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Abstract

Time-harmonic wave equations are often formulated on unbounded domains including ad-
ditional radiation conditions at infinity. To treat such problems using the finite element
method (FEM), an artifical boundary has to be introduced rendering the surrounded com-
putational domain bounded. It is crucial to impose an appropriate transparent boundary
condition on this artificial boundary to guarantee that the solution computed on the
bounded domain is an accurate representation of the true solution of the original prob-
lem posed on the infinite domain. The exact transparent boundary condition is given by
the Dirichlet-to-Neumann (DtN) map which is a non-local operator with dense matrix
representation whose use should be avoided in implementations lest the computational
costs become unaccceptable.

This thesis presents efficient techniques for integrating the information contained in
the DtN map of time-harmonic waves propagating in a stratified medium into FEM dis-
cretizations. This task arises also more generally in the context of domain decomposition
methods. If the stratified medium under consideration is homogeneous, a wealth of suit-
able approaches, e.g. perfectly matched layers (PML), exists. However, methods that are
applicable for media like the Sun, that allow for strong reflection of waves, are lacking.
This thesis aims to fill this gap with a new method called learned infinite elements.

We start by introducing a general framework to describe DtN maps of stratified ex-
terior domains with separable geometry. It is well-known that the DtN map is separable
in the eigenbasis of a suitable self-adjoint differential operator on the artificial truncation
boundary. It is less well-known that its diagonal entries can be interpreted as values
of a function called dtn which often admits a natural meromorphic extension from the
spectrum to the complex plane and fulfills a common set of properties across a wide
range of different stratified media. We use these properties to study the well-posedness
of problems with DtN map as transparent boundary condition.

The thesis proceeds to the discrete level by considering generic transparent boundary
conditions of tensor-product type which are determined by small matrices in stratifica-
tion direction. Many popular methods like classical infinite elements or tensor-product
PMLs can be described in this framework. Analogously to the continuous case we show
that the approximate DtN map obtained with such an ansatz diagonalizes in a discrete
eigenbasis and can be described by a discrete dtn function which depends only on these
small matrices. A semi-discrete error analysis shows that the error introduced by the
transparent boundary condition is determined by how accurate this discrete dtn function
approximates the dtn function of the continuous DtN operator. This turns out to be
a rational approximation problem. By appealing to results of rational approximation
theory and capitalizing on the meromorphic structure of the continuous dtn function, we
show that extremely accurate approximations on bounded subsets of the spectrum can
be achieved. Assuming sufficient smoothness of the data this suffices to obtain highly
accurate approximate solutions.



Whereas the small matrices in stratification direction are specified analytically in
conventional transparent boundary conditions, the main idea of learned infinite elements
(learned IEs) is to determine these matrices by solving a small optimization problem.
The objective function of this problem penalizes the misfit between the continuous and
discrete dtn functions which leads to an optimal DtN approximation. Thanks to the
tensor-product structure, the arising linear systems automatically remain sparse. The
sparsity can be improved further by a reduction step after which the number of un-
knowns grows only linearly with respect to the dimension of the small matrices while
the accuracy improves exponentially fast. This renders learned IEs very competitive
with and often even superior to established transparent boundary conditions for the
Helmholtz equation. Since the complexity for setting up learned IEs is independent of
the dimension of the space in which the waves propagate, their computational overhead
will be negligible in three-dimensional simulations compared to other costs which arise
irrespective of the transparent boundary condition. The optimization step also makes
them extremely flexible as illustrated in numerical experiments involving inhomogeneous
exterior domains, elliptical truncation boundaries or waveguides. We also investigate an
extension of learned IEs that is applicable for computing resonances.

A substantial part of this thesis is devoted to the task of modelling the solar atmo-
sphere using learned IEs. We carefully study the influence of the transparent boundary
conditions on the accuracy of helioseismic observables for two different atmospheric mod-
els. Learned IEs are observed to deliver high-accuracy at small computational costs and
are moreover the first transparent boundary condtions that can be used in conjunction
with realistic models of the solar chromosphere.

In the second half of the thesis the use of learned IEs as transmission conditions
in sweeping preconditioners, which are a special class of domain decomposition meth-
ods, is investigated. Usually, sweeping preconditioners rely on PMLs to approximate the
DtN maps at subdomain interfaces, which leads to severe issues if the medium allows
for strong reflection of waves. Numerical experiments indicate that learned IEs are able
to fix this issue provided that the underlying equation and the geometry are separable.
This assumption is crucial because strong reflections render DtN maps extremely sen-
sitive to perturbations. Since learned IEs currently rely on separability, they can only
be applied to non-separable equations (allowing for strong reflections) if these can be
regarded as nanoscopic perturbations of separable equations. For helioseismology this
entails a restriction to sound speed perturbations of smaller than half a percent. Further
research is needed to remove the stringent separability requirement and turn sweeping
preconditioners based on learned IEs into robust and efficient solvers for this application.
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Chapter 1

Introduction

1.1 Time-harmonic wave equations

Understanding wave phenomena has been crucial for many scientific discoveries. Some-
times, waves are the only source of information we receive from distant or inaccesible
objects. For instance, the solar interior is inaccesible to direct observation. Its complex
dynamics can only be probed by observing and interpreting oscillations at the visible
solar surface (called the photosphere). This challenging task is pursued in the field of
helioseismology. For drawing inferences from the oscillation data about the solar interior
a thorough understanding of wave propagation in the Sun is indispensable.

Wave equations can usually only be solved analytically in simplified special cases.
Even though such simplified models are sometimes useful to gain basic insights about
the physics, eventually more complex problems need to be solved for which numerical
simulations are required. These can be divided into two main approaches. Either one
tries to solve the equations directly in the time domain or one transforms to the frequency
domain by means of a time-harmonic ansatz and solves the equations there. The latter
approach is considered in this thesis.

The numerical solution of time-harmonic wave equations by means of the finite element
method (FEM) entails three main challenges.

• The accuracy of the finite element solution deteriorates drastically with increasing
wavenumber. This phenomenon, known as the pollution effect, is unavoidable under
reasonable assumptions on the FEM in dimensions larger than one [BS97]. In
practice, each wavelength needs to be discretized with a fixed number of degrees of
freedom (DOFs) to obtain a reliable solution, which leads to extremely large linear
systems in the high-frequency regime.

• Additionally, the arising linear systems are also severely ill-conditioned. Classical
preconditioning strategies, which work well for Poisson-like problems, are not ap-
plicable as discussed in reference [EG12]. Recently, significant progress has been
made by the invention of so called sweeping preconditioners [EY11b, GZ19]. Even
though sweeping preconditioners can be very effective for some problems, they
encounter severe difficulties in the presence of strong reflections [GZ18, PHL20].
Since strong reflections occur in many problems of practical interest, e.g. in com-
putational helioseismology which is the main application of interest in this thesis,
the preconditioning issue for time-harmonic waves is far from resolved.
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• Wave equations are often posed on unbounded domains with certain radiation con-
ditions at infinity. For a numerical treatment with the FEM the equation has to
be reduced to a bounded computational domain in such a way that the solution
computed on the bounded domain is a good approximation to true solution of
the problem posed on the unbounded domain. This can be achieved by imposing
a so called transparent boundary condition on the artificial truncation boundary.
The challenge consists of constructing a transparent boundary condition which is
accurate and can be realized efficiently at the same time. Transparent boundary
conditions also appear as crucial ingredients of domain decompositioning meth-
ods [TW05] for general boundary value problems. Hence, their applicability is not
limited to the truncation of unbounded domains.

This thesis offers contributions to the last two mentioned issues. While helioseismo-
logy fueled this research, the techniques presented here are applicable to a much broader
class of problems and are therefore described in a generalized framework for stratified
media. Chapter 2-Chapter 6 introduce novel transparent boundary conditions which are
then utilized in the remainder of the thesis in the context of sweeping preconditioners.
Special care is taken to address the requirements of computational helioseismology.

1.2 The Dirichlet-to-Neumann map

The basic principle of domain decompositioning can be described as follows. Consider a
PDE

Lu = f in Ω, (1.1)

where Ω ⊂ Rd is some domain and L an elliptic second order partial differential operator.
To keep this introduction simple, assume that the principal part of L is given by the
Laplacian −∆. If Ω is unbounded, then (1.1) is usually complemented by a radiation
condition at infinity which will likewise be ignored in this introduction for simplicity.
Assume that Ω = Ωint ∪Ωext is a disjoint partition of the domain with common interface
Γ := Ωint ∩ Ωext, see Fig. 1.1 for a sketch, and that supp f ⊂ Ωint. The PDE can be split

Lu = f

Ωint

Lu = 0

Ωext

Γ

ra

Figure 1.1: Simple domain decomposition.

into two subproblems posed in the subdomains by solving

Luint = f in Ωint, Luext = 0 in Ωext,

−∇uint · nΓ = DtN uint on Γ, uext = uint on Γ,
(1.2)

where DtN uint = −∇uext ·nΓ is the Dirichlet-to-Neumann map and nΓ the normal vector
on Γ. By construction, the composite function

u(x) =

{
uint(x) for x ∈ Ωint,

uext(x) for x ∈ Ωext,
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solves the equation in the subdomains and u as well as its normal flux are continuous
across Γ. If L and the right hand side are regular enough, this implies that u is a strong
solution of (1.1). Consequently, the PDE can be reduced to solving problems on the
individual subdomains coupled via boundary data.

Suppose that we are primarily interested in obtaining the solution in Ωint and would
like to avoid computing the solution in Ωext. This situation occurs naturally when the
domain Ωext is infinite and the problem in Ωint should be discretized, e.g. using the FEM.
In view of (1.2), this boils down to the task of finding a simple expression for the DtN -
operator. For instance, if DtN uint = cuint for some constant c were valid, then DtN
could be implemented as a Robin boundary condition and the problem on Ωint would be
easy to treat using FEM. Unfortunately, DtN is in general far more complicated which
originates from its nature as a non-local operator.

At this point, the main assumption of the thesis comes into play, which allows to
simplify DtN considerably. The medium in Ωext is assumed to be stratified in the direc-
tion orthogonal to Γ. This means that there are suitable coordinates (r, x̂) in Ωext (see
Fig. 1.1) so that the medium varies only in the r direction. This assumption is fulfilled
in many problems of practical interest. For instance, the solar atmosphere can be as-
sumed to be spherically symmetric for helioseismic purposes. However, it is important
to mention that solar density and sound speed vary drastically with increasing height
above the photosphere and that atmospheric models only provide tabulated values for
these parameters which leads to non-analytic functions. A significantly simpler example
is given by Helmholtz scattering problems with homogeneous exterior domains. Further
examples follow in Chapter 2.

A simple form of DtN is now obtained by separation of variables. Suppose that the
PDE in Ωext in coordinates (r, x̂) is given by

[A⊗ IdΓ + B ⊗ (−∆Γ)]uext = 0, (1.3)

where A and B are differential operators in r and −∆Γ is the Laplace-Beltrami1 operator
on Γ. The solution uext can then be developed into eigenfunctions of −∆Γ, i.e. functions
w` solving −∆Γw` = λ`w` and which are orthonormal with respect to the inner product
〈·, ·〉Γ on L2(Γ). The coefficients in these expansions depend on r and can be determined
by solving an ODE for each mode ` which arises after replacing −∆Γ, in (1.3) by λ`.
The initial data at r = a is provided by the coefficients of the Dirichlet data uint in the
eigenbasis. The DtN operator then becomes

DtN uint :=
∑∞

`=0
dtn(λ`)w`〈uint, w`〉Γ, (1.4)

where the numbers dtn(λ`) are obtained by evaluating the derivative of the ODE solutions
at the coupling boundary r = a. This exposes DtN as a spectral calculus of −∆Γ.

The non-locality of DtN is immediately visible from (1.4) since the eigenfunctions
w` have global support. If (1.4) is used directly to implement DtN in the context of
FEM, as in the well-known DtN-FE method [KG89], this results in a dense matrix rep-
resentation. In the interest of computational efficiency such a dense matrix block in the
linear system should be avoided. For a three dimensional helioseismology simulation it
might be impossible to even assemble the matrix of DtN in the FEM basis due to lack
of memory. Hence, computational techniques have to be found which incorporate the

1In the thesis also separation with respect to more general operators on Γ will be treated.
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information contained in DtN accurately into the discrete solution, yet remain within
the realm of sparse linear algebra. Futhermore, rigorous error estimates are desirable to
guarantee the accuracy of the computed solutions. For the case of homogeneous media a
variety of such techniques exists, yet reliable and accurate methods for stratified media
like the Sun, which exhibit strong variations in the direction of stratification, are lacking.
This thesis sets out to propose such techniques which include as much information from
DtN as desired in a sparse manner and are at the same time flexible enough to adapt
themselves to almost any given stratified medium.

1.3 Learned infinite elements

Many successful transparent boundary conditions are based on a tensor-product dis-
cretization of (1.3). They lead to linear systems of the form

([
AΓΓ AΓE

AEΓ AEE

]
⊗M +

[
BΓΓ BΓE

BEΓ BEE

]
⊗K

)[
uΓ

uE

]
=

[
M DtNN uΓ

0

]
, (1.5)

where

• M and K are finite element discretizations of IdΓ and −∆Γ, respectively.

• The matrices A,B ∈ C(N+1)×(N+1) are derived analytically, for example by utilizing
expansions of solutions of (1.3) valid in asymptotic regimes.

• In the formula above the degrees of freedom (DOFs) have been partitioned into two
subsets: those associated with Γ and the rest associated with the exterior E.

• The operator DtNN represents the discrete approximation of DtN obtained with
this particular discretization.

The exterior DOFs could be eliminated from (1.5) by means of the Schur complement.
Even though this is not a reasonable computational approach since the Schur complement
is dense, it leads to a concrete formula for DtNN in terms of A,B,M and K. This
representation is still a bit unwieldy because the matrices M and K are large. One of the
main observations of this thesis is that in a suitable basis DtNN can be described in terms
of the small matrices A and B only. This basis is simply the discrete analogue of the
Laplace-Beltrami eigenbasis used in the previous section. If (λ`, w`) solve the generalized
eigenvalue problem Kw` = λ`Mw`, then

DtNN u
int :=

∑∞

`=0
dtnN(λ`)w`〈uint, w`〉Γ, (1.6)

with dtnN given by

dtnN(λ) := AΓΓ + λBΓΓ − (AΓE + λBΓE)(AEE + λBEE)−1(AEΓ + λBEΓ). (1.7)

This representation, derived in Proposition 3.1 of this thesis, is completely analogous to
formula (1.4) for the continuous DtN . This observation gives rise to some of the thesis’
main conclusions.
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• The continuous DtN and its approximation DtNN with the tensor-product dis-
cretization (1.5) are completely determined by the functions dtn and dtnN respec-
tively. Consequently, the approximation quality of DtNN can be assessed by mea-
suring how accurate the scalar function dtnN approximates dtn on the spectrum
of −∆Γ. Since dtnN can be described in terms of the matrices A,B, which char-
acterize the transparent boundary condition, this paves the way for a unified error
analysis of tensor product discretizations of DtN .

• The matrices A and B are usually derived analytically in conventional transparent
boundary conditions. In this thesis a completely different approach is proposed
based on the observation that the approximation quality of DtNN is essentially
determined by the size of the misfit

∑

`

| dtn(λ`)− dtnN(λ`)|2|〈u,w`〉Γ|2. (1.8)

In practice, only a finite number of terms are relevant in this sum, since |〈u,w`〉Γ|
is expected to decay rapidly for sufficiently smooth solutions. Hence, dtnN has
to provide a good approximation of dtn on bounded subsets of the spectrum of
the Laplace-Beltrami operator. In view of (1.7), this will give rise to a rational
approximation problem when A and B are considered as free parameters:

min
A,B∈C(N+1)×(N+1)

‖ dtn − dtnN{A,B}‖∗, (1.9)

where ‖·‖∗ is an appropriate norm on the space of sequences (dtn(λ`)). By extending
dtn to a meromorphic function on the complex plane and appealing to results of
rational approximation theory, we can show that for a finite number of modes
exponential convergence can be achieved, i.e. there exist A and B such that

| dtn(λ)− dtnN(λ)| . exp(−cN) (1.10)

for some c > 0 and all λ in a compact interval of R+. The minimizers A and B
obtained from (1.9) determine the local element matrices of the learned infinite
elements (learned IEs).

The first half of this thesis is devoted to a study of learned IEs as transparent boundary
conditions. First, it shall be investigated theoretically whether the exponential conver-
gence rates (1.10) for dtn carry over to the finite element solution of the interior problem.
This can be answered in the affirmative provided that dtn and dtnN fulfill certain natural
conditions. Furthermore, numerical experiments will be presented in which the efficiency
of learned IEs is compared to established transparent boundary conditions. Particu-
lar emphasis shall be placed on applications in helioseismology as the solar atmophere
provides a prime example for a strongly varying, stratified medium.

1.4 Application to sweeping preconditioners

Time-harmonic wave equations give rise to large-scale linear systems which are difficult
to solve. Domain decomposition (DD) methods are one approach to tackle this issue.
They partition the domain into a set of smaller subdomains. The linear systems in
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these subdomains can be solved more efficiently (often even using direct solvers) since
the subdomains contain substantially fewer DOFs than the entire domain. In order to
ensure that the solution obtained from these algorithms represents the solution of the
problem posed on the entire domain accurately, appropriate boundary conditions (so
called transmission conditions) have to be imposed on the subdomain interfaces. This
is analogous to the case of two subdomains treated in (1.2). Some DD algorithms can
be used as direct solvers provided that exact transmission conditions, e.g. DtN , are
imposed. As transmission operators are typically non-local, they must be replaced by
approximations for the sake of computational efficiency. DD algorithms with approximate
transmission conditions only deliver approximate solutions and are then usually applied
as preconditioners for Krylov iterative solvers.

Sweeping preconditioners can be seen as a special kind of DD method which relies
on a sequential partition of the domain into layers. In its original [EY11b] form DtN
transmission conditions approximated by a moving perfectly matched layer (PML) are
used on subdomain interfaces, see [GZ19, Section 7]. Even though impressive results
have been achieved with sweeping-type preconditioners for many problems of practical
interest (see e.g. [TEY12, TPEY14, Sto17, ZNSHD19] to name a few), their range of
applicability is limited. In situations where approximation of DtN by means of PML
fails the performance of sweeping preconditioners deteriorates dramatically. This occurs
for instance in media that allow for strong reflection of waves, e.g. caused by strongly
varying wavespeeds or reflective boundary conditions [GZ18, GZ19, PHL20]. The Sun
provides a prominent example of such a medium as waves propagating at frequencies
below the acoustic cut-off are reflected by steep density and sound speed gradients in the
surface layers. In order to apply sweeping preconditioners for problems involving strong
reflections, alternative approximations of DtN have to be found.

The second half of the thesis investigates whether sweeping preconditioners with
learned IEs as transmission conditions can overcome the limitations of moving PML
sweeping preconditioners for problems with strong reflections. In this regard, the separa-
bility condition on which learned IEs are based could pose an obstacle as can be readily
explained for the case of the Sun. The solar atmosphere can be regarded as a stratified
medium which allows for a perfect modelling by means of learned IEs. However, in the
context of sweeping preconditioners also the solar interior would need to be modelled by
learned IEs, which is a problem since the presence of sound speed and density pertur-
bations, background flows or rotation may break spherical symmetry. Therefore, it has
to be carefully investigated how learned IEs perform once the separability assumption
is violated. It turns out that in the presence of strong reflections only very small per-
turbations from the stratified background medium can be tolerated. This is a physical
obstruction caused by high-sensitivity of DtN with respect to perturbations.

1.5 Outline

The remainder of the thesis is structured as follows.

• Chapter 2 specifies the class of PDEs (1.1) which will be considered in this the-
sis. A general framework is introduced which allows to cover Helmholtz scattering
problems, waveguides and wave propagation in the Sun at the same time. For
each of these examples the continuous DtN map and its dtn function are identi-
fied. The dtn functions in these examples share some common properties which
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can be utilized to derive well-posedness of the reduced problem in Ωint with DtN
as transparent boundary condition.

• Chapter 3 can be seen as the semi-discrete counterpart of Chapter 2. Tensor-
product discretizations of DtN of the form (1.5) are considered. We carry out a
semi-discrete error analysis to investigate the influence of replacing the exact dtn
function in (1.4) by its approximation dtnN stemming from the tensor-product dis-
cretization. By utilizing results of rational approximation theory, it is shown that
exponential approximation rates (1.10) on finite intervals can be achieved. For
sufficiently smooth data and dtnN functions fulfilling certain assumptions, conver-
gence of the corresponding solutions on Ωint follows. This means that the accuracy
of transparent boundary conditions of tensor-product type is fully determined by
approximation properties of their dtnN function. This motivates us to identify
dtnN for several popular transparent boundary conditions, including tensor prod-
uct PMLs and classical infinite elements, and compare their accuracy based on the
previously mentioned observation.

• Chapter 4 introduces learned IEs as the main innovation of this thesis. Using a
weighted `2-norm, the minimization problem (1.9) transforms into a non-linear least
squares problem which can be solved with the Levenberg–Marquardt algorithm.
Various numerical experiments illustrate the astonishing accuracy and efficiency of
learned IEs. Comparisons with established transparent boundary conditions like
PMLs or Hardy Space infinite elements for a circular truncation boundary and
homogeneous exterior domains are presented. Furthermore, first applications of
learned IEs to inhomogeneous exterior domains which feature strong reflections are
investigated. We also apply learned IEs to waveguides and elliptical truncation
boundaries. The latter allows for an efficient treatment of elongated obstacles.

• The transparent boundary conditions obtained by solving the minimization problem
(1.9) are only valid for a single wavenumber. However, Chapter 5 shows that a
uniform approximation for all wavenumbers in a bounded subset of the complex
plane can be obtained by modifying the objective function in (1.9). This allows to
apply learned IEs for the computation of resonance frequencies.

• Chapter 6 presents an application of learned IEs to time-distance helioseismology.
The main task here is to investigate the effect of the transparent boundary con-
ditions on the accuracy of computed helioseismic observables like power spectra
or travel times of acoustic waves. On the one hand, we compare our results with
observations. On the other hand, the accuracy and efficiency of learned IEs is
assessed by a comparsion with so called Atmospheric Radiation Boundary Con-
ditions, which have been specifically designed for a particular model of the solar
atmosphere. We also go one step further and demonstrate that learned IEs can be
used for another, more realistic model of the solar chromosphere for which no other
transparent boundary conditions are known to date.

• In Chapter 7, learned IEs are utilized as transmission conditions in sweeping pre-
conditioners. Before proceeding to numerical experiments, a discussion on the liter-
ature is given and the sweeping algorithm is briefly reviewed in the framework of the
Double Sweep Optimized Schwarz method (DOSM). The performance of sweeping
with moving PML and learned IE based transmission conditions is carefully studied
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in numerical experiments especially in the presence of reflections. Our investiga-
tions show that most of the arising issues and difficulties can be understood by an
analysis of the corresponding dtn functions.

• Chapter 8 presents an application of sweeping preconditioners based on learned IEs
to a realistic problem from computational helioseismology. This study complements
and extends the results of the toy problems considered in Chapter 7. The chapter
concludes with an evaluation of the current applicability of learned IEs in sweeping
algorithms.

• The thesis finishes with a summary and outlook in Chapter 9. Open problems and
ideas for further research are discussed.

• Some appendices which cover technical aspects or provide additional information
complement the thesis. Some basics tools from functional analysis and theory of
PDEs are collected in Appendix A. Appendix B gives a spectral characterization
of Sobolev spaces on the transparent boundary Γ which is utilized in the error
analysis of Chapter 2 and Chapter 3. Popular transparent boundary conditions of
tensor-product form (1.5) are reviewed in Appendix C. Appendix D describes how
the optimization problem (1.9) is solved.

1.6 Genesis of the thesis project

The idea for this project was born out of the desire to construct efficient preconditioners
for solving the time-harmonic wave equations from helioseismology. At the beginning of
2018 when the project started, sweeping preconditioners had already proven their worth
as efficient solvers in many different applications. Hence, it was natural to make an
attempt at using sweeping preconditioners for computing solar oscillations. Right from
the start of the project it was suspected that standard sweeping preconditioners based
on moving PMLs would run into severe difficulties since the Sun supports resonance
modes. In particular, there are complex wavenumbers with small imaginary part for
which the homogeneous PDE admits a non-trivial solution. In the best case, the moving
PML approximation of DtN would break down only in close vicinity of such a resonance
frequency and would need to be replaced there by a different approach that should be
developed within this project.

Unfortunately, the actual situation turned out to be even more problematic. We dis-
covered that the breakdown of moving PMLs was not limited to an isolated and manage-
able number of particular frequencies. Sweeping preconditioner based on moving PMLs
failed across the whole range of frequencies which are of primary interest in helioseismo-
logy. The explanation for this phenomenon is indeed very simple. Moving PML-type
sweeping preconditioners based on a concentric decomposition of the Sun could only
work if the waves were able to escape freely into the solar atmosphere. Unfortunately,
this could not be further from the truth as is well-known in helioseismology. Essentially
all waves propagating at frequencies lower than the acoustic cut-off are reflected back
from the strong stratification in the surface layers into the solar interior. Hence, moving
PMLs are not suitable for the Sun at all.

To propagate the observation that moving PMLs fail in the presence of strong reflec-
tions, we began to prepare our first paper [PHL20]. The solar application of course also
pressed us to start the development of an alternative to moving PMLs which could deal
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with the presence of strong reflections. The problem with moving PMLs in this setting is
that its associated dtnN function provides an extremely poor approximation of dtn (see
e.g. Section 7.3.2). The approach presented in [PHL20] can be seen as a precursor to
learned IEs, which in some sense provides the perfect approximation limN→∞ dtnN = dtn ,
yet resorts in the end to solving dense linear systems on subdomain interfaces which
learned IEs manage to avoid entirely. Since this method is superseded by learned IEs,
it will not be presented in this thesis. In particular, we directly use learned IEs in the
sweeping preconditioners presented in Chapter 7 and Chapter 8. Apart from the em-
ployed methods which are deprecated by now, the paper [PHL20] offers the important
insight that DtN maps of media which allow for strong reflections are highly sensitive
to perturbations. This implies that no sweeping preconditioner based on the separable
background model, in particular neither the method from [PHL20] nor separable learned
IEs as presented in this thesis, can tolerate strong perturbations from the background
model.

Admittedly, this insight, which we reached in early 2020 when submitting the paper,
was a major setback. During this time the development of learned IEs was at an early
stage and looked not particularly promising in the context of sweeping preconditioners
for helioseismology. Fortunately, there is also a strong need in computational helioseis-
mology for transparent boundary conditions which can model the solar atmosphere (see
Section 2.4 and Chapter 6). In this setting the issue of having to treat perturbations from
the background model does not occur. Consequently, the primary focus in the develop-
ment of learned IEs switched from sweeping preconditioners to transparent boundary
conditions. Despite originally being intended only for helioseismology, the flexibility and
high-accuracy of learned IEs soon came to the fore when applied to various other prob-
lems. When we were unable to find any other method that can match the performance
of learned IEs for the Helmholtz equation, it was clear that a paper had to be prepared
in which learned IEs are presented in a more general context than helioseismology.

Learned IEs are introduced in [HLP21] as transparent boundary conditions for strat-
ified media which allow for a separation of variables with respect to the Laplace-Betrami
operator on Γ. This setting covers for example also certain waveguides. Although the
paper [HLP21], accepted in July 2021, provides the main foundation for this thesis, the
latter extends the results of [HLP21] significantly. A detailed discussion of these exten-
sions is provided in Section 9.1. Here we only mention two of the most important results.
Firstly, the application to helioseismology given in [HLP21] only scratches the surface.
This thesis devotes its entire Chapter 6 to helioseismology providing extensive investiga-
tions on the accuracy of helioseismic observables. Secondly, in [HLP21] we only provided
an argument of about one page to argue that an exponential approximation result of the
form (1.10) on finite intervals should hold true. In Chapter 2 and Chapter 3 we set out
to extend this to a complete convergence theory in a semi-discrete setting. Admittedly,
this aim has not been entirely completed yet, see e.g. Section 9.2, albeit compared to
[HLP21] a major leap forward has been taken.

In the final Chapter 8 of this thesis we return to the original preconditioning problem
for helioseismology in an axisymmetric setting. Although no sudden twist of fate is
observed and the GMRES iteration numbers are high, the results are nevertheless slightly
better than expected. At least for the sound speed, perturbations from the separable
background model could be tolerated which are within a realistic range that has to be
expected in helioseismology. Perhaps, even an implementation and benchmarking of
learned IEs for a fully three-dimensional discretization then appear as realistic prospects
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for the future. Ultimately though, the development of learned IEs which are applicable to
non-separable problems seems inevitable in order to treat stronger perturbations. Future
extensions of learned IEs are discussed further in Section 9.2.

1.7 Reproducibility

A complete environment for reproducing the numerical experiments of this thesis is pro-
vided in the form of a docker image at [Pre21]. In particular, this image contains all
software dependencies, code and the necessary instructions to replicate our results. The
docker image has been built based on the gitlab repository https://gitlab.gwdg.de/

learned_infinite_elements/diss_jp_repro, which also contains the code and a clean
presentation of the reproduction instructions.

1.7.1 Software used in this thesis

This subsection provides a short overview on the software involved in the numerical
experiments of this thesis. The general approach is to rely on established and fast modules
written mostly in C++ and extend them for our purposes where necessary. These modules
are combined by surrounding them with a common Python layer provided by pybind11

[JRM17].

• The numerical experiments involving finite elements have been realized using the
software Netgen/NGSolve, see [Sch97, Sch14],

• The experiments in the chapters on sweeping preconditioners make use of ngsxfem
[LHPvW21], which is an Add-on to NGSolve for unfitted discretization methods.
Even though this thesis deals exclusively with fitted discretization approaches, some
of the tools offered in this Add-on are useful to improve efficiency in a domain-
decomposition framework.

• Learned IEs are obtained by solving a non-linear least squares problem. For this
purpose we use ceres-solver [AMO], which is a C++ library geared towards mod-
elling and solution of exactly these kind of problems.

• The poles of the meromorphic extension of dtn play a crucial role in this thesis. Due
to the lack of analytic formulas, these poles have to be computed numerically. To
this end, we use a mesh-based technique introduced in references [Kow15, Kow18].

• Special functions are evaluated using the libarries mpmath [J+21] and arb [Joh17].

10

https://gitlab.gwdg.de/learned_infinite_elements/diss_jp_repro
https://gitlab.gwdg.de/learned_infinite_elements/diss_jp_repro


Chapter 2

DtN maps for time-harmonic waves
in separable exterior domains

This chapter considers PDEs posed in domains which allow for a decomposition into a
bounded interior part and a possibly unbounded, stratified exterior part whose geome-
try is separable. The DtN map obtained by separation of variables is imposed on the
truncation boundary to reduce the problem to the bounded interior domain. In its sepa-
rable form, all information about DtN is contained in a scalar function called dtn which
describes the action of DtN in direction of stratification. An abstract framework which
allows to treat a broad class of scalar, second-order elliptic PDEs in the above setting is
introduced in Section 2.1. Moreover, Section 2.1.2 also introduces certain assumptions
on dtn which later serve as crucial ingredients for deriving well-posedness of the reduced,
interior problem.

Before proceeding to the analysis, it makes sense to show that the class of problems
covered by the framework introduced in Section 2.1 is not empty. Therefore, Section 2.2-
Section 2.4 present several examples which fit into this framework and will recur frequently
in the course of this thesis. Here, one of the main aims is to identify the corresponding
dtn functions of these problems and demonstrate that they fulfill a common set of prop-
erties which justifies the assumptions postulated in Section 2.1.2. A reasonably broad
range of problem settings will be treated. Section 2.2 deals with scattering problems in
general, which may be truncated using spherical or elliptical coupling boundaries as con-
sidered in Section 2.2.1 and Section 2.2.2, respectively. The exterior domain may contain
inhomogeneities, as the example of a jumping wavenumber introduced in Section 2.2.1
shows. Section 2.3 then considers a different class of problems called waveguides. The
scalar wave equation of helioseismology is introduced in Section 2.4. Two different models
for the solar atmosphere are considered: the so called Atmo model, which is based on a
simplified chromosphere and the presumably more realistic, semi-empirical VAL-C model
introduced in reference [VAL81].

Section 2.5 then investigates well-posedness of the interior problem with DtN as
transparent boundary condition. Our proposed analysis proceeds along conventional
lines. The identified properties of dtn turn out to be sufficient for establishing a G̊arding
inequality. Well-posedness then follows by means of the Fredholm alternative provided
that uniqueness has been shown. To this end, assumptions on the imaginary part of
dtn are required, which hold for the considered examples with the exception of certain
waveguides which are known to be a bit peculiar. Whereas this type of analysis is sufficient
to cover the helioseismology problem or scattering with spherical coupling boundaries, it
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rests on an assumption on DtN which is not fulfilled for elliptical truncation boundaries.
Generalizations of the presented analysis could thus be the subject of further research.

2.1 Abstract framework

We consider a generalization of the setting introduced in [HLP21]. Let Ω ⊂ Rd be a
domain which can be decomposed as follows. We assume that there exists a bounded
interior domain Ωint and a usually unbounded exterior domain Ωext such that

Ω = Ωint ∪ Ωext and Ωint ∩ Ωext = ∅.
Moreover, the boundary Γ := Ωint ∩ Ωext, which couples interior and exterior domain, is
required to be smooth. Additionally, Γ is compact since Ωint is assumed to be bounded.
Denote the usual L2 scalar products on L2(Ωint) and L2(Γ) by

(u, v)Ωint
:=

∫

Ωint

uv̄ dx; 〈u, v〉Γ :=

∫

Γ

uv̄ dS. (2.1)

In the domain Ω a linear and second-order elliptic PDE

Lu = f in Ω + radiation condition, (2.2)

is considered. The source f is assumed to be compactly supported in Ωint, i.e. supp f ⊂
Ωint. This implies that the PDE in the exterior Ωext is homogeneous. Since the radiation
condition at infinity depends on the geometrical setup and the considered PDE, we post-
pone its discussion to Section 2.2-Section 2.4 in which concrete examples are discussed.
Apart from the artificially introduced boundary Γ, the domain Ω may have other bound-
aries (possibly ∂Ω 6= ∅). In this case, equation (2.2) has to be complemented by suitable
boundary conditions on ∂Ω, which are discussed further below.

To describe the DtN map in a convenient form, the Dirichlet problem posed in the
exterior

Lu = 0 in Ωext + radiation condition,

u = u0 on Γ,
(2.3)

where u0 represents the given data, has to be simplified. This rests on separability of the
PDE and the geometry of Ωext.

To make the latter notion precise, we will suppose that a diffeomorphism

Ψ :[a,∞)× Γ→ Ωext such that

Ψ({a} × Γ) = Γ,
(2.4)

exists. Moreover, the transformed operator is required to take the following form1

(Lu) ◦Ψ = 0⇔ [A⊗MΓ + B ⊗ KΓ] (u ◦Ψ) = 0. (2.5)

This is nothing but separation of variables by a transformation to suitable coordinates (see
e.g. Section 2.2.1 for the case of spherical coordinates). In the general setting considered
here,

1We do not demand that (Lu) ◦ Ψ = [A⊗MΓ + B ⊗ KΓ] (u ◦ Ψ) here as in the paper [HLP21] to
gain a bit more flexibility for the setting of elliptic geometry in which (Lu) ◦Ψ = −1

c2(sinh(r)2+sin(ϕ)2) (∂2
r +

∂2
ϕ)u− k2u and we actually treat (∂2

r + ∂2
ϕ)u− c2(sinh(r)2 + sin(ϕ)2)k2u = 0 to separate variables.

