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Zusammenfassung

Kühle Sterne wie unsere Sonne sind von Koronae mit Temperaturen bis zu mehreren Mil-
lionen Kelvin umgeben. Auch nach jahrzehntelanger Forschung gibt es keine eindeutige
Erklärung dafür, warum die Koronae von Sternen um mehrere Größenordnungen heißer
sind als ihre Oberflächen. Aufgrund der hohen Temperatur weisen die solaren und stel-
laren Koronae eine hohe Röntgenemission auf. Koronae von Sternen, die aktiver sind
als die Sonne, können im Allgemeinen sogar eine 1000-mal stärkere Röntgenemission
aufweisen als die Sonnenkorona.

Die koronale Röntgenaktivität der Sonne und anderer Sterne wird durch das Ober-
flächenmagnetfeld bestimmt. Zahlreiche Beobachtungsstudien haben gezeigt, dass die
Beziehung zwischen der koronalen Röntgenleuchtkraft LX und dem magnetischen Fluss
auf der Oberfläche Φ der Sonne und anderer Sterne einem Potenzgesetzbeziehun, LX ∝

Φm, folgt. Je nach Studie ist 1 ≤ m < 3. Bis jetzt gibt es keine eindeutige Erklärung
dafür, warum es eine Potenzgesetzabhängigkeit zwischen LX und Φ gibt und auch nicht
dafür, warum m von einer Studie zur anderen variiert. In dieser Arbeit versuchen wir,
diese Potenzgesetzbeziehung durch ein einfaches analytisches Modell und durch 3D-
magnetohydrodynamische (MHD) Modelle der solaren und stellaren Koronae quantitativ
zu erklären.

Unser analytisches Modell basiert auf einer Kombination des Rosner, Tucker & Va-
iana (RTV) Skalierungsgesetzes (Rosner et al. 1978), koronalen Heizmechanismen, zum
Beispiel Nanoflares, und der Temperaturabhängigkeit für verschiedene Instrumente. Da-
raus ergibt sich ein einfacher analytischer Potenzgesetzausdruck, der die Potenzgeset-
zbeziehung zwischen der Röntgenhelligkeit LX und dem magnetischen Fluss auf der
Oberfläche Φ erklären kann. Der Potenzgesetzindex m liegt im Bereich von 0.8 bis
1.6, was mit dem von Beobachtungsstudien berichteten Bereich von m übereinstimmt.
Darüber hinaus finden wir, dass die Empfindlichkeit jedes einzelnen Instruments in einem
bestimmten Temperaturbereich einen signifikanten Einfluss auf den Potenzgesetzindex m
haben kann. Dies wurde bei allen Beobachtungsstudien übersehen.

Um die LX ∝ Φm-Beziehung in einer komplexeren Umgebung weiter zu untersuchen,
verwenden wir numerische 3D-MHD-Modelle, um den Teil der Korona über einer ak-
tiven Region zu simulieren. Wir verwenden das von Bingert (2009) entwickelte solare
Koronamodell, das einige der Schlüsselaspekte der koronalen Strukturen erfolgreich re-
produziert hat. Eine heiße und dynamische Korona mit Temperaturen von 1 MK und
mehr wird dabei selbstkonsistent erzeugt. Wir untersuchen, wie sich die koronale Rönt-
genleuchtkraft mit der Magnetfeldstärke und der Größe der darunter liegenden aktiven
Region ändert.

Zunächst erhöhen wir die Stärke des vertikalen Oberflächenmagnetfeldes um einen
konstanten Faktor, während wir die Größe der aktiven Region konstant halten. Mit diesem
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Zusammenfassung

Ansatz erreichen wir Werte des Oberflächenmagnetfeldes von bis zu 20 kG. Dieser Wert
des Magnetfelds ist für die Sonne extrem hoch, aber es wird vermutet, dass er bei aktiv-
eren Sternen üblich ist. Die von unserem Modell erhaltene koronale Temperatur und
Dichte sind in guter Übereinstimmung mit den RTV-Skalierungsgesetzen. Außerdem
steigt die aus unserem Modell synthetisierte koronale Röntgenleuchtkraft LX mit dem
Oberflächenmagnetfluss Φ, was mit anderen Studien übereinstimmt. Wir finden, dass
diese Beziehung ein Potenzgesetz LX ∝ Φm mit dem Potenzgesetzindex m = 3.4 folgt.
Zweitens, erhöhen wir den gesamten magnetischen Oberflächenfluss, indem wir die Fläche
der aktiven Region vergrößern, während wir die Stärke des Oberflächenmagnetfeldes kon-
stant halten. Wir sehen einen Anstieg der koronalen Temperatur, obwohl der Anstieg nicht
so stark ist wie im ersten Ansatz. Die synthetische Röntgenemission steigt mit dem Ober-
flächenmagnetfluss, in Übereinstimmung mit dem vorherigen Ansatz. In diesem Fall ist
der Index mit m ' 2.2 jedoch weniger steil als beim ersten Ansatz.

Insgesamt liefern unsere Ergebnisse neue Einblicke in die LX ∝ Φm-Beziehung. Die
Empfindlichkeit der einzelnen Instrumente in einem bestimmten Temperaturbereich kann
die in den Beobachtungen gefundene Differenz von m erklären. Darüber hinaus kön-
nen unser analytisches Modell und numerische Experimente eine Erklärung dafür liefern,
warum die Abhängigkeit der Röntgenleuchtkraft LX und des magnetischen Oberflächen-
flusses ein Potenzgesetz ist.
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Summary

Cool stars like our Sun are surrounded by coronae with temperatures up to several million
Kelvin. After decades of research, there has been no definite explanation as to why the
coronae of stars are several orders of magnitude hotter than their surfaces. Because of
the high temperature, the solar and stellar coronae exhibit high X-ray emission. Coronae
of stars more active than the Sun can generally appear to have even 1000 times stronger
X-ray emission than the solar corona.

The coronal X-ray activity of the Sun and other stars is governed by the surface mag-
netic field. The relationship between the coronal X-ray luminosity LX and the surface
magnetic flux Φ of the Sun and other stars has been shown to follow a power-law relation,
LX ∝ Φm, by numerous observational studies. Depending on the study, 1 ≤ m < 3. Until
now there is no clear explanation of why there is a power-law dependence between LX

and Φ and also why m is found to differ from one study to another. In this thesis, we aim
to explain this power-law relationship quantitatively through a simple analytical model
and through 3D magnetohydrodynamic (MHD) models of the solar and stellar coronae.

Our analytical model is based on a combination of the Rosner, Tucker & Vaiana (RTV)
scaling laws (Rosner et al. 1978), coronal heating mechanisms, for example nano flares,
and the temperature response for different instruments. This results in a simple analytical
power-law expression, that can explain the power-law relation between the X-ray lumi-
nosity LX and the surface magnetic flux Φ. The power-law index m is found to be in the
range from 0.8 to 1.6 which is in agreement with the range of m reported by observational
studies. Furthermore, we also find that the sensitivity of each individual instrument at
a specific temperature range can have a significant influence on the power-law index m.
This has been overlooked for all observational studies.

To further investigate the LX ∝ Φm relationship in a more complex environment, we
use 3D MHD numerical models to simulate the part of the corona above an active region.
We use the solar coronal model developed by Bingert (2009), that has successfully re-
produced some of the key aspects of coronal structures. A hot and dynamic corona with
temperatures of 1 MK and more is self-consistently created. We investigate how the coro-
nal X-ray emission changes with the magnetic field strength and the size of the underlying
active region.

Firstly, we increase the strength of the vertical surface magnetic field by a constant
factor while keeping the size of the active region constant. With this approach, we reach
values of the surface magnetic field up to 20 kG. This value of the magnetic field is
extremely high for the Sun but it is speculated to be common in more active stars. The
coronal temperature and density obtained by our model are in good agreement with the
RTV scaling laws. Furthermore, the coronal X-ray luminosity LX synthesized from our
model increases with the surface magnetic flux Φ, which is consistent with other studies.

11



Summary

We find this relation to be a power-law LX ∝ Φm with the power-law index m = 3.4.
Secondly, we increase the overall surface magnetic flux by increasing the size of the
active region while keeping the strength of the surface magnetic field constant. We see
an increase in the coronal temperature, although the increase is not as strong as in the
first approach. The synthetic X-ray emission increases with the surface magnetic flux, in
agreement with the previous approach. In this case, however, the index m ' 2.2 is found
to be less steep than for the first approach.

Overall, our results provide new insight into the LX ∝ Φm relationship. The sensitivity
of each instrument at a specific temperature range can explain the difference of m found in
observations. In addition, our analytical model and numerical experiments can provide an
explanation of why the dependence of the X-ray luminosity LX and the surface magnetic
flux is a power-law.

12



1 Introduction

1.1 Solar corona

The solar corona is regarded as the outer atmosphere surrounding the Sun. Its faint optical
emission compared to the bright photosphere makes it impossible to observe with naked
eye. Since ancient times, people could observe the solar corona only during solar eclipses
as a faint halo surrounding the Moon (see Fig. 1.1). Hence, it was believed to be part
of the lunar atmosphere. The fact that the corona was part of the solar atmosphere was
proven only in the late 1800s.

Based on the first spectrographic observations, it was believed that the emission lines
observed from the solar corona were due to a new element, which was named coronium.
It was only after the 1930s when scientists realized that the emission was originating from
highly ionized elements such as iron. The presence of highly ionized elements in the solar
corona revealed its mystery. The solar corona has a mean temperature of 106 K, which is
more than 100 times higher than the surface temperature (Grotrian 1939; Edlén 1943).

After decades of studying the Sun, there is now a clear picture of how the solar at-
mosphere is stratified reaching, from a photosphere of 6000 K to a corona of 106 K. The
solar atmosphere is filled with plasma and based on 1D models (see e.g. Vernazza et al.
1981), it can be roughly divided into four layers (see Fig. 1.2). The first layer is defined
as the photosphere. The photosphere is considered to be the "surface" of the Sun, and
most of the phenomena observed in the corona or transition region are associated with
structures located in that region, such as active regions or faculae. The second layer is
the chromosphere. It is a cool, and dense layer with a temperature of around 104 K. Its
nature is still not fully understood, however, it is speculated that magnetohydrodynamic
(MHD) waves might be responsible for the temperature increase (see the review from
Mathioudakis et al. 2013). The region between the chromosphere and the corona is a thin
layer of a few hundred km called the transition region. In that region, a steep increase in
temperature and a decrease in plasma density is observed. The last layer is the low density
and extremely high-temperature corona that can extend to very high altitude.

The solar corona has a very faint optical emission. The low density and high-temperature
coronal plasma suggest a thermal emission at short wavelengths, for example, the extreme-
ultraviolet (EUV) wavelength regime. The solar photosphere emits like a black body with
a temperature of 6000 K. Because of the high temperature, the corona appears brighter
at short wavelengths, such as the EUV or X-ray regime, compared to the photosphere.
Hence, the EUV and X-ray wavelength range is widely used for coronal diagnostics.
Since the Earth’s atmosphere blocks the EUV and X-ray emission, space-based instru-
ments have to be used for the observations. These instruments, such as Solar and He-
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1 Introduction

Figure 1.1: Solar eclipse seen from Portland, USA, on August 21, 2017. Courtesy:
Pradeep L. Chitta

liospheric Observatory (SOHO; Domingo et al. 1995), Transition Region and Coronal
Explorer (TRACE; Handy et al. 1999), and others can observe the solar corona in dif-
ferent wavelengths such as the 171 Å channel of Atmospheric Imaging Assembly (AIA;
Lemen et al. 2012) onboard Solar Dynamic Observatory (SDO; Pesnell et al. 2012) (see
Fig. 1.3).

The first observations of the solar corona were obtained by the space mission of Sky-
lab in early 70s (MacQueen et al. 1974). Some of the features that can be distinguished
are, first of all, coronal holes, where plasma escapes through the open magnetic field-
lines. Corona holes are speculated to have a connection to the solar wind. Furthermore,
there are also the bright coronal loops, that connect regions of opposite magnetic polarity
(see Fig. 1.3), and they are considered to significantly contribute to coronal heating. The
plasma in the coronal loops is confined, and it can move only along the magnetic field-
lines. More details follow in Chap. 2. An additional feature observed in the solar corona
are the X-ray bright points scattered throughout the whole disk with an average size of
roughly 20 Mm and a typical lifetime of 8 hours (see the book from Priest (2014) for
more details).

The activity and the appearance of the individual features of the solar corona strongly
depend on the solar cycle. It is observed that during the solar maximum, the solar corona
shows enhanced EUV emission and it is structured. At the same time, most of the solar
surface is covered with magnetic structures, such as active regions, as it is illustrated in
Fig. 1.3. During the solar minimum, the solar corona shows a diffused emission and,
only a few active regions are present. That indicates a connection between the surface
magnetic field (active regions) and coronal emission. The mechanism responsible for
converting magnetic energy to thermal energy is still under debate.

1.2 Heating mechanisms

For more than 80 years, the physical process that leads to a high-temperature corona
(T ∼ 106 K) was poorly understood. The second law of thermodynamics suggests that

14



1.2 Heating mechanisms

Figure 1.2: Solar atmosphere stratification as a function of height with the photosphere
located at the altitude where the optical depth is unity (i.e. τ5000 = 1). Black solid line
shows the temperature profile from the photosphere up to the corona. Dotted dashed
line show the density profile in the solar atmosphere. The plot is motivated by the VAL
(Vernazza, Avrett, Loeser) model (Vernazza et al. 1981). Image is courtesy of Hardi Peter.

moving away from a heat source, temperature should decrease monotonically. However,
the solar corona is more than 100 times hotter than the photosphere. That is a direct
violation of thermodynamics unless some other heating mechanism is operating.

To effectively heat the corona, a source of energy is required, that would balance the
radiative losses and heat conduction. Many models have been proposed over the years.
The purely hydrodynamic models were disproved since hydrodynamic waves and shocks
cannot penetrate the dense layers of the chromosphere and transition region. Therefore, it
is impossible to heat the corona. The alternative idea is based on magnetohydrodynamic
(MHD) heating models. These models are divided into two categories. There are the
alternating currents heating models (AC) and the direct current heating models (DC).
Their difference lies in the timescales of the photospheric driver.

1.2.1 AC heating
It is known that waves carry energy and momentum in space and time. As mentioned
before, hydrodynamic waves cannot reach and heat the corona. However, magnetohy-
drodynamic waves can reach the corona, and in principle, can dissipate some fraction of
their energy and increase the coronal temperature. These MHD waves are excited from
the interaction of the granular motion at the solar surface with the surface magnetic field.
There are three different types of MHD waves, the Alfvén waves which propagate along
the magnetic fieldlines, and the fast and slow magneto-acoustic waves that propagate per-
pendicular to the magnetic fieldlines. The magneto-acoustic waves are generally reflected
or absorbed in the transition region, hence they cannot significantly affect the corona. On
the other hand, Alfvén waves can penetrate the corona, thus they can deposit their energy
to heat it and increase its temperature. Ohmic dissipation of the currents induced by these

15



1 Introduction

Figure 1.3: Full disk magnetogram and EUV emission observed from HMI and AIA/SDO
on April 20 2015. The image is produced with the help of Helioviewer.org. Credits: SDO
(NASA)

waves will convert the magnetic energy to thermal energy. Since the currents change di-
rection on a faster time scale compared to the Alfvén time scale, this mechanism is called
the alternating current mechanism

Direct observations of MHD waves in the corona were recently confirmed (Tomczyk
et al. 2007). However, the work of Tomczyk et al. (2007) found that the observed energy
flux of the Alfvén waves was not sufficient to explain the extremely high temperatures of
the corona. On the other hand, numerical simulations of oscillating coronal loops which
generate Alfvénic waves due to photospheric motions were reported to produce enough
energy flux to heat the corona (van Ballegooijen et al. 2011).

1.2.2 DC heating

The other type of mechanism proposed for the coronal heating problem are the so called
direct current (DC) models. The DC models can be distinguished into three main cate-
gories, namely the magnetic reconnection, stress-induced turbulence, and currents dissi-
pation models. For the magnetic reconnection models, the magnetic fieldlines of coronal
loops rooted in the photosphere are being twisted and braided by the random photospheric
motions. This process is called fieldline braiding model, and it was proposed by Parker
(1983). The twisted fieldlines (see Fig. 1 from Parker 1983) will build up enough non-
potential energy, which will be released by a storm of random reconnection events known
as nanoflares (Parker 1988). The individual nanoflares will not have sufficient energy,
but all the events along the loop combined should provide enough thermal energy to heat
the corona. The twisting process of the fieldlines has a typical time scale which is much
longer than the Alfvén crossing time along the loop. The second mechanism suggests that
the random photospheric motions will lead a potential magnetic field to a non-potential.
Thus currents will be induced and dissipated in the corona resulting in the overall heating.
The dissipation process is known as the Ohmic dissipation of the induced currents. The
last mechanism of stress-induced turbulence is based on a similar process as the dissipa-

16



1.3 Solar-stellar connection

tion of currents. In this particular model, the energy cascades from large length scale to
small length scales where most of the energy is dissipated. Finally, similar ideas such as
the flux tube tectonics proposed by Priest et al. (2002) are being considered nowadays as
well.

Due to the limitation of our current instruments, there is no confirmation of the exis-
tence of the nanoflares yet. This problem is expected to be resolved with the new space
missions of the Solar Orbiter and the Parker Solar Probe that will observe the Sun at a
close distance. On the other hand, 3D numerical simulations of large-scale models of ac-
tive regions have already shown that the energy provided by the fieldline braiding model is
sufficient to sustain a hot corona (Gudiksen and Nordlund 2005a; Bingert and Peter 2011;
Warnecke and Peter 2019a). The DC mechanisms are considered by many researchers
to be the most likely process responsible for the coronal heating (see the review from
Klimchuk 2015, for more details).

1.3 Solar-stellar connection

The solar corona has been extensively studied for almost a century mainly by the space
missions of Skylab, Yohokh, SOHO, and others. On the other hand, coronal observations
of other stars are limited to a few number of stars. The solar and stellar coronal EUV
and X-ray emission are a manifestation of the interaction between the surface magnetic
field and the coronal plasma. The surface magnetic field plays a fundamental role in the
evolution and dynamics of the solar and stellar coronae. However, an accurate estima-
tion of the strength and the distribution of the surface magnetic field is only possible for
our closest star, the Sun. Unfortunately, the spatial resolution of the current space instru-
ments is limited to provide a more accurate measurement of the surface magnetic field for
most stars. For a limited number of stars at close proximity to Earth, Zeemann Doppler
Imaging (ZDI) and Zeemann broadening (ZB) techniques have been used to determine
the magnetic field. For most stars, the surface magnetic field is impossible to estimate.
For that reason, we have to rely on the indirect estimation of the magnetic activity of
other stars by measuring, for example, their coronal X-ray emission. That will provide an
insight into understanding the stellar coronae.

Disk integrated observations of other stars have been available thanks to the space
mission of Chandra (Weisskopf et al. 2000), XMM-Newton (Jansen et al. 2001), and
Einstein observatory (Giacconi et al. 1979). As in the solar case, the most prominent
wavelength range suitable to study the corona are the EUV and X-ray regime. However,
most of the EUV emission will be absorbed from the interstellar dust, making the EUV
corona invisible from Earth. For that reason, the X-ray regime is chosen for the stellar
coronal observations and diagnostics.

The first observations of other stars revealed coronal temperatures on the order of 20
MK or even 100 MK for some very active stars (Güdel 2004). These kinds of temper-
atures are 20 times higher than the ones observed in the solar corona. We assume that
coronal heating in other stars will be primarily due to coronal loops rooted in active re-
gions similar to the Sun. The length of these loops can vary for different stars depending
on the stellar rotation rate or gravity acceleration. Using the Sun as a proxy might provide
an understanding of the correlation between surface magnetism and coronal emission.
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Figure 1.4: Normalised X-ray activity-rotation relation for a large sample of stars. Ro-
tation increases going from right to left. X-ray emission increases going from bottom to
top. The figure is taken from Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., and
Ventura, P., A&A, 397, 147, 2003, reproduced with permission c© ESO.

Correlations between observable quantities like X-ray, rotation rate, age, or even mag-
netic flux have been established mainly through observations of large samples of stars.
These correlations could put constraints on our current coronal heating theories. That
will prove to be a valuable tool for developing analytical models to describe the stellar
coronal emission.

1.3.1 Rotation-activity relation

The solar and stellar magnetic field is generated by the plasma in the convection zone.
The mechanism responsible for generating the surface magnetic field observed on the
Sun can be partially explained by a dynamo theory. Even though the knowledge of the
solar properties provides evidence to understand how this process operates on the Sun,
this single G-type star cannot help us understand how the dynamo mechanism operates on
others stars. For that, we need to investigate the behavior of different observable quantities
from a large sample of stars that can be related to the underlying dynamo action.

Since the 70s, observations of other stars showed that the X-ray emission and stellar
rotation rate are related. Main sequence stars, as they age, they lose angular momentum
due to their stellar wind, and as a result, they tend to rotate slower. That is known as
magnetic braking. The decrease of stellar rotation weakens the efficiency of the inter-
nal dynamo mechanism resulting in weaker coronal emission (Skumanich 1972). That
indicates that age and thus stellar rotation determines the coronal activity of a star.

Using a large sample of stellar X-ray activity observations Pizzolato et al. (2003)
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found a rotation-activity relation connecting the normalised X-ray luminosity and the
stellar rotation period as it is illustrated in Fig. 1.4. Two populations of stars can be distin-
guished (see Fig. 1.4). Stars with slow and intermediate rotation rate exhibit a power-law
dependence of the X-ray emission to the rotation rate LX/Lbol ∝ P−2. Here LX is the
coronal X-ray luminosity, Lbol is the bolometric luminosity and P is the rotation rate of a
star in days. For this specific regime, an increase in rotation results in a stronger dynamo
action operating in the interior of a star. As a result, a stronger magnetic field is generated
at the bottom of the convection zone, which then emerges because of buoyancy up to the
photosphere. That leads to a larger number of active regions populating the photosphere,
providing an excessive amount of heat in the corona. Finally, the increased heating leads
to a substantial increase in the overall coronal X-ray emission. An interesting feature
appears for rapid rotators at a rotation rate of P ' 1 days. There we observe the second
population of stars, called the saturation regime. In this regime, the X-ray emission is
independent of the rotation period. The reasons for this saturation are not yet clear, and
it is believed that saturation in the dynamo efficiency occurs at P ' 1 days (Reiners et al.
2014).

In this project, we are going to focus only on the non-saturated regime. The X-ray
emission of stellar coronae is closely related to the surface magnetic field. We want to
investigate how the magnetic field will affect the structure and dynamics of the X-ray
corona. The underlying dynamo mechanism generating this surface magnetic field is
outside the purpose of this project, and it will not be addressed here.

1.3.2 Observed X-ray activity to surface magnetic flux relation

Observations of a large sample of stars revealed a correlation of the coronal X-ray emis-
sion not only with the stellar rotation rate but also with the surface magnetic flux (Vidotto
et al. 2014). This correlation was already found in solar studies (see e.g. Fisher et al.
1998). They found, the coronal X-ray emission LX to follow a power-law relation as a
function of the surface magnetic flux Φ (i.e. LX ∝ Φm). The study was conducted by mea-
suring the surface unsigned magnetic flux of a large number of solar active regions and it
was related to the observed coronal X-ray emission. The power-law index was found to
be slightly stronger than linear (m = 1.18).

Extending this to account also for other stars, Pevtsov et al. (2003) combined a large
sample of observations from quiet Sun regions to other types of stars and T Tauri stars.
They found that the observed coronal X-ray emission has a roughly linear dependence on
the surface magnetic flux (see Fig. 1.5). More recent studies, on the other hand, suggest
a much steeper power-law index m. Vidotto et al. (2014) from their large sample of stars
with a different spectral type (F, G, K, M) place this index at m = 1.8, while Kochukhov
et al. (2020) focusing on a small sample of mainly G type stars place this index at a larger
value m = 2.7. In general, the power-law index m will be in the range of one to three.
The large scatter of the index m indicates a poor understanding of how the coronal X-ray
emission is related to the surface magnetic flux for other stars.
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Figure 1.5: X-ray emission as a function of the total unsigned surface magnetic flux for
solar and stellar observations. The dots represent quiet sun observations, squares are
solar X-ray bright points, Diamonds are solar active regions, pluses are whole solar disk
averages, crosses are other stars and circles are T Tauri stars. The solid line shows a
power-law fit to the data with a power-law index 1.15. The figure is taken from Pevtsov,
A.A, Fisher, G.H, Acton, L. W., Longcope, D. W., Johns-Krull, C. M., Kankelborg, C. C.,
and Metcalf, T. R.; The Relationship Between X-Ray Radiance and Magnetic Flux, The
Astrophysical Journal, Volume 598, Issue 2, pp. 1387-1391, 2003, c© AAS. Reproduced
with permission .

1.4 Motivation and aim of the present work

The physical mechanism responsible for transporting the energy from the photosphere to
the corona is still under debate. Until now, there is no clear evidence of how the corona is
heated. The surface magnetic field, as it is discussed, proves to be an important factor in
coronal heating and the general EUV and X-ray appearance of solar and stellar coronae.

Earlier observational studies have already established a connection between the coro-
nal X-ray emission and the surface magnetic flux. This relationship was found to be a
power-law, LX ∝ Φm. The power-law index m has been estimated by numerous studies
of the Sun and the stars and it was found to be in the range from one to almost three (see
e.g. Fisher et al. 1998; Pevtsov et al. 2003; Vidotto et al. 2014; Kochukhov et al. 2020).
Consequently, understanding the reasons of why this relationship between LX and Φ is a
power-law and why there is a large range of m found in observations, will also provide
new insight into the stellar X-ray activity. Furthermore, a parameter study with different
magnetic energy input, such as what is performed in this work, can put constraints on the
probable coronal heating mechanism operating in the Sun and the stars. Finally, our work
could potentially also provide an indirect way of estimating the surface magnetic flux of
other stars which for most stars is not possible to observe.

Numerical models of the corona have been already applied in the solar case with great
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success, however, the stellar case is still an open field for exploration. The simulations
presented in this work are based on the solar coronal model by Bingert (2009). This
model is already well established and has been successful in reproducing some of the
characteristics of solar coronal loops (Bingert and Peter 2011; Warnecke and Peter 2019a).
As a result, it is a well-suited model to use for a parameter study by changing the amount
of surface magnetic flux at the bottom boundary of the computational domain. With this,
we can represent stars more active than the Sun and investigate the effect on the coronal
X-ray emission. However, a parameter study, such as the one performed in this work, was
not possible in the past. The large computational time required was a limiting factor to
perform a large number of simulations (see Chap. 4). After the recent implementations
of a non-Fourier heat flux scheme and the Boris correction (see Warnecke and Bingert
2020), a parameter study is now possible. We investigate the LX ∝ Φm through a simple
analytical model and a series of 3D MHD numerical experiments.

The layout of the thesis is as follows. In Chap. 2 we give a brief introduction of the
magnetohydrodynamic (MHD) equations. We also derive the RTV scaling laws. We
finish by describing the advantages of large-scale 3D numerical simulations of coronal
loops. In Chap. 3 we describe the analytical model we developed to explain the LX ∝ Φm

based on the RTV scaling laws. In Chap. 4 we give a brief description of the solar coronal
model we use for our numerical simulations. In Chap. 5 and Chap. 6 we show the results
from the simulations where the surface magnetic flux is changed to represent stars more
active than the Sun. In Chap. 7 we summarise our results and discuss their implication to
stellar coronal activity.
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2 Theoretical framework

The Sun, the stars, and most of the astrophysical objects are subject to the motion and
dynamics of plasma. In the single-fluid picture, plasma can be described by a set of partial
differential equations known as the magnetohydrodynamics (MHD) equations. These
equations can be found in many textbooks regarding plasma physics (see e.g. Priest 2014).
In this chapter, we summarise the basic equations and their implication.

