squares code minimizes

∑

images j

∑

tie−point i

|P j · c(si, j; q) − xi, j |
2 + µ

∫ smax

smin

|
d2

ds2
· c(s; q)|2ds (2.29)

with respect to the node pointsqk. The second term ensures a smooth regularized curve
c(s) depending on the weightµ. The curve parameterssi, j in Eq. (2.29) are defined as the
values ofs for which the function|P j · c(si, j; q) − xi,j | reaches its minimum value

si, j = argmin
s
|P j · c(s; q) − xi, j | . (2.30)

Through this side-constraint, the problem to minimize Eq. (2.29) is nonlinear. The prac-
tical solution of Eq. (2.29) and Eq. (2.30) proceeds iteratively. In each iteration step we
solve the linear least-squares problem Eq. (2.29) forq assumingsi, j given. Next, given
the new spline curve defined by control pointsq, we have to readjust the curve parameters
si, j of all tie-points in all images using Eq. (2.30).

Instead of calculating pairwise reconstructions from multiple views which have to
somehow be averaged finally, our code is capable to reconstruct tie-pointed curves using
two or more views directly. It is designed to yield the optimal match to all tie-points which
an average of pairwise 3D reconstructions usually does not achieve. There is no need to
arrange the tie-points from different images at pairwise equal position along the loop. No
association of tie points in different images is necessary. The program has a widget which
displays the images and helps to identify, match and tie-point the structures. After the tie-
pointing step, the reconstruction is performed using all tie-points from all images in one
go. This way we obtain a more direct, efficient and robust reconstruction which combines
the calculations of a smoothing spline directly with the reconstruction.

2.4 3D modeling of the magnetic field through extrapola-
tion

The modeling of the magnetic field in the solar corona is possible under certain assump-
tions. As mentioned in introductory chapter, plasma beta gives information about which
force dominates in a certain part of the solar atmosphere. Inthe corona,β ≪ 1 which
means that the magnetic pressure dominates over the plasma pressure and also over grav-
ity and the kinematic plasma flow pressure (Wiegelmann and Sakurai 2012). Under
these assumptions, stationarity of the plasma requires to lowest order the vanishing of
the Lorenz-force:
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j × B = 0 , (2.31)

which implies that the current densityj is parallel to the magnetic fieldB.
Inserting Ampere’s law (Eq. 1.1) in the expression of the Lorenz force (Eq 2.31) we

obtain

(∇ × B) × B = 0 . (2.32)

The magnetic field which satisfies Eq. (2.32) together with the solenoidal condition (∇ ·
B = 0) is termed the force-free field approximation. Eq. (2.32) is a non-linear equation
(Wheatland et al. 2000). We can rewrite it by introducing thecurrent-to-field ratioα as

∇ × B = αB , (2.33)

B∇α = 0 . (2.34)

The divergence applied to Eq. (2.33) gives Eq. (2.34) which tells us thatα is constant
along any field line but can vary across the magnetic field.

The force-free parameter,α can be set in three different ways:

1. Potential field modelThe simplest approach isα= 0. In this case,B is the potential
field (Wiegelmann and Sakurai 2012). We can write the magnetic field as a function
of the scalar potentialφ,

B = −∇φ . (2.35)

A potential magnetic field model for the coronal magnetic field can be derived
from Gauss theorem, e.g., using the LOS photospheric magnetic field component
as boundary condition (Wiegelmann and Sakurai 2012).

Shortcoming of the model

Potential field is the magnetic field with the lowest magneticenergy for given nor-
mal boundary conditions. It excludes any current. In an eruptive process, the corona
requires free magnetic energy which a pre-eruptive potential field cannot supply
(Wiegelmann and Neukirch 2003). The field lines of a potential magnetic field dif-
fer from the observed coronal loops especially near active regions (Wiegelmann and
Sakurai 2012).

2. Linear force-free field (LFFF) model

The second approach is to define the force-free parameterα in Eqs. (2.33) and
(2.34) as a constant different from zero in the entire corona. The calculation of a
LFFF magnetic field model requires the solution of a Helmholtz equation instead
of a Laplace equation for the potential field. Again a scalar boundary condition,
e.g measurements of the LOS photospheric magnetic field are sufficient. The force-
free parameterα is a priori unknown but it can be tuned to fit best with observations
(Wiegelmann and Sakurai 2012).

Shortcoming of the model:
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The assumption of constantα in the computational volume is not consistent with
observations. Approximate values ofα can be calculated from surface vector mag-
netograms byα ≈ ∇ × Bhoriz/Bvert. Changes ofα were seen for example, in active
regions. Wiegelmann and Neukirch (2003) tried to fit the optimal force-free pa-
rameterα by comparing individual LFFF model field lines with coronal plasma
structures. They found that the optimal value ofα varies from positive to negative
values in the same active region.

3. Nonlinear force-free field (NLFFF) model

The nonlinear force-free field (NLFF) model is defined by Eqs.(2.33) and (2.34)
with α = α(r ).
To model the coronal magnetic field using nonlinear force free field extrapolations,
one needs as input data surface observations of all three components of the mag-
netic field. Since a couple of years, observations from various observatories and
spacecraft provide photospheric magnetograms of the full magnetic field vector.
These data can be extrapolated into the corona by solving a nonlinear boundary
value problem based on the assumption of a force-free coronal field (NLFFF ex-
trapolation). Different and competing numerical procedures are in use to tackle this
boundary value problem (Schrijver et al. 2006, Inhester andWiegelmann 2006).
The most commonly used methods to produce NLFFF field models for the corona
are the Grad-Rubin method, the magnetofrictional method and the optimization
method (Schrijver et al. 2006).

Shortcoming of the model:

Even though the comparison between potential field, LFFF andNLFFF models
shows that the NLFFF model best fits with observations, some limitations still exist
for this model. For the nonlinear force-free field (NLFFF) extrapolation to be ap-
plicable, we require a more or less stationary coronal magnetic field which needs
some degree of local force balance. The low beta value in the corona distinguishes
the Lorentz force as the dominant force and stationarity requires its absence. The
vanishing ofB × (∇ × B) is a strong constraint for the coronal field but the extrap-
olation problem is still ill-posed and the resulting fieldB is more affected by errors
in the boundary data, the higher the altitude above the surface. These errors have
multiple causes ranging from mere measurement errors of thephotospheric field
to the ambiguous orientation of the observed transverse field component (180◦-
ambiguity, Metcalf et al. 2006) and the absence of the assumed low-β plasma in the
small height range between the photosphere and the base of the corona.

2.4.1 NLFFF optimization method

The optimization method has originally been proposed by Wheatland et al. (2000) and
extended by Wiegelmann (2004), Wiegelmann and Inhester (2010), Tadesse et al. (2011).
The essential approach is to minimize a scalar cost functionLtot which consists of a num-
ber of termsLn quantifying constraints the final solution should satisfy.
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The first two terms from the functionalLtot are:

L1 =
1
V

∫

V
wf
|(∇ × B) × B|2

B2
d3r , (2.36)

L2 =
1
V

∫

V
wf |∇ · B|2 d3r . (2.37)

The force-free and divergence-free conditions are satisfied if the termsL1 and L2 are
minimized to zero.wf is a weighting function introduced in order to handle the unknown
lateral and top boundary. The computational box has an innerphysical domain and a
boundary layer with a certain thickness. The weighting parameterwf varies smoothly
and monotonically from unity on the boundary of the inner physical domain to zero at the
outer boundary of the domain (Wiegelmann 2004).

The next term from the functionalLtot is

L3 =
1
S

∫

S
(B − Bobs) · diag(σ−2

q ) · (B − Bobs) d2r , (2.38)

whereBobs is the observed field on the photospheric boundary surfaceS andσq(r ) are es-
timated measurement errors for the three field componentsq = x, y, zonS. The estimated
errorσz(r ) of the line-of-sight (LOS) component of the photospheric magnetic fieldBLOS

is set to unity since in our test calculationsBLOS is measured with high accuracy. For
the the transverse fieldBtrans, the estimated error is typically much higher and the ratio
σx/σz ≃ σx/σy = Btrans/max(Btrans). It even may be set to infinity if at the positionr
the transverse field has not been measured at all (Wiegelmannand Inhester 2010, Tadesse
et al. 2011).

To this end, the functional to be minimized is

Ltot =

3
∑

n=1

ξnLn . (2.39)

The regularization parametersξn, are free parameters and control the relative influence
of the termsLn. These parameters could vary between zero and infinity. The Lagrangean
multiplier ξ3 allows to tune how closely the model field matches the boundary measure-
ments. Since the measurements are often noisy and thereforeinconsistent, a close agree-
ment betweenB andBobs at the photospheric boundary by a large value ofξ3 is likely
to prevent termsL1 andL2 to be iterated to small values. A study using observed vector
magnetograms showed that the Lagrangean multiplierξ3 also influences the speed of the
magnetic field relaxation during the iteration.

In our code the Eq. (2.39) is minimized by means of a Landweberiteration by taking
the functional derivative of Eq. (2.39). Introducing the continuous iteration countt, we
obtain an iteration equation for the magnetic field (Wiegelmann and Sakurai 2012):

∂Ltot

∂t
= ξ1

∫

V

∂B
∂t
· F1 d3r + ξ2

∫

S

∂B
∂t
· F2 d3r + ξ3

∫

S

∂B
∂t
· F3 d2r , (2.40)

whereFn =
∂Ln

∂B
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is the variational derivative ofL(B)
The Landweber iteration then reads

B← B − µ
3

∑

n=1

ξnFn . (2.41)

This iteration reducesLtot at each iteration step when the step sizeµ is chosen small
enough. The code automatically reduces the step sizeµ if this condition is not met. The
iteration is stopped ifµ reaches a lower threshold value, here set to 10−7.

2.5 3D reconstruction of coronal loops

Two major approaches have been employed to derive the 3D shape of coronal loops. The
stereoscopic approach is geometric as described in Section2.2 and makes use of at least
two different views of the same coronal loop. Since the launch of the STEREO space-
craft a number of authors developed methods to perform the 3Dreconstruction of coronal
loops. The first reconstruction of the 3D shape of coronal loops from an active region
using stereoscopy was achieved by Feng et al. (2007). As we have already said in a pre-
vious section, one of the steps in stereoscopic reconstruction is the visual identification of
the same loops in both images. In EUV images often we see the emission from a bundle
of loops which makes this step quite difficult and from a visual inspection often multi-
ple correspondences of the same loop seem possible. The images provided by existing
instruments do not have sufficient accuracy to identify a single loop uniquely. This was
the reason why Feng et al. (2007) used linear force-free fieldextrapolations to help with
the identification in this reconstruction step. Calculating LFFF magnetic field models for
different values ofα for the active region studied, they used the proximity to anyof the
model loops to determine a correspondence. The loop pairs found to be closest to a pro-
jected model field line were chosen for the stereoscopic reconstruction. In another study
by Aschwanden et al. (2008) the 3D geometry of 30 loop structures were derived. The
authors could identify and select seven complete loops and 23 segments of loops. They
derived the maximum and minimum height of the loops, the inclination angle of the loop
plane of each complete loop and circularity and coplanarityof loops. The results from the
3D stereoscopic reconstruction together with DEM estimates from the loop brightness at
different EUV wavelengths were used by Aschwanden et al. (2008) to derive the electron
temperatures and densities for these coronal loops.

Another method which was used to derive the 3D shape of coronal loops makes use
of Doppler shift measurements. Syntelis et al. (2012) used EUV images in different Fe
wavelengths from the Hinode spacecraft to trace the loops ofinterest. Using a geometrical
model, they calculate the 3D structure of the coronal loops from observations from a
single view direction by including Dopplershifts observedalong the loop. In their model
they assume that the loops are stationary, each of them lies in a fixed plane and they
carry a divergence-free, field-aligned plasma flow along them. With these assumptions,
the 2D loop trace from EUV images and the Doppler shifts alongthe loop, they could
derive the inclination angle between the loop plane and the local solar vertical. They
also made a comparison between their result and a field line from a linear force-free field
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2.5 3D reconstruction of coronal loops

extrapolation. The mean inclination difference between the direction of the reconstructed
loops and the linear force-free model field lines was around 14.5◦ ± 4.5◦.

Another way to get the 3D shape of coronal loops is based on theextrapolation of the
magnetic field. As we have already mentioned in Section 2.4, the potential and LFF field
extrapolations often disagree with the observations, likein the study of Wiegelmann et al.
(2005) or Syntelis et al. (2012). A better though not perfectfit between the model field
and the observations is achieved for nonlinear force-free field (NLFFF) extrapolation. In
a study by De Rosa et al. (2009) field line solutions of variousNLFFF extrapolation meth-
ods (see Section 2.4) have been compared with 3D loops reconstructed by stereoscopy.
In Fig. 2.9 we show a comparison of the 3D loops reconstructedfrom STEREO with
selected field lines from an NLFFF extrapolation.

Figure 2.9: Comparison between coronal loops and NLFFF extrapolation; Figure reproduced from
De Rosa et al. (2009). The surface colour shows the field normal component from
MDI /SOHO.

The box represents the computational domain for NLFFF methods. Inside the box,
the colored lines from yellow to red correspond to field linesreconstructed with the best
NLFFF extrapolation solution identified by the analysis andthe loop color code depends
on the local misalignment angle between the NLFFF extrapolation solution and the ob-
servations. Yellow stands for a misalignment angle of less than 5 degrees and red for
more than 45 degrees. All field models obtained complied withthe boundary data within
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reasonable error but only few model field lines reproduced the loops reconstructed from
stereoscopy. Even though the study suffered from the fact that the loops from stereoscopy
were not well located above the magnetogram area which supplied the boundary condition
for the extrapolation, the study shed some light on the ill-posed nature of the extrapolation
problem: measurement errors as they are probably unavoidable in state-of-the-art mag-
netograms can easily degrade the quality of the extrapolation result, especially at higher
altitudes above the solar surface.

2.5.1 S-NLFFF: A method which combines MBSR and NLFFF

In this section, we present the extension of the NLFFF variational method such that be-
sides the boundary data, additional loop data, e.g. obtained from a three-dimensional
stereoscopic reconstruction, is also taken care of. We callthis new method S-NLFFF
where the S stands for stereoscopy. We add a new term to the NLFFF optimization terms
which constrains the magnetic field to be aligned to these loops obtained. The loops are
represented by 3D functionsci(s) where the loop parameters is scaled to the geometrical
length along the loop and indexi identifies different loops. The new term has the form

L4 =
∑

i

1
∫

ci
ds

∫

ci

|B × t i |
2

σ2
ci

ds , (2.42)

where t i =
dci

ds
.

Here,t i(s) is the tangent vector along theith loop and has unit length due to the scaling of
the loop parameters. The magnetic fieldB in Eq. (2.42) is the field at the loop pointc(s)
and by means of the cross product witht(s) the termL4 vanishes if the field is tangential
to the loop along its entire length.

Just as the boundary data above, the loop reconstruction mayalso include errors.
These depend on the stereoscopic view geometry and may well vary along the loop. In
order to take account of these errors, we include a functionσci (s) which is a relative
measure of the estimated error of the tangent directiont i(s) along the loopi.

With the new termL4 added, the functionalLtot becomes:

Ltot = ξ1
1
V

∫

V
wf
|(∇ × B) × B|2

B2
d3r + ξ2

1
V

∫

V
wf |∇ · B|2 d3r

+ξ3
1
S

∫

S
(B − Bobs) · diag(σ−2

q ) · (B − Bobs) d2r + ξ4
∑

i

1
∫

ci
ds

∫

ci

|B × t i |
2

σ2
ci

ds . (2.43)

For practical calculations, the magnetic field, its boundary data and the loop data
are given on discrete grids. The respective discretized cost function contributions will
be named Łi. For the magnetic field and photospheric boundary data we usea straight
forward regular, equidistant Cartesian grid with nodesr k = (kxdh, kydh, kzdh) and grid
sizedh. Here,k = (kx, ky, kz) is short-hand for a 3D multi-index of the grid indices along
the three axes (see Fig. 2.10). A complication with the new term Ł4 arises because it does
not share the common Cartesian grid of the field and boundary data. If we discretized the
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Figure 2.10: Sketch of a box defined by 8 neighboring grid points rk (black dots). A segment of
the curvec (dash dotted curve) cross this box;B(r ) is the interpolated field andt(s)
is the tangent in the point A.

loop parameters equidistantly bys→ sj = j∆s the new variational term becomes

Ł4 =
∑

i

1
∑

j ∆s

∑

j

|B(ci(sj)) × t i(sj)|2

σ2
ci
(sj)

∆s , (2.44)

whereB(r ) is the field interpolated from neighboring grid pointsr k onto a positionr and
σ2

c(sj) is the variance of the tangent vectort(sj) (we temporarily drop the loop counting
indexi).