12



• A is a second-order differential operator in r,

• B represents multiplication on L2([a,∞)),

• KΓ is a second order, self-adjoint, elliptic differential operator on Γ,

• and MΓ = 1/|∂rΨ(a, x̂)|2 is a multiplication operator on Γ. Since Ψ is assumed to
be a diffeomorphism and Γ is compact there exist positive constants cψl > 0 and
cψu > 0 such that

cψl ≤
1

|∂rΨ(a, x̂)|2
≤ cψu . (2.6)

In particular, MΓ is positive definite and (u, v) 7→ 〈M1/2
Γ u,M1/2

Γ v〉Γ gives rise to
an equivalent scalar product on L2(Γ).

The tensor-product notation ‘⊗’ used above should be understood as follows. If u
and v are L2-functions, then (u ⊗ v)(x, y) = u(x)v(y). For linear operators A and B
one has (A ⊗ B)(u ⊗ v) = Au ⊗ Bv. This means that the operator A acts on the first
variable, while B operates on the second variable. Hence, in (2.5) the operators A and B
act on r in the direction of stratification whileMΓ and KΓ operate on Γ in the tangential
direction.

By the rule (AB)∗ = B∗A∗ the operator

K̃Γ :=M−1/2
Γ KΓM−1/2

Γ (2.7)

is self-adjoint. Under the assumption that K̃Γ has compact resolvent, the spectral the-
orem yields the existence of an orthonormal basis {w` : ` ∈ N0} of L2(Γ) consisting of
eigenfunctions of K̃Γ, i.e. there exists λ` ∈ R such that

K̃Γw` = λ`w`. (2.8)

The functions v` :=M−1/2
Γ w` are then generalized eigenfunctions of the operator stencil

(MΓ,KΓ), i.e.

KΓv` = λ`MΓv`. (2.9)

The right equation in (2.5) may be rewritten as

[
A⊗ IdΓ + B ⊗ K̃Γ

]
(u ◦Ψ) = 0. (2.10)

This equation can be solved by separation of variables in the coordinates (r, x̂). To
determine the solution of Lu = 0 in Ωext which fulfills the radiation condition at infinity,
we make the ansatz

(u ◦Ψ)(r, ·) =
∑∞

`=0
Λr(λ`)〈u0, w`〉Γw` (2.11)

for given Dirichlet data u|Γ = u0. Here, the functions r 7→ Λr(λ`) have to fulfill Λa(λ`) = 1
for the Dirichlet condition on Γ to hold. Plugging this ansatz into (2.10) leads to the
separated set of equations

[A+ λ`B] Λr(λ`) = 0 on [a,∞), (2.12a)

Λa(λ`) = 1, Λr satisfies the radiation condition. (2.12b)

13



This fully determines the radiating solution. In the sense of spectral calculus we may
write (u ◦Ψ)(r, ·) = Λr(K̃Γ)u0. Based on the obtained representation of the solution, the
Dirichlet-to-Neumann map can be defined by

DtN u0 := −∂r(u ◦Ψ)|r=a =
∑∞

`=0
dtn(λ`)〈u0, w`〉Γw`, (2.13)

where the function

dtn(λ) := −∂rΛr(λ)|r=a. (2.14)

is initially defined on the spectrum of the operator K̃Γ.

2.1.1 PDE in bounded interior

In the bounded interior domain Ωint, a linear elliptic PDE of second order is considered:

Lu = −
d∑

i,j=1

∂xi
(
aij∂xju

)
+ iβb · ∇(βu) + cu = f in Ωint. (2.15)

The principal part of L is assumed to be smooth and real-valued, i.e. aij ∈ C∞(Ω̄int,R).
For the lower order terms β ∈ C1(Ω̄int,R) and bj ∈ L∞(Ωint,R) for j = 1, . . . , d and
c ∈ L∞(Ωint,C) will be required. The right hand side should be square integrable, i.e.
f ∈ L2(Ωint,C). The matrix (aij)

d
i,j=1 is assumed to be symmetric, which implies that

d∑
i,j=1

aijξiξ̄j is real for any ξ ∈ Cd. Additional assumptions are introduced below:

• L is strongly elliptic, i.e. there exists θ > 0 such that

d∑

i,j=1

aij(x)ξiξ̄j ≥ θ‖ξ‖2, for all ξ ∈ Cd and x ∈ Ωint. (C-I)

• The flow is divergence-free and its normal component vanishes on the boundary of
the computational domain:

div(b) = 0 in Ωint, b · n = 0 on ∂Ωint. (C-II)

• If damping is present, it should have the appropriate sign to ensure uniqueness:

Im c ≤ 0 in Ωint. (C-III)

• The boundary of the interior domain can be decomposed into disjoint parts Γ,ΓD

and ΓN so that
∂Ωint = Γ ∪ ΓD ∪ ΓN, (2.16)

where the DtN condition is placed on Γ 6= ∅. Here, ΓD and ΓN are additional
(possibly empty) Lipschitz continuous boundaries on which Dirichlet and Neumann
boundary conditions are posed, respectively. For simplicity, it will be assumed here
that the boundary conditions on ΓD are homogeneous.
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• The diffusion matrix is proportional to the identity on Γ, i.e. there exist a nonzero
constant a0 such that aij(x̂) = a0δij for x̂ ∈ Γ. Upon multiplying the PDE (2.2) by
1/a0 it can therefore be assumed that

aij(x̂) = δij, x̂ ∈ Γ. (C-IV)

Apart from normalizing the PDE, the scaling with a0 could also be incorporated
in various alternative ways. For example, the factor a0 may absorbed into the
definition of DtN via dtn 7→ a0 dtn .

Remark 2.1. Since the normal vector nΓ on Γ is given by

(∂rΨ)(a, x̂)

|∂rΨ(a, x̂)|2
= nΓ ◦Ψ(a, x̂), (2.17)

an application of the chain rule gives

MΓ∂r(u ◦Ψ)(a, x̂) = (∇u) (Ψ(a, x̂)) · (∂rΨ)(a, x̂)

|∂rΨ(a, x̂)|2
= (∇u) (Ψ(a, x̂)) · (nΓ ◦Ψ(a, x̂)) .

Inserting the definition of DtN then yields

MΓDtN (u) = −∇u · nΓ on Γ. (2.18)

This explains the name of the DtN map: it maps Dirichlet to Neumann data.

For Γ̃ ∈ {Γ,ΓD,ΓN} and v ∈ H1(Ωint) denote by trΓ̃ v ∈ H1/2(Γ̃) the trace of v on Γ̃.
Further, let ZΓ̃ : H1/2(Γ̃)→ H1(Ωint) denote a continuous linear right inverse of trΓ̃, see
Theorem A.3. If the boundary Γ̃ in question is clear from context the subscript Γ̃ will be
omitted.

The function space for the variational formulation in the interior is given by

V := {v ∈ H1(Ωint) | trΓD
v = 0}. (2.19)

It would also be possible to allow for periodic boundary conditions on part of ∂Ωint.
To this end, the space H1(Ωint) in (2.19) should be replaced by an appropriate periodic
Sobolev space H1

per(Ωint) which incorporates the periodicity requirement. Multiplying the
equation (2.15) by a test function and integrating by parts over Ωint leads to

bint(u, v) + 〈−∇u · nΓ, v〉Γ = l(v),

where assumption (C-IV) has been used and the sesquilinear form on Ωint is defined by

bint(u, v) :=
d∑

i,j=1

(aij∂xju, ∂xiv)Ωint
+ i (βb · ∇ (βu) , v)Ωint

+ (cu, v)Ωint
(2.20)

and l : V → C is a continuous (anti-)linear functional. The unknown normal derivative
−∇u ·nΓ is replaced by the Dirichlet-to-Neumann map according to equation (2.18). The
variational formulation takes the form: Find u ∈ V such that

bint(u, v) + 〈MΓDtN u, v〉Γ = l(v), for all v ∈ V.
The required assumptions are already sufficient to establish a G̊arding inequality for
bint(·, ·). On the other hand, gaining control over the part involving DtN requires as-
sumptions on dtn and will have postponed to Section 2.5.
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Lemma 2.2 (G̊arding inequality for bint(·, ·)). The sesquilinear form bint(·, ·) is continuous
on V × V and fulfills the lower bound

Re bint(u, u) ≥ CV ‖u‖2
V − CL2(Ωint)‖u‖2

L2(Ωint)
, (2.21)

with

CV := θ/2, and CL2(Ωint) :=
‖β‖4

L∞‖b‖2
L∞

2θ
+ ‖β‖L∞‖b · ∇β‖L∞ + ‖c‖L∞ +

θ

2
. (2.22)

Proof. Continuity follows by the regularity respectively boundedness assumptions on the
coefficients of L . To show the lower bound the ellipticity assumption (C-I) can be used
to obtain

Re bint(u, u) ≥ θ‖∇u‖2
L2(Ωint)

− ‖β‖2
L∞(Ωint)

‖b‖L∞(Ωint)‖∇u‖L2(Ωint)‖u‖L2(Ωint)

−
(
‖β‖L∞(Ωint)‖b · ∇β‖L∞(Ωint) + ‖c‖L∞(Ωint)

)
‖u‖2

L2(Ωint)

≥
(
θ − ε

2

)
‖∇u‖2

L2(Ωint)
−
(‖β‖4

L∞‖b‖2
L∞

2ε
+ ‖β‖L∞‖b · ∇β‖L∞ + ‖c‖L∞

)
‖u‖2

L2(Ωint)
,

where Young’s inequality

‖β‖2
L∞‖b‖L∞‖∇u‖L2(Ωint)‖u‖L2(Ωint) ≤

ε

2
‖∇u‖2

L2(Ωint)
+
‖β‖4

L∞‖b‖2
L∞

2ε
‖u‖2

L2(Ωint)

for ε > 0 has been employed. Choosing ε = θ and adding an additional zero (±θ/2)‖u‖2
L2(Ωint)

gives (2.21) with CV and CL2(Ωint) as defined in (2.22).

2.1.2 Assumptions on dtn
In order to have a chance of deriving well-posedness for the interior problem with DtN
as boundary condition, some assumptions on dtn need to be imposed. They essentially
consist of growth conditions and positive or negative definiteness of the real and imaginary
parts, respectively.

• For all ` ∈ N0:

Im dtn(λ`) < 0, (dtn-I<)

Im dtn(λ`) ≤ 0. (dtn-I≤)

• There exists a finite (possibly empty) set L− ⊂ N0 with complement L+ := N0 \L−
such that

Re dtn(λ`) ≥ 0 for ` ∈ L+. (dtn-II)

• There exists a constant CIII ≥ 0 such that

| dtn(λ`)| ≤ CIII (1 + |λ`|)1/2 for all ` ∈ N0. (dtn-III)

At this point of the presentation, these assumptions seem to appear from nowhere.
The remainder of this chapter aims to demonstrate that these are the appropriate prop-
erties to work with from an application and mathematical analysis point of view. Firstly,
Section 2.2-Section 2.4 identify dtn for several examples of stratified media for all of
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which said assumptions are observed to be satisfied using numerical investigations. For
our most important examples we also present analytical proofs of these assumptions.
Secondly, Section 2.5 sets out to investigate well-posedness of the reduced, interior prob-
lem for the class of dtn functions fulfilling these properties. In this vein, the precise
mathematical role of each individual assumption will be identified.

• The condition (dtn-I<)/ (dtn-I≤) is related to uniqueness.

• The requirement (dtn-II) on the real part will be needed for establishing a G̊arding
inequality. To give a physical interpretation of this condition, note that

∂r
(
|Λr(λ`)|2

)
= Λ′r(λ`)Λ̄r(λ`) + Λr(λ`)Λ̄

′
r(λ`). (2.23)

Evaluating this expression at r = a leads to

∂r
(
|Λr(λ`)|2

)∣∣
r=a

= −2 Re dtn(λ`),

since Λa(λ`) = 1 and dtn(λ`) = −Λ′a(λ`) by definition. Hence, the requirement
(dtn-II) means that for ` ∈ L+ the amplitude of the modes decreases towards
infinity.

• For Γ compact without boundary the norm in the Sobolev spaces on Γ is charac-
terized in Appendix B as

‖u‖2
Hs(Γ) '

∞∑

`=0

(1 + |λ`|)s |〈u,w`〉Γ|2, s ∈ R. (2.24)

Therefore, the growth condition (dtn-III) is equivalent to the requirement that DtN
maps H1/2(Γ) boundedly into H−1/2(Γ).

2.2 Scattering problems

ui

us us

K

k(x)

k = k(|x|)

k ≡ k∞

Figure 2.1: Basic setup of direct scattering problem.

We consider acoustic waves that are scattered by an inhomogeneous medium k(x)
or a compact obstacle K ⊂ Rd, see Fig. 2.1 for a sketch and e.g. [CK13] for more
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information on scattering problems. It is assumed that the wavenumber is constant
outside a possibly large ball, i.e. there exists RJ > 0 such that k(x) = k∞ for |x| > RJ.
Let ui(x) = exp(ik∞x · v) for some v ∈ Rd be an incident wave. The sound-hard, direct
scattering problem consists of finding the total field u(x) = ui(x) + us(x) in Ω := Rd \K
such that

−∆u− k2(x)u = 0 in Ω, (2.25a)

∂u

∂nK
= 0 on ∂K, (2.25b)

lim
|x|→∞

|x|(d−1)/2

(
∂u

∂|x| − ik∞u
)

= 0, (2.25c)

where nK denotes the exterior normal vector of K. Equation (2.25c) is the Sommerfeld
radiation condition which characterizes outgoing waves for Im(k∞) ≥ 0 as is henceforth
assumed. The Neumann boundary condition (2.25b) can alternatively be replaced by a
Dirichlet boundary condition at the scatterer. This is called sound-soft scattering. This
problem fits into the framework introduced in Section 2.1 with aij = δij, β = 0 and
c = −k2. It is naturally posed on an infinite domain which needs to be truncated for
computational purposes. To this end, truncation boundaries of two different geometrical
shapes will be considered. Section 2.2.1 deals with the spherical or circular case and
Section 2.2.2 with ellipses.

2.2.1 Spherical truncation boundary

Transparent boundary conditions for homogeneous media would need to be constrained
to set the truncation boundary at |x| ≥ RJ where the wavenumber is constant. However,
the introduced framework allows for more generality. It is possible to treat a wavenumber
which is spherically symmetric, i.e. k(x) = k(|x|) outside a smaller ball |x| ≥ a for a ≤ RJ

as sketched in Fig. 2.1 and set the truncation boundary at |x| = a. The diffeomorphism
(2.4) for spherical truncation boundaries Γ = aSd−1 is given by

Ψ(r, x̂) :=
r

a
x̂ for r ∈ [a,∞), x̂ ∈ Γ. (2.26)

It fulfills |∂rΨ(a, x̂)|2 = 1. The equation transforms in these coordinates to

(
−∆u− k2u

)
(Ψ(r, x̂)) =

(
−r1−d∂r(r

d−1∂r)−
a2

r2
∆Γ − k2(r) Id

)
(u ◦Ψ)(r, x̂). (2.27)

The operators in (2.5) can then be identified as

KΓ = −∆Γ, MΓ = IdΓ,

A = −r1−d∂r(r
d−1∂r)− k2(r) Id, B =

a2

r2
.

Here, KΓ is the Laplace-Beltrami operator on Γ, which is self-adjoint with compact
resolvent. In two dimensions its eigenfunctions are given by trigonometric polynomials
and in three dimensions by spherical harmonics. The corresponding eigenvalues are λ` =
(`/a)2 on the circle and λ` = `(` + 1)/a2 on the two-dimensional sphere. In the next
sections the dtn functions are identified for important special cases.
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Homogeneous medium d = 2

Consider the two dimensional case. If the medium in the exterior is homogeneous, i.e.
k(r) = k = k∞ for r ≥ a, then the solution satisfying (2.12b) is given by Λr(λ) =

H
(1)

a
√
λ
(kr)/H

(1)

a
√
λ
(ka), where H

(1)

a
√
λ

are the Hankel functions of the first kind of order a
√
λ.

This leads to the dtn-function

dtnhom,2d
(λ) =

−k
H

(1)

a
√
λ
(ka)

(H
(1)

a
√
λ
)′(ka). (2.28)

The prime denotes the derivative with respect to the argument of the Hankel function. A
plot of dtnhom,2d

for k = 16 and a = 1 is shown in Figure 2.2. It can be clearly seen that
the assumptions (dtn-I<), (dtn-II) and (dtn-III) are fulfilled. The next lemma indeed
proves this analytically for general k > 0 and a > 0.

Lemma 2.3. Let k > 0 and a > 0. Then

(a) Im dtnhom,2d
(λ) < 0 for all λ ≥ 0 and Im dtnhom,2d

(λ)→ −0 as λ→ +∞.

(b) There exists a constant C(k, a) > 0 such that

Re dtnhom,2d
(λ = 0) = C(k, a) > 0.

(c) For λ ≥ 0 it holds that

Re dtnhom,2d
(λ) =

√
λ− k ra√λ(ka),

with |ra√λ(ka)| ≤ 1 for a
√
λ ≥ 1.

Proof. For ease of notation set ν = a
√
λ and x = ka. Then

dtnhom,2d
(λ) = − k

|H(1)
ν (x)|2

[(Jν(x)J ′ν(x) + Yν(x)Y ′ν(x)) + iW {Jν(x), Yν(x)}] , (2.29)

where Jν and Yν denote the Bessel functions of the first and second kind, respectively,
and W {Jν(x), Yν(x)} := Jν(x)Y ′ν(x)− J ′ν(x)Yν(x) is the Wronskian.

(a) Using [AS64, equation (9.1.16)], i.e.

W {Jν(x), Yν(x)} =
2

πx
,

yields

Im dtnhom,2d
(λ) = − 2k

πx

1

|H(1)
ν (x)|2

.

According to Nicholson’s integral formula (see [Wat22, chapter 13-73] for a proof),
we have

|H(1)
ν (x)|2 =

8

π2

∞∫

0

K0(2x sinh(t)) cosh(2νt) dt, (2.30)

where Kµ is the modified Bessel function of the second kind of order µ. K0 is a

positive function on R+. Hence, the integrand is strictly positive, i.e. |H(1)
ν (x)|2 > 0,

so that Im dtnhom,2d
(λ) < 0 for all λ ≥ 0 follows. Furthermore, cosh(2νt) → ∞ as

ν →∞ implies Im dtnhom,2d
(λ)→ −0 as λ→ +∞.
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(b) Using J ′0(x) = −J1(x) and Y ′0(x) = −Y1(x) (see [AS64, equation (9.1.28)]) gives

Re dtnhom,2d
(λ = 0) = k

(J1(x)J0(x) + Y1(x)Y0(x))

|H(1)
ν (x)|2

.

According to [Fre18, Section 4.1], the nominator can be written as

J1(x)J0(x) + Y1(x)Y0(x) =
8

π2

∞∫

0

K1(2x sinh(t)) sinh(t) dt.

The integrand is positive on R+ and so is the right hand side. Combining this with

|H(1)
ν (x)|2 > 0 as seen in (a) yields the claim.

(c) Using recurrence relations [AS64, equation (9.1.27)] for the derivatives gives

Re dtnhom,2d
(λ) =

kν

x
− krν(x),

with

rν(x) :=
Jν(x)Jν−1(x) + Yν(x)Yν−1(x)

|H(1)
ν (x)|2

.

For θν being the argument of H
(1)
ν (x) , i.e. θν = argH

(1)
ν (x), it holds according to

[AS64, equation (9.2.19)] that

Jν(x) = |H(1)
ν (x)| cos(θν), Yν(x) = |H(1)

ν (x)| sin(θν).

Therefore,

rν(x) =
|H(1)

ν−1(x)|
|H(1)

ν (x)|
cos (θν − θν−1) .

From Nicholson’s integral formula (2.30) it follows that |H(1)
ν−1(x)| ≤ |H(1)

ν (x)| for
ν ≥ 1, which implies |rν(x)| ≤ 1 for ν ≥ 1 and concludes the proof.

To begin with, the domain of the function dtnhom,2d
coincides with the spectrum of the

Laplace-Beltrami operator on Γ. The next proposition first shows that dtnhom,2d
admits

an extension to a meromorphic function on C and then investigates its pole structure.
The proposition is essentially obtained as a corollary from the results of Magnus and
Kotin [MK60] and Cochran [Coc65] about zeros of Hankel functions as functions of their
order.

Proposition 2.4 (Meromorphic structure of dtnhom,2d
). Let z := ka such that Re(z) > 0

and Im(z) ≥ 0.

(a) We can extent λ 7→ dtnhom,2d
(λ) to a meromorphic function on C.

(b) The poles of dtnhom,2d
are all simple.
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Figure 2.2: The dtnhom,2d
function and its poles for k = 16 and a = 1.

(c) Let λjp and λjr for j = 1, 2, . . . denote the roots of λ 7→ H
(1)

a
√
λ
(z) and λ 7→ (H(1))′

a
√
λ
(z),

respectively. The following expansion into a sum of simple poles holds:

dtnhom,2d
(λ) = lim

N→∞
SN(λ) (2.31)

for

SN(λ) := −k (H
(1)
0 )′(z)

H
(1)
0 (z)

[
N∑

n=1

PN(λnp)

QN(λnp)
+

N∑

n=1

PN(λnp)(λnp − λNr )

QN(λnp)

1

λ− λnp

]
, (2.32)

where

PN(λ) :=
λNp
λNr

N−1∏

n=1

(λ− λnr )
λnp
λnr
, QN(λnp) :=

N∏

j=1,j 6=n
(λnp − λjp).

Proof. (a) For any z 6= 0 the function H
(1)
ν (z) is an entire function of ν, see e.g. [Olv74,

Chapter 7, Section 4.1]. For the derivative with respect to z the recurrence relation

2(H
(1)
ν )′(z) = H

(1)
ν−1(z) − H(1)

ν+1(z) holds. Hence, it is also an entire function of ν.

Since ν = a
√
λ in the definition (2.28) of dtnhom,2d

, we do not obtain meromorphicity
directly on all of C. If the negative real axis R− := {−x : x ≥ 0} is chosen as branch

cut of the square root, then it first follows that dtnhom,2d
is meromorphic on C except

for R−. The following argument shows that meromorphicity even extends to R−.

Let ζ(ν) := (H
(1)
ν )′(z)/H

(1)
ν (z) for z = ka. According to [AS64, equation 9.1.6]

the identity H
(1)
−ν (z) = exp(νπi)H

(1)
ν (z) holds. The recurrence relation implies that

the same identity is valid for the derivative, i.e. (H
(1)
−ν )′(z) = exp(νπi)(H

(1)
ν )′(z).

Hence, ζ(−ν) = ζ(ν), i.e. ζ is an even function. Outside the roots of the denomi-

nator ν 7→ H
(1)
ν (z) (which do not cross R−), the function ζ is analytic and all odd

coefficients in its local series expansion must vanish because ζ is even. Therefore,
evaluating ζ(ν) at ν = a

√
λ is unproblematic and dtnhom,2d

(λ) = −kζ(a
√
λ) is in

fact meromorphic on all of C.
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(b) By part (a), the poles of dtnhom,2d
coincide with the roots of λ 7→ H

(1)

a
√
λ
(z). Accord-

ing to [MK60, Thm. 2.3.], these roots are all simple, which yields the claim.

(c) Let

g(ν) :=
π

2
e(ν+1)πi/2H(1)

ν (z) =

∞∫

0

eiω cosh(t) cosh(νt) dt. (2.33)

Magnus and Kotin [MK60] have shown that f(λ) = g(
√
λ) is an entire function of

order ≤ 1/2 by estimating the integral in (2.33). Hadamard’s factorization theorem
for entire functions then yields

f(λ) = f(0)
∞∏

n=1

(
1− λ

a2λnp

)
,

where a2λnp are the zeros of f(λ), i.e. the zeros of λ 7→ H
(1)√
λ
(z). This means that

H
(1)√
λa

(z) = e−
1
2

√
λaπiH

(1)
0 (z)

∞∏

n=1

(
1− λ

λnp

)
(2.34)

holds true. In reference [Coc65] it has been shown that a similar formula is valid for

the derivative (H
(1)√
λ
)′(z), which follows again essentially by means of the recurrence

relation. Hence,

(H
(1)√
λa

)′(z) = e−
1
2

√
λaπi(H

(1)
0 )′(z)

∞∏

n=1

(
1− λ

λnr

)
. (2.35)

The representation formula (2.31) follows by combining equations (2.34) and (2.35)
and performing partial fractions decomposition. We have:

dtnhom,2d
(λ) =

−k
H

(1)

a
√
λ
(ka)

(H
(1)

a
√
λ
)′(ka) = −k (H

(1)
0 )′(z)

H
(1)
0 (z)

lim
N→∞

N∏

n=1

(1− λ/λnr )(
1− λ/λnp

) .

A calculation gives

N∏

n=1

(1− λ/λnr )(
1− λ/λnp

) =
N∏

n=1

(λ− λnr )

(λ− λnp)

λnp
λnr

= (λ− λNr )
PN(λ)

RN(λ)
,

with RN(λ) :=
∏N

j=1(λ− λjp). Evaluating

R′N(λ) =
N∑

n=1

N∏

j=1,j 6=n
(λ− λjp).

at λ = λnp gives

R′N(λnp) =
N∏

j=1,j 6=n
(λnp − λjp) := QN(λnp)
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It follows that

(λ− λNr )
PN(λ)

RN(λ)
= (λ− λNr )

N∑

n=1

PN(λnp)

R′N(λnp)

1

λ− λnp
=

N∑

n=1

PN(λnp)

QN(λnp)

[
1 +

λnp − λNr
λ− λnp

]

=
N∑

n=1

PN(λnp)

QN(λnp)
+

N∑

n=1

PN(λnp)(λnp − λNr )

QN(λnp)

1

λ− λnp
,

which shows the claim.
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Figure 2.3: The plot on the right displays the relative error (2.37) for the approximation

of dtnhom,2d
by its expansion into a sum of N simple poles on the interval [0, µak2] for

µ ∈ [1/2, 1, 2, 4]. On the left the meromorphic function λ 7→ dtnhom,2d
(λ) is visualized

using domain coloring. Poles and roots are displayed in white and black respectively. The
phase is visualized by means of a color hue. Grid lines of polar coordinates are shown in
black.

It is interesting to investigate how fast the expansion in (2.31)-(2.32) converges. To
get a rough idea, asymptotic expansions for the poles

a
√
λnp =

iπn

i(π/2− arg(ka)) + ln
(

3πn
e|ka|

)
[
1 +

ln lnn

lnn
O(1)

]
, (2.36)

obtained by Cochran [Coc65], which are valid for large n, are useful. For λ ≥ 0

∞∑

n=N+1

∣∣∣∣
1

λ− λnp

∣∣∣∣ .
∞∑

n=N+1

1

| Imλnp|
.

∞∑

n=N+1

g(n)

n2
.

∞∫

N

g(x)

x2
.
g̃(N)

N
,

where the functions g and g̃ grow polylogarithmically. Hence, asymptotically one might
expect at best linear convergence in the supremum norm.

To check this, we computed the first ten thousand poles λnp and roots λnr numerically
and evaluated the relative supremum error

sup
λ∈[0,µak2]

| dtnhom,2d
(λ)− SN(λ)|

| dtnhom,2d
(λ)|

(2.37)
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for k = 16, a = 1 and µ ∈ [1/2, 1, 2, 4]. The results displayed in Fig. 2.3 clearly show
a linear convergence in N . As the length of the interval grows, i.e. when µ increases,
it takes slightly longer before the asymptotic regime of convergence of O(N−1) becomes
apparent.

The poles λnp are also of independent interest as the following remark shows.

Remark 2.5 (Poles of dtnhom,2d
as poles of scattering amplitudes). The poles a

√
λnp have

received considerable attention in the literature, see e.g. [MK60, Coc65, KRG63]. As for
example discussed in the introduction of [KRG63], this is partly motivated by their oc-
curence as poles of certain scattering amplitudes in scattering phenomena. One approach
to see this connection proceeds by applying a certain integral transform to the eigenfunc-
tion expansion of the solution, see e.g. (2.11), and evaluate this by means of the residue
theorem. For the intricate computational details we refer to the paper [Nus65] by Nussen-
zveig on high-frequency scattering by a totally reflecting sphere. More modern treatments
of the topic in the context of microlocal analysis can be found in references [Tay79, MT85].
The integral transformation which is employed here is named after Watson, who carried
out pioneering research in this direction [Wat33]. He also seems to be the first who dis-
covered [Wat18] for a problem from electromagnetism that a certain scattering amplitude

had poles at roots of λ 7→ H
(1)
λ (ka). Later, it has been found for many other problems that

poles of scattering amplitudes are connected to roots of certain transcendental functions.
Regge [Reg59] investigated this in the context of quantum mechanics. Explicit derivations
may be found in Newton’s monograph on scattering theory [New82, Chapter 13].

It is an interesting question to investigate whether there exists a relation between
poles of dtn and resonances, which are those complex wavenumbers for which the exterior
problem with homogeneous boundary conditions admits non-trivial outgoing solutions. In
the context of the Helmholtz equation in the exterior of a disk the resonances are given by
the roots of k 7→ H

(1)
` (ka) for ` = 0, 1, . . ., see Section 5.3. It is not immediately clear how

to relate roots of the Hankel functions with respect to their order (poles of dtnhom,2d
and

scattering amplitudes) to roots with respect to their argument (resonances). This matter
if left open for future investigations.

Homogeneous medium d = 3

In three dimensions the dtn function for a homogeneous medium is given by

dtnhom,3d
(λ) = −k

(
h

(1)
1
2(−1+

√
1+4a2λ)

)′
(ka)

(
h

(1)
1
2(−1+

√
1+4a2λ)

)
(ka)

, dtnhom,3d
(λ`) = −k (h

(1)
` )′(ka)

h
(1)
` (ka)

, (2.38)

where h
(1)
` denotes the spherical Hankel function of the first kind of order `. It behaves

very similar to the two-dimensional case. A plot for k = 16 and a = 1 is shown in
Fig. 3.6. The following result from the literature shows that the assumptions (dtn-I<),
(dtn-II) and (dtn-III) are fulfilled.

Lemma 2.6. Let k > 0 and a > 0. Then

(a) Im dtnhom,3d
(λ`) < 0 for all ` ∈ N0 and Im dtnhom,3d

(λ`)→ −0 as `→ +∞.
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(b) The real part of dtnhom,3d
(λ`) is positive and bounded from above:

Re dtnhom,3d
(λ`) ≥

1

a
> 0.

(c) For ` ∈ N0 it holds that

√
1

a2
+ 4λ` +

1

2a
− k ≤ Re dtnhom,3d

(λ`) ≤
√

1

a2
+ 4λ` +

1

2a
+ k.

Proof. See [DI01, Lemma 3.2].

The spherical Hankel functions can be regarded as Hankel functions of fractional
order in view of the relation h

(1)
` (x) =

√
π/(2x)H

(1)
`+1/2(x), see [AS64, equation (10.1.1)].

Therefore, it follows from the results of the previous subsection that dtnhom,3d
may also

be extended to a meromorphic function. Naturally, its pole structure, which can be seen
in Fig. 3.6, is similar to that of dtnhom,2d

.

Remark 2.7. The proof in reference [DI01] relies on the property

|h(1)
` (x)|2 =

π

2x
|H(1)

`+1/2(x)|2 =
1

x2

∑̀

j=0

(2`− j)!(2`− 2j)!

j! [(`− j)!]2
(2x)2j−2`, (2.39)

see [AS64, equation (10.1.27)]. To the best of our knowledge, such a series expansion of

|H(1)
ν (x)|2 is only possible when ν is an half-integer. This means that it is not possible to

infer results from Lemma 2.6 for the two-dimensional dtn function

dtnhom,2d
(λ`) = −k (H

(1)
` )′(ka)

H
(1)
` (ka)

by using the relation h
(1)
` (x) =

√
π/(2x)H

(1)
`+1/2(x), because this would require results

about the right hand side of (2.38) at non-integer `’s. On the other hand, the advan-
tage of property (2.39) is that it leads to stronger results in the case of d = 3. Indeed,

Re dtnhom,3d
(λ`) ≥ 1

a
> 0 was shown in [DI01], whereas Lemma 2.3 established in this

thesis only proves that Re dtnhom,2d
(λ) is bounded from below for

√
λ ∈ (0, ξ] and positive

for
√
λ ∈ {0} ∪ (ξ,∞) for ξ = max{k, 1/a}. However, numerical experiments (see e.g.

Fig. 2.2 lead to the conjecture that Re dtnhom,2d
(λ) is a non-decreasing function on the

positive real line so that Re dtnhom,2d
(λ) ≥ Re dtnhom,2d

(λ = 0) = C(a, k) > 0 should hold
true.

Jumping coefficient d = 2

Let us now drop the assumption of a uniformly homogeneous exterior domain. Consider
a discontinuous wavenumber

k(r) =

{
kI r < RJ,

k∞ r > RJ,
(2.40)

for some kI , k∞ > 0. The dtn function corresponding to this example will be referred to as
dtn jump

. It can be described by an analytic formula derived in Appendix E. The derivation
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Figure 2.4: The dtn jump
function and its pole structure for kI = 16, k∞ = 8, a = 1 and

RJ = 2.

determines the exact solution of (2.12a)-(2.12b) by imposing smoothness constraints at
r = RJ and the boundary condition at r = a. In the end, one arrives at

dtn jump
(λ) = ζ(a

√
λ), ζ(ν) = −kI [AνJ

′
ν(kIa) +BνY

′
ν(kIa)] , (2.41)

with Aν = 1−BνYν(kIa)/Jν(kIa) and

Bν =
1

det(MJ
ν )

[
k∞
kI

(H(1)
ν )′(k∞RJ)

Jν(kIRJ)

Jν(kIa)
−H(1)

ν (k∞RJ)
J ′ν(kIRJ)

Jν(kIa)

]
,

for

det(MJ
ν ) = −k∞

kI

(H
(1)
ν )′(k∞RJ)

Jν(kIa)
[Jν(kIa)Yν(kIRJ)− Yν(kIa)Jν(kIRJ)]

+
H

(1)
ν (k∞RJ)

Jν(kIa)
[Y ′ν(kIRJ)Jν(kIa)− Yν(kIa)J ′ν(kIRJ)] .

A plot of dtn jump
for a = 1, R = 2, kI = 16 and k∞ = 8 is given in Fig. 2.4. The dtn jump

function exhibits a series of spikes for small λ` which are associated with poles of its
meromorphic extension that are located close to the real axis. In the vicinity of the poles
the real part Re dtn jump

(λ`) can become negative. These exceptional modes ` need to
be absorbed into the set L− defined in assumption (dtn-II). The plot shows that only a
finite number of these outliers seem to occur and that the real part at the eigenvalues
is eventually positive. Hence assumption (dtn-II) is fulfilled. The other assumptions
(dtn-I<) and (dtn-III) hold as well according to the plot.

It is also possible to prove the properties (dtn-I≤) and (dtn-III) analytically as shown
in the following lemmas.
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Lemma 2.8. The function dtn jump
fulfills (dtn-I≤). If the constant CJ

a
√
λ`

defined in

(E.6) is nonzero for all ` ∈ N0, then even the sharp bound (dtn-I<) holds.

Proof. Integration by parts for some R > a yields

∫

[a,R]

([A+ λ`B]u) v
(r
a

)d−1

dr = u′(a)v(a)−
(
R

a

)d−1

u′(R)v(R)

+

∫

[a,RV]

(
u′v′ +

(
−k2(r) +

λ`a
2

r2

)
uv

)(r
a

)d−1

dr.