2.1 Electromagnetic equations

2.1.1 Maxwell’s equations
Motions in the plasma are strongly affected by the interaction with the electric and mag-
netic field (E, B). The fields E and B are described by Maxwell’s equations,

∇ · E =
ρe

ε0
(2.1)

∇ · B = 0 (2.2)

∇ × E = −
∂B
∂t

(2.3)

∇ × B = µ0 j + ε0µ0
∂E
∂t

(2.4)

where ρe is the charge density, ε0 is the vacuum’s permittivity, and µ0 is the vacuum’s
magnetic permeability. The parameters ε0 and µ0 are related to the speed of light as
c = 1

√
ε0µ0

.
For the majority of plasma phenomena observed in astrophysics, plasma motion can

be considered as the motion of a fluid. The simplest approach is the single-fluid approxi-
mation, where we can make a few assumptions. (I) It is assumed that the plasma is macro-
scopically quasi-neutral with an equal number of negative ne and positive ions ni. Thus,
ρe = nee − nie ' 0. (II) In general, the motion of the plasma can be considered to have a
single macroscopic velocity u, density ρ, and pressure p. (III) Furthermore, for most of
the phenomena related to solar physics, the velocities can be considered non-relativistic,
u << c.

In the simplest form of MHD, it is assumed that the plasma is a perfect conductor
with zero resistivity. This is known as ideal MHD, and the magnetic field is "frozen" in
the plasma. The ideal MHD is applicable only when, (I) the plasma is collisional and
the particles follow a Maxwellian distribution, (II) the resistivity is zero, thus there is no
diffusion, and (III) typical length scales in the plasma are larger than the Debey length and
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Larmor radius. However, in some astrophysical objects such as the Sun, resistivity is not
necessarily zero thus there is a deviation from ideal MHD. In this case, the plasma is also
subject to diffusion. Even if the plasma is not a perfect conductor, but the other conditions
are still valid, we can use ,what is called, a resistive MHD. The finite resistivity can
create current sheets that describe phenomena such as magnetic reconnection, turbulence,
and others that cannot be explained with ideal MHD. Finally, if the plasma is no longer
collisional and the particle distribution is not a Maxwellian, then the MHD breaks down,
and there is a need to employ kinetic theory.

In the framework of ideal MHD, the displacement current ∂E
∂t of Eq. (2.4) is negligible.

We define the typical plasma length scale l and a time scale τ with τ ' l/u. The left hand
side of Eq. (2.4) can be estimated,

|∇ × B| '
B
l

(2.5)

The electric field E of the right hand side of Eq. (2.4) can be expressed by using Ohm’
law

j = σ(E + u × B) (2.6)

For an ideal MHD, the electric conductivity σ→ ∞ therefore,

E = −u × B. (2.7)

Using now the characteristic length and time scales we get,

E ' uB→
∂E
∂t
'

uB
τ

=

(B
l

)
u2 << c2. (2.8)

Since the displacement current scales quadratically with velocity, then for non-relativistic
phenomena this term can be ignored. For a quasi-neutral plasma (i.e. ρe ' 0) the
Maxwell’s equation reduce to,

∇ · E = 0 (2.9)
∇ · B = 0 (2.10)

∇ × E = −
∂B
∂t

(2.11)

∇ × B = −µ0 j. (2.12)

2.1.2 Induction equation
It is widely common to substitute the electric field E by using Ohm’s law and combining it
with the Maxwell’s equations (see Eq. (2.10)-Eq. (2.12)) to derive the induction equation,

∂B
∂t

= ∇ × (u × B) − ∇ × (η∇ × B), (2.13)

where η = 1/(µ0σ) is the magnetic resistivity. The resistivity η generally depends on
temperature. The induction equation Eq. (2.13) shows that the temporal evolution of the
magnetic field B is due to the induction of the magnetic field because of the plasma motion
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(i.e. ∇ × (u × B)) and the diffusion of the magnetic field because of the resistivity (i.e.
∇ × (η∇ × B)).

In numerical simulations it is more convenient to solve for the vector potential A
instead of the magnetic field B. The reason is that the vector potential automatically
satisfies Maxwell’s second law (see Eq. (2.11)),

∇ · B = 0→ B = ∇ × A. (2.14)

Assuming now a constant resistivity η, the induction equation (i.e. Eq. (2.13)) can be
expressed as,

∂A
∂t

= u × (∇ × A) + η∇2 A. (2.15)

Here we use the resistive gauge φ = η∇ · A. We distinguish two extreme cases. In the
first case, η = 0 (i.e. ideal MHD). For this case, we consider the plasma to be a perfect
conductor. This means that there is no diffusion of the magnetic field. The magnetic
fieldlines are frozen in the plasma, and they are dragged around due to the plasma motion.
In the alternative case, u = 0. For this case, the plasma is not moving, and the magnetic
field is only subject to diffusion and eventually will decay.

2.1.3 Poynting theorem
The Poynting flux describes the flux of electromagnetic energy through a unit area per
unit time. It is defined as,

S =
1
µ0

E × B
[ W
m2

]
. (2.16)

Substituting the electric field E through the Ohm’s law (see Eq. (2.6)) we rewrite the
previous equation as,

S = η( j × B) −
1
µ0

(u × B) × B. (2.17)

where η = 1/µ0σ. The above equation describes the Poynting flux as the interaction of
the currents with the magnetic field (i.e. j × B) and the interaction of the plasma flows
with the magnetic field (i.e. u × B × B).

Both terms of Eq. (2.17) contribute in the change of the magnetic energy to other
forms of energy. The magnetic energy density is defined as,

em =
B2

2µ0

[ J
m3

]
(2.18)

If we now take the time derivative we get,

∂em

∂t
=

1
µ0

B ·
∂B
∂t
. (2.19)

We can substitute the time derivative of the magnetic field by using the induction Eq. (2.13),

∂em

∂t
=

1
µ0

B
[
∇ × (u × B) − ∇ × η(∇ × B)

]
. (2.20)
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Using now the definition of the Poynting flux Eq. (2.17) and Ampere’s law we get our
final result,

∂em

∂t
+ ∇ · S = −ηµ0 j2 − u · ( j × B). (2.21)

If the right hand side of Eq. (2.21) was zero then the magnetic energy would be a con-
served quantity. In that case the magnetic energy would flow in space but since there are
no sinks and sources there will be no loss of energy.

In the case where we have sinks and sources then the right hand side of Eq. (2.21)
describes the conversion of magnetic energy into other form of energies. The first term
indicates the loss of magnetic energy by Ohmic dissipation which converts into thermal
energy. The second term, indicates the conversion of the magnetic energy into kinetic
energy through the work done by the Lorentz force.

2.2 Fluid equations

2.2.1 Continuity equation
In the limit of MHD, plasma can be described as the motion of a quasi-neutral fluid. The
plasma mass density is a conserved quantity, and it flows in space in a continuous way
(thus the name continuity equation). Mathematically the mass conservation is described
by the continuity equation,

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.22)

where ρ is the mass density and u is the plasma velocity. Eq. (2.22) states that an increase
of density at some point requires a mass flow into the neighboring region and a density
decrease requires a mass flow out of the surrounding region. Alternatively, Eq. (2.22) can
be expressed using the Langragian derivative D

Dt = ∂
∂t + u · ∇ as,

Dρ
Dt

+ ρ∇ · u = 0. (2.23)

For an incompressible flow, ∇ · u = 0 and,

Dρ
Dt

= 0. (2.24)

2.2.2 Momentum equation
The fluid motion is subject to forces acting on it. Hence, Newton’s second law describes
the motion of the fluid. The equation of motion can be expressed with the momentum
equation,

ρ
Du
Dt

=
∑

i

fi (2.25)

where D/Dt is the Lagrangian derivative and fi are the forces per unit volume. More
precisely, this forces are,
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• the pressure gradient −∇p

• the Lorentz force j × B

• the viscous force 2ν∇ ◦ (ρS )

• gravitational force -ρ∇Φ,

where ν is the viscosity and S is the strain tensor. Forces that arise from rotation, such as
Coriolis and centrifugal force, are generally not taken into account in the coronal study,
and thus they are ignored.

2.2.3 Equation of state
To fully describe a fluid it is required to establish an equation of state. For most astro-
physical objects that consist of plasma at low pressure, the equation of state of an ideal
gas,

p =
kB

µmp
ρT (2.26)

can be considered as a good approximation. Here µ is the atomic weight, kB is the Boltz-
mann constant and mp is the proton’s mass. For a fully ionised hydrogen plasma, like
the one we find in the solar corona, we have the same amount of protons and electrons,
therefore µ = 0.5 and for the densities,

n = ne + np = 2ne, ρ = npmp + neme ' nemp. (2.27)

2.2.4 Energy equation
The last equation necessary to fully describe the plasma evolution is the energy equation,

ρT
Ds
Dt

= −L, (2.28)

where s is the entropy per unit mass and L are all the sources and sinks of energy. The
previous equation shows that an increase of heat per unit volume as it flows in space is
only due to the total effect of all the sinks and sources. In the absence of sinks and sources,
entropy is a conserved quantity.

A more convenient way to express Eq. (2.28) is by using the rate of temperature
change T instead of entropy s. To do that, we have to introduce the change of the in-
ternal energy de,

de = Tds −
p
ρ2 dρ. (2.29)

Now Eq. (2.28) can be expressed as a function of the internal energy,

ρ
De
Dt
−

p
ρ

Dρ
Dt

= −L. (2.30)

For an ideal gas the internal energy is given by e = cvT , with cv being the specific heat for
a constant volume. Using now the continuity Eq. (2.23) we derive the final expression,
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cvρ
DT
Dt

+ p∇ · u = −L (2.31)

The sources and sinks are described in the following section.

2.2.4.1 Ohmic dissipation

The term that describes the conversion of magnetic energy to thermal energy is called
Ohmic or Joule dissipation. The expression is given by,

LH = −ηµ0 j2, (2.32)

where η is the magnetic resistivity and for the solar corona it is on the order of 1 m2/s.
However, following the work of Bingert and Peter (2011) we have, for numerical reasons,
to set a much larger value of η in the numerical simulations (see Sect. 4.2.1). The Ohmic
heating term has a significant contribution in the heating of the coronal plasma in our
numerical models.

2.2.4.2 Viscous heating

The viscous force can be considered to act analogously as friction does in our everyday
life, converting the kinetic energy of a body into heat. Similarly, for fluids, the conversion
of kinetic energy into heat is given by the viscous heating term,

Lν = −2ρνS 2, (2.33)

where ν is the kinematic viscosity and typical values in the solar corona, from transport
theory, are on the order of 1010 m2/s. The S is the rate of strain tensor,

S =
1
2

(
∂ui

∂x j
+
∂u j

∂xi
−

2
3
δi j∇ · u

)
. (2.34)

2.2.4.3 Spitzer heat conduction

The energy transport in the solar corona is described by the heat conduction. The heat
flux vector along the magnetic fieldlines reads,

q = −K∇T, (2.35)

where K is the thermal conduction tensor. The minus sign indicates that the heat flux
points downwards to parts with lower temperatures and is proportional to the temperature
gradient. The steeper the gradients, the more efficient it is. The heat is transported by the
electrons, and for this term to hold, the electrons mean free path should be much smaller
than the temperature scale height, which is true for the corona.

For the fully ionised plasma of the solar corona, the heat conduction tensor K has the
general form,

K = K⊥δi j + (K‖ − K⊥)b̂ib̂ j, (2.36)

where K⊥, K‖ are the perpendicular and parallel coefficients and b̂i, b̂ j are the unit vectors
along the magnetic fieldlines. For the components i and j, the perpendicular component
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of the heat conduction K⊥ in the solar corona is by many orders of magnitude weaker
compared to the parallel component K‖. Thus, we set K⊥ = 0 and the heat flux reads,

q = −K‖ b̂(b̂ · ∇T ). (2.37)

For fully ionised gas Spitzer (1962) gives,

K‖ = K0T 5/2
[ W
mK

]
, (2.38)

where typical coronal values yield K0 = 1.8×10−10 W m−1K−7/2. To conclude, the Spitzer
heat conduction term in the energy equation is the divergence of Eq. (2.37), thus,

Ls = ∇ · q = −K0∇ · (T 5/2 b̂(b̂ · ∇T )) (2.39)

The efficiency of the Spitzer heat conduction poses a serious numerical challenge mainly
because it can increase the computational time tremendously. In Chap. 4 we are going to
describe a numerical method in order to overcome this problem.

2.2.4.4 Radiative cooling

An equally important process that takes place also in the solar corona is radiative cooling.
The corona is considered to be optically thin. The intensity I(λ) of an optically thin
spectra line produced by photons at a specific wavelength λ via spontaneous emission is
expressed as,

I(λ) =

∫
AXG(T, λ, ne)nenHdz, (2.40)

where, AX is the elemental abundance in the corona, G(T, λ, ne) is the contribution func-
tion which can be calculated through the CHIANTI (Dere et al. 1997) atomic database
and ne, nH are the number densities of electron and hydrogen respectively. To further con-
tinue the analysis of Eq. (2.40) we need the density profile along the line of sight, which
gives rise to differential emission measure. The coronal abundances are calculated based
on the work from Meyer (1985), Murphy (1985), Cook et al. (1989).

For the optically thin corona, the radiative losses are not coupled to the radiation field,
and hence it can be derived by integrating Eq. (2.40) in a specific temperature range. The
expression is given by,

LR = nenHQ(T ) (2.41)

The function Q(T) is called the radiative loss function with units of Wm3. For the imple-
mentation in the code see Bingert (2009).

To conclude, radiative cooling is most efficient for lower temperatures and higher
density, thus it is significant in the lower, more dense parts of the corona and transition
region.
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Figure 2.1: Coronal loops in the solar atmosphere as observed by the Transition Region
and Coronal Explorer (TRACE) instrument on November 6th 1999. The image shows
the EUV emission of the hot coronal plasma (T ' 1 MK) confined inside the loop. The
colors in this picture are inverted. Credit: NASA/LMSAL.

2.3 Basic characteristics of coronal loops

The low optical emission of the solar corona compared to the photosphere makes it dif-
ficult to study it in the optical wavelength range. However, because of the high temper-
atures in the corona, the most prominent wavelength range used as a coronal diagnostic
is in the EUV and X-ray regime. The first EUV and X-ray observations revealed a solar
corona consisting of a fully ionised gas, which is confined along the magnetic fieldlines,
that form what is known as coronal loops. These coronal loops have a semicircular shape
with the two sides anchored in the photosphere and consist of numerous magnetic field-
lines. In Fig. 2.1 it is shown the structure of hot coronal loops in the solar atmosphere
as it was observed by Transition Region and Coronal Explorer (TRACE). It is clear that
when the plasma confined inside the coronal loops is heated to temperatures beyond 1
MK, it becomes much brighter than the surrounding ambient plasma revealing this semi-
circular structure. The coronal loops are considered the main building blocks of the solar
atmosphere, and they play an important role in the coronal heating problem.

Coronal loops observed in the Sun might vary in size, temperature, and density. The
length scales vary from 1 Mm for X-ray bright points, and it can reach up to 100 Mm for
typical active regions. Their temperature varies from a few 105 K for cool loops, and it
can increase to a few MK for active regions loops. Finally, the number density is in the
range from 1014 to 1016 m−3.

The coronal loops act as a bridge for the magnetic energy to propagate from the pho-
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tosphere up to the corona, which will convert into heat. Analytical models of coronal
loops have been developed based on a few physical assumptions. (I) It is assumed that
the solar corona has a high conductivity. In this case, the coronal plasma can be consid-
ered to be frozen in the magnetic field. The plasma cannot move from one fieldline to
another, but it is confined to a movement only along the fieldline. (II) The plasma β is
assumed to be much smaller than unity in the solar corona. The plasma β is defined as
β = p/pm, where p is the gas pressure and pm is the magnetic pressure. For β > 1, the
gas pressure dominates. As a result, the magnetic fieldlines will be dragged around by
the plasma flows. For the solar corona with β < 1, the magnetic pressure dominates, and
coronal loops behave like rigid bodies. The plasma flow will only be following the shape
of the loop. (III) The heat conduction, as discussed in Sect. 2.2.4.3, is only parallel to
the magnetic fieldlines. The heat conduction perpendicular to the fieldlines is negligible,
and therefore the magnetic fieldlines inside the coronal loops can be considered thermally
isolated by the neighboring magnetic fieldlines (see e.g. Priest 2014; Reale 2014).

2.3.1 One dimensional coronal loop models

Solar coronal loops consist of numerous thin strands of magnetic fieldlines. Each one of
them can evolve independently. The motion of the plasma under typical coronal condi-
tions is confined along the magnetic fieldlines. In this framework, it is common to as-
sume a constant loop cross-section and neglect the effect of curvature, non-uniform loop
geometry, or waves. Consequently, a simple approach is to consider the coronal loops as
one-dimensional (1D) structures. Its dynamics and evolution can be described by solv-
ing the 1D time-dependent hydrodynamic equations numerically (see e.g. Hansteen 1993;
Antiochos et al. 1999; Bradshaw and Cargill 2006). Namely, the continuity, momentum,
and energy equation. In this configuration, the magnetic field does not explicitly affect the
plasma flows but only acts as a pathway to the coronal plasma motion. This consideration
makes the study of the coronal loops much simpler.

As any other computational method of describing a physical system, there are advan-
tages and disadvantages. One important advantage of 1D models is the relatively high
spatial resolution that can be achieved. This allows for capturing some aspects of these
1D coronal loops with much greater detail. For example, the steep temperature gradients
in the transition region can be resolved well in 1D models (Serio et al. 1981). Further-
more, the time-dependent solutions of the hydrodynamic questions provide an insight into
the evolution of plasma properties such as temperature or velocity along the loop. Know-
ing the evolution of loop properties can be used for a direct comparison with actual solar
coronal observations. On the other hand, one important limitation of the 1D models is
the ad hoc prescription of a heating function. This cannot be treated self-consistently in
the environment of a 1D setup, but a more realistic three-dimensional (3D) approach is
required. However, the 1D models can be directly compared with solar observations and
provide quantitative information on the different heat input functions prescribed (see e.g.
Reale et al. 2000). More detailed information on 1D coronal loop models can be found in
the review paper of Reale (2014). In the next section, we will to describe a specific case
of 1D models for static coronal loops. This will give rise to the well-known RTV scaling
laws (Rosner et al. 1978) which play a significant role throughout this thesis.
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2.3.1.1 Energy balance

The first 1D coronal loop models developed examine static coronal loops in hydrostatic
equilibrium. To fully describe the evolution and dynamics of coronal plasma, the MHD
equations need to be solved. However, for static coronal loops, the plasma moves as a
steady-state incompressible flow along the magnetic fieldlines. In this case, ∇ · u = 0 and
the time derivatives vanish. The energy equation (see Eq. (2.31)) is governed only by the
balance among heat conduction, heat input and radiative cooling,

H − Lrad − ∇ · q = 0. (2.42)

Integrating Eq. (2.42) in the whole coronal volume and assuming a vanishing heat flux at
the boundaries, the total heat input is balanced by the energy loss through the radiative
cooling term. The heat conduction term redistributes the energy from the hot parts of the
corona to the cooler ones. The modeled 1D corona loops can sustain a million Kelvin
degree plasma for long time scales, consistent with the behavior of actual solar coronal
loops.

2.3.1.2 RTV scaling laws

The relation between temperature, density, and pressure of coronal loops has been the
main focus of many 1D loop models. The early study of Rosner, Tucker & Vaiana (Ros-
ner et al. 1978, ; RTV) assumed 1D coronal loops in hydrostatic equilibrium. Their model
considered coronal loops with a constant heating rate and a constant cross-section. Using
these simple physical assumptions and the energy balance equation, they derived the fa-
mous RTV scaling laws that relate the coronal temperature and pressure with the heating
rate and the coronal loop length. Alternatively, these scaling laws can be expressed to
relate thermodynamic quantities, such as temperature and density, with the loop charac-
teristics such as the heating rate and length.

The first scaling law discussed relates the temperature at the loop apex with the heating
rate H and the loop length L. The coronal loop is considered to have approximately
a semi-circular shape, and we only account for derivatives along the loop. The energy
balance for a semi-circular loop is,

−
1
A

d
ds

(Aq) − Lrad + H = 0, (2.43)

where q is the heat flux, and the loop coordinate s goes from 0 to the apex at L for
a symmetric loop. The cross-section of the loop A is considered to be independent of
the coordinates in this framework. Finally, the heating rate H is also considered to be
constant. Most of the energy is radiated at the transition region, therefore above the
footpoints of the coronal loop, the radiative losses can be neglected. The heating rate H
is only balanced by the heat conduction,

H =
dq
ds
. (2.44)

The heat flux is expressed with the formula (see also Eq. (2.39)) ,

q = −K0T 5/2 dT
ds
. (2.45)
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The Eq. (2.44) can be integrated from a position s to the apex of the loop L,∫ L

s
Hds′ = −

∫ L

s
d
(
K0T 5/2(s′)

dT (s′)
ds′

)
(2.46)

The solution of the integral yields,

H(L − s) = −

[
K0T 5/2(s′)

dT (s′)
ds′

]∣∣∣∣∣s′=L

s′=s
. (2.47)

Since the loop is considered to be thermally isolated, the heat flux should vanish at the
apex of the loop. Thus,

dT
ds

∣∣∣∣∣
s=L

= 0. (2.48)

By using the above boundary condition we obtain,

H(L − s) = K0T 5/2 dT
ds

(2.49)

Solving Eq. (2.49) from 0 to L we obtain the final result,

H
L2

2
=

2K0

7
T 7/2

max. (2.50)

Here we ignored the temperature at the footpoints since it is negligible compared to the
apex temperature. Our final result will be,

Tmax ∝ H2/7L4/7 1st RTV scaling law (2.51)

The second RTV scaling law relates the number density ne with the heating rate H and
loop length L and can be derived similarly to temperature T . At the loop footpoints, all
the incoming heat flux q is radiated away by the radiative cooling term Lrad while the local
heating rate H does not contribute to the energy balance equation and it can be neglected.
Hence,

Lrad = −
dq
ds

(2.52)

The optically thin radiative losses can be parameterized through the radiative loss function
Q(T ),

Lrad = n2
eQ(T ), (2.53)

where ne is the electron’s number density. For the lower corona and transition region, the
radiative loss function can be approximated as a power-law (see e.g. Rosner et al. 1978;
Priest 1982),

Q(T ) = χT−1/2 with χ = 10−32Wm3K1/2. (2.54)

Later studies (Cook et al. 1989) provide a steeper dependence by including the contri-
bution of Fe as Q(T ) ∝ T−2/7. However, the difference is not significant, and we can
therefore consider Eq. (2.54) to be a good approximation of the radiative losses. The
energy balance reads,
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n2
eχT−1/2 = −

dq
ds
. (2.55)

We multiply the above equation with K0T 5/2 and using the chain rule,

K0χn2
eT 2 = −K0T 5/2 dT

ds︸        ︷︷        ︸
q

dq
dT

=
d

dT

(q2

2

)
(2.56)

The Eq. (2.56) can be integrated along the loop and we obtain,

K0χn2
e

∫ L

0
T 2dT =

∫ L

0
d
(q2

2

)
→

2K0χn2
e

3

[
T 3(L) − T 3(0)

]
= q2(L) − q2(0) (2.57)

Using again the boundary condition for the heat flux (q(L) = 0) and that T (L) >> T (0)
we get our final result,

q(0) = −

√
2K0χn2

e

3
T 3/2

max, (2.58)

which yields the relation between the heat flux at the coronal base with the temperature at
the apex of the loop. The heat conduction will transfer all the energy from the apex into
the base of the loop. Thus,

q(0) = −HL. (2.59)

substituting Eq. (2.58) and the first RTV scaling law Eq. (2.51), yields the final result,

ne ∝ H4/7L1/7, 2nd RTV scaling law (2.60)

Both scaling laws, Eq. (2.51) and Eq. (2.60) show a dependence of the coronal tem-
perature and density on the incoming heating rate H, and as a first case, we consider a
loop with a fixed-length L. If the incoming heating rate at the base of the coronal loop
is increased, then the heat conduction is expected to increase as well. The increased heat
conduction will redistribute the extra energy. This will lead to an increase in the peak
temperature at the apex of the loop. At the same time, radiation has to increase to balance
the enhanced heat input, leading to an increase in the coronal density at the loop base. For
the alternative case we consider coronal loops with a fixed heat input H, but the length
can vary. In this case, a change in temperature and density is only regulated by a variation
in the loop length L. Longer loops will experience lower peak temperature and density
since they have to redistribute the energy in a larger volume for a given fixed heating rate.

We conclude that a proper study of coronal loops requires not to achieve the correct
high peak temperature but to get the proper coronal density. This will produce the correct
coronal emission in comparison to actual observations. The RTV scaling laws provide
an essential tool in the study of solar coronal loops. In addition, they are also widely
considered in stellar studies (see e.g. Güdel 2004, section 11).
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2.3.2 Three dimensional numerical models of coronal loops above ac-
tive regions

EUV and X-ray observations of the solar corona revealed a coronal plasma with a temper-
ature of 1 MK or even more. The mechanism which heats the corona from a few thousand
Kelvin of the photosphere to one million Kelvin of the corona is still not well understood.
1D models provided some insight into the problem but, to properly capture the complex
nature of coronal loops, 3D simulations are necessary.

One of the models proposed to explain the coronal heating problem is the fieldline
braiding model (Parker 1972, 1983). In this model, the braiding of the magnetic fieldines
because of the photospheric velocities will release magnetic energy in the corona lead-
ing to high temperatures. One of the first attempts to realistically model the solar corona
based on the fieldline braiding mechanism was the 3D model of Gudiksen and Nordlund
(2002) based on the STAGGER code (Galsgaard and Nordlund 1996). The model sim-
ulates a part of the corona above an active region, including a photospheric driver and a
Spitzer heat conduction along the magnetic fieldlines. They found that even though the
coronal magnetic field in the corona is close to potential, the photospheric motions can
provide enough energy to heat coronal loops to high temperatures. Synthetic EUV emis-
sion from their model shows a good comparison with actual coronal loops as observed
with AIA/SDO or TRACE (see e.g. Peter et al. 2004).

An improved version of the STAGGER code accounting also for the convection zone
is the widely used BIFROST code (Gudiksen et al. 2011). The BIFROST code simulates
the solar corona but also includes the convection zone leading to a realistic self-consistent
photospheric velocity distribution. Furthermore, the code solves for the full radiative
transfer equations, and, also a hydrogen ionization module accounts for the non-local
thermodynamic equilibrium of the solar chromosphere.

An equally important code used is the MuRAM code (Vögler et al. 2005). Initially,
the MuRAM code was developed to simulate the magneto-convective motions in the so-
lar photosphere. Recently Rempel (2017) extended the ability of the code to study the
solar corona as well. Similar to Bifrost code, the MuRAM code also includes the con-
vection zone creating the photospheric granular motion self-consistently. However, the
chromosphere is considered to be in local thermodynamic equilibrium for MuRAM code.

A limited number of other codes can be found in the literature, such as the RADMHD
(Abbett 2007) where they prescribe the heating term ad hoc based on observations. There
is also the work of Mok et al. (2005), Mok et al. (2008) that study the formation of coronal
loops by thermal instabilities. Finally, van der Holst et al. (2014) developed the AWSoM
code that studies the ability of Alfvén waves to heat the corona.