We use the straight forward trilinear interpolation which is a weighted average of the
valuesB(r k) at the cell nodes of the cell which includesc(s). The weight for each node
is a product ofx, y, z weights each of which is proportional to one minus the distance
c(s) − r k along the respective axis.

In order to perform the minimization of Eq. (2.43), we need the functional deriva-
tives of the discretized Łi with respect to the field componentsB(r k). For the conven-
tional terms, Łn, n = 1, 2, 3 these derivatives have been calculated in Wiegelmann (2004),
Wiegelmann and Inhester (2010). For the new term we find

F4,q(r k) =
∂Ł4

∂Bq(r k)

=
∑

i

2
∑

j ∆s

∑

j

dFci (s)

σ2
ci
(sj)
·
∂B(ci(sj))

∂Bq(r k)
∆s , (2.45)

where dFci (s) = B(ci(s)) −
(

B(ci(s)) · t i(s)
)

t i(s) .
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for all three spatial componentsq and all grid pointsk. Note thatdFci is the projection of
the localB normal to the loop tangent. For a linear interpolation in theregular Cartesian
grid which we use here,∂B/∂Bq(r k) is just the interpolation weight of field component
Bq(r k) in B(ci(sj)). This weight is nonzero only if the loop pointci(sj) is located in a grid
box for whichr k is one of its corners.

The minimization of Łtot is then again performed by a Landweber iteration

B← B − µ
4

∑

n=1

ξnFn . (2.46)

We will call Ł∞tot and Ł∞i the residual values of the cost function and its decomposition
at the end of the iteration.

With Ł∞i > 0, the weightsξi in Ł tot play an important role because they determine how
the residual value of Ł∞tot is distributed among the individual terms Ł∞i . In general, the
residual value of a single Ł∞i can be reduced to very smaller values ifξi is enhanced with
respect the otherξ j, j , i. However, the other terms Ł∞j will then increase depending on
how much the constraints represented by the discretized terms Łi and Łj are in conflict.
This way, each of the Ł∞i obtained at the end of the minimization can be considered a
function of the whole set of weights{ξ1, . . . , ξ4}. The goal, of course, is to choose these
weights such that all Ł∞i are reduced to their lowest possible value.

Typically, a term Ł∞i which depends on observed data like Ł3 and Ł4 cannot be de-
creased to zero but is bounded below by a “discretization-noise ” or “data-noise“ level.
In a log Ł∞i vs log Ł∞j representation, the solutions for differentξi andξ j are then located
on a L-shaped curve with the two legs defining the two noise levels. The optimum so-
lution is then located in the corner of the L-curve (Hansen 2010) where log Ł∞i + log Ł∞j
is minimized. Generalized to several regularization terms, the best choice ofξ1, . . . , ξ4 is
obtained if

∑

i log Ł∞i (ξ1, . . . , ξ4) is minimal.
There are, however, additional considerations. For example, ifσq andσc introduced in

Eqs. (2.38) and (2.42) represent realistic error estimates, we might want to tune the resid-
ual value of these terms to about unity. At these values, the extrapolated field complies
with the observations to the order of the observational errors. With any further reduction
of Ł3 and Ł4, we would try to adjust the fieldB(r k) to the data noise at the expense of
minimizing its divergence and Lorentz force.
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In this chapter the used missions and their instruments are described. For the eruptive
prominences described and analyzed in Chapter 4, we used data from the STEREO (Solar
Terrestrial Relation Observatory) and SDO (Solar Dynamic Observatory) missions. From
the two STEREO spacecraft, we used images from the extreme ultraviolet imager (EUVI)
at the wavelength ofλ = 304 Å. From the SDO mission, EUV images were provided
by the Atmospheric Imager Assembly (AIA) in several wavelengths. We used only the
images in the wavelength ofλ = 304 Å. The white-light coronagraph data was taken by
the SECCHI (Sun-Earth-Connection Coronal and Heliospheric Investigation) telescopes
package onboard STEREO.

3.1 Solar Terrestrial Relation Observatory (STEREO)
mission

The STEREO mission is composed of two spacecraft, named STEREO A (Ahead) and
STEREO B (Behind) (Kaiser et al. 2007). Their orbits are heliocentric with a period close
to an Earth year. Each year, the angle between them increasesby approximately 44◦ to
45◦. The spacecraft began to observe at the end of 2006. Fig. 3.1 shows the position of
the spacecraft A and B at three different times from their launch till present. The red and
blue dots represent the spacecraft STEREO A and B respectively. The yellow and green
dots are the position of the Sun and Earth, respectively. Thex and y axes are drawn in the
heliocentric Earth ecliptic (HEE) coordinate system (Thompson 2006).

(a) (b) (c)

Figure 3.1: STEREO A and B position in a) 2008, b) 2010 and c) 2014
(adapted from http://stereo-ssc.nascom.nasa.gov/where.shtml).
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The Sun-Earth-Connection Coronal and Heliospheric Investigation (SECCHI) pack-
age of optical telescopes is mounted onboard each of the two STEREO spacecraft. The
SECCHI package incorporates five different instruments, which cover a field of view
from the solar surface to almost 1 A.U. in the plane of the sky.The five instruments are
divided in three categories. The first category consist of the extreme ultraviolet imager
(EUVI) which observes the chromosphere and the low corona. In the second category of
instruments are the concentric, Sun-centered coronagraphs (COR1, COR2) which record
images from the inner and outer corona. Their field of view ranges from 1.4 to 15 R⊙. The
third category consist of two heliospheric imagers (HI1, HI2) which are off-axis white-
light coronagraphs. They take images of the interplanetaryspace from 15 to 215 R⊙ on
the respective Earthward side of Sun (Howard et al. 2008b). Acomposite image from
data of all instruments is presented in Fig. 3.2.

COR1A COR1B

COR2A
COR2B

HI1A HI1B

HI2A HI2B

Figure 3.2: A composite image (upper part) of all SECCHI instruments recording a CME on 1
August 2010. In the lower part of the images we can see a magnification of the central
part of the upper half of the image. The images from the instruments are color coded:
the Sun in EUVI 304 Å waveband is displayed in orange in the middle of the upper
and lower part of the image; the next outer layer colored in green shows the imaging
with COR1 followed by the blue layer, which shows the outer corona recorded with
COR2. The image colored in red in the upper part of the image shows the recording
from heliospheric imager (HI) I instrument and the outer blue shows the heliospheric
imager (HI) II (http://secchi.nrl.navy.mil).

The objectives of the STEREO mission are to understand the initiation mechanism
of the CMEs, their geometry, magnetic topology and propagation into the interplanetary
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space (Kaiser et al. 2007).
Previous coronagraph instruments were limited for the investigation of Earth-directed
CMEs, because in the first phases of the eruption these CMEs were hidden by the oc-
culting coronagraph disk. This fact made it difficult to measure their true velocity and
size (Thompson et al. 2010). The two view directions provided by the two STEREO
spacecraft opened the possibility for a 3D reconstruction of objects and for tracking them
in the inner heliosphere till Earth.

3.1.1 Extreme Ultraviolet Imaging (EUVI) telescope

The EUVI telescope onboard STEREO A and B spacecraft images the Sun out to 1.7
R⊙. It observes the chromosphere in the emission of ionized helium at a wavelengthλ =
304 Å and the low corona in the emission of ionized iron at three different wavelengths
λ = 171, 195, 284 Å (Howard et al. 2008b).

The EUVI instrument is a normal-incident Ritchey-Chrétientelescope (see Fig. 3.3).

Figure 3.3: The cross-section of the EUVI Ritchey-Chrétientelescope with the light path (red
arrows), adapted from Howard et al. (2008b).

The mirrors are divided in four quadrants and each quadrant is optimized for one of
the four EUV emissions wavelengths. The telescope pupil is positioned right in front
of the primary mirror and is defined by an aperture mask which has a circular cut hole
like the one from the entrance filter (Howard et al. 2008b). The spatial sampling of the
instrument is 1.6 arcsec/pixel (Wuelser et al. 2004).

The radiation enters the telescope through an Aluminium filter which blocks most of
the UV, visible and IR and which keeps the solar heat out of thetelescope. The transmitted
radiation continues through an aperture selector to one of the four quadrants of the optics,
encounters the primary and secondary mirrors which are designed with a narrow-band
coating for one of four EUV lines. The radiation will pass through another Aluminium
filter which will remove the remaining visible and IR radiation (Wuelser et al. 2004). The
exposure time is determined by a rotating blade and the imagesensor is a CCD (charge-
coupled device) in the focal plane (Howard et al. 2008b).

3.1.2 Inner and outer coronagraph

The second type of instruments of the SECCHI package are the coronagraphs. In order
to better suppress the scattered light, there are two coronagraphs. The inner coronagraph
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(COR1) observes the inner corona between 1.4 and 4 R⊙ (Thompson et al. 2010) and the
outer coronagraph (COR2) observes the corona between 2.5 and 15 R⊙ (Howard et al.
2008b). The inner coronagraph (COR1) is a Lyot internally occulting refractive corona-

Figure 3.4: Optomechanical drawing of the inner coronagraph COR1 onboard the STEREO space-
craft. Image taken from Howard et al. (2008b).

graph (Thompson et al. 2010). Fig. 3.4 shows the design of this instrument. After the
photospheric light enters through the front aperture (Howard et al. 2008b), the objective
lens focuses the solar image onto the occulter (Thompson et al. 2010). In order to elimi-
nate the largest source of stray light in the system, the light diffracted by the front aperture
is focused onto a Lyot stop and removed. The light which passes the Lyot stop encounters
a linear polarizer which extracts the polarized brightnesssignal at three polarization an-
gles 0, 120 and 240 degrees. Another purpose of the polarizeris to suppress the remnant
scattered light (Thompson et al. 2010). A series of lenses refocus the coronal light, which
is filtered in the white light spectrum with a 22.5 nm wide bandwidth centered at the Hα
wavelength of 656 nm (Howard et al. 2008b).
The COR1 instrument takes images with a pixel size of 2048x2048 with 3.75 arcsec
pixel−1 resolution. For this practical purpose the data is mostly binned to either 1024x1024
or 512x512 with a corresponding spatial scale of 7.5 or 15 arcsec pixel−1 (Thompson et al.
2010).

The outer coronagraph (COR2) is an externally occulted Lyotcoronagraph. Just like
the inner coronagraph, COR2 provides polarized brightnessimages at the three polariza-
tion angles, 0, 120 and 240 degrees, with a spectral filter which transmits from 650 nm to
750 nm (Howard et al. 2008b). At full resolution, the outer coronagraph provides images
of 1024x1024 pixels with a resolution of 14.7 arsec pixel−1.
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3.2 Solar Dynamic Observatory (SDO)

The SDO (Solar Dynamic Observatory) spacecraft was launched in February 2010 and
takes high cadence and high resolution images of the entire Sun from an inclined geosyn-
chronous orbit (Lemen et al. 2012). The main objective of themission is to determine
the solar variability, how the Sun drives global change and how it influence the Earth
(Lemen et al. 2012). The SDO spacecraft carries onboard three types of instruments:
the Atmospheric Image Assembly (AIA) which observes the solar atmosphere in various
wavelengths representative of temperatures in the range of6 000 and 107 K (Pesnell et al.
2012); the Heliospheric Magnetic Imager (HMI), which is designed to measure solar os-
cillations and the three components of the photospheric magnetic field vector (Couvidat
et al. 2012); Extreme Ultraviolet Variability Experiment (EVE) instrument is designed to
measure the solar extreme ultraviolet (EUV) irradiance (Woods et al. 2012).

3.2.1 Atmospheric Imaging Assembly (AIA)

In this thesis we will employ data from AIA and therefore we describe this instrument in
more detail.

The Atmospheric Imaging Assembly (AIA) is an array of four telescopes which ob-
serves the solar atmosphere in ten different wavelengths (seven in EUV, two in UV and
one in visible light) (Pesnell et al. 2012). The lower coronais imaged in five ionized iron
wavelengths and one emitted by He II. Each of the four telescopes has a spatial resolution
of 0.6 arcsec pixel−1, a field of view 1.5 R⊙ and a CCD record camera of 4096x4096 pixels
(Lemen et al. 2012).

Figure 3.5: A cross sectional view of one of the AIA telescopes taken from Lemen et al. (2012).

The four AIA instruments are Casegrain telescopes adapted to observe narrow band
passes in the EUV. A cross sectional view of one of the four AIAtelescopes is presented
in Fig. 3.5. The four telescopes are not all identical. Threeof the telescopes mirrors have
two different EUV band passes while the fourth one has a 171 Å band passon one half
and a broad-band UV coating on the other half. Also, each instrument has its own guide
telescope, which helps to stabilize the image on the CCD (Lemen et al. 2012).
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4 Application of the Multi-view
B-spline Stereoscopic
Reconstruction method for the
analysis of two erupting
prominences

In this Chapter we present the application of one of the methods described in Chapter 2,
namely MBSR (Multi-view B-spline Stereoscopic Reconstruction). We have applied this
method to two different events. The analysis and the results were published intwo papers:
“Low polarized emission from the core of coronal mass ejections” where I am a second
author and “4D reconstruction of an eruptive prominence using three simultaneous view
directions” where I am the first author.

For the first event which we will describe in Section 4.3, my contribution was to re-
construct the 3D coordinates of a region from the core of a CME. Initially, the polarization
ratio method (see Section 4.2.4) was applied for the 3D reconstruction of the CME event.
This method failed to reconstruct the CME core. Therefore the MBSR method was ap-
plied. The reconstruction was performed from two view directions. For the second event
we have applied the MBSR method and we reconstruct for a giventime the entire top edge
of a prominence as a 3D curve. Moreover, we try to analyze in more detail the evolution
of the prominence and the associated CME. In this case, we have used simultaneous data
from three satellites (STEREO A, B, SDO) to perform the reconstruction.

Before presenting the applications of MBSR method, we make an overview with the
previous work on 3D reconstruction of prominences and CMEs.

4.1 Previous work on 3D reconstruction of prominences

As we have already mentioned in a previous Chapter, before so-called “STEREO era” ,
scientists developed methods like rotation stereoscopy (Bemporad et al. 2011) from im-
ages of the same spacecraft but taken 10-20 hours apart for reconstructing the 3D shape
of loops and prominences.

After STEREO was launched it become possible to use classical stereoscopy to derive
the 3D structure of some parts of the entire prominence arch using data from two view
directions. A method to visualize the stereo information was developed by Artzner et al.
(2010). They used data from STEREO A and B in EUVI 304 Å and rotate STEREO-B
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images so as it would be seen from the STEREO A view direction.They then subtract
one image from the other. While the surface background cancels prominences and loops
will remain visible as elevated structures.

The technique developed by Gosain and Schmieder (2010) makes use of the approx-
imation that a filament is a 2D planar plasma sheet anchored tothe Sun. From the two
STEREO views, they determine the prominence width and inclination with respect to the
solar surface. They compared the inclination angle with previous results obtained by tie-
pointing applied to the same prominence by Gosain et al. (2009). The angle difference
between the two methods amounted to around 10 degrees.

4.2 Previous work on the 3D reconstruction of CMEs

It is important to understand the 3D morphology of a CME because on one hand this
can be the starting point for the development of physical CMEmodels and on the other
hand knowing the morphology allows to derive the propagation direction, velocity and
expansion. One reason for which it is important to determinevery precisely the 3D CME
shape is because CMEs can have a strong damaging effect on the spacecrafts or on the
astronauts or it can produces a geomagnetic storm (see Chapter 1, Section 1.5.3) at the
Earth and it can affect radio transmissions or it can damages the pipe lines.