Now taking u = Λr(λ`), v = Λ̄r(λ`) as solutions of (2.12a)-(2.12b) and using that v(a) =
Λ̄a(λ`) = 1 and u′(a) = Λ′a(λ`) = − dtn(λ`) = by definition yields the representation

dtn jump
(λ`) =

∫

[a,R]

(
|Λ′r(λ`)|2 +

(
λ`a

2

r2
− k2(r)

)
|Λr(λ`)|2

)(r
a

)d−1

dr

−
(
R

a

)d−1

Λ′R(λ`)Λ̄R(λ`).

(2.42)

Taking the imaginary part gives

Im dtn jump
(λ`) = −

(
R

a

)d−1

Im(Λ′R(λ`)Λ̄R(λ`))

for any R > a. By Sommerfeld’s radiation condition

Rd−1 |Λ′R − ik∞ΛR|2 = Rd−1
(
|Λ′R|2 − 2k∞ Im(Λ′RΛ̄R) + k2

∞|ΛR|2
)

goes to zero as R→∞. Hence,

Im dtn jump
(λ`) = − 1

2k∞ad−1
lim
R→∞

Rd−1(|Λ′R|2 + k2
∞|ΛR|2︸ ︷︷ ︸

≥0

) ≤ 0, (2.43)

which already implies (dtn-I≤). To prove the sharp bound (dtn-I<), the limit on the right
hand side of (2.43) has to be calculated explicitly. From Appendix E it is known that for
R ≥ RJ

ΛR(λ`) = CJ
a
√
λ`
H

(1)

a
√
λ`

(k∞R),

with CJ
a
√
λ`

defined in (E.6). From [AS64, equation (9.2.3)] the asymptotic behavior

|H(1)
ν (z)| =

√
2

πz
as |z| → ∞

is known. Thus, for d = 2

Im dtn jump
(λ`) ≤ −

1

πad−1
|CJ

a
√
λ`
|2,

which is strictly smaller zero provided CJ
a
√
λ`

does not vanish.
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In view of the complexity of the formula for dtn jump
, it seems challenging to prove

(dtn-III) based on equation (2.41) as was possible for dtnhom,2d
. A better strategy is to

prove directly that DtN : H1/2(Γ)→ H−1/2(Γ) is well-defined. This can be inferred from
the already established well-definedness of the DtN map for the homogeneous medium by
extending Ωint up to r = RJ beyond which the exterior medium becomes homogeneous.
A formal derivation is given in the next lemma.

Lemma 2.9. The function dtn jump
fulfills (dtn-III).

Proof. Let R∞ ≥ RJ such that k(r) = k∞ for r ≥ R∞ holds and define the annulus
Ω̃int := {x ∈ Rd | a < ‖x‖ < R∞} with outer boundary Γ∞ := {x ∈ Rd | ‖x‖ = R∞}.
Since the medium for r ≥ R∞ is homogeneous, the DtN ∞ : H1/2(Γ∞)→ H−1/2(Γ∞) map
is continuous2 and its corresponding dtn∞ function fulfills the properties (dtn-I<), (dtn-
II) and (dtn-III). From Corollary 2.20 it will follow3 that the problem: Given boundary
data uΓ ∈ H1/2(Γ) find u ∈ Ṽ := {v ∈ H1(Ω̃int) | trΓ u = 0} such that

b̃int(u, v) = −b̃int(ZuΓ, v) for all v ∈ H1
0 (Ω̃int), (2.44)

with

b̃int(u, v) :=

∫

Ω̃int

∇u∇v̄ − k(x)2uv̄ dx+ 〈DtN ∞u, v〉Γ∞

is well-posed. Here Z denotes a right inverse for the trace operator on Γ, see Appendix A.
Elliptic regularity implies that uext := u+ ZuΓ ∈ H2

loc(Ω̃int) and that the PDE

−∆uext = k2uext

is fulfilled almost everywhere in Ω̃int. That is, ‖∆uext‖L2(Ω̃int)
≤ ‖k‖2

L∞(Ω̃int)
‖uext‖L2(Ω̃int)

so that in fact ∆uext ∈ L2(Ω̃int). Therefore, Proposition A.4 from Appendix A allows to
define a weak normal derivative ∇uext · nΓ ∈ H−1/2(Γ), which fulfills the estimate

‖∇uext · nΓ‖H−1/2(Γ) ≤ ‖Z‖
(

1 + ‖k‖2
L∞(Ω̃int)

)
‖uext‖H1(Ω̃int)

and agrees with the strong normal derivative on sufficiently smooth functions. Since
‖uext‖H1(Ω̃int)

≤ C‖uΓ‖H1/2(Γ) by well-posedness of (2.44), the map DtN uΓ = −∇uext ·nΓ

is continuous from H1/2(Γ) to H−1/2(Γ), which establishes the claim.

2.2.2 Elliptical truncation boundary

Elongated obstacles may be enveloped more efficiently using elliptical than spherical
coupling boundaries, see Fig. 2.5 for an illustration. Let aΓ > 0 be the semi-major axis
of Γ and bΓ > 0 its semi-minor axis. Using the level set function

φ(x, y) =

(
x

aΓ

)2

+

(
y

bΓ

)2

− 1,

the geometry can be described as

Ωint = {φ < 0}, Γ = {φ = 0}, Ωext = {φ > 0}.
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Figure 2.5: Scattering problem with elliptical coupling boundary. (a) Sketch of geomet-

rical setup and coordinate lines of elliptical coordinate system. (b) The dtnellipse
function

for semi-major axis aΓ = 4/3 and semi-minor axis bΓ = 1/2.

Elliptical coordinates in Ωext are defined by
(
x

y

)
= c

(
cosh(r) cos(ϕ)

sinh(r) sin(ϕ)

)
, r ∈ [a,∞), ϕ ∈ [0, 2π],

with c :=
√
a2

Γ − b2
Γ and a := arccosh(aΓ/c). The coordinates lines as sketched in Fig. 2.5

are ellipses in ϕ and hyperbolas in r. Assuming that k(r) ≡ k in Ωext, the Helmholtz
equation in these coordinates is given by

(
− ∂2

∂r2
− 2q cosh(2r)

)
u+

(
− ∂2

∂ϕ2
+ 2q cos(2ϕ)

)
u = 0, (2.45)

with q := c2k2/4, complemented by a Sommerfeld radiation condition at infinity. It is
well-known that DtN is separable in these coordinates, see e.g. [BPG95]. The eigenvalues
or separation constants λ(q) are defined by

(
− ∂2

∂ϕ2
+ 2q cos(2ϕ)

)
vλ(q) = λ(q)vλ(q). (2.46)

If the eigenfunctions vλ(q) are required to be π or 2π-periodic, they can be developed
into a Fourier series. Plugging such an ansatz into (2.46) leads to a three term recurrence
relation for the Fourier coefficients (see [AS64, section 20.2]), which can be solved by
different approaches, e.g. by transformation to a matrix eigenvalue problem or by using
a continued fraction expansion. The eigenvalues λ(q), known as characteristic numbers,
are usually distinguished into two categories.

• Eigenvalues aj are associated with the even periodic Mathieu functions of the first
kind cej(ϕ, q).

2As we have established the growth bound (dtn-III) for dtnhom,2d
which implies that DtN∞ maps

H1/2(Γ∞) boundedly into H−1/2(Γ∞).
3The corollary applies since k is in L∞(Ω̃int). We should also remark that multiplication with MΓ

on Γ∞ is omitted here since this map is just the identity for spherical coupling boundaries.

29



• Eigenvalues bj are associated with the odd periodic Mathieu functions of the first
kind sej(ϕ, q).

In contrast to the case of the Laplace-Beltrami operator on spherical coupling boundaries,
(a finite number of) these eigenvalues can be negative. Let

λ̃2j := aj, v2j := cej,

λ̃2j+1 := bj, v2j+1 := sej.

The corresponding solutions of the radial equation

(
− ∂2

∂r2
− 2q cosh(2r) + λ̃j

)
Λj = 0

fulfilling the radiation condition at infinity are given by the radial Mathieu functions of
the third kind

Λ2j(r) := Mcj(r), Λ2j+1 := Msj(r).

For convenience, we let {λ`} be a permutation of the set {λ̃j} such that λ` ≤ λ`+1 for all
` ∈ N0. Then

dtnellipse
(λ`) = −Λ′`(a)/Λ`(a) (2.47)

as usual.

To cast (2.45) into the form of equation (2.5) used in the general framework, define
the diffeomorphism Ψ by

Ψ

(
r,

(
x̂

ŷ

))
:=

(
cosh(r)
cosh(a)

x̂
sinh(r)
sinh(a)

ŷ

)
,

(
x̂

ŷ

)
= c

(
cosh(a) sin(ϕ)

sinh(a) cos(ϕ)

)
∈ Γ,

The Laplace-Beltrami operator and tangential gradient are given by

∇Γ =
1

|∂rΨ(a, x̂)|2
∂ϕ, ∆Γ =

1

|∂rΨ(a, x̂)|2
∂ϕ

(
1

|∂rΨ(a, x̂)|2
∂ϕ

)
,

with |∂rΨ(a, x̂)|2 = c
√

sin(ϕ)2 + sinh(a)2 describing the length of the normal vector on
Γ. With the operators

MΓ := 1/|∂rΨ(a, x̂)|2, KΓ := −|∂rΨ(a, x̂)|2∆Γ −∇Γ (|∂rΨ(a, x̂)|2)∇Γ +
2q cos(2ϕ)

|∂rΨ(a, x̂)|2

the eigenvalue problem (2.46) can be written as

KΓvλ(q) = λ(q)MΓvλ(q).

With

A = − ∂2

∂r2
− 2q cosh(2r), B = 1,

equation (2.5) holds true in the transformed coordinates.
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Remark 2.10 (Variational formulation). Note that integration by parts leads to
∫

Γ

−|∂rΨ(a, x̂)|2 (∆Γu) v̄ dΓ =

∫

Γ

∇Γu∇Γ (|∂rΨ(a, x̂)|2v̄) dΓ

=

∫

Γ

|∂rΨ(a, x̂)|2∇Γu∇Γv̄ + (∇Γu) v̄∇Γ (|∂rΨ(a, x̂)|2) dΓ.

Hence, the non-symmetric terms cancel in the weak form of the operator KΓ and we
obtain that the bilinear forms KΓ(·, ·) and MΓ(·, ·) associated with the operators KΓ and
MΓ fulfilling the eigenvalue equation are given by

KΓ(u, v) =

∫

Γ

[
|∂rΨ(a, x̂)|2∇Γu∇Γv̄ +

c2k2

2

1

|∂rΨ(a, x̂)|2
cos(2ϕ)uv̄

]
dΓ,

MΓ(u, v) =

∫

Γ

1

|∂rΨ(a, x̂)|2
uv̄dΓ.

Compared to the case of Bessel functions, relatively few identities are known for Math-
ieu functions. This may partly stem from the complexity of determining the characteristic
values λ`(q). As a result, we have not been able to establish a counterpart of Lemma 2.3,
i.e. a verification of (dtn-I<), (dtn-II) and (dtn-III) based on the properties of Mathieu
functions. Nevertheless, numerical studies suggest that these assumptions are fulfilled as
can also be seen in Fig. 2.5. Moreover, property (dtn-III) could be established with a sim-

ilar technique as utilized in Lemma 2.9 for dtn jump
. To this end, the interior domain could

be extended beyond Γ and eventually truncated by a large enough circle at which the
DtN map for spherical geometries is placed. Continuity of DtN : H1/2(Γ) → H−1/2(Γ)
follows then along the lines of Lemma 2.9.

2.3 Waveguides

Next we would like to arrange a suitable geometry for a waveguide. To this end, consider
a smooth and bounded domain Γ̃ ⊂ Rd−1. Let Γ := {a} × Γ̃ for some a ∈ R be the
artificial truncation boundary between the interior Ωint := (0, a) × Γ̃ and the exterior
Ωext := (a,∞)× Γ̃ of the waveguide. Define the diffeomorphism

Ψ(r, x̂) :=

(
r − a

0

)
+ x̂ for r ∈ [a,∞), x̂ ∈ Γ.

In the exterior we consider the Helmholtz equation

(−∆− k2)u = 0 in Ωext,

u = 0 on (a,∞)× ∂Γ̃,
(2.48)

for k > 0 together with a radiation condition that will be discussed below. The PDE
in the interior Ωint of the waveguide may be of the general form (2.15). Let ∆Γ denote
the Laplace-Beltrami operator on Γ. Boundary conditions are assumed so that ∆Γ is
self-adjoint. In the coodinates given by Ψ, the exterior equation (2.48) takes the form

(−∆u− k2u) (Ψ(r, x̂)) =
(
−∂2

r −∆Γ − k2
)

(u ◦Ψ)(r, x̂).
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Hence, A = −∂2
r−k2 Id and B = Id. It follows that (2.12a) has two independent solutions

given by exp(±i
√
k2 − λ`(· − a)). As before, the branch cut of the square root function

is assumed to be the negative imaginary axis. Moreover,

k2 /∈ σ(−∆Γ) (2.49)

will be assumed, where σ(−∆Γ) denotes the spectrum of the Laplace-Beltrami operator.
Then a solution to (2.48) is said to satisfy the radiation condition, if it admits an expan-
sion (2.11) with functions Λr(λ`) that decay for λ` > k2 as r → ∞. This requirement
characterizes Λr(λ`) := exp(i

√
k2 − λ`(r − a)) as the outgoing solution. Hence, the dtn

function is given by

Γ

k(x) k

(a) Geometry.
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−20
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(b) dtnguide

Figure 2.6: Geometry and dtnguide
function for a waveguide with k = 16.5.

dtnguide
(λ) = −i

√
k2 − λ, (2.50)

which is shown in Fig. 2.6b for k = 16.5. Even though dtnguide
can be extended holomor-

phically to a neighborhood of σ(−∆Γ) provided that assumption (2.49) is fulfilled, the
branch cut singularity prevents a natural meromorphic extension to the entire complex do-
main. Since | dtnguide

(λ)| ≤ max{1, |k|2}(1 + |λ|)1/2 and Re dtnguide
(λ) = Re

√
λ− k2 > 0

for λ > k2, the assumptions (dtn-II) and (dtn-III) are fulfilled. However, in contrast
to the previously investigated examples which fulfilled (dtn-I<) because Im dtn(λ) only

approached zero from below as λ→ +∞, we have Im dtnguide
(λ) = 0 for λ > k2. Hence,

only the weaker assumption (dtn-I≤) holds for the waveguide.

2.4 Helioseismology

The Sun is filled with various types of waves which can be utilized for its study. Solar
or more generally stellar oscillations can be modelled by a generalization of Galbrun’s
equation derived in [LBO67], which includes differential rotation and gravity. In this
thesis a simpler model [GBD+17] is considered, which only accounts for pressure waves.
This model has lead to significant scientific insights, see e.g. [GCP+20], and is therefore
the natural starting point for our investigations. Eventually, the techniques presented in
this thesis should be extended to the general equations of stellar oscillations.

2.4.1 Original formulation

The outer 28% of the solar interior form the solar convection zone. This region is convec-
tively unstable and highly dynamic. Turbulent processes in the convection zone excite
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pressure waves which propagate through the entire solar interior and can be observed
at the visible solar solar surface by satellites or ground-based telescopes. The following
time-harmonic convected wave equation describes these waves to a reasonable extent:

− σ2

ρc2
ũ− 2iω

ρc
(ρw) · ∇

(
ũ

ρc

)
−∇ ·

(
1

ρ
∇ũ
)

=
f

c
. (2.51)

The scalar unknown ũ is associated with the divergence of the wave displacement. The
coefficients ρ and c describe solar density and sound speed, respectively, and are provided
by a given background model for the Sun. For the solar interior the Model S of [CD+96]
will be used throughout this thesis. A positive damping γ(r, ω) > 0 is included in
σ2 = ω2 + 2iωγ, see [GBD+17, Section 7.3] or Section 6.1 and Section 6.4 for details.
Here, ω > 0 denotes the frequency. The quantity w represents a background flow which
can e.g. be used to model differential rotation or meridional circulation.
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(a) Solar interior.
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Figure 2.7: Sound speed c and density ρ for solar models. The dashed lines in the right
figure display the Atmo extension, while solid lines represent the VAL-C model [VAL81].

Sound speed and density of the solar background model are functions of the radial
coordinate r = |x| which vary drastically in upper layers of the solar interior. Fig. 2.7a
displays these coefficients for Model S. From the visible surface (photosphere) towards
the core the density varies by nine orders of magnitude, while the sound speed increases
by a factor of about 50. The latter reflects the fact that the core is a few thousand
times hotter than the photosphere as temperature is proportional to the square of the
sound speed. As a result, inward propagating waves are refracted by the rise in sound
speed towards the core while outward propagating, low-frequency waves cannot pass the
steep density gradient in the surface layers and are reflected back into the interior. High
frequency waves, however, can escape into the atmosphere and may be partially reflected
back from the higher atmospheric layers into the interior. This offers the potential of
probing part of the solar atmosphere with high frequency waves and neccessitates the
need for complementing the interior model of the Sun by an appropriate atmospheric
extension.

Equation (2.51) is posed in a domain Ω which includes the solar interior and a part of
the solar atmosphere, which will be specified more precisely below. Standard models of
the solar atmosphere [VAL81, AL08] describe sound speed and density in terms of radially
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symmetric functions. Moreover, the flow w and the source f are assumed to vanish in
the solar atmosphere, which ensures separability of (2.51) above the photosphere. This
already suggests to position the truncation boundary at the solar surface or slightly above,
yet there is an even more compelling argument in favor of this approach. Compared to
the deep solar interior, the wavenumber in the atmosphere is extremely small, which
would lead to a significant increase of the computational costs, if the atmosphere was
meshed. Therefore, the interior domain Ωint is a ball with radius a with a being equal to
or slightly larger than the solar radius.

The equation in Ωint is of the form (2.15) with

(aij) =
1

ρ
Id, c = − σ2

ρc2
,

b = −2ω(ρw), β =
1

ρc
.

Ellipticity (C-I) holds since the density is positive and bounded from below in the solar in-
terior. Due to γ > 0 one has Im c < 0 so that even a strict inequality in (C-III) is fulfilled.
Assumption (C-II) corresponds to conservation of mass and to the constraint that the
flow is confined to the solar interior. Both are standard requirements in helioseismology,
see [GBD+17, Section 2.4].

In the exterior domain the equation is separable with Ψ defined by (2.26) and the
operators in the separation condition (2.5) given as

A = −r1−d∂r(r
d−1 1

ρ
∂r)−

σ2

ρc2
Id, (Bv)(r) =

a2

r2
v(r).

The operators on Γ are simply the identity and the Laplace-Beltrami operator, i.e.MΓ =
IdΓ and KΓ = −∆Γ.

2.4.2 Transformation to Schrödinger equation

Recently, it has become popular [AHN18, GFY+18, BFP20] to work with an equivalent
formulation of (2.51). By means of the substitution u = ρ−1/2ũ the equation transforms
to a Schrödinger-like equation

qu− 2iω

ρ1/2c
(ρw) · ∇

(
u

ρ1/2c

)
−∆u = ρ1/2f

c
, (2.52)

with an effective potential

q = ρ1/2∆
(
ρ−1/2

)
− σ2

c2
. (2.53)

This also fits into the framework of Section 2.1 with

(aij) = Id, c = q,

b = −2ω(ρw), β =
1

ρ1/2c
,

(2.54)

and the assumptions are fulfilled as for the original model. In the exterior

A = −r1−d∂r(r
d−1∂r) + q, B =

a2

r2

and the tangential differential operators on Γ are unchanged. The ODE (2.12a), which
determines the dtn function of the Sun, has to be carefully dicussed as it is neither clear
how to model sound speed and density in the atmosphere nor which radiation condition
to impose to specify an outgoing solution. Two options will be discussed here.
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Atmo extension

A first approach [SCGM11] is to extend the sound speed at the end a of the standard
solar model (for Model S about 0.5 Mm above the photosphere) by a constant and let
density decay exponentially:

ρ(r) = ρ(a) exp(−α(r − a)), c(r) = c(a), for r ≥ a, (2.55)

where α = −ρ′(a)/ρ(a) is the inverse density scale height. This extension does not repre-
sent a realistic solar chromosphere as the authors of [SCGM11] point out. In fact, sound
speed increases sharply in the upper chromosphere as a result of a steep temperature
gradient between the photosphere and the corona. The latter is more than a million
degrees hot while the temperature of the former is only at about 5500◦C. The motivation
for a constant sound speed extension rather stems from the demand to reduce artificial
reflection and promote wave attenuation.

Model (2.55) later became known at the Atmo extension [BCD+18]. It has been subject
of a series of publications in which local transparent boundary conditions for this model
have been developed, see e.g. [BCD+18, FLH+17]. In reference [BFP20] it has been shown
that the exact dtn function corresponding to the outgoing solution (also for γ = 0) can
in fact be described analytically by

dtnAtmo
(λ`) =

1

a
+ 2ik

W ′
−iη,`+ 1

2

(−2ika)

W−iη,`+ 1
2
(−2ika)

, (2.56)

with

k2 :=
σ2

c(a)2
− α2

4
, η :=

α

2k
.

Here, Wκ,µ(z) denotes the Whittaker function [Whi03], which also appears in quantum
mechanical scattering problems with Coulomb potentials [New82]. The Whittaker func-
tion for z ∈ C \ R− is an entire function of µ, see4 [Olv74, Chapter 7, Section 10.3 and

Section 11.1], which allows for a meromorphic extension of dtnAtmo
. A plot of dtnAtmo

is shown in Fig. 6.9 from which it can be seen that assumptions (dtn-I<), (dtn-II) and
(dtn-III) are fulfilled. Since equation (2.56) gives an analytic formula for dtnAtmo

, it might
even be possible to verify these properties analytically similar to Lemma 2.3, yet so far
our attempts have been stalled by a shortage of useful identities or asymptotic estimates
valid for the range of parameters µ, κ and z occuring in the definition of dtnAtmo

.

VAL-C atmospheric model

The main shortcoming of the Atmo model is its failure to account for the drastic rise
in sound speed in the upper chromosphere featured in realistic models, see e.g.[VAL81,
AL08]. A comparison between the Atmo model and the more realistic VAL-C model

of [VAL81] is shown in Fig. 2.7b. To determine the dtnVAL-C
(λ) function for a solar

atmosphere based on the VAL-C model, the ODE (2.12a) is solved numerically on a
finite interval [a,RV]. A sophisticated radiation condition is not needed here as the

4In [Olv74, Chapter 7, Section 10.3] the confluent hypergeometric function U(b, c, z) is characterized
as entire in b and c for z 6= 0 by appealing to [Olv74, Chapter 7, Theorem 3.1]. This implies our statement
about Wκ,µ(z) since according to [Olv74, Chapter 7, Section 11.1] we have Wκ,µ(z) = e−z/2zµ+1/2U(µ−
κ+ 1/2, 2µ+ 1, z).
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damping γ = Imσ is required to be positive. Simply imposing a homogeneous Neumann
boundary condition at RV, which marks the end of the VAL-C model, then suffices to
guarantee uniqueness of the solution.
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Figure 2.8: The dtnVAL−C
function and its pole structure at 7.0 mHz. The photosphere

is taken as the coupling boundary.

A plot of dtnVAL−C
is show in Fig. 2.8. The distinguished feature of dtnVAL−C

(λ)

compared to dtnAtmo
(λ) is the existence of poles extremely close to the real axis in the

preasymptotic regime (small to moderate λ). As already observed for dtn jump
, this results

in negative values of the real part at a few eigenvalues λ = λ` lying close to these poles.
These outliers have to be absorbed into the set L− introduced in assumption (dtn-II).
For the analysis presented in Section 2.5 it is crucial that the set L− is finite, which is
justified according to Fig. 2.8. In particular, the domain coloring plot shows that the
number of poles in the positive half-plane is finite. There seems to be an infinite tail of
alternating poles and roots which starts in the positive half-plane and extends towards
negative infinity. According to the plot, the other assumptions (dtn-I<) and (dtn-III) are
also fulfilled. The following lemma indeed proves that properties (dtn-I<) and (dtn-II)
always hold.

Lemma 2.11. Let dtnVAL−C
(λ) be the dtn function of the VAL-C model based on a

homogeneous Neumann boundary conditions at RV, i.e. Λ′RV
(λ`) = 0 is imposed as

boundary condition in (2.12a). Then dtnVAL−C
fulfills (dtn-I<) and (dtn-II).

Proof. Proceeding as in Lemma 2.8, an integration by parts on [a,RV] yields

∫

[a,RV]

([A+ λ`B]u) v
(r
a

)d−1

dr = u′(a)v(a)−
(
RV

a

)d−1

u′(RV)v(RV)

+

∫

[a,RV]

(
u′v′ +

(
q +

λ`a
2

r2

)
uv

)(r
a

)d−1

dr.

Now taking u = Λr(λ`) which solves (2.12a) and v = Λ̄r(λ`) and using the identities

Λa(λ`) = 1, Λ′RV
(λ`) = 0, dtn(λ`) = −Λ′a(λ`)
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which hold by definition, yields the representation

dtnVAL−C
(λ`) =

∫

[a,RV]

(
|Λ′r(λ`)|2 +

(
q +

λ`a
2

r2

)
|Λr(λ`)|2

)(r
a

)d−1

dr. (2.57)

It follows that Re dtnVAL−C
(λ`) > 0 for λ` > ‖Re q‖[a,RV],∞(RV/a)2, which gives (dtn-II)

with L− := {` ∈ N0 | λ` < ‖Re q‖[a,RV],∞(RV/a)2}. Moreover,

Im dtnVAL−C
(λ`) = −

∫

[a,RV]

2γω

c2
|Λr|2

(r
a

)d−1

dr < 0

because of the positive damping γ. Hence, (dtn-I<) is fulfilled.

Remark 2.12. The representation formula (2.57) extends to general λ ∈ C provided
that the ODE (2.12a) with the respective boundary conditions has a unique solution in

H1([a,RV]) and then | dtnVAL−C
(λ)| <∞ holds. This implies that poles of dtnVAL−C

are
associated with those complex numbers λ for which this ODE problem is not well-posed.

An argument similar to Lemma 2.9 for dtn jump
shows that (dtn-III) is satisfied.

Lemma 2.13. The function dtnVAL−C
fulfills (dtn-III).

Proof. It suffices to show that DtN : H1/2(Γ) → H−1/2(Γ) is continuous. Define the
annulus Ω̃int := {x ∈ Rd | a < ‖x‖ < RV} and let uΓ ∈ H1/2(Γ) be given. Let the
sesquilinearform b̃int(·, ·) be defined as in (2.20) with the coefficients from (2.54) except
that the domain of integration is replaced by Ω̃int, and let Ṽ := {v ∈ H1(Ω̃int) | trΓ u = 0}.
To define DtN , we have to solve the problem: Given uΓ ∈ H1/2(Γ) find u ∈ Ṽ such that

b̃int(u, v) = −b̃int(ZuΓ, v) for all v ∈ H1
0 (Ω̃int). (2.58)

The G̊arding inequality established in Lemma 2.2 remains valid for b̃int(·, ·) on Ṽ × Ṽ .
Furthermore, solutions of (2.58) are unique if they exist which can be inferred by consid-
ering the imaginary part of b̃int(u, u) = 0 and using that γ > 0. A standard application of
the Fredholm alternative using compactness of the embedding Ṽ ↪→ L2(Ω̃int) then shows
that (2.58) is well-posed (see the proof of Theorem 2.19 for a detailed argument in a more
complicated case). By interior elliptic regularity uext := u + ZuΓ ∈ H2

loc(Ω̃int) and the
strong form of the PDE, which is

∆uext = quext

because the flow and the source were assumed to vanish exterior to Ωint, is fulfilled
almost everywhere in Ω̃int. Since q ∈ L∞(Ω̃int), this implies ∆uext ∈ L2(Ω̃int). This
allows to define a weak normal derivative ∇uext ·nΓ ∈ H−1/2(Γ), see Proposition A.4, and
DtN uΓ = −∇uext · nΓ is continuous from H1/2(Γ) to H−1/2(Γ) which can be inferred as
in Lemma 2.9.

2.5 Well-posedness of the reduced interior problem

The aim of this section is to establish well-posedness of the reduced problem on Ωint with
DtN as transparent boundary condition as introduced in Section 2.1. Let us briefly recall
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the setup. For a continuous (anti)-linear functional l : V → C consider the variational
problem: Find u ∈ V such that

b(u, v) = l(v) for all v ∈ V, (2.59)

where
b(u, v) := bint(u, v) + 〈MΓDtN u, v〉Γ. (2.60)

Let the assumptions introduced in Section 2.1 hold. Additionally, the following sim-
plifying assumption on the diffeomorphism Ψ will be made from now on: There exists a
constant cΨ > 0 such that

1

|∂rΨ(a, x̂)|2
= cΨ. (C-V)

This implies MΓ = cΨIdΓ. This assumption is fulfilled for all the considered examples
with the exception of the ellipse. The geometrical intuition behind this assumption is
that the reciprocal length of the normal vector (represented by the left hand side of
(C-V)) for the case of an ellipse depends on the position on the boundary, i.e. it is a
non-constant function of the coordinates x̂ ∈ Γ. Since the full Dirichlet-to-Neumann
map has to represent differentiation in direction of the unit normal vector, cp. equation
(2.18), yet the separable part ∂r(u ◦Ψ)(a, x̂) only represents differentiation with respect
to the unnormalized normal vector, an additional multiplication with MΓ is necessary.
This multiplication by MΓ would give rise to a non-separable part in 〈MΓDtN u, v〉Γ
if the left hand side of (C-V) were not constant, which would complicate the analysis.
Perhaps assumption (C-V) could be eliminated by a refinement of the analysis presented
here. However, as this thesis is mainly concerned with the helioseismology problem for
which (C-V) holds true, this matter will be left for future investigations.

The argument presented here proceeds in a classical manner by establishing well-
posedness via the Fredholm alternative. This consists of three main steps:

1. Showing that solutions of (2.59) must be unique if they exist.

2. Proving a G̊arding inequality for the sesquilinear-form b(·, ·).

3. Rewriting (2.59) as an operator equation which is invertible up to a compact per-
turbation.

The argument starts by investigating properties of the convection term. The idea is
to show that it can be written in an equivalent form from which it is easy to infer that it
does not disturb in proving uniqueness.

Lemma 2.14 (Properties of convection term). Let bb(u, v) := i (βb · ∇ (βu) , v)Ωint
for

u, v ∈ V .

(a) An equivalent form is given by

bb(u, v) =
i

2

∫

Ωint

βb · (∇(βu)v̄ −∇(βv̄)u) dx

for u, v ∈ V .

(b) It holds that bb(u, u) is real for any u ∈ V .
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Proof. (a) Since the flow is divergence free with vanishing normal component on ∂Ωint,
an application of Gauss’ theorem yields for any φ, ψ ∈ V :

0 =

∫

∂Ωint

b · n φψ̄ dS =

∫

Ωint

div
(
bφψ̄

)
dx =

∫

Ωint

b ·
(
∇φψ̄ + φ∇ψ̄

)
dx.

With φ = βu and ψ = βv for u, v ∈ V one obtains

∫

Ωint

βb · ∇(βu)v̄ dx = −
∫

Ωint

βb · ∇(βv̄)u dx.

It follows that

bb(u, v) =
i

2

∫

Ωint

βb · ∇(βu)v̄ dx+
i

2

∫

Ωint

βb · ∇(βu)v̄ dx

=
i

2

∫

Ωint

βb · (∇(βu)v̄ −∇(βv̄)u) dx.

(b) Using the equivalent expression established in part (a) gives

bb(u, u) =
i

2

∫

Ωint

βb ·
(
ψ − ψ̄

)
dx

with ψ := ∇(βu)ū = Re(ψ) + i Im(ψ). Since ψ − ψ̄ = 2i Im(ψ) and β as well as b
are real-valued, it follows that

bb(u, u) = −
∫

Ωint

Re (βb) Im(ψ) dx,

which is real-valued.

The next step is to show uniqueness. This can be established by an assumption on
the imaginary part of dtn , as has been noted in one way or another by many authors who
proved similar uniqueness results for the constant coefficient Helmholtz equation. See for
instance, [GK95, Theorem 3.1], [Ihl98, Theorem 3.2], [DI01, section 3.2] or [Nan08, Satz
3.9 (iii)].

Proposition 2.15 (Uniqueness of continuous problem). Assume one of the following

(i) (dtn-I≤) and Im c ≤ c0 < 0 in Ωint, or

(ii) (dtn-I<).

Then (2.59) admits at most one solution.

Proof. Assume that there exists

u ∈ V such that b(u, v) = 0 for all v ∈ V. (2.61)
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Choose u = v. When taking the imaginary part of b(u, u) = 0, the convection term drops
out due to Lemma 2.14 (b). The diffusion term disappears as well since A = (aij) is
assumed to be symmetric and real valued (thus hermitian). This results in

(Im(c)u, u)Ωint
+ cΨ

∞∑

`=0

Im (dtn(λ`)) |〈u,w`〉Γ|2 = 0.

Two cases according to the different assumptions have to be dinstinguished.

(i) In this case the assumptions yield that

0 ≤ c0(u, u)Ωint
.

Since c0 < 0, this implies u = 0 and we are done.

(ii) This case is slightly more involved. From the general assumption (C-III), i.e.
Im(c) ≤ 0 and (dtn-I<) we conclude that

|〈u,w`〉Γ|2 = 0 for all ` ∈ N0.

This means that u vanishes on Γ. The normal derivative ∇u · nΓ has to vanish
as well, which can be inferred as follows. Interior elliptic regularity implies that
u ∈ H2

loc(Ωint). Using (2.61) for test functions vanishing on ∂Ωint yields

0 = bint(u, v) = (Lu, v)Ωint
.

Hence,
Lu = 0 a.e. in Ωint, u = 0 on Γ ∪ ΓD.

Due to the homogeneous boundary condition the H2-regularity extends up to Γ
which implies that the normal derivative ∇u · n ∈ H1/2(Γ) is well-defined. Let
vΓ ∈ H1/2(Γ) be arbitrary. Define vχ := χZvΓ where χ ∈ C∞(Ω̄int) is a bump
function such that χ ≡ 1 near Γ and χ vanishes on ΓN ∪ ΓD. Then integration by
parts yields

0 = bint(u, v̄χ) = −
∫

Γ

∇u · nΓ tr vχ dS,

where assumption (C-IV) has been employed. Since tr vχ = trZvΓ = vΓ, which was
arbitrary it follows that ∇u · nΓ vanishes on Γ. By extending u by zero into Ωext

one obtains a function û ∈ H1(Ω). This solves L û = 0 in Ωext since the equation
is homogeneous. As u and its normal derivative5 vanish on Γ, the function û is a
weak solution of L û = 0 in any compact set of K ⊂ Ω (in particular u ∈ H1(K)).
Similar as above elliptic regularity implies L û = 0 almost everywhere in K. This
allows to apply6 the unique continuation principle for elliptic equations as stated
in Theorem A.5. Since û vanishes on Ωext, which contains an open subset of Rd,
it follows that û vanishes on all of K. Because K was arbitrary, û and therefore u
vanish on all of Ωint. Hence, the solution is unique if it exists.