In this work we use the solar coronal model developed by Bingert (2009) using the
PENCIL CODE (Brandenburg et al. 2020). This model is based on the early work of
Gudiksen and Nordlund (2002). It has been proved successful in the description of the
solar corona by either including an observed magnetogram of an active region together
with a velocity driver to mimic the granular motion (Bingert and Peter 2011; Bourdin
et al. 2013) or in flux emergence experiments (Feng 2015). One of the key results of
this model is the synthetic emission in the EUV that was found to match quite well the
solar coronal loops observed with the AIA/SDO at the 171 Å channel (Peter and Bingert
2012; Bourdin et al. 2016; Warnecke and Peter 2019a) (see Fig. 2.2b,c). Furthermore,
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Figure 2.2: Active region magnetogram from the numerical models used in this thesis and
synthetic emission of coronal loops. Panel a): Bz magnetic field at the bottom boundary
of the simulation box. Panel b): Top view of the synthetic EUV emission at the 171 Å
channel. Panel c): Side view of the 171 Å synthetic emission. The units of the EUV
emission are in DN/s/px.

3D models allow for a more detailed study of loop properties such as temperature and
density distribution and how they compare with theoretically expected values (such as the
RTV scaling laws derived in Sect. 2.3.1.2) that were found in ideal descriptions of coronal
loops. Studying these scaling laws from the observational point of view is challenging,
and computational power has been a limiting factor until recently. One of the first studies
testing the RTV scaling laws and their limitations was by Bourdin et al. (2016). Their
model included a small solar active region as an input to the bottom boundary. They
showed that the temperature and density for a collection of magnetic fieldlines agree well
with the predicted values from the RTV scaling laws. Finally, Warnecke and Peter (2019b)
based on this model studied the influence of the magnetic helicity on the coronal X-ray
emission of active stars. They found that the coronal X-ray emission increases as a power-
law with the magnetic helicity without changing the strength of the photospheric magnetic
field.

To conclude, 3D models of coronal loops provide the best realistic approach to study
the solar corona. These models self-consistently treat the heat input in the corona, and
they are the best tool at our disposal to study the complex structure and dynamic behavior
of coronal loops. In this work, based on a 3D coronal model, we employ a parameter
study to explain the stellar coronal activity. We present a series of simulations and inves-
tigate how the change of the magnetic energy input injected directly from the photosphere
affects the coronal X-ray emission.

2.3.3 Stellar coronal loops

Non-solar X-ray instruments have shown that most other stars emit strongly in X-rays,
which is a clear sign of an active corona. The stellar corona is often much stronger than
the solar one, and the reasons for that are still an open question. Studies have shown
that age is an essential factor for creating an active corona. Younger stars that tend to
rotate much faster than the Sun produce a much stronger X-ray corona (see e.g. Telleschi
et al. 2005). Due to the large distance between the stars in our galaxy, it is impossible
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to spatially resolve their corona. Thus, we cannot obtain information on the size or the
appearance of stellar coronal loops. For that reason, we rely only on indirect evidence.

One way of studying stellar coronal loops is by examining explosive events like stel-
lar flares. The study of stellar X-ray flares involves plasma confined in loop-like struc-
tures, which after eruption enhance the X-ray emission signature significantly (Reale et al.
2002). This allows putting constraints on various characteristics, such as their size and
temperature. It was found that typical stellar coronal loops vary in length from similar to
the solar ones (Reale et al. 1988), and they can reach up to the order of the solar radius
(Getman et al. 2008).

A slightly different approach is to study the X-ray emission from the whole stellar
disk. It is shown that various structures on the solar surface, such as quiet sun regions,
active regions, flares, and others, affect the corona differently. This method can then be
used on other stars and explain the stellar activity by applying weight on the different
components and obtain information regarding the coronal heating problem (Peres et al.
2001, 2004). More information can be found in the reviews of Reale (2014) and Güdel
(2004).

Observations can also be used to find correlations between coronal X-ray emission
and stellar parameters such as the surface magnetic field. Unfortunately, these relations
are only obtained through observations. In this work, we fill in this gap by building an
analytical model and explain these observed correlations.
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3 Stellar coronal X-ray emission and
surface magnetic flux

* Chap. 3 reproduces the article Stellar coronal X-ray emission and surface magnetic flux
by J. Zhuleku, J. Warnecke, and H. Peter published in Astronomy & Astrophysics, 640,
A119 (2020), reproduced with permission c© ESO, DOI: 10.1051/0004-6361/202038022.
The abstract and appendix are not included. I wrote the first draft of the paper and devel-
oped the initial stages of the model.

3.1 Introduction
The Sun, other solar-like stars, and, in particular, other more active stars are sources of
X-ray emission. These X-rays are mostly of a thermal nature and originate from stellar
coronae due to the high temperatures, well above 1 MK, in their outer atmospheres. Ob-
servational studies show a clear dependence of the X-ray emission on the surface magnetic
field for individual structures on the Sun as well as for stars as a whole. Combining mea-
surements from the Sun and other stars, Pevtsov et al. (2003) found this dependence to be
slightly steeper than linear following roughly a power law, LX ∝ Φ1.15. Here LX and Φ are
the X-ray luminosity and the unsigned surface magnetic flux. Different studies found dif-
ferent power-law relations, depending on the structures and stars that were investigated.
For example, studying the X-ray emission and the surface magnetic field of solar-like
stars, Kochukhov et al. (2020) found a relation of LX ∝ Φ2.68. Observations of different

Table 3.1: Observed relations of X-ray luminosity and X-ray flux to surface magnetic flux
and magnetic field.

index m in index p in
Objects Lx ∼ Φm Fx ∼ Bp Reference

Solar active regions 1.19 Fisher et al. (1998)
Solar X-ray bright points 0.89 Longcope et al. (2001)
Solar microflares 1.48 Kirichenko and Bogachev (2017)
Solar disk averages 1.86 Wolfson et al. (2000)
Solar disk averages 1.5–2.2 Benevolenskaya (2007)
Solar-like stars (mostly G type) 2.68 Kochukhov et al. (2020)
Low mass stars (F, G, K, M) 1.80 Vidotto et al. (2014)
Sun and large sample of stars 1.15 Pevtsov et al. (2003)
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solar magnetic structures, such as active regions, bright points, or microflares, and of stars
with various levels of activity, reveal power-law relations between X-ray emission and the
magnetic field. Mostly the power-law indices range from about one to two (see Table 3.1
for a non-complete list). There is quite a large scatter in the X-ray observations of other
stars, in part because the data usually used for a statistical analysis of the X-ray emission
might capture different phases of stellar activity (e.g., Vidotto et al. 2014).

On the Sun, most of the total X-ray emission originates from coronal loop systems,
and it is widely assumed to be also true for other (solar-like and more) stars (e.g., Güdel
2004). The general properties of these loops can be described using the Rosner, Tucker
& Vaiana (RTV) scaling laws, named after the authors of the original study (Rosner et al.
1978). These scaling relations connect the temperature and pressure of a loop to the
(volumetric) heating rate and the length of the loop through power laws and will be de-
scribed in more detail in Sect. 3.4. To derive the scaling laws, one usually assumes a one-
dimensional coronal loop in hydrostatic equilibrium with a constant volumetric heating
rate where the loop length is smaller than the pressure scale height. An analytical analysis
of the balance between energy input, heat conduction, and radiative cooling then yields
the scaling laws (e.g., Sect. 6.5.1A of Priest 1982). Even though they were developed
for simple static coronal loops, the RTV scaling laws still capture the average properties
of quite complex situations as found in three-dimensional coronal models (Bourdin et al.
2016). The RTV scaling laws have also been used extensively in stellar coronal studies
(e.g., Güdel 2004) and can thus be considered as a basis for our understanding of stellar
coronae.

The RTV scaling relations require some information on the heating rate (and the loop
length) to determine the temperature and pressure (and thus the density) of a loop. The
exact form of the mechanism to heat a stellar corona to temperatures in excess of 1 MK
is still open to debate. In our study, we employ two widely used proposals, mainly for
illustrative purposes, namely the Alfvén wave model (e.g., van Ballegooijen et al. 2011)
and the nanoflare or field-line braiding model (Parker 1972, 1983). For both scenarios, the
upward-directed Poynting flux, and by this, the heating rate can be scaled as a function of
the surface magnetic field (see Sect. 3.3). With that scaling of the energy input with the
surface magnetic field, we have the critical input to derive the temperature and density
from the RTV scaling relations.

Based on the temperature and density of a loop one can estimate the X-ray emission
to be expected from the structure. Under coronal equilibrium conditions, essentially,
the optically thin emission is proportional to the density squared, and is a function of
temperature, often called the temperature response function or contribution function (e.g.,
Del Zanna and Mason 2018). Using the appropriate atomic data, one can then calculate
the X-ray emission over a given wavelength region, for the continuum emission alone
(Culhane 1969) and also including emission lines (Landini and Monsignori Fossi 1970).
For different wavelength regions the temperature response functions will be different,
with emission from shorter wavelength intervals having the tendency to originate from
hotter plasma (e.g., Mewe and Gronenschild 1981, their Fig. 3; or Mewe et al. 1985, their
Fig. 1). In order to evaluate the temperature response for a given instrument one should
use a modern atomic data base tool (e.g., Chianti; Dere et al. 1997) and the wavelength
dependence of the effective area of the instrument. We employ both in our considerations
in Sect. 3.2.

40



3.2 Temperature dependence of X-ray radiation

In this study, we use the temperature response function of various X-ray detectors
(Sect. 3.2) and two of the main coronal heating mechanisms (Sect. 3.3) together with the
RTV scaling laws (Sect. 3.4) to derive an analytical model describing how the X-ray emis-
sion depends on the unsigned surface magnetic flux. Finally, in Sect. 3.5 we compare our
model with stellar observations and discuss the consequences for stellar surface magnetic
fields as well as for stellar coronal heating mechanisms.

3.2 Temperature dependence of X-ray radiation
Optically thin X-ray radiation is a combination of emission lines and continua that both
change with the temperature of the source region. In general, both line and continuum
emission are also proportional to the (electron) density squared, so that

FX = n2 R(T ) , (3.1)

where FX is the loss of energy (per volume and time) through optically thin X-ray ra-
diation, and n is the number density. The function R(T ) characterizes the temperature
dependence. When considering only one single emission line, this would be the contri-
bution function, typically including collisional excitation rates, ionization fraction, and
other factors. When considering the total emission from a number of lines (plus the con-
tinuum), R(T ) would essentially be the sum of all contribution functions involved. Then,
one has to consider that these lines are spread over a wavelength region and hence one has
to account for the efficiency of the instrument as a function of wavelength. In those cases,
R(T ) is usually called temperature response, and we will use this term in the remainder of
this paper.

To calculate the temperature response for a number of X-ray instruments we use
the Chianti atomic data package (v9.0.1; Dere et al. 1997, 2019). We first calculate
the radiances of the emission lines in a range of wavelengths λ from 0.1 Å to 250 Å
for an isothermal plasma at temperature T . For this we employ the Chianti routine
ch_synthetic.pro. In the second step we use make_chianti_spec.pro to calcu-
late the resulting spectrum IT (λ) in this same wavelength range, which also includes the
calculation of the continua. We do this for a number of temperatures T in the range from
log10 T [K] = 5.5 to 8.0. For the calculation of the spectra, we use the standard Chi-
anti ionization equilibrium and photospheric abundances. In the final step we multiply
the spectrum at each temperature by the effective area Aeff(λ) of a number of instrument-
filter-detector combinations (see Table 3.2). Here we use the values as stored in Chianti1.
The response at temperature T is then simply given by the integral of intensity and effec-
tive area over wavelength,

R(T ) =

∫
IT (λ) Aeff(λ) dλ . (3.2)

Typically, the response of an X-ray instrument peaks at temperatures around (or slightly
below) 10 MK. For lower temperatures the response drops quickly (see Fig. 3.1). This is

1In the Chianti database: dbase/ancillary_data/instrument_responses/. For Hinode/XRT, Chianti does
not list effective areas so we use values supplied in the XRT branch of SolarSoft (www.lmsal.com/
solarsoft).
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Figure 3.1: Temperature response R(T ) for several X-ray instruments. The naming con-
vention for the detector-filter combinations corresponds to the Chianti database (also see
Table 3.2). Each curve is multiplied by a constant to get the curves nicely into the same
plot. For comparison, we plot two power laws with power-law indices of 0.7 (dotted) and
2.0 (dashed). See Sect. 3.2.

the case for a wide range of X-ray instruments, including major instruments for stellar
observations, such as XMM-Newton (Jansen et al. 2001), Chandra X-ray observatory
(Weisskopf et al. 2000), Röntgensatellit (ROSAT; Pfeffermann et al. 1986), and Einstein
observatory (Giacconi et al. 1979). The current main instrument for solar studies behaves
in a similar way (Hinode/XRT; Golub et al. 2007a).

Coronae of the Sun and other stars harbor mostly plasma in the range from about 1 MK
to 10 MK. To implement the temperature response into a power-law estimate (in Sect. 3.4)
we consider a simplified variant. The change of the temperature response below 10 MK
is reasonably well characterized by a power-law fit,

R(T ) ∝ Tα, (3.3)

with a power-law index α. We apply a power-law fit to each of the instruments in a
temperature range from log10 T [K] = 5.9 to 6.9 and list the resulting power-law indices
in Table 3.2. Only for the ROSAT case, the lower limit (in log10T ) is 6.2 to avoid the bump
at low temperatures. In general, the power-law indices α range from 0.7 to about 2 (see
sample power laws in Fig. 3.1), with few exceptions giving also indices α of 3 or more.
When considering the (often many) different filters of one single instrument, power-law
indices α are found in the same range. As an example, we show XMM filters in appendix.

Based on the above discussion for a wide range of instrument-filter-camera combina-
tions we can conclude that in general a power law as in Eq. (3.3) is a reasonable fit to the
temperature response functions. In general, the power-law indices range from α=0.7 to 2.
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Table 3.2: Overview of selected X-ray instruments and the resulting power-law indices.
power-law m for: LX ∝ Φm

energy range index α for: nanoflares Alfvén waves
Instrument detector/filter [keV] R ∝ Tα (β = 2) (β = 1)
XMM/EPIC pn_med 0.05 – 12 0.7±0.03 1.0 ± 0.3 0.8 ± 0.2
EINSTEIN ipc 0.1 – 5 0.7±0.04 1.0 ± 0.3 0.8 ± 0.2
CHANDRA/LETG acis-s_order0 0.07 – 10 1.2±0.1 1.1 ± 0.3 0.9 ± 0.2
ROSAT pspc_brn 0.1 – 2.3 1.6±0.1 1.2 ± 0.3 0.9 ± 0.2
XMM/RGS rgs2_o1 0.3 – 2.5 1.8±0.2 1.3 ± 0.3 1.0 ± 0.3
Hinode/XRT Al-poly 0.2 – 3 2.1±0.2 1.3 ± 0.4 1.0 ± 0.3
CHANDRA/HETG acis-s_heg1meg1 0.4 – 10 3.1±0.3 1.6 ± 0.4 1.2 ± 0.3

3.3 Magnetic field and heating of coronal plasma
The plasma in the corona of the Sun and other stars is heated to temperatures of well
above 1 MK. In view of the scaling laws to be discussed in Sect. 3.4, we first consider
how to relate the heat input into the corona to the magnetic field on the surface of the Sun
or a star. For this we consider two of the main heating mechanisms, namely Alfvén wave
heating (van Ballegooijen et al. 2011) and field-line braiding (or nanoflare heating Parker
1972, 1983). In order to get a scaling of the energy flux into the upper atmosphere, the
Poynting flux, we follow the discussion in Fisher et al. (1998). In general, one can relate
the Poynting flux in the vertical direction, S z, to the vertical surface unsigned magnetic
field B by

S z ∝ Bβ with
{
β = 2 : braiding / nanoflares,
β = 1 : Alfvén waves. (3.4)

In the case of braiding, the magnetic field B at the surface is driven by convective flows
with a velocity v. Neglecting resistivity, the Poynting flux S = −(v×B)×B/µ0 in the
vertical direction can be approximated by S z ∝ v B2 (Fisher et al. 1998, Eq. 3), where v
is the horizontal photospheric velocity. Hence the exponent β=2 in Eq. (3.4) for field-line
braiding (or nanoflares).

In the case of an Alfvén wave propagating into the corona, the wave energy flux is
given by ρ 〈v2〉 vprop, with density ρ, mean square velocity amplitude 〈v2〉, and the propa-
gation speed being the Alfvén speed, vprop=vA. Because the Alfvén speed is proportional
to the magnetic field B, so is the energy flux of the Alfvén wave (Fisher et al. 1998, Eq. 2).
Hence the exponent β=1 in Eq. (3.4) for Alfvén waves.

In the remainder of this study, we will use the values of β=1 and 2 just to represent the
possible ranges of what we might expect for different heating processes. Other possible
parameterizations have been suggested and used, such as β=1.75 based on magnetohy-
drodynamics (MHD) turbulence models (Rappazzo et al. 2008; van Wettum et al. 2013),
or β=1 derived from full-sun visualizations through 1D parameterized models (Schrijver
et al. 2004).

For the scaling laws discussed in Sect. 3.4 the volumetric heating rate H is required. If
all the Poynting flux S z injected through the bottom boundary is dissipated in the corona,
then the dissipated energy integrated in height should equal the Poynting flux at the bot-
tom, that is, S z =

∫
H dz. This has been shown to be the case in 3D MHD models (e.g.,
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Bingert and Peter 2011). If the volumetric heating H is constant, then S z = H L, where L
is the length (or height) of the coronal structure. To be more general, we allow the influx
of energy, the Poynting flux, to be related by a power law to the heating rate,

H L ∝ S γ
z . (3.5)

In the remainder of this study we will assume γ=1, but will keep γ in the equations.
Finally, we have to relate the surface unsigned magnetic field strength B to the un-

signed magnetic flux Φ in the region considered, for example, a coronal bright point, an
active region, or a whole star. If we consider B to be the average magnetic field strength,
then the magnetic flux would be given by

Φ = B A, (3.6)

where A is the (weighted) area of the respective region (using the same terminology as
Fisher et al. 1998). The area of an active region can be related to the magnetic flux through
a power law as

A ∝ Φδ with δ = 0.819. (3.7)

If δ were unity, this would imply that the (average) magnetic field strength in each active
region is the same. In their analysis of observed solar magnetograms, Fisher et al. (1998)
found a value of δ=0.819 (their Sect. 4.1.3, following their Eq. 18). This value of δ < 1
implies that larger active regions have a magnetic flux that is large not only because of
the greater area coverage, but also because the (peak or average) magnetic field strength
is higher. We will discuss the special cases of δ=0 and δ=1 in Sect. 3.5.2

Interestingly, Eq. (3.7) is also roughly valid for other stars. In a study of solar-like
stars, Kochukhov et al. (2020) found a similar power-law relation based on the filling
factor f and the averaged surface magnetic field 〈B〉 as f ∝ 〈B〉δ with δ=0.86 (see their
Fig. 8). This filling factor f is defined as the ratio of the surface area covered by a
magnetic structure (e.g., active region) A to the total surface of a star Astar. Then with
Eq. (3.6), this relation can be rearranged to A ∝ A(1−δ)

star Φδ. Since δ ' 1 we can ignore Astar

and retrieve the same equation as Eq. (3.7).
A similar conclusion can be drawn from a study of stars with different spectral types

and activity levels (See et al. 2019). In that study, the estimated filling factor f using the
large-scale surface magnetic field and total surface magnetic flux follows a similar power-
law relation as in the work of Kochukhov et al. (2020) but with δ=0.78. In conclusion,
these results of stellar observations provide further support for using Eq. (3.7) with δ =

0.819 in our model.
To estimate the length L of the coronal structure, we assume that this is related to the

square root of the area A, that is, to the linear scale of the region considered,

L ∝ A1/2. (3.8)

Basically, this consideration assumes that the separation length of two (main) magnetic
polarities of opposite sign in the active region is proportional to the linear extent of the
active region. In the case of the Sun this can be confirmed through observations (see, e.g.,
Cameron et al. 2010, their Fig. 1). We will discuss this limitation in Sect. 3.5.3.

With the relations in Eqs. (3.4) to (3.8) we can find how the heating rate H and length
scale L depend on the (average) magnetic field B or the magnetic flux Φ. This and the
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discussion in Sect. 3.2 will allow us in the following to derive a scaling between the X-ray
emission and the surface magnetic flux.

3.4 Scaling laws: coronal emission vs. magnetic flux

The thermal properties of coronal loops, their temperature, density, and pressure structure
were described in 1D models more than 40 years ago. An early key finding that still is a
pillar of coronal physics are the so-called RTV scaling laws. These relate the length L and
(volumetric) heating rate H of a loop to its temperature T and pressure p (Rosner et al.
1978). In this section, we will employ these scaling laws together with the discussions in
Sects. 3.2 and 3.3 to derive a scaling between X-ray emission and surface magnetic flux.

The original scaling laws presented by Rosner et al. (1978) are T ∝ (pL)1/3 and
H ∝ p7/6L−5/6. They are commonly known as the RTV scaling laws named after the
initials of the authors. Essentially, these can be derived by comparing energy input, en-
ergy redistribution through heat conduction, and radiative losses (see, e.g., Priest 1982,
Sect. 6.5).

The RTV scaling relations can be rearranged to express temperature and density in
terms of heating rate and loop length,

T ∝ H2/7 L4/7, (3.9)
n ∝ H4/7 L1/7. (3.10)

Here we used the number density n through the ideal gas law, n ∝ p/T . While originally
derived for static 1D loops, these scaling laws still give a good representation in more
complex situations. For example, these RTV relations capture quite well the average
properties of time-dependent 3D MHD models of an active region (Bourdin et al. 2016).

Observations show that the coronal density n depends on the stellar rotation rate Ω.
While the RTV scaling laws do not explicitly take into account this dependency, they
implicitly include it. The heating rate H depends on the surface magnetic field B (see
Eqs. (3.4) and (3.5)), which itself depends on the stellar rotation rate Ω. Hence, through
Eq. (3.10) the coronal density depends implicitly on rotation and thus would change from
star to star. We assume B ∝ Ω1, which is representative of observations that give a
range of power-law indices from 0.7 to 1.3 (Kochukhov et al. 2020; Vidotto et al. 2014).
Together with Eqs. (3.4), (3.5), and (3.10) this yields n ∝ Ω0.57 (for β=γ=1 and neglecting
the dependence on the length L). Thus, for Alfvén wave heating (β=1) this model result is
consistent with observations by Ivanova and Taam (2003) who found a power-law relation
n ∝ Ω0.6. Thus we conclude that our model properly treats the change in the coronal
density due to the variation of stellar activity introduced by rotation, even though only
implicitly.

We can now derive the relation between X-rays and (surface) magnetic field. In the
first step we express the X-ray emission FX as given in Eq. (3.1) through magnetic field
B and length of the loop structure L. For this we use Eq. (3.3) to replace the temperature
response and substitute the temperature and density from Eqs. (3.9) and (3.10). Using
then Eqs. (3.4) and (3.5) we can replace the (volumetric) heating rate by the magnetic
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field strength. This yields

FX ∝ Bp Lq with


p =

β γ

7

(
2α + 8

)
,

q =
1
7

(
2α − 6

)
.

(3.11)

With the values of α listed in Table 3.2, mostly |q| is much smaller than 0.5. Consequently,
the X-ray emission FX is mainly dependent on the magnetic field B but only weakly
depends on the length L of the coronal structure because β, γ ≥ 1. This result for FX

essentially applies for a single structure, for example, one coronal loop.
In the second step, we express the total X-ray luminosity LX in terms of the surface

magnetic flux Φ. The total X-ray loss LX from a region on the Sun (the X-ray luminosity in
the case of a whole star) is given by integrating the X-ray emission FX over the respective
area A (or the whole star). Assuming that FX is constant (or represents an average value),
we simply have

LX = FX A. (3.12)

If A is considered to be the surface of a whole star, Eqs. (3.7) and (3.8) are not neces-
sarily applicable. However, we expect the surface area of a star contributing to the X-ray
luminosity to obey a similar relation as an active region (see Eq. (3.7)).

Substituting Eqs. (3.6), (3.7), and (3.8) into Eqs. (3.11) and (3.12) yields our final
result,

LX ∝ Φm with

m =
β γ

7

(
2α + 8

)
+ δ

(
4
7

+
1
7
α −

8
7
β γ −

2
7
α β γ

)
.

(3.13)

Technically, LX in Eq. (3.12) represents the X-ray luminosity per unit length and needs
to be integrated along the line of sight to get the total X-ray luminosity. However, choos-
ing an appropriate length scale to perform the line of sight integration is not trivial. There
are at least two natural choices for the length scale. One way would be to use the coronal
pressure scale height, which is proportional to the coronal temperature T . Multiplying
Eq. (3.13) by the pressure scale height and replacing the temperature in a similar way
as before will add two extra terms in each of the two brackets in Eq. (3.13). This will,
however, change the power-law index m by only roughly 5% for both heating models.
Compared to the uncertainty range in m (cf. Table 3.2) we consider this insignificant. An-
other possibility to account for the line of sight integration would be to multiply Eq. (3.13)
with the coronal loop length L = A1/2. This would add 0.5 δ to m in Eq. (3.13). In that
case, the changes in m are larger, around 30% to 40% higher for both heating models. Still
this would be comparable to the uncertainty range of m. Overall, we conclude that the line
of sight integration will not significantly alter the quantitative results for the power-law
indices m. Hence, we can consider LX roughly independent of the integration along the
line of sight and Eq. (3.13) a valid expression for the total X-ray luminosity.

The power-law indices m resulting from Eq. (3.13) are listed in Table 3.2 for differ-
ent X-ray instruments, that is, their different temperature responses parameterized by α
(Sect. 3.2), and for two different choices of the heating mechanism (β=2 for nanoflares
and β=1 for Alfvén waves). In Table 3.2 we keep γ=1 (cf. Eq. 3.5) and use δ= 0.819 as
found in observations of the Sun and solar-like stars (see Eq. 3.7).
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The overall errors in the power-law index m are on the order of 20% to 40% (see
Table 3.2). We estimated these errors from the uncertainties in the fits to the instrument
response functions (errors in α, see Table 3.2) and the uncertainty in the parameterization
of the area coverage (errors in δ). For δ we use the value derived by Fisher et al. (1998),
but unfortunately they do not quote an error for δ. Thus we estimate that error by taking
the difference of the minimum and maximum slopes from their Fig. 4. Through this we
estimate their error in δ to be 0.2. For β we cannot provide an error, because this is the
theoretical expectation for the nanoflare or Alfvén wave heating. Also, we cannot give an
error for γ, because we assume γ=1.

3.5 Discussion
The most important and central result of our study is that the power-law indices, as de-
rived from our simple analytical model, match the observed values well. The values of
the power-law indices m from Eq. (3.13) listed in Table 3.2 are generally in the range from
about 1 to almost 2. Thus they match the values found in observations (Table 3.1) remark-
ably well, maybe with the exception of the study by Kochukhov et al. (2020). Based
on this, we conclude that our analytical approach, and hence the RTV scaling laws, can
capture the processes in stellar coronae qualitatively and quantitatively well.

In the following, we will first discuss the implications of the main result in terms of
discriminating different heating mechanisms (Sect. 3.5.1). We will then consider special
(limiting) cases of our approach. In particular, we will address the question of whether or
not changes of active region size or peak magnetic field strength can alone be responsible
for the changes in X-ray emission (Sect. 3.5.2), and what role the spatial structuring of the
magnetic field on the surface might play (Sect. 3.5.3).

3.5.1 Discriminating heating mechanisms

With our simplified approach, it is hard to distinguish between different heating mecha-
nisms. Mainly, this is because of the large scatter found in the power-law index m for
Lx ∝ Φm in Eq. (3.13) introduced by different X-ray instruments. As seen from Table 3.2,
m differs by only 20% to 30% between the cases of nanoflare (β=2) and Alfvén wave
heating (β=1). However, combining observations from different sources (as necessarily
done in data compilations), will imply having different responses of the X-ray emission
to the coronal temperature, here quantified by the power-law index α (Sect. 3.2). This can
lead to differences in the index m by almost a factor of two (cf. Table 3.2). Consequently,
when mixing data from different instruments, the imprints of different heating mecha-
nisms would be swamped by the noise introduced by the different temperature responses.