The first attempt of a 3D reconstruction is due to Crifo et al. (1983) using the polar-
ization ratio approach (will be presented below 4.2.4). Butit turned out to be impossible
to derive the precise 3D shape and propagation direction from single coronagraph images.
A rough guess of the propagation direction could be obtainedfrom the projected shape of
the CME cloud (e.g halo and limb events) and from the locationof the eruption site on
the solar surface if this could be detected. To improve the observational constraints was
one of the goals of the STEREO mission launched in 2006.

The 3D reconstruction techniques still have limitations due to the final signal to noise
ratio, the limited spatial and temporal resolution and the limited number of simultaneous
views (Thernisien 2011). Therefore a number of alternativemethods have been devel-
oped for the three-dimensional reconstruction of coronal mass ejections based on geo-
metric properties like forward modeling (Thernisien 2011), geometric localization (Pizzo
and Biesecker 2004), mask fitting (Feng et al. 2012) or based on physical properties like
polarization ratio method (Moran and Davila 2004). Stereoscopy techniques can be used
to reconstruct different parts of the CME like its core or the leading edge. Some hybrid
models were developed and combine two different reconstruction techniques: center of
mass determination combined with tie pointing or inverse reconstruction in combination
with forward modeling.

In the following, I will present some of the most common 3D reconstruction tech-
niques for CMEs.

4.2.1 Forward Modeling

Some studies show (see e.g. Chen and Shibata (2000)) that a “croissant” - type of mag-
netic flux rope describes very well some observations of the three part structure of CME.
Motivated by Cremades and Bothmer (2004), Thernisien et al.(2006) developed a for-
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Table 4.1: Parameters of the GCS forward modelling

Name of the parameter Description
Angular width 2α The opening angle between the two “legs” of the model

h Height of the “legs ”
Aspect ration k The ratio between the minor torus radius a (Fig. 4.1)

and the distance from the center of the Sun to the center
of the minor torus

Ne Electron density
φ, θ Longitude and latitude of the SR
γ Tilt angle of the SR neutral line

ward modeling technique for such flux-rope like CMEs. With their parameterized model,
called the Graduated Cylindrical Shell (GCS) model, they tried to reproduce the general
morphology and the electron density distribution of the leading edge of these flux-rope
like CMEs. The GCS model consists of a tube-shaped body with two cones attached cor-
responding to the “legs” which connect the CME to the solar surface (Fig. 4.1). The

Figure 4.1: The graduated cylindrical shell model-from Thernisien (2011); The heavy line on the
solar surface represents the orientation of the magnetic neutral line at the site of the
CME eruption. Figure adapted from Thernisien (2011).

model has a set of parameters which can be fitted to the observed CME shape (see Table
4.1) as seen in one or more coronagraph images and to the localization and orientation of
the CME source region identified in EUV images and surface magnetograms.

In order to use the parameters (see Table 4.1) which describethe GCS model the
following assumptions are made: the expansion of the CME is considered to be radially
along the symmetry axis of the model, the orientation of the GCS model is defined by the
source tilt angleγ (see Table 4.1) and does not change during the expansion of the CME,
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the angular width (α) (see the Table 4.1) is assumed to depend on the length of the source
region neutral line (the relation betweenα and neutral line is taken from a statistical study
by Cremades and Bothmer (2004)).

The GCS model also predicts the electron density distribution and generates the syn-
thetic images from a line-of-sight (LOS) integration of theThomson scatter at the as-
sumed density distribution. This model density distribution analytically depends on the
distance from the surface of the GCS model. By comparison between real and synthetic
images the model parameters can be manually adjusted in order to find the best match.
Thernisien et al. (2009) extended the technique in order to allow for an automated param-
eter fitting if images from two view directions were used. TheGCS model was applied
by many authors to determine either the kinematics and expansion speed of CMEs, their
flux-rope orientation and rotation either to study the 3D evolution and expansion of the
CME cavity (Thernisien 2011). However, not all CMEs exhibitthe symmetric flux rope
shape assumed by the GCS model.

4.2.2 Geometric localization

This method was proposed by Pizzo and Biesecker (2004). For the CME reconstruc-
tion method they use two or more coronagraph images and applygeometric triangulation.
Along each epipolar line in an image pair intersecting the CME they tie-point the leading
and trailing edge of the CME cloud. If these four points are projected into the epipolar
plane, they define a 3D quadrilateral which bounds the CME structure in the given epipo-
lar plane. This process can be repeated for a set of epipolar planes and different image
pairs. The resulting stacked 3D slices compose the boundingvolume of the entire 3D
CME structure (see Fig. 4.2).

Figure 4.2: The 3D reconstructed CME with geometric localization method; Fig. reproduced from
Pizzo and Biesecker (2004).

4.2.3 Mask fitting

The mask fitting method developed by Feng et al. (2012) is similar to the geometric local-
ization technique but without the need to use epipolar planes explicitly. The 3D bounding
volume of multiple slices is constructed in a reverse way. Asa first step, the boundaries of
the CME are defined in each image used for the reconstruction (masks). In the next step,
a dense, rectangular grid is defined in the corona around the Sun. Each 3D grid point of
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this mesh is projected onto the images. If the projection hits the mask in all of the images
the grid point may lie inside the CME and is marked. If it failsto hit only one image
mask, it is definitively outside of the CME cloud. This way themarked grid points create
a 3D convex polygonal volume which contains the CME (see Fig.4.3). In a final step, the
edges and corners of the 3D polygon are smoothed. The method can be easily extended
to multiple view directions.

Figure 4.3: The 3D reconstructed CME with mask fitting method; Fig. reproduced from Feng
et al. (2012).

4.2.4 Polarization ratio

This method is based on the polarization properties of Thomson scattering (Crifo et al.
1983, Moran and Davila 2004). It makes use of the fact that thepolarization of light
scattered at a free electron depends on the scattering angleχ. A sketch with the geometry
of the scattering process is presented in Fig. 4.4.

For coronal observations the polarized intensity is usually separated into the tangential
(It, i.e., parallel to the limb) and the radial (Ir , from Sun center) components. According
to the Billings (1966) formula these two components can be written in terms of the local
electron densityNe and the incident light intensityI0 from the Sun as:

It = I0
Neπσ

2
[(1 − u)C + uD] , (4.1)

It − Ir = I0
Neπσ

2
sin2χ[(1 − u)A+ uB] , (4.2)
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Figure 4.4: A sketch with the Thomson scattering geometry.

whereσ is the Thomson scattering cross section,u is the limb darkening coefficient and
A, B, C, D are functions of the local geometry depending on the angleΩ (see Fig. 4.4):

A = cosΩ sin2
Ω , (4.3)

B = −
1
8

[

1− 3 sin2Ω −
cos2Ω
sinΩ

(1+ 3 sin2Ω) ln
1+ sinΩ

cosΩ

]

, (4.4)

C =
4
3
− cosΩ −

cos3Ω
3
, (4.5)

D =
1
8

[

5+ sin2Ω −
cos2Ω
sinΩ

(5− sin2Ω) ln
1+ sinΩ

cosΩ

]

. (4.6)

From the two scattered intensity componentsIt andIr , we define the polarized bright-
nessIp = It − Ir , total brightnessIT = It + Ir and unpolarized brightnessIu = IT − Ip.
Since the radial and tangential directions depend on the position in the coronagraph im-
age, a coronagraph typically measures three polarized images at three different angles,
respectively−60◦ , 0◦ and 60◦. From this set of 2D images, after appropriate background
subtraction, one can compute total brightness, polarized and unpolarized brightness im-
ages from:

Ip =
4
3

√

[(I0 + I60 + I−60)2 − 3(I0I60 + I0I−60 + I60I−60)] ,
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IT =
2
3

(I0 + I60 + I−60) .

Through their dependence onIt and Ir , the polarized and total brightness and their
ratio r = Ip/IT depend on the scattering angle. If the observed radiation was scattered
from a single volume element, the ratio of polarized to unpolarized brightnessrm = Ip/Iu

would uniquely yield the magnitude of the angleχ and therefore the depthd from the
plane of sky (POS) of the scattering element. But because thedependence ofIp with sinχ
is quadratic, the method cannot decide whether the scattering element is in the front or
behind the POS. In real observations,It and Ir result from scattering along LOS instead
from a single volume element. We therefore have to replace, e.g., in Eq. (4.1)

Ne sin2 χ[(1 − u)A+ uB] →
∫

LOS
Ne(l) sin2 χ(l)[(1 − u)A(l) + uB(l)]dl (4.7)

≈

∫

Ne(l)dl sin2 < χ > [(1 − u) < A > +u < B >] ,

where
∫

Ne(l)dl is the column density and< χ >, < A >, < B > suitable averages over
the LOS. Since for a given distance of the LOS from the Sun,A andB depend through
Ω also onχ, the factor of the column density could be expressed entirely as a function of
< χ >.

For each pixel from the 2D images, we can calculate the measured ratiorm. This
measured ratio is independent of the column density but onlydepends monotonically on
< |χ| >. The original method by Moran and Davila (2004) requires only one image,
however, we are left with the ambiguity of the sign of< |χ| >, i.e., of d. This can be
constrained if two images are used. Still, since the method returns only a single depth
estimate per pixel, it does not really return the 3D CME cloud, but rather yields a CME
plane more or less close to the central longitude of the CME cloud.

4.2.5 Stereoscopy

The most common parts of the coronal mass ejections used for stereoscopic reconstruc-
tion are the leading edge (Liewer et al. 2011) or just its point of largest distance from the
solar center, bright parts of the core (see e.g. Joshi and Srivastava (2011a)) or the cloud’s
center of mass. Howard and Tappin (2008) used this method to obtain the 3D position of
a central, north and south flank of the leading edge. The reconstructed leading edge of
the CME outer surface strongly depends on the view geometry and most often does not
even lie on the CME surface. The visible leading edge is the projection of the outer sur-
face forming the CME hull. For two viewpoints, the curve resulting from a stereoscopic
reconstruction of the two visible leading edges approximates the intersection of the CME
hull with a plane normal to the mission plane of the two observing space craft (see Fig.
4.5). Liewer et al. (2011) analyzed the position of the tie-point reconstruction relative to
the CME surface. Because the two spacecraft involved in the reconstruction see different
parts as the leading edge the tie-point reconstruction yields a curve somewhere above the
CME surface. Depending on the curvature of the CME surface, the reconstructed leading
edge lies aboutR

[

1/ cos
(

π−γ

2

)]

of the real surface where R is the local curvature radius of
the CME surface in the mission plane of the observing space craft.
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R

γ

π − γ
Figure 4.5: A sketch with the geometry of the intersection point between the two visible leading

edges of the two view points.

Moreover, if the CME surface changes its shape and curvaturewith time, each edge
curve of a time sequence of such leading edge reconstructions may well represent different
parts of the CME surface (Chifu et al. 2012).

4.2.6 Local correlation tracking plus tie-pointing

For an automatic determination of correspondences betweentwo images, Mierla et al.
(2009) used a correlation-based approach. The normalized correlation between the in-
tensity variation from two subimages, one from each image, is calculated for various
positions of the sub-images along the same epipolar line. When the correlation coeffi-
cient assumes a maximum at a certain pair of positions above apredefined threshold, the
two image positions are used to determine an equivalent 3D scattering center. Processing
the entire CME region of both images this way, a cloud of scattering centers results which
are assumed to outline the CME interior area. The method has been reported to work well
if the angle between the view directions is small and local correlations can be expected
to be large. In this case, local 3D density variations in the CME cloud may lead to large
normalized correlation coefficients for subimages centered on the correct positions. The
performance was found to be reduced as the angle between the view directions increased.
The normalized correlation coefficient is defined as

σAB(x, x′, y) =

∫

W
IA(x+ ξ, y+ ζ)IB(x′ + ξ, y+ ζ)dξdζ

√

∫

W
I2
A(x+ ξ, y+ ζ)dξdζ

∫

W
I2
B(x′ + ξ, y+ ζ)dξdζ

, (4.8)

whereσAB(x, x′, y) varies between the limits [-1,1];IA(x, y), IB(x′, y) are the total bright-
ness intensities of the two images; at image positions,x, y andx′, y′, respectively, in the
epipolar coordinate frame, i.e., y is the common epipolar coordinate andx, x′ are positions
along the epipolar liney. The integral

∫

W
is executed only over a small subimageW.
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4.2.7 Hybrid methods

Constraint on the mass calculation and tie-pointing

To find a fast estimate of the 3D CME propagation direction andvelocity, one can de-
termine the center of mass of the CME cloud. Since in coronagraph white-light images,
the brightness is more or less proportional to the column density along the LOS (the dif-
ferential Thomson scattering cross section varies only little with scattering angle), the
projection of the center of mass is just the barycenter of theimage brightness. From these
projections, the approximate 3D center is easily determined via stereoscopy. Mierla et al.
(2009) and Mierla et al. (2010) have calculated the center ofmass of seven CMEs and de-
rived their latitude, longitude and distance from Sun. Under these assumptions, the total
mass of the CME as calculated from Billing’s equations (see Eqs. (4.1) - (4.6)) should be
the same except for contributions close to the occulter which could not be equally visible
from both view directions. Colaninno and Vourlidas (2009) obtained different values for
the mass of the same CME from the two views of the STEREO spacecraft. They ex-
plained the discrepancy by the small but not negligible scattering angle dependence of the
Thomson scattering.

Inverse reconstruction plus forward modelling

Using a hybrid model, Antunes et al. (2009) reconstruct the bulk of the CME excluding
the leading edge and shock analyzing running difference images. For their hybrid model
data from at least two view directions of the CME are required. Within this method the
authors tried to obtain the geometric shape and also the density of the CME. As a first
step in their reconstruction, they use the forward modelingtechnique to roughly fit the
CME shape. The fitted shape is used as an envelope of the CME forthe second part of the
reconstruction in which they try to fit the density variationto match the image brightness
only inside the CME envelope. It should be noted that for two images, the 3D density
distribution obtained is not unique.

4.3 3D reconstruction of a CME core

4.3.1 Introduction

As mentioned in Chapter 1, the coronal mass ejections are often observed to have a three
parts structure: a leading outer edge followed by a dark cavity and a bright core. Even
though a one to one correlation does not exist, the observations have shown that in many
cases prominence eruptions are the source of coronal mass ejections. In these cases, the
cold (T ∼ 104 K) and dense (Ne ≃ 1010 cm−3) material of the erupted prominence is asso-
ciated with the core of the CME. Poland and Munro (1976) observed Hα emission in the
core of a CME cloud which had a prominence eruption as its source. They have shown
that the Hα emission is much less polarized than the emission from the surrounding ma-
terial which is due to Thomson scattering at the free coronalelectrons. They used ground
based observations in Hα and He II for the prominence analysis and coronagraph data on
board the Skylab spacecraft for the white light observations of the outer corona. Because
the polarization in the core of the CME had a value two times smaller than expected they
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concluded that the emission was not entirely produced by Thomson scattering and that
Hα scattering made some contribution to the scattered light.

We have studied a CME event on 31 August 2007 which shows a bright patch of low
polarized radiation in its core which was presumably causedby a Hα resonant scattering.

Hα emission occurs when the hydrogen electron relaxes from thethird (n= 3) to the
second (n= 2) energy level. The wavelength of the Hα radiation is 656.28 nm. The
probability of the electron to decay from the energy level n=3 to n=2 and to excite Hα
emission is higher after ionization of the hydrogen followed by a recombination rather
than by a direct excitation to level n=3. The ionization energy from the ground level
is 13.6 eV and the energy which an electron needs to be excitedfrom the ground level
to the third atomic level is 12.1 eV. The ionization state of aplasma in thermodynamic
equilibrium is dependent on the density and temperature andit can be obtained from the
Saha equation

Nj+1

Nj
=

2Zj+1

neZj

(

2πmeKBT
h2

)3/2

e−χ j/KBT , (4.9)

whereNj+1,Nj are the number density of the ions,Z is the atomic number,me is the
electron mass,h is the Planck constant,KB is Boltzmann’s constant,T is the temperature
of the plasma,χ j is the ionization energy.