5This implies that boundary terms on Γ stemming from integration by parts vanish.
6Note that the principal part of L is real-valued and smooth by assumption.
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Conditions (i) and (ii) in Proposition 2.15 are sufficient, yet not necessary for unique-

ness to hold. For the waveguide one has Im dtnguide
(λ`) = 0 for λ` > k2 so that condition

(ii) is violated. This suggests to investigate whether the solution for the undamped waveg-
uide, i.e. Im c = 0 so that (i) does not hold either, is still unique with DtN as transparent
boundary condition. Example 2.16 shows uniqueness under assumption (2.49) for a very
specific geometrical configuration, while Remark 2.17 comments on the more general case.

Example 2.16 (Uniqueness for a special waveguide under assumption (2.49)). Consider
a semi-infinite waveguide with Ω = [0,∞) × Γ̃ for Γ̃ = [0, π]. Let Ωint = [0, a) × Γ̃ and
assume β = 0, c = 1 and b = 0 in (2.15) so that the PDE in coordinates (r, x̂) ∈ Ωint is
separable. For homogeneous Dirichlet boundary conditions at the top and bottom of the
waveguide the general solution in Ωint is given by

u(r, x̂) =
∞∑

`=0

sin(
√
λ`x̂)

[
A` exp(+i

√
k2 − λ`(r − a)) +B` exp(−i

√
k2 − λ`(r − a))

]

for complex constants A` and B`. The question is, whether the DtN boundary condition
at r = a and another homogeneous boundary condition at r = 0 guarantee that these
constants must vanish. By applying the definition (2.13) of DtN with u0 = u(a, x̂) =∑

` sin(
√
λ`x̂)(A` +B`), it follows that

DtN u(a, x̂) =
∞∑

`=0

sin(
√
λ`x̂) dtnguide

(λ`)(A` +B`).

On the other hand, by direct differentiation of the solution formula

−(∂ru)(a, x̂) =
∞∑

`=0

sin(
√
λ`x̂)

(
−i
√
k2 − λ`

)
(A` −B`).

The DtN condition requires that DtN u(a, x̂) = −(∂ru)(a, x̂) which in view of dtnguide
(λ`) =

−i
√
k2 − λ` leads to

dtnguide
(λ`) [A` +B`] = dtnguide

(λ`) [A` −B`] .

Hence, B` = 0 as long as dtnguide
(λ`) 6= 0 is satisfied. The latter is ensured by (2.49) ,i.e.

that k2 is not in the spectrum of −∆Γ. Homogeneous Neumann or Dirichlet boundary
conditions at r = 0 will then imply that A` = 0 so that the solution is unique, although
conditions (i) and (ii) of Proposition 2.15 are violated.

Uniqueness with DtN boundary conditions has also been shown for the convected,
constant coefficient Helmholtz equation in the more general case of a uniform flow in an
infinite duct [BDL04], which served as inspiration for this example. A similar condition as
(2.49), involving the magnitude of the flow, is necessary and sufficient for well-posedness.

Remark 2.17 (Trapped modes). It is important to point out that Example 2.16 only
proved uniquenss of the solution for a very specific geometrical setup. In more general
situations uniqueness can fail. It is well-known that some waveguides are capable of
supporting so called ‘trapped modes’, which are solution of the homogeneous equation
subject to certain boundary conditions that have finite energy and decay towards infinity.
For example, Evans et al. [ELV94] proved that an infinite Neumann waveguide bounded
by two parallel lines which contains a symmetric obstacle at its centerline supports at least
one trapped mode. A comprehensive review of the literature on trapped modes occuring in
water waves and acoustics was provided by Linton and McIver [LM07].
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According to the introduced plan, properties of the sesquilinear form b(·, ·) should
now be investigated. While treatment of the interior part bint(·, ·) is fairly standard, the
term 〈MΓDtN u, v〉Γ, representing the transparent boundary condition, requires special
care. Formally, one has

V × V : (u, v) 7→ 〈MΓDtN u, v〉Γ = cΨ

∞∑

`=0

dtn(λ`)〈u,w`〉Γ〈v, w`〉Γ.

As mentioned in Section 2.1.2, continuity of this operation on V×V requires that | dtn(λ`)|
asymptotically has to behave like ∼ (1 + |λ`|)1/2 This is ensured by assumption (dtn-III).

Another crucial ingredient needed for application of Fredholm theory in the considered
setting is a G̊arding inequality. For the contribution stemming from the transparent
boundary condition this requires to show a lower bound of the form

Re〈MΓDtN u, u〉Γ ≥ −cW‖u‖2
W ,

where W is a space such that the embedding V ↪→ W is compact and cW ≥ 0. The natural
candidate is W = L2(Γ). If Re dtn(λ`) ≥ 0 for all ` ∈ N0, then such an upper bound is

valid for cW = 0. However, from the plot of dtn jump
or dtnVAL−C

it can be see that this
assumption is in general not valid for all ` ∈ N0. Asymptotically, Re dtn(λ`) converges
towards infinity as `→∞ and so is eventually positive, yet a finite number of outliers for
small ` with Re dtn(λ`) < 0 might be expected to arise from poles of dtn(λ) lying in close
proximity of the real axis. Assumption (dtn-II) formalizes this observation. Since the
number of outliers is assumed to be bounded, they give rise to a compact perturbation
in L2(Γ). According to the proof below, one might expect that the magnitude of the
constant cW is determined by the strength of these poles.

Lemma 2.18 (G̊arding inequality). Let (dtn-III) hold. Then the sesquilinear form b(·, ·)
from (2.60) is continuous. Moreover, if (dtn-II) holds, then the lower bound

Re b(u, u) ≥ CV ‖u‖2
V − CL2(Ωint)‖u‖2

L2(Ωint)
− CL2(Γ)‖u‖2

L2(Γ), (2.62)

for constants CV and CL2(Ωint) as defined in (2.22) and CL2(Γ) := cΨ max`∈L− |Re dtn(λ`)|
is fulfilled.

Proof. Continuity requires assumption (dtn-III) while the lower bound relies on (dtn-II).

• Continuity of the interior bilinear form bint(·, ·) is known from Lemma 2.2. To check
continuity of 〈MΓDtN u, v〉Γ it is useful to utilize the spectral characterization of
the norm on H1/2(Γ) derived in Appendix B:

‖u‖2
H1/2(Γ) =

∞∑

`=0

(1 + |λ`|)1/2 |〈u,w`〉Γ|2.

Then (dtn-III) yields

|〈MΓDtN u, v〉Γ| = cΨ

∣∣∣∣∣
∞∑

`=0

dtn(λ`)〈u,w`〉Γ〈v, w`〉Γ

∣∣∣∣∣

≤ CIIIcΨ

∞∑

`=0

(1 + |λ`|)1/4 |〈u,w`〉Γ| (1 + |λ`|)1/4 |〈v, w`〉Γ|

≤ CIIIcΨ‖u‖H1/2(Γ)‖v‖H1/2(Γ),

by the Cauchy-Schwarz inequality.
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• As the G̊arding inequality for bint(·, ·) has already been established in Lemma 2.2,
it remains to treat the contribution from DtN on Γ. We have

Re〈MΓDtN u, u〉Γ ≥ cΨ

∑

`∈L+

Re dtn(λ`)|〈u,w`〉Γ|2 − cΨ max
`∈L−
|Re dtn(λ`)|

∑

`∈L−
|〈u,w`〉Γ|2.

Since Re dtn(λ`) ≥ 0 for ` ∈ L+ by assumption (dtn-II), this yields the claim with
CL2(Γ) := cΨ max`∈L− |Re dtn(λ`)|, which is finite because L− is assumed to be a
finite set.

Let B ∈ L (V, V ) bet the continuous linear operator associated with the sesquilinear
form b(·, ·), i.e.

b(u, v) = (Bu, v)V , u, v ∈ V.
Problem (2.59) can be recast as an operator equation:

Find U ∈ V such that BU = L, (2.63)

for L ∈ V ∼= V ∗ such that l(v) = (L, v)V for any v ∈ V . The next theorem shows that
the assumptions (dtn-II) and (dtn-III) imply that B is a Fredholm operator.

Theorem 2.19 (Fredholm property). Assume that (dtn-II) and (dtn-III) hold. Then
B = B̃ −K, where B̃ is continously invertible and K compact. Moreover,

• either the equation (2.59) is uniquely solvable for any l ∈ V ∗,

• or the homogeneous equation posesses a finite-dimensional null space, i.e. 0 <
dim(ker(B)) = dim(ker(B∗)) <∞ and (2.63) has a solution if and only if L fulfills
the compatability condition (L,X)V = 0 for all X ∈ ker(B∗).

Proof. By Lemma 2.18 the operator B̃ associated with the sesquilinear form

b̃(u, v) := b(u, v) + CL2(Ωint)(u, v)Ωint
+ CL2(Γ)〈u, v〉Γ

is continuously invertible as b̃(·, ·) is coercive. The embedding ιint : V ↪→ L2(Ωint) is

compact by the Rellich-Kondrachov theorem. Likewise, ιΓ : V
tr−→ H1/2(Γ) ↪→ L2(Γ) is

compact, since the trace operator is continuous and H1/2(Γ) ↪→ L2(Γ) is compact. Then
(denoting the adjoint maps by a star) we obtain

(B̃u, v)V = (Bu, v)V + CL2(Ωint)(ιintu, ιintv)Ωint
+ CL2(Γ)〈ιΓu, ιΓv〉Γ

= (Bu, v)V + CL2(Ωint)(ι
∗
intιintu, v)V + CL2(Γ)(ι

∗
ΓιΓu, v)V

= ((B +K)u, v)V ,

where K = CL2(Ωint)ι
∗
intιint + CL2(Γ)ι

∗
ΓιΓ is compact. Hence, B = B̃ − K, where B̃ is

invertible and K compact. The claim follows by applying the Fredholm alternative as
stated in Theorem A.2.

Corollary 2.20. In addition to the assumptions of Theorem 2.19 let

(a) either (dtn-I<)
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(b) or (dtn-I≤) and Im c ≤ c0 < 0 in Ωint be fulfilled.

Then the problem (2.59) admits a unique solution for any right hand side l ∈ V ∗.

Proof. By Proposition 2.15 the assumptions (a) or (b) imply uniqueness, i.e. ker(B) = 0.
Hence, the first part of the Fredholm alternative stated in Theorem 2.19 applies. The
Fredholm alternative also yields continuous dependence on the data, so that the problem
is indeed well-posed.

dtn (dtn-I<) (dtn-I≤) (dtn-II) (dtn-III)

dtnhom,2d
Ë Ë Ë Ë

dtnhom,3d
Ë Ë Ë Ë

dtn jump
(Ë) Ë (Ë) Ë

dtnellipse
(Ë) (Ë) (Ë) (Ë)

dtnAtmo
(Ë) (Ë) (Ë) (Ë)

dtnVAL-C
Ë Ë Ë Ë

dtnguide
é Ë Ë Ë

Table 2.1: Check of the assumptions for different dtn functions. A ‘Ë’ means that these
properties have been proven analytically, while a ‘(Ë)’ signifies a numerical verification.
Violated assumptions are marked with ‘é’.

It is interesting to conclude with a discussion to what extent the presented analysis
applies to the example problems introduced in Section 2.2-Section 2.4. A check of the
assumptions on dtn for the specific examples is provided in Table 2.1.

• For scattering problems with spherical coupling boundaries, as introduced in Sec-
tion 2.2.1, the theory fully applies. For homogeneous exterior domains the assump-
tions on dtn have also been verified analytically. Whereas a proof of (dtn-II) re-
mains an open problem for the case of a jumping wavenumber, the other properties
(dtn-I≤) and (dtn-III) have been established rigorously.

• Currently, the only obstruction to applying the theory to elliptical coupling bound-
aries is a violation of assumption (C-V). A more sophisticated analysis may perhaps
remove this assumption by utilizing thatMΓ : Hs(Γ)→ Hs(Γ) is an isomorphism.

• The helioseismology problem of Section 2.4 is covered in both formulations and for
both atmospheric models. Proofs for all the required properties of dtnVAL-C

have
been provided in Section 2.4.2.

• The approach presented here has some limitations for waveguides. Firstly, the
spectral characterization of Sobolev spaces on Γ derived in Appendix B and utilized
in the analysis has only been derived for Γ compact without boundary. Therefore,
the analysis only applies rigorously to periodic waveguides, e.g. if one can identify
Γ̃ ' Sd−1. To this end, periodicity conditions should be incorporated into the space
V defined in (2.19).
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While the first limitation is a shortcoming of the analysis that can be overcome, the
second limitation concerning our inability to establish a general uniqueness result in
the absence of damping is rooted in the nature of wave propagation in waveguides.
As explained in Remark 2.17, waveguides may support trapped modes in which case
uniqueness fails. However, as dtnguide

fulfills properties (dtn-II) and (dtn-III) the
solution operator is still Fredholm according to Theorem 2.19. This implies that
only a finite number of trapped modes can propagate in the waveguide and that
the equation is still solvable under certain compatability conditions on the data.

The well-posedness result established here provides the foundation for the analysis of
tensor product discretizations of DtN as presented in Chapter 3.
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Chapter 3

Tensor-product discretizations of
DtN

Chapter 2 introduced time-harmonic wave equations posed in stratified media on possibly
unbounded domains at the continuous level. Such problems can be reduced to a finite
computational domain by imposing the DtN map as a transparent boundary condition on
the artificial truncation boundary Γ. If the geometry and the differential operator in the
exterior are separable, then DtN may be diagonalized in the eigenbasis of a suitable self-
adjoint differential operator on Γ. In particular, all information about DtN is contained
in a scalar function dtn , which describes the diagonal entries of DtN in the eigenbasis.

This chapter deals with tensor-product discretizations DtNN of DtN for which es-
sentially all of the above statements carry over to the discrete level. The notion of such
tensor-product discretizations is made precise in Section 3.1. The main insight is that
all information about DtNN is also contained in a single scalar function called dtnN
whose ability to approximate the continuous dtn function determines the accuracy of any
(approximate) transparent boundary condition of tensor-product type. The problem of
approximating dtn by dtnN is analyzed in Section 3.2. It turns out that highly accurate
approximations can be achieved with negligible effort on bounded subsets of the spectrum
of −∆Γ (or a more general operator).

In Section 3.3, these result are extended to a semi-discrete error analysis which bounds
the H1-error between discrete and approximate solution for the PDE in terms of the ap-
proximation of dtn by dtnN . This estimate does not include any finite element discretiza-
tion error because the discretization of the interior problem is assumed to be perfect in
this setting (explaining the specification ’semi-discrete’). Firstly, the focus is entirely
on understanding the error introduced by the approximation of DtN . Later, a basic
convergence result in the fully-discrete setting is established, see Corollary 3.23.

The semi-discrete convergence analysis presented in this chapter is inspired by the
paper [DI01] of Demkowicz and Ihlenburg in which a similar analysis has been carried
out for a specific type of classical infinite elements for the Helmholtz equation in the
exterior of a sphere. The analysis presented in this thesis aims to achieve a higher level
of generality in the following aspects:

• In view of Chapter 2, it should be applicable to a larger class of PDEs and geo-
metrical configurations. Our main objective is to cover the case of helioseismology,
which requires extensions of the results of [DI01]. For example, the analysis in this
reference is based on positive definiteness of Re dtn(λ`), which can be shown for the

Helmholtz equation, see Lemma 2.6. However, for helioseismology Re dtnVAL−C
can
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become negative due to the occurence of poles close the real axis, see Fig. 2.8.

• It should be applicable to any (approximate) transparent boundary condition of
tensor-product type provided the corresponding dtn and dtnN functions have been
identified and fulfill the required assumptions.

Whereas many instances of continuous dtn functions have been presented in Chapter 2,
specific examples for discrete dtnN functions will not appear until Section 3.4. In this
section several dtnN functions arising from tensor-product transparent boundary condi-
tions for the Helmholtz equation in the exterior of a sphere will be compared based on
their ability to approximate dtn . The corresponding dtnN functions are explicitly derived
in Appendix C. The range of examples includes classical infinite elements, Hardy space
infinite elements, tensor-product PMLs and some local absorbing conditions.

3.1 Describing discrete DtNN operators through dtnN

This section deals with tensor-product discretizations of exterior problems. Section 3.1.1
introduces these type of discretizations in detail and describes their associated DtNN

operators. Similar to the continuous DtN map, its discrete approximation DtNN can be
diagonalized in a discrete eigenbasis and described through a scalar function called dtnN .
This is shown in Section 3.1.2. Most of the results of Section 3.1.1 and Section 3.1.2
appeared previously in our publication [HLP21]. Here we go a step further and present
a first a priori error estimate in terms of the approximation error of dtn by dtnN in
Section 3.1.3.

3.1.1 From a dense to a sparse system involving additional
DOFs

In the previous chapter, a PDE posed on an infinite domain with a radiation condition at
infinity has been reduced to a bounded computational domain by introducing the DtN
map as transparent boundary condition. This leads to the variational formulation: Find
u ∈ V such that

bint(u, v) + 〈MΓDtN u, v〉Γ = l(v), for all v ∈ V. (3.1)

To obtain an approximate solution, this variational formulation will be discretized using
a conforming finite element discretization. Let {φj} denote the basis functions of a
finite dimensional subspace Vh ⊂ V . The entries of the matrix L corresponding to the
differential operator L operating only in Ωint are obtained as usual from bint(φj, φi). This
matrix is sparse since the basis functions have local support and the differential operator
L is local, i.e. if supp(u) denotes the support of a function u, then supp(Lu) ⊆ supp(u)
holds true. Unfortunately, DtN is a non-local operator. So, if {φi} for i = 1, . . . , nΓ

denote the basis functions with support on Γ, then even though supp(φj) commonly only
occupies a tiny fraction of Γ, after applying the DtN map supp(DtN φj) has usually
expanded to all of Γ. Hence,

〈DtN φj, φi〉Γ, 6= 0

for most (i, j). This implies that the matrix DtNext that expresses DtN in the finite
element basis is dense.
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Partitioning the degrees of freedom (DOFs) as uI belonging to the interior of the
domain Ωint (including ΓN ∪ ΓD) and a vector uΓ of DOFs on the transparent boundary
Γ ⊂ ∂Ωint the linear system obtained from (3.1) takes the form

[
LII LIΓ

LΓI Lint
ΓΓ +M DtNext

][
uI
uΓ

]
=

[
f
I

f int

Γ

]
.

Here M corresponds to the finite element discretization of MΓ on Γ, i.e.

Mij =

∫

Γ

1/|∂rΨ|2φjφi dx̂. (3.2)

The block Lint
ΓΓ contains contributions from Ωint, especially volume terms close to Γ.

Since the full matrix DtNext is dense, its use may be computationally inefficient. Par-
ticularly for helioseismology in which a drastic refinement in the surface layers of the Sun
is required, using DtNext for a fully-three dimensional discretization is computationally
infeasible. Therefore, we would like to approximate system (3.3) by a sparse system
involving additional degrees of freedom uE:



LII LIΓ 0

LΓI Lint
ΓΓ + LΓΓ LΓE

0 LEΓ LEE






uI
uΓ

uE


 =



f
I

f int

Γ

0


 . (3.3)

To this end, sparse matrices LΓΓ, LΓE, LEΓ and LEE of small size need to be found such
that the Schur complement of LEE approximates M DtNext:

[
LII LIΓ

LΓI Lint
ΓΓ +M DtN

][
uI
uΓ

]
=

[
f
I

f int

Γ

]
, (3.4)

where

DtN
!≈ DtNext with DtN := M−1

(
LΓΓ − LΓEL

−1
EELEΓ

)
. (3.5)

Although (3.3) is the preferred form for implementation, equation (3.5) is very infor-
mative since it provides an explicit formula for the DtN -approximation in terms of the
matrix elements of [

LΓΓ LΓE

LEΓ LEE

]
. (3.6)

Many successful transparent boundary conditions lead to linear systems of the form (3.3).
They can be distinguished by the choice of the matrix in (3.6). In this thesis, separable
PDEs in separable exterior domains are considered. Therefore, it is natural (although
not necessary) to impose that (3.6) has a tensor-product structure, i.e.

[
LΓΓ LΓE

LEΓ LEE

]
= A⊗M +B ⊗K =

[
AΓΓ AΓE

AEΓ AEE

]
⊗M +

[
BΓΓ BΓE

BEΓ BEE

]
⊗K, (3.7)

where K is the stiffness matrix associated with the discretization of KΓ and M is as
introduced in (3.2). In view of equation (2.5), this is a very natural choice. A conceptual
sketch of the DOFs of such tensor-product discretizations and the couplings in the ma-
trices A,B ∈ C(N+1)×(N+1) is presented in Fig. 3.1. From now on DtNN will appear with
the subscript N ∈ N0 to keep track of the dimension of the radial matrices A and B.
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Γ
E

[
AΓΓ AΓE

AEΓ AEE

]
⊗M +

[
BΓΓ BΓE

BEΓ BEE

]
⊗K

Figure 3.1: Schematic illustration of tensor-product discretization of separable exterior
problems. The violet region indicates one such tensor-product element. The first DOFs lie
on the transparent boundary Γ and are associated with the matrices AΓΓ and BΓΓ. Ad-
ditional DOFs in the exterior E are tensorized with copies of the FEM discretization
of (MΓ,KΓ) on Γ. The exterior E couples to Γ (and thereby to Ωint) by means of
AΓE, BΓE, AEΓ and BEΓ.

For investigative purposes it is useful to consider an intermediate step between (2.5)
and the fully discrete equation (3.7). A semi-discrete ansatz is obtained by retaining the
continuous differential operators KΓ and MΓ, i.e.

[
LΓΓ LΓE

LEΓ LEE

]
=

[
AΓΓ AΓE

AEΓ AEE

]
⊗MΓ +

[
BΓΓ BΓE

BEΓ BEE

]
⊗KΓ. (3.8)

Roughly speaking, this ansatz corresponds to a perfect finite element discretization on Γ.
Correspondingly, denote

DtN N :=M−1
Γ

(
LΓΓ − LΓEL−1

EELEΓ

)
. (3.9)

3.1.2 Diagonalization of the (semi-)discrete DtN map

Plenty of well-known transparent boundary conditions are of the form (3.7) as shown in
Appendix C. They can be distinguished by the choice of the matrices A and B. To assess
their accuracy and efficiency, it is in principle possible to assemble the matrices DtNN

and DtNext and compute the error via some matrix norm ‖DtNext−DtNN ‖ in terms of
the number of DOFs. However, this is a rather crude measure which does not promise
to offer many insights. Besides, the previous chapter revealed that at the continuous
level all information1 about DtN is already contained in the scalar function dtn . The
next proposition shows that an analogous characterization holds true for the discrete
DtNN and semi-discrete DtN N maps associated with the tensor-product discretization
(3.7), respectively semi-discretization (3.8). This insight paves the way for a unified error
analysis of DtN N operators associated with tensor-product discretizations.

1in the separable setting as considered in this thesis.
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Proposition 3.1 (Diagonalization of DtNN and DtN N). Consider the fully-discrete and
semi-discrete cases:

• If (λ`, v`) solves the generalized eigenvalue problem Kv` = λ`Mv` , then

DtNN v` = dtnN(λ`)v`,

with the rational function dtnN defined, for λ ∈ C by

dtnN(λ) := AΓΓ + λBΓΓ − (AΓE + λBΓE)(AEE + λBEE)−1(AEΓ + λBEΓ). (3.10)

• If (λ`, v`) solves the generalized eigenvalue problem KΓv` = λ`MΓv`, then

DtN Nv` = dtnN(λ`)v`,

for the same dtnN function as in (3.10).

Proof. For the first term in the definition of DtNN , cf. (3.5), we have

M−1LΓΓv` = M−1(AΓΓ ⊗M +BΓΓ ⊗K)v` = M−1(AΓΓMv` +BΓΓKv`)

= M−1(AΓΓMw` +BΓΓλ`Mv`) = (AΓΓ + λ`BΓΓ)v`.

Using a similar computation and the rule (C ⊗D)(E ⊗ F ) = (CE ⊗DF ), we obtain

M−1LΓEL
−1
EELEΓv`

= M−1[(AΓE + λ`BΓE)⊗M ][(AEE + λ`BEE)⊗M ]−1[(AEΓ + λ`BEΓ)⊗M ]v`
= (AΓE + λ`BΓE)(AEE + λ`BEE)−1(AEΓ + λ`BEΓ)(M−1MM−1M)v`

for the second term. Putting both together yields the result. The proof for the semi-
discrete version is analogous.

In the following, DtN N will be analyzed instead of DtNN . Since both operators are
described by the same dtnN function, the difference between them stems purely from the
eigenvalue, respectively, eigenfunction approximation, which is determined by the finite
element discretization error on Γ. This may be taken into account in a more elaborate
analysis by using appropriate tools of finite element theory. Working with DtN N allows
to focus exclusively on the error introduced by the transparent boundary condition, which
is the main objective of this thesis.

3.1.3 A first bound for the discretization error

In view of Proposition 3.1, the action of the operator DtN N can be described as

DtN Nu =
∞∑

`=0

dtnN(λ`)〈u,w`〉Γw`.

Hence, it behaves exactly like the continuous DtN operator, cp. equation (2.13), except
that dtn is replaced by dtnN . However, since dtnN grows usually linearly as λ→∞, see
equation (3.10), while dtn behaves like O(

√
λ), continuity of the operator DtN N on the

space V introduced in (2.19) cannot be ensured. To circumvent this issue, the space

V+ := {v ∈ H1(Ωint) | trΓD
v = 0, trΓ v ∈ H1(Γ)}, (3.11)
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with the stronger norm

‖v‖2
V+

:= ‖v‖2
H1(Ωint)

+ ‖ trΓ v‖2
H1(Γ), (3.12)

is introduced. The variational formulation for the function uN with a semi-discrete radi-
ation condition provided by DtN N is given by: Find uN ∈ V+ such that

bN(uN , v) = l(v), for all v ∈ V+, (3.13)

with the sesquilinear form

bN(u, v) := bint(u, v) + 〈MΓDtN Nu, v〉Γ. (3.14)

We hold on to assumption (C-V) in this chapter so thatMΓ = cΨIdΓ. Let u ∈ V denote
the solution of (2.59), i.e. with the exact transparent boundary condition DtN . It will
later be shown, see Lemma 3.19, that u usually enjoys a much higher regularity on Γ than
merely H1/2(Γ) as guaranteed by u ∈ V . Therefore, it is not a restriction to assume at this
point that u ∈ V+. A minor generalization of [DI01, Theorem 2.1] given in Proposition 3.5
then shows that the error ‖u− uN‖V+ between the exact solution u and the approximate
solution uN of (3.13) can be bounded by the DtN -approximation achieved with DtN N

in the operator norm. To estimate the latter, it is useful to introduce weighted Sobolev
spaces on Γ.

Definition 3.2. For a sequence (σ`) of positive weights with inf` σ` > 0 define the space
Hσ(Γ) := {u ∈ L2(Γ) | ‖u‖Hσ <∞}, where

‖u‖2
Hσ :=

∞∑

`=0

σ2
` |〈u,w`〉Γ|2.

The next lemma shows that Hσ(Γ) are Hilbert spaces which generalize the usual
Sobolev spaces Hs(Γ) on Γ.

Lemma 3.3. Let (σ`) be a sequence of positive weights with inf` σ` > 0. Then

(a) Hσ(Γ) is a Hilbert space.

(b) For σ` = (1 + |λ`|)s/2 with s ∈ R it holds that Hσ(Γ) = Hs(Γ).

Proof. (a) Positive definiteness of ‖ · ‖Hσ follows from inf` σ` > 0. Only completeness
needs to be shown as the other properties of a Hilbert space are clear. To this end,
recall the isometric isomophism

L2(Γ)→ `2(N0) `2(N0)→ L2(Γ)

u 7→ (〈u,w`〉Γ), (a`) 7→
∞∑

`=0

a`w`.

Let (un) be a Cauchy sequence in Hσ(Γ). This means that (an) with an :=
(σ`〈u,w`〉Γ) is a Cauchy sequence in `2(N0). By completeness of `2(N0) it has a
limit a = limn→∞ an in `2(N0). Define u =

∑
`

σ−1
` a`w`. Then ‖u‖2

Hσ
= ‖a‖2

`2(N0), so

u ∈ Hσ(Γ) and

‖u− un‖2
Hσ =

∑

`

|a` − σ`〈un, w`〉Γ|2 =
∑

`

|a` − an` |2 = ‖a− an‖2
`2(N0),

which goes to zero as n→∞.
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(b) This is immediate from the characterization (2.24) of Hs(Γ).

The weights are often related to the modal error of the dtnN approximation which is
described in the next definition.

Definition 3.4. For a dtnN function as in (3.10) define the modal error:

errdtn(N, `) := | dtn(λ`)− dtnN(λ`)| (3.15)

for ` ∈ N0.

For convenience let us also introduce the projector

ΠLv :=
L−1∑

`=0

〈v, w`〉Γw` (3.16)

onto the first L modes and note that

‖u‖2
Hσ = ‖ΠLu‖2

Hσ + ‖(Id−ΠL)u‖2
Hσ (3.17)

holds true. Now the stage is set for deriving the first abstract error estimate.

Proposition 3.5. Suppose that the variational problem (2.59) for given data l has a
unique solution u ∈ V+. Assume further that the semi-discrete problem (3.13) satisfies
the inf-sup condition:

For all u ∈ V+ : sup
v∈V+\{0}

|bN(u, v)|
‖v‖V+

≥ γN‖u‖V+ , (3.18)

with constant γN > 0. Moreover, suppose that the solution uN ∈ V+ of the semi-discrete
problem (3.13) exists.

(i) Then the error ‖u− uN‖V+ can be bounded as

‖u− uN‖V+ ≤ γ−1
N sup

v∈V+\{0}

|〈MΓ(DtN −DtN N)u, v〉Γ|
‖v‖V+

. (3.19)

(ii) Assume further that the solution u of (2.59) fulfills trΓ u ∈ Hσerr(Γ) with σerr
` :=

errdtn(N, `)(1 + |λ`|)−1/2. Then the error can be bounded by

‖u− uN‖V+ ≤ γ−1
N cΨ‖u‖Hσerr (Γ) ≤ γ−1

N cΨ

(
‖ΠLu‖Hσerr (Γ) + ‖(Id−ΠL)u‖Hσerr (Γ)

)
.

(3.20)

Proof. The argument follows the one given by Demkowicz and Ihlenburg [DI01, Theorem
2.1] for the Helmholtz scattering problem who used standard Sobolev spaces instead of
Hσ and V+.
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(i) Galerkin orthogonality and the definitions of the sesquilinear forms yield

bN(u− uN , v) = bN(u, v)− b(u, v) + b(u, v)− bN(uN , v)

= bN(u, v)− b(u, v) + l(v)− l(v)

= bN(u, v)− b(u, v)

= bint(u, v) + 〈MΓDtN Nu, v〉Γ − bint(u, v)− 〈MΓDtN u, v〉Γ
= 〈MΓ(DtN N −DtN )u, v〉Γ.

Since bN was assumed to fufill an inf-sup condition,

γN‖u− uN‖V+ ≤ sup
v∈V+\{0}

|bN(u− uN , v)|
‖v‖V+

= sup
v∈V+\{0}

|〈MΓ(DtN −DtN N)u, v〉Γ|
‖v‖V+

holds, which establishes the first part of the claim.

(ii) A straightforward calculation using the Cauchy-Schwarz inequality gives

sup
v∈V+\{0}

|〈MΓ(DtN −DtN N)u, v〉Γ|
‖v‖V+

= cΨ sup
v∈V+\{0}

|〈(DtN −DtN N)u, v〉Γ|
‖v‖V+

= sup
v∈V+\{0}

cΨ

‖v‖V+

∣∣∣∣∣
∞∑

`=0

〈v, w`〉Γ(1 + |λ`|)1/2(dtn(λ`)− dtnN(λ`))〈u,w`〉Γ(1 + |λ`|)−1/2

∣∣∣∣∣

≤ sup
v∈V+\{0}

cΨ

‖v‖V+

√√√√
∞∑

`=0

(1 + |λ`|)|〈v, w`〉Γ|2
√√√√

∞∑

`=0

errdtn(N, `)2(1 + |λ`|)−1|〈u,w`〉Γ|2

≤ cΨ sup
v∈V+\{0}

‖v‖V+
‖v‖V+

‖u‖Hσerr (Γ) ≤ cΨ

(
‖ΠLu‖Hσerr (Γ) + ‖(Id−ΠL)u‖Hσerr (Γ)

)
,

where the last inequality follows from (3.17).

To bound the inf-sup constants γN from below uniformly in N , information on dtnN
is required. For a specific classical infinite elements for the Helmholtz equation with a
spherical coupling boundary this has been achieved in reference [DI01]. In Section 3.3 we
will seek to extend the ideas of this reference to cover the more general setting considered
in this thesis. Ideally, the analysis should yield an error estimate of the form

‖u− uN‖V+ ≤ χ(N),

where χ(N) converges rapidly to zero as N increases, which is valid for any tensor-
product discretization of the form (3.8) for separable exterior domains introduced in
Chapter 2. According to Proposition 3.5 (ii), the error can be split into the two con-
tributions ‖ΠLu‖Hσerr (Γ) and ‖(Id−ΠL)u‖Hσerr (Γ) for some freely chosen L ∈ N0. For
sufficiently smooth solutions the coefficients |〈u,w`〉Γ| in the eigenbasis decay rapidly as
will be seen in Lemma 3.19. This characterizes ‖(Id−ΠL)u‖Hσerr (Γ) as an asymptotic con-
tribution that can made arbitrarily small for L large enough. It then remains to estimate
‖ΠLu‖Hσerr (Γ). This will require an accurate approximation of dtn(λ`) by dtnN(λ`) at
the first ` < L eigenvalues λ`. Given the complexity of the dtn functions introduced in
Chapter 2, see e.g. dtnVAL−C

shown in Fig. 2.8, it is not clear at all whether convergence
can be achieved with the ansatz (3.10) for dtnN . Giving a positive answer to this ques-
tion under reasonable assumptions on dtn and characterizing the rate of convergence is
subject of the following section.
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3.2 Approximation properties of dtnN on finite inter-

vals

Proposition 3.5 (ii) shows that the error ‖u − uN‖V+ between the exact solution u and
the approximate solution uN obtained with a transparent boundary condition of tensor-
product type is determined by the approximation of dtn by dtnN on the spectrum of
a self-adjoint operator on the truncation boundary. In view of equation (3.10), this is
a rational approximation problem. This section investigates whether dtnN converges to
dtn if the variables in the ansatz (3.8) are chosen appropriately. If this were not the
case, then tackling the arduous task of bounding the inf-sup constants γN , which appear
in Proposition 3.5, would be in vain. Fortunately, convergence holds true, yet only on
finite intervals, that is at a finite number of eigenvalues λ`. More cannot be expected
since typical dtn functions behave as O(

√
λ) at infinity (see e.g. Lemma 2.3 (iii)), which

cannot be reproduced with the ansatz (3.10).
The convergence analysis on finite intervals presented in this section proceeds as fol-

lows. Firstly, we note that the approximation space spanned by the ansatz (3.10) contains
in particular rational functions with simple poles, which are known as simple partial frac-
tions (SPFs). Section 3.2.1 recalls a theorem from the theory of SPFs which establishes an
equivalence between the approximation error of a function on a compact set using SPFs
and the approximation error of a transformed function using polynomials. The proof of
this theorem is constructive and allows to reduce the rational to a polynomial approxi-
mation problem. To obtain fast convergence rates with polynomial approximation, it is
useful to recall from Chapter 2 that dtn is a meromorphic function. Section 3.2.2 cites
convergence results for such functions from the literature. These results are applied in
Section 3.2.3 to obtain rates of convergence for the approximation of dtn by dtnN . Some
of the abstract theoretical concepts are illustrated in Section 3.2.4 by means of a concrete
numerical example.