To distinguish different heating mechanisms, future observational studies would have
to carefully evaluate the impact of the temperature response of the instruments used. One
could use (a) just one single instrument, (b) show the different instruments in a com-
bined study separately, or (c) use a theoretical approach to normalize the observed X-ray
emission of each instrument according to its temperature response.

With all these uncertainties, our analysis would slightly favor nanoflare heating over
the Alfvén wave model. The values for the power-law index m we find in Table 3.2 for
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Alfvén waves range from 0.8 ± 0.2 to 1.2 ± 0.3. As such, they seem to be at the lower
end of what is found in observations that show mostly values from just below 1 to below
2 (except for the recent study of Kochukhov et al. 2020, see Table 3.1). Hence, the indices
m for nanoflare heating ranging from 1 ± 0.3 to 1.6 ± 0.4 seem to be a better fit to
observational studies.

Considering the uncertainties, the values of m derived by our model largely overlap
with the observations. (see Table 3.1). There is the tendency in the observations to show
values of m in the upper range of what is predicted by our model (Alfvén wave and
nanoflare) and typically the nanoflare model yields larger values of m than the Alfvén
wave model. Hence, we consider the nanoflare model to be a slightly better candidate for
the stellar X-ray activity than the Alfvén model.

3.5.2 Magnetic flux and area coverage
Another key element in our scaling for Lx ∝ Φm in Eq. (3.13) is the relation of magnetic
flux and area as parameterized in Eq. (3.7) by δ. While we know from the Sun and solar-
like stars that this should be on the order of 0.8 (Fisher et al. 1998; Kochukhov et al.
2020), it is instructive to consider two limiting cases, namely δ=0 and δ=1.

We first consider the case δ=1. According to Eq. (3.7) this implies that the magnetic
flux is strictly proportional to the area covered by an active region, Φ ∝ A. Hence the
(average) magnetic field strength in each active region would be the same, and the mag-
netic flux would only change by changing the area. Then the expression for the power-law
index m for Lx ∝ Φm as given in Eq. (3.13) simplifies to

δ = 1 −→ m =
1
7

(
4 + α

)
. (3.14)

Interestingly, in this case there is no dependence on β for S z ∝ Bβ in Eq. (3.4). Our result
does not depend on the actual choice of the heating mechanism. Instead, the relation of the
coronal emission to the magnetic flux would only depend on the choice of the instrument
through α, the wavelength range that is considered (see Eq. 3.3 and Table 3.2). For values
of α in the range of 0.7 to 3 (cf. Table 3.2) the values of m would be in the range of
0.7 to 1. These values fall short of the observations. Thus we conclude that increasing
the magnetic flux just by increasing the area (δ=1) would not provide a sufficiently steep
increase of the coronal emission with magnetic flux in Lx ∝ Φm.

In the other limiting case, δ=0, the change in the magnetic flux would only be due
to the increase in the (average or peak) magnetic field strength. This implies that the
magnetic flux in Eq. (3.7) would be independent of the area and we find from Eq. (3.13)

δ = 0 −→ m =
β γ

7

(
2α + 8

)
. (3.15)

This gives a much steeper dependence of Lx ∝ Φm than for δ=1. Again using α in the
range 0.7 to 3 (cf. Table 3.2) we find values of m in the range 1.3 to 4. Of course, con-
sidering the studies of, for example, Fisher et al. (1998) and Kochukhov et al. (2020), a
value of δ=0 is unrealistic for the Sun and solar-like stars. However, the steep dependence
of the coronal emission Lx on the magnetic flux Φ that we find in this case might help us
to understand the high levels of observed X-ray emission of rapidly rotating stars, which
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still show an increase of X-ray activity with increasing rotation (e.g., Pizzolato et al. 2003;
Reiners et al. 2014; Wright and Drake 2016). Should the star be (more or less) completely
filled with active regions, then the only way to increase the magnetic flux, and therefore
its X-ray luminosity, further would be to increase the surface magnetic field strength. Ob-
servations of very high average magnetic field strengths on the order of several 1000 G
on more active stars (Reiners 2012) indicates that this scenario could be realistic.

3.5.3 Spatial structure of the magnetic field

So far, we assumed that the length scale L of the coronal structures, namely the loops, is
directly proportional to the linear extent of the active region. Now we explore the effects
on the scaling of coronal emission with magnetic flux if the length scale were independent
of the active region size.

The assumption that the length scale is given through the active region size is ex-
pressed through Eq. (3.8), L ∝ A1/2, and is justified for solar active regions (e.g., Cameron
et al. 2010). In general, this does not have to be the case, and stellar observations suggest
that large starspots have an internal structure (e.g., Solanki 2002). Thus, it is plausible
that generally in (stellar) active regions the distances between opposite magnetic polari-
ties might not be related to the active region size. Consequently, Eq. (3.8) would no longer
hold. To explore an extreme case, in the following we assume that loop length L would be
independent of the area, and in particular assume that L would be a constant. For exam-
ple, one might argue that for an active star the size of the coronal structures we see might
be related to the coronal pressure scale height.

Assuming a constant loop length L, therefore not considering Eq. (3.8), we can repeat
the derivation of Eq. (3.13) for the scaling between coronal emission and magnetic flux,
Lx ∝ Φm. Then we find for the power-law index

constant
loop length: −→


m = δ + p

(
1 − δ

)
with p =

β γ

7

(
2α + 8

)
.

(3.16)

As expected, for δ=0 this gives the same result as discussed above with Eq. (3.15). For
δ=1 we find that coronal emission is strictly linear with the magnetic flux. Quantitatively,
this is similar to the result above with Eq. (3.14), where we found m to be a bit smaller
but close to unity.

For the case of the Sun, it is well established that the total magnetic flux (integrated
over the whole solar surface) during the maximum activity is mostly increasing through
the number of active regions and not by increasing their size (e.g., Tang et al. 1984).
Hence, we can also expect the length of coronal loops on the Sun not to change (signifi-
cantly) with activity level. Therefore, Eq. (3.16) might be the appropriate description for
the relation of X-ray emission to magnetic field for the Sun and its cycle.

In general, the values for the power-law index m found here in Eq. (3.16) are quan-
titatively similar to the values when not assuming constant loop length as given through
Eq. (3.13). The values of m listed in Table 3.2 would change typically only by about 20%.
This shows that within the limitations of our analytical approach for the scaling laws, the
loop length does not have a significant impact.
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Still, numerical models of active regions will be needed to investigate the applicabil-
ity of our simplified analytical approach. For example, if the size of the active region is
increased, the total magnetic energy of the volume associated with the active region will
also increase. This increase can be expected to be steeper than proportional to the mag-
netic flux at the surface. This is similar to increasing the separation of opposite polarities
in a magnetic dipole. The work done to separate the two poles (like separating two mag-
nets) goes into magnetic energy stored in the volume, even though the magnetic flux at
the surface stays the same. While we find a good match between our simple model and
observations, future numerical models will have to show if the basics of the analytical
considerations presented here will hold.

3.5.4 X-ray emission for rapid rotators

For rapidly rotating stars the coronal X-ray emission becomes independent of their rota-
tion rate (see, e.g., Pizzolato et al. 2003). Sometimes this is called the saturation regime,
but it remains unclear what causes this behavior (e.g., Reiners et al. 2014). Assuming that
in this regime also the surface magnetic flux is increasing with increasing rotation rate,
our model would have to predict that the X-ray emission does not change with magnetic
flux. Consequently, m in Eq. (3.13) would have to vanish.

So, to test if our model is applicable in this saturation regime, we simply set m = 0 in
Eq. (3.13). As before, we assume that γ= 1, meaning that the heating rate is proportional
to the Poynting flux (cf. Eq. (3.5)). With this we can solve for δ,

δ =
2β

2β − 1
. (3.17)

The result does not depend on α, meaning that in this regime it would not matter which
instrument or filter was used for the diagnostics.

Interestingly, for both types of our heating model we find that δ > 1. More precisely,
for the nanoflare model (β=2) we get δ = 1.33 and for the Alfvén model (β=1) we get
δ = 2. This would imply that an increase in the total surface magnetic flux would lead to a
decrease in the magnetic active area, meaning that the magnetic flux would concentrate in
smaller and smaller regions. Such peculiar behavior would require an additional effect to
operate that needs to overcome the strong magnetic pressure forces. However, this seems
rather unphysical, and to our knowledge is without observational support.

Overall, we can conclude that the X-ray emission of very active rapidly rotating stars
is not governed by the same relations as for solar-like stars. Not surprisingly, our model
is not suitable to describe the stellar X-ray emission in that specific regime.

3.6 Conclusions

We derived an analytical scaling relation of the coronal X-ray emission with the unsigned
surface magnetic flux, Lx ∝ Φm in Eq. (3.13). Previously, this relation had only been
derived using observations, without the backing of a theoretical framework. We based
our approach on the coronal loop scaling laws of Rosner et al. (1978) (see Eq. (3.9) and
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(3.10)), and the idea that the heating of the corona is mainly driven by an upward-directed
Poynting flux generated in the photosphere.

The power-law index m that we derive in Eq. (3.13) depends on the area of the active
region, the heating mechanism, and the wavelength range covered by the respective X-
ray instrument, namely, its temperature response function. Each of these factors can be
represented by power laws. The active region area impact is constrained observationally
(δ = 0.819, Eq. 3.7), the heating mechanism is inspired by basic considerations (β from
1 to 2; Eq. 3.4), and the temperature response between 1 and 10 MK is based on atomic
data (α in the range of 1 to 3, Table 3.2).

The power-law indices m we find through our analytical approach are generally in a
range between just below m ≈ 1 and almost 2 (see Table 3.2). This is within the range
found by most observations, which are mostly composed of a combination of stellar stud-
ies with different instruments (see Table 3.1; a larger value only found by Kochukhov
et al. 2020). As such, we consider our simple analytical model approach to be a good
first step to build a theoretical foundation for the observed power-law relations between
X-ray emission and magnetic field. However, with our simplified model approach it is dif-
ficult to distinguish between different heating mechanisms, mainly because the different
X-ray instruments have quite different responses to the temperature of the coronal plasma.
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4 Model setup

4.1 Introduction

The numerical setup, presented in this chapter, models a small part of the solar corona
above an active region in a 3D Cartesian box (see Bingert 2009, for more details). The
model extends in the vertical direction up to the corona, including also the photosphere.
The motivation of this model is the fieldline braiding mechanism proposed by Parker
(1972, 1983). At the lower boundary, we include the vertical magnetic field of an active
region together with a description of photospheric velocities mimicking solar granulation.
The shuffling of the footpoints of the photospheric magnetic fieldlines because of the
horizontal velocities will generate the necessary energy flux (or Poynting flux) needed to
heat the corona to high temperatures of several million Kelvin degrees, similar to the solar
corona. Once the system reaches an equilibrium state, the energy input in the corona is
balanced by the radiative losses. In this state, the modeled corona can maintain a high
temperature indefinitely.

Our computational box is divided into four parts. The lower part of our computational
domain is the photosphere, where the active region is located. In the photosphere, the
shuffling of the magnetic fieldlines will induce currents in the corona that will dissipate
and heat the corona. The chromosphere is the part of the box located above the photo-
sphere. Given the highly complicated nature of the chromosphere, it is only treated as a
reservoir for energy. We mainly care about the energy transfer in the corona. Therefore,
excluding the chromosphere from our analysis will not affect the results. The transition
region is a thin layer located between the chromosphere and the corona. In the transi-
tion region, the temperature increases steeply, reaching from a few thousand Kelvins to
coronal temperatures of one million Kelvin. The high gradients in temperature have to
be resolved numerically so that numerical instabilities are avoided and will not affect the
simulations. The corona extends for the largest part of our numerical box. For the proper
physical description of the corona, we include an optically thin radiative loss function and
a Spitzer heat conduction along the magnetic field. This model has been proved success-
ful in describing some of the characteristics observed in the solar corona (see e.g. Bingert
and Peter 2011; Warnecke and Peter 2019a). Consequently, it can be used for a parameter
study and extend the analysis even to other stars.

We aim to run several simulations to test the effect of the surface magnetic flux on the
coronal X-ray emission. The reason for that is to explain the observed X-ray emission
coming from stellar coronae of stars more active than the Sun. To be able to run several
simulations for our analysis, we choose a spatial resolution of 390 km.

Our work is divided into two parts. For the first part, we increase the surface magnetic
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flux by increasing the strength of the vertical surface magnetic field of the active region.
In this case, we keep the box size fixed with a volume of 50 x 50 x 50 Mm3. For the
simulations we used the supercomputers in Gesellschaft für wissenschaftliche Datenver-
arbeitung mbH Göttingen (GWDG) with a 1283 grid points in all directions. The results
will be presented in Chap. 5. For the second part, we increase the surface magnetic flux
by increasing the surface area covered by the active region. In this case, our numerical
box has to increase. The biggest computational box reaches a volume of 200 x 200 x 200
Mm3. The individual active regions have the same surface vertical magnetic field strength
fixed at a constant value. The simulations have been carried out at the Max Planck Com-
puting and Data Facility (MPCDF) in Münich. The number of grid points scales with
the size, but the spatial resolution is constant at 390 km. The results of this work will
be presented in Chap. 6. Finally, the different physical parameters have the same values
for all simulations so that the corona will be affected solely by the change in the surface
magnetic flux.

4.2 Numerical model

The simulations were conducted with the Pencil Code1 (Brandenburg et al. 2020). The
Pencil Code solves the 3D MHD equations spanning from the photosphere up to the
corona numerically. In this section, we are going to summarise the equations as they are
implemented in the code.

4.2.1 Equations

The code solves the partial differential equations of mass, momentum, energy, and the
induction equation, which are coupled together. The equations implemented in the code
have the general form,

∂Φ

∂t
= f (Φ). (4.1)

Where Φ represents the different quantities that need to be integrated. The left-hand side
represents the time derivative, whereas the function f (Φ) in the right-hand side represents
spatial partial derivatives. For the time integration, a third-order Runge-Kutta scheme is
used and for the spatial derivatives, a 6th order finite difference numerical scheme is used.
In total, there are eight partial differential equations which are summarised below. We
start with the continuity equation expressed in the form,

∂ ln ρ
∂t

= −∇ · u − (u · ∇) ln ρ. (4.2)

Where ln ρ is the plasma density and u is the plasma velocity. To smear out any insta-
bility in the plasma density, we include a mass diffusion term which is also added in the
continuity, momentum, and energy equation.

1https://github.com/pencil-code/
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4.2 Numerical model

To describe the plasma motion, it is necessary to solve the momentum equation,

∂u
∂t

= −(u · ∇)u + ζ(∇∇ · u) +
1
ρ

[−∇p + j × B − ρ∇Φ + 2ν∇ ◦ (ρS )]. (4.3)

The forces included in our model are the pressure gradient with p being the pressure, the
Lorentz force with j and B being the current density and magnetic field, the gravitational
force with a gravitational potential Φ and the viscous force with S being the rate of the
strain tensor,

S =
1
2

(
∂ui

∂x j
+
∂u j

∂xi
−

2
3
δi j∇ · u

)
. (4.4)

The value of ν in the solar corona, according to transport theory, is on the order of ν = 1010

m2/s. For that reason, we set the kinematic viscosity to ν = 1010 m2/s in the whole
computational box. Finally, it is possible for the plasma at different parts of the numerical
box to reach a Mach number greater than unity. The Mach number is defined as the ratio
of the velocity u to the sound speed cs, M = u/cs. For M > 1, the plasma velocity is
hypersonic, and shocks will be created. To properly resolve any instabilities created by
shocks, we include a shock viscosity term ζ(∇∇·u), with the bulk viscosity coefficient set
to ζ = 108 m2/s.

The equation describing the change of energy in the numerical box is the energy equa-
tion,

∂ ln T
∂t

= −(u · ∇) ln T − (γ − 1)∇ · u + ηµ0 j2 + 2ρνS 2

+
γ

cpρT

[
−

(0.8ρ
mp

)2

Q(T ) + ∇ ·

(
K0T 5/2b(b · ∇T )

)
+ ∇ · (cpχρ∇T ) + ∇ · (c|∇T |∇T )

]
.

(4.5)

Here ln T is the temperature. The constant γ is the adiabatic coefficient for the ideal
gas with γ = 5/3, cp is the heat capacity at constant pressure, and mp is the proton
mass. The magnetic resistivity η follows a specific profile with the coronal value set to
η = 1010 m2/s. For the lower part of the box, η has a lower value. The implications of
the resistivity will be discussed later. The function Q(T ) is the radiative loss function.
Finally, the coefficients K0, χ, and c are the Spitzer constant, the heat diffusion constant,
and the isotropic heat conduction coefficient respectively. Notice here that we include
three different heat conduction terms. The first term is the dominant Spitzer term ∇ ·(
K0T 5/2b(b · ∇T )

)
which transfers heat along the magnetic fieldlines (see Sect. 2.2.4.3).

The second term is the heat conduction ∇ · (cpχρ∇T ) which is most efficient at the lower
part of the box. Finally, we also include an isotropic heat conduction term ∇ · (c|∇T |∇T )
to stabilize the code and resolve the steep gradients of temperature that might arise at
different parts of the numerical box. The last equations to close the system is the induction
equation,

∂A
∂t

= u × (∇ × A) + ∇(η∇ · A), (4.6)

55



4 Model setup

where A is the vector potential. Here we use the resistive gauge φ = η∇ ·A. For numerical
reasons, we also include hyperviscosity terms in the induction equation.

One of the main problems in our simulations is to determine the magnetic resistivity
η properly. For the coronal part, the value of the resistivity is set to a constant value of
η = 5 · 1010 m2/s. This value is much larger than typical values proposed from transport
theory (typical values yield η = 1 m2/s). The choice of this value is to ensure that the grid
Reynolds number will be in the order of unity,

Rgrid
em =

umaxδx
η

' 1. (4.7)

For a grid resolution of δx = 390 km and a typical velocity of umax = 150 km/s, yields
a resistivity of 1010 m2/s. The magnetic Reynolds number compares the time-scale of
diffusion to advection. If we set the typical coronal magnetic resistivity of η = 1 m2/s in
our model we get Rgrid

em >> 1. That would mean that the plasma is mainly advected, and
we would not have any diffusion and thus no heating. The value of η chosen in our model
ensures diffusion of the magnetic field and heating of the corona.

Keeping the high constant value of resistivity in the whole box combined with the
random photospheric velocities will lead to fast diffusion of the surface magnetic field
after a short period. The magnetic flux in the Sun is created deep in the convection zone
and then emerges in the photosphere. Because the roots of the magnetic fieldlines lie
underneath the solar surface, the active regions are stable for long periods of many days.
However, the process of flux emergence is not included in our model. To avoid large
diffusion of the surface magnetic field, we lower the magnetic resistivity at the three
lowest grid points.

4.2.2 Spatial derivatives
For the calculations of spatial derivatives, we employ a 6th order finite difference numer-
ical scheme. A general expression of the first and second derivative is (see Pencil code
guide manual, Brandenburg 2018),

f ′i = (− fi−3 + 9 fi−2 − 45 fi−1 − 9 fi+2 + fi+3)/(60δx)

f ′′i = (2 fi−3 − 27 fi−2 + 270 fi−1 − 490 fi + 270 fi+1 − 27 fi+2 + 2 fi+3)/(180δx2),
(4.8)

where i denotes the point of interest to calculate the derivative, and δx denotes the grid
space. The 6th order scheme means that for calculating the derivative at the position x0 re-
quires the knowledge of six extra points around that specific point, three in each direction.
This particular numerical scheme is highly accurate, efficient, and the memory usage is
minimal. Employing higher-order schemes will increase the accuracy, but the computa-
tion time will increase as well. Therefore performing a large number of simulations will
be challenging.

4.2.3 Time step constraints
The time evolution of the variables is calculated through a third-order Runge-Kutta scheme.
The Runge-Kutta method is used to solve general differential equations of the form,
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dyi

dt
= Fi(yk, t). (4.9)

Knowing the yi at a specific time t0 we can calculate the yi at t0 + δt by evaluating Fi. The
Runge-Kutta method follows this procedure in multiple sub-steps. The third-order Runge-
Kutta used in our code solves the time evolution problem by employing three sub-steps
for one time step, hence the name third order. The solution will have the form,

t y
t0 y0 k1 = δtF(y0, t0)

t1 = t0 + 8
15δt y1 = y0 + 8

15k1 k2 = δtF(y1, t1)
t2 = t1 + 2

3δt y2 = y0 + 1
4k1 + 5

12k2 k3 = δtF(y2, t2)
t = t0 + δt y = y0 + 1

4k1 + 0k2 + 3
4k3 + O(δt4)

This method, in general, requires less memory than other similar schemes, thus, making
our code much more time-efficient.

The time step will generally be defined by the Courant time step given by,

δt = min
(
cδt
δxmin

Umax
, cδt,v

δx2
min

Dmax
, cδt,s

1
Hmax

)
(4.10)

where cδt, cδt,v, cδt,s are the Courant-Friedrichs-Lewy (CFL) coefficients. The CFL coeffi-
cients are smaller than unity, and they are generally used for convergence while solving
differential equations numerically. δxmin defines the minimum grid space in the numerical
box and Umax denotes the maximum velocity in our box as,

Umax = max
(
u +

√
c2

s + u2
A

)
, (4.11)

where cs is the sound speed and uA is the Alfvén speed. The maximum velocity in our box
will be either the advective velocity, the sound speed, or the Alfvén velocity. Furthermore,
Dmax denotes the maximum diffusivity,

Dmax = max
(
ν, γχ, η

)
(4.12)

where ν is the kinematic viscosity, χ is the thermal diffusivity, and η is the magnetic resis-
tivity. Finally, the Hmax represents the right-hand side of the energy equation. However,
since our simulations are dominated by thermal diffusivity, this term will not be signifi-
cant. In conclusion, the time step will be constrained by the thermal diffusivity, limiting
the computational speed significantly. To boost the speed, we have to employ various
techniques discussed next.

4.2.3.1 Non-Fourier treatment of heat flux

The efficiency of the Spitzer heat conduction puts constraints on the time step. To increase
the time step and speed up our simulations, we use a non-Fourier description of the heat
flux (Warnecke and Bingert 2020),

∂q
∂t

= −
1

τSpitzer
(q + K∇T ), (4.13)
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where τSpitzer is the heat flux relaxation time, and K is the Spitzer tensor with K =

K0T 5/2b̂b̂ operating along the magnetic fieldlines. Here b̂ is the unit vector along the mag-
netic fieldlines. From Eq. (4.13) we solve for q and then this is substituted in Eq. (4.5).
With this approach we replace the Spitzer time step δtSpitzer = δx2/χSpitzer with two new
time steps,

δt1 = δx

√(τSpitzer

χSpitzer

)
=

δx
cSpitzer

, and δt2 = τSpitzer. (4.14)

Here δx is the grid spacing and χSpitzer = |K|/ρcV is the diffusivity of the Spitzer heat
conduction. The Eq. (4.13) can be expressed as a wave equation, therefore the δt1 is also
related to the wave propagation speed cSpitzer. Notice here that δt1 has a linear dependence
on the grid size δx, which leads to a substantial increase of the computational time as the
spatial resolution is increased.

Even though the τSpitzer can be adjusted manually, it is preferable to use the automatic
adjustment implemented in the code by Warnecke and Bingert (2020). We first set the
time step of the heat conduction to be the dominant, i.e. the smallest. The next dominant
time scale in the box will be the Alfvén crossing time δtA = δx/uA with uA ∝ B/

√
ρ the

Alfvén speed. The idea is that the τSpitzer is limited by the Alfvén time scale and we set,

cSpitzer =
√

2uA, → τSpitzer =
χSpitzer

2u2
A

. (4.15)

One problem that arises here is that if τSpitzer evolves freely, then it might get too large.
In that case, the Spitzer heat conduction will not be dominant anymore and might lead to
non-physical solutions. For that reason, we set an upper limit to the time step τSpitzer. In
addition, the Spitzer coefficient χSpitzer reduces to low values in parts of low temperature
and high density in the chromosphere or transition region. Therefore, this will reduce
τSpitzer in those regions. Even though the Spitzer heat conduction is not dominating in
those lower parts, the reduced τSpitzer will decrease the overall time step tremendously. To
avoid that problem, we set a lower limit of the time step to be in between of the Alfvén,
and the advective time step,

min
(
δtA,

δx√
c2

s + u2

)
≤ τSpitzer ≤ τSpitzer,0, (4.16)

where cs is the sound speed, u is the advective velocity and we set τSpitzer,0 = 100 s. Using
the non-Fourier treatment of the heat flux Warnecke and Peter (2019b) report a boost in
the time step by a factor of two.

4.2.3.2 Semi-relativistic Boris correction

The Alfvén speed approaches the speed of light in regions of high magnetic field strength
and low density, i.e. above active regions (Rempel 2017). As a result, two main problems
arise. First of all, the MHD approximation of neglecting the displacement current for
non-relativistic velocities discussed in Chap. 2 is no longer valid. In addition, a significant
increase of the Alfvén speed will lead to a very small time step. For those reasons, it is
implemented in the code a semi-relativistic correction to the Lorentz force (Boris 1970;
Gombosi et al. 2002). The Lorentz force in this framework is replaced by,

58



4.3 Initial conditions

0 10 20 30 40 50
z [Mm]

4.0

4.5

5.0

5.5

6.0

lo
g

1
0
(T

 [
K

])

−12

−10

−8

−6

−4

lo
g

1
0
(ρ

 [
K

g
/m

3
])

Figure 4.1: Initial temperature and density profile implemented in our numerical exper-
iments. Solid line show the initial temperature profile. Dashed line shows the initial
density stratification based on hydrostatic equilibrium.

j × B
ρ
→ γ2

A
j × B
ρ

+ (1 − γ2
A)

(
I − γ2

A
BB
B2

)(
u · ∇u +

∇p
ρ
− g

)
, (4.17)

where γ2
A = 1/(1 + u2

A/c
2) is the correction factor similar to the Lorentz factor in the

special relativity. For the non-relativistic limit, the factor γA ' 1, and we retrieve the
usual Lorentz force. For relativistic velocities, uA ' c the above correction reduces the
Lorentz force. The definition of the unit vector along the magnetic fiedlines b̂ = B/|B|
explains the factor BB/B2 in Eq. (4.17). This method can also be used to increase the
time step and prevent a crash of our simulations. The details of this method are discussed
in Warnecke and Bingert (2020) and the implementation in the Pencil Code are discussed
in Chatterjee (2018). The idea is to reduce the speed of light in the regions where the
Alfvén speed is large. Following the work of Rempel (2017) the Alfvén time step will be,

dtA → dtA

√
1 +

(u2
A

c2
A

)2

, (4.18)

where cA is the limited speed of light. In our simulations we choose cA = 10000 km/s
which leads to a time step of dtA ' 20 ms. With this method, we ensure that the Alfvén
time step will have a lower limit and it will not affect the overall time step in our simu-
lations. As discussed in Warnecke and Peter (2019b), a combination of the non-Fourier
heat flux scheme and the Boris correction leads to an increase of the time step by a factor
of 10 or even a factor of 30. In conclusion, the Boris correction and the non-Fourier treat-
ment of the heat flux combined will significantly boost the computational speed of our
simulations. This allows performing a large number of simulations for a parameter study
possible.
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4.3 Initial conditions

Initially, we set a specific stratification profile for temperature T and density ρ in the
computational box. The specific profile for T , ρ are depicted in Fig. 4.1. The temperature
profile has the form,

T =

(
Tc − Tp

)
·

(1
2
· tanh

(z − zp

zc

)
+

1
2

)
+ Tp. (4.19)

The photospheric temperature is set to Tp = 6000 K, and it rises after the transition region
to Tc = 106 K. The values zp, zc determine the height of the corona. The initial density,
on the other hand, is determined by hydrostatic equilibrium,

∇p = −ρg (4.20)

where the gravity is set to the solar value with a constant gravitational acceleration g =

(0, 0,−g) with g = 274 m/s2, and the pressure is,

p =
(γ − 1)
γ

cpρT. (4.21)

The density depicted in Fig. 4.1 (dashed line) drops from 3 · 10−4 kg/m3 to 10−12 kg/m3 in
the corona.