If we considerx = NHI I /NH the ratio of the number of ionized hydrogen (NHI I ) to total
number density of hydrogen atoms (NH = NHI + NHI I ) and we know that for hydrogen
ne = NHI I , the Saha equation becomes

x2

1− x
=

2
NH

(

2πmeKBT
h2

)3/2

e−13.6/KBT . (4.10)

For a temperature ofT = 10000 K almost the entire hydrogen is ionized. At equilib-
rium, the radiative recombination rate of hydrogen per unitvolume is given by (Hasted
1964):

rr = ne · np · αA(T) ≃ n2
e · αA(T) , (4.11)

wherene, np are the number density of electrons, respectively protons andαA = 4.2·10−13

cm3 s−1 is the radiative recombination coefficient for a temperatureT = 10000 K. For a
number density of the order of 108 cm−3, the recombination rate isrr = 4.2 · 103cm−3 s−1.
After recombination, the captured electron may occupy any energy level and by means of
a further relaxation process, Hα radiation can be produced.

4.3.2 Observations

On 31 August 2007, the STEREO telescopes observed the eruption of a prominence which
triggered a CME with an interior void and a bright concentrated core. The separation
angle at 31 August 2007 between the two spacecraft, STEREO A and B, was 28 degrees
(see Fig. 4.6).
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Figure 4.6: The position of the two STEREO spacecraft A and B on 31 August 2007
(adapted from http://stereo-ssc.nascom.nasa.gov/where.shtml).

For the analysis of the polarization degree from the CME plasma, we used obser-
vations from the COR1 telescope. The coronagraph COR1 observes the solar corona
in white light in a 22.5 nm wide wavelength band centered at the Hα line at 656 nm
(Thompson et al. 2010). It also has a linear polarizer which records images at three dif-
ferent polarization angles: 0, 120, 240 degrees (see Chapter 3). As explained in Section
4.2.4, from these 2D data one can obtain the polarized brightness (pB), total brightness
(tB) and unpolarized brightness (uB) for each pixel. For three parts structured CMEs, as
observed on 31 August 2007, the core material can sometimes be traced back to a pre-
eruption prominence CME. For the CME from 31 August 2007, we can clearly identify
the source prominence in the EUV images. Therefore, we can trace the prominence erup-
tion with the help of EUVI instrument on board STEREO from itsearliest stages on. The
He II line at 304 Å provides a good visualization of the prominence and we have used
the according image data for the identification of the prominence source. At later stages
of the eruption, the dense prominence material evolved intothe CME core material. The
observations in EUVI 304 Å show the prominence from 31 August2007 starting to rise
at around 19:00 UT, the associated CME enters the COR1 field ofview at 21:00 UT. The
simultaneous observations from the EUVI and the COR1 instrument (see Fig. 4.7) show
that the prominence is co-spatial with the CME core.

Figure 4.7: Composite images on 31 August 2007, 21:05 UT fromEUVI 304 Å and COR1 on-
board STEREO A (right image) and STERO B (left image) taken from Mierla et al.
(2011)
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This indicates that the prominence material is the source ofthe CME core (see Fig.
4.7).

4.3.3 Data analysis

The separation angle between the two STEREO spacecraft allows us to perform a 3D
stereoscopic reconstruction with the MBSR method. For the analysis of the low polar-
ization patch observed on 31 August 2007 in the core of the CMEwe used data from
COR1 at 21:30 UT. In a first step the data was processed with secchi_prep.pro, an IDL
(Interactive Data Language) program provided by the solarsoft package, which calibrates
the raw images (divides by exposure duration, subtracts theCCD bias, converts the image
intensities from the recorded digital units to fractions ofthe mean solar brightness and
applies a flat-field correction). In order to remove the coronal streamers from the image,
we subtract a background image from each of the total and polarized brightness images.
The background images were obtained by extracting for each pixel the minimum intensity
from all images over a 12 hours interval, centered at the timeof the eruption. In addition,
a median filter was applied to the resulting background imagein order to reduce the noise.
Fig. 4.8 shows on a logarithmic scale the total brightness COR1 images from STEREO A
and B after the background was subtracted. This procedure was applied to all three polar-

Figure 4.8: The total brightness images expressed in mean solar brightness from COR1 of
STEREO spacecraft A (left panel) and B (right panel) at 21:30UT. The upper left
inserts are zooms of the CME core region from the same perspective.

ization orientations so that polarized and unpolarized brightness could be computed. Fig.
4.9 shows the ratio of the polarized to unpolarized brightness obtained from the STEREO
A and B images. The ratio images are color coded and we can see the low polarization
patches (red) at about 1.5 R⊙ distance from the Sun center inside the highly polarized
CME emission (gray) bulb. In the upper left corner we show a magnification of the region
with the low polarization patch.
One method proposed to derive the 3D CME shape is the polarization ratio method (see
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Figure 4.9: The ratio pB/uB of polarized to unpolarized light from COR1 of STEREO spacecraft
A (left panel) and B (right panel). The upper left inserts arezooms of this region from
the same perspective. The green line represents the projection of the 3D curve fit to
the patches location obtained from stereoscopic triangulation.

Chapter 4.2.4 for the description of the method). To recall,for Thomson scattering, the
ratio pB/uB is a function of the scattering angle between the incident light and the di-
rection towards the observer (see Fig. 4.4). With this information, we can estimate the
distance of the scatterer from the plane of the sky. From a single ratio observation alone,
we can however not decide whether the scatterer is in front orbehind the POS. This am-
biguity can be resolved with observations from two view directions as they are provided
by STEREO A and B. For each pixel in an image from STEREO A and B,respectively,
we obtain an estimate for the distance of the scatterer from the respective plane-of-sky
(POS). From the two positions on other side of the POS we choose the one which yields
a scattering center close to the scatterers derived from theother view direction.

The resulting 3D distribution of scattering centers is displayed in Fig. 4.10. In the
image, the view direction is from above the Sun’s north pole onto the STEREO mission
plane. The green dots represent the 3D position estimates derived from the pixels of
the COR1/STEREO A image, the blue dots are the equivalent from COR1/STEREO B.
The best agreement between the point-clouds from STEREO A and B was achieved if
the CME scattering center was assumed in front of the POS for STEREO A and behind
the POS for STEREO B. Since the derived scattering centre positions represent some
weighted mean along the respective line-of-sight, the azimuthal extent of the cloud of
scattering centres in Fig. 4.10 probably represents a lowerbound of the true azimuthal
extent of the CME cloud. Ideally, the scattering centers areall close to the meridional
barycentre plane of the CME cloud.
The features which do not match in this picture are the elongated structures which we
will term the “horns ”. They have their origin in the low polarized patches observed in
the COR1 A and B images (see Fig. 4.9). For a Thomson scattering volume element,
a low polarized scattering polarization implies a locationfar away from the POS of the
observer. Since the horns can obviously not be matched by whatever choice for the po-
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Figure 4.10: PR reconstruction of the barycenter plane of the CME on 31 August 2007, 21:30
UT. The green/blue points are the reconstructed Thomson scattering positions from
COR1/STEREO A and B, respectively. The short red curve inside the cloud repre-
sents the reconstruction by triangulation of the region where low polarization patches
are observed. The view is from above the STEREO mission plane(STPLN). The
axes in the STPLN are the directions to the spacecraft (labeled STEREO A and B)
and their respective plane of the sky (POS A and B). The black line is the projected
direction to Earth. Image taken from Mierla et al. (2011).

larization ratio method ambiguity, we conclude that the respective image signals were not
produced by Thomson scattering.
Since the polarization ratio method obviously fails to determine the position of the bright
core patch, we used the stereoscopic reconstruction method(MBSR) to find its position.
A detailed description of the method is presented in Chapter2, Section 2.3. The sepa-
ration angle between the spacecraft A and B of 28 degrees allows to easily identify and
tie-point corresponding features in both images. However,the geometrical errors are con-
siderable for such a small separation angle. The COR1 total brightness images allow us
to identify and reconstruct a 3D curve on an approximately principal axis along which the
core material is distributed. The reconstructed 3D curve and the respective reconstruction
errors are displayed in the Fig. 4.11. The projection of thiscurve on the spacecraft view
direction curve is overplotted in green on the polarizationratio images of COR1 A and B
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Figure 4.11: Stereoscopically reconstructed curve with the vertical errors.

in Fig. 4.9. The blue dots represent the tie-points used for the 3D reconstruction. In Fig.
4.10 the curve is overplotted in red onto the scattering centres from the polarization ratio
method. From the Fig. 4.10 we can observe that the 3D patch is positioned close to the
barycenter plane of the CME. In Fig. 4.11 we show the reconstructed 3D curve enlarged.
The material of the bright core patch should be distributed more or less along this curve
with the error range indicated by the blue bars attached to the curve.

4.3.4 Discussion

Low polarization of the sun light scattered in the corona canbe due to a number of reasons.
For example, by scattering at coronal dust particles which results in the so-called F-corona
(Morgan and Habbal 2007). With the exception of the dust tails of the Sun-gazing comets,
this F-corona scattering changes only very slowly in time, typically by months. In our
analysis, therefore the contribution from the F-corona haslargely been removed by the
background subtraction of the primary image data. Another reason for a low polarization
signal can be a position of a Thomson scatterer far away from the POS. This assumption,
however, is in disagreement with the 3D stereoscopic reconstruction of the low polarized
patch. The most probable explanation is that the emission from the core of the CME is
due to Hα resonant scattering (Poland and Munro 1976). In the case of CMEs produced
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by prominence eruptions, the core material of the CME is usually associated with the
prominence material which is cooler and denser than the coronal plasma.

In presence of a core patch each pixel of a 2D coronagraph image records the LOS
integration of the totally scattered emission; the contributions from Thomson scattering
and Hα resonance scattering are superposed. Fig. 4.12 sketches how different scattering
sources may integrate up in different areas of a coronagraph image. Along a view direction

Figure 4.12: Sketch with the contribution of the radiation recorded by a coronagraph on the image
plane

which does not intersect the patch, we only have Thomson scatter contributions which
integrate to a brightnessBCME of the CME cloud. In contrast, the observed brightness
Bpatch in projection of the patch is a superposition of three contributions from along the
LOS: the resonance scatteringBHα plus the Thomson scatterBTh′ from inside the patch
and the Thomson scatter fromBTh outside the patch. Note that scatter contributionBTh′

may differ from BTh because the plasma density inside the patch is strongly enhanced
compared to the average CME cloud density. On the other hand,the contribution of
BTh to Bpatch is approximately the same as toBCME. We therefore observe the following
brightness in the coronagraph inside the projection of the core patch:

tBpatch= tBHα + tBTh′ + tBTh , (4.12)

pBpatch= pBHα + pBTh′ + pBTh . (4.13)

From the total brightness data, we have found that the value of the total brightness of
the Hα patch is about 10 times higher than that of the surrounding Thomson scattering
cloud,tBpatch≃ 10 tBCME = 10 tBTh (in the Fig. 4.8, inside the black circlelog(tBpatch) =
−6.93 and inside the blue circlelog(tBCME) = −7.90). From the observations oftBCME

and using Billings (Billings 1966) formulas we are able to estimate the electron density
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in the CME. For an assumed depth along the LOS of 1 R⊙ we derive a densityne of
2.6 · 106 cm−3. From the computed polarization ratio we find a ratio of the polarized to
the total brightness:

r =
pB
tB
=

pB
uB

1+ pB
uB

≃















0.5 = rTh for a typical LOS through the CME

0.1 = rpatch for a LOS through the bright core patch

The two values approximately reflect the contrast in the polarization ratio in Fig. 4.9.
For Thomson scattering,rTh = pBTh/uBTh should depend only on the distance from

the solar surface, hence we can assumerTh ≃ rTh′ = pBTh′/uBTh′, i.e. the same polariza-
tion ratio inside and outside the patch. Obviously,tBHα must be significant in Eq. (4.12)
over the Thompson scatter contribution sincerpatch differs considerably fromrTh. Insert-
ing the observed total brightness and polarization ratios into Eqs. (4.12) and (4.13) and
eliminatingtBTh, we obtain the following relation:

tBHα

tBTh′
=

8
1− 18rHα

.

Hence from the brightness and polarization ratios,rHα cannot be larger than 1/18. This low
value of the intrinsic Hα polarization ratio agrees with low values obtained for chromo-
spheric measurements (?Wiehr and Bianda 2003). Moreover, the ratiotBHα/tBTh′ cannot
be smaller than 8. Hence a large fraction of the radiation from the core patch should be
Hα emission (Mierla et al. 2011).

Jeǰcič and Heinzel (2009) used 1D isothermal-isobaric models to derive an electron
density diagnostic for quiescent prominences. They have considered different tempera-
tures, pressures and geometrical thicknesses for each model. In the white light emission,
they assumed a waveband of 10 nm and a geometrical dilution factor ofW = 0.416 which
corresponds to an altitude of 10000 km. The geometrical dilution factor has a dependence
of heightzabove the solar surface as :

W(z) = 1−

√

1−
R2
⊙

(R⊙ + z)2
. (4.14)

For the time when we have applied the polarization ratio method, the core of the CME
was at an altitude of 1.68R⊙. At this hight we obtain a dilution factorW(z) = 0.35 .

Jeǰcič and Heinzel (2009) derived an equilibrium relation between the electron density
ne and the ratio between Hα resonant scattering and Thomson scattering. For typical
prominence temperatures in the interval from 4300 K to 15000K this ratio has a weak
dependence with the temperature:

EHα

EWL
= 1.64b3W10−4T−3/2e17534K/T ne

cm−3
. (4.15)

HereT is the temperature andb3 is the LTE departure coefficient of then = 3 level of a
hydrogen atom which is defined as the ratio of the actual population in the j level to the
theoretically expected population in LTE (b j = (n j/n∞)/(n j/n∞)LT E) (Gouttebroze et al.
1993).
From our observations,tBHα/tBTh ≈ 9.33. If we consider a temperature of 10000 K for
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the patch material, a geometrical dilution of 0.35 and the departure factorb3 = 2.97, we
obtain an electron density in the Hα patchne = 8 · 108 cm−3. This is nearly three orders
of magnitude of what we have estimated for the CME cloud outside of the patch (Mierla
et al. 2011).

4.4 4D reconstruction of a prominence-CME from two
and three views

4.4.1 Introduction

On 1 August 2010 three solar eruptions (prominences and flares) were observed at closely
located source regions and expelled within hours. A detailed list of events from that
day is discussed in Schrijver and Title (2011). The chain of events was called “sympa-
thetic” eruptions by Török et al. (2011) because in observations, one can see how the
eruption of one prominence destabilized the magnetic configuration of its neighboring
prominence and caused it to erupt. The prominences covered the entire northern hemi-
sphere of the Sun (Fig. 4.13) which made them a global phenomenon according to the
definition of Zhukov and Veselovsky (2007).

Figure 4.13: Image showing the regions where erupting events occur during 1 August 2010.
AR1+FR1 represent the region where first eruption flare and filament eruption oc-
cur; FR2 stands for second prominence eruption; AR2 stands for active region where
the second flare occurs; FR3 stands for the third flux rope eruption. The image was
recorded in HeII 304 Å by the AIA instrument onboard SDO (www.helioviewer.org).

Fig. 4.13 was recorded in He II wavelength and shows the regions where the events
occurred. Around 2:59 UT a flare followed by an active region filament eruption occurred
in the area marked with AR+FR1 in Fig. 4.13. At 5:26 UT the prominence in region FR2
erupted accompanied by a flare in region AR2 (Fig. 4.13). The last erupting prominence
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of this sequence started at 22:06 UT in region FR3. From this chain of three prominence
eruptions we have focused on the second eruption from regionFR2, which was a high
latitude prominence spanning over about 55◦ in longitude (see Fig. 4.14). The aim was
to reconstruct its kinematic evolution as closely as possible. The reconstruction errors
depend on the image resolution and on the angle between the space craft.
The CME was observed as a three-part structure in white-light images. The bright core
corresponds to the prominence material observed prior to the eruption in extreme ultravi-
olet (EUV) images.

Figure 4.14: Images of the eruptive prominence taken from three different views at 8:16 UT in 304
Å wavelength; left image - STEREO B; middle image - SDO; rightimage - STEREO
A.