3.2.1 Reduction to polynomial approximation problem

By choosing AΓΓ = BΓΓ = 0 and AEE and BEE as diagonal matrices it follows that the
ansatz (3.10) includes in particular functions of the form

rN(λ) =
N∑

j=1

1

λ− aj
, {aj} ⊂ C. (3.21)

In the literature these functions are known as simple partial fractions (SPFs). Fortunately,
various deep results on their approximation properties have already been established, see
reference [DKC18] for a discussion of known results and recent developments. For the
purpose of this thesis, Kosukhin’s result [Kos01] on the weak-equivalence between uniform
approximation with SPFs and polynomials is of major importance. To state this relation,
some preparatory definitions are necessary.

Definition 3.6. Let K(b,D) denote compact subsets of C such that there exists for any
z ∈ K(b,D) a path contained in K starting at b and ending at z of finite length ≤ D.
This means that K ∈ K(b,D) is a compact rectifiable set.

Definition 3.7. Denote by AC(K) the set of functions that are analytic at all interior
points of K and continuous on the closure.
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Antiderivatives of analytic functions defined on compact, rectifiable sets are one of
the main ingredients for establishing the results of reference [Kos01].

Definition 3.8. For f ∈ AC(K) with K ∈ K(b,D) let

θ(f ; b, z) :=

z∫

b

f(t) dt (3.22)

be an antiderivative for f taken along a path contained in K with length smaller than D.

Furthermore, denote by SRN the set of SPFs with degree at most N and the best
uniform approximation on K by

ρN(f,K) := inf{‖f − rN‖K,∞ | rN ∈ SRN},

where ‖f − rN‖K,∞ := supx∈K |f(x)− rN(x)|. Denote the same quantity for polynomials
PNC of degree at most N by

eN(f,K) := inf{‖f − pN‖K,∞ | pN ∈ PNC }.

With these definitions at hand the weak equivalence result of Kosukhin [Kos01] can be
stated.

Theorem 3.9. Let K ∈ K(b,D), f ∈ AC(K) and θ(z) = θ(f ; b, z). Then

C1(D‖f‖K,∞)ρN+1(f,K) ≤ eN(feθ, K) ≤ C2(D‖f‖K,∞)ρN+1(f,K), (3.23)

with C1(r) = 1/(2(1 + r)er) and C2(r) = (1 + 2rer)er for N = 1, 2, . . . holds true.

Some remarks about this theorem are given below.

• The proof of Theorem 3.9 is in fact constructive. If the polynomial pN is a good
approximation of feθ, then

rN+1 := log(qN+1)′ =
q′N+1

qN+1

, with qN+1(z) = 1 +

z∫

b

pN(t) dt, (3.24)

is the corresponding approximation for f . Note that log(qN+1)′ is of the form (3.21).
Further details on the transformation between polynomials and SPFs are provided
in Section 3.2.4.

• The constants C1(r) and C2(r) depend exponentially on the supremum norm of
the function and the parameter D, which is essentially determined by the diameter
of K. When applying this theorem to approximation of dtn , this will result in an
exponential dependence of the approximation error on the length of the interval.
This has to be countered by sufficiently fast convergence rates in N . Establishing
such rates is subject of the next section.
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3.2.2 Polynomial approximation of holomorphic functions

The rate of poynomial approximation of an analytic function on a bounded subset of the
real line is closely related to how far this function can be extended holomorphically into
certain ellipses in the complex plane. A detailed discussion on polynomial approximation
in the complex domain can be found in the monograph [Wal60, §4] by Walsh. For our
purpose, the following result established in [Kre14, Theorem 11.13] is a suitable starting
point.

Theorem 3.10. Let ĝ : [−1, 1] → R be analytic. Then there exists an ellipse Ê with
foci (±1, 0) ∈ R2 such that ĝ can be extended to a holomorphic and bounded function
ĝ : D̂ → C, where D̂ denotes the open interior of Ê. Moreover, there exists a sequence
of polynomials p̂n : [−1, 1]→ R such that

‖ĝ − p̂n‖[−1,1],∞ ≤
2‖ĝ‖D̂,∞
R− 1

R−n. (3.25)

Here, R is given through the semi-axis âE and b̂E of Ê by R = âE + b̂E.

Remark 3.11. (a) Theorem 3.10 extends to complex-valued ĝ : [−1, 1]→ C by splitting
ĝ into real and imaginary parts.

(b) The polynomials p̂n can be given explicitly by orthonormal expansion of ĝ with re-
spect to Tschebyscheff polynomials

Tn(z) := cos(n arccos(z)), −1 ≤ z ≤ 1, n = 0, 1, 2, . . .

That is,

pn(z) =
c0

2
T0(z) +

n∑

m=1

cmTm(z), for cm =
2

π

1∫

−1

ĝ(x̂)Tn(x̂)√
1− x̂2

dx̂.

We would like to use this theorem for approximating a transformed version of dtn
(see Section 3.2.1) on a bounded interval K = [λmin, λmax] ⊂ R. To keep the formulas
simple, it is covenient to restrict to the case where the spectrum is positive2, i.e. λmin = 0
and λmax = λ > 0. Firstly, a suitable ellipse into which dtn extends holomorphically
has to be constructed. In view of the fact that some dtn functions, e.g. dtnVAL-C

, admit
poles whose imaginary parts are tiny, such an ellipse would need to be extremely flat.
As Theorem 3.10 shows, this is detrimental for the approximation rate. To avoid this
problem, polynomial approximation will actually be applied to a regularized version of
dtn , denoted later by dtn reg

Np , whose poles are confined to the sector

Sη := {z ∈ C | Re z < 0, Im z > η}, (3.26)

for some η > 0. This is made possible by the observation3 that typical dtn functions
only possess a finite number Np ∈ N0 of simple poles located in the first quadrant of
the plane, which can be captured perfectly by the rational approximant dtnNp . In the
construction of a suitable ellipse E(λ, η) in whose open interior D(λ, η) the function dtn reg

Np

is holomorphic, we just have to ensure that

D(λ, η) ⊂ C \ Sη. (3.27)
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λ

E(λ, η)

D(λ, η)
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bE
aE

η

Figure 3.2: Sketch of the geometrical setup for Proposition 3.12 and Proposition 3.13.
The green crosses illustrate the poles of a typical dtn function.

The geometrical setup we aim for is sketched in Fig. 3.2. Analytically, it can be achieved
as follows. Recall that an ellipse can be described as the set of all points such that the
distance to the focal points, which we choose as (0, 0) and (λ, 0), is equal to a fixed value
2aE:

E(λ, η) = {(x, y) ∈ R2 |
√

(x− λ)2 + y2 +
√
x2 + y2 = 2aE}, (3.28)

for aE = aE(λ, η) determined as follows. The requirement (3.27) is fulfilled provided that
(0, η) ∈ E(λ, η), that is if √

λ2 + η2 + η = 2aE. (3.29)

Since the ellipse is centered at (λ/2, 0), its covertices are given by (λ/2,±bE), where bE
is the semi-minor axis. Plugging (x, y) = (λ/2, bE) into (3.28) yields

2

√(
λ

2

)2

+ (bE)2 = 2aE (3.30)

Squaring this equality and inserting (3.29) leads to

(bE)2 = (aE)2 − λ2

4
=

1

4

(
η +

√
λ2 + η2

)2

− λ2

4

=
1

2

(
η2 + η

√
λ2 + η2

)
.

It follows that

2bE =
√

2

√
η2 + η

√
λ2 + η2. (3.31)

Now everything is in place to derive the required approximation result from Theorem 3.10.

2This excludes only the case of elliptical truncation boundaries.
3See the plots of the pole structure of dtn functions shown in Chapter 2. Moreover, in Section 3.3.3

an analytic argument for dtnhom,2d
will be given.
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Proposition 3.12 (Polynomial approximation of holomorphic functions). For λ > 0 and
η > 0 let the ellipse E(λ, η) be defined as in (3.28) and (3.29), and let D(λ, η) denote
the open interior of E(λ, η). Suppose that g : [0, λ] → C is an analytic function that
extends to a holomorphic and bounded function on D(λ, η). Then there exists a sequence
of polynomials pn : [0, λ]→ C such that

‖g − pn‖[0,λ],∞ ≤
2‖g‖D(λ,η),∞

R− 1
R−n, for some R(λ, η) ≥ 1 +

η

λ
.

Proof. Consider the affine linear transformation

R2 → R2, (x̂, ŷ) 7→
(
λ

2
(x̂+ 1),

λ

2
ŷ

)
:= (x, y),

with inverse given by (x, y) 7→ ( 2
λ
x− 1, 2

λ
y) = (x̂, ŷ). Since

√
(x− λ)2 + y2 +

√
x2 + y2 = 2aE

⇔
√(

2x

λ
− 1− 1

)2

+

(
2y

λ

)2

+

√(
2x

λ
− 1 + 1

)2

+

(
2y

λ

)2

= 2aE

(
2

λ

)

⇔
√

(x̂− 1)2 + ŷ2 +

√
(x̂+ 1)2 + ŷ2 = 2aE

(
2

λ

)
,

the ellipse E(λ, η) given in coordinates (x, y) transforms in the coordinates (x̂, ŷ) to an
ellipse Ê with foci (±1, 0) and semi-major axis âE = 2aE/λ. By using (3.30) the semi-
minor axis b̂E can be characterized as

(
b̂E

)2

= (âE)2 − 12 = 4
(aE
λ

)2

− 1 =
4

λ2

(
b2
E +

λ2

4

)
− 1 =

(
2bE
λ

)2

.

That is, b̂E = 2bE/λ. Now define

ĝ(x̂+ iŷ) := g

(
λ

2
(x̂+ 1) + i

λ

2
ŷ

)
= g(x+ iy).

By construction, ĝ is holomorphic in the ellipse Ê. From Theorem 3.10 we obtain the
existence of polynomials p̂n : [−1, 1]→ R fulfilling the approximation estimate (3.25) for
R = 2(aE + bE)/λ. Clearly, ‖ĝ‖D̂,∞ = ‖g‖D(λ,η),∞ and the polynomials pn : [0, λ] → C
defined by

pn(x) := p̂n

(
2

λ
x− 1

)
= p̂n(x̂)

deliver the approximation estimate

‖g − pn‖[0,λ],∞ = ‖ĝ − p̂n‖[−1,1],∞ ≤
2‖g‖D(λ,η),∞

R− 1
R−n.

Using (3.29) and (3.31) allows to express R in terms of λ and η as

R =
2(aE + bE)

λ
=

1

λ

(
η +

√
λ2 + η2 +

√
2

√
η2 + η

√
λ2 + η2

)

≥ η

λ
+

√
1 +

(η
λ

)2

≥ η

λ
+ 1.
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3.2.3 Application to approximation of dtn by dtnN

To obtain convergence rates for approximation of dtn by dtnN , it remains to recall from
Chapter 2 that dtn is a meromorphic function and combine the results of Section 3.2.1
and Section 3.2.2.

Proposition 3.13. For λ > 0 let K = [0, λ]. Suppose that dtn : C→ C is a meromorphic
function such that only a finite number Np ∈ N0 of its poles, say λnp for n = 1, 2, . . . , Np,
are contained in the complement C \ Sη for Sη as defined in (3.26) and some η > 0,
and that these poles are simple. Let Res(dtn , λnp) denote the residue of dtn at λnp for
n = 1, 2, . . . , Np and define

dtn reg
Np(λ) := dtn(λ)−

Np∑

n=1

Res(dtn , λnp)

λ− λnp
. (3.32)

Then the dtnN+1+Np function (3.10) associated with a tensor-product discretization can
approximate dtn on K at least with the rate

‖ dtn − dtnN+1+Np ‖K,∞ ≤
4λ

η

(
1 + λ‖ dtn reg

Np ‖K,∞
)

RN
e
λ‖ dtnreg

Np
‖K,∞‖ dtn reg

Np e
θ(dtnreg

Np
)‖D(λ,η),∞,

(3.33)
where θ(dtn reg

Np) is an antiderivative for dtn reg
Np as in (3.22) and R = R(λ, η) ≥ 1 + η

λ
.

Moreover, under the assumption that (dtnN -III) holds on the entire positive real axis (so
not only at eigenvalues), the following growth bound is valid:

‖ dtn reg
Np ‖K,∞ ≤ (CIII + Cres

Np) (1 + |λ|)1/2 , for Cres
Np :=

Np∑

n=1

|Res(dtn , λnp)|
| Imλnp|

. (3.34)

Proof. We can4 choose A,B ∈ C(N+2+Np)×(N+2+Np) such that

dtnN+1+Np(λ) =

Np∑

n=1

Res(dtn , λnp)

λ− λnp
+ rN+1(λ),

where rN+1 is any SPF as in (3.21). It follows that

‖ dtn − dtnN+1+Np ‖K,∞ = ‖ dtn reg
Np −rN+1‖K,∞ ≤ ρN+1(dtn reg

Np , K)

since rN+1 was arbitrary. An application of Theorem 3.9 then allows to trade rational for
polynomial approximation, i.e.

ρN+1(dtn reg
Np , K) ≤ 2(1 + λ‖ dtn reg

Np ‖K,∞)e
λ‖ dtnreg

Np
‖K,∞eN

(
dtn reg

Np e
θ(dtnreg

Np
)
, K
)
. (3.35)

By construction of the ellipses E(λ, η), the regularized dtn reg
Np function is holomorphic in

the open interior D(λ, η) of E(λ, η). Hence, Proposition 3.12 yields

eN

(
dtn reg

Np e
θ(dtnreg

Np
)
, K
)
≤

2‖ dtn reg
Np e

θ(dtnreg
Np

)‖D(λ,η),∞

R− 1
R−N , for R ≥ 1 +

η

λ
. (3.36)

Combining these estimates and using (R − 1)−1 ≤ λ/η yields (3.33). The bound (3.34)
follows from the triangle inequality and (dtnN -III) extended to R+.

4Set AEE = −diag(λ1
p, . . . , λ

Np
p , a1, . . . , aN+1) as diagonal, BEE = Id, AΓE =

−(Res(dtn , λ1
p), . . . ,Res(dtn , λNp

p ), 1, . . . , 1) and the remaining entries to zero.
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3.2.4 Numerical illustration

This section illustrates the abstract concepts of the previous sections using concrete ex-
amples. Let f denote the function to be approximated by means of SPFs on the bounded
interval K = [a, b]. Firstly, the simplest case in which the best approximation of f by
SPFs and the corresponding approximation of the transformed function by polynomi-
als can be determined analytically is considered. Then, as a more challenging example,
a prototypical dtn function is constructed, which has to be approximated numerically.
Finally, some conclusions about the implications of these experiments for dealing with
actual dtn functions from Chapter 2 are drawn.

Transformation between SPFs and polynomials

If the function to be approximated is an SPF, i.e.

f =
N+1∑

j=1

1

z − aj
, aj ⊂ C,

then clearly ρN+1(f,K) = 0. It is slightly less obvious that the transformed function
feθ can then also be approximated perfectly with polynomials, i.e. eN(feθ, K) = 0, as
implied by Theorem 3.9. To see this, note that F ′ = f for

F (z) := log(
N+1∏

k=1

(z − ak))

holds. Therefore, θ = F (z)− F (a) and

feθ = f(z)e(F (z)−F (a)) = e−F (a)

N+1∑

j=1

∏

k 6=j
(z − ak).

Hence, the transformation turns SPFs of degree N + 1 into polynomials of degree N . In
particular, pN = feθ is a polynomial and eN(feθ, K) = 0.

As mentioned in Section 3.2.1, it is possible to reconstruct the SPF that best approx-
imates the original function from pN , by applying equation (3.24). Using

[
N+1∏

k=1

(z − ak)
]′

=
N+1∑

j=1

∏

k 6=j
(z − ak)

yields that qN+1 = e−F (a)
∏N+1

k=1 (z − ak). Thus,

rN+1 =
q′N+1

qN+1

=

N+1∑
j=1

∏
k 6=j(z − ak)

∏N+1
k=1 (z − ak)

= f,

so that the backtransformation consistently recovers the original SPF.
In the general case, f is neither an SPF nor is the transformed function a polynomial.

However, the transformation formula (3.24) to construct the best approximation with
SPFs given a polynomial of best approximation for the transformed function remains
valid. This is illustrated in a numerical experiment presented in the next section.
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Approximation of a prototypical dtn function

Now the setting in which the function to be approximated is not an SPF anymore is
treated. To this end, let K = [0, 1] and consider the following function

f(z) = ε(2πi exp(2πiz)) + (3/2)(1 + z)1/2 +
3∑

j=1

1

z − aj
,

which mimicks the behavior of a typical dtn function. It consists of a number of simple
poles at z = aj, j = {1, 2, 3}, a term which grows as

√
z and a perturbation for which ε =

1/10 will be used. Fig. 3.3b shows a plot of Re f , which resembles the behavior of dtn jump

displayed in Fig. 2.4. The real part of the transformed function feθ is shown in Fig. 3.3a.
Already on the unit interval it can be seen that the magnitude of the transformed function
grows noticeably with increasing length of the interval due to the exponential involved
in the transformation. Since the antiderivative of f behaves asymptotically as O(z3/2),
it is not practical to consider significantly larger intervals as would be required to treat
actual dtn functions arising in the applications of Chapter 2.
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−50

0

x

feθ

pN

(a) Approx. of Re feθ
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(b) Approx. of Re f
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|f − rN+1|K/|f |K

(c) Relative errors.

Figure 3.3: Approximation problem with SPFs for a prototypical dtn function on the
unit interval K. Figs. (a) and (b) show the approximation results for N = 6.

A polynomial pN of degree N which approximates the transformed function has been
determined by using interpolation at Tschebyscheff nodes. Already the reconstruction
with N = 6 is very accurate as shown in Fig. 3.3a. The corresponding SPF rN+1 deter-
mined by formula (3.24), which approximates the original function, is shown in Fig. 3.3b.
The general behavior of f is also already well-captured. The development of the relative
errors for the original and transformed function in terms of N is compared in Fig. 3.3c.
In agreement with the theoretical results an exponentially fast convergence in terms of
N is observed for both quantities. Moreover, it can be seen that the relative error for
approximation of the original function is about two orders of magnitude larger than the
one for the transformed function. Additional numerical experiments not shown here sug-
gest that the ratio of the relative errors also appears to increase with the length of the
interval. To investigate the sharpness of Theorem 3.9, it would be interesting to check
whether an exponential growth in terms of the supremum norm of f and the length of
the interval can in fact be observed.

Conclusions

As already touched on, the above procedure is not well-suited for application to realistic
dtn functions. Some of the obstructions are summarized below.
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• Since Re dtn(λ) grows like O(
√
λ) and dtn has to be approximated on large in-

tervals, the values of the exponential in the transformed function quickly exceed
all reasonable bounds. Perhaps one could try to remove the asymptotic behavior
from dtn in a preprocessing step although it is unclear how this can be realized in
practice.

• According to Proposition 3.5 (ii), an approximation of dtn in the supremum norm
at all points of K is not required and may be a waste of computational effort. Only
the accuracy of the approximation at the eigenvalues λ` counts. Unfortunately,
these points are typically unsuited for polynomial approximation.

• SPFs contain no information about the strength of the poles. Every pole is weighted
equally, which might be suboptimal. The ansatz (3.10) is more general and may
allow for faster convergence rates.

Hence, although Proposition 3.13 is theoretically highly valuable because it shows
exponential convergence on finite intervals, the method of its proof cannot be exploited
readily for the construction of transparent boundary conditions. The main problem is
posed by the recourse to polynomial approximation in the supremum norm. Trying to
fit f directly at eigenvalues using rational approximation seems much more appropriate
than taking the detour via polynomial approximation of feθ. Such an approach will be
presented in Chapter 4.

3.3 Semi-discrete error analysis

This section extends the results from Section 3.1.3 to an a priori error estimate in the
semi-discrete setting. Here, the main task is to bound the inf-sup constants γN appearing
in Proposition 3.5 from below independently of N . This requires assumptions on dtnN
which are introduced in Section 3.3.1. The main technical lemma for controlling γN is
given in Section 3.3.2. Section 3.3.3 then presents an a priori error estimate, which allows
to conclude exponential convergence on finite intervals and a global convergence without
an explicit rate, i.e. ‖u − uN‖V+ → 0, as N → ∞. For the Helmholtz equation we also
present further efforts to characterize this global convergence as exponentially fast.

3.3.1 Assumptions on dtnN and resulting properties of bN(·, ·)
Before proceeding with the error analysis, it is necessary to impose some assumptions
on dtnN to ensure that the semi-discrete problem (3.13) is uniquely solvable. The first
condition, required to ensure uniqueness, is the same as for dtn . The second condition is
stricter than for dtn because a G̊arding inequality now has to hold on the space V+ which
has a stronger norm on Γ than V . The assumptions are as follows:

• For all ` ∈ N0:

Im dtnN(λ`) < 0, (dtnN -I<)

Im dtnN(λ`) ≤ 0. (dtnN -I≤)
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• There exists a finite (possibly empty) set LN− ⊂ N0, L
N
+ := N0 \ L− and a positive

constant CII(N) such that

Re dtnN(λ`) ≥ CII(N)(1 + |λ`|) for ` ∈ LN+ . (dtnN -II)

Further, it will be assumed that the sets LN± and the constant CII(N) can be chosen

independently of N for N large enough, i.e. LN± = LN0
± and CII(N) = CII(N0) for

all N ≥ N0 holds true.

Let us record the announced G̊arding inequality for later use.

Lemma 3.14 (G̊arding inequality). Let (dtnN -II) hold. Then the sesquilinear form
bN(·, ·) from (3.14) fulfills the lower bound

Re bN(u, u) ≥ CV+(N)‖u‖2
V+
− CL2(Ωint)‖u‖2

L2(Ωint)
− CL2(Γ)(N)‖u‖2

L2(Γ), (3.37)

for all u ∈ V+ with constants

CV+(N) := min{CV , cΨCII(N)}, (3.38)

where CV and CL2(Ωint) are defined as in (2.22) and

CL2(Γ)(N) := cΨ max
`∈LN−
|Re dtn(λ`)− CII(N)(1 + |λ`|)| . (3.39)

Proof. By definition

Re〈MΓDtN Nu, u〉Γ = cΨ

( ∑

`∈LN+

Re dtnN(λ`)|〈u,w`〉Γ|2 +
∑

`∈LN−

CII(N)(1 + |λ`|)|〈u,w`〉Γ|2

+
∑

`∈LN−

[Re dtnN(λ`)− CII(N)(1 + |λ`|)] |〈u,w`〉Γ|2
)
.

For the sum running over LN+ the assumption (dtnN -II) can be used to obtain a lower
bound. This leads to

Re〈MΓDtN Nu, u〉Γ ≥ cΨCII(N)‖ tru‖2
H1(Γ) − CL2(Γ)(N)‖u‖2

L2(Γ)

for CL2(Γ)(N) as given in the statement of the lemma. Combining this with the lower
bound for Re bint(u, u) known from Lemma 2.2 yields the claim.

For dtn it was also necessary to introduce the boundedness assumption (dtn-III) to
ensure continuity of the sesquilinear form b(·, ·) on V × V . Since the ansatz (3.10) grows
linearly as λ → ∞ provided that BEE is nonsingular as is from now on assumed, the
inequality

| dtnN(λ`)| ≤ CIII(N) (1 + |λ`|) for all ` ∈ N0, (dtnN -III)

for some constant CIII(N) is automatically fulfilled for dtnN . Continuity of bN follows.

Lemma 3.15 (Continuity of bN(·, ·)). Assume that BEE is nonsingular so that (dtnN -III)
holds. Then the sesquilinear form bN(·, ·) from (3.14) is continuous on V+ × V+.
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Proof. Since the norm on V+ is stronger than the norm on V , continuity of bint(·, ·) on
V+ × V+ follows from Lemma 2.18. It remains to estimate

|〈MΓDtN Nu, v〉Γ| = cΨ

∣∣∣∣∣
∑

`∈N0

dtnN(λ`)〈u,w`〉Γ〈v, w`〉Γ

∣∣∣∣∣

≤ cΨCIII(N)

∣∣∣∣∣
∑

`∈N0

(1 + |λ`|)1/2 |〈u,w`〉Γ| (1 + |λ`|)1/2 |〈v, w`〉Γ|
∣∣∣∣∣

≤ cΨCIII(N)‖ tru‖H1(Γ)‖ tr v‖H1(Γ),

by the Cauchy-Schwarz inequality.

Well-posedness of the semi-discrete problem (3.13) follows now similarly as for the
continuous problem treated in Section 2.5.

Proposition 3.16 (Well-posedness of semi-discrete problem). Assume that

(a) either (dtnN -I≤) and Im c ≤ c0 < 0 in Ωint

(b) or (dtnN -I<)

holds. Then the semi-discrete problem (3.13) admits at most one solution. If additionally
(dtnN -II) holds, then the problem is well-posed on V+.

Proof. Assumption (dtnN -II) implies that the sesquilinear form

b̃N(u, v) := bN(u, v) + CL2(Ωint)(u, v)Ωint
+ CL2(Γ)(N)〈u, v〉Γ (3.40)

is coercive on V+ × V+ by Lemma 3.14. Moreover, the embeddings ι : V+ ↪→ L2(Ωint)
and ιΓ : V+ → H1(Γ) ↪→ L2(Γ) are compact. Hence, the Fredholm property of the
corresponding operator BN ∈ L (V+, V+), which fulfills

bN(u, v) = (BNu, v)V+, u, v ∈ V+,

follows as in Theorem 2.19. Assumptions (a) or (b) imply that BN is injective, i.e.
uniqueness, which yields well-posedness as in Corollary 2.20.

In addition to properties of dtnN , a certain convergence of dtnN to dtn has to be
assumed for the argument in Section 3.3.2. For the specific classical infinite elements
considered in reference [DI01] the property dtnN(λ`) = dtn(λ`) for ` = 0, . . . , N holds
true. In order to generalize this to other transparent boundary conditions, it will be
assumed that for any fixed L ∈ N0:

lim
N→∞

sup
`≤L

errdtn(N, `)→ 0 (CFI-w)

is valid. The acronym (CFI-w) means ‘Convergence For Intervals - weak’. A stronger
assumption, which is suggested by the results of Section 3.2, albeit not needed in Sec-
tion 3.3.2, would be to require for any fixed L ∈ N0:

sup
`≤L

errdtn(N, `) ≤ CL exp(−κLN), (CFI-s)

with constants CL > 0 and κL > 0 which may depend on L ∈ N0, yet not on N .
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3.3.2 Bounding the inf-sup constants from below

For convenience, recall the sesquilinear form associated with the semi-discrete DtN N

operator
bN(u, v) := bint(u, v) + 〈MΓDtN Nu, v〉Γ

and the inf-sup constants γN defined by

γN := inf
‖u‖V+=1

sup
‖v‖V+=1

|bN(u, v)|.

The aim of this section is to show that infN γN > 0 using the assumptions on dtnN
introduced in Section 3.3.1 and the resulting properties of bN(·, ·). The main step is the
following technical lemma.

Lemma 3.17 (Lower bound for inf-sup constants). Assume that the continuous problem
(2.59) admits at most one solution and that the bilinear form b(·, ·) is continuous. Let
(dtnN -II) and (CFI-w) hold. Then lim infN γN > 0 follows.

Proof. Following [DI01, Lemma 3.7], the proof proceeds by contradiction. Assume that
there exists a subsequence

γNk := inf
‖u‖V+=1

sup
‖v‖V+=1

|bNk(u, v)|

converging to zero. Then there is a corresponding sequence (uk) with ‖uk‖V+ = 1 such
that

sup
‖v‖V+=1

|bNk(uk, v)| → 0 as k →∞. (3.41)

Since V+ is a Hilbert space, there exists a weakly convergent subsequence again denoted
by (uk) for ease of notation. Let u ∈ V+ with ‖u‖V+ ≤ 1 denote the weak limit. Due to
compactness of the embeddings V+ ↪→ L2(Ωint) and V+ → H1(Γ) ↪→ L2(Γ), the sequence
(uk) converges strongly to u in L2(Ωint) and L2(Γ). The argument given below proceeds
in three steps to show that

b(u, v) = 0 for all v ∈ V+ and u 6= 0, (3.42)

which contradicts uniqueness5 of the continuous problem (2.59).

Step 1: We show the following auxiliary result: Let v ∈ V+ be a test function such that there
exists L ∈ N0 with 〈v, w`〉Γ = 0 for all ` > L, i.e. its trace on Γ can be represented as
a linear combination of a finite number of eigenfunctions. This implies b(u, v) = 0.

Indeed,

|b(u, v)| ≤ |b(u− uk, v)|+ |bNk(uk, v)|+ |b(uk, v)− bNk(uk, v)|. (3.43)

Since (uk) converges weakly to u the first terms goes to zero as k → ∞. The
second term goes to zero by (3.41). It remains to treat the last term:

|b(uk, v)− bNk(uk, v)| = cΨ

∣∣∣∣∣
L∑

`=0

[dtn(λ`)− dtnNk(λ`)] 〈uk, w`〉Γ〈v, w`〉Γ

∣∣∣∣∣
≤ cΨ sup

`≤L
errdtn(Nk, `)‖uk‖V+‖v‖L2(Γ) = cΨ sup

`≤L
errdtn(Nk, `)‖v‖L2(Γ).

5Uniqueness for (2.59) holds on the space V while the argument in this proof requires uniqueness on
V+. This is not a problem since if u ∈ V+ then in particular u ∈ V . Moreover, equation (3.42) implies
b(u, v) = 0 for all v ∈ V by density of V+ in V .
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The supremum goes to zero as Nk → ∞ by assumption (CFI-w). It follows that
b(u, v) = 0 since the left hand side of (3.43) is independent of k while the right
hand side converges to zero.

Step 2: Next it will be shown that u is a weak solution of the homogeneous problem, i.e.
that the left equation of (3.42) holds true. In the final step it then remains to show
that u 6= 0.

For an arbitrary v ∈ V+ we have tr(v) ∈ H1(Γ) so that

tr(v) =
∞∑

`=0

〈tr(v), w`〉Γw`

and for the partial sums

tr(v)L :=
L∑

`=0

〈tr(v), w`〉Γw`

it holds that
‖ tr(v)− tr(v)L‖H1(Γ) → 0, as L→∞.

Recall that the trace operator admits a continuous linear right inverse

Z : H1/2(Γ)→ V, tr ◦Z = IdH1/2(Γ).

For ṽ := v − Z ◦ tr(v) ∈ V with tr(ṽ) = 0 on Γ define vL := ṽ + Z ◦ tr(v)L ∈ V .
Actually, tr(vL) = tr(ṽ) + tr ◦Z ◦ tr(v)L = tr(v)L ∈ H1(Γ) since v ∈ V+, so that
vL ∈ V+. Then

|b(u, v)| ≤ |b(u, vL)|+ |b(u, v − vL)| → 0 as L→∞.

This is because the first terms is zero by Step 1 for tr(vL) = tr(v)L admits a finite
eigenfunction representation. For the second term we use continuity of b(·, ·) and
continuity of Z to conclude

|b(u, v − vL)| ≤ ‖b‖‖u‖V ‖v − vL‖V
= ‖b‖‖u‖V ‖ṽ + Z ◦ tr(v)− (ṽ + Z ◦ tr(v)L) ‖V
= ‖b‖‖u‖V ‖Z(tr(v)− tr(v)L)‖V
≤ ‖b‖‖Z‖‖u‖V ‖ tr(v)− tr(v)L‖H1/2(Γ),

which goes to zero as L→∞. Hence, b(u, v) = 0 for all v ∈ V+.

Step 3: To obtain a contradiction, it remains to show that u cannot be zero.

To this end, we use the G̊arding inequality for bN(·, ·) established in Lemma 3.14
and assume that Nk is already sufficiently large so that the involved constants can
be chosen independently of Nk, i.e. CII(Nk) = CII(N0) and CL2(Γ)(Nk) = CL2(Γ)(N0)
for Nk large holds. This yields

Re bNk(uk, uk) ≥ CV+(N0)‖uk‖2
V+
− CL2(Ωint)‖uk‖2

L2(Ωint)
− CL2(Γ)(N0)‖uk‖2

L2(Γ)

(3.44)

= CV+(N0)− CL2(Ωint)‖uk‖2
L2(Ωint)

− CL2(Γ)(N0)‖uk‖2
L2(Γ).
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As Re bNk(uk, uk) converges to zero by (3.41) and (uk) converges strongly to u in
L2(Ωint) as well as in L2(Γ) by compactness of the embeddings, this yields

CL2(Ωint)‖u‖2
L2(Ωint)

+ CL2(Γ)(N0)‖u‖2
L2(Γ) ≥ CV+(N0) > 0.

This implies u 6= 0.

Corollary 3.18. In addition to the assumptions of Lemma 3.17 let one of the following
hold

(i) (dtnN -I≤) and Im c ≤ c0 < 0 in Ωint

(ii) (dtnN -I<).

Then infN γN > 0.

Proof. According to Proposition 3.16, the assumptions imply uniqueness for the discrete
problem. That is, bN(u, v) = 0 for all v ∈ V+ implies u = 0. Since lim infN γN > 0 holds,
γN could only vanish for finitely many N . However, γN 6= 0, else there would exist u 6= 0
with sup‖v‖V+=1 |bN(u, v)| = 0, which contradicts uniqueness.

3.3.3 A priori error estimate

Now the results from the previous investigations are combined to derive an a priori
error estimate. Before this can be obtained, one remaining difficulty still needs to be
overcome. Section 3.2 showed that only convergence of dtnN to dtn on finite intervals
can be expected. Therefore, the asymptotic contribution ‖(Id−ΠL)u‖Hσerr (Γ) in the error
estimate of Proposition 3.5 (ii) is not controlled yet. To resolve this issue, smoothness
properties of the exact solution u to problem (2.2) close to the truncation boundary Γ
have to be converted into asymptotic decay of the coefficients |〈u,w`〉Γ|. The following
lemma makes these notions precise.

Lemma 3.19 (Regularity on Γ). Let u denote the solution to (2.2), i.e. Lu = f .

(a) Assume that the coefficients of L and the right hand side f are C∞ in a neighborhood
of Γ. Then tru ∈ Hs(Γ) for any s ≥ 0.

(b) Consider the specific case of the Helmholtz equation of a homogeneous medium
exterior to a disk, see Section 2.2.1. Assume that the separability assumption (2.5)
extends to an annulus b ≤ r < a. Then

|〈u,w`〉Γ| ≤ C exp
(
−a log(a/b)

√
|λ`|
)
,

where C is independent of `.

Proof. (a) Since the coefficients of L and the right hand side are smooth in a neighbor-
hood of Γ and L is strongly elliptic, the solution is smooth in a neighboorhood of
Γ. Therefore, tru = u|Γ ∈ C∞(Γ) ⊂ Hs(Γ) for any s > 0.
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(b) From (2.11) the solution is known to allow for an expansion of the form

u =
∑∞

`=0
Λr(λ`)w`〈trΓ u,w`〉Γ, with Λr(λ`) = H

(1)
` (kr)/H

(1)
` (ka),

where the diffeomorphism Ψ has been omitted for ease of notation. Since the
separability assumption extends to b ≤ r < a, the same formula can be applied at
Γb := {r = b}, which gives

u = C
∑∞

`=0

H
(1)
` (kr)

H
(1)
` (kb)

w`〈trΓb u,w`〉Γb .