Before starting the simulations, we also provide the vertical magnetic field at the bot-
tom boundary of the numerical box. Previous studies such as Gudiksen and Nordlund
(2005b,a), and Bingert and Peter (2011) used a scaled-down active region that was pro-
vided by an MDI image of the Sun. However, in our study, we employ an actual mag-
netogram of the active region, AR 11102 observed on August 30th, 2010 by Helioseis-
mic and Magnetic Imager (HMI;Schou et al. (2012)). The size of this active region was
164x164 Mm2, and it had a surface magnetic flux on the order of Φ ' 8 × 1021 Mx. The
size and amount of surface magnetic flux of AR 11102 are typical for solar active regions.
For the purpose of our studies the original size of the active regions is scaled accordingly
to fit our computational box. In one specific simulation discussed as an example in this
chapter, the active region is shown in Fig. 4.2 and the computational domain is scaled, so
that it covers an area of 200 x 200 Mm2. A potential field extrapolation is then performed
to fill the box with a magnetic field. The size of the active region will be changed in
Chap. 6 so that to increase or decrease the total surface magnetic flux. The reason is to
study how the total magnetic flux is related to the total coronal X-ray emission as it is
observed in stellar studies.

4.4 Potential field extrapolation

We initialize the magnetic field in the box via a potential field extrapolation method. The
initial vertical magnetogram we impose at the bottom boundary will be the basis for the
extrapolation. We assume a current-free field which reduces the Maxwell equations for a
potential field to,

60



4.4 Potential field extrapolation

∇ × B = 0
∇ · B = 0.

(4.22)

The previous equations can be solved in Fourier space. The Fourier transform of the
magnetic field reads,

B̂i(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞

Bi(x, y, z = 0)e−ikx·x−iky·ydxdy, (4.23)

where i = (x, y, z), and we assume an exponentially decaying magnetic field with height
z so that B̂i(kx, ky, z) = B̂i(kx, ky)e−kz with k =

√
k2

x + k2
y . The magnetic field at z = 0 is

known from the magnetogram used at the bottom boundary. Using the Fourier transforms,
Eq. (4.22) is expressed as,

ikyB̂z − ∂zB̂y = 0

∂zB̂x − ikxB̂z = 0

ikxB̂y − ikyB̂x = 0

kxB̂x + kyB̂y + ∂zB̂z = 0

(4.24)

where we substituted the Fourier transform of the spatial derivatives ∂x = ikx, ∂y = iky.
Solving the above linear set of equations we get,

B̂x = −i
kx

k
B̂z

B̂y = −i
ky

k
B̂z.

(4.25)

The vector potential is given by B = ∇ × A, which in Fourier space is expressed as,

B̂x = ikyÂz + kÂy

B̂y = −kÂx − ikxÂz

B̂z = ikxÂy − ikyÂx.

(4.26)

Solving for the vector potential coefficients we get,

Âx = i
ky

k2 B̂z

Ây = −i
kx

k2 B̂z

Âz = 0

(4.27)

By specifying the vertical magnetic field component at the bottom boundary (i.e. z = 0)
through the magnetogram, the Fourier coefficients B̂x, B̂y, B̂z can be calculated and from
Eq. (4.23) the magnetic field can be extrapolated in the whole box. This procedure is only
done at the initial stage of the simulation. After the start of the simulation, the magnetic
field is calculated through the induction equation (see Eq. (4.6)).
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Figure 4.2: Initial Bz magnetic field of the active region and photospheric velocities. Left:
This particular magnetogram was observed by Helioseismic and Magnetic Imager (HMI)
(Schou et al. 2012) onboard of Solar Dynamics Observatory (SDO) on August 30th, 2010
and is used to drive the simulations. Right: Horizontal photospheric velocities Uh pre-
scribed in the bottom boundary. The red rectangular box corresponds to the zoomed area
of 100x100 Mm2 chosen to show the horizontal velocities.

4.5 Boundary conditions
All the variables in the horizontal plane (i.e. x-y plane) are periodic. This allows the
magnetic fieldlines to connect outside the computational domain. To simulate a roughly
bipolar region, where the magnetic fieldlines mainly connect the two magnetic polarities,
we include a large enough region of quiet Sun as it is shown in Fig. 4.2.

For the top boundary of the computational box, we make sure that all velocity compo-
nents are zero. That ensures that there is no plasma escaping out of the box. Furthermore,
we make the temperature gradient and the heat flux vanish. That means that no heat flux
from the top boundary will affect the coronal heating and dynamics. The density gradients
are set to zero as well. Finally, the magnetic field at the top boundary is potential.

On the other hand, for the bottom boundary, we have fixed values of temperature and
density. Moreover, horizontal velocities have zero gradients, and the vertical velocity
satisfies the divergence-free condition ∇ · u = 0. The method of prescribing the photo-
spheric velocities similar to the solar granular motion will be discussed below. Finally,
the magnetic field is potential, and we also employ a time-dependent update which we
will discuss in detail later.

4.5.1 Photospheric driver
One important feature missing from our model is the photospheric magneto-convective
motions. Since we do not include the convection zone in our simulations, we have to
prescribe photospheric velocities similar to the solar granulation motion. The details for
the implementation of the velocity driver in the code are discussed in the Ph.D. thesis of
Bingert (2009). Here we briefly discuss the main idea of this approach.

The solar photosphere consists of numerous granular structures which transport en-
ergy from the convection zone to the surface. After the energy is released, they plunge

62



4.5 Boundary conditions

into the convection zone again. This whole process is repeated indefinitely. The granules
differ in size from 1 Mm for typical granules to 20-30 Mm for supergranules, and they
have typical velocities of roughly 2 km/s.

A magnetogram of an active region is used at the bottom boundary, therefore, the
convection zone has been excluded from the model. That means no granulation can appear
self consistently but has to be a priori implemented to shuffle the footpoints and induce
currents according to the fieldline braiding mechanism. This method is based on the
theory of Voronoi tessellation as discussed in Schrijver et al. (1997) and Gudiksen and
Nordlund (2005a). The theory of Voronoi tessellation provides a way to split a 2D plane
into tiles that represent the granules by placing them randomly. Each of these granules
will have a weight wi which controls the size of the granules at position xi. The horizontal
photospheric velocities are depicted in Fig. 4.2 in one of our models. In this figure, we
zoomed to an area of 100x100 Mm2 for the granules to be visible. The granules created by
this process will have three different sizes with a radius of 0.8, 1.6, 3.2 Mm respectively. A
typical solar granule has a typical lifetime of a few minutes. For that reason, the granules
in our model are time-dependent, with a lifetime ranging from 5 minutes for the small-
sized granules to 80 minutes for the large-sized granules.

In conclusion, this method implemented by Bingert (2009) gives a power spectrum of
the horizontal velocities in good agreement with solar observations. The modeled corona
captures all the basic properties of the observed solar corona, thus we can consider this
approach a good representation of the granular magneto-convective motion.

4.5.2 Photospheric magnetic field update
After extrapolating the initial magnetic field, the code will calculate the time evolution
through the induction equation,

∂A
∂t

= u × (∇ × A) + ∇(η∇ · A), (4.28)

where the horizontal velocities will be given by the photospheric driver, as discussed in
the previous section.

A main concern in our model is the time evolution of the photospheric magnetic field.
By lowering the magnetic resistivity (see Sect. 4.2.1), we protect the photospheric mag-
netic field from diffusion. However, the random photospheric velocities will eventually
destroy it. For that reason, we have to properly update and stabilize the photospheric
magnetic field of the active region by some fraction of the initial one. We introduce the
relaxation time τb, which is set to 10 mins for all our numerical experiments. The idea is
that to calculate the evolution of the photospheric magnetic field, or the vector potential
in this case, from time t0 to t0 + δt we have to interpolate between the vector potential at
t0 and the initial one Ainit,

∂A
∂t

= ... +
1
τb

(Ainit − A). (4.29)

By setting τb = 10 min we ensure that after 10 min the diffused surface magnetic field
will be updated by some fraction of the original one and the overall evolution of the active
region will be roughly stabilized. That matches quite nicely the stable nature of observed
solar active regions.
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Figure 4.3: Horizontally averaged profile of current density squared j2 (black solid line)
and horizontal average profile of magnetic field squared B2 (red solid line). Both are
plotted for one snapshot in time for t = 200 min.

4.6 Verification of the numerical model
To demonstrate the capabilities of our model, we show some basics results from a test
run. For this test run, we use a magnetogram of a solar active region depicted in Fig. 4.2
as a bottom boundary condition. The computational box covers a surface area of 200x200
Mm2, and it also extends 200 Mm in height. The magnetic field strength of the active
region is 5 kG, and the overall surface magnetic flux is roughly Φ = 6 × 1022 Mx. The
magnetic field strength and the amount of surface magnetic flux of this particular active
region are a bit larger than the values found for typical solar active regions (i.e. 2-3 kG
and Φ ' 1020 to 1021 Mx). Active regions of this size and strength could form in the
Sun, maybe during its maximum activity, or in other stars more active than the Sun. The
initial conditions, the choice of parameters, and the photospheric driver were discussed in
the previous sections. In this section, we show horizontal averages of different quantities
such as temperature, density, and Poynting flux. We also show signatures of nanoflares in
the simulated corona and EUV synthesized emission plots of the coronal loops.

4.6.1 Ohmic heating

The coronal heating originates from the Ohmic dissipation of the induced currents. The
large value of the plasma β in the photosphere ensures that the magnetic field is bounded
to the fluid motion. The horizontal motion will twist the initially potential field leading
to the creation of currents. The Poynting flux generated will convert into heating which
will supply the necessary energy to increase the coronal temperature. The Ohmic or Joule
heating rate will be,

H = ηµ0 j2. (4.30)

At the base of the corona and above, the plasma β is generally assumed to be much smaller
than unity. In this case, the magnetic field is dominating, and the plasma is bounded by
the magnetic field. In this part of the computational box, we can assume the plasma to be
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force-free. In the force-free approximation, the Lorentz force is stronger than any other
force so that j × B = 0. This would mean that either the are no currents, j = 0, or the
currents are parallel to the magnetic field, j ‖ B. However, in the case of no currents, the
field is potential, and thus no heating would be possible. In the alternative case, where
currents are parallel to the magnetic field,

j = αB. (4.31)

The parameter α should be constant along each magnetic fieldline for a force-free case but
can change from one fieldline to another. However, in the case where the coronal plasma is
not entirely force-free this parameter, α is expected to vary even along a specific fieldline.
The result from Eq. (4.31) should be treated with caution. For an almost force-free state
currents can lie almost parallel to the magnetic field. However, this is not the only option.
As an alternative, it is proposed by Peter et al. (2015) the existence of "small currents"
which can have an arbitrary angle with the magnetic field. For these "small currents", the
Lorentz force does not vanish. However, as long as the magnetic field associated with the
"small currents" is smaller than the potential field, then the force balance j × B = 0 is
satisfied. The case of "small currents" is in most cases ignored but can have a significant
effect on the calculated heating rates (see e.g. Peter et al. 2015).

To study if the coronal plasma is close to a force-free state, we plot in Fig. 4.3 the hori-
zontally averaged profile of the current density squared j2, and the magnetic field squared
B2 as a function of height z. Both j2 and B2 drop exponentially from the photosphere until
the transition region. The strongest heating is located at the photosphere and low chro-
mosphere. That is because of the high plasma β plasma leading to a large stressing of the
magnetic field. In the coronal part, the scale height is quite large, and thus, the exponential
drop is not that strong. At the corona, j2 and B2 drop in the same fashion and even with
the same scale height. Hence, j2 and B2 are found to be proportional. Our result suggests
that the corona is indeed at a state close to the force-free. That was proposed by Schrijver
et al. (1999) and later it was confirmed with the data provided by TRACE (Aschwanden
et al. 2001). This result was also confirmed by other numerical and observational studies
(Mandrini et al. 2000; Démoulin et al. 2003; Gudiksen and Nordlund 2005a).

For the force-free approximation to hold, it is assumed that the plasma β in the corona
is much smaller than unity. However, from observational and analytical calculations, it
is suggested that plasma β does not necessarily have to be small and can reach up to a
few percent or even reach larger than unity (Peter et al. 2015). Given the uncertainties
that enter the calculation of the plasma-β, the coronal plasma can be considered to be
approximately force-free. However, the readers should keep in mind that the coronal
plasma β could have larger values, but it is left for future studies to investigate this problem
even further.

4.6.2 Coronal temperature and density
A way to test the validity of our model is to show the temperature and density stratification
of the simulated solar atmosphere. The energy flux is generated by the photospheric
motions, and the radiative losses extract this energy out of the system. After the start of
our simulation, we have to let it evolve until it reaches a quasi-stationary state. At that
state, the simulation is independent of the initial conditions. This relaxed state is reached
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Figure 4.4: Probability density function and horizontally averaged temperature and den-
sity as a function of height for one snapshot at t = 200 min. Left: Red solid line represents
the horizontally averaged temperature. The grey area represents the probability density
function for temperature. Right: Red solid line shows the horizontally averaged density
profile. The grey area represents the probability density function for mass density.

after around 2 solar hours for this specific run. In Fig. 4.4 we plot the temperature and
density stratification at one snapshot in time for t = 200 min.

Our numerical model shows a stratification of the solar atmosphere similar to Ver-
nazza et al. (1981). The various quantities such as temperature and density vary on small
spatial scales and show a highly dynamic behavior. However, to extract useful informa-
tion on the coronal behavior, we require the computation of the horizontal averages. The
advantage of horizontal averages is the minimal dependence on time. The horizontal av-
erage temperature (see red solid line in Fig. 4.4) increases from a photospheric value of
6000 K to a coronal value of 2 MK. The base of the corona can be defined at the height
z ' 20 Mm. The black area depicted in Fig. 4.4 shows the probability distribution function
of the temperature. It shows how temperature is spatially distributed at a specific height.
We can see that there are parts of the box, especially in the transition region, where tem-
perature can reach even higher values than 3 MK. Similar for the density, we see a drop of
8 orders of magnitude from the photosphere to the transition region. In the coronal part,
the horizontal average density is on the order of 10−13 kg/m3 which is very close to the
observed solar coronal values.

These results have been confirmed many times by other similar studies (Gudiksen and
Nordlund 2005b,a; Bingert 2009; Warnecke and Bingert 2020). Here we demonstrate the
ability of our model to reproduce some of the characteristics of the solar corona. As such,
it can be used to understand the stellar coronae, which we are going to discuss in the next
chapters.

4.6.3 Coronal energy flux
The energy flux injected from the bottom boundary is converted into heat. This energy
flux, known as Poynting flux, is responsible for the heating and the temperature increase
of the coronal plasma. Due to the low-density environment of the solar corona, only a
small fraction of the Poynting flux is enough to heat the plasma to temperatures on the
order of a million Kelvin degrees. The Poynting flux is defined as,

S = η j × B −
1
µ0

(u × B) × B. (4.32)
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Figure 4.5: Horizontally averaged vertical Poynting flux as a function of height z and
time. The time range is chosen during the relaxed state of the simulation.

In Fig. 4.5 it is illustrated how the horizontal average of the vertical Poynting flux 〈S z〉

changes with height and time during the quasi-stationary state of the simulation. It is
shown that the Poynting flux will not drop in a continuous way but rather in an intermit-
tent. That would mean that the energy will be released in a storm of pulses, and the heating
will also be intermittent (Bingert and Peter 2011). This storm of heating pulses could be
associated with the nanoflare storm proposed by Parker (1972) (see also Sect. 4.6.4).

In Fig. 4.6 we depict as a black dashed line the horizontal average absolute vertical
Poynting flux 〈S z〉 for one snapshot in time for t = 200 min. The Poynting flux Eq. (4.32)
consists of two terms. The first term j × B is related to the currents. The currents will be
strong, mainly at the lower parts of the atmosphere and near the bottom boundary. Be-
cause of the high plasma density at that specific part, the currents will not contribute sig-
nificantly to the heating. For the upper atmosphere, the currents will drop exponentially,
and thus j × B term is insignificant and can be neglected. The second term (u × B) × B
is related to the plasma motion. Due to the presence of strong currents at the lower atmo-
sphere, this term does not contribute to the Poynting flux. However, at the coronal part of
the atmosphere, as the plasma beta also increases and currents get weaker, (u × B) × B
term dominates and is upwards directed.

The Ohmic dissipation provides the energy needed to heat the coronal plasma. The
energy flux Q(z) gives the energy per unit time that crosses a unit plane at a specific height
z. It is derived by integrating the Ohmic heating rate from a specific height z to infinity.
The infinity in our simulation is considered to be the upper part of the numerical box.
So the heating above height z is because of the energy flux that crosses from that height.
Mathematically, the flux Q is defined as,

Q(x, y, z) =

∫ ∞

z
ηµ0 j2(x, y, z′)dz′. (4.33)

The horizontal average of the energy flux density 〈Q(z)〉 is depicted in Fig. 4.6 as a red
solid line. The average energy flux decreases from 108 W/m2 in the photosphere to
roughly 100 W/m2 at the base of the corona. This low value of the average energy flux
proves to be enough to heat and sustain a MK hot corona for long timescales (see e.g.
Withbroe and Noyes 1977).
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Figure 4.6: Horizontally averaged absolute vertical Poynting flux (back dashed line) and
the energy flux density Q(z) (red solid line). Both are plotted for one snapshot in time for
t = 200 min.

Finally, an equally interesting aspect is the correlation between the average vertical
Poynting flux 〈S z〉 and the average energy flux 〈Q(z)〉 as it is demonstrated in Fig. 4.6.
The heating is provided by the conversion of the electromagnetic energy (i.e. the Poynting
flux) via the Ohmic dissipation mechanism (Bingert and Peter 2011). Consequently, the
averaged energy flux 〈Q(z)〉 is expected to decrease roughly in the same fashion as the
Poynting flux.

4.6.4 Nanoflares
According to the nanoflare scenario, the energy in the corona is released in a storm of
small flaring events. The time duration and the intensity of each event might vary. One
single event does not have enough energy to heat the corona. However, a large number
of events combined could provide the necessary energy for coronal heating. With the
limited spatial resolution of the observational instruments, the existence of nanoflares has
not been confirmed yet.

The spatial resolution in our numerical model is not large enough to resolve the
nanoflares, but we can still measure their signature. In general, the horizontally averaged
profiles of the heating rate or the Poynting flux will be roughly constant in time. How-
ever, this is not the case if we focus on a specific location, as it can be seen in Fig. 4.5. We
expect the heating rate to show a very dynamic temporal evolution. To illustrate that, we
plot the temporal evolution of the horizontal average heating rate in the corona at z = 39
Mm (see Fig. 4.7). Even though the time variation is large, we can distinguish four events.
The time duration of each of these four heating events varies from 6 minutes to 11 min-
utes. The time frame shown here is during the relaxed state of the simulation. The total
energy release of each event is summarised in Table 4.1. We compute the total energy as,

E =

∫ ∫
ηµ0 j2dVdt [J]. (4.34)
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Figure 4.7: Horizontally averaged Ohmic heating rate evolution as a function of time for
z = 39 Mm. The numbers (1)-(4) show the various events which are considered to be
nanoflares. The red dashed lines indicate the time duration of each event.

The goal is to determine if any of this event can be characterized as a nanoflare.
The most promising events found in this specific simulation, which can be associated

with nanoflares, are the events labeled as (1) to (4) depicted in Fig. 4.7. The energy release
of these four events is in the range of 1019 J to 1020 J (see Table 4.1). A typical nanoflare
on the Sun is expected to have energy on the order of 1017 to 1019 J (Aschwanden 2005).
Events (1), (3), and (4) are inside this range and can be considered nanoflares. Event (2)
has slightly larger energy expected by a typical nanoflare. The large duration of the event
can explain the higher energy release. Nevertheless, we can consider three out of the
four events to be associated with a nanoflare storm. The nanoflare storms might appear
in different heights of the atmosphere, and it is expected to be the main mechanism of
heating the chromosphere or the corona. The nanoflare storms in our numerical model
appear self consistently, and it has been also confirmed by other studies (see e.g. Bingert
2009).

The nature of our numerical model does not allow for the existence of stronger flares.
We use a stable active region that is twisted around by the granular motions. However,
even these storms of weak nanoflare events provide enough energy to build a stable, hot
corona. We can assume that a similar storm of flaring events, but with much higher
intensity, will operate in other stars as well. Currently, the nanoflare model is considered
to be the best candidate to explain the high coronal temperature.

Table 4.1: Duration and energy of the four events depicted in Fig. 4.7.
N duration [s] energy [J]

Event 1 420 8.3 · 1019

Event 2 660 1.2 · 1020

Event 3 360 6.3 · 1019

Event 4 660 9.1 · 1019
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Figure 4.8: Sketch of the two level model. n1 is the electron density at the ground state
and n2 is the electron density at the first excited state. The incoming electron will excite
the ground state electron. The spontaneous emission will de-excite the electron and a
photon will be emitted.

4.6.5 Synthetic coronal emission
To compare with observations of the solar corona, we need to calculate the emission at
each grid point in our box. The line of sight synthetic emission from the simulations will
match quite well the solar observations.

The modeled corona is considered to be optically thin. In this case, the most important
processes in the radiation will be the bound-bound emission, free-bound emission, and
Brehmstrahlung. We assume an ionization equilibrium to be able to calculate the emission
at each grid point. We consider an electron number density n1 at the ground state and
an electron number density n2 at the first excited state as it is depicted in Fig. 4.8. We
primarily have excitation by an electron collision. In this case, the electron will jump
from the ground state to the first excited state. A spontaneous emission will de-excite
the electron back to the ground state, and a photon will be emitted (see Fig. 4.8). The
emissivity at a specific wavelength in units of energy per time and volume will be,

εi = hνn2A21. (4.35)

Where i refers to a specific wavelength, h is the Planck constant, ν is the photon fre-
quency, n2 is the electron density in the excited state, and A21 is the Einstein coefficient
for spontaneous emission. The previous equation can be written as a chain of ratios,

εi = hν
n2A21

nenion

nion

ne

ne

nH

nH

ne
n2

e , (4.36)

where nion is the number of ionised atoms, nH is the number density of hydrogen and ne

is the electron number density at the corona. The number density of the excited state
n2 is proportional to the electron density since we have excitation by electron collision.
The ionization ratio nH/ne depends on the degree of ionization and can be determined
from the CHIANTI database (Dere et al. 1997). The coronal plasma is considered to
be fully ionized and the value of nH/ne is roughly 0.8. The ratio ne/nH, also known as
abundance, is constant in the whole computational box tabulated also in the CHIANTI
database. Finally, we end up with two temperature-dependent ratios. The first one is
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C(T ) = n2A21/nenion and the second one is f (T ) = nion/ne. From these two ratios, the
f (T ) has a strong peak at a specific temperature. On the other hand, C(T ) is more spread
out making, therefore, f (T ) the dominant term. The whole chain of ratios is also called the
contribution function and has a weak dependence on density ne but a strong dependence
on temperature T . Eq. (4.36) can be expressed in a more compact way,

εi = Gi(T )n2
e . (4.37)

The intensity at a specific wavelength is,

Ii =

∫
εidh =

∫
Gi(T )n2

edh, (4.38)

where dh can be in any direction along the line of sight, i.e. x, y, z. To calculate the
emissivity, we first need the spectra from a telescope and find the contribution function
for each line using the CHIANTI database (Dere et al. 1997). If we sum up the emission
for each line we get the temperature response function of a telescope R(T ) =

∑
i Gi(T )n2

e .
To find the total emission for a specific wavelength range of a spectrum,

I =

∫
R(T )n2

edh. (4.39)

The electron’s number density ne is calculated from the mass density ρwe get as an output
from the numerical model. Finally, the line of sight (los) emission at each direction will
be,

Ix =

∫
R(T )n2

edx, Iy =

∫
R(T )n2

edy, Iz =

∫
R(T )n2

edz. (4.40)

We can test our model by integrating the emission along a line of sight in all directions
as it is described by Eq. (4.40). Since we consider an optically thin plasma, we can replace
the integrals with a summation over all the grid points. For the temperature response
function R(T ), we use the one from the AIA 171 channel. This channel represents the
EUV emission of the corona at 171 Å. Fig. 4.9 illustrates the synthetic EUV emission as
it would have been observed by AIA onboard SDO for three different snapshots in time
(t = 170 min, t = 200 min t = 230 min). The EUV emission of AIA 171 originates from
the Fe IX, which is found in the corona and has a peak temperature at log(T/[K]) = 5.9.
Here we show the emission in three different lines of sight directions. The left panel shows
a view along the x-direction, the middle panel shows a top view (z-direction), and the right
panel shows a side view (y-direction). The left and right panels can be considered solar
limb observations, whereas the middle panel corresponds to disk center observations. The
top and side view (see Fig. 4.9 middle and right panel) show the formation of loop-like
structures in the solar corona. The coronal loops appear to have different lengths and
brightness. Specifically, in the top view, we see that those coronal loops are rooted at
the two opposite magnetic polarities of the underlying active region. Towards the upper
part of the box, the corona appears to be diffused. The white rectangular box in the three
different snapshots in time shows the dynamic behavior of the coronal loops. We see that
for t = 170 min, there are no bright loops inside the white box, but they appear at t = 200
min, and then they diffuse at t = 230 min. The constant brightening and dimming of the
coronal loops in our simulation is an indication of the dynamic nature of the solar corona.
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Figure 4.9: Synthetic EUV emission of the coronal plasma as it would have been observed
in the AIA 171 Å channel from AIA onboard SDO. The left column shows the emission in
the x-direction. Middle column shows a top view of the emission at the z-direction. Right
column shows a side view at y-direction. The white rectangular box shows the dynamic
behavior of a bright coronal loop.
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This behavior is confirmed by various observations of solar coronal loops. It is speculated
to be associated with the nanoflares, which probably heat the corona in numerous pulses
of energy releases. To conclude, our numerical model successfully reproduces some of
the aspects of the solar corona, and it can be used as a tool to extend the study in the
coronae of stars more active than the Sun.
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5 Stellar X-rays and magnetic activity
in 3D MHD coronal models

*Chapter 5 reproduces the paper Stellar X-rays and magnetic activity in 3D MHD coronal
models by J. Zhuleku, J. Warnecke and H. Peter submitted in Astronomy & Astrophysics.
The abstract is not included here. I performed all the simulations, analysed and interpreted
the data and wrote the first draft of the paper.

5.1 Introduction
Stellar coronal X-ray emission is observed to increase with stellar rotation rate (e.g. Piz-
zolato et al. 2003; Wright et al. 2011; Reiners et al. 2014; Magaudda et al. 2020). It is
widely assumed that an increase in rotation could be responsible for stronger dynamo
action leading to larger surface magnetic field. Some active stars (e.g. M dwarfs) that
rotate rapidly (typical periods of 1 to 2 days) show high (average) photospheric magnetic
field strengths which can reach up to 8 kG or even more (Reiners 2012). Because of
this increased photospheric magnetic field, we can expect that a stronger upward directed
Poynting flux is generated that can heat the corona to higher temperatures and leads to
stronger X-ray emission in the corona. An indication of such a behaviour has been found
in stellar observations (e.g. Vidotto et al. 2014) revealing a close relation of the coronal
X-ray emission and the surface magnetic flux.

The scaling relationship between the coronal X-ray emission LX and the surface mag-
netic flux Φ, have been extensively studied by employing solar and stellar observations.
This relation follows a power-law, LX ∝ Φm. In early studies, the power-law index m
was found to be close to unity (Fisher et al. 1998; Pevtsov et al. 2003), i.e. the X-ray
radiation scales almost linear with magnetic flux. However, more recent studies suggest a
much steeper power law with m = 1.8 (Vidotto et al. 2014) or even steeper with m = 2.68
(Kochukhov et al. 2020). The physical mechanism relating the observed X-ray emission
to the surface magnetic flux is still under debate.