This sequence of eruptions formed a spectacular event whichwas previously studied
by Joshi and Srivastava (2011b,a), Li et al. (2011), Török etal. (2011). Using STEREO/
EUVI data, Joshi and Srivastava (2011b) analyzed the position, height and acceleration of
the reconstructed parts of the eruptive prominence from region FR2. From the evolution of
the prominence kinematics they concluded that there were two phases of the prominence
eruption. From the variations in latitude and longitude of the reconstructed features they
concluded that the prominence rotates during the rising phase slightly around its propaga-
tion direction. Joshi and Srivastava (2011a) analyzed the velocity of the top point of the
CME core patch and of the leading edge of the CME. They found maximum velocities of
around 200 km s−1 for the top part of the CME core and 567 km s−1 for the leading edge
of the CME. Li et al. (2011) reconstructed the top point of theprominence from region
FR2. For the reconstruction they used data from one of the STEREO satellites and SDO
satellite. The authors used the 3D reconstructions to determine the position of different
parts of the prominence and derived the height, velocity andacceleration for highest part
of the prominence and the projected speed of the CME front.
In terms of reconstruction, what is new in our approach is theuse of data from three
satellites (STEREO A, B, SDO) simultaneously. With our MBSRmethod explained in
Chapter 2 we reconstruct for a given time the entire top edge of the prominence as a curve
which can give more information about the kinematics of the prominence. Moreover, we
try to analyze in more detail the evolution of the prominenceand the associated CME.
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4.4.2 Observational data and the 3D reconstruction

In general, 3D stereoscopy requires images of the object to be reconstructed from at least
two different view directions. In this study we use three view directions employing EUV
observations from STEREO and SDO and coronagraph observations from STEREO.
For the prominence studied, the reconstruction was performed from the moment of the
eruption at 5:26 UT until the subsequent CME escaped the fieldof view of the STEREO
COR1 coronagraph at 10:35 UT. We could not perform the reconstruction after 10:39 UT
because the CME left the COR2 field of view of STEREO B so that only images from
STEREO A remained available.
For the 3D reconstruction of the rising prominence we used the 304 Å images obtained
by EUV telescopes of STEREO A, B and SDO. The EUVI field of view is limited to 1.7
R⊙ (Wuelser et al. 2004) for STEREO and to 1.5 R⊙ for SDO/AIA (Lemen et al. 2012).
The STEREO observations are well synchronized taking into account also the travel time
of light from Sun to the respective spacecraft. The SDO data corresponding to a give
STEREO image pair was chosen as close in time as possible witha maximum time dis-
crepancy of 1 minute and 12 seconds. The data sequence was selected with a 10 minutes
cadence for all three spacecrafts until the prominence leftthe field of view of the STEREO
A EUVI telescope at 9:26 UT.
After 9:26 UT, the prominence could only be traced in COR1 (inner coronagraph) and
COR2 (outer coronagraph) of STEREO. We used images from COR 1A and B with a

Figure 4.15: Images of the eruptive prominence taken from STEREO B (left side) and STEREO
A (right side) at 9:35 UT.

5 minutes cadence to determine the 3D position of the core andthe leading edge of the
CME produced by the prominence. A composite image of the rising prominence and of
the CME is presented in Fig. 4.15. On the 1 August 2010, the separation angle between
the two STEREO spacecrafts was 149.55◦; between STEREO A and SDO, the separation
angle was 78.39◦ and between STEREO B and SDO, 71.16◦. This means that SDO was
located approximately in the center between the STEREO spacecraft and limb events on
STEREO were seen close to the disk center in SDO. At these separation angles we per-
form the reconstruction from two views and also from three views simultaneously.
The 3D reconstructions for the prominence and the associated CME were performed us-
ing MBSR (Multi-view B-spline Stereoscopic Reconstruction) described in Chapter 2.
For all structures investigated, we always tie-point theirvisible upper edge. We choose
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not to follow very small scale structures of the filament of the size of a few pixels because
they are highly variable and difficult to trace in time. Both the prominence and the CME
core material are sufficiently concentrated along a 1D axis so that the position of their top
rim is well discernible in the images for most of the time and it is well approximated by
the reconstructed curve. Note that the time series of these curves can only reflect the mo-
tion normal to the curves. The physical motion of the plasma may include an additional
component along the reconstructed curve which we cannot resolve.
In Fig. 4.16 we overplotted examples of the projection of the3D reconstructed curve and
the tie-points onto the images from STEREO A, B and SDO. A measure of the recon-
struction error is the distance between the tie points and the reconstructed curve.

(a) (b) (c)

(d) (e)

( f ) (g)

Figure 4.16: Overplot of the projection of the 3D curve (yellow) and the tie-points (green) onto
the EUVI images from a) STEREO B, b) SDO, c) STEREO A and onto the COR1
images for the CME core in d) STEREO B and e) STEREO A and for theCME
leading edge in f) STEREO B, g) STEREO A.

.
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Using EUV 304 Å image data from STEREO B and SDO we first reconstruct the
prominence from 5:26 UT till 7:36 UT. For this period we used only two views because
in the images from STEREO A the prominence is seen edge on so that the front leg of the
prominence covers exactly the rear leg. For this reason, we could not clearly discriminate
the legs in the images from STEREO A. For the period 7:46 UT to 8:56 UT we used
simultaneous data from all three spacecrafts. After 9:06 UT, the prominence could no
more be properly identified in the AIA/SDO data because the projection of its upper
edge in the image was very close to the solar limb. Therefore,we used again only two
views, STEREO A and B, from 9:06 UT to 9:26 UT. After 9:26 UT, the top part of the
prominence had left the field of view of EUVI. The reconstructions are drawn in red in
Figure 4.17 until 09:26 UT.

Figure 4.17: The 3D reconstruction of the prominence from EUVI images (red), the reconstruction
of CME core using COR1 images (blue) and the CME leading edge (green). The
reconstructed curves of the prominence and the CME core (times interval: 9:30 UT -
9:45 UT) (top left panel); the reconstructed curves of the prominence and core of the
CME for all times (top right panel) and of the prominence and LE of the CME from
two different view directions (bottom panel).

For the determination of the spatial position of the core andthe leading edge of the
CME, we used data from COR1/STEREO. Since there were no coronagraph data available
from LASCO C2/SOHO, we could only use images from two space craft for their recon-
struction. For the first frames from 9:30 to 9:45 UT we used data from COR1, the entire
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visible core structure (blue curves in Fig. 4.17 top left panel) could be reconstructed.
After 9:45 UT, we had to split the reconstruction of the CME core into three parts,

namely the west and east extremities and the top because the signal of the core material
became rather faint and the connection between these three parts could not be reliably
determined any more. In the top right panel of Fig. 4.17, the blue curves represent the
3D reconstructions of the core of the CME at all available times. The last time when we
could discern the core signal was at 10:35 UT.

Since the distribution of the core material spread out with time, we found it worthwhile
to present our reconstructions at different scales for different times in order to display
more details. Thus the left panel shows the reconstruction only until 9:45 UT while the
right panel shows it on a different scale until 10:35 UT.

For the visible leading edge of the CME cloud the relationship between the recon-
structed curve and the object to be reconstructed is less clear. The visible edge is proba-
bly the projection of an extended 2D surface forming the CME hull. For two viewpoints,
the curve resulting from a stereoscopic reconstruction approximates the intersection of
the CME hull approximately in a plane normal to the mission plane of the two observing
space craft. Liewer et al. (2011) analyzed the position of the tie-point reconstruction rel-
ative to the CME surface. Because the two spacecraft involved in the reconstruction see
different parts as the leading edge the tie-point reconstruction yields a curve somewhere
above the CME surface (see Fig. 4.18). Another limitation ofthe LE reconstruction is
that we may reconstruct a different part of the CME surface at different times. Therefore
the apparent motion of the reconstructed curve only indirectly reflects the physical motion
of the surface. Being ahead of the core material, the leadingedge left the field of view

Figure 4.18: Sketch representing effect of different apparent leading edges. The black croissant
shape is representing the CME hull. STEREO A/B spacecraft position is represented
in red/blue, the dashed rays show lines of sight from the spacecraftseeing the ex-
tremes of the CME’s hull and the red/blue curves are the actual leading edge observed
in the images from STEREO A/B. The green curve which lies at the intersection be-
tween the two view directions is the reconstructed leading edge curve.

earlier than the core and we could reconstruct the LE only until 10:25 UT. Two different
perspectives of the 3D reconstruction of the prominence from EUV images (red curves)
and of the LE (green curves) of the CME are shown in the bottom panel of Fig. 4.17.
The image on the left shows how the top and the trace (see Section 4.4.3.1 for a detailed
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description of the term trace) of the structures evolve and the image on the right shows
more clearly how the structures are positioned with respectto each other. The green LE
curves shown in Fig. 4.17 are just an approximation to the more extended CME surface.
As mentioned above, the reconstructed LE curve lies approximately in a meridional plane
somewhat above the intersection of the CME surface with a plane normal to the mission
plane of the two observing space craft. The CME surface attached to it may well have a
substantial elongation in east-west direction.

4.4.3 Data analysis and results

In general, prominences are dynamic structures and they cancontain considerable hori-
zontal motion along the prominence axis with speeds of several tens of km s−1 (Martin
1998) even before their eruptive phase. It is difficult therefore to track individual fea-
tures of the prominence with time. From our reconstruction,we reduce the distributed
prominence to a single 3D curve which represents the top rim of the prominence. The
kinematics we are going to determine is based on the evolution of this curve which does
not resolve the plasma motion along the prominence.

4.4.3.1 Height-time evolution

To characterize the kinematics of the prominence, the CME core and the CME leading
edge, we determined the pointCtop of the respective reconstructed curve at the largest
altitude above the surface for each timet. These points are represented as blue dots in
the 3D reconstructions in Fig. 4.17, bottom-left panel. Thetime evolution of the radial
distance ofCtop of the prominence (black points) and core of CME (red points)from the
Sun center is plotted in Fig. 4.19.

Figure 4.19: Height-time evolution ofCtop of the prominence (black points) observed in EUVI
and CME core (red points) observed in COR1.
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The continuity of the respective curves in Fig. 4.17 and theCtop-heights in Fig. 4.19
suggests that the prominence and the CME core material were collocated. The promi-
nence rises slowly at the beginning of its evolution and is strongly accelerated only after
approximately 09:00 UT (see the Fig. 4.23). By this time, thetop of the prominence had
already reached an altitude of 1.5 R⊙. Joshi and Srivastava (2011a) analyzed the evolution
of the same prominence. They also observed the two distinct phases of the prominence
eruption, but missed to mention that the transition to the intensified acceleration phase oc-
curred rather late, only when the prominence had already reached an appreciable altitude
of ≥ 1.5 R⊙. The prominence mass is therefore not accelerated by a localexplosive-like
event close to the surface but receives its main acceleration high above the surface of the
Sun. The continuous acceleration at altitudes beyond 1.5 R⊙ is evidence of the magnetic
nature of the accelerating force. The height-time curve forCtop of the leading edge is
displayed in Fig. 4.20.

Figure 4.20: Height-time evolution ofCtop of the CME leading edge.

We could see the leading edge only in the coronagraph images where it appeared at
09:10 UT for the first time at a heliocentric distance of 2.4 R⊙. Until about 10 UT it rises
with an almost constant velocity of 1.5-1.8 R⊙ hr−1.

It is desirable to extend the kinematic description of the curve to more points than just
its top point. However, since we cannot easily identify points along the prominence, the
CME core or the leading edge at successive times, we can only determine the component
of the expansion velocity normal to the curve tangent from the reconstructed curves.

For this purpose, we determine local distances between the curves at successive times
to describe the kinematics of the prominence and the CME core. We calculate these
distances as follows: Given a pointci(sj) on the curveci at timeti at a curve parameter
sj, we determine two parameterss∗1 ands∗2 on the curveci+1 at timeti+1 such thatci+1(s∗1)
is the closest point onci+1 to ci(sj) andci(sj) is the closest point onci to ci+1(s∗2) (see
the sketch from Fig. 4.21). The final curve parameters′j on curveci+1 which we associate
with ci(sj) is iterated betweenmin(s∗1, s

∗
2) andmax(s∗1, s

∗
2) such that the line [ci+1(s′j), ci(sj)]
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Figure 4.21: Sketch showing a phase from the calculation of the distances between two consecu-
tive curves,ci andci+1. The pointsj from the curveci is the point which we want to
trace on the curvec j+1; the segmentsj s∗1 is perpendicular on the tangentt at the curve
Ci ; the segmentsj s∗1 is perpendicular on the tangentt at the curveci+1.

makes the same angle with the tangentsd
dsci(sj) and d

dsci+1(s′j) along the respective curve.
Note that, our construction could be reversed, i.e. using the same algorithm, we re-obtain
ci(sj) starting fromci+1(sj).
This way, we traced three pointsj along the reconstructed curves of the prominence and
the CME core. One of these points initially agreed withCtop and two are initially located
equidistantly towards either side ofCtop along the curve. The traces are represented in
Fig. 4.17 as black dots and termed in the followingCtop_prom , Cwest_prom , Ceast_prom and
Ctop_core, Cwest_core, Ceast_core, respectively.
The height-time diagrams of the trace points are displayed in Fig. 4.22.

Figure 4.22: Height-time evolution of trace of the parts of the prominence (dark colors) and CME
core (light colors).

93



4 Application of the Multi-view B-spline Stereoscopic Reconstruction method for the
analysis of two erupting prominences

We can see that there is no significant difference in the riseCtop (Fig. 4.19) and
Ctop_prom (Fig. 4.22, black symbols). This can be also observed in the positioning of the
pointsCtop andCtop_prom in Fig. 4.17. As expected, the trace pointsCeast andCwest on the
flanks of the prominence and CME core curves rise more slowly than the central section
of the respective curves, because their traces bend away from the radial propagation direc-
tion. However, their speeds differ considerably, with the western branch (green symbols
in Fig. 4.22) being significantly faster than the eastern branch (blue symbols).

The discontinuity of the eastern and western trace points inFig. 4.22 between the
prominence and CME core traces is artificial and due to the fact that the trace points had
to be repositioned for the CME core traces.

4.4.3.2 Velocities of the prominence and the CME

The evolution of the velocities ofCtop and of the trace pointsCtop_prom , Cwest_prom and
Ceast_prom are plotted in Fig. 4.23, respectively Fig. 4.24. The velocity of Ctop is obtained

Figure 4.23: Velocity ofCtop of the prominence (black points) and the CME core (red points).

by numerical differentiation from the height-time plot (Fig. 4.19) without smoothing. The
enhanced noise for the coronagraph data (red dots) is a result of the coronagraph’s reduced
spatial resolution. The velocities ofCtop_prom , Cwest_prom andCeast_prom were derived from
the trace point distances and therefore reflect an absolute velocity including an azimuthal
component and not just the radial component as for theCtop.

From both diagrams it is apparent that the transition from slow to an accelerated rise of
the prominence/core material occurs close to 8:30 UT. After this time, the radial velocity
of Ctop displayed in Fig. 4.23 increases almost linearly with approximately 150 kms−1

per hour until the end of our observations. The velocity of the trace pointsCprom in Fig.
4.24 shows more scatter. Within the scatter, the measured velocities of the prominence
trace points are almost as high as the velocity ofCtop. However, as Fig. 4.17 reveals,
the trace points bend away from the radial direction and the velocity of the eastern and
western trace points obtain a considerable azimuthal component. Hence the prominence
material appears to spread out from a virtual center at abouta distance of 1.5 R⊙ from the
Sun’s center.
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Figure 4.24: Velocity of the trace points of the prominence.

4.4.3.3 Propagation direction

We have defined earlierCtop as the highest point of the structure. Its instantaneous direc-
tion from the Sun’s center changes in time.

Figure 4.25: left panel: variation of latitude (blue and green dots) and longitude (black and red
dots) of the prominenceCtop derived from EUVI images (black and blue points)
and from coronagraph images (red and green dots); right panel: variation of latitude
(green points) and longitude (red points) with time for theCtop of the CME leading
edge derived from coronagraph images.