The constant C is independent of ` and simply scales the eigenfunctions w` (trigono-
metric polynomials) to unit length on Γb. By evaluating at r = a and comparing
coefficients it follows that

|〈trΓ u,w`〉Γ| =
∣∣∣∣∣C
H

(1)
` (ka)

H
(1)
` (kb)

〈trΓb u,w`〉Γb

∣∣∣∣∣ ≤ C

∣∣∣∣∣
H

(1)
` (ka)

H
(1)
` (kb)

∣∣∣∣∣ ‖u‖L2(Γb)

since trΓb u ∈ L2(Γb). From [AS64, equation (9.3.1)] the asymptotic behavior

|H(1)
ν (z)| ∼

√
2

πν

( ez
2ν

)−ν
, as ν → +∞

is known. Hence,
∣∣∣∣∣
H

(1)
` (ka)

H
(1)
` (kb)

∣∣∣∣∣ ∼ exp (−` log(a/b)) , as `→ +∞.

As λ` = (`/a)2, the claim follows.

The fundamental semi-discrete error estimate can now be derived. Based on this
theorem, further results can be obtained immediately by specifying the smoothness of
the exact solution in the weighted Sobolev spaces Hσ(Γ) and the approximation rate
errdtn(N, `). The latter can be characterized using the results of Section 3.2.3.

Theorem 3.20 (Semi-discrete error estimate). Assume that (dtn-II) / (dtnN -II) and
(dtn-III) hold. Further assume that

1. either (dtn-I<) / (dtnN -I<)

2. or (dtn-I≤) / (dtnN -I≤) and Im c ≤ c0 < 0 in Ωint is fulfilled.

Let the weak approximation condition (CFI-w) hold. Let u be the solution of (2.59) and
assume that u ∈ V+ ∩Hσ(Γ) for some sequence (σ`) of positive weights with inf` σ` > 0.
Let uN be the solution of (3.13) and L ∈ N0. Moreover, let the eigenvalues be ordered in
non-decreasing magnitude, i.e. |λ`| ≤ |λ`+1| holds true for all ` ∈ N0. Then

‖u− uN‖V+ ≤ C ′
(
‖ΠLu‖Hσerr (Γ) + (CIII + CIII(N)) sup

`≥L

(1 + |λ`|)1/2

σ`
‖u‖Hσ(Γ)

)

≤ C ′
(

sup
`<L

errdtn(N, `)

σ`(1 + |λ`|)1/2
+ (CIII + CIII(N)) sup

`≥L

(1 + |λ`|)1/2

σ`

)
‖u‖Hσ(Γ)

(3.45)

with ‖ΠLu‖Hσerr (Γ) as defined in Proposition 3.5 (ii) and C ′ :=
√

2 infN γ
−1
N cΨ <∞.
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Proof. According to Proposition 3.5 (ii), the error can be bounded by

‖u− uN‖V+ ≤ C ′
(
‖ΠLu‖Hσerr (Γ) + ‖(Id−ΠL)u‖Hσerr (Γ)

)
,

with C ′ := infN γ
−1
N cΨ < ∞ thanks to Corollary 3.18. The asymptotic contribution, i.e.

the second term, needs to be bounded by using growth conditions on dtn , respectively
dtnN , at infinity and smoothness assumptions on u. The assumption (dtn-III) and the
automatically fulfilled condition (dtnN -III) yield

‖(Id−ΠL)u‖2
Hσerr (Γ) =

∞∑

`=L

errdtn(N, `)2(1 + |λ`|)−1|〈u,w`〉Γ|2

≤ 2
(
C2

III + CIII(N)2
) ∞∑

`=L

(
(1 + |λ`|)1/2

σ`

)2

σ2
` |〈u,w`〉Γ|2

≤ 2
(
C2

III + CIII(N)2
)(

sup
`≥L

(1 + |λ`|)1/2

σ`

)2

‖u‖2
Hσ(Γ).

On the first L− 1 modes

‖ΠLu‖2
Hσerr (Γ) =

L−1∑

`=0

errdtn(N, `)2σ2
` |〈u,w`〉Γ|2

1

σ2
` (1 + |λ`|)

≤
(

sup
`<L

errdtn(N, `)

σ`(1 + |λ`|)1/2

)2

‖u‖2
Hσ(Γ).

Combining the two contributions yields the claim.

Refined estimates now readily follow by specifying the degree of smoothness of the
exact solution on Γ. While Corollary 3.21 (a) only requires smoothness in terms of
Sobolev scales, part (b) makes further requirements which yield a stronger result.

Corollary 3.21. Let the assumptions of Theorem 3.20 be fulfilled.

(a) If u ∈ Hs(Γ) for some s ≥ 1, which e.g. follows if the assumptions of Lemma 3.19
(a) are fulfilled, then

‖u− uN‖V+ ≤ C ′
(

sup
`<L

errdtn(N, `)

(1 + |λ`|)
s+1
2

+ (CIII + CIII(N))
1

(1 + |λL|)
s−1
2

)
‖u‖Hs(Γ),

with C ′ from Theorem 3.20. Further, there exist constants CL > 0, κL > 0 depending
on L and a fixed Np ∈ N0 such that

sup
`<L

errdtn(N + 1 +Np, `)

(1 + |λ`|)
s+1
2

≤ CL exp(−κLN), (3.46)

provided that A,B ∈ C(N+2+Np)×(N+2+Np) are suitably chosen and λ` ≥ 0 for all `.

(b) If

|〈u,w`〉Γ| ≤ C exp(−κ
√
|λ`|), (3.47)
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for some C, κ > 0, which follows e.g. if the assumptions of Lemma 3.19 (b) are
satisfied, then

‖u− uN‖V+ ≤ C̃

(
sup
`<L

errdtn(N, `)

(1 + |λ`|)1/2
exp

(
−κ

2

√
|λ`|
)

+ (CIII + CIII(N)) exp
(
−κ

4

√
|λL|

))
‖u‖Hσ(Γ),

with σ` = exp(κ
2

√
|λ`|) and C̃ = max{C ′, sup`≥0(1 + |λ`|)1/2 exp(−κ

4
|λ`|)}. Further,

there exist constants CL > 0, κL > 0 depending on L and a fixed Np ∈ N0 such that

sup
`<L

errdtn(N + 1 +Np, `)

(1 + |λ`|)1/2
exp

(
−κ

2

√
|λ`|
)
≤ CL exp(−κLN),

provided that A,B ∈ C(N+2+Np)×(N+2+Np) are suitably chosen and λ` ≥ 0 for all `.

Proof. (a) The first part of the result immediately follows from (3.45) by taking σ` =
(1 + |λ`|)s/2 and applying Lemma 3.3 (b). The bound (3.46) follows from Proposi-
tion 3.13 since

sup
`≤L−1

errdtn(N + 1 +Np, `) ≤ sup
λ∈[λ0,λL−1]

| dtn(λ)− dtnN+1+Np(λ)|

and min`<L(1 + |λ`|)
s+1
2 ≥ 1.

(b) The decay (3.47) ensures that u ∈ Hσ(Γ) with σ` = exp(κ
2

√
|λ`|). Here we use that∑

` exp(−κ
√
|λ`|) < ∞, which follows in the general case when the eigenvalues

are not explicitly known from Weyl’s asymptotic law. Then plugging σ` as defined
above into (3.45) yields the claim upon noting that

sup
`≥L

(1 + |λ`|)1/2

σ`
≤
(

sup
`≥L

(1 + |λ`|)1/2 exp(−κ
4
|λ`|)

)
sup
`≥L

exp
(
−κ

4

√
|λ`|
)

≤ C̃ exp
(
−κ

4

√
|λL|

)
.

The second part of the statement follows as in part (a).

As another corollary a basic convergence result as N →∞ is easily obtained.

Corollary 3.22 (Convergence without rate). Let the assumptions of Corollary 3.21 (a)
for some s > 1 be fulfilled. Further assume that the constant CIII(N) in (dtnN -III) can
be chosen independently of N for N sufficiently large. Then

‖u− uN‖V+ → 0 as N →∞

can be achieved with transparent boundary conditions of tensor-product type.

Proof. Let ε > 0 be given. By assumption there exists an N0 ∈ N0 such that for all
N ≥ N0 one can choose CIII(N) = CIII(N0). Since s > 1 and |λL| → ∞ as L → ∞,
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the asymptotic contribution in the error estimate of Corollary 3.21 (a) goes to zero as
L→∞. Fix L0 large enough such that

C ′(CIII + CIII(N0))
1

(1 + |λL0|)
s−1
2

‖u‖Hs(Γ) <
ε

2
.

Then (3.46) guarantees that for fixed L0 there exists an N1 ≥ N0 such that for all N ≥ N1

C ′ sup
`<L0

errdtn(N, `)

(1 + |λ`|)
s+1
2

‖u‖Hs(Γ) <
ε

2
.

Thus, ‖u− uN‖V+ < ε for N ≥ N1 follows from Corollary 3.21 (a) by combining the two
estimates.

So far the convergence analysis proceeded purely at the semi-discrete level. In partic-
ular, the discretization error of the differential operators on Γ was neglected. However,
the next corollary shows that a basic convergence result for a fully-discrete scheme is
easily obtained based on the already established results.

Corollary 3.23 (Convergence for fully-discrete problem). Let the assumptions of Corol-
lary 3.22 be fulfilled. For a finite dimensional subspace Vh ⊂ V+ consider the Galerkin
discretization of (3.13): Find uN,h ∈ Vh such that

bN(uN,h, vh) = l(vh), for all vh ∈ Vh.

Then there exists a sequence (hN) such that

lim
N→+∞

‖u− uN,hN‖V+ → 0.

Proof. Let ε > 0 be given. By Corollary 3.22 there exists N ∈ N such that ‖u −
uN‖V+ < ε/2, where uN is the solution of the semi-discrete problem (3.13). By the
triangle inequality

‖u− uN,h‖V+ ≤ ‖u− uN‖V+ + ‖uN − uN,h‖V+ <
ε

2
+ ‖uN − uN,h‖V+ .

Hence, it only remains to show that the Galerkin discretization for the semi-discrete
problem converges for fixed N , i.e. that ‖uN − uN,h‖V+ < ε/2 for h = h(N) sufficiently
small. To this end, recall from the proof of Proposition 3.16 that

bN(w, v) = (BNw, v)V+, w, v ∈ V+,

where BN ∈ L (V+, V+) is an injective Fredholm operator. More precisely, we have:

• The operator BN is of the form BN = B̃N −K, where the operator B̃N associated
with the sesquilinearform b̃N from (3.40) is coercive on V+ and K is compact thanks
to compactness of the embeddings ι : V+ ↪→ L2(Ωint) and ιΓ : V+ → H1(Γ) ↪→ L2(Γ).

• Since B̃N is coercive, the Galerkin discretization converges for B̃N , see e.g. [Kre14,
Thm. 13.30] for a proof.

Now we are exactly in the setting of [Kre14, Thm. 13.7], which states that under the
above conditions the Galerkin discretization also converges for the perturbation of B̃N by
the compact operator K, i.e. for BN . It follows that ‖uN−uN,h‖V+ < ε/2 for h sufficiently
small, which concludes the argument.
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Towards a global convergence rate for the Helmholtz equation

Although convergence for N →∞ has been shown in Corollary 3.22, this result does not
provide any information on the rate of convergence. If we fix L so that the asymptotic part
of the error in the estimates of Corollary 3.21 is neglegible, then exponential convergence
in N for the first L − 1 modes follows by Proposition 3.13. However, to obtain global
rates of convergence also L has to go to infinity in order to guarantee that the asymptotic
part of the error converges to zero as well. Since the constants in Proposition 3.13 depend
on the length of the interval and therefore on L, this is a delicate matter. Moreover, to
apply Proposition 3.13 rigorously, we need to be able to actually prove results about the
pole structure of dtn . This is one of the reasons why the considerations in this section are
restricted to dtnhom,2d

, whose pole structure is reasonably well-understood. According to
(2.36), the poles λnp of dtnhom,2d

behave as

λnp ∼
(πn
a

)2

[(
π
2
− arg(ka)

)2 − ln
(

3πn
e|ka|

)2

+ 2i
(
π
2
− arg(ka)

)
ln
(

3πn
e|ka|

)]

[
ln
(

3πn
e|ka|

)2

+
(
π
2
− arg(ka)

)2
]2

for n→∞. In particular, Reλnp → −∞ and Imλnp → +∞ as n→∞. Thus, there exists

an Np = Np(a, k) ∈ N0 and η > 0 such that C \ Sη only contains the poles λ1
p, . . . , λ

Np
p .

Moreover, these poles are simple as shown Proposition 2.4 (b) and the bound (dtn-III)
extends to R+ owing to Lemma 2.3. This allows to apply Proposition 3.13. In combination
with the results from the previous section, the following estimate of the convergence rate
can be established.

Proposition 3.24 (Global convergence rate for the Helmholtz equation). Consider the
setting in which the PDE problem (2.2) in two dimensions is truncated by a circle with
radius a and the exterior medium is described by the homogeneous Helmholtz equation,
i.e. dtnhom,2d

, see Section 2.2.1. Suppose that the separability assumption (2.5) extends
to an annulus b ≤ r < a. Let (dtnN -I<) and (dtnN -II) be fulfilled. Let Np(a, k) ∈ N0

such that the first Np poles of dtnhom,2d
are contained in C \ Sη. Then for any N ∈ N0

with Ñ := N + 1 +Np the estimate

‖u− uÑ‖V+ ≤ C̃

(
Cα‖ dtn reg

Np e
θ(dtnreg

Np
)‖D(N2α,η),∞ exp

(
−N

2
log
(

1 +
η

N2α

))

+ (CIII + CIII(Ñ)) exp

(
− log

(a
b

) baNαc
4

))
‖u‖Hσ(Γ), (3.48)

for any 0 < α < 1/5 with Cα <∞ depending on α holds. Here, σ` = exp (a
2

log(a
b
)
√
|λ`|),

and bxc := max{m ∈ Z | m ≤ x}.

Proof. According to Lemma 2.3, the function dtnhom,2d
fulfills assumptions (dtn-I<), (dtn-

II) and (dtn-III). Hence, the continuous problem is well-posed by Corollary 2.20. Since
the separability assumption has been extended to b ≤ r < a, the Fourier coefficients of
the solution on Γ decay exponentially fast according to Lemma 3.19 (b). As (dtnN -I<)
and (dtnN -II) have been assumed, Corollary 3.21 (b) with κ = a log(a/b) then implies
the error bound
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‖u− uÑ‖V+ ≤ C̃

(
sup
`<L

errdtn(Ñ , `)

(1 + |λ`|)1/2
exp

(
−a

2
log
(a
b

)√
|λ`|
)

+ (CIII + CIII(Ñ)) exp
(
−a

4
log
(a
b

)√
|λL|

))
‖u‖Hσ(Γ) (3.49)

for σ` = exp (a
2

log(a
b
)
√
|λ`|). By appealing to Proposition 3.13 we obtain

sup
`<L

errdtn(Ñ , `) ≤ f(λL, N)‖ dtn reg
Np e

θ(dtnreg
Np

)‖D(λL,η),∞ exp

(
−N

2
log

(
1 +

η

λL

))
,

for

f(λ,N) :=
4λ

η

(
1 + λ(1 + λ)1/2

(
CIII + Cres

Np

))

× exp

(
λ(1 + λ)1/2

(
CIII + Cres

Np

)
− N

2
log
(

1 +
η

λ

))
(3.50)

and

dtn reg
Np(λ) = dtnhom,2d

(λ)−
Np∑

n=1

Res(dtnhom,2d
, λnp)

λ− λnp
.

Now one has to choose L = L(N) in λL = (L/a)2 to balance the two contributions in
(3.49). Set L = baNαc, i.e. λL ≤ N2α, for α > 0 to be determined such that

Cα := sup
N∈Np

f(N2α, N) <∞

holds true. To ensure this condition, we have to find α such that the argument of the
exponential in (3.50) for λ = N2α converges to −∞ as N → ∞. Using log(1 + x) =
x+O(x2) for |x| � 1, it follows that the argument of the exponential is given by

N2α
(
1 +N2α

)1/2
(
CIII + Cres

Np

)
− N

2

(
ηN−2α +O(N−4α)

)
,

which converges to −∞ as N →∞ provided that 3α < 1−2α, that is 0 < α < 1/5. This
leads to

sup
`<L

errdtn(Ñ , `) ≤ Cα‖ dtn reg
Np e

θ(dtnreg
Np

)‖D(N2α,η),∞ exp

(
−N

2
log
(

1 +
η

N2α

))
.

The claimed estimate (3.48) follows upon noting that

exp
(
−a

2
log
(
a
b

)√
|λ`|
)

(1 + |λ`|)1/2
≤ 1 and exp

(
−a

4
log
(a
b

)√
|λL|

)
= exp

(
− log

(a
b

) baNαc
4

)
.

Remark 3.25 (Open question). The result of Proposition 3.24 is not entirely satisfactory

yet due to occurence of the term ‖ dtn reg
Np e

θ(dtnreg
Np

)‖D(N2α,η),∞ in (3.48) whose dependence
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on N is not clearly understood. This term stems from applying polynomial appproxi-
mation to the regularized and transformed dtnhom,2d

function in the ellipse D(N2α, η),
see Proposition 3.12 and Proposition 3.13. Currently, it is not possible to estimate this
term rigorously since the bound | dtn reg

Np(λ)| ≤ (CIII + Cres
Np

) (1 + |λ|)1/2 has only been

shown for λ ≥ 0, whereas λ ∈ D(N2α, η) ⊂ C has to be treated here. This would re-

quire an extension of Lemma 2.3 in which dtnhom,2d
is replaced by dtn reg

Np and complex

λ ∈ D(N2α, η) are admitted. If one assumes nonetheless that such an estimate was valid
also in D(N2α, η), then the antiderivative |θ(dtn reg

Np , λ)| behaves like ∼ (1 + |λ|)3/2 and

‖ dtn reg
Np e

θ(dtnreg
Np

)‖D(N2α,η),∞ ∼ Nα exp(CN3α). As seen in the proof of Proposition 3.24,

exp

(
−N

2
log
(

1 +
η

N2α

))
∼ exp

(
−ηN

1−2α

2

)

for N → ∞. Hence, an additional prefactor of Nα exp(CN3α) would leave the rate
unaffected as long as α < 1/5, which is already assumed anyway.

This proposition concludes the theoretical part of this chapter. The following Sec-
tion 3.4 presents a case study which investigates the performance of many popular trans-
parent boundary conditions that fit into the tensor-product framework as introduced in
Section 3.1.

3.4 Comparison of popular transparent boundary con-

ditions based on approximation of dtn
In the following, the error errdtn(N, `) will be numerically investigated for different popular
transparent boundary conditions recalled in Appendix C which fit into the framework in-
troduced in Section 2.2.1. The problem under study is the constant coefficient Helmholtz
equation (2.27) in the exterior of a three dimensional ball with radius a using a Som-
merfeld radiation condition at infinity as introduced in Section 2.2.1. In Appendix C the
matrices A and B in the ansatz (3.7) are identified for tensor-product PMLs (‘TP-PML’),
two classical infinite element formulations (‘U-Burnett’ and ‘Astley-Leis’), Hardy-Space-
Infinite elements (‘HSIE’) and the first and second order local absorbing boundary con-
ditions of Bayliss, Gunzburger and Turkel (‘BGT’). Readers interested in the details of
this derivation are invited to read through Appendix C at this point. Once the matrices
A and B in (3.7) for a specific transparent boundary condition have been determined,
formula (3.10) yields the corresponding dtnN function so that the error errdtn(N, `) can
be measured.

It is natural to start the investigation with the lowest order condition N = 0. From
a practical perspective this condition is very attractive since it can be implemented di-
rectly on the coupling boundary without introducing additional degrees of freedom. In
particular, the matrices A and B consist entirely of the contribution from the coupling
interface: A = AΓΓ ∈ C and B = BΓΓ ∈ C. According to (3.10), this implies that the
lowest order conditions try to approximate λ 7→ dtn(λ) by the affine linear function

λ 7→ A+ λB.

Since dtn is usually not affine linear, such an approximation can only be accurate on a
sufficiently small interval.
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The affine linear dtnN=0 approximations of dtn achieved with different transparent
boundary conditions are shown in Figure 3.4 for a = 4. It is interesting that the
HSIE, unconjugated Burnett formulation and BGT condition (using m = 2, see Ap-
pendix C.4) seem to arrive at the same linear fit. That the initial value dtnN=0(λ =
0) = A = −ik + 1/a actually coincides for all conditions can be inferred from the def-
initions introduced in Appendix C (upon choosing κ0 = ak for the HSIE). However,
that the HSIE, unconjugated Burnett and BGT conditions also lead to linear approxima-
tions with very similar slope (i.e. B) is not obvious from the definitions6. For example,
B = 1/2(−ik + 1/a)−1 for the BGT condition whereas B is defined in terms of special
functions for the unconjugated Burnett condition (C.14). Overall, these results demon-
strate that a linear approximation is only appropriate for small λ corresponding to the
lowest order modes.

0 50 100 150 200 250 300 350

0

5

10

λ

Re(dtn)
BGT

U-Burnett
Astley-Leis

HSIE

0 50 100 150 200 250 300 350
−20

−10

0

λ

Im(dtn)

Figure 3.4: Comparison of dtnhom,3d
approximation for different transparent boundary

conditions for N = 0, k = 16, a = 4 in dimension d = 3.

To improve the approximation of dtn , additional degrees of freedom can be introduced.
According to (3.10), this amounts to enriching the linear approximation by the rational
function

λ 7→ −(AΓE + λBΓE)(AEE + λBEE)−1(AEΓ + λBEΓ),

which admits poles at the negative eigenvalues of (BEE)−1AEE. Fig. 3.6 displays these
poles in the lower panel, the approximation of dtn by dtnN in the upper panel and the
relative error | dtnhom,3d

(λ`)−dtnN(λ`)|/| dtnhom,3d
(λ`)| for different transparent boundary

conditions using N ∈ {3, 6, 9}. Note that the matrices for the infinite elements methods
are dense, i.e. they have (N + 1)2 non-trivial entries, while the PML matrices are sparse,
see Table 3.1 for a detailed comparison between the matrix dimension and the number of
nonzero entries. Therefore, a direct comparison in terms of the matrix dimension would
put the PML at an unfair disadvantage. It is more appropriate to compare the results
achieved with infinite element matrices of dimension (N + 1)× (N + 1) to those obtained
with TP-PML matrices containing about (N+1)2 nonzero entries. Consequently, Fig. 3.6
is based on TP-PML matrices with {17, 49, 97} nonzero entries for comparing with the
other methods using (N + 1)2 ∈ {16, 49, 100}.

Before proceeding to a discussion of these figures, it has to be mentioned that reli-
able results for the classical infinite elements presented here with large N are difficult
to achieve within finite precision arithmetic. This problem stems from the well-known
ill-conditioning of the infinite element matrices. Computing dtnN(λ) for N > 0 requires
the solution of a linear system involving the exterior degrees of freedom, i.e. the matrix
AEE + λBEE. Fig. 3.5 displays the condition number of this matrix for increasing N .

6The agreement seems to improve further as a increases.
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N + 1 (N + 1)2 nze ne

3 9 9 1

5 25 17 2

9 81 33 4

13 169 49 6

17 289 65 8

21 441 81 10

Table 3.1: Number of nonzero matrix entries ‘nze’ of tensor-product PML matrices A,B ∈
C(N+1)×(N+1) based on ‘ne’ quadratic finite elements in radial direction.
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Figure 3.5: Condition number of the matrix AEE+λBEE for different transparent bound-
ary conditions for k = 16, a = 1 in dimension d = 3.

Whereas the condition number for tensor-product PML and HSIE is essentially indepen-
dent of N , it grows exponentially for both classical infinite element discretizations. For
N = 9 the condition number is already so large that the accuracy of dtnN (right panel of
Fig. 3.6) could be seriously affected. Although this might be remedied by using symbolic
computation as done in [DI01] or multiple-precision arithmetic, such measures are most
certainly not in the interest of computational efficiency. Hence, the computations for
Fig. 3.5 have been performed adhering to conventional double precision. Another, more
feasible approach to improve the conditioning of the infinite element matrices is to change
the basis in the direction of radiation. Improvements for some infinite element formula-
tions have been achieved based e.g. on shifted Legendre polynomials [AC01] or certain
Jacobi polynomials [DE03]. Unfortunately, [AC01] concluded that the condition number
for the unconjugated Burnett formulation increased rapidly no matter which radial basis
was used.

With this being said, Fig. 3.5 can be discussed:

• The dtnN approximation using TP-PML, Astley-Leis infinite elements or HSIE
converges exponentially fast to dtn as N increases. This is consistent with the
convergence proofs which have been derived for these methods in the literature,
see [LS98, HSZ03b] for the PML, [DG98, DI01] for conjugated Astley-Leis infinite
elements and [HN09] for the HSIE. In contrast, there is no convergence proof avail-
able in the literature for the unconjugated Burnett formulation. In fact, several
sources [SB98, Ihl00] report that the this formulation might fail to converge in the
far field. The middle panel of Fig. 3.5 indeed shows that the dtnN approximation
for the unconjugated Burnett formulation makes almost no progress for λ > 600
from N = 6 to N = 9. Achieving reliable results for larger N is difficult due to the

77



0 200 400 600 800 1,000 1,200 1,400

0

20

40

60

λ

Re dtn
TP-PML
U-Burnett
Astley-Leis

HSIE

−20

−10

0

Im dtn

100

10−2

10−4

10−6

10−8

10−10

0

200

400

600

800

1,000

Re

Im

poles

(a) N = 3

0 200 400 600 800 1,000 1,200 1,400

0

20

40

λ

−20

−10

0

100

10−2

10−4

10−6

10−8

10−10

0

200

400

600

800

1,000

Re

Im

poles

(b) N = 6

0 200 400 600 800 1,000 1,200 1,400

0

10

20

30

λ

−20

−10

0

100

10−2

10−4

10−6

10−8

10−10

0

200

400

600

800

1,000

Re

Im

poles

(c) N = 9

Figure 3.6: From top to bottom: approximation of Re(dtnhom,3d
), approximation of

Im(dtnhom,3d
), relative error | dtnhom,3d

(λ) − dtnN(λ)|/| dtnhom,3d
(λ)| and poles for dif-

ferent transparent boundary conditions for k = 16, a = 1 in dimension d = 3. The
TP-PML uses matrices with {17, 49, 97} nonzero elements for N ∈ {3, 6, 9} respectively.
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increasing ill-conditioning of the matrices.

• It appears to be generally acknowledged in the literature on classical infinite el-
ements [Ger98, SB98] that the unconjugated Burnett formulations exhibits the
fastest convergence in the vicinity of a scatterer and at its boundary, whereas a
conjugated formulation has to be used if convergence of the far field solution is
required. The results shown in Fig. 3.5 are consistent with this statement. For
small λ, corresponding to the low frequency components of the solution, dtnN(λ)

converges much faster to dtnhom,3d
(λ) for the unconjugated Burnett than for the

conjugated Astley-Leis formulation. On the other hand, the latter formulation per-
forms well for large λ (see e.g. N = 9). For scattering problems with homogeneous
exterior domains fast convergence in the near field as exhibited by the unconju-
gated Burnett formulation is often the preferred property though since the far field
solution can be recovered from the boundary data by means of Green’s formula if
required (see e.g. [CK13] for basic relations and [GD05] for computationally efficient
approaches).

• The HSIE method converges very slowly for large λ. This may also be expected since
transforming the basis of the Hardy space used for the radial discretization back to
the space domain results into polynomial basis functions in r multiplied by a plane
wave component [HN09]. Such a basis is inappropriate for representing the far field
behavior of the solution as the Atkinson-Wilcox expansion (C.18) shows. For small
λ the HSIE method converges as fast as the unconjugated Burnett formulation and
distinguishes itself from the latter by its well-conditioned matrices.

• The tensor-product PML provides an approximation of dtnhom,3d
which is almost

uniform in λ. As a result, it drastically outperforms the infinite element methods
for large λ. This can be advantageous for problems whose solutions are rough in the
sense that they involve a large number of highly oscillatory components. Such situa-
tions may arise in scattering from non-smooth obstacles or in the presence of sources
located in close vicinity of the truncation boundary, see e.g. Section 4.2.2. Addi-
tionally, this can be an important factor in the context of domain decompositioning
methods where the boundary data on interfaces coupling different subdomains is
usually not smooth. The usage of PMLs in this setting has been popularized by the
emergence of sweeping preconditioners - a special class of domain decomposition
methods considered in Chapter 7 and Chapter 8.

• It is interesting to compare the poles of dtnN with the exact poles of dtn . Already
for N = 3 the TP-PML, unconjugated Burnett formulation and HSIE place one of
their poles very close to the first exact pole of dtnhom,3d

. The agreement improves
further as N increases. Comparing the figures for N ∈ {3, 6, 9} also a convergence
towards the second exact pole can be seen. The PML method also fits the third
pole relatively well for N = 9 and appears to be the fastest to converge towards
the exact poles. The conjugated Astley-Leis formulation is the only method for
which no clear convergence towards the exact poles can be detected although some
of its poles are placed in close proximity to the first exact pole. In this regard, it
is interesting to note that the relative error of the approximation of dtnhom,3d

by
dtnN for this particular method is largest when λ is close to the real part of the first
exact pole (the maximum of the blue dotted curve in the panel showing the relative
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error is located exactly above the vertical line formed by the exact poles). The poor
approximation quality of dtnN(λ) on this interval of λ could therefore be related to
a failure of the method to fit the exact poles of dtn . Overall, these results indicate
that the poles could be a key component in achieving an accurate approximation
of dtnhom,3d

. Further evidence for this claim will be presented in Chapter 4.

Remark 3.26 (Extension to inhomogeneous exterior domains). The dtnhom,3d
function

considered in this example models a homogeneous exterior domain. In view of the ap-
plication to helioseismology, the primary interest of this thesis is situated in strongly
inhomogeneous exterior domains exemplified by the dtnVAL−C

function of the solar atmo-
sphere or its simplified mockup dtn jump

. None of the methods considered here seems to be
readily applicable to such a setting:

• The coordinate stretching on which PMLs are based requires that the coefficients of
the PDE and its solution allow for an analytic extension into the complex plane.
This requirement is violated for a discontinuous wavenumber as in (2.40) or if sound
speed and density are given by BSpline approximations of tabulated values like for
the VAL-C model.

• The author is not aware that classical infinite elements as introduced in Appendix C.2
have ever been applied successfully to solve problems involving inhomogeneous exte-
rior domains.

• In [NS11] Nannen and Schädle introduced variants of the HSIE which can deal with
certain types of inhomogeneous exterior domains. According to [NS11, Remark 7]
the method appears to be limited to a very particular dependence of the medium
coefficients on the variable in propagation direction (in this thesis r) which would
not cover the discontinuous wavenumber as in (2.40) not to mention sound speed
and density of the VAL-C model.

• Local absorbing boundary conditions have been developed for the simplified Atmo

model of the solar atmosphere as mentioned in Section 2.4.2. An extensive compar-
ison of these conditions with the newly proposed method of this thesis will be given
in Section 6.2. For the more complicated VAL-C model local absorbing conditions
are currently not known.

80



Chapter 4

Learned infinite elements for
individual wavenumbers

In Chapter 3 an error analysis for generic transparent boundary conditions of tensor-
product type (3.8) has been presented. According to Theorem 3.20, the error ‖u−uN‖V+
between the exact solution u and the approximate solution uN is essentially determined
by the approximation of dtn by dtnN{A,B}. If the exact solution is sufficiently smooth
in a neighborhood of the truncation boundary, it suffices to achieve an accurate fit at the
first ` = 0, . . . , L− 1 eigenvalues λ` since the remaining modes decay rapidly as utilized
e.g. in Corollary 3.21 (b) (see also Lemma 3.19). Therefore, we have

‖u− uN‖2
V+
. ‖ΠLu‖2

Hσerr (Γ) .
L−1∑

`=0

errdtn(N, `)2|〈u,w`〉Γ|2, (4.1)

up to a remainder which is negligible if L is chosen sufficiently large.
The challenge of constructing efficient and accurate transparent boundary conditions

for stratified media therefore reduces to the task of finding matrices A,B ∈ C(N+1)×(N+1)

which minimize the right hand side of equation (4.1). To maximize efficiency, it would
be highly desirable to find a sequence of matrices such that the right hand side converges
exponentially fast to zero as N is increased. Is this task feasible and how can suitable
matrices be determined?

The results from Chapter 3 already provide some clues.

• At least for the case of a spherical coupling boundary with a homogeneous exterior
several transparent boundary conditions providing exponential approximation rates
exist according to the investigation in Section 3.4. However, none of these methods
is flexible enough to be applied in the setting of helioseismology, which features a
highly heterogeneous exterior domain. More generally, as shown in Appendix C,
in these methods the matrices A,B are derived analytically without explicitly aim-
ing to obtain an optimal approximation of dtn . Therefore, it seems likely that
faster convergence rates should be possible for homogeneous exterior domains by
optimizing the choice of A and B.

• According to the theoretical foundation etablished in Section 3.2, achieving expo-
nential convergence rates should be possible for almost any stratified medium, even
for the Sun. However, neither the analysis in Section 3.2 nor the methods presented
in Appendix C provide a practical way of finding the matrices A and B for solar-like
media. This chapter suggests an approach to close this gap.
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The main idea is to obtain these matrices as minimzers of an optimization problem of
the form

A,B ∈ argmin
A,B∈C(N+1)×(N+1)

‖ dtn − dtnN{A,B}‖2
∗,

where ‖ · ‖∗ denotes a suitable norm. According to equation (4.1), the straightforward
choice would be a weighted `2-norm. The optimization problem is introduced and studied
in detail in Section 4.1. It will be seen that A and B can even be chosen to be sparse
without impairing the approximation quality of dtnN . Several numerical experiments
presented in Section 4.2-Section 4.3 demonstrate that exponential convergence rates carry
over to ‖u−uN‖L2(Ωint). The full range of different problem settings presented in Chapter 2
will be covered, with the exception of the helioseismology problem, which deserves its own
dedicated chapter.

• Section 4.2 considers the Helmholtz equation for circular truncation boundaries.
Firstly, a homogeneous exterior domain will be assumed which allows for a com-
parison with several popular transparent boundary conditions like PMLs or HSIEs
(see Appendix C for an introduction to these methods). This assumption is relaxed
in Section 4.2.3, which treats exterior wavespeeds with a step discontinuity.

• Elliptical trunctation boundaries are considered in Section 4.3.

• Section 4.4 presents numerical results for a semi-infinite waveguide.

Most of the results of this chapter already appeared in our publication [HLP21] from
which some passages have been taken over verbatim. However, the extension to elliptical
trunctation boundaries presented in Section 4.3 is new and we also used this opportu-
nity to introduce a few additional improvements which are discussed in more detail in
Section 9.1.

Before starting with the actual investigations it should be pointed out that the dtnN
approximation computed in this chapter, respectively in [HLP21], is valid for a single,
fixed wavenumber k only. In particular, the matrices A and B depend on k in some
unknown fashion and can therefore not be reused for another wavenumber, say k̃. Com-
putations for k̃ would require a fresh solution of the corresponding minimization problem.
Extensions to approximations which work uniformly for all wavenumbers in some bounded
set, as required to solve resonance problems, will be investigated in Chapter 5.

4.1 The minimization problem

We start this section by introducing the minimization problem which serves as the foun-
dation of learned infinite elements.