To study the impact of the surface magnetic field on the coronal X-ray emission in the
environment of a realistic setup, the use of 3D magnetohydrodynamic (MHD) models is
required. In addition, the 3D numerical simulations will provide a useful tool to further
test the validity of a simplified analytical model. The main advantage of 3D models is the
self-consistent treatment of the corona. The heating originates from the Ohmic dissipation
of currents induced by photospheric magneto-convective motions. This drives the mag-
netic field similar to Parker’s field line braiding (or nanoflare) model (Parker 1972, 1983).
The Parker field-line braiding model has been extensively studied in numerical models.
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It was shown how the energy cascades in current sheets from large scales to dissipative
scales before converting to heating (Rappazzo et al. 2008). In addition, 3D MHD simu-
lations of footpoint motions have proved successful on forming a self-consistent corona
(see e.g Gudiksen and Nordlund 2002, 2005a,b; Bingert and Peter 2011, 2013a; Hansteen
et al. 2015; Dahlburg et al. 2016, 2018).

The numerical models are able to provide the necessary energy flux in the corona,
which is sufficient to heat it to temperatures beyond 1 MK and is consistent with obser-
vations (Bingert and Peter 2011; Hansteen et al. 2015). Furthermore, extreme ultraviolet
(EUV) synthetic spectra from these 3D simulations can explain some aspect of the actual
observations (Peter et al. 2004; Dahlburg et al. 2016; Warnecke and Peter 2019a). This
confirms the validity and efficiency of Parker’s field line braiding model to create a hot
corona. These models can also be used to study the effects of magnetic helicity injec-
tion in the photosphere of active stars on the resulting coronal X-ray emission (Warnecke
and Peter 2019b). This showed that an increase of photospheric magnetic helicity with-
out changing the vertical magnetic field increases the coronal X-ray emission following
simple power-law relations. However, the effect of the surface magnetic activity on the
coronal X-ray emission in 3D MHD models of solar and stellar coronae has not been
studied, yet.

In our study, we focus on the effect of the photospheric magnetic field strength on
the coronal X-ray emission. This is motivated by the observation that stars more active
than the Sun host stronger surface magnetic field. For that reason, we choose to increase
the strength of the vertical surface magnetic field at the bottom boundary of our com-
putational domain, i.e. we treat the peak (or average) magnetic field strength as a free
parameter. All the other parameters remain the same in all numerical experiments. By
varying only one parameter (i.e. the surface magnetic field) we can study the exact re-
lation between magnetic flux and coronal emission. Other parameters, important for the
coronal energy input, e.g. the photospheric velocity distribution, are observationally ill
constraint for other stars and are thus not changed (or varied) in the present work. Our
main objective is to relate the synthetic X-ray emission from the numerical models with
the surface magnetic flux and relate this to the observed relationships. Furthermore, we
will compare our numerical results to our earlier analytical model (Zhuleku et al. 2020)
that is briefly summarized in Sect. 5.2.

5.2 Analytical scaling relations

The dependence of the coronal X-ray emission to surface magnetic field has been exten-
sively studied for the Sun as well as for other stars (Fisher et al. 1998; Pevtsov et al. 2003;
Vidotto et al. 2014; Kochukhov et al. 2020). In Zhuleku et al. (2020) we developed an an-
alytical model to describe the LX ∝ Φm relation, where LX is the coronal X-ray emission
and Φ the total surface unsigned magnetic flux.

Our model is based on the well known Rosner, Tucker & Vaiana (RTV; Rosner et al.
1978) scaling laws. They derived scalings relating the volumetric heating rate and the
loop length to the coronal temperature and pressure. Alternatively, we can express the
RTV scaling laws in a way to relate temperature T and density n with the volumetric
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heating rate H and loop length L,

T ∝ H2/7L4/7, (5.1)
n ∝ H4/7L1/7. (5.2)

Using these scaling laws together with other relations, we derive an analytical expression
for the X-ray emission LX,

LX ∝ Φm with

m =
β γ

7

(
2α + 8

)
+ δ

(
4
7

+
1
7
α −

8
7
β γ −

2
7
α β γ

)
.

(5.3)

The power law index m depends only on four parameters α, β, γ and δ. The first, α, is
related to the temperature sensitivity of the instrument used for the X-ray observations. In
general, the X-ray radiation is proportional to the density squared and to a temperature-
dependent function R(T ). This function R(T ) is the sum of all the contribution functions
of emission lines and continua, known also as temperature response function, and differs
from one instrument to the next. We found that the temperature response function for
temperatures below log10 T [K] = 7 can be expressed as a power-law (cf. Zhuleku et al.
2020, their Fig.1),

R ∝ Tα. (5.4)

The parameters β and γ characterize the relation of the of energy flux, or the vertical
Poynting flux S z, injected in the corona to the vertical surface magnetic field B and the
volumetric heating rate H, again through power-laws,

S z ∝ Bβ (5.5)
H ∝ S γ

z . (5.6)

The case β = 1 represents Alfvén wave heating and for β = 2 nanoflare heating (see
also Sect. 5.6.1). The parameter γ was considered to be unity, γ=1. Finally, δ relates
the surface area covered by a magnetic structure (e.g. a whole active region) to the total
magnetic flux,

A ∝ Φδ (5.7)

Solar studies have suggested a value of δ = 0.819 (Fisher et al. 1998).
In our analytical study, we found the power-law index m to be in the range from

roughly one to almost two (Zhuleku et al. 2020). This result agrees quite well with most
observations, but at least one more recent observation finds an even steeper power law
connection of LX∝Φm with m of 2.68 (Kochukhov et al. 2020).

In the numerical study presented in the following sections, we will assume that the
area covered by the magnetic field remains the same, i.e. the change of the surface mag-
netic flux is solely due to the (average) vertical magnetic field strength. This is equivalent
to choose δ=0 in Eq. (5.7). In this case we get a much steeper power-law in the analytical
model, with m up to 4 (Zhuleku et al. 2020, Sect. 5.2, Eq. 15). The numerical study in
this paper will give a more detailed comparison to the observations that provide a good
match to the observations of Kochukhov et al. (2020).
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5.3 Numerical model setup

5.3.1 Basic equations
Our model is based on the work of Bingert and Peter (2011, 2013b). We use the Pencil
Code (Brandenburg et al. 2020), where we numerically solve the MHD equations from
the photosphere up to the corona. The size of the computational box is 128×128×128
grid points in Cartesian coordinates (x, y, z), representing a 50×50×50 Mm3 volume with
a grid-scale of 390 km in all directions. The comparably small grid size size allows us
to run a large enough number of numerical experiments to study the relationship between
the magnetic activity and coronal emission.

The MHD equations are the continuity, momentum, energy and induction equation
connecting density ρ, velocity u, and temperature T with the magnetic field B and pressure
p:

D ln ρ
Dt

+ ∇ · u = 0, (5.8)

Du
Dt

=
1
ρ

[
−∇p + ρg + j × B + 2ν∇ ◦

(
ρS

)]
, (5.9)

D ln T
Dt

+ (γ − 1)∇ · u =

=
1

cVρT

[
ηµ0 j2 + 2ρνS 2 + ∇ · q + Lrad

]
.

(5.10)

Here the Lagrangian derivative D/Dt is defined as D/Dt = ∂/∂t+u·∇. The current density
is given by j = ∇×B/µ0. The polytropic index of an ideal gas is given by γ = 5/3. We use
a constant gravitational acceleration, g = (0, 0,−g), with g = 274 m/s2, cV is the specific
heat capacity at constant volume, and S = (ui, j + u j,i)/2− δi j∇ ·u/3 is the rate of the strain
tensor. The resistivity η and viscosity ν are constants through the whole computational
box with values η = ν = 5 × 1010 m2s−1. At the bottom boundary we reduce η to prevent
a too large diffusion of the photospheric magnetic field.

The magnetic field is calculated through the vector potential as,

B = ∇ × (A + ∇φ), (5.11)

which ensure that the ∇ · B = 0 is satisfied at all times. For our simulations we choose the
resistive gauge φ = η∇ · A so that the induction equation reads,

∂A
∂t

= u × (∇ × A) + ∇ (η∇ · A) . (5.12)

To close the system of equations we need the equation of state for an ideal gas which
connects the gas pressure with temperature,

p =
kB

µmp
ρT. (5.13)

Where ρ is the density, kB is the Boltzmann constant, µ is the mean atomic weight and mp

is the proton mass.
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The radiative losses Lrad, are modeled with an optically thin approximation using the
radiative loss function P(T ). The function P(T ) depends on the abundances as well as
on the radiation processes that take place like the ionization rate and recombination rate
(Meyer 1985; Murphy 1985; Cook et al. 1989). For a detailed discussion in the imple-
mentation of the radiative loss function in the code see Bingert (2009).

The (Spitzer) heat conduction along the magnetic field lines q reads,

q = K0T 5/2 b̂(b̂ · ∇T ), (5.14)

where K0 = 10−11 W(mK)−1 (Spitzer 1962) and b̂ is the unit vector of the magnetic field.
To speed up the simulations, we replace Eq. 5.14 by a non-Fourier heat flux scheme.
See Warnecke and Bingert (2020) for a detailed description and discussion. Additionally,
we use a semi-relativistic correction to the Lorentz force similar to the work of Boris
(1970), Gombosi et al. (2002) and Rempel (2017). For details of the implementation, see
Chatterjee (2018) and Warnecke and Bingert (2020).

In order to avoid instabilities because of steep gradients in temperature and density, we
include in Eq. (5.10) a (numerical) isotropic heat conduction term and a mass diffusion
term (see Bingert 2009). We also include a shock viscosity term for numerical reasons.

5.3.2 Initial and boundary conditions

The simulations are driven by (horizontal) motions on the solar surface that drive the mag-
netic field anchored in the photosphere. For the spatial distribution of the vertical mag-
netic field we employ an observed solar magnetogram (see Fig. 5.1). This is a snapshot
of the active region AR 11102 as observed with the Helioseismic and Magnetic Imager
(HMI; Schou et al. 2012) on August 30th, 2010. A detailed description of a similar ac-
tive region and how it is implemented in the model is discussed in Warnecke and Bingert
(2020). These kind of magnetograms represent a typical situation for a solar active region
and similar magnetograms have been used as input for data-driven simulations by earlier
studies (see e.g. Gudiksen and Nordlund 2005b,a; Bingert and Peter 2011).

For the initial condition, we use a potential field extrapolation to fill the box with
magnetic field. The initial temperature stratification follows a vertical profile mimicking
the temperature increase into the solar corona. The initial density is calculated from
hydrostatic equilibrium and the system is initially at rest with all velocity components set
to zero.

In the horizontal x-y plane, all variables are periodic. At the bottom boundary, the
temperature T and density ρ have fixed values whereas the horizontal velocities, ux, uy

have zero vertical gradients. The vertical velocity uz is set to satisfy the divergence-free
condition ∇ · u = 0. We also prescribe a photospheric driver which generates random
photospheric velocity motions similar to the solar granular motion. As a result, we shuffle
the footpoints of the magnetic loops mimicking the solar photospheric flows similar as
in, e.g., Gudiksen and Nordlund (2002, 2005b,a). At the top boundary, all velocities
components are zero. To prevent any heat flux going in or out of the computational
domain, the gradients of temperature and density are set to zero. The magnetic field is
potential both for the bottom and the top boundary.
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Figure 5.1: Initial vertical magnetic field at the bottom boundary of the simulation.
This is based on a magnetogram from active region AR 11102 observed with HMI. See
Sect. 5.3.2.

Table 5.1: Summary of numerical experiments. The photospheric magnetic field strength
is increased by the factor a. Φ is the total surface unsigned magnetic flux.

Run a Φ [Mx]
1B 1 7.4 × 1020

2B 2 1.5 × 1021

5B 5 3.7 × 1021

10B 10 7.4 × 1021

20B 20 1.5 × 1022

5.4 Numerical experiments

5.4.1 Setup

The main idea of this work is to start with an active region hosting only a small amount
of total (unsigned) magnetic flux and then run models with increasing magnetic flux. Our
aim is to study how the increase of the photospheric magnetic field strength contributes
to the heating, and thus the X-ray emission of the solar or stellar corona.

We report here on a set of five numerical experiments. The original total unsigned
surface magnetic flux of AR11102 is around 7 × 1020 Mx, which is a typical value of a
small solar active region. We increase the flux by multiplying the Bz component of the
surface magnetic field by a constant ranging from one to twenty (see Table 5.1). The
spatial structure of the magnetic field remains unchanged. In all cases, the total magnetic
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flux at the bottom boundary is zero, i.e. the surface magnetogram is balanced.
The heating of the coronal loops originates from the dissipation of Poynting flux into

heat. More specifically, the conversion of the photospheric magnetic energy to thermal en-
ergy is due to the dissipation of the currents created by the random photospheric motions.
The stronger the magnetic field, the more Poynting flux reaches the corona, resulting in a
higher temperature and X-ray emission.

In our setup, the different total unsigned magnetic fluxes correspond to peak values of
the magnetic field ranging from 1 to 20 kG inside the spots. Hence our naming convention
in Table 5.1. The value of 20 kG is very high for a solar active region. Recent observations
of solar active regions have measured maximum values of the magnetic field strength on
the order of 8 kG (Castellanos Durán et al. 2020). However, this high value was observed
only at a very small area on the active region light bridge. Typically the peak magnetic
field strengths on solar active regions are on the order of 2 kG to 3 kG. Therefore, of
the numerical experiments listed in Table 5.1, the 5B run can be considered to represent
a typical solar active region, with a typical value for the total unsigned flux. Higher
values of surface magnetic field could be a common feature, however, of very active stars
(Reiners et al. 2014), so the runs 10B and 20B could be considered to be representative
of more active stars.

The increase of the surface magnetic field is not the only way to increase the surface
magnetic flux. Alternatively we could increase the horizontal extent of an active region
while keeping the peak magnetic field strength the same. This will be the main focus of a
future study.

5.4.2 Synthesized emission: X-rays and EUV
Coronal loops are mostly observed in extreme ultraviolet (EUV) wavelengths and X-rays
because these wavelengths give access to the million K hot plasma in the corona, and in
these wavelengths, the dilute corona is also visible in front of the solar (or stellar) disk
that is very bright in the visible range. Therefore, we synthesize the emission in one
EUV and one X-ray band. For the EUV band we choose the widely used 171 Å band as
seen by the Atmospheric Imaging Assembly (AIA; Lemen et al. 2012) onboard the Solar
Dynamic Observatory (SDO; Pesnell et al. 2012). For the X-ray emission, we use the
Al-poly filter of the solar X-ray telescope (XRT; Golub et al. 2007b) onboard the Hinode
observatory(Kosugi et al. 2007).

As mentioned in Sect. 5.2, the optically thin radiative losses through lines and continua
in the corona observed in a given wavelength band are given through

ε = n2
e R(T ), (5.15)

where ne is the electron density and R(T ) the temperature response (or contribution) func-
tion. The response needs to be calculated for each instrument (or filter) by using the
effective area depending on wavelength and the spectral lines forming in the wavelength
region covered by the instruments. To calculate R(T ) for the 171 Å channel of AIA and
the Al-poly filter of XRT, we use the routines in the Chianti data base v9 (Dere et al. 1997,
2019) as they are available in the SolarSoft package1. The response functions R(T ) for

1http://www.lmsal.com/solarsoft
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Figure 5.2: Side view of the computational domain showing coronal emission. The left
two panels show the emission as it would be seen by the 171 Å channel of AIA origination
from around 1 MK. The right to panels show X-ray emission as seen by XRT sampling
higher temperatures. Here we show snapshots of the two more active models, runs 10B
and 20B. The emission here is integrated along the y direction which corresponds to an
observation near the limb (of the Sun or a star). The snapshot is taken at time at t=230
min, i.e. in the relaxed state. See Sect. 5.4.2.

AIA 171 Å and XRT Al-poly are shown in Fig. 5.3. To calculate the synthetic images as
they would be observed by AIA or XRT, ε from Eq. (5.15) has to be integrated through
the computational domain along the chosen line-of-sight. The samples for both channels
for the 10B and 20B runs are shown in Fig. 5.2. These are integrated along the y direction
which would correspond to an observation near the limb.

5.4.3 Horizontal averages

The increase of the surface magnetic field results in an increase in temperature and density
in the coronal part of the domain. We calculate the horizontal averages of temperature T ,
density ρ, and the vertical component of the Poynting flux S z and then average these in
time for and interval of 1 hour. During this time interval the computation reached a relaxed
state, i.e. the respective (spatially averaged) quantities show only rather small changes
around a mean value (see Sect. 5.4.4 and Fig. 5.5). The average vertical stratification of
T , ρ and S z is shown in Fig. 5.4.
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Figure 5.3: Temperature response function for the AIA instrument onboard SDO and
the XRT onboard Hinode. The Black line shows the 171 Å channel of the AIA, the red
line shows the Al-poly filter of the XRT. Just for illustration, the dashed line indicates a
power-law approximation to XRT at temperatures below 107 K. See Sect. 5.4.2.

5.4.3.1 Average Poynting flux deposited in the corona

The photospheric horizontal motions lead to an upward-directed flux of magnetic energy,
the Poynting flux. Here we concentrate on its vertical component,

S z = η( j × B)
∣∣∣
z
−

1
µ0

(u × B × B)
∣∣∣
z

(5.16)

that is shown in Fig. 5.4c for the different runs. In the main part of the computational
domain, the u×B×B term dominates and (on average) is positive, i.e. upwards directed.
The first term including the current, j, is significant only near the bottom where boundary
effects of the driving cause high currents. Energetically, this is not relevant, because there
the density is high enough that the heating through the currents has virtually no effect.

As we increase the total unsigned magnetic flux from one experiment to the next,
the energy stored in the corona increases. The magnetic energy in excess of that of a
potential field will be (partly) dissipated and converted into heat. The higher amount of
dissipated (free) magnetic energy in the runs with higher magnetic flux leads to higher
coronal temperatures and density (see Fig. 5.4a and Fig. 5.4b). This is just as expected
from the RTV scaling laws (Eqs. 5.1 and 5.2) as we will discuss later in Sect. 5.6.2 (see
also Fig. 5.8).

The Poynting flux of the 1B run at the base of the corona (i.e. at an average tempera-
ture of ca. 0.1 MK) barely reaches 50 W/m2. Typical estimations based on observations
suggest an energy requirement of around 100 W/m2 for the quite Sun and 104 W/m2 above
active regions (Withbroe and Noyes 1977). Therefore, we cannot expect this run with the
lowest magnetic activity to produce a MK corona.
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Figure 5.4: Horizontal averaged quantities as a function of height. We show temperature
T (panel a), density ρ (panel b), and the vertical component of the Poynting flux Sz (panel
c). The colors represent the different runs as indicated in the legend (cf. Table 5.1). The
quantities are averaged horizontally for each snapshot and then in time for 1 hour (from
times 3.5 hr to 4.5 as indicated in Fig. 5.5 by the vertical dashed lines. For the Poynting
flux we omitted the first 3 grid points that show boundary effects. See Sect. 5.4.3.

5.4.3.2 Average temperature and density

All of our simulations self-consistently form a hot upper atmosphere, where the tempera-
ture is about two orders of magnitude higher than at the surface (cf. Fig. 5.4a). A higher
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total unsigned flux in the photosphere (cased 1B through 20B) corresponds not only to
higher Poynting fluxes, but also to higher temperatures and density. The values shown in
Fig. 5.4a and b are averages only, so the peak values are significantly higher, up to 5 MK
and more.

The experiment with the least magnetic activity (run 1B) fails to create a million-
Kelvin hot corona, as expected. Still, we consider it in the analysis of the power-law
relation in Sect. 5.5. The main focus of this work is to relate the coronal emission to the
surface magnetic activity through a number of numerical experiments, and in this sense
also a model that is not active enough to produce a MK corona gives valuable insight.

Besides the increased temperature and density, the models with higher magnetic ac-
tivity also have the transition region located at lower heights. From this, it is clear that the
height where the average temperature reaches 105 K is lower for the runs with more mag-
netic flux. The higher energy input leads to a higher heat flux back to the Sun. Because
the radiation is most efficient at lower temperatures (at 0.1 MK and below), in equilibrium
the transition region will be found at lower temperatures and thus higher densities where it
can radiate the energy. The consequence is that the density (and the pressure) throughout
the corona will be higher, just as seen in our simulations.

The average density profile ρ displays similar (qualitative) behavior as the temper-
ature. In the coronal part the density is high for the runs with higher magnetic flux
(Fig. 5.4b). Following a steep drop over many orders of magnitude in the low atmo-
sphere, the density remains almost constant in the coronal part. This is simply because
of the large barometric (pressure) scale height at high temperatures. At 1 MK this scale
height is about 50 Mm and thus comparable to the vertical extent of our computational
domain, hence the horizontally averaged pressure and density are roughly constant in the
coronal part of our box.

5.4.4 Temporal evolution
The quantities we consider in our model vary significantly with time, especially during
the early phase of the simulations. To investigate the average behavior of our model we
have to consider a time frame of the numerical model where the system reached a relaxed
(or evolved) state. During that state, the quantities show (comparably small) variations
around an average value.

To illustrate this, we first consider the total heating in the coronal part of the compu-
tational domain. We define the coronal part as the volume above the height where the
horizontally averaged temperature is 105 K. Because the temperature gradient in the tran-
sition region around 105 K is rather steep, the exact choice of this temperature does not
matter. So we define the total coronal heating Htot as the volume integral over this coronal
part, here symbolized by the subscript cor,

Htot =

∫
cor
ηµ0 j2dV. (5.17)

The temporal variation of the heating is shown in Fig. 5.5 for the five models with dif-
ferent magnetic activity. We see a clear ordering of the heating with the surface magnetic
flux (increasing for run 1B through 20B), which we will discuss in more detail later in
Fig. 5.7 and Sect. 5.6.1. In terms of the temporal evolution, we find that the heat input
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Figure 5.5: Total coronal heating Htot as a function of time. The vertical dashed lines
indicate the time span used for the temporal averages. The colors represent the different
runs as indicated in the legend (cf. Table 5.1). See Sec. 5.4.4.

reaches a relaxed state rather quickly, probably within less than an hour. This is expected,
because the stresses applied on the magnetic field in the photopshere will propagate with
the Alfvén speed. The corresponding Alfvén crossing time for perturbations to cross the
whole box is on the order of minutes.

The situation for the relaxation time is different when considering the coronal emis-
sion in X-rays and EUV. Here it turns out that we have to wait for about 3 hours before the
models reach a relaxed state. Mainly, this is because of the radiative cooling time under
typical coronal conditions which is on the order of 1 hour (Aschwanden 2005). Therefore
we will examine the temporal evolution of the coronal radiation in some more detail.

We now turn to the variability of the X-ray and EUV emission (see Fig. 5.6). Because
the lower cool part of the atmosphere does not produce any significant amount of X-rays
or EUV, we simply integrate the coronal emission over the whole computational domain.
This is equivalent to the luminosity originating from the domain, LX and LEUV. Because
we use the temperature response functions for XRT and AIA (Sect. 5.4.2, Fig. 5.3), we get
the counts per second as expected for the respective instrument from the whole loop in
the box (cf. Fig. 5.2). For the comparison between the different model runs it is important
that we use the same scale for the different models. Based on this, we see a clear scaling
of the coronal emission with magnetic activity, in a similar way as we see it for the heat
input. We will discuss this in more detail in Fig. 5.9 and Sect. 5.6.3.

Mostly, the coronal emission shows an initial drop on the timescale of almost an hour,
in particular for EUV channel of AIA 171 Å in the runs with low magnetic activity. This
is because the atmosphere of the initial condition is rather hot, and the plasma is cooling
down until it reaches a new equilibrium after a few coronal radiative cooling times (Fig.
5.6). Here we see that all model runs reach a relaxed state after about 2.5 to 3 hours. With
some safety margin we can thus assume that from 3.5 to 4.5 hours the models have reached
a relaxed state (see vertical dashed lines in Figs. 5.5 and 5.6). All the time averages
discussed in our study are taken over this time frame.
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Figure 5.6: Temporal evolution of the coronal emission from integrated over the whole
computational domain. Panel (a) shows the X-ray emission as seen by XRT in the Al-poly
filter, panel (b) the EUV emission as it would be seen by AIA in the 171 Å channel. The
vertical dashed lines indicate the time span used for time averaging. The colors represent
the different runs as indicated in the legend (cf. Table 5.1). See Sec. 5.4.4.

5.5 Scaling relations in numerical experiments

To characterize the model runs with different magnetic activity, i.e. unsigned magnetic
surface flux, we investigate the scaling relations in the form of power laws between differ-
ent parameters. In Sect. 5.4 we showed that the enhancement of the photospheric magnetic
flux lead to a substantial increase of temperature, density, Poynting flux and coronal emis-
sion. In this section, we discuss the power-law relations of various quantities averaged in
space and time quantities. We will discuss these results in Sect. 5.6 including the study of
Zhuleku et al. (2020).

We first concentrate the relation of the the vertical component of the average Poynting
flux 〈S z〉 to the unsigned surface magnetic flux Φ and the averaged total coronal heating
〈Htot〉 (see Fig. 5.7). Each cross in the two figures represent averaged values of the respec-
tive quantities in each individual numerical model (cf. Table 5.1). Here we take the the
horizontal average of the Poynting flux 〈S z〉 at the height where the horizontally averaged
temperature is 105 K, i.e. the base of the corona and average it in time from 3.5 to 4.5 hr
(see Sect. 5.4.4). This represents the energy flux (per unit area) into the corona. The total
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averaged coronal volumetric heating 〈Htot〉 is calculated according to Eq. (5.17) and then
averaged between times 3.5 and 4.5 hr as discussed in Sect. 5.4.4. The unsigned surface
flux Φ is the integral over the bottom boundary, i.e. the stellar surface which is constant
in time. The bars in Fig. 5.7 indicate the standard deviation of the respective quantity in
time. For relations displayed in Fig. 5.7 we perform power-law fits (indicated by the red
line) that result in

〈S z〉 ∝ Φβ with β = 1.71 ± 0.42, (5.18)
〈S z〉 ∝ 〈Htot〉

Γ with Γ = 0.88 ± 0.22. (5.19)

Here Γ corresponds to 1/γ from the analytical model in Eq. (5.6) and Zhuleku et al.
(2020). The two scalings (5.18) and (5.19) imply that the heating increases roughly
quadratically with magnetic flux, 〈Htot〉 ∝ Φ1.94.