The heliographic angles of this direction ofCtop(t) are presented in Fig. 4.25. For the
first three hours, till 8:56 UT, the prominenceCtop maintains its initial direction except for
a slight deflection towards the equator by about 5 degrees. After 8:56 UT, the direction of
Ctop starts to be continuously bend away from the equator by about10 degrees/hour and is
also changing its latitudinal direction. Recall that priorto 9:30 UT,Ctop was derived from
the prominence material detected in EUV Helium II line. After 9:30, we traceCtop(t)
from the CME core material observed in the white light coronagraphs (red symbols for
longitude, green symbols for latitude in Fig. 4.25, left panel) instead. In this respect prop-
agation of the CME core material appears as a seamless continuation of the propagation
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direction of the prominence material.
For theCtop of the CME leading edge we see the same deflection away from the

equator and towards larger longitudes in the evolution ofCtop(t) as for the core material
after about 9:15 UT (see Fig. 4.25).

4.4.3.4 Angular width

In order to characterize the angular span of the structures,we define an opening angle of
the prominence and the leading edge curves at given heliocentric distances to the distance
of Ctop. These distancesr i are chosen tor i = 19/20 |Ctop|, 18/20 |Ctop|, 17/20 |Ctop| and
16/20 |Ctop| for the prominence and the CME core curve. The angular widthsAWi are
defined by the heliocentric angle between the two intersectionsx of the reconstructed
curve with the planeCtop · x = r i (points A and B in Fig. 4.26).

Figure 4.26: Sketch showing the selection of the angular width (AW). The orange circle represent
the solar disk and the black curve (ci) is the reconstructed curve at a certain time.
Ctop from the curveci is the highest point above the solar surface from the center of
the Sun. r j , j = 1..4 is the selected point at different distances from theCtop. The
perpendicular line at the segment [CtopO] passing throughr j intersect the curveci in
the points A and B. The angle AOB represent the angular width of the reconstructed
curve.

Even though we had to split the CME core reconstruction for some instances into
three parts, the opening angles could be calculated for these structures because we could
always find a unique pair of intersections for the selectedr i.
The evolution of these opening angles are plotted in Fig. 4.27 for the prominence (ob-
served in He II until 09:35 UT) and the CME core (observed in white light after 09:35
UT). During the rise of the prominence, the opening angle widens by≈ 8 ◦. This tendency
of the opening angles can be also noticed in the 3D reconstruction of the curves (Fig. 4.17
- red curves).
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Figure 4.27: Variation of the opening angles of the reconstructed prominence and CME core struc-
ture at different distances from the solar center as given in the legend.

In contrast, the CME core material visible after 9:35 UT seems to be much more con-
centrated in angular extent with opening angles only about half as large as those observed
for the prominence. It might be that the bright CME core is made visible in the coro-
nagraph mainly by resonance scattering at neutral hydrogen(Mierla et al. 2011). This
discrepancy in angular width could then be explained by a varying concentration of the
neutral hydrogen along the rising prominence, such that theconcentration drops below
visibility towards the ends of the structure. For a similar reason, the coronagraph signal
might have faded away on some sections along the prominence axis after 9:45 UT. Since
the Thomson scattering signal is proportional to the local plasma density, the Thomson
scattering signal should be much more persistent in time.

4.4.3.5 Rotation

Bemporad et al. (2011) analyzed the rotation of an erupting prominence arc observed in
STEREO EUVI and COR about its direction of propagation. The angle of rotation was
defined as the angle between the meridian plane through the center of the filament between
the two filament foot points and the plane spanning the two foot points of the filament and
the Sun center (see Fig. 4.28). The initial angle of rotationtherefore characterizes the
orientation of the prominence in Hα images before the eruption.

Let θi andφi denote the latitude and longitude of the prominence foot points i = 1, 2.
The segments defines the length between the prominence foot points and thesegmentl
defines the projection of this length onto the meridian plane. They are given by:
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s= R⊙[(cosθ2 sinφ2 − cosθ1 sinφ1)
2 + (cosθ2 cosφ2 − cosθ1 cosφ1)

2 + (sinθ2 − sinθ1)
2]1/2 ,

(4.16)

l = R⊙[(cosθ2 sinφ1 − cosθ1 sinφ1)
2 + (cosθ2 cosφ1 − cosθ1 cosφ1)

2 + (sinθ2 − sinθ1)
2]1/2 .

(4.17)

The rotation angle is obtained fromα = arccos(l/s).
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Figure 4.28: Cartoon presenting the Solar disk as black circle; [NS] define the meridian plane
and [AB] the plane defined by the foot points of the reconstructed curveci which
intersects the meridional plane in Q. The angle between the two planes define the
rotation angle (θ) of the reconstructed curve.

After the filament eruption, the orientation angles of the filament for various solar radii
r i can be calculated in the same manner if the filament foot points are replaced by two
intersection points of the reconstructed filament curve with the heliospheric of radiusr i.
We have adopted the method of Bemporad et al. (2011) for the derivation of the rotation
angles of our prominence/core reconstruction. The calculated rotation angles are plotted
in Fig. 4.29. For various heightsh we chose the same radii as for the determination of the
opening angles.
In the first part of the eruption until around 9:20 UT, the prominence undergoes a slow
counterclockwise rotation. The angles at all four heights evolve similarly, so that the
prominence rotates almost rigidly. Around 9:25 UT, the prominence leaves the field of
view of EUVI but the CME core structure becomes visible in COR1. At this time, the
prominence and the core material have the same angular orientation about 70 degrees with
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respect to the central meridian plane. However, the core structure seems to reverse the
sense of its rotation compared to prominence and increases its rotation speed dramatically
until the core material is almost located in the meridional plane. From the COR images
one can clearly see the rotation of the core structure (see Fig. 4.16). The reconstruction of
the twisted core material is shown in Fig. 4.17 (blue curves from bottom left part). Joshi
and Srivastava (2011b) and Li et al. (2011) only observe a counterclockwise twist. They
seem to miss the backwards rotation during the late stages ofthe evolution.

Figure 4.29: Orientation angle of the prominence (before 9:30 UT) and CME core (after 9:30 UT)
with respect to a meridional plane centered on the respective structure.

4.4.3.6 Cavity

If the cavity of a CME is present then it is interpreted as the interior cross section of the
erupting flux rope (Patsourakos et al. 2010) (see Section 4.2.1).
As described in Section 4.2.1, the prominence material resides in the bottom field-line
pockets of the flux rope. In this sense, the flux rope diameter should approximately equal
the visible cavity size defined as the distance betweenCtop of the prominence and core
material andCtop of the CME leading edge. The variation of this distance is plotted in Fig.
4.30 (upper panel). In Fig. 4.30 (lower panel) we show the relation between the radial
cavity size and the opening angle of the prominence as definedabove. While the cavity
size is a measure of the radial thickness of the flux rope the opening angle of the CME
represents the azimuthal size of the flux rope. We observe that these two parameters are
not well correlated in time. From the evolution of the opening angle of the prominence-
core material we can see that the lateral size narrows with time (see Fig. 4.27).
The distance between the top of the prominence and the leading edge is observed to in-
crease until about 10:25 UT. A comparison of Fig. 4.19, 4.20 shows that the top part of
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the leading edge propagates with an almost constant speed of220 km s−1 while the promi-
nence/CME core gradually accelerates and reaches a comparable radial velocity only at
about 10:25 UT. By this time, the cavity has reached a size of 1.3 R⊙. The increasing size
of the cavity represents a signature of the expanding flux rope.

Figure 4.30: upper panel: Variation of the CME cavity size with time; lower panel: relation be-
tween cavity size and opening angle of the prominence-core at different distances
from the Sun’s center.
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4.4.4 Discussion and summary

The eruption of the prominence can be described as a loss of the balance between the
magnetic pressure and magnetic tension in the corona (Aulanier et al. 2010). The mag-
netic pressure forces tend to expand the magnetic configuration in the upward direction
while the magnetic tension tends to restrain it downwards (Linker et al. 2003). For the
prominence eruption studied, there could have been a complex magnetic reorganization
which made the prominence system lose its equilibrium.
One contribution to this reorganization could have been local cancellation of flux at the
photospheric inversion line below the main axis of the prominence. As the flux cancels,
low-lying magnetic field lines lose their connection to the photosphere and form a flux
rope. This flux rope supports the prominence material and as the flux cancellation con-
tinues, it slowly starts to rise. We can observe this behavior in the first part of the height
time profile of the prominence (Fig. 4.19, 4.22).
Another contribution to the reorganization may have been produced by the change of the
global coronal magnetic topology. As we have already mentioned above, the eruption
of this prominence is the second in a series of eruptions. Theeruption before may have
weakened the coronal magnetic tension at the prominence site which subsequently trig-
gered the fast eruption phase of the event analyzed here (Fig. 4.19, 4.20). A similar
evolution was numerically simulated by Török et al. (2011) with the aim to model the
chain of prominence eruptions from 1 August 2010. They configured the initial condi-
tions of the simulation in agreement to the observed magnetogram prior to the eruption
sequence. The initial configuration of the simulation is shown in Fig. 4.31a. The coronal
field contains four flux ropes surrounded by magnetic arcades. The flux ropes (FR) are
numbered according to the eruption order. Flux ropes FR2 andFR3 are embedded in a
pseudo streamer (green arcades) enveloped by a streamer (pink lines), while FR1 is over-
laid by a streamer arcade. Flux rope FR2 is equivalent with the prominence studied in
our analysis. By imposing a flow at the bottom boundary towardthe inversion line below
FR1 an expansion of this flux rope could be triggered. FR1 rises slowly to a critical hight
followed by a rapid acceleration. As the FR1 expands, it compresses the streamers of
FR2 and 3 (see Fig. 4.31b). This in turn triggers a reconnection between the streamer
field lines of FR2 and FR3 and the field lines of the pseudo streamer above FR2. As a
consequence of the removal of stabilizing flux above FR2, themagnetic tension on FR2
decreases and the flux rope is allowed to rise. From simulations of Török et al. (2011)
shown in Fig. 4.31b, a counterclockwise rotation of FR2 during the initial phase of the
rise encounter can be observed which we have found in our observations. One of the
conclusions of the Török et al. (2011) paper is that the chainof eruptive events is related
to the structural properties of large-scale coronal field prior to the eruptions.
The eruption of the prominence analyzed here was also reconstructed and analyzed by
Joshi and Srivastava (2011b) and Li et al. (2011). In both of these papers, the authors
reconstruct different features of the prominence and they use only two view directions for
their reconstruction, even though Li et al. (2011) analyze the event using data from three
satellites.

In this work, we make use of simultaneous data from three satellites and reconstruct
curves which represent the 3D location of the highest ridge of the prominence, the CME
core material and the leading edge. As explained in Chapter 2, Section 2.3, with our new
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4 Application of the Multi-view B-spline Stereoscopic Reconstruction method for the
analysis of two erupting prominences

(a) (b)

(c) (d)

Figure 4.31: Figure taken from Török et al. (2011), showing magnetic field lines with fixed foot-
points and the normal component of the magnetic field at the bottom plane, where red
(blue) depicts positive (negative) fields. Orange lines belong to the flux ropes, green
ones to the initial pseudo-streamer lobes, and pink ones to initially closed or (semi-)
open overlying flux. Panel (a) shows the configuration after initial relaxation and
panels (b) - (d) show the successive flux rope eruptions and ambient field evolution
(Török et al. 2011).

method, we do not need to match individual tie-points in different images but we directly
solve for the optimal spline representation of a 3D curve which matches the tie-points
in all images. We are convinced that our procedure yields a more reliable and precise
reconstruction compared to those of the previous authors.

Joshi and Srivastava (2011b) analyzed the evolution of the position, height and ac-
celeration of the prominence features and Li et al. (2011) investigates the prominence
velocity, using EUVI data. Joshi and Srivastava (2011a) made also an analysis of the
CME triggered by the prominence eruption. They derived the 3D position, velocity and
acceleration of the top point of the leading edge and of the core of the CME. With our
analysis of the CME core and the leading edge of the CME we extend their analyze. While
Li et al. (2011) found a maximum acceleration of around 40 m s−2 for the top part of the
prominence, Joshi and Srivastava (2011b) only obtain a maximum acceleration of around
11 m s−2. We have obtained a maximum acceleration of 33 m s−2 for the prominence
Ctop as observed in EUVI data. Both authors noted the counterclockwise rotation of the
prominence during the easy rise phase. From our analysis we found two phases of the
rotation: an initial slow counterclockwise rotation of theprominence and a subsequent
fast clockwise rotation of the core material.

Due to the lack of a quantitative analysis, the evolution of the rising prominence, its
core material and CME surface is often assumed to be self-similar: it can be described
by a single scaling parameter which grows in time while the intrinsic shape remains un-
changed. From our analysis we find that the evolution is much more complex. In future
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4.4 4D reconstruction of a prominence-CME from two and threeviews

it would be desirable to relate details of the kinematic evolution to features of the coronal
field. Since we presume that the major driving force is of magnetic origin, we expect that
such relations exist.

In our analysis we try to follow the evolution of the eruptionfrom the time of the
initial rise of the prominence until the CME core leaves the field of view of the COR1
coronagraph. The prominence and CME core material do not evolve in a self-similar
way. We calculate various parameters which characterize the 3D curves representing the
prominence and CME core location.

The prominence and the CME core were observed with different instruments, the
EUVI telescope and the coronagraph, respectively, which have slightly overlapping fields
of view. From our analysis we find a good continuity of the radial motion of the respective
top sections of the structures, and a continuous angle of rotation about the propagation
direction as the prominence leaves the EUVI field of view and the CME core comes into
sight of COR1. However the two structures are discontinuousin their lateral extent. From
monitoring the opening angles we find that while the prominence spans over about 40
degrees, the CME core appears only about 10 degrees wide.

Using the method of Bemporad et al. (2011), we calculate the rotation at different
heights for the prominence and the CME core. We could see thatdifferent parts of the
structures rotate first rigidly but when the core material reaches about 2 R⊙, its top part
rapidly rotates in reverse direction.

In the overall dynamic evolution we could distinguish two phases, a slow and an ac-
celerated rise of the prominence/CME core, the latter starting at about 8:30 UT. After
this time, this structure is accelerating gradually to speeds above 200 km s−1 in roughly
2 hours while the leading edge seems to have been launched at the same time, as the
prominence/core. It propagates from the beginning with a constant speedof 220 km s−1.
During this second phase, we see an involved motion of the prominence/CME core mate-
rial which is far from a rigid or a self-similar evolution. After 8:30 UT, when the major
acceleration sets in, the top part of the prominence starts also to be deflected in longi-
tude and after an intermediate bending towards the heliographic equator, its propagation
direction turns steadily towards higher latitudes. The same changes can be seen in the
propagation direction of the top section of the leading edge, though somewhat less vig-
orous. It should be recalled that the LE curve cannot be associated with a clear localized
ridge of plasma material, but is the result of the projectionof an extended surface onto
two observing view directions. Hence changes in the LE curvemay also reflect intrin-
sic deformations of the surface. The evolution of the visible structures of an erupting
prominence is therefore very complex. It is very probable that the accelerating forces are
largely to magnetic. The complex rotation of the prominencemay be due to the presence
of helically twisted fields.
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5 Coronal magnetic field modeling
using stereoscopy constraints

In this chapter we will present the tests which we have performed for the S-NLFFF
(Stereoscopic-NLFFF) method described in Chapter 2. Partsfrom the text of this chapter
have been extracted from the paper “Coronal magnetic field modeling using stereoscopic
constraints”published in Astronomy& Astrophysics journal.

5.1 Introduction

The S-NLFFF method has already been explained in Chapter 2, Section 2.5. It is an
extension of the Nonlinear Force Free Field (NLFFF) variational method used for the
extrapolation of the magnetic field from the photosphere into the corona.