Definition 4.1. Let λ` be the generalized eigenvaluess of equation (2.9). Denote by
dtn(λ`) the DtN numbers obtained from solving the ODEs (2.12a)-(2.12b). Further, let
dtnN(λ`) be the approximate DtNN numbers of the learned IEs as in equation (3.10).
Recall that errdtn(N, `) was defined in (3.15). For positive weights ω` define the misfit
function

J(A,B) =
1

2

∑
`<L

ω2
` errdtn(N, `)2. (4.2)

The minimization problem is to find A,B ∈ C(N+1)×(N+1) so that

A,B ∈ argmin
A,B∈C(N+1)×(N+1)

J (A,B) . (4.3)
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It is appropriate to give several remarks to explain Definition 4.1 and draw relations
to the analysis of Chapter 3.

• The sum in the objective function (4.2) includes only a finite number of terms
` < L. Hence, we abstain from trying to obtain any asymptotic control of dtn
by dtnN . This is reasonable since from Chapter 2 it is well known that typical
dtn functions behave like dtn(λ) ∼

√
λ as λ → +∞, see e.g. Lemma 2.3 (c),

while dtnN(λ) = O(λ), see (dtnN -III). This implies that resolving the asymptotic
behavior of dtn with tensor-product discretizations is impossible anyway. However,
inspection of the proof of Corollary 3.21 reveals that asymptotic control is also
not necessary provided that the solution is sufficiently regular in a neighborhood
of the truncation boundary. In this case the asymptotic contribution to the error
can be bounded utilizing asymptotic decay of the coefficients of the solution in the
eigenbasis.

• Disregarding the asymptotics it remains to obtain a good approximation for ` < L.
According to Theorem 3.20, the weighted sum

L−1∑

`=0

errdtn(N, `)2|〈u,w`〉Γ|2

needs to be minimized. This explains the choice of the objective function (4.2). In
practice, the coefficients 〈u,w`〉Γ for ` = 0, . . . ,∞ of the solution in the eigenbasis
and therefore1 trΓ u are not known. Otherwise, one could impose trΓ u as Dirichlet
data on Γ for the problem on Ωint which obviates the need for transparent boundary
conditions. Hence, choosing the weights as ω` = |〈u,w`〉Γ| is not directly possible.
However, Lemma 3.19 showed that smoothness properties of u are related to decay
of |〈u,w`〉Γ|. For example, for the constant coefficient Helmholtz equation in two
dimensions it was shown in Lemma 3.19 that

|〈u,w`〉Γ| ∼
∣∣∣∣∣
H

(1)
` (ka)

H
(1)
` (kb)

∣∣∣∣∣ ∼ exp (−` log(a/b)) , as `→ +∞, (4.4)

where b < a is limited by the requirement that waves in the annulus b ≤ r < a
still propagate as in free space, which e.g. excludes the existence of sources within
this region. Similar considerations as above often allow to derive reasonable proxies
for |〈u,w`〉Γ| which can serve as weights ω`. More details will be presented in
Section 4.2-Section 4.4 when dicussion numerical experiments.

• The error analysis presented in Chapter 3 relies on some assumptions on dtnN given
in Section 3.3.1. It is appropriate to discuss whether the dtnN function obtained
from solving the minimization problem fulfills these assumptions. As mentioned
previously, the growth condition (dtnN -III) is automatically fulfilled for any trans-
parent boundary condition of the form (3.10) provided that BEE is nonsingular.
The inequality constraint (dtnN -I<) / (dtnN -I≤) could be enforced by means of
a Lagrange multiplier, albeit this seems unnecessary for N sufficiently large since
dtnN will naturally inherit the identical constraint (dtn-I<) / (dtn-I≤) from dtn on
finite intervals when converging to the latter. It remains to discuss the asymptotic

1Since {w`} is on orthonormal basis.
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constraint (dtnN -II) on Re dtnN . By construction the ansatz (3.10) behaves linearly
at infinity, i.e. Re dtn(λ) ∼ C(1 + λ) as λ → +∞ for a constant C which could
be negative. Therefore, the demand of (dtnN -II) is essentially that C is positive,
which the optimization should inherently strive to comply with because dtn fulfills
(dtn-II) or usually even the stronger property that Re dtn(λ) behaves like

√
λ as

λ → +∞, cp. Lemma 2.3. In practice, we do not enforce any of these constraints
and let the optimization simply run freely because this works just fine.

• The objective function (4.2) is defined in terms of the continuous eigenvalues λ`
even though the discrete DtNN operator diagonalizes with respect to the discrete
eigenvalues (λ`, w`) (see Proposition 3.1). This is justified since the discrete eigen-
values converge towards the continuous ones as the finite element discretization
is refined. Moreover, using the continuous eigenvalues, which are usually known
analytically, is computationally more efficient than using the discrete eigenvalues,
which would need to be computed numerically.

• Obtaining the matrices A and B requires to solve the nonlinear least-squares prob-
lem (4.2)-(4.3) for which e.g. trust-region methods are suitable. We had good
success in solving this problem using the Levenberg–Marquardt algorithm as im-
plemented in ceres-solver [AMO]. A detailed description of the implementation
is available in Appendix D.

The next subsections are concerned with different aspects of this minimization prob-
lem. While the minimization in (4.3) is performed over dense matricesA,B ∈ C(N+1)×(N+1),
Section 4.1.1 demonstrates that it suffices to restrict to sparse matrices without loss of
accuracy. This reduction step is motivated by the fact that (4.2)-(4.3) represents a ratio-
nal approximation problem. Section 4.1.2 starts to investigate the poles of this rational
approximation in a bit more detail. Section 4.1.3 presents some results concerning the
condition number of the minimizers A and B. Finally, aspects of computational com-
plexity are discussed in Section 4.1.4.

4.1.1 Reduction step

For dense matrices A and B the number of free parameters in the minimization problem
(4.2)-(4.3) and the number of nonzero matrix entries of the tensor product system A⊗M+
B⊗K grows quadratically with N . To improve efficiency it would be desirable to achieve
a linear growth in both quantities. Since finite element libraries and associated linear
system solvers often benefit from symmetric linear systems, the feasibility of imposing
symmetry of the matrices A and B should also be investigated. These goals are obtained
in the following two steps.

Sparsification by diagonalization of exterior part

In the first step we aim to set as many entries of A and B to zero as possible. To this
end, the dispensable matrix entries have to be identified for which it will be assumed that

(BEE)−1AEE is diagonalizable. (4.5)

That is, there exists a diagonal matrixD and an invertible matrix P such that (BEE)−1AEE =
PDP−1. Then

(AEE + λBEE)−1 = P (D + λI)−1(BEEP )−1
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holds. We insert this identity into (3.10) and redefine

AΓE 7→ AΓEP, BΓE 7→ BΓEP, AEΓ 7→ (BEEP )−1AEΓ, BEΓ 7→ (BEEP )−1BEΓ

and
AEE 7→ D, BEE 7→ Id . (4.6)

The last equation means that under assumption (4.5) we can suppose that the matrix
AEE in (3.7) is diagonal and that BEE is equal to the identity. The corresponding dtnN
function is consequently of the form

dtnN(λ) = A00 + λB00 −
N∑

j=1

(A0j + λB0j)(Aj0 + λBj0)

Ajj + λ
. (4.7)

Symmetrization by removing redundant variables

To symmetrize A and B, it has to be justified that the constraints A0j = Aj0 and
B0j = Bj0 for j = 1, . . . , N can be imposed without impairing the approximation quality
of (4.7) as a rational function. To see this, we use the identity

(α + λ)(β + λ)

γ + λ
= λ+ α + β − γ +

(β − γ)(α− γ)

γ + λ

for α, β, γ ∈ C to rewrite (4.7) in the simplified form

dtnN(λ) = α + βλ−
N∑

j=1

γj
λ+ δj

, (4.8)

with

α = A00 −
∑N

j=1
(A0jBj0 + Aj0B0j −B0jBj0Ajj) , (4.9)

β = B00 −
∑N

j=1
B0jBj0, (4.10)

γj = (A0j − AjjB0j) (Aj0 − AjjBj0) , j = 1, . . . , N, (4.11)

δj = Ajj, j = 1, . . . , N. (4.12)

The ansatz (4.7) provides the 5N + 2 parameters

{Aj0}Nj=1 ∪ {A0j}Nj=1 ∪ {Ajj}Nj=0 ∪ {Bj0}Nj=0 ∪ {B0j}Nj=1

to determine merely the 2N + 2 constants

{α} ∪ {β} ∪ {γj}Nj=1 ∪ {δj}Nj=1, (4.13)

which indicates that some of these parameters should be redundant. Setting A0j = Aj0
and B0j = Bj0 for j = 1, . . . , N removes 2N parameters and still allows to fulfill (4.9)-
(4.12) for given constants (4.13). Indeed, (4.12) can clearly be fulfilled with the reduced
set of parameters since the diagonal entries are left untouched. Equation (4.11) then
becomes

γj = (A0j − δjB0j)
2 ,
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which can e.g. be satisfied by setting B0j = 1 and A0j = δj +
√
γj for j = 1, . . . , N , where√

γj is a square root for γj. We are left with two free parameters A00 and B00 which
suffices to fulfill the remaining two equations (4.9) and (4.10).

This argument2 justifies to solve the minimization problem (4.3) over a space of ma-
trices of the form

A =




A00 A01 · · · · · · A0N

A01
. . . 0

...
. . .

... 0
. . .

A0N ANN



, B =




B00 B01 · · · · · · B0N

B01 1 0
...

. . .
... 0

. . .

B0N 1



.

This has numerous benefits as already shortly touched on above. Firstly, reducing the
number of free parameters from 2(N + 1)2 to 3N + 2 reduces the cost of each iteration
within the minimization routine. Secondly, the linear system A ⊗M + B ⊗ K will be
much sparser compared to using dense matrices A and B. Additionally, the matrices A
and B in the reduced ansatz are symmetric, which implies that the entire exterior system
will be symmetric provided M and K are (as is usually the case). This is beneficial
for computational efficiency since it allows the use of symmetric storage formats and
specialized solvers for symmetric linear systems. Moreover, the variational formulations
at the continuous level are often symmetric, and it is desirable to preserve such properties
in their corresponding discretizations.

Numerical investigation

To justify the previously introduced reduction numerically, the following experiment is
considered. The analytic DtN numbers for the Helmholtz equation in the homogeneous
exterior of a ball with d = 2 are obtained by evaluating the function given in (2.28)

at λ = λ` = (`/a)2. These numbers dtnhom,2D
(λ`) with a = 1 and k = 16 are used as

reference values for solving the minimization problem (4.2)-(4.3). If the diagonalization is
justified, then the reduced ansatz should lead the to same results as the dense approach.
For this test case exponentially decaying weights ω` ∼ exp(−2`/3) are chosen. In Fig. 4.1a
the relative errors

| dtnhom,2D
(λ`)− dtnN(λ`)|

| dtnhom,2D
(λ`)|

for the dense and reduced ansatz are compared for N ∈ {0, 2, 4, 6}. Apparently, both
approaches yield the same results. Additionally, Table 4.1 compares the performance of
the Levenberg–Marquardt algorithm for both approaches. The final cost, i.e. the value
of the objective function (4.2) at the minimizers, turns out to be the same for both
approaches up to machine precision. The total time spent in the solver for the reduced
ansatz is at least one order of magnitude lower than for the full ansatz. Due to its
numerous benefits, the reduced symmetric ansatz is in practice the method of choice. It
is used in all numerical experiments in this thesis unless explicitly stated otherwise.

2The argument also suggests to set B0j = 1 for j = 1, . . . , N . However, this does not promise any
additional benefit with respect to the solution of the linear systems. Therefore, we prefer to leave the
parameters B0j for j = 1, . . . , N free instead of fixing them because in our experience the optimization
routine tends to perform better when allowed to use slightly more parameters than the bare minimum.
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Figure 4.1: Left: Comparison of the relative error in terms of N for solving the mini-
mization problem for the analytic dtn(λ`) numbers from (2.28). The circles ‘o’ display
the results for the dense ansatz of A and B while the crosses ‘x’ belong to the reduced
ansatz. Note that all crosses lie perfectly inside the circles. For better illustration only
results for even ` are shown. Right: Poles for the diagonal ansatz when learning the
dtn(λ`) numbers from (2.28).

4.1.2 Pole structure

In the reduced symmetric ansatz dtnN is a rational function which is asymptotically linear
and has a finite number of simple poles. This can be seen from the formula

dtnN(λ) = A00 + λB00 −
N∑

j=1

(A0j + λB0j)
2

Ajj + λ
. (4.14)

The second term is a rational function with simple poles at

λ∗j(N) = −Ajj, (4.15)

provided A0j 6= B0jAjj at j = 1, . . . , N holds. From the results of Section 3.2 it is known
that functions of the form (4.14) are sufficient to guarantee exponential convergence rates
on finite intervals. However, we cannot exclude the possibility that the ansatz using dense
matrices A and B could yield better approximation rates in some cases because it allows
for poles with higher multiplicities. For such situations the diagonalizability assumption
(4.5) would break down and the equivalence between both approaches is lost. Naturally,
one would expect that the ability of dtnN to represent poles with higher multiplicities
could be an advantage if dtn itself features such poles. So far, all dtn functions we
analyzed had exclusively simple poles, though3

The exact poles of the meromorphic extension of dtnhom,2D
from the experiment of

Section 4.1.1 are displayed in Fig. 4.1b. They are located in the quadrant {z ∈ C |
Re(z) > 0, Im(z) > 0}. Additionally, the learned poles (4.15) for N ∈ {4, 5, 6} are shown.
It can be observed that some of the learned poles seem to converge to the exact poles,
particularly to the ones with the smallest imaginary part, which will surely exert the most
influence on the restriction of dtnhom,2D

to the positive real line. This phenomenon has

3Note also that even for dtn function with multiple poles the results of Section 3.2 guarantee expo-
nential convergence rates on finite intervals with the ansatz (4.14) based on simple poles.
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Reduced symmetric Full

N # iter cost time (s) # iter cost time (s)

0 4 8.26 · 105 2.15 · 10−4 4 8.26 · 105 5.12 · 10−4

1 40 1.31 · 102 2.41 · 10−3 36 1.31 · 102 2.67 · 10−2

2 16 6.14 · 10−2 1.58 · 10−3 12 6.14 · 10−2 2.1 · 10−2

3 22 2.95 · 10−5 3.23 · 10−3 12 2.95 · 10−5 5.34 · 10−2

4 171 1.44 · 10−8 4.13 · 10−2 13 1.44 · 10−8 1.37 · 10−1

5 256 7.22 · 10−12 6.87 · 10−2 246 7.22 · 10−12 4.81 · 100

6 469 3.74 · 10−15 1.71 · 10−1 184 3.73 · 10−15 6.41 · 100

Table 4.1: Performance of the optimization routine for the two different ansatzes. Here,
’#iter’ denotes the number of performed Levenberg-Marquardt iterations, ’cost’ the value
of the objective function at the minimizer and ’time’ the total time spent in the solver in
seconds. The tolerances, which determine the stopping criterion for the iteration, were
all set to machine precision.

already been observed in Section 3.4 for several other transparent boundary conditions of
tensor-product structure. It also seems natural in view of Proposition 2.4 (iii), which has

shown that dtnhom,2D
indeed admits an expansion into a sum of simple poles. However,

simply approximating dtnhom,2D
by a sum of the first N simple poles merely leads to a rate

of O(N−1) as shown Fig. 2.3 while learned IEs shown in Fig. 4.1a achieve exponential
convergence. This is accomplished by only fitting the poles closest to the imaginary
axis and placing the other free poles elsewhere. In the process of this chapter other dtn
functions will be encountered which possess poles extremely close to the real axis. Fitting
these poles will then turn out to be the key for obtaining a good approximation of dtn .

Remark 4.2. It is interesting to discuss whether the matrices A and B in the reduced
ansatz could also be chosen as hermitian. However, this is not a good idea because all poles
of the correponding dtnN function would lie on the real axis. This follows immediately
from formula (4.15) since the diagonal entries of hermitian matrices are real.

4.1.3 Condition number

Classical infinite elements suffer from poor condition numbers as N increases. In fact, the
results from Section 3.4 have shown that exponential growth of the condition number can
already be observed in the matrix AEE + λBEE. This may lead to numerical instabilities
and impair the solution of the arising linear systems. Therefore, it should be investigated
whether learned IEs run into similar issues.

The condition number of the matrix AEE + λBEE for the learned IEs obtained from
the numerical experiment of Section 4.1.1 is shown in Fig. 4.2. Apparently, the condition
number for the reduced symmetric ansatz behaves more favourably than for the full
ansatz. Since most exterior DOFs in the former ansatz have been eliminated in the
reduction step, the condition number is simply given by

cond(AEE + λBEE) =
maxj |Ajj + λ|
minj |Ajj + λ| . (4.16)

This should stay bounded unless one of the learned poles (4.15) lies exactly on one of
the eigenvalues λ = λ`. Since the learned poles tend to converge to those poles of dtn
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that lie closest to the real axis, this case is expected to occur only in situations when dtn
exhibits poles with an extremely small imaginary part. Further condition number studies
shall be presented in the course of this chapter when such dtn functions are encountered.
As an intermediate result we may conclude that the results of this subsection add to the
merits of the reduced ansatz in the sense that the decreased number of DOFs may be
beneficial for conditioning of the resulting linear systems. In any case it should render
possible ill-conditioning problems easier to analyze.
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Figure 4.2: Condition number of the matrix AEE + λBEE for the two different ansatzes
for learned IEs for k = 16, a = 1.

4.1.4 Computational costs

Learned IEs follow the same algebraic structure (3.7) as many other transparent bound-
ary conditions of tensor-product type, e.g. tensor-product PMLs, HSIEs and classical
infinite elements, see Section 3.4. Therefore, the same techniques for solving the arising
linear systems can be applied. Notice in this regard that the exterior system (3.7) al-
ways remains sparse even if A and B are dense thanks to sparsity of the finite element
mass and stiffness matrices M and K. Consequently, sparse direct solvers are readily
applicable. The reduction step from Section 4.1.1 increases the sparsity even further and
yields an additional performance boost. In applications learned IEs are usually combined
with a FEM discretization of the interior problem, represented by the sesquilinear form
bint(·, ·), which suffers from the usual issues arising in time-harmonic wave propagation,
see Section 7.1, and leads to extremely large linear systems. Direct solvers may reach
their limits as the problem size increases so that iterative solution approaches combined
with preconditioning techniques have to be considered. The benefits of using learned
IEs in this context are extensively investigated in Chapter 7 and Chapter 8. To sum
up, the solution of the linear systems arising from learned IEs as transparent boundary
conditions does not pose a special obstacle. On the contrary, we will see in Section 4.2.2
that learned IEs lead to significantly sparser system matrices than many other popular
transparent boundary conditions.

Learned IEs differ from other transparent boundary conditions of tensor-product type
only in how the matrices A and B in the ansatz (3.7) are obtained. Whereas the matrix
entries in conventional methods are described by analytic formulas, see e.g. (C.6) for
tensor-product PMLs or (C.15)-(C.16) for certain classical infinite elements, learned IEs
determine A and B by solving the minimization problem (4.2)-(4.3). The minimization
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procedure allows for a seamless adaptation to different problem settings as the results of
this chapter will demonstrate, yet comes at the expense of a slight increase in computa-
tional complexity compared to conventional approaches. These additional costs split into
the following two components.

• To set up the objective function (4.2), the dtn(λ`) numbers for ` < L have to be

determined. Often, analytic formulas for dtn are known, see e.g. (2.28) for dtnhom,2d
,

in which case this entails effectively no additional costs except for the evaluation
of some special functions. In the more general setting, the numbers dtn(λ`) for
` < L are obtained by solving the ODEs (2.12a)-(2.12b). This is an embarassingly
parallel task since the values for different `’s are completely independent. Usually
it is sufficient to take L on the order of k2 so that more than a thousand ODE
solutions are seldom required. Finally, we would like to emphasize that regardless
of the dimension d of the space in which the PDE problem (2.2) is posed the
computation of dtn(λ`) always comes down to solving merely ODEs, i.e. d = 1
dimensional problems. Therefore, the associated costs will remain small in any
dimension.

• Likewise, the effort for solving the minimization problem (4.2)-(4.3) is independent
of the problem dimension d. It depends on how many of the entries of the matrices
A,B ∈ C(N+1)×(N+1) appear as free parameters in the minimization problem. Owing
to the reduction step of Section 4.1.1, this number grows linearly with N whereas
the approximation error errdtn(N, `) decreases exponentially fast as has already been
seen in Fig. 4.1a and will be confirmed in many other examples presented in this
chapter. Hence, N < 10 is usually sufficient and the time spent for solving the
optimization problem to achieve accuracies required in practical simulations should
remain on the order of a few seconds (see Table 4.1 for an example of computation
times).

Both contributions to the computational overhead are independent of the problem di-
mension d. In contrast, the final complexity of finite element simulations in dimension
d = 3 is usually completely dominated by the effort for solving the linear systems which
scales4 harshly with d. Therefore, the additional overhead for solving the minimization
problem should usually be redeemed by the advantage that learned IEs lead to smaller
and sparser system matrices compared to other transparent boundary conditions, see for
example Section 4.2.2.

4.2 Helmholtz equation for spherical geometries in

two dimensions

This section presents numerical experiments for circular truncation boundaries. The sim-
plest setting considered in Section 4.2.1 and Section 4.2.2 is represented by wave prop-
agation in a homogeneous medium. More precisely, Section 4.2.1 deals with scattering
of a plane wave from a circular obstacle and Section 4.2.2 with waves emanating from a
point source. For the latter example, the accuracy and efficiency of learned IEs will be
evaluated by a comparison with various other popular transparent boundary conditions.

4Here we are referring mainly to time-harmonic wave equations which are notoriously challenging to
so solve efficiently, see the discussion in Section 7.1.
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In Section 4.2.3 the assumption of a homogeneous exterior medium is dropped so that the
wavenumber in the exterior domain is allowed to have a jump, see the example introduced
in Section 2.2.1.

4.2.1 Scattering of plane wave from a disk

Consider a plane wave g(x) = − exp(ikx) which is incident on a disk with radius Rs = 1/2.
For sound-soft scattering, i.e. u+g = 0 at r = Rs, the solution of the Helmholtz equation
is given by (see the Appendix E for a derivation)

u(r, ϕ) =
H

(1)
0 (kr)

H
(1)
0 (kRs)

J0(kRs) +
∞∑

`=1

H
(1)
` (kr)

H
(1)
` (kRs)

2i`J`(kRs) cos(`ϕ). (4.17)

The problem is discretized on an annulus Ωint = {x ∈ R2 | Rs ≤ ‖x‖ ≤ a} using
the Dirichlet boundary condition at r = Rs and learned IEs at r = a. The resolution
is increased by raising the polynomial degree while the mesh remains fixed. In virtue
of the disussion following Definition 4.1, the weights should be chosen as in (4.4). Since
the medium for Rs < r < a is free of sources, one should set b = Rs in (4.4) so that

ω` ∼ |H(1)
` (ka)/H

(1)
` (kRs)|.

The relative error on Ωint using a = 1 for increasing number N of infinite element
DOFs is shown in Fig. 4.3. The convergence in N is extremely fast. For p = 6 and
k = 16 the spatial accuracy is reached with only N = 3 DOFs as Fig. 4.3a demonstrates.
Figure 4.3b shows that high accuracy is obtained for a wide range of wavenumbers5.
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Figure 4.3: Comparison of relative error ‖u−uh‖L2(Ωint)/‖u‖L2(Ωint) for the scattering of a
plane wave from a disk of radius Rs = 1/2. The truncation boundary is placed at a = 1.
Additionally, the real part of the reference solution for k = 16 is shown in the left figure.

The main parameter which determines the performance of most transparent boundary
conditions is not the wavenumber alone but rather the number of wavelengths that fit
between scatterer and the coupling boundary. The further away the coupling boundary,
the more the highly oscillatory components of the solution have already decayed when

5Note that every single wavenumber k leads to its own pair of learned matrices A and B.
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reaching it. This behavior is clearly visible in the factor

exp

(
− log

(a
b

) baNαc
4

)
‖u‖Hσ(Γ), b = Rs,

which describes the asymptotic contribution in the error estimate (3.48). Hence, when
|a−Rs| is large, it suffices to focus attention only on a couple of dtn numbers associated

with slowly propagating modes, i.e. to fit | dtnhom
(λ`) − dtn(λ`)| for small ` well, to

obtain an accurate solution6. In this regard, the choice |a−Rs| = 1/2 considered for the
previous experiment is rather generous. Therefore, an additional experiment is performed
in which the coupling boundary is moved progressively closer to the scatterer. To this
end, Rs = 1/2 is fixed and a is decreased so that |a − Rs| ∈ [1/2, 1/4, 1/8, 1/16]. It is
interesting to compare the realistic choice of weights motivated above with the optimal
choice ω` = |〈u,w`〉Γ| for which we have to assume that some oracle informed us in
advance that the exact solution is given by (4.17).
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Figure 4.4: Influence of the distance |a−R| between coupling boundary and scatterer on
the performance of learned IEs for k = 16 and p = 12. Relative L2-error on Ωint on the
left and center and value of the objective function on the right.

The results for k = 16 are shown in Fig. 4.4. Figure 4.4a, which displays the relative
L2-error for the realistically chosen weights, shows that the convergence rate slows down
(even though it remains exponential) as the coupling boundary approaches the scatterer.
This effect can be eliminated almost entirely by choosing the ‘oracle weights’ as Fig. 4.4b
shows. A relative accuracy of at least 10−11 can then be achieved with N = 5 even
for the case |a − Rs| = 1/16 in which the trunation boundary is extremely close to the
scatterer. According to Theorem 3.20 one would also expect that the weighted `2-error of
the dtn approximation given by

√
2J(A,B) should be proportional to the L2-error of the

obtained solution. Figure 4.4c demonstrates that this is indeed the case. This provides
an a priori estimate on the accuracy of learned IEs in the sense that the error stemming
from the DtN approximation can be measured directly after the minimization problem
(4.2)-(4.3) has been solved. Future work could aim to combine this estimate with an error
estimator for the interior problem to derive a minimal choice of N which balances errors
from the interior FEM discretization and approximation of the transparent boundary
condition in cases where no exact solution is known.

6To account for this in the estimate (3.48), one would take α close to zero.
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4.2.2 Point source inside unit disk

This subsection evaluates the performance of learned IEs by a comparison with other
commonly used transparent boundary conditions. All of these conditions, except for an
adaptive PML, fit into the tensor-product framework of Chapter 3 and are described in
more detail in Appendix C.

Besides the use of plane waves, another convenient option to create an analytic ref-
erence solution fulfilling the radiation condition is to rely on the fundamental solution
Φ(x, y) = (i/4)H

(1)
0 (k‖x− y‖) of the Helmholtz equation. It fulfills

−∆xΦ(x, y)− k2Φ(x, y) = δ(x− y) := δy(x),

where δy is the Dirac distribution at y ∈ R2. For this experiment the point source y
is placed inside a disk with radius a = 1. Here, we use ∇xΦ(x, y) · n(x) directly as
Neumann data for the exterior problem realized e.g. by the learned IEs. In particular,
there is no interior discretization. The quality of the solution is assessed by measuring the
relative L2-error in the Dirichlet data on Γ. The difficulty of the problem increases with
shrinking distance of the source to the boundary as this adds more significant modes to
the solution. Since the medium is free of source for ‖y‖ < r ≤ a, the weights are chosen

as ω` ∼ |H(1)
` (ka)/H

(1)
` (k‖y‖)|. To investigate the influence on the transparent boundary

condition, the source positions y = (0.5, 0.0) and y = (0.95, 0.0) are considered in the
experiment. Besides the reduced symmetric ansatz for the learned IEs, also results using
the ansatz with fully populated matrices will be presented.

The following other transparent boundary conditions will serve as competitors for
learned IEs.

• A tensor-product PML as described in Appendix C.1. For the experiments below a
quadratic absorption coefficient σ(t) = (C/k)(1/(η− a))((t− a)/(η− a))2 was used
in (C.2). By trial and error the parameters C = 40 and η − a = 0.02 have been
found to yield good results. The implementation uses finite elements of order four
with uniform mesh refinements.

• Tuning of the PML and discretization parameters in the above approach is tedious
and may lead to suboptimal results. A better strategy has been proposed in [CL06].
Following [CM98] the medium parameter σ0 in σ(t) = σ0((r− a)/(η− a))m,m ∈ N
and the thickness η−a in the complex stretching of the PML are determined through
an a posteriori error analysis. This is achieved by splitting the error into a finite
element discretization error and a term describing the modeling error introduced
by the PML (see [CL06, Theorem 3.1]). The contribution from the PML decreases
with the exponentially decaying factor

exp

(
−k Im(η̃)

(
1− a2

|η̃|2
)1/2

)
, η̃ = η + i

σ0

m+ 1
(η − a).

By choosing m = 2, σ0 = 4.5, and η = 2.5 the PML error is of the order of the
machine precision for the considered example. With the PML parameters being
fixed, an adaptive mesh refinement strategy based on a standard residual error
estimator is employed to reduce the discretization error. Note that this leads to an
unstructured mesh. In particular, this method is not of the tensor product form
(3.7). Whereas the mesh refinement is driven adaptively, the finite element order
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still has to be chosen manually. After some experiments we ended up with elements
of order six.

• As a last candidate, the HSIE as described in Appendix C.3, is considered. Some
tuning has been carried out to determine a good choice of the parameter κ0. For
the experiments below κ0 = ak was used for y = (0.5, 0) while a larger value of
κ0 = 3ak turned out to be beneficial for y = (0.95, 0).
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Figure 4.5: Comparison of relative error ‖u−uh‖L2(Γ)/‖u‖L2(Γ) for the point source inside
the unit disk at position y with k = 16.

In Fig. 4.5 the different methods are compared in terms of the number of DOFs (‘ndof’)
and number of nonzero entries (‘nze’) of the resulting linear system.

• The lower panel displays the results for a source far away from the boundary.
Here both methods based on infinite elements outperform the PML approaches.
Although the HSIE already works very well for this problem, the learned approach
yields a further improvement. The reduced symmetric ansatz for the learned IEs is
noticeably more efficient than the one using full matrices in terms of the nonzero
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matrix entries. However, in Fig. 4.5c it can be seen that both approaches can
lead to different results in the region of extremely high accuracy (the blue line
which respresents the reduced ansatz diverges from the red line line at the last data
point). This does not stem from a violation of assumption (4.5). We checked that
the eigenvalues of (BEE)−1AEE for A and B from the full ansatz are all distinct.
This observation should rather be attributed to the nature of local optimization
routines which are always at risk of getting stuck in a local minimum. So far we
observed such behavior in our numerical experiments only rarely when penetrating
into the extremely high accuracy regime (relative error around 10−12 or less) which
is seldom required in applications.

• The upper panel gives the results for the source close to the boundary. Here,
the performance of the HSIE degrades strongly. Both PML approaches perform
better in terms of nonzero entries of the linear system. Among the PML methods,
the adaptive discretization achieves substantially better results than the tensor-
product PML. In particular, it leads to very sparse matrices. Still, the performance
of learned IEs is unmatched.

The other transparent boundary conditions featured in this experiment are among the
most powerful methods currently known. A fair amount of parameter tuning has been
performed to present all the competitors in their best shape. Despite these efforts, none
of the other competitors was able to reach the performance of learned IEs. Therefore,
the results of this subsection highlight the great potential of the new approach.

4.2.3 Jump in exterior wavespeed

In the previous examples a homogeneous exterior domain has been assumed. In view of
the solar atmosphere, which is highly inhomogeneous, such an assumption is not realistic.
Therefore, the following experiment allows for an exterior wavenumber which jumps from
kI to k∞ at a radius of RJ. A full description of this example has been provided in
Section 2.2.1. For the numerical experiments a = 1, RJ = 2 and kI = 16 are used.
The weights are chosen in analogy to (4.4) as ω` ∼ |u`(a)/u`(RskI)|, where u`(r) =
A`J`(kIr) +B`Y`(kIr) is the solution of the radial equation for r < RJ (see Appendix E).

The computational results for this experiment are collected in Fig. 4.6. As explained
in Remark 3.26, the other methods considered in the previous experiment are not readily
applicable to this problem. Hence, only results obtained with learned IEs are presented.
First the approximation of dtn jump

by dtnN should be discussed. The upper left panel
of the figure displays the case k∞ = kI = 16 in which there is no jump and the dtnhom

function of the homogeneous medium is recovered. Since dtnhom
is smooth, the fast

convergence of the approximation by dtnN shown in colors coded by N is as expected
(cp. also Fig. 4.1a). For the case k∞ = 8 displayed in the right panel dtn jump

is not
smooth. It exhibits sharp peaks caused by poles located in very close proximity to
the real axis as already discussed in Section 2.2.1. Despite the complicated behavior
of dtn jump

, the approximation by dtnN works extremely well. This can be explained by
noticing that the learned poles as defined in (4.15) are placed successively at the positions
of the exact poles. The middle panel of Fig. 4.6b visualizes this process. For N = 1 the
first pole is reasonably approximated so that the first peak of dtn jump

can be represented
by dtnN=1. Increasing N to three improves approximation of the first pole and covers
the second pole as well. Consequently, the second peak of dtn jump

is well-represented by
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Figure 4.6: Results for a discontinuous exterior wavespeed which jumps from kI = 16
to k∞. The upper panel shows the approximation results obtained with dtnN for k∞ =
kI = 16 on the left and k∞ = 8 on the right. In the middle panel the poles of dtn (black
crosses) are compared with the poles of dtnN (color according to legend). Only the poles
of dtnN close to the real axis are displayed. The lower panel on the left shows the relative
L2 error for scattering of a plane wave from a disk for different k∞. The lower panel on
the right displays the condition number of the matrix AEE + λBEE for k∞ = 8 in terms
of N and λ.
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the approximant. That the next two poles can be covered as well when N is increased
further is astonishing because these are only very weakly visible at the sample points
λ = λ` which are included into the objective function J . The magnitude of dtn jump

at the last pole close to Re(λ) = 530 is not well-represented by the approximant with
N = 8 though. It is reasonable to expect that this could be improved by including a finer
sampling of the λ-axis into the objective function.

In Section 4.1.3 it was proposed to investigate the condition number of the exterior
part AEE + λBEE for situations in which dtn admits poles with very small imaginary
part. The dtn jump

function for k∞ = 8 is suited for such a study since its last two poles
have imaginary part of about 0.59 and 0.0049 respectively. The condition number of the
exterior part of the learned matrices is shown in the middle panel of Fig. 4.6b. The traces
of the poles in the condition number are clearly visible. This is consistent with formula
(4.16) and the dicussion in Section 4.1.3. As long as the exact poles have a non-vanishing
imaginary part numerical instabilities should not occur since the condition numbers will
stay bounded. However, in cases where dtn admits poles directly on the real axis or with
extremely small imaginary part, say 10−13, one has to be careful.

Finally, learned IEs are applied as a transparent boundary condition to compute
the solution of a scattering problem. The setup is as in Section 4.2.1. A plane wave
g = − exp(ik∞x) is incident on a disk with radius Rs = 1/2 so that the scattered field
with sound-soft boundary conditions should be computed in the annulus Rs ≤ r ≤ a. An
analytic reference solution for the problem, shown in the inset of Fig. 4.6b for k∞ = 8,
is derived in Appendix E. In case of no jump, i.e. k∞ = kI := k, it reduces to the
solution of the homogeneous scattering problem considered in Section 4.2.1. The relative
L2-errors ‖u−uh‖L2(Ωint)/‖u‖L2(Ωint) for different k∞ are compared in the right lower panel
of Fig. 4.6. Although the error is about three orders of magnitude larger when a jump
actually occurs, i.e k∞ 6= kI , the convergence is nevertheless exponential. This further
indicates the suitability of learned IEs for inhomogeneous exterior problems.

4.3 Helmholtz equation for elliptical geometries

This section continues the study of scattering problems. Now elliptical truncation bound-
aries and scatterers are considered. The foundations for these investigations at the con-
tinuous level have been provided in Section 2.2.2. Recall the notation aΓ and bΓ for the
semi-major and semi-minor axis of the elliptical coupling boundary, respectively. For ease
of implementation the scatterer will also be represented by an ellipse with semi-major
axis aS and semi-minor axis bS. A sketch of the geometrical setup is provided as a small
inset in Fig. 4.7d.

An analytic reference solution for convergence studies is created similarly as in Sec-
tion 4.2.2. Two point sources are placed inside the scatterer at positions y1 = (−0.1,−0.13)
and y2 = (0.1, 0.15). The reference solution is then given by

u(x) =
2∑

j=1

(i/4)H
(1)
0 (k‖x− yj‖).

The Neumann trace of this reference solution is used as data for a sound-hard scattering
problem at wavenumber k = 32. Plots of the real part of the reference solution are shown
in the insets of Fig. 4.7a-Fig. 4.7c for different geometrical configurations.
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Figure 4.7: Results for the ellipse with k = 32. The parameter κ denotes the ratio
between semi-major and semi-minor axis.

98



The extension of learned IEs to elliptical truncation boundaries is mainly motivated
by the desire to treat very elongated scattering objects efficiently. Otherwise, one could
simply resort to using circular truncation boundaries. Therefore, it makes sense to inves-
tigate if situations in which the ratio

κ = aΓ/bΓ = aS/bS, (4.18)

between semi-major and semi-minor axis is large can be treated reliably. For the exper-
iments bs = 1/4 and bΓ = 1/2 will be fixed while the semi-major axis are streched by
increasing κ. The weights are simply chosen as ω` ∼ exp(−`/(3κ)).

The computational results for κ ∈ {4/3, 8/3, 12/3} are shown in Fig. 4.7. Fig. 4.7a-

Fig. 4.7c demonstrate that the approximation of dtnellipse
by dtnN converges rapidly.

It is interesting to note that dtnellipse
appears to develop a kink as κ increases. This

does not seem to impair the approximation by dtnN though, which is promising in view
of the waveguide which will be treated in the Section 4.4. The relative L2 error ‖u −
uh‖L2(Ωint)/‖u‖L2(Ωint) in terms of N is shown in Fig. 4.7d. Fast convergence is observed for
all considered ratios κ. Admittedly, the rate seems to suffer slightly for very elongated
objects, yet is nevertheless exponential. Future studies could investigate whether the
dependence on κ could be removed by consulting an oracle for optimal weights as was
done in Section 4.2.1.

4.4 Waveguides

In this section the waveguide introduced in Section 2.3 will be considered. Setting Γ̃ =
[0, π] and letting the waveguide start at the origin the solution shall be computed in
Ωint = [0, a)× Γ̃. A sketch of the geometry is given in Fig. 2.6b. Using Dirichlet boundary
conditions on ∂Ωint \ ({a} × Γ̃) the exact solution is given by

u(x, y) =

L0∑

`=0

sin
(
y
√
λ`

)
exp

(
ix
√
k2 − λ`

)
,

for λ` = `2. For the numerical experiment the parameters a = 2π, k = 16.5 and L0 = 33
are set. Note that (2.49) is fulfilled. The weights are chosen to cover all propagating
waveguide modes equally well and emulate the decay of the evanescent modes, i.e. ω` ∼ 1
for λ` ≤ k2 and ω` ∼ | exp (ia

√
k2 − λ`)| else.

In Fig. 4.8a results for the approximation of Im(dtnguide
) are shown. Note that for

the waveguide the imaginary part is of primary interest since Re(dtnguide
) is zero for the

most relevant modes. As one might expect, resolving the kink of dtnguide
is the most

challenging aspect. Interestingly, the learned poles are observed to accumulate in the
part of the complex plane lying to the right of the kink, which is probably beneficial for
approximation. Since the approximation at the sample points dtnguide

(λ`) is extremely
accurate for large N , exponentially fast convergence of the relative L2-error as seen in
Fig. 4.8b follows. According to the paper [New64] by Newman such fast convergence rates
for rational approximation of functions involving kinks also seem to be reasonable. He
proved in this paper that the function |x| can be approximated uniformly on the interval
[−1, 1] by rational functions of order N with an error ≤ 3 exp(−

√
N).
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Figure 4.8: Left: Approximation results for imaginary part of dtnguide
with k = 16.5. The

sample points dtnguide
(λ`) are displayed as black crosses. In the topmost plot also some

poles of dtnN are displayed. Right: Relative L2-error on Ωint. Additionally, the real part
of the reference solution is shown.

4.5 Discussion and outlook on further chapters

In this chapter learned IEs have been introduced and tested for a variety of different prob-
lems. They deliver extremely accurate results for scattering problems involving circular
and elliptical truncation boundaries. Also very good performance for a simple waveguide
configuration has been achieved. A very attractive feature of learned IEs is their flexi-
bility which allows them to adapt easily to inhomogeneities in the exterior wavespeed.
As discussed in Section 4.1.4, the computational costs for setting up learned IEs are
very reasonable. These results are promising and motivate to conduct further studies of
learned IEs in the remainder of this thesis.

The following extensions and applications of learned IEs will be investigated.

• As already touched on in the introduction to this chapter, the matrices A and
B obtained from solving the optimization problem (4.2)-(4.3) only work reliably
for one specific wavenumber. For various applications, e.g. for solving resonance
problems, it is necessary to obtain a uniform approximation in the wavenumber.
This objective is pursued in Chapter 5.

• While scattering problems and waveguides are surely interesting for a broad audi-
ence, the main motivation for developing learned IEs stems from helioseismology.
Chapter 6 seeks to find out whether learned IEs are appropriate for modeling the
solar atmosphere, whose dtnVAL−C

function may be regarded as the real world re-
alization of dtn jump

from Section 4.2.3.

• As discussed in the introductory Section 1.4, the need for efficient approximation
of DtN maps also arises in sweeping preconditioners. Currently, it is customary to
use PMLs for this purpose. However, this is known to lead to poor performance
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if the medium contains an excessive amount of reflections e.g. caused by strong
inhomogeneities of the wavespeed, see the discussion in Remark 3.26 and the nu-
merical experiments in Section 7.3.1 and Section 7.3.2. As the results from this
chapter indicate that learned IEs might be able to cope much better with reflec-
tions, it is natural to investigate their use in sweeping preconditioners. This is
carried out in Chapter 7 for toy problems and in Chapter 8 for a realistic problem
from helioseismology.
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Chapter 5

Learned IEs providing uniform
approximation in the wavenumber

In Chapter 4, learned IEs have been constructed which can be used for one specific
wavenumber k. In various applications, for example full waveform inversion, the solution
of many time-harmonic wave equations at different wavenumbers is requested, e.g. in
order to probe the medium. To eliminate the necessity of rerunning the optimization
routine for each wavenumber, an approximation of DtN which can be used uniformly for
a fixed band of wavenumbers would be desirable. To this end, dtn needs to be considered
as a function of k, e.g. for the homogeneous medium

dtnhom,2d
(λ, k) =

−k
H

(1)

a
√
λ
(ka)

(H
(1)

a
√
λ
)′(ka) (5.1)

and a discrete approximation dtnN(λ, k) has to be determined which delivers uniform
approximation quality in λ and k. Clearly, the objective function (4.2) is unsuitable for
this task because it only includes information from a single wavenumber.

Therefore, the essential step towards obtaining a uniform approximation in k is to find
an appropriate generalization of the objective function. In Section 5.1 such a generaliza-
tion is proposed. To check its performance, the scattering problem from Section 4.2.1 will
be reconsidered in Section 5.2. This time the objective is to obtain accurate solutions for
all wavenumbers in a bounded interval using a fixed set of learned IE matrices. This will
already give a good indication on the effectiveness of the proposed approach.

On top of this, Section 5.3 presents first results for so called resonance problems. In
a typical resonance problem one is not given a specific wavenumber but rather seeks to
determine the wavenumbers k solving

−∆u = k2u in Rd \K, (5.2)

where K is a compact domain and u 6= 0 fulfills a homogeneous boundary condition
on ∂K and a radiation condition at infinity. Wavenumbers k solving such problems
are called resonances and are complex numbers with nonvanishing imaginary part1. In
order to locate such resonances, the solution operator of the equation has to be well-
approximated for all wavenumbers in a subset of the complex plane. This is even more

1Since for real wavenumbers the corresponding exterior problems with homogeneous Neumann or
Dirichlet boundary conditions on the scatterer are uniquely solvable.
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challenging than the case of intervals considered in Section 5.2. Promising results for a
simple resonance problem will be presented.

The chapter concludes with a brief outlook towards further research in the direction
of uniform approximation with learned IEs.

5.1 The extended optimization problem

It is useful to keep applications to resonance problems or time-domain simulations in
mind when designing learned IEs with uniform approximation properties. At first sight,
equation (5.2) represents a linear eigenvalue problem in k2. It is desirable to preserve this
linearity at the discrete level because linear eigenvalue problems are usually easier to solve
than nonlinear ones. In this regard, the main obstacle is posed by the radiation condition.
How can it be incorporated while preserving linearity of the eigenvalue problem?

To answer this question, it is helpful to consult the review of transparent boundary
conditions of tensor-product type presented in Appendix C. Two among the considered
approaches lead to linear eigenvalue problems, namely PMLs and HSIEs. Both generate
exterior systems of the form

L =
[
A(1) + g(k)A(2)

]
⊗M +B ⊗K, (5.3)

with g(k) = k2, where the matrices themselves are independent2 of k (see Appendix C
for explicit formulas for A(1), A(2) and B). Since PMLs and HSIEs are among the most
powerful methods for solving resonance problems, it is natural to adopt the ansatz (5.3)
for generalization of learned IEs. The corresponding dtnN function is given by

dtnN(λ, k) := A
(1)
ΓΓ + g(k)A

(2)
ΓΓ + λBΓΓ (5.4)

− (A
(1)
ΓE + g(k)A

(2)
ΓE + λBΓE)(A

(1)
EE + g(k)A

(2)
EE + λBEE)−1(A

(1)
EΓ + g(k)A

(2)
EΓ + λBEΓ).

The idea is now to optimize A(1), A(2), B so that dtn(λ`, k) ≈ dtn(λ`, k) for all wavenum-
bers k in a bounded set which has to be specified by the specific application.

Definition 5.1. Let λ` be the generalized eigenvalues of equation (2.9). Denote by
dtn(λ`, k) the complex numbers obtained from solving the ODEs (2.12a). Further, let
dtnN(λ`, k) be the corresponding approximations provided by learned IEs as in equation
(5.4). For positive weights ω`,k we define the misfit function

J(A(1), A(2), B) =
1

2

∑
`

∑
k
|ω`,k(dtn(λ`, k)− dtn(λ`, k))|2, (5.5)

where the sum in k ranges over samples of k in a bounded region of the complex plane.
The minimization problem is to find A(1), A(2), B ∈ C(N+1)×(N+1) so that

A(1), A(2), B ∈ argmin
A(1),A(2),B∈C(N+1)×(N+1)

J(A(1), A(2), B). (5.6)

For dense matrices A(1), A(2) and B the optimization problem contains 6(N+1)2 free3

variables. Hence, already for N = 12 the treshold of over one thousand variables is
exceeded. Moreover, the Jacobians are in general dense because most variables couple

2Provided that the scaling profile of the PML is independent of the frequency.
3Real and imaginary parts are considered as separate variables here.
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with each other (see Appendix D.2 for details). Therefore, strategies to reduce the number
of free variables similar to Section 4.1.1 should be discussed.

Numerical experiments in the spirit of Section 4.1.1 show that the accuracy is not
impaired if A(1), A(2) and B are taken to be symmetric matrices. This nearly halves
the number of free variables, yet the asymptotic complexity is still O(N2). Complex
symmetric matrices can also be beneficial for resonance problems because they allow for
the use of adapted methods for solving the corresponding large scale eigenvalue problems,
see e.g. [AH04].

To obtain linear scalings, a drastic reduction step as in Section 4.1.1 would be neces-
sary. To this end, it is tempting to transfer the ansatz (4.14) to the present setting and
postulate that discrete dtnN functions of the form

dtnN(λ) = A
(1)
00 + g(k)A

(2)
00 + λB00 −

N∑

j=1

(A
(1)
0j + g(k)A

(2)
0j + λB0j)

2

A
(1)
jj + g(k)A

(2)
jj + λ

, (5.7)

were already suitable to approximate dtn(λ, k). However, with such an ansatz it is
very difficult to fit the poles of dtn(λ, k), whose positions depend on k, accurately.
From the previous investigations it is well-known that this is essential for obtaining
good approximations. The poles of dtnN as in equation (5.7) are located at position

λ∗j(N) = −A(1)
jj − g(k)A

(2)
jj for j = 1, . . . , N . In order to track the dependence of the

poles on k, the function g(k), which is technically already fixed, would need to be chosen
correctly. To this end, analytic formulas for the trajectories of the poles w.r.t. k would be
required. For dtnhom,2D

asymptotic formulas for the poles have been derived in references
[MK60] and [KRG63]. The latter also contains plots of their trajectories in the complex
plane. These results could serve as a starting point for finding an appropriate choice for
g. This could be an interesting research direction to follow. However, here we want to
fix g(k) = k2 to obtain linear eigenvalue problems for computing resonances.

The increased number of parameters in the more general ansatz (5.4) may allow the
optimization to adjust better for the dependence of the poles on k. To illustrate this, let
the generalization of assumption (4.5) be valid, i.e. there exists an invertible matrix P (k)
and a diagonal matrix D(k) such that

(BEE)−1
(
A

(1)
EE + g(k)A

(2)
EE

)
= P (k)D(k)P (k)−1. (5.8)

Here, the dependence of the matrices P (k) and D(k) on k is not explicitly known. Plug-
ging this assumption into (5.4) implies that the rational part of dtnN is equivalent to

−
N∑

j=1

qj
(
λ, g(k), P (k), A(1), A(2), B

)

Djj(k) + λ
,

where qj are second order polynomials in λ. This means that even under assumption
(5.8) the ansatzes (5.4) and (5.7) are not equivalent in general because the former allows
for a more complex dependence of the poles on k. Therefore, the general ansatz (5.4)
with symmetric matrices will be used for the numerical experiments of this chapter.

5.2 Scattering of plane wave from a disk

We revisit the example of a plane wave scattered by a disk which has already been con-
sidered in Section 4.2.1 for individual wavenumbers. This time a uniform approximation
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Figure 5.1: Results for scattering of a plane wave from a disk with learned IEs for
intervals of wavenumbers. The upper panel was obtained with an equidistant sampling
of 8 wavenumbers in [8, 32]. The lower panel uses a finer sampling of 16 wavenumbers.
The wavenumbers which served as sample points have been indicated with dashed lines
in gray. The lower panel in (c) and (d) displays the respective errors for N = 9.
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for all wavenumbers k ∈ [8, 32] is desired. To this end, Nk uniformly-spaced samples from
this interval are included into the objective function (5.5). The weights are chosen as in

Section 4.2.1, i.e. ω`,k ∼ |H(1)
` (ka)/H

(1)
` (kRs)|. The disk has a radius of Rs = 1/2 and

the truncation boundary is positioned at a = 1. Finite elements of order p = 10 are used
for discretizing the interior problem. The linear systems are solved by means of a sparse
Cholesky factorization.

The relative error on the interior domain and the supremum error on the modes
sup` |ω`,k(dtnhom,2d

(λ`, k)− dtnN(λ`, k))| are shown in Fig. 5.1. The upper panel displays
the results for Nk = 8 while the sampling has been doubled for the lower panel. For
the latter case an accuracy in the relative error of at least 2 · 10−11 is achieved for all
wavenumbers in the interval [12, 32] with N = 9. With the optimization at individual
wavenumbers (cp. Fig. 4.4a) a comparable accuracy has been achieved with N = 4 to
N = 5 using the reduced symmetric ansatz. This shows that the number of additional
DOFs required to achieve an approximation which can be used for intervals of wavenum-
bers is acceptable4. The left column of the figure suggests that the convergence of the
L2-errror may also be predicted from the supremum error of the dtn modes after the
optimization problem has been solved. This is analogous to the optimization at single
wavenumbers and suggests that the objective function is chosen appropriately. Note also
that for Nk = 8 the position of the sample points can clearly be inferred from the posi-
tion of the minima in the supremum error shown in Fig. 5.1a. Apparently, decreasing the
sample size to Nk = 8 results in a loss of accuracy in the L2-error. However, for coarser
finite element discretizations this may already be sufficient to decrease the error stem-
ming from truncation of the domain below the discretization error of the finite elements
for the interior problem (cp. Fig. 4.3a).

5.3 Resonances of a disk

Since the ansatz (5.3) with g(k) = k2 is linear in k2, it can be utilized readily for the
computation of resonances. To illustrate this, an example from the thesis [Nan08, Section
6.2] for which the exact resonances are analytically known will be considered. Let K =
{x ∈ R2 | |x|2 ≤ R} be a disk with radius R. The resonances k fulfilling

−∆u = k2u in R2 \K, (5.9a)

u = 0 on ∂K, (5.9b)

lim
|x|→∞

|x|(d−1)/2

(
∂u

∂|x| − iku
)

= 0, (5.9c)

are given by roots of the Hankel functions

k 7→ H
(1)
` (kR), ` = 0, 1, . . . .

The domain Ω = R2 \ K is decomposed as usual into Ω = Ωint ∪ Ωext, with Ωint :=
{x ∈ R2 | R ≤ |x|2 ≤ a} and Ωext := {x ∈ R2 | |x|2 > a}. The exterior domain
Ωext is modelled using learned IEs. For the experiment the parameters R = 1/2 and
a = 6/10 have been used. In contrast to the previous experiments, the sample points
k 7→ dtn(λ`, k) included into the optimization problem are now chosen from a box in the

4The number of additional DOFs can also be reduced by decreasing the size of the interval.
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complex plane as displayed in Fig. 5.2. This generalization is necessary in order to obtain
a good approximation of dtnhom,2d

(λ`, k) in the vicinity of the resonance frequencies, which
are located in the lower half plane. The weights ω`,k are all chosen to be one. Thanks to
the fact that the eigenvalue problem is linear in k2, the resonances can be computed by
the Arnoldi method for which a complex shift of (10− 5i)2 has been used.

Fig. 5.2 shows the results for the computation of the desired resonances using learned
IEs. The panel in the upper left corner displays the value of the objective function
in terms of N whereas the other panels show the numerical resonances computed with
learned IEs using N ∈ {7, 13, 19}. We make the following observations.
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Figure 5.2: Resonances for a disk with radius R = 1/2 and Dirichlet boundary conditions.
The sample points in k used for approximation of dtn(λ`, k) ≈ dtn(λ`, k) are indicated
with blue circles. Exact resonances are shown as black crosses while approximate reso-
nances computed with learned IEs are indicated by red boxes.

• For N = 7 only some of the resonances in the box are well-approximated. Ap-
parently, the lower left corner of the box represents the trickiest area. Here, the
computed resonances are observed to cluster without actually resolving the exact
resonances accurately.

• For N = 13 the value of the objective function has decreased nearly by another
four orders of magnitude and the approximation of the resonances has improved
noticeably. Still a cluster of spurious resonances remains in the lower left corner of
the box. Perhaps it could be beneficial to increase the number of sample points in
this area.
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• For N = 19 the value of the objective funcion has decreased by an additional two
orders of magnitude. Now the blue box is free of spurious resonances and all exact
resonances contained in this box have been found. Even some exact resonances
outside the box have been detected. Moreover, most of the numerical resonances
outside the box are easy to distinguish as numerical artifacts because they are
located in the upper half plane. Therefore, in total only three numerical resonances
remain (those located between the blue box and the real axis) which cannot be
unambiguously identified as spurious without performing additional computations.

The good correspondence between the value of the objective function and the qual-
ity of the resonance approximation indicates that the choice of the objective function
is reasonable. Certainly, the choice is not optimal yet as the clustering of spurious res-
onances in the lower left corner for N = 13 suggests. Nevertheless, this experiment
demonstrates that computing resonances using learned IEs is possible and could be an
interesting research direction to pursue.

5.4 Discussion and outlook

This chapter introduced an approach to compute learned IEs which work uniformly for
all wavenumbers in some bounded subset of the complex plane. It is based on the idea
to consider dtn additionally as a function of k and search for a discrete dtnN function
which provides an accurate approximation of dtn for a whole range of k. The numerical
results demonstrate that this can be achieved by a suitable modification of the objective
function. Highly accurate results have been obtained for the scattering of a plane wave
across a respectably large interval of wavenumbers. Moreover, an application of learned
IEs to the computation of resonances has been presented. These results are promising
and call for additional research in this direction.

• Reduction step / efficiency: When dense matrices A(1), A(2), B are used in the
objective function (5.5), the number of free parameters in the minimization problem
grows quadratically, which becomes prohibitively expensive as N increases. This is
particularly relevant for resonances problems which require large N and a sampling
across many different wavenumbers which increases the number of residual blocks
in the objective function. For this reason, learned IEs are not competive yet in
terms of computational effort with more established methods like PMLs or HSIEs
for computing resonances. To reduce the computational effort it will be necessary
to sparsify the learned matrices. As disccused in Section 5.1, this reduction step is
more intricate than for the case of individual frequencies. One approach would be to
include a priori knowledge of the trajectories of the poles of dtn w.r.t. the frequency
into the ansatz. Another more generic option is to investigate the suitability of
learned matrices with a fixed bandwidth.

• Reusability / accessibility: An important aspect to consider in the design of a new
numerical method is surely its ease of implementation and use by other researchers.
In this regard, learned IEs as presented in Chapter 4 are not particularly attrac-
tive because they would require the implementation or installation of an optimiza-
tion solver which can treat the corresponding minimization problem. However, for
learned IEs as discussed in this chapter, libraries of learned matrices could be set
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up which work for a specific problem across a whole range of wavenumbers, e.g. the
Helmholtz equation in the exterior of a ball. Other researches could then simply
download the corresponding matrices which would obliterate the necessity for a
standalone optimization procedure.

• Resonance problems: The numerical experiment presented in Section 5.3 is of course
only a first step into the considerably more complicated topic of computing reso-
nances. More numerical experiments especially for problems involving inhomoge-
neous, yet separable exterior domains should be performed to explore the potential
of learned IEs in this field.

• Time-domain simulations: In some applications it is requested to solve wave equa-
tions directly in the time domain. In this context, it would be desirable to transfer
transparent boundary conditions developed in the frequency domain to the time
domain. A prerequisite for this would be to have transparent boundary condi-
tions at hand which cover intervals of wavenumbers and whose dependence on the
wavenumber is explicitly known and not too complicated (preferably polynomial).
In this regard, the ansatz (5.3) looks promising since its sole dependence on k is
described by the function g(k). Time-domain simulations will not be addressed
here since this is beyond the scope of this thesis although the results of this chapter
may encourage research in this direction.
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Chapter 6

Modelling the solar atmosphere with
learned IEs

Local helioseismology seeks to understand the two and three dimensional structure of the
physical quantities in the interior of the Sun. To interpret the data provided by satellite
or ground-based measurements, a forward problem has to be solved, which consists of
computing synthetic data for a given solar model. This involves the solution of a (time-
harmonic) wave equation posed in the solar interior. A suitable transparent boundary
condition has to be imposed at the boundary of the computational domain to incorporate
knowledge about the solar atmosphere into the simulation. Classical approaches for ho-
mogeneous media are not suitable for this purpose since the solar atmosphere is strongly
inhomogeneous. This chapter investigates whether learned IEs are flexible enough to
adapt to the harsh conditions in the Sun and could serve as accurate and reliable trans-
parent boundary conditions for helioseismology.

For applications in time-distance helioseismology it is particularly important to under-
stand the effect which truncation of the atmosphere by a transparent boundary condition
exerts on the accuracy of helioseismic observables. This is easiest to analyze in a setting
in which the separability assumption is extended to the entire Sun because this allows to
compute the Green’s function with the exact transparent boundary condition on a mode
by mode basis. The latter can then serve as a reference for evaluating the accuracy of
different (approximate) transparent boundary conditions which could be used also in the
non-separable setting. Before proceeding to an evaluation of transparent boundary con-
ditions, the question of the degree of accuracy that is a reasonable target to achieve for
applications in helioseismology should first be addressed. Notice in this regard that even
the Green’s function computed with an exact transparent boundary condition provides
an imperfect description of wave propagation in the Sun, e.g. because equation (2.52) is
based on various approximations and the quantities of the solar background model do not
capture the Sun perfectly. Therefore, we will start in Section 6.1 by comparing synthetic
observables based on exact transparent boundary conditions for the Atmo and VAL-C
model, respectively, with observables based on data from observations. The modelling
errors observed there will set the scale for the accuracy transparent boundary conditions
need to achieve. Afterwards, the accuracy of transparent boundary conditions for these
two atmospheric models is assessed. Firstly, a comparison of learned IEs with established
local transparent boundary conditions for the Atmo model is carried out in Section 6.2. In
Section 6.3 the more involved case of the VAL-C model, for which no other transparent
boundary conditions are available to date, is considered. The chapter concludes with a
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short discussion of open questions and an outlook towards further research.

6.1 Observables in time-distance helioseismology

This section introduces the main observables of time-distance helioseismology in a special-
ized setting. The assumption of spherical symmetry already required for the atmosphere
is extended to the entire Sun, which implies that equations (2.51) or (2.52) are fully
separable. In particular, there is no background flow, i.e. w = 0, and the coefficients are
spherically symmetric functions. This will lead to a very natural framework for evaluating
the accuracy of transparent boundary conditions for this application. The presentation of
the observables in the fully separable setting considered in this chapter is mostly adopted
from references [BFF+20b] and [BFF+20a]. For the case of a general or axisymmetric
medium the reader is referred to [GBD+17]. Although this chapter considers exclusively
the transformed equation (2.52), all results naturally extend to the original formulation
since the corresponding dtn functions differ merely by a constant factor.

6.1.1 Green’s function based on exact transparent b.c.

The main object to be computed is the Green’s function of (2.52). To this end, it is useful
for the implemention to scale the Sun to the unit ball by means of the coordinate trans-
formation x̂ = x/R�, respectively r̂ = ‖x‖/R�. Here, R� denotes the solar radius. The
sound speed has to be scaled accordingly by 1/R� and the source by R2

�, see [BFF+20b,
Section 3] for details. Transformed versions of the quantities ρ, c, γ and σ, which were
introduced in Section 2.4, are defined by

ρ̂(r̂) = ρ(r̂R�), ĉ(r̂) =
c(r̂R�)

R�
, γ̂(r̂, ω) = γ(r̂R�, ω), σ̂2(r̂) = ω2 + 2iωγ̂(r̂, ω).

The corresponding potential is given by

q̂ = ρ̂1/2∆x̂

(
ρ̂−1/2

)
− σ̂2

ĉ2
. (6.1)

Utilizing spherical symmetry and picking a convenient source of excitation allows to
compute the Green’s function separately for each mode. A detailed derivation can be
found in [BFF+20b, Section 4]. The modes G`(r̂, ŝ, ω) for r̂, ŝ ≥ 0 are obtained by
solving the following ODE for G̃` = G`/r̂:

− 1

r̂2

∂

∂r̂

(
r̂2∂G̃`

∂r̂

)
+

(
λ̂`â

2

r̂2
+ q̂

)
G̃` =

1

r̂
δ(r̂ − ŝ) on [0, R̂], (6.2)

where λ̂` = `(` + 1)/â2 for â = a/R�. Here, a denotes the radius of the truncation
boundary in the original coordinates as introduced in (2.52) and R̂ = R/R� ∈ (0,∞]
marks the end of the atmospheric model.

• For the Atmo model R = ∞ holds, and the outgoing solution on a finite computa-
tional domain [0, â] can be obtained by means of the exact radiation condition

− (∂r̂G`)(r̂ = a) = dtnAtmo
(λ̂`) (6.3)
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provided by the Whittaker function as defined in (2.56) evaluated at the scaled
quantities. More precisely,

dtnAtmo
(λ̂`) =

1

â
+ 2ik̂

W ′
−iη̂,`+ 1

2

(−2ik̂â)

W−iη̂,`+ 1
2
(−2ik̂â)

, (6.4)

with

ĉ∞ = ĉ(â), α̂∞ = −ρ̂′(â)/ρ̂(â), k̂2 :=
σ̂(â)2

ĉ2
∞
− α̂2

∞
4

and η̂ :=
α̂∞

2k̂
.

As shown in [BFF+20b], the boundary condition limr̂→0 r̂∂r̂G̃`(r̂, ŝ, ω) = 0 ensures
regularity of the solution at r̂ = 0. The truncation radius a is placed at the end of
the background Model S, which is located at about 500 km above the photosphere.

• For the VAL-C model the physical radius R = RV is located at about 2.5 Mm
height above the photosphere where a homogeneous Neumann boundary condition
is implemented. The solution is unique since a positive damping is assumed, see
Lemma 2.11 and Proposition 2.15.
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Figure 6.1: Comparison between dtnVAL-C
and dtnAtmo

for a truncation boundary located
at 0.5 Mm above the photosphere. The lower panel displays the exact poles of dtnVAL-C

.

All additional quantities required for this chapter can be computed from the imagi-
nary part of the Green’s function. Before proceeding to the definition of these derived
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quantities, it makes sense to carry out a direct comparison of the dtn functions for the
Atmo and VAL-C model. This will indicate for which frequencies and how the correspond-
ing Green’s functions are expected to differ. The upper panel of Fig. 6.1 compares the dtn
functions of both models for 3.5 mHz while the lower panel considers a higher frequency
of 8 mHz. For the sake of this comparison, the truncation boundary a has been placed at
0.5 Mm above the photosphere for both models. First it can be observed that the function
values of dtnVAL-C

and dtnAtmo
differ significantly even for low frequencies. While for low

frequencies at least the qualitative behavior of both functions is still relatively similar,
this changes completely for frequencies above the atmospheric cut-off (∼ 5.2 mHz). In

contrast to the smooth dtnAtmo
function, dtnVAL-C

exhibits a series of pronounced peaks
in the preasymptotic regime. These are associated with poles of the meromorphic contin-
uation of dtnVAL-C

lying in close proximity to the positive real axis as already discussed in
Section 2.4.2. The poles of dtnAtmo

are located much higher up in the first quadrant and
exert only minor influence on dtnAtmo

evaluated at eigenvalues λ̂`. As a consequence of
the diverging nature of dtnVAL-C

and dtnAtmo
at high-frequencies, one would expect to see

significant differences in the quantities derived from the corresponding Green’s functions
in the high-frequency regime.

6.1.2 Power spectrum

Leighton et. al. [LNS62] were the first to observe that surface elements of the Sun un-
dergo a vertical oscillation with a period of about five minutes. This phenomenon puzzled
researchers for about a decade until these motions were eventually explained to originate
from standing acoustic waves resonating in spherical cavities of the Sun [Ulr70, LS71].
The excitation mechanism of the waves is related to turbulent random motions in the
solar convection zone, albeit not fully understood. To investigate the properties of so-
lar oscillations, it is useful to analyze their power spectrum. To this end, the surface
displacement is decomposed into spherical harmonics, and the amplitude is plotted as a
function of frequency versus harmonic degree, see [GB05] for further discussion.

The power spectrum from simulations is obtained analogously by projecting the
Green’s function into spherical harmonics:

P `(ω) =
Π(ω)

2ω
ρ̂(1) Im [G`(r̂obs, r̂src, ω)] . (6.5)

The function Π(ω) controls the source power and is chosen in accordance with [GBD+17]
as

Π(ω) =

(
1 +

(
ω − ω0

ω1

)2
)−1

with
ω0

2π
= 3.3 mHz ,

ω1

2π
= 0.6 mHz . (6.6)

Thinking in terms of Earth’s seismology, the positions r̂obs and r̂src would represent the
locations of the source of excitation and the receiver, respectively. Since solar oscillations
are caused by random oscillations, they cannot be pinpointed to a single location like
earthquakes so that the analogy above has to be treated with some caution. By com-
paring theoretical power spectra with MDI observations Nigam and Kosovichev [NK99]
concluded that the region in which acoustic modes are excited can be narrowed down
to a thin layer at depth of 75 ± 50 km below the photosphere. The location of the
receiver, i.e. the observation height, depends on the particular instrument. In recent re-
search [BFF+20a], based on the same scalar wave equation as considered in this thesis,
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it has been found that different source positions and observation heights can introduce
significant differences in the computed power spectra. Currently, there seems to be no
consensus yet on where source and receiver should be placed. Therefore, we simply opt
for the established approach [GBD+17] to position both directly at the photosphere, i.e.

(r̂obs, r̂src) = (1, 1)

holds throughout the whole chapter. Learned IEs could also be applied for other choices
as long as source and receiver are located inside the computational domain.

The power spectra obtained with the Atmo and the VAL-C models are compared in
Fig. 6.2a and Fig. 6.2b. For this result Green’s functions for harmonic degrees up to
` = 1000 and 7200 equidistant frequencies ranging from 0 to 8.3 mHz have been com-
puted. The attenuation has been chosen according to the power law damping model
from [GBD+17], see Fig. 6.3b. The power is distributed along ridges which can be as-
sociated with the number of nodes of a corresponding radial resonant mode. The dis-
persion relation between frequency and ` (proportional to the horizontal wavenumber)
is approximately given by a square root. The ridges reported in [KRSSL13] obtained
from SOHO/MDI [SBB+95] observations are overplotted in the figure as white crosses.
Due to the lack of gravity in the simulation the lowest ridge seen in the observations,
which is associated with surface gravity waves, is not present in the computed power
spectrum. The agreement below the acoustic cut-off frequency for both models is encour-
aging and appears to be consistent with results previously reported in the literature, see
e.g. [GBD+17].

For high frequency the results for the two atmospheric models differ as anticipated
from the comparison of the corresponding dtn functions, see Section 6.1.1. For the VAL-
C model lines of reduced power are observed which have been reported previously in
[BFF+20a], yet seem to be unexplained until now in the literature. Considering Fig. 6.2b
very closely, it even possible to detect a slight disturbance already at around 4.2-4.5 mHz.
Using our framework of dtn functions allows to shed some light on these observations (at
least from a mathematical point of view). To this end, we proceed as in Chapter 5 and
regard dtn additionally as a function of the frequency ω, which enters into equation (6.2)
in terms of σ̂(ω). In Fig. 6.2c and Fig. 6.2d the absolute values of the functions

(`, ω) 7→ dtnAtmo
(λ̂`, σ̂(ω)) and (`, ω) 7→ dtnVAL-C

(λ̂`, σ̂(ω)) (6.7)

are displayed. Apparently, these functions have a completely different structure at high-
frequency. By comparing Fig. 6.2d with Fig. 6.2b we infer that the lines of reduced
power in the spectrum are associated with lines at which dtnVAL-C

(λ̂`, σ̂(ω)) is large in
magnitude. Note that even the slight disturbance at around 4.2-4.5 mHz is cleary visible
in Fig. 6.2d. It is tempting to conjecture that this drastic increase in magnitude around
certain frequencies could be associated with poles dtnVAL-C

regarded as a function of
frequency. Fig. 6.2e and Fig. 6.2f prove that this intuition is indeed correct. In these
figures the functions (6.7) are displayed at fixed ` = 200 as functions of ω. Their pole
structure (also w.r.t. the frequency) is displayed in the lower panel of the figure. Please
note the drastically different scalings of the imaginary