As a next step, we relate the coronal temperature T and density ρ to the total coronal
heating 〈Htot〉. Here we test to what extent the coronal temperature and density in our
numerical model deviates from the analytic RTV scaling laws as given in Eqs. (5.1) and
(5.2). For this, we calculate the average temperature 〈T 〉 and density 〈ρ〉 in the corona in
a height range from z=10 Mm to 20 Mm for each of the models. We choose this particular
height range because here the bright structures appear (see Fig. 5.2). If we would also
include higher regions of the box, the averages would no longer represent the actually
visible parts of the corona. In addition, we average 〈T 〉 and 〈ρ〉 in time from 3.5 to 4.5 hr
as discussed in Sect. 5.4.4. We show the corresponding plots including the power-law fits
of 〈T 〉 and 〈ρ〉 as a function of the total coronal heating Htot in Fig. 5.8. The power-law
fits yield

〈T 〉 ∝ 〈Htot〉
a with a = 0.24 ± 0.03, (5.20)

〈ρ〉 ∝ 〈Htot〉
b with b = 0.76 ± 0.05. (5.21)

Finally, we address the relation of the X-ray emission to the heating rate and the
unsigned surface magnetic flux. As the photospheric magnetic flux is larger for models
with higher magnetic activity, also the total dissipated energy is larger. And because the
X-ray emission is expected to increase with the heating rate, it should also be larger for
higher unsigned magnetic flux. For the analysis we consider the averaged emission, 〈LX〉,
that is integrated over whole computational domain and averaged as the other quantities
from 3.5 to 4.5 hr. The corresponding relations are plotted in Fig. 5.9 and Fig. 5.10a, and
the power-law fits give

〈LX〉 ∝ Φm with m = 3.44 ± 0.28, (5.22)
〈LX〉 ∝ 〈Htot〉

q with q = 1.78 ± 0.15. (5.23)

We apply the same integration and time averaging to the EUV emission as seen by AIA in
its 171 Å channel. Its relation to the heat input is displayed in Fig. 5.10b and the power-
law fit reveals an almost linear relation,

〈LEUV〉 ∝ 〈Htot〉
p with p = 1.05 ± 0.09. (5.24)
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Figure 5.7: Scaling of average Poynting flux 〈S z〉 with unsigned surface flux Φ and av-
erage coronal heating 〈Htot〉. Each data point represents an average for one of the model
runs with different unsigned surface magnetic flux as listed in Table 5.1. As a reference
for the magnetic flux, Φref, we choose the magnetic flux of the least active setup, run 1B
(cf. Table 5.1). The bars represent the standard deviation of S z in time. The red lines are
power-law fits to the data. See Sects. 5.5 and 5.6.1.

5.6 Discussion

5.6.1 Energy input into the corona

The solar coronal heating problem and the underlying physical mechanism has been ex-
tensively discussed the last 70 years. Two of the main mechanisms that are being con-
sidered are the Alfvén-wave model (e.g. van Ballegooijen et al. 2011) and the field-line
braiding or nanoflare model (Parker 1972, 1983). These two processes have a different
dependence of the Poynting flux, and hence the heat input, on the magnetic field. A sim-
ple estimate for these dependencies has been given by Fisher et al. (1998). Here we follow
their arguments. For an Alfvén wave with constant amplitude, the Poynting flux will be
proportional to the propagation speed, i.e. the Alfvén velocity, and hence to the magnetic
field B, S z ∝ B. For the field-line braiding, the Poynting flux will be set by the driving
motions with speed u and the magnetic field, S ∝ u×B×B, and hence the scaling would
be S z ∝ B2 (assuming that the driving motions do not change with B).

In our numerical experiments we find a power-law scaling between Poynting flux and
(unsigned) magnetic flux with a power-law index of about 1.7±0.4, see Eq. (5.18) and
Fig. 5.7a. Within the uncertainties this is consistent with the above (analytical) estimate
of 2. Of course, this is not surprising, because our in our model we drive the coronal
magnetic field through footpoint motions consistent with the field-line braiding scenario.
Still, it is reassuring to recover this scaling by our numerical model.

Observationally it is clear that Alfvén waves are present in the corona (e.g. Tomczyk
et al. 2007). Still, it remains unclear if the energy they carry would be sufficient to energize
the corona. Waves might play a role in the quiet Sun corona, but they seem to not be able
to heat active regions (McIntosh et al. 2011). Our particular model can contribute little
to this discussion, because we do not fully resolve Alfvén waves, which is because of the
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Figure 5.8: Scaling of average temperature 〈T 〉 and density 〈ρ〉 with average coronal heat
input 〈Htot〉. Each data point represents an average for one of the model runs with dif-
ferent unsigned surface magnetic flux listed in Table 5.1. The bars represent the standard
deviation of the spatial averages of T and ρ in time. The red lines are power-law fits to the
data. The blue lines indicate what is expected from the RTV scaling laws. See Sects. 5.5
and 5.6.2.

comparably large dissipation.
Finally, we expect that the total energy dissipated in the coronal volume matches the

Poynting flux at the base of the corona. In this case the Poynting flux should scale linearly
with the total amount of energy dissipated in the corona. In our numerical experiments we
find a power-law relation with a power-law index of about 0.9±0.2, which is consistent
with linear, see Eq. (5.19) and Fig. 5.7b.

5.6.2 RTV scaling laws compared to numerical experiments

One obvious check for the numerical experiments is to what extent the averaged quantities
will follow the RTV scaling laws Eqs. (5.1) and (5.2). Of course, because of the spatial
and temporal variability we cannot expect a perfect match, but the average quantities
should roughly follow these scalings, as it was found in an earlier model for one single
(small) solar active region (Bourdin et al. 2016).

The original RTV scalings in Eqs. (5.1) and (5.2) include a dependence on the loop
length L. In our numerical models, however, the physical size of the computational box
is kept constant. Therefore, the coronal loops can be considered to have similar lengths.
Consequently, in this study we only have to consider the dependence of temperature and
density on (total) heating in the coronal volume, Htot.

For a comparison to the RTV scalings one should not only compare the power/law
indices of the scaling, but also the absolute values of the temperature T and density ρ as
given in the original paper by Rosner et al. (1978). To calculate the predictions from the
RTV scalings, i.e. TRTV and ρRTV, we use a loop length of L=30 Mm, which is similar to
the average loop length we find in the emission patterns synthesized from the model (see
Fig. 5.2). For the volumetric heating rate we use the (total) heating in the coronal volume,
〈Htot〉, divided by the coronal volume, which gives the (average) volumetric heating. The
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Figure 5.9: Scaling of average X-ray emission 〈LX〉 with unsigned surface flux Φ. Each
data point represents an average for one of the model runs with different unsigned surface
magnetic flux listed in Table 5.1. As a reference for the magnetic flux, Φref , we choose
the magnetic flux of the least active setup, run 1B (cf. Table 5.1). The bars represent the
standard deviation of LX in time. The red lines are power-law fits to the data. The blue
lines show the analytic power-law relations based on the RTV scaling laws. See Sects. 5.5,
5.6.3 and 5.6.4.

resulting variation of TRTV and ρRTV with 〈Htot〉 is shown in Fig. 5.8 (blue lines). Ob-
viously, the power law-indices of 0.29 and 0.57 for these correspond to 2/7 and 4/7 in
Eqs. (5.1) and (5.2).

The power-law relation of the average temperatures 〈T 〉 and density 〈ρ〉 in the nu-
merical models with 〈Htot〉 are close to what is expected from RTV. However, both the
temperature and the density are significantly lower, by about a factor 2 and 3, see Fig. 5.8
and Eqs. (5.20) and (5.21).

The reason for this underestimation is mainly due to the averaging process of the tem-
perature and density. The bright loops are hotter and denser than the ambient corona so
that the averages underestimate the values corresponding to the RTV scaling relations.
Still, we conclude that the numerical models and the analytical scaling relations are con-
sistent (as an order-of-magnitude estimation).

5.6.3 Relation of X-ray emission to surface magnetic flux

The central result of our study is the power-law relation between the synthetic X-ray
emission LX and the unsigned surface magnetic flux Φ. We show this relation LX ∝ Φm

with a power-law index m of about 3.4±0.3 in Fig. 5.9, see also Eq. (5.22).
This LX vs. Φm relationship has been extensively discussed in numerous observational

studies of the Sun and of stars of different spectral types (see e.g. Fisher et al. 1998;
Pevtsov et al. 2003; Vidotto et al. 2014). However, the physical reasons behind the ob-
served power-law relation remained unclear. Observations of various solar features and
solar-like stars suggest a relation close to but slightly steeper than linear, i.e. m&1 (e.g.
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Figure 5.10: Scaling of average X-ray and EUV emission, 〈LX〉 and 〈LEUV〉 with average
coronal heating 〈Htot〉 for model runs listed in Table 5.1. The bars represent the standard
deviation of LX and LEUV in time. The red lines are power-law fits to the data. The blue
line in panel (a) indicates what is expected from the RTV scaling laws. See Sects. 5.5 and
5.6.5.

Fisher et al. 1998; Pevtsov et al. 2003). More recent studies find the power-law to be
close to quadratic (m=1.8; Vidotto et al. 2014) or even steeper (m=2.68; Kochukhov et al.
2020). While Kochukhov et al. (2020) considered stars similar to the Sun in terms of
spectral type, all these were considerably more active than the Sun in terms of X-ray
luminosity. The large sample of Vidotto et al. (2014) also contained mainly stars being
significantly more active than the Sun.

An almost linear relation of LX vs. Φ could be simply understood by increasing the
number of active regions on a (solar-like) star. If the filling factor of active regions is low
and one simply doubles the number of active regions, both the total unsigned magnetic
flux on the stellar surface and the X-ray emission would double. Hence the linear relation
betweenLX and Φ. This, in principle, could explain the findings of Fisher et al. (1998)
and Pevtsov et al. (2003).

Active stars show X-ray luminosities (compared to their bolometric luminosity) that
can be three or more orders of magnitude larger than that of the Sun (e.g. Vidotto et al.
2014). In this case there would be simply not enough space on the star to cover it with
enough (solar-like) active regions. This means, the X-ray emission per active region has to
increase. This is exactly what we find in our model when increasing the magnetic flux of
an active region while keeping its size (i.e. area) the same. This leads to a steep increase
of X-ray luminosity with surface magnetic flux, an increase that is even steeper than
observed: the power-law index m for LX ∝ Φm is about 3.4 in our model, while the largest
value found in observations is below 2.7 (Kochukhov et al. 2020). This overestimation of
the power-law index by our model indicates that on real stars we might find a mixture of
an increase of the numbers of active regions that goes together with the increase of the
peak magnetic field strength (or magnetic flux per active region) for more active stars.
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5.6.4 Analytical model for scaling of X-ray emission
We will now compare the scaling of LX ∝ Φm to some basic analytical considerations. In
an earlier study we derived an analytical scaling of the X-ray emission with surface mag-
netic flux that is based on the RTV scaling relations (Zhuleku et al. 2020). As discussed
in the summary of that model in Sect. 5.2, there we used a scaling of active region size
with (unsigned) magnetic flux based on solar observations, see Eq. (5.7). In contrast, in
our numerical model we keep the size or area covered by the active region constant, hence
here the power-law index in Eq. (5.7) is δ=0. This simplifies our analytical scaling from
Eq. (5.3) to

m =
βγ

7
(2α + 8). (5.25)

According to Eq. (5.4), α is the power-law-index relating the temperature response (or
contribution) function to temperature. Here we approximate this for X-rays as seen by the
XRT on Hinode (see Fig. 5.3), where a power-law fit yields

RX ∝ Tα with α = 2.1 ± 0.2. (5.26)

We give a more extensive discussion on the temperature responses for different instru-
ments in Zhuleku et al. (2020).

The other two parameters β and γ in Eq. (5.25) we take from the relations of the
Poynting flux to the unsigned surface magnetic flux and the total heating in Eqs. (5.18)
and (5.19), with γ=1/Γ in Eq. (5.19). This results in the analytic scaling (based on RTV)
of

LRTV
X ∝ Φm′ with m′ = 3.38 ± 0.91. (5.27)

This is overplotted onto the results from the numerical experiments in Fig. 5.9 as a blue
line. We conclude that this power-law index is in good agreement with the value we
obtained from the numerical models, see Eq. (5.22) and Fig. 5.9.

Just as for the comparison to the RTV scalings in Sect. 5.6.2, also here it is not suffi-
cient to find a match of the power law index, but also the absolute values of the derived
X-ray emission have to be of the same order for a good match. To get the constant of pro-
portionality in Eq. (5.27), we have to assign a volume of the emitting structure described
in the analytical scaling. For the comparison to our numerical model we thus assign the
volume of the loop(s) dominating the coronal emission. Using the loops in Fig. 5.2 as a
guideline, these have a length and a radius of about L≈30 Mm and r≈2.5 Mm. With the
volume of V = πR2L we then find the total X-ray radiation from the loops based on the
(RTV) scaling relations of LRTV

X . Within an order of magnitude these match what we find
in the numerical study. The deviation is mainly because of the factor of about 3 difference
in density (cf Sect. 5.6.2) which enters the emission quadratically.

5.6.5 X-ray and EUV emission versus coronal energy input
Common sense suggests that a higher energy input into the corona should result in a
higher X-ray emission. Indeed, this is what we find in Fig. 5.10a. However, we find
an almost quadratic relationship, 〈LX〉 ∝ 〈Htot〉

1.8, cf. Eq. (5.24). This non-linearity is
counter-intuitive: Assuming that the plasma in our numerical model has reached a relaxed
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state, then whatever energy reaches the corona should be radiated away as X-ray emission
(i.e., naively, we would expect a linear dependence).

This (roughly) quadratic relation can be understood when going back to the RTV
scalings. The X-ray emission is given by LX ∝ n2 RX. Combining this with the fit to the
X-ray response function in Eq. (5.26) and the RTV scaling relations Eqs. (5.1) and (5.2)
provides the analytical scaling for the X-ray emission with (average) coronal heat input,

LRTV
X ∝ 〈Htot〉

q′ with q′ = 1.74 ± 0.58. (5.28)

This is shown in comparison to the results from the numerical model in Fig. 5.10a as a
blue line. As before, we assumed a constant loop length, because the active region size is
the same for all the numerical experiments.

This consideration provides an understanding of the non-linear relation between X-
ray output and heat input. In the corona the energy input will be only partly balanced by
the X-ray output (also heat conduction, a wind outflow and radiation at other wavelengths
will play a role). Because the X-ray output shows a non-linear temperature dependence,
naturally, it will also be connected in a non-linear fashion to the heat input. The simple
RTV scaling relations together with the temperature response of X-ray emission give rise
to the roughly quadratic dependence of X-rays on heat input.

The situation changes when investigating another wavelength region, which essen-
tially implies to probe a different temperature range. For this we use the channel as seen
by AIA at 171 Å. The EUV emission in this band is mostly originating from temperatures
around 1 MK (cf. Fig. 5.3). If we apply the same analysis as for the X-ray emission, the
numerical experiments show an almost linear scaling with heat input, 〈LEUV〉 ∝ 〈Htot〉

1.1,
see Fig. 5.10b. The reason this relation is less steep than for the X-rays is because of the
different temperature response in the EUV.

The response in the EUV cannot be simply approximated by a power law (see Fig. 5.3).
However, over the temperature range of most our models, as a very rough zeroth order
approximation we could assume the response in the EUV channel to be constant. This
would be consistent with the power-law index for the response function, i.e. α in Eq. (5.4),
to be zero. Following the above procedure for the X-rays, in analogy to Eq. (5.28) we
would find LRTV

EUV ∝ 〈Htot〉
1.14 for the EUV emission. This result compares well with the

numerical experiments (cf. Fig. 5.10b), but certainly it has to be taken cum grano salis,
which is because of our very rough assumption of α=0. This is why we do not overplot
an analytical approximation in Fig. 5.10b as we did for the other scaling relations. Still,
this consideration underlines the importance of the temperature response for establishing
a relationship between coronal emission and heat input.

5.6.6 Relating the X-rays the EUV emission
Finally, we briefly investigate the scaling relation between the X-ray and the EUV emis-
sion. Solar and stellar studies have addressed the relation between the radiative fluxes in
different wavelength bands, also called flux-flux-relations. One prominent example is the
relation between the coronal X-ray radiative flux and the radiance in the chromospheric
CaII line with FX ∝ (FCa II)1.67 (e.g. Schrijver 1983). Power-law relations have also been
derived with other chromospheric and transition region lines, e.g. MgII, SiII, CII, and
CIV (Schrijver 1987). The higher the temperature in the source region of the emission,
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Figure 5.11: Scaling of averages of X-ray emission 〈LX〉 with EUV emission 〈LEUV〉 for
model runs listed in Table 5.1. The bars represent the standard deviation of LX in time.
The red line is a power-law fits to the data. See Sect. 5.6.6

the steeper the power-law relation of the respective line to the surface magnetic field (e.g.
Testa et al. 2015). This implies that the relation of 〈LX〉 vs. 〈LEUV〉 is less steep than the
relation of X-rays to CaII.

In the numerical models we find that the relation between X-rays and the 1 MK EUV
emission follows a power law with about 〈LX〉 ∝ 〈LEUV〉

1.3, see Fig. 5.11. This is also
consistent with other numerical studies (see e.g. Warnecke and Peter 2019b, their Fig.
10b). So indeed, as expected, it is less steep than X-rays to CaII with a power-law index
about 1.7.

Our numerical models are not realistic enough when it comes to the cooler parts of
the atmosphere, in the transition region around 105 K and the in particular in the cooler
chromosphere. Still we see the right trend for the flux-flux relations and it will be left for
future more realistic models to fully explore the flux-flux relations.

5.7 Conclusions

We performed a series of 3D MHD numerical simulations of active regions. With this we
address the question how the (X-ray) emission from stellar coronae scales with the surface
magnetic flux. Observationally this power-law scaling LX ∝ Φm is well established with
the most recent studies giving power-law indices m in the range of below 2 to almost 3.
(Vidotto et al. 2014; Kochukhov et al. 2020). So far, the physical basis for this relation is
poorly understood in terms of (numerical) models.

For our model series we assumed that the area covered by the active region remains
the same, and we changed the peak (or average) vertical field strength B to change the
(unsigned) magnetic flux at the surface by a factor of 20. This resulted in a change of
the X-ray emission by more than four orders of magnitude. The scaling we found in our
numerical experiments is a power law with an index m ≈ 3.4, i.e. a bit steeper than found
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in observations. As we discussed in Sect. 5.6.3, this difference can be understood if on
the real star there are not only active regions with higher magnetic flux (but the same
area), but if there is also a larger filling factor of active regions, or in other words a larger
number of active regions.

The results of our numerical experiments are consistent with an analytical scaling
model (Zhuleku et al. 2020). This is based on the RTV scaling laws connecting the tem-
perature and density to the heating rate and size of the coronal structure and the tempera-
ture response of the wavelength band the observations are performed. With this we have
a clear understanding how and why the radiative X-ray output changes in a non-linear
fashion in response to the heat input, and hence the surface magnetic flux.

In our numerical model we choose the specific approach to increase the surface mag-
netic flux by increasing the field strength. This is motivated by the very high field
strengths seen on active M dwarfs of up to 8 kG on average (e.g. Reiners 2012). The
average being so large suggests that the highest field strengths on these stars could be
even higher, maybe consistent with our model. Still, to investigate further possibilities
we will study the response of the coronal emission to an increase of the magnetic flux by
increasing the area of the active region(s) in a future project.

Of course our models for individual active regions cannot be expected to fully account
for all aspects of the scaling of coronal emission with (unsigned) surface magnetic flux.
Still, our approach indicates a way to understand the excessive increase of the observed
X-ray emission by 4 orders of magnitude from solar-type activity to fast rotating active
stars (by e.g. Pizzolato et al. 2003; Vidotto et al. 2014).
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6 Influence of the size of the active
region on the coronal X-ray emission

*Chapter 6 follows the paper Influence of the size of the active region on the coronal X-ray
emission by J. Zhuleku, J. Warnecke and H. Peter. This paper is in preparation and it will
be submitted in spring of 2021. I performed all the simulations, analysed and interpreted
the data and wrote the first draft of the paper.

6.1 Introduction
Stars more active than the Sun are observed to have a much higher coronal X-ray emission,
even a thousand times higher than the Sun. The high level of X-ray emission observed on
active stars depends on age and thus on the rotation rate (Pizzolato et al. 2003). A higher
rotation rate is responsible for a more efficient dynamo action which produces a higher
heat input and provides the necessary energy to heat the corona to high temperature. As
a reference, the solar corona could reach roughly 10 MK, whereas the more active stars
could reach even higher temperatures. Because of these high temperatures, stars exhibit a
strong X-ray emission which can be used as a diagnostic to study the stellar coronae.

The main focus of this chapter is the study of the relationship between the coronal
X-ray emission LX and the surface magnetic flux Φ. This relationship is found to follow
a well-known power-law, LX ∝ Φm. Older studies found the power-law index m to be
close to unity (Fisher et al. 1998; Pevtsov et al. 2003). More recent studies, on the other
hand, place this index to larger values. More precisely, Vidotto et al. (2014), studying
a sample of stars more active than the Sun, found this index to be almost quadratic (i.e.
m = 1.8). Furthermore, Kochukhov et al. (2020) using a sample of G type stars but more
active than our Sun found this index to be even steeper (i.e. m = 2.68). The wide range
of the power-law index m found in observations is indicative of our poor understanding
of this relation.

The LX ∝ Φm relation can be modeled as described in Zhuleku et al. (2020). In that
study, we found that using the RTV scaling laws (Rosner et al. 1978) along with other
relations can lead to a single analytic expression relating the X-ray emission LX to the
surface magnetic flux Φ. We found that mainly three parameters have a significant effect
on the power-law index m. The first two parameters (namely α and β) are related to
the instruments temperature response function and the heating mechanism responsible
for the coronal heating (for more details see Zhuleku et al. 2020). The last parameter
characterizes the amount of surface area A of a star or the Sun covered by a magnetic
field (e.g. active region). It is parameterized by the parameter δ and it also follows a
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Table 6.1: Summary of the numerical runs. The second column represents the size of the
numerical box. Third column indicates the resolution of each run. Φ is the total surface
unsigned magnetic flux.

Run Volume [Mm3] Resolution (grid points) Φ [Mx]
R25 25x25x25 64x64x64 9.4 × 1020

R50 50x50x50 128x128x128 3.7 × 1021

R75 75x75x75 192x192x192 8.1 × 1021

R100 100x100x100 256x256x256 1.5 × 1022

R200 200x200x200 512x512x512 6.0 × 1022

power-law A ∝ Φδ. Solar and stellar studies suggest δ = 0.82. The value of δ is essential
for understanding how the power-law index m varies for other stars.

For stars where their entire surface is covered with a magnetic field implies that δ =

0. Therefore, to increase the surface magnetic flux, the star has to increase the overall
strength of the surface magnetic field while the surface area remains unchanged. Our
analytical model suggests a steep value for the power-law index m which contradicts
some of the earlier observational studies. To test this particular behavior using realistic
numerical models, we presented in Chap. 5 a series of 3D MHD simulations for the case
of δ = 0. The magnetic activity was increased by increasing the strength of the vertical
surface magnetic field Bz at the photosphere. We showed that the power-law index m is
steep compared to observations (see e.g. Fisher et al. 1998; Pevtsov et al. 2003). However,
the results are in good agreement with the theoretical predictions proposed by Zhuleku
et al. (2020). We suggest that stars change not only the peak strength of the surface
magnetic field but also the number of active regions. Along with the recent studies of
Vidotto et al. (2014), and Kochukhov et al. (2020) our results can explain the increase of
the X-ray emission found in more active stars than the Sun.

In this work, we examine the other extreme case (i.e. δ = 1). For this case, we
again perform a series of 3D MHD numerical simulations. The size of the numerical box
increases, covering a larger surface area while the absolute value of the surface magnetic
field is kept constant. This will lead to an increase in the overall surface magnetic flux.
For the rest of the chapter, we concentrate on the effect of the surface magnetic field
distribution on coronal emission and coronal heating. In the end, we discuss scaling
relations of the coronal X-ray emission as a function of the surface magnetic flux and
how it compares with our analytical model and observations.

6.2 Setup
In this chapter, we investigate how the change in the horizontal spatial distribution of the
surface magnetic field affects coronal X-ray emission. To study that, we scale the size of
the numerical box by a constant factor to increase the surface area of the active region.
This leads to an overall increase of the total surface unsigned magnetic flux Φ. The peak
strength of the magnetic field is kept constant at 5 kG. Therefore, the surface magnetic
flux is proportional to the surface area Φ ∝ A. We perform a series of five numerical
experiments. The first run, R25, represents a small active region inside a computational
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domain covering an area of 25x25 Mm2. The last run, R200, represents a large active
region inside a computational domain of a 200x200 Mm2 (see Table 6.1). A change in the
size of the numerical box increases the length of the coronal loops. That is to be expected
since the increase of the computational box drags the opposite magnetic polarities of the
active region further apart. The vertical extent of the numerical boxes for all the runs
listed in Table 6.1 is increased by the same constant as in the horizontal direction.

The basic numerical setup is similar to the simulations presented in Chap. 5. Here
we give a brief description of the model. The solar and stellar atmosphere is modeled
in a 3D Cartesian box from the photosphere to the corona. For the numerical simula-
tions, we use the solar coronal model based on Bingert and Peter (2011). We use the
Pencil Code (Brandenburg et al. 2020) to solve the 3D MHD equations, namely the con-
tinuity, momentum, energy, and induction equations from the photosphere to the corona
(see Chap. 4). As a photospheric boundary condition for the vertical component of the
magnetic field, we include an observed magnetogram of a solar active region (see Fig.1
of Chap. 5). A prescribed photospheric driver implemented at the bottom boundary will
shuffle the magnetic footpoints of the active region. The photospheric driver mimics well
the observed granular motion of the Sun (Gudiksen and Nordlund 2002; Bingert and Peter
2011). The coronal heating is provided by Ohmic dissipation of the induced currents due
to the braided magnetic field lines. The energy will be radiated away through an optically
thin radiative function. We furthermore include a realistic Spitzer heat conduction along
the magnetic field lines (see also Chap. 4). The viscosity ν and resistivity η are set to con-
stant values through the whole box and are only reduced at the few grid points near the
bottom boundary. To speed-up the simulations, a non-Fourier heat flux scheme together
with the Boris correction is implemented in the model (see Warnecke and Bingert 2020,
and Chap. 4). The boundary, initial conditions, and all the physical parameters are similar
to the ones used in Chap. 5 and a detailed description is discussed by Bingert and Peter
(2011) and Warnecke and Bingert (2020). Finally, to keep the grid resolution of 390 km,
we scale the number of grid points in the same way as we scale the size of the numerical
box. That would mean that if we double the size of the box, we also double the number
of grid points.

6.3 Results

6.3.1 Synthetic coronal emission and temporal evolution

Coronal loops are considered to play an important role in the heating of the solar and
stellar corona. Coronal loops in our Sun have been directly observed. However for other
stars, this is not possible. Observations of stellar flares have shown that typical stellar
loops can vary in length, and they can reach up to solar radius (Getman et al. 2008).
Because of the high plasma temperature located in coronal loops, we observe them in the
extreme ultraviolet (EUV) and X-ray regime. To synthesize the EUV emission from our
numerical model we use the 171 Å channel of the Atmospheric Imaging Assembly (AIA;
Lemen et al. 2012) onboard the Solar Dynamic Observatory (SDO; Pesnell et al. 2012).
As in Chap. 5, for the X-ray emission we use the Al-poly filter of the X-ray telescope
(XRT; Golub et al. 2007b) onboard the Hinode (Kosugi et al. 2007).

99



6 Influence of the size of the active region on the coronal X-ray emission

10 20 30 40

 x [Mm]

0

10

20

30

40

 z
 [

M
m

]

R50

20 40 60 80

 x [Mm]

0

20

40

60

80

R100

50 100 150

 x [Mm]

0

50

100

150

200
R200

10 20 30 40

 x [Mm]

0

10

20

30

40

 z
 [

M
m

]

20 40 60 80

 x [Mm]

0

20

40

60

80

50 100 150

 x [Mm]

0

50

100

150

200

10 20 30 40

 x [Mm]

10

20

30

40

 y
 [

M
m

]

20 40 60 80

 x [Mm]

20

40

60

80

50 100 150

 x [Mm]

50

100

150

Figure 6.1: Synthetic EUV and X-ray emission for the runs R50, R100 and R200. The
first row shows the synthesized EUV emission integrated in the y-direction, as it would
have been observed from the AIA instrument for the 171 Å channel. The second and third
row show the integrated synthetic X-ray emission in the y and z direction respectively, as
it would have been observed by the Al-poly filter of the XRT onboard Hinode. Both the
EUV and X-ray emission are averaged in time during the relaxed phase. Each plot is
scaled with the maximum EUV or X-ray emission respectively. For the larger box size
coronal loops increase in length.
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Figure 6.2: Time evolution of coronal EUV and X-ray emission. a) Total integrated X-ray
emission over time for all the runs seen in Table 6.1. b) Total integrated EUV emission
corresponding to the AIA 171 channel over time for all the runs. The vertical dashed lines
indicate the relaxed phase used for the temporal averages.