S-NLFFF minimizes a scalar cost functionLtot =
∑4

n=1 Ln (see Eq. 2.39) which con-
sists of four terms Łn quantifying constraints which the final solution should satisfy. The
first term Ł1 (Eq. 2.36) corresponds to the Lorenz-force equation, the second term Ł2 (Eq.
2.37) corresponds to the solenoidal condition and the thirdterm, Ł3 (Eq. 2.38) measures
the match with the observed photospheric vector magnetograms. The last term which is
a new feature of our method, Ł4 (Eq. 2.42) constrains the magnetic field to be aligned
to some selected loops generally obtained from a three dimensional stereoscopic recon-
struction. The minimization of the functional Łtot is achieved by a Landweber iteration as
described in Chapter 2. At the end of the iteration process, some residual values of the
cost function will be obtained. We denote these values as Ł∞

i , i=1...4. These indicate the
convergence of the iteration and are used in the next section(5.2) to evaluate the S-NLFFF
performance.

5.2 Testing the S-NLFFF (Stereoscopic-NonLinear Force
Free Field) method

We test the optimization method S-NLFFF described in Chapter 2 using a semi-analytical
force-free field solution proposed by Low and Lou (1990). From this field solution we cal-
culated various simulated input data for the tests. The set of solutions of Low & Lou has
been used by a large number of authors to perform tests of NLFFF codes, like (Wiegel-
mann and Inhester 2010, Valori et al. 2007, Thalmann et al. 2011).The solution was de-
rived by Low and Lou (1990) by solving the Grad-Shafranov equation for an axisymmet-
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5.2 Testing the S-NLFFF (Stereoscopic-NonLinear Force Free Field) method

ric nonlinear force-free field in spherical geometry for which the magnetic field can be
expressed in common spherical coordinates as

B =
1

r sinθ

(

∂A
∂θ

r̂ −
∂A
∂r
θ̂ + Qφ̂

)

. (5.1)

Here A is the flux function which is independent of the azimuthal angleφ. Q takes care of
φ component ofB which becomes force-free if Q depends only on A withα = dA

dQ (Low
and Lou 1990). The flux function then satisfies the Grad-Shafranov equation

∂2A
∂r2
+

1− µ2

r2

∂2A
∂µ2
+ Q

dQ
dA
= 0 , (5.2)

whereµ = cosθ. Low & Lou restrict to the special caseα = dA
dQ ∼ A1/n. The solutions are

of the form:

Q(A) = aA1+ 1
n , (5.3)

A(r, θ) =
P(µ)
rn
, (5.4)

wherea andn are constants and the scalar function P satisfies a nonlinearmodification of
the Legendre differential equation (Low and Lou 1990)

(1− µ2)
d2P
dµ2
+ n(n+ 1)P+ a21+ n

n
P1+2/n = 0 , (5.5)

which has discrete eigenvalues since the boundaries are fixed. Thenan are the eigenvalues
for parametern ∈ N.

A value ofn = 1 anda = 0 corresponds to a linear dipole field.
In our and similar tests, the center of the spherical coordinate system is placed below

the bottom surface of the computational box and, in order to break the symmetry, its axis
is tilted obliquely with respect to the edges of the computational box.

For our investigation we used two of the Low & Lou semi-analytical force free field
solutions:

Case I : the depth for the center of the solution was chosen atl = 0.3 times the edge
length of the computational box, a tilt angle ofΦ = 0.6·π/4 degrees and a multipole order
n = 1. The computational box has 64 x 64 x 32 grid points.

Case II: the depth for the center of the solution was chosen atl = 0.3 times the edge
length of the computational box, a tilt angle ofΦ = 4 · π/5 degrees and a multipole order
n = 3. The computational box has 64 x 64 x 32 grid points.

For both Cases (I and II) we generate by numerical minimization of Ł1...Ł3 a discrete
reference field as the solution of the conventional NLFFF problem with the boundary data
from the analytical Low and Lou field solution. This field is close but not identical to the
analytic Low and Lou field. From this discrete reference field, we generate three (for Case
I) and ten (for Case II) loops with a fourth order Runge-Kuttamethod. During the loop
selection process, we encountered some problems which willneed to be investigated in
the future. The problems is related to the reference fieldb. Initially, we tried to choose
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5 Coronal magnetic field modeling using stereoscopy constraints

loops randomly, in order to have a large coverage in the computational box. Unfortunately,
some traced loops show wiggles (see Fig. 5.1 for some examples) which are unlikely to
occur for the Low & Lou model field.

Figure 5.1: Examples of loops with wiggling.

The reason for these wiggles is probably numerical but couldnot yet be explained
exactly.

In consequence, we chose only loops which does not present wiggles. These loops,
termedconsistent loops, will be used as the source for the loop data in our new variational
term, in order to simulate the 3D reconstructed loops from observations.

We have made sure that we recover the reference solution fromthe new S-NLFFF
code if we use the correct surface boundary data of the reference field and theconsistent
loopsin theL4 term. This test essentially proves that our discretizationis consistent. The
angle between the loop tangents and the field solution shouldbe zero in this case. Because
of the numerical roundoff errors mainly from the loop tracing, the actual deviation angles
we recover have an average of less than one degree and a maximum value of 2.8 degrees.
We will consider this maximum angle as ourstandard angle errorwhich yields the upper
bound for the deviation with which we can determine the alignment of the field and the
loops.

When we apply our code to measured data, we cannot hope that boundary and loop
data are consistent. We therefore perform two further teststo demonstrate that our code
can help to improve the results obtained with conventional extrapolation calculations:
1) We reconstruct the Low and Lou solution in the case when thebottom surface data and
the loop data are not consistent.
2) We reconstruct the Low and Lou solution in the case when theloop data is consistent
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5.2 Testing the S-NLFFF (Stereoscopic-NonLinear Force Free Field) method

but the bottom surface data is contaminated by noise.
For both tests, we try to determine the optimum regularization parameterξ4 of our new
variational term Ł4. The relative magnitude of the other regularization parametersξ1, ξ2, ξ3
has been determined before (Wiegelmann 2004) and is not changed.

5.2.1 Testing the method for Case I

In Fig. 5.2 we show the three components,Bx, By, Bz, of the Low & Lou magnetic field
of our choice of parameters.

Figure 5.2: The three Cartesian components of the Low & Lou synthetic magnetogram used as
bottom boundary in the 64x64x32 pixels computational box. The top row shows
the Bx(left) and By(right) components, the bottom row theBz(left) component and
an oblique view on theBz magnetogram with the three loops extracted for our tests
(right).

5.2.1.1 Inconsistent surface and loop data

In this test, we modified theconsistent loopcoordinates by multiplying thezcomponents
of ci(s) with 1.05, whereci(s) represents the 3D loop position in terms of the loop param-
eters along its length andi stands for different loops (see Chapter 2, Section 2.5.1). Due
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5 Coronal magnetic field modeling using stereoscopy constraints

to this manipulation, the angles between theconsistent loopsand themodified loopsat the
same loop parametersdeviate by up to 20 degrees. Themodified loopsdo not fit any more
to the boundary data and there is very probably no force-freemagnetic field which can
satisfy both input data exactly. Under these conditions, not all terms Ł∞i can be iterated
to small values. Note also that if thez components of a magnetic field are enhanced in a
similar way, the resulting field is not divergence-free any more. It is therefore probable
that a magnetic field which fits the threemodified loopsdiffers considerably from the ref-
erence field. In Fig. 5.3 we display the anglesθi(sj) between the loop tangentt i(sj) of the

Figure 5.3: The anglesθi(s) between the tangent of themodified loops i= 1, 2, 3 and the interpo-
lated magnetic fieldB(ci(sj)) at curve parametersalong the loop. The different colors
represent the angles for magnetic field models obtained withdifferent regularization
parametersξ4 =0.9 (black), 0.1 (cyan), 0.01 (blue), 0.001 (green) and 0.0001 (red).

modified loop input data and the magnetic fieldB returned from the S-NLFFF code for
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various values ofξ4 and for each loopi. The angles were determined by interpolatingB
given on the computational grid toci(sj), wheresj is the loop parameter along its length.

Note that forξ4 = 0, we actually run the conventional NLFFF code and we obtain
the reference field as a result. In this case, the anglesθi(sj) just represent the amount
of modification applied to obtain themodified loops. With ξ4 increasing, we force the
returned field more and more to become aligned with the modified loops so thatθi(sj)
decreases. The angles vary significantly along the loop and differently for different loops.
With ξ4 near unity, we can reduce the average angles for all loops to well below one
degree. For theξ4 = 0.90 the maximum angle is 1.24 degrees for loop 1, 0.75 degrees for
loop 2, and 1.34 degrees for loop 3. To have a better view of thedependence of the angles
θi on the regularization parameter, we also show the decrease of the root mean square
angle withξ4 for each loop in Fig. 5.4. The error bars have the size of thestandard angle
error determined above.

Figure 5.4: Dependence of the root mean square angleθ with ξ4 for eachmodified loopas shown
in Fig. 5.3.

This behavior is well reflected in the dependence of Ł∞
4 on the regularization param-

eterξ4 shown in Fig. 5.5 along with the variation of the other terms Ł∞
i . Again, ξ4 = 0

represents the reference field solution and the values of Ł∞
i in this case can serve as refer-

ence values which can be achieved with the discretization wehave chosen. As expected
from the improved anglesθi(sj), the term Ł∞4 decreases with increasingξ4.

However, the better we fit the loop data, the bigger the discrepancy with the surface
data as reflected in Ł∞3 and for large valuesξ4 > 1 also with the force-free and divergence-
free conditions in Ł∞1 and Ł∞2 . Hence with the choice ofξ4, we can shift the emphasis
between the boundary magnetogram and the loop data if both are inconsistent with each
other. Ifξ4 is smaller than unity, we obtain a nearly force-free magnetic field as proven by
the only small variations of Ł∞1 and Ł∞2 with ξ4 in this range. For valuesξ4 > 1, the values
of Ł∞1 and Ł∞2 rise indicating that the field model increasingly deviates from a force-free
and divergence-free solution. The optimal value ofξ4 which minimizes

∑

log Łi therefore
lies near unity. In Fig. 5.5, right panel, we show the dependence of

∑

log Łi from logξ4.
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5 Coronal magnetic field modeling using stereoscopy constraints

Figure 5.5: The left panel shows the dependence of log Ł∞
1 (black), log Ł∞2 (red), log Ł∞3 (green)

and log Ł∞4 (blue) with logξ4 for correct bottom data and modified loop data. The
right panel shows the dependence of

∑

i log Ł∞i with logξ4 for correct bottom data and
modified loop data. The position of the minimum is expected toyield the optimal
value forξ4.

5.2.1.2 Noisy surface data

In this test we use theconsistent loopdata as input but we modify the boundary data
by random noise. It should be noted that a force-free field cannot be found for every
boundary condition and by adding noise to the boundary data,it very probably becomes
inconsistent with a force-free field above, even if we do not constrain the problem further
by additional loop data. The incentive of the test is to show that adding the loop data
improves the field model we compute in the end.

In Fig. 5.6 we show the modified boundary data.

Figure 5.6: The horizontal components of Low & Lou magnetogram modified by adding noise.
The vertical component is unchanged as in Fig. 5.2.

The noise added to theBx andBy components of the magnetic field amounts to about
3% of the maximum absolute values in the respective component. Bz is left unchanged
because typically the horizontal (or plane-of-the-sky) components which are derived from
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Hanle-effect measurements are much less precise than the vertical (orline-of-sight) com-
ponent determined by the Zeeman-effect (Foukal 1990).

We apply these input data to the S-NLFFF code as above and varyagainξ4 over a
wide range of values. Again we can force the field model successfully to become aligned
with the loop data if we increaseξ4 up to unity (see Fig. 5.7, 5.8, 5.9).

Figure 5.7: The anglesθi(s) between tangent of theconsistent loop i= 1, 2, 3 and the interpo-
lated magnetic fieldB(c(s)) at curve parameters along the loop. The different colors
represent the angles for magnetic field models obtained withdifferent regularization
parametersξ4 =0.9 (black), 0.1 (cyan), 0.01 (blue), 0.001 (green) and 0.0001 (red).
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5 Coronal magnetic field modeling using stereoscopy constraints

Figure 5.8: Dependence of the root mean square of the anglesθ between the loop tangent and the
local field direction along each of the threeconsistent loopswith ξ4.

Figure 5.9: Plot of the initial loops (black) used as input data and of output loops forξ4 = 0.9
(green), forξ4 = 0.003 (blue) and forξ4 = 0.00001 (red).

In Table 5.1 we present figures of merit commonly used in the evaluation of nonlinear
force free field models. They are the vector correlation (VC), Cauchy-Schwartz (CS),
the normalized vector error (En) and the mean vector error (Em) (Schrijver et al. 2006).
Vector correlation (VC) evaluates how well two vector fieldsare correlated and is given
by

VC =
∑

i B̃i(ξ4) · bi
(

∑

i |B̃i(ξ4)|2
∑

i |bi |
2
)1/2
. (5.6)
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Table 5.1: The dependence ofVC, CS, Em andEn with ξ4 for the analytical field 1.

ξ4 VC CS Em En

10.0000 0.9614 0.8981 0.3521 0.3598
5.00000 0.9647 0.9039 0.3392 0.3502
2.00000 0.9724 0.9153 0.3035 0.3286
0.90000 0.9844 0.9369 0.2321 0.2654
0.30000 0.9842 0.9351 0.2348 0.2699
0.10000 0.9842 0.9354 0.2348 0.2788
0.03000 0.9838 0.9348 0.2373 0.2713
0.01000 0.9836 0.9352 0.2382 0.2705
0.00300 0.9838 0.9342 0.2382 0.2735
0.00100 0.9834 0.9349 0.2389 0.2698
0.00030 0.9837 0.9345 0.2373 0.2698
0.00010 0.9835 0.9327 0.2400 0.2748
0.00003 0.9835 0.9323 0.2403 0.2761
0.00001 0.9833 0.9322 0.2412 0.2765
0.00000 0.9833 0.9319 0.2416 0.2775

Hereb is the NLFFF field model when the exact Low and Lou solution is used as mag-
netogram input ,̃B(ξ4) is the S-NLFFF field model, when the Low and Lou magnetogram
perturbed by noise is used. Here, i sums over the N grid pointsin the computational
domain.

Cauchy-Schwartz (CS) metric evaluates only the angle between the two vector fields
and is given by

CS ≡
1
N

∑

i

B̃i(ξ4) · bi

|B̃i(ξ4)||bi |
≡

1
N

∑

i

cosγi , (5.7)

whereN is the total number of vector element andγi is the angle between any two vectors,
B̃i(ξ4) andbi, at point i. The CS metric is unity when the two vectors are parallel, -1
whenB̃i(ξ4) andbi are anti-parallel and CS is zero when the two vectors are on average
perpendicular to each other.

Two other metrics are the average vector norm (En) and the mean vector error (Em),
defined by:

En =

∑

i |bi − B̃i(ξ4)|
∑

i |B̃i(ξ4)|
, (5.8)

Em =
1
N

∑

i

|bi − B̃i(ξ4)|

|B̃i(ξ4)|
. (5.9)

En = Em = 0 means the two vector fields are identical.
In Fig. 5.8 the root mean square angle is shown between the loop tangents and the

local magnetic fieldB interpolated at the respective positionci(sj). For the optimal value
ξ4 = 0.90 of the regularization parameter, the root mean square angle is well below 1
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degree. The maximum absolute deviation of the local field from the loop tangent is 2.1
degrees which is of the order of thestandard angle errorintroduced above. These norms
also include angles close to the foot points where the field ifextrapolated without the loop
data, i.e. forξ4 = 10−5, is varying heavily due to the influence of the noisy boundarydata.
Therefore the root mean square angle forξ4 = 10−5 in Fig. 5.8 is strongly enhanced. The
field extrapolated from the noisy boundary data makes in thiscase an average angle of up
to 20 degrees with the consistent loop direction.

In Fig. 5.10 we display the dependence of the terms Ł∞
i with ξ4.

Figure 5.10: The left panel shows the dependence of log Ł∞
1 (black), log Ł∞2 (red), log Ł∞3 (green)

and log Ł∞4 (blue) with logξ4 for noisy bottom data and consistent loop data. The
right panel shows the dependence of

∑

i log Ł∞i with logξ4 for noisy bottom data and
consistent loop data. The position of the minimum is assumedto yield the optimal
value forξ4.

Probably due to the influence of the boundary noise in the regions not accessed by
the three loops, the extrapolated field there has larger gradients than the standard field, so
that the terms Ł∞1 and Ł∞2 measuring the residual forces and divergence which are about a
factor 7-10 larger than for the noiseless reference field. These values hardly depend onξ4
as long asξ4 ≤ 1 probably because the region influenced by the loops is smallcompared to
the total computational volume. Definitely, for the differentξ4 values chosen (Fig. 5.10),
different field solutions were produced (see Fig. 5.9). Their variation however, has little
effect on the terms Ł∞1 , Ł∞2 and Ł∞3 . This shows that small changes in the magnetogram
boundary produces different field lines at some distance from the surface. This sensitivity
is only constrained by the new term Ł∞4 as shown by its variation in Fig. 5.10.

Also the boundary data term Ł∞3 hardly depends onξ4 in this particular test because the
noise level chosen here is high and even withξ4 = 0 a force-free magnetic field cannot be
fitted to the boundary data to make log Ł∞3 drop below about−0.2. However, as expressed
already by the root mean square angle, we can effectively align the field along the loop
depending on how strongly we shift the emphasis onto the loopterm Ł4 by varyingξ4.
The optimalξ4 is again close to unity.

5.2.2 Testing the method for Case II

For the second Low and Lou semi-analytical force-free field solution (see the introduction
of the Section 5.2 for the configuration of the field) we only performed the test for the case
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when a solution is perturbed by noise. We applied random noise to the boundary data in
the same manner as for the analytical field 1. The noisy boundary data together with the
consistent loopswere used as input to the S_NLFFF code for differentξ4 values. The test
was applied only for the noisy magnetogram because it represents a case more close to the
real situation. We want to show here that, if we use more loopsand a more complicated
configuration of the field, we still obtain good results as shown below.
In Fig. 5.11 we show the noisy boundary data and theconsistent loopsused as input for
S-NLFFF model for differentξ4 values. For this test case we have chosen tenconsistent
loops.

Figure 5.11: The three Cartesian components of the Low & Lou synthetic magnetogram The top
row shows theBx (left) andBy (right) components, the bottom row theBz (left) com-
ponent and an oblique view on theBz magnetogram with the ten loops extracted for
our tests.

We try to find again the best solution for the functional Łtot with ξ4. For this test case
we variedξ4 in the interval 10−5 to 1. In Fig. 5.12, left panel, we plot the variation of each
term Ł∞i with ξ4 on a logarithmic scale and the right panel shows the same for the sum of
log Ł∞i .
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Figure 5.12: The left panel shows the dependence of log Ł∞
1 (black), log Ł∞2 (red), log Ł∞3 (green)

and log Ł∞4 (blue) with logξ4 for noisy bottom data and consistent loop data. The
right panel shows the dependence of

∑

i log Ł∞i with logξ4 for noisy bottom data and
consistent loop data. The position of the minimum is supposed to yield the optimal
value forξ4.

Like in the Case I, the values of the force-free terms (Ł∞
1 and Ł∞2 ) and boundary term

(Ł∞3 ) vary slightly with ξ4 and Ł4 decreases withξ4. The minimum value of
∑

i log Ł∞i
from Fig. 5.12 (right side) again occurs at the optimum valuefor ξ4 = 0.9.
In Table 5.2 we display the output values of the force-free term (Ł∞1 ), the divergence free
term (Ł∞2 ), the lower boundary term (Ł∞3 ) and the loop term (Ł∞4 ).

Table 5.2: The dependence of Ł∞1 , Ł∞2 , Ł∞3 and Ł∞4 with eachξ4 for the analytical field 2.

ξ4 Ł∞1 Ł∞2 Ł∞3 Ł∞4
0.90000 0.3401 0.1441 1.6179 0.0280
0.10000 0.3467 0.1463 1.5077 0.1918
0.01000 0.3582 0.1564 0.5180 1.2977
0.00100 0.3456 0.1538 0.4874 8.3740
0.00010 0.3430 0.1599 1.5189 16.4119
0.00001 0.3581 0.1654 1.4978 19.5104
0.00000 0.3518 0.1637 1.4976 0.00000

The quality of the extrapolated fieldB is again measured by the figures of merit (5.6)
- (5.8) where as reference we use again the fieldb which is obtained from the exact Low
& Lou boundary values. The obtained values of the four terms (VC, CS, Em, En) as a
function ofξ4 are presented in table 5.3. Forξ4 = 0.9 we again obtain the best solutions
for these metrics.

Table 5.3: The dependence ofVC, CS, Em andEn with eachξ4 for the analytical field 2.

ξ4 VC CS Em En

0.90000 0.9907 0.8512 0.2920 0.5224
0.10000 0.9884 0.8297 0.3253 0.5875
0.01000 0.9876 0.8338 0.3324 0.5762
0.00100 0.9872 0.8305 0.3527 0.6132
0.00010 0.9877 0.8386 0.3463 0.5901
0.00001 0.9876 0.8358 0.3505 0.6009
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5.2 Testing the S-NLFFF (Stereoscopic-NonLinear Force Free Field) method

The optimumξ4 = 0.9 can be found also in the evaluation of the angles between the
loop tangents and the interpolated magnetic field at the looppoints. Fig. 5.13 shows the
root mean square of the angles (θi) with logξ4 for each of the ten loops used as input.

Figure 5.13: Dependence of the root mean square of the anglesθ between the loop tangent and the
local field direction along each of the tenconsistent loopswith ξ4.

Finally, we check whether the new term can help to improve themagnetic field model
beyond what we can achieve with the noisy boundary data alone. We define three different
sub-volumes inside the computational box (S V1, S V2, S V3). S V1 is the union of the
smallest possible quadrilateral boxes around each loop with edges inx, y, z direction.
S V2,3 comprise the same boxes with edge lengths enhanced by a factor k equal 1.25 and
1.5, respectively. The edges of the smallest quadrilateralaround one loop is defined as
x̃(1)

min = mins(ci(s) · êx) and similarly for they andz components.

Then the enhanced boxesS Vj, j = 1, 2, 3 are:

x̃j
min =

[

x̃(1)
min −

1
2

(

x̃(1)
max+ x̃(1)

min

)

]

kj +
1
2

(

x̃(1)
max+ x̃(1)

min

)

, (5.10)

x̃j
max=

[

x̃(1)
max−

1
2

(

x̃(1)
max+ x̃(1)

min

)

]

kj +
1
2

(

x̃(1)
max+ x̃(1)

min

)

, (5.11)

kj = {1, 1.25, 1.5} for j = 1, 2, 3, respectively.

The ỹj
min, ỹ

j
max and z̃j

min, z̃
j
max edges are found in the same manner as ˜xj

min, x̃
j
max. The

sub-volumeS Vj is given by

S V1 = [ x̃j
min, x̃

j
max] × [ỹj

min, ỹ
j
max] × [z̃j

min, z̃
j
max] . (5.12)

In Fig. 5.14 we show the boxesS Vj and how they are arranged relative to the loops.
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5 Coronal magnetic field modeling using stereoscopy constraints

Figure 5.14: The average vector difference between S-NLFFF and NLFFF output magnetic field
with logξ4.

In Fig. 5.15, we display the average error of the extrapolated field

< δB >=< B̃(ξ4) − b > , (5.13)

calculated inside the three sub-volumes (S V1 - black asterisk,S V2 - red asterisk,S V3 -
green asterisk) for different values ofξ4.

Figure 5.15: The average vector difference between S-NLFFF and NLFFF output magnetic field
with logξ4.

Even if we have used ten loops, the improvement of the field model by the new term
is relatively small if the optimal value ofξ4 = 1 is used. These ten field lines impact only
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5.3 Discussions and conclusions

a small subvolume (0.26% ) of the total computational box. The reference field hereis a
gain the extrapolation for ideal boundary data unperturbedby noise. For this case,ξ4 can
be set to zero because the loop data is unnecessary for ideal boundary data. In Eq. (5.13),
B̃(ξ4) is the magnetic field model obtained from the S-NLFFF extrapolation code when
the noisy magnetogram and the correct loops are used as input.

For each of the boxes the error slightly decreases with increasingξ4. The improvement
with the new term is most pronounced for the smallest box and only marginal for the
biggest box. We conclude that forcing the field into the rightdirection along the loop
improves the field only in the immediate neighborhood of the loop. Moreover the term
Ł4 only influences the direction, not the magnitude of the magnetic field at the loop point.
Part of the error< δB > is due to magnitude deviation betweenB(ξ4) andb.

5.3 Discussions and conclusions

We have proposed a new algorithm to improve the magnetic fieldmodel obtained from
force-free field extrapolations of photospheric vector magnetogram data. The new feature
of the procedure is to incorporate the information of field-aligned loops obtained from
EUV image pairs and processed by stereoscopy to 3D curves.

If the magnetogram data is exact and the loop data are consistent, we find that the
algorithm produces the unique solution as expected. In thistheoretical case, the correct
solution is also obtained even if the loop data is omitted. Inmost practical cases it can
however not be expected that the magnetogram data or the loopreconstruction are with-
out errors. We have tested these situations in which the two data sets are not entirely
consistent. We found that for realistic error amplitudes wecan achieve a good align-
ment of the magnetic model field with the loop curves without deteriorating the level of
force-freeness. If these errors are present, it turns out that a whole set of force-free fields
is possible as solution with slightly different fields at the lower boundary which deviate
from the magnetogram data within a typical measurement error. In these cases the addi-
tional loop information constrains the solution effectively and from all solutions possible,
we obtain the one which is best aligned with the imposed loop shapes.

The conclusion that noisy data allows multiple solutions ifsmall deviations are al-
lowed between the magnetogram data and the lower boundary ofthe model field can also
be drawn from the results of the paper of De Rosa et al. (2009).All NLFFF codes pro-
duced model fields which closely matched the observed magnetogram data, but they were
mutually different at larger altitudes and differed from the 3D loop shapes derived from
stereoscopy. We attribute this deficiency to the ill-posedness of the boundary value prob-
lem: little noise in the magnetogram data may cause changes in the solution especially at
larger distances from the surface. From our tests, this is demonstrated by the fact that we
can modify the solution within some bounds by choosing different values for the regular-
ization parameterξ4 without much affecting the force-freeness, divergence-freeness or the
boundary data error. The new variational term we introduce makes use of this freedom in
order to align the model field with the loop shapes.

Using the regularization parameterξ4, we can allow either the magnetogram or the
loop data to gain more influence on the final solution without significantly affecting the
vanishing of the divergence or the Lorentz force. If both data terms are properly normal-
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5 Coronal magnetic field modeling using stereoscopy constraints

ized by their measurement error,ξ4 ≃ 1 turns out to be the optimal value. In the cases
tested, the angles of the local field to the field line direction could then be reduced to less
than a degree on average.
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6 Summary and outlook

The focus of this thesis is to study the reconstruction of different objects in the solar
corona using data from different spacecraft. The objects studied were prominences, coro-
nal loops and coronal mass ejections. We have used images in the EUV wavelength
λ = 304Å and in white light (coronographic) from the SDO and the STEREO A and B
spacecraft.

With our MBSR method we performed a 3D reconstruction using data from two and
three view directions. We have applied MBSR from two view directions to a CME core
which showed an exceptionally low polarization. With MBSR we identified the correct
3D location of the low polarized patch well inside the CME. This way we could exclude
that the bright core signal was produced by Thomson scattering, but it is consistent with
intense resonant scattering of the Hα line.

Another application of MBSR, this time using data from threespacecraft, was the
reconstruction of an eruptive prominence, which triggereda CME. Using MBSR we could
see the evolution of these two phenomena. We analyzed their kinematics and morphology
within some limitations. One of the limitations was that ourmethod is suitable for the
reconstruction of curve-like shapes, whereas the CME is a voluminous object bounded
by surfaces. We were therefore only able to extract the visible leading edge of the CME.
Another limitation relates to the use of data from a varying number of viewpoints. As the
MBSR code is written now, a loop has to be reconstructed separately on each curve section
which is seen from different numbers of view directions. In principle, this separation is
unnecessary and it should be abolished in future versions ofthe code.

Our third project aimed at an improvement of magnetic field extrapolations of magne-
tograms from the solar surface using the shape information of coronal loops reconstructed
by stereoscopy. Conventional extrapolation models of coronal magnetic field often show
a disagreement between the observed magnetic field and the shape of coronal loops. With
our model S-NLFFF we try to reconcile the coronal magnetic field model with observed
coronal loops by closely as possible. We have tested the model with synthetic magne-
tograms and loops with special emphasis on whether inconsistencies in the magnetograms
could be compensated by the additional loop data.

Our algorithm still has to be applied to real data. An investigation of this kind is
underway. Applying our algorithm to real data implies the following steps:

1. processing the EUVI images from the STEREO and/or the SDO spacecraft. The
low spatial resolution of the STEREO telescopes makes it difficult the to identify
coronal loops correctly in the images. On top of that, the instrument noise adds
to the difficulty of loop identification. The images have to be cleaned from the
noise, contrast must be enhanced to have a balance in luminosity. There are some
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6 Summary and outlook

methods which can improve the quality of an image, like wavelet transform. We
are planning to apply a better image processing in order to obtain a better and easier
identification of different coronal magnetic loops.

2. 3D reconstruction of couple of active region loops using our Multi-view B-spline
Stereoscopic Reconstruction method.

3. preprocessing the vector magnetograms provided by the SDO spacecraft.

4. using S-NLFFF code to model the coronal magnetic field withthe 3D information
of loop curves and the vector magnetogram as input data.

Provided that all the data are available, we are confident that we will be able to produce
a more reliable force-free magnetic field model for the corona than with conventional
tools.

In many cases, a vector photospheric magnetogram and two simultaneous solar EUV
images are not available. We therefore intend to modify our code to also cope with the
case when the field extrapolation is constrained just by the loop projection from one EUV
image only. This is a more difficult approach since we will not have the full 3D loop
information available.
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A Appendix

In order to determine the position of the 3D object we need to find α1 andα2 (see Eq.
2.11) from the two distancesσi (Fig. A.1) along the epipolar line in the respective image.
First we have the edge length of the similar triangles OAB andOA’B’ from Fig. (A.1):

σi

f ′
=

A′B′

A′O
=

(∆r − zΩ̂) · ˆ̃ei

|r̃ i | − a− b
(A.1)

The distance from the observer to the Sun center|r̃ i | and the epipolar directions in each
image ˆ̃ei are known from the position of both the spacecraft andz, the epipolar plane
parameter (defined in Eq. 2.15). The image axis along the epipolar line is defined as

ˆ̃ei =
n̂(z) × r i

|n̂(z) × r i |
(A.2)

wheren̂(z) is the epipolar normal andr i is the spacecraft position.

a

b

C

A′
B′

A
B

O

f ′

β

ˆ̃ei

σi

Figure A.1: Reconstruction of a point with projective geometry in the epipolar plane. The vectors
∆r , zΩ̂, r̃ i all lie in the same epipolar plane marked by points B’CO.

From Fig. A.2 we can see that

f ′ =
f

√

1+ (z/r i)2
(A.3)
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Ω̂

z
f ′

f Image plane r i Sun center
O

Figure A.2: Reconstruction of a point with projective geometry in the epipolar plane

is a small correction to the focal length where for typical observationsz/r i . 1/200.
The formula (A.1) takes account of fact thatẽi is not perpendicular tõr i. From Fig.

A.1 we have

a = (∆r − zΩ̂) · ˆ̃r i (A.4)

b = (∆r − zΩ̂) · ˆ̃ei sinβ (A.5)

= −[(∆r − zΩ̂) · ˆ̃ei]( ˆ̃ei · ˆ̃r i)

Inserting Eq. (A.4) and (A.5) in Eq. (A.1) brings us to the following expression

σi

f ′
=

ˆ̃ei · (∆r − zΩ̂)

|r̃ i | − ˆ̃r i(1− ˆ̃ei ˆ̃ei)(∆r − zΩ̂)
(A.6)

Using Eq. (2.16), we can rewrite expression (A.6)

|r̃ i |
σi

f ′
=

[

ˆ̃ei +
σi

f ′
ˆ̃r i(1− ˆ̃ei ˆ̃ei)

]

(α1r̃1 + α2r̃2) (A.7)

which is what we need to deriveα1 andα2.
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