As we discussed in Chap. 3 and Chap. 5, the optically thin radiation is proportional to
electrons density squared times the temperature response function R(T ). The temperature
response function can be calculated both for the 171 Å channel and the Al-poly of XRT,
using the routines of the Chianti database (Dere et al. 1997, 2019). After calculating the
X-ray and EUV radiation at each grid point, we integrate along the y-direction to get a
side view. That can be considered as a near-the-limb observation. Similarly, we integrate
along the z-direction to get a top view. That would correspond to a disk center observation.
Both the side and top view as synthesized from our model is shown in Fig. 6.1 for the runs
R50, R100, R200. Each plot depicted in Fig. 6.1 is scaled with the maximum value of the
EUV or X-ray emission. For the larger numerical boxes, the EUV and X-ray emission
increases indicating a connection to the amount of surface magnetic flux each run host at
the bottom boundary. As we approach the upper part of the corona, the magnetic field is
weak. Hence, we observe a diffused emission. All three runs show bright loops in EUV
and X-ray. The difference lies in the length of each loop. The average length of coronal
loops in the R200 is on the order of 80 Mm that is significantly larger than the average
length of 20 Mm found in R50.

As a next step, we study the temporal variation of the coronal emission. That is an
important step since the quantities studied in scaling relations might vary significantly in
time, especially during the initial stages of the simulations. Hence, to properly analyze our
data, we have to choose an appropriate time frame. The time range where these quantities
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Figure 6.3: Horizontally averaged profile of temperature and density. a) Horizontal aver-
age temperature as a function of height for each run. b) Horizontal density as a function of
height for each run. The colors show the different runs. Both quantities are also averaged
in time over the relaxed phase (see Sect. 6.3.1).

show the least temporal variation, compared to an average value, can be considered as the
relaxed phase of our simulations. In Fig. 6.2 it is illustrated the temporal evolution of the
coronal X-ray emission and the EUV emission for all the runs listed in Table 6.1. The
X-ray and EUV emission in the corona is integrated into the whole computational box.
One important aspect we notice here is the connection between magnetic activity and
coronal emission. The larger box size, hosting a higher amount of surface magnetic flux,
shows a much brighter X-ray and EUV corona than the smaller box sizes. The increase is
non-linear, and the implications are discussed in Sect. 6.3.6.

The initial phase determines the cooling phase of our simulations. The duration of
that phase depends on the strength of the coronal activity. For the R25 (see black solid
line Fig. 6.2) run, since it hosts the least amount of surface magnetic flux, the coronal
temperature is too low to sustain a hot corona. Therefore, the cooling time will be much
shorter than the other more active runs. The temporal evolution of the coronal emission
shows a minimal time variability for the range from t=220 min to t=300 min indicated by
the dashed vertical dashed lines. We consider, for that specific time frame, the simulations
to have reached a relaxed phase. The analysis following next will be concentrated at the
relaxed phase, hence for the time 220 min to 300 min.

6.3.2 Coronal temperature and density

The temperature and density stratification over height provide insight into the ability of
our model to create a hot corona. In this section, we show horizontally averaged profiles
of temperature T and density ρ. Both quantities are also averaged in time over the relaxed
phase. The time interval is chosen appropriately so that the horizontally averaged quanti-
ties show minimal variability compared to an average value (see Sect. 6.3.1 and Fig. 6.2).
By increasing the size of the box, we allow energy to be deposited in a larger volume.
That will lead to an overall increase in the coronal temperature. The average stratification
of T and ρ are depicted in Fig. 6.3. Almost all the runs can self-consistently form a hot
corona (see Fig. 6.3a). Therefore, the size of the numerical box affects the average coronal
temperature. The values for temperature shown in Fig. 6.3a are average values, and thus
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peak temperature in the coronal part of our computational domain is much higher. The
smallest box size, R25, does not manage to reach a high coronal temperature. That is to
be expected considering the low surface magnetic flux of this specific run. On the other
hand, the averaged density ρ (see Fig. 6.3b) shows only a slight increase mainly at the low
corona, but there is no clear distinction between the runs as in the temperature profile.

To understand the reasons behind this particular behavior in temperature and density,
we have to go back to the RTV scaling laws. As we mentioned in Chap. 2 the RTV scaling
laws are an outcome of a 1D hydrostatic coronal loop model. They provide a simple way
to relate the coronal temperature and density with the pressure and loop length. Alterna-
tively, it can be written in such a way that to relate the temperature T and density ρ with
the heating rate H and the loop length L (see e.g. Zhuleku et al. 2020),

T ∝ H2/7L4/7

n ∝ H4/7L1/7.
(6.1)

Since the strength of the magnetic field is kept constant, so is the amount of energy per
unit volume in the corona. In other words, the volumetric heating rate H does not depend
on the size of the numerical box, and it will be the same for each run. Consequently, the
difference in temperature and density is solely because of the change in the loop length
L. As a result, if the loop length doubles in size, the temperature increases by a factor
of 24/7 ' 1.5. On the other hand, the difference in density will only be 21/7 ' 1.1. That
explains why the change in density is insignificant for each run.

6.3.3 Coronal heating
In our model, the heating is provided by the currents that are induced by the random pho-
tospheric motion (see nanoflare model by Parker 1972). That is known as Joule heating.
To understand how the Joule heating affects the coronal heating in the current experiments
of this chapter, we need to think about how the uniform rescaling of the computational
box changes the amount of energy injected in the corona. Since the strength of the verti-
cal photospheric magnetic field is constant, the (volumetric) Ohmic heating rate H should
be the same for all the runs listed in Table 6.1. However, the total coronal heating Hth

tot
deposited in the corona increases proportionally to the size of the box. Theoretically, this
implies that the total coronal heating Hth

tot in each run is related to the total volume V ,

Hth
tot ∝ V. (6.2)

Since all the numerical boxes are chosen to be cubes, that would mean that the volume is
V = D3. The previous equation can therefore be written as,

Hth
tot ∝ D3. (6.3)

In our case, the numerical boxes are scaled uniformly. That means that the choice of
a length scale is not important. We choose the length scale D to be represented by the
separation length between the two opposite magnetic polarities of the active region.

As a next step, we investigate the Eq. (6.3) from our numerical runs. For each of the
experiments, we determine the separation distance D of the two magnetic polarities, and
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Figure 6.4: Scaling of total coronal heating 〈Htot〉 as a function of the surface magnetic
flux Φ and the separation distance D. Each point represents one of the runs with the differ-
ent spatial size listed in Table 6.1. Quantities are also averaged in time during the relaxed
phase of the simulations (see Sect. 6.3.1). The bars represent the standard deviation of
the total coronal heating 〈Htot〉 in time. Red solid line are power-law fits to the five data
points.

we calculate the average total coronal heating 〈Htot〉 inside the coronal volume. The coro-
nal volume is determined as the volume above the height where the horizontally averaged
temperature is 0.1 MK, similar to what we did in Chap. 5. The 〈Htot〉 is also averaged in
time during the relaxed phase. In Fig. 6.4b we depict the scaling plot of the averaged total
coronal heating 〈Htot〉 as a function of the magnetic polarity separation distance D. Each
data point represents an average value for the total coronal heating for each run listed in
Table 6.1. A power-law fit to the data yields

〈Htot〉 ∝ Dq with q = 3.21 ± 1.30 (6.4)

Considering the uncertainties, this agrees well with what is expected from Eq. (6.3). In
Sect. 6.3.5, we discuss an alternative way to understand Eq. (6.3).

Finally, we relate the total coronal heating to the amount of surface magnetic flux for
each experiment. For that, we need to estimate the coronal loop length. The overall coro-
nal loop length is proportional to the distance D. From our problem setup, we determine
the distance D to be related to the square root of the area A,

D ∝ A1/2. (6.5)

Substituting this relation to Eq. (6.3) yields,

Hth
tot ∝ A3/2. (6.6)

The increase of the surface magnetic flux is proportional to the surface area. Therefore,
Φ ∝ A,
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Figure 6.5: Exponential decay of the magnetic field squared B2. Solid lines show the hor-
izontal and temporal average profile of 〈B2〉 normalised by the value B2

0 at the surface(i.e.
for z = 0). The dashed line show an exponential fit to the 〈B2〉 profile with the individual
scale heights for each run, listed in Table 6.1, indicated in the legend.

Hth
tot ∝ Φ3/2. (6.7)

In Fig. 6.4a we show the scaling relation between the averaged total coronal heating 〈Htot〉

and the surface magnetic flux Φ. A power-law fit to the data points yield,

〈Htot〉 ∝ Φp with p = 1.62 ± 0.05 (6.8)

To conclude, our numerical experiments behave according to what is expected from our
simple theoretical estimations from Eq. (6.3) and Eq. (6.7).

6.3.4 Exponential decay of the magnetic field

The increase of the coronal magnetic energy can be interpreted as a result of the increase
in the separation length between the two polarities of the active region. Once we scale
the size of the box, we also increase the length between the two magnetic polarities.
The increase of the separation length between the two polarities will change the overall
configuration and behavior of the magnetic field.

The determination of the magnetic field poses a serious challenge in our attempt to
model the magnetic field distribution in the solar and stellar atmosphere. In general,
observations can only provide us with values of the photospheric magnetic field. Based
on that we can construct numerical routines to extrapolate the magnetic field in the whole
computational domain. For the steady-state case, to determine the magnetic field, we need
to find solutions for the two Maxwell equations,

∇ × B = j,
∇ · B = 0.

(6.9)

105



6 Influence of the size of the active region on the coronal X-ray emission

That is a boundary value problem, but to fully solve the above equations, we also need
an additional assumption on the electric currents at the photosphere. This is in general
very challenging and most studies use a force-free approximation (i.e. j = αB) (see e.g.
Alissandrakis 1981; Gary 1989). In general, for the coronal plasma to be force-free, the
plasma β has to be much smaller than unity. However, this is not always the case in the
corona (Peter et al. 2015). Finally, the constant α might vary in space and the problem
becomes much more complicated (see e.g. Heyvaerts et al. 1979; Sakurai 1979).

In our model, we simplify the process even further. We assume the electric currents
to vanish at the photosphere and corona (i.e. j = 0) and seek potential field solutions. We
choose the z-axis to be perpendicular to the surface plane. The boundary conditions are
specified at the solar photosphere for z = 0. We want to find the magnetic field for z > 0
extending up to the corona, which solves Eq. (6.9) and also satisfies the given boundary
conditions. An easy and fast approach to solve the problem is to work in Fourier space.
In this case, Eq. (6.9) following Bracewell (1965) transform to,

ikyB̂z − ∂zB̂y = 0

∂zB̂x − ikxB̂z = 0

ikxB̂y − ikyB̂x = 0

kxB̂x + kyB̂y + ∂zB̂z = 0.

(6.10)

Here we consider the B̂x(kx, ky, z), B̂y(kx, ky, z), B̂z(kx, ky, z) to represent the components of
the magnetic field in Fourier space. Furthermore, kx and ky are the horizontal wavenum-
bers. In addition, we assume a priori solutions that satisfy the boundary conditions. The
vertical Fourier component of the magnetic field decays exponentially with height,

B̂z(kx, ky, z) = e−kzB̂z(kx, ky, z = 0). (6.11)

The general solution of Eq. (6.10) can be specified when the determinant of the coeffi-
cients vanish. This will determine the value of k2 = k2

x + k2
y . To calculate the components

of the magnetic field in real space, we use the inverse Fourier transform, which provides
our final solutions,

B(x, y, z) =

∫ ∞

−∞

∫ ∞

−∞

Ĝ(kx, ky, z)B̂(kx, ky, z = 0)dkxdky. (6.12)

Here G can also be considered to represent the Green function which solves Eq. (6.9).
Where the components of the Ĝ are,

Ĝx = −i
kx

k
e−kz

Ĝy = −i
ky

k
e−kz

Ĝz = e−kz.

(6.13)

We find in our numerical models that the square of the magnetic field B2 in the corona
drops as an exponential,
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B2 = B2
0(x, y)e−k(z−z′), (6.14)

where B2
0(x, y) is the magnetic field at height z = z′. z′ denotes the base of the corona,

and k is related to the scale height of the exponential drop of the magnetic field. More
precisely, k is inversely proportional to the scale height λ (i.e. k = 1/λ). That is an
outcome of the potential field solutions we have in our model. The scale height λ is
proportional to the separation length D. The wavenumber, as mentioned, is defined as,
k =

√
k2

x + k2
y , where k = 1/λ and the horizontal wavenumbers kx = 2π/D and ky = 2π/L.

Since the length scales of the numerical box L and the separation distance of the opposite
polarities D are proportional to each other, the scale height λ is also proportional to D
(i.e. λ ∝ D). We conclude that the large-scale magnetic field in the corona is close to
a potential field. In Fig. 6.5 we show the horizontal average decrease of the magnetic
field squared B2 for each run. We find that for all runs, the coronal magnetic field drops
exponentially. The scale height for each run scales in the same way as the numerical box.
If the physical size of the box doubles, the scale height λ also doubles.

6.3.5 Coronal heating problem revisited
The dissipation of the magnetic energy to thermal is a fundamental process to the coronal
heating problem. In Sect. 6.3.3, based on simple power-law estimations, we found that
Hth

tot ∝ D3. Here Hth
tot represents the total coronal heating and D defines the typical length

scale in our model. In this section, we revisit the total coronal heating problem based on
first principles.

The thermal energy is deposited in the corona through the Ohmic dissipation of the
currents. The currents are induced by the random photospheric motion similar to the
model of fieldline braiding (Parker 1972). To calculate the total heating deposited in the
corona we integrate the Ohmic heating rate ηµ0 j2 inside the coronal volume. The coronal
volume is defined in Sect. 6.3.3. We calculate the total coronal heating,

Htot =

∫
cor
ηµ0 j2dV =

∫
cor
ηµ0a2B2dV, (6.15)

where we assumed that in the corona the force free approximation holds therefore | j| =
a|B|(see e.g. Gudiksen and Nordlund 2005b). By having an exact analytical function for
the magnetic field, the integral in Eq. (6.15) can be calculated analytically. As described
in Eq. (6.14), the B2 in the coronal part of our computational domain decreases exponen-
tially with a scale height λ. The scale height λ increases as we increase the size of our
computational domain. As a result, Eq. (6.15) can be expressed as,

Htot =

∫ D

0

∫ D

0
ηµ0a2B2

0(x, y)dxdy︸                             ︷︷                             ︸
∝D2

∫ ∞

z′
e−

(z−z′)
λ dz.︸          ︷︷          ︸

=λ∝D

(6.16)

The first double integral represents a surface integral. This double integral is associated
with the horizontal average magnetic field at the coronal base (i.e. z = z′). Thus, it will be
proportional to the area (or ∝ D2). In addition, the last integral can be solved analytically.
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Figure 6.6: Scaling plot of total coronal X-ray emission as a function of unsigned surface
magnetic flux Φ normalised with the reference run R25. Each cross represents on of
the numerical runs listed in Table 6.1. The X-ray emission is averaged also in time over
the relaxed phase of the simulations (see Sect. 6.3.1). The error bars show the standard
deviation in time. Red line show a power-law fit to the data points.

For an upper limit of the integral, we have two choices. The first natural choice is the
height of the computational box L, where L, depending on the model can reach up to
200 Mm. However, the bright coronal loops are located at heights that are much smaller
compared to the height of the computational box L (see the side view of Fig. 6.1). That
leads us to the second choice. We use as an upper limit of the integral to be infinity. As
a result, the solution of the last integral is λ. Since the size of the computational box is
scaled uniformly in all directions, then the scale height λ is proportional to the polarity
separation length D. Therefore, the final result is that the total coronal heating reads,

Htot ∝ D3. (6.17)

Our analytical approach is in good agreement with what we expect based on the simple
power-law relations discussed in Sect. 6.3.3 and our numerical models. Overall, we con-
clude that the coronal magnetic field being close to potential is the fundamental reason
why the coronal heating Htot scales with D3.

6.3.6 Coronal X-ray emission
The most interesting result of this chapter is the relationship between the total integrated
coronal X-ray emission and the surface magnetic flux. That can have an implication to the
stellar observations, as discussed in Chap. 5. As the physical size of each box increases,
so is the total amount of magnetic energy deposited in the corona. As it is illustrated in
the temporal evolution Fig. 6.2, the runs with large active regions exhibit a much higher
coronal emission compared to the runs with smaller active regions. That indicates the
coronal emission being affected by the amount of surface magnetic flux of each active
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region. To quantify that, we show a scaling plot of the total coronal X-ray emission as a
function of the total unsigned surface magnetic flux (see Fig. 6.6). The X-ray emission is
integrated into the whole computational domain and averaged in time during the relaxed
phase of the simulations. Fig. 6.6 shows a clear non-linear increasing trend of the averaged
coronal X-ray emission 〈LX〉 for higher surface magnetic flux Φ. A power-law fit to the
data yields,

〈LX〉 ∝ Φm with m = 2.23 ± 0.06 (6.18)

To understand the above scaling relations, we develop an analytical expression based
on the RTV scaling laws in a similar way as in Zhuleku et al. (2020). The optical thin
X-ray radiation FX is proportional the plasma density squared n times the function R(T ),

FX = n2R(T ), (6.19)

where FX here has units of energy per volume (i.e. [W/m3]). The function R(T ) is also
known as the temperature response function, and it differs from one instrument to another.
A detailed explanation can be found in the work of Zhuleku et al. (2020), where it is shown
that that the function R(T ) for different X-ray instruments can be well approximated as a
power-law R(T ) ∝ Tα, for temperatures below log10(T [K]) = 7. Using the well known
RTV scaling laws (i.e. T ∝ H2/7L4/7, n ∝ H4/7L1/7), we can write the X-ray emission FX

as,

FX ∝ Lp with p = 2
(2α + 1

7

)
. (6.20)

In this case, the heating rate H has no dependence on the surface magnetic flux. Thus, we
ignore it in our analysis. Substituting Eq. (6.5) we get,

FX ∝ Φq with q =
2α + 1

7
. (6.21)

As a next step, we write the X-ray emission as a function of the surface magnetic flux.
To calculate the theoretical X-ray emission, Lth

X of the Sun or a star, it has to be integrated
into the whole volume V = L3,

Lth
X = FXV = FXL3. (6.22)

Substituting Eq. (6.5) and Eq. (6.21) yields our final result,

Lth
X ∝ Φm′ with m′ =

4α + 23
14

. (6.23)

Interestingly, the result from our analytical approach only depends on the instrument used
for the observations. For the XRT instrument onboard Hinode we use α = 2.1, thus,
m′ = 2.24 ± 0.75 which is very close to the value we get from our numerical experiments
m = 2.23 ± 0.06. The latter one is shown as a red line in Fig. 6.6.
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6.4 Conclusion
In this chapter, we performed a number of 3D MHD simulations of active regions. Our
goal was to study how the coronal X-ray emission changes with the surface magnetic
flux. This relation was found from observations to follow a power-law, LX ∝ Φm, where
the power-law index m is found to be in the range from one to three (Fisher et al. 1998;
Pevtsov et al. 2003; Vidotto et al. 2014; Kochukhov et al. 2020). The reasons behind this
relationship are still under debate.

To increase the surface unsigned magnetic flux, we increase the surface area covered
by the active region while the peak surface magnetic field strength is constant. We start
by a small active region inside a computational domain of 25x25 Mm2, and we span to
a large active region inside a computational domain of 200x200 Mm2. By following this
approach, we allow energy to be deposited in a larger coronal volume increasing the X-ray
emission. We found the X-ray emission to follow a power-law with a power-law index
m = 2.2.

Based on the RTV scaling laws, we derived an analytic expression of the X-ray emis-
sion (see Eq. (6.23)) similar to the approach we follow in Zhuleku et al. (2020). We found
that the power-law index m of the X-ray emission will only depend on the instrument used
for the X-ray observations. The results of our numerical experiments agree well with our
analytical approach. Thus we can explain why the power-law index m is almost quadratic
(i.e. m = 2.2).

The linear relation of LX ∝ Φ reported by Fisher et al. (1998) or, Pevtsov et al. (2003)
can be explained by an increase of the number of active regions. If a star like our Sun,
which has low activity, doubles the number of active regions, then the overall coronal X-
ray emission and surface magnetic flux are also expected to double. Stars more active than
the Sun that have filled their entire surface with magnetic field will not have additional
space to fit more active regions. In that case, the peak surface magnetic field strength
of each active region has to increase. For this case we showed that steep power-law of
m = 3.4 is expected (see Chap. 5). In the alternative case, considering active regions with
a constant surface magnetic field but different surface sizes, we showed that the power-
law index m = 2.2 is less steep. This result is closer to the recent studies of Vidotto
et al. (2014); Kochukhov et al. (2020) but is a bit steeper than linear that is expected from
numerous alternative studies.

In conclusion, a star should not only increase the peak vertical surface magnetic field
but also its surface distribution (i.e. more active regions or bigger active regions). This
mixture of the two approaches studied in this thesis could explain the overestimation
of the power-law index. Overall, the results we find in this chapter and in Chap. 5 can
explain the coronal X-ray increase with the surface magnetic flux for stars. Future studies
can employ, for example, global scale simulations of an entire surface of a star to fully
understand the coronal X-ray emission dependence on the surface magnetic flux.
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7 Conclusion and Discussion

In this work, we study the impact of the surface magnetic flux Φ of the Sun or a star on the
coronal X-ray emission LX. Numerous observational studies have found this relationship
to follow a power law of LX ∝ Φm. The power-law index m is found from observations
to be in the range from one to almost three. Currently, there is no definite explanation
of why the stellar X-ray emission increases as a power-law with the surface magnetic
flux and why the observed index m varies. Understanding this relationship is important
because it can, for example, explain the mechanism responsible for the heating of the
corona of the Sun and the stars. To investigate this relationship, we develop an analytical
model based on simple scaling laws, and we perform two parameter studies using 3D
MHD simulations of stellar coronae above active regions.

Based on the RTV scaling laws together with the instrumental dependence on temper-
ature, we find an analytical expression for the LX ∝ Φm. We find the index m to depend
on a few key parameters. First of all, it depends on the temperature response of the X-ray
instrument used for observations, parameterized by the parameter α (see Chap. 3). Fur-
thermore, the heating mechanism, parameterized by the parameter β, equally contributes
to the index m. Finally, there is also a significant contribution from the power-law de-
pendence of the solar or stellar surface area covered by an active region with the surface
magnetic flux. This factor is parameterized by the parameter δ. For both heating mecha-
nisms included in our model, i.e. nanoflare (β = 2) and Alfvén wave (β = 1), the resulting
index m is found to be inside the observational range. However, our model slightly favors
the nanoflare mechanism since the upper limit of the index m is found to be closer to more
recent studies (Vidotto et al. 2014; Kochukhov et al. 2020). Interestingly, the sensitivity
of each X-ray instrument on a specific temperature range is quite significant and can lead
to an overall difference in the index m up to 60%.

As a next step, we conducted a series of numerical experiments to study how the coro-
nal X-ray emission is affected by the surface magnetic flux of an active region. We change
the surface magnetic flux in our computational box, first, by changing the peak vertical
surface magnetic field strength and second, by changing the size of the active region. For
both cases, we use the solar coronal model of Bingert (2009) which successfully repro-
duces many aspects of the solar corona. For our first numerical experiment, we find that
the average temperature and density dependence on coronal loop properties are found to
agree quite well with what is expected by the RTV scaling laws. In addition, we find
that the average Poynting flux at the base of the corona increases almost quadratically
with the surface magnetic flux (S z ∝ Φβ with β = 1.71 ± 0.42). This is consistent with
the fieldline braiding/nanoflare mechanism (Parker 1983) which is considered to be the
most probable mechanism responsible for coronal heating. Furthermore, we synthesize
the coronal X-ray emission using the temperature response function of the XRT instru-
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ment onboard Hinode. We find a non-linear increase of the LX with a power-law index,
m = 3.44 ± 0.28. For the second numerical experiments, we find that the magnetic field
in the corona is close to a potential field. We report that the magnetic field in the corona
decreases exponentially with a specific scale height λ for each runs. The scale height λ is
related to the separation distance between the two polarities of the active region. There-
fore, a higher separation distance would make the magnetic field decrease with a larger
scale height, allowing higher magnetic energy deposited in the corona. The exponential
decay of the magnetic field provides a further explanation of why the total coronal heating
is proportional to the volume of the numerical box (see Sect. 6.3.5). Finally, we find the
X-ray emission to follow a power-law relation with the surface magnetic flux LX ∝ Φm

similar to the first numerical experiments. We find the power-law index m = 2.23 ± 0.06.
An analytic estimation of the power-law index agrees very well with the results we find
from our numerical experiments. For both experiments, the index m is found to be larger
than unity. Specifically, for the first experiment, we find m > 3, which is steeper than
what is found in observations.

A linear relation of X-ray emission and magnetic flux can be understood by increasing
the number of active regions on the surface of a star. If a star with similar activity as the
Sun increases the number of active regions, then the overall coronal X-ray emission and
the surface magnetic flux are also increased proportionally. For a star more active than the
Sun that has covered its entire surface with active regions, the peak surface magnetic field
strength per active region has to increase. Consequently, a steeper than unity power-law
index is expected. This is consistent with the results of our first numerical experiments.
In the case where active regions are larger in size, the power-law index m is found to be
larger than unity but consistent with recent observational studies(see Vidotto et al. 2014;
Kochukhov et al. 2020). Overall, we understand the difference between our models and
observations if a star not only increases the number of active regions but also the peak
surface magnetic field strength of each active region. The two experiments presented in
this work can explain why the coronal X-ray emission increases as a power-law with the
surface magnetic flux for stars.

Currently, all the observational studies, such as, for example, by Pevtsov et al. (2003),
combined data from stars with different spectral types and activity levels, which were
also observed by different instruments. The sensitivity of each X-ray instrument on the
temperature range, as found in our analytical model, is significant. That can potentially
explain why different studies observe a different power-law index m. A more systematic
observational study is required to shed light on this problem.

Estimating the surface magnetic flux for most stars is challenging and the various
techniques are limited to a small number of stars. Our model can be used to put constraints
on the surface magnetic flux of other stars. By measuring the coronal X-ray emission
from a sample of stars, and using the power-law index m as derived from our model, we
can potentially estimate the surface magnetic flux Φ and even compare it with the values
obtained by Zeemann Doppler Imaging or Zeemann Broadening techniques.

Certain parameters, however, have been overlooked in our numerical model. First of
all, the magnetic helicity at the stellar surface is not included in our model. For most
stars, the magnetic helicity is difficult to observe. However, Warnecke and Peter (2019a)
based on numerical experiments, found that magnetic helicity can contribute significantly
to the increase of the stellar coronal X-ray emission. The magnetic helicity can increase
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the horizontal photospheric magnetic field and thus increase the overall Poynting flux in-
jected from the bottom boundary. This effect is not captured from our model but could
potentially affect the power-law indices of m we presented in this work. Another aspect
not considered in our model is the quenching of the horizontal motions near the location
of a strong magnetic field. This effect can reduce the Poynting flux generated in the photo-
sphere and it can potentially also affect the coronal X-ray emission and thus the power-law
index m. This is also not known how it operates in other stars but future numerical studies
could account for this effect. Finally, stars more active than the Sun are speculated to
have stronger photospheric velocities. That is also expected to change the energy input at
the photosphere (or the Poynting flux), which will also alter the coronal X-ray emission.
However, the photospheric velocity distribution for other stars is observationally ill con-
straint, therefore in our model is kept at solar values. To conclude, a future study needs
to account for all these aspects to investigate the effect on the coronal X-ray emission and
the power-law index m. That will provide more feedback to our analytical and numerical
studies.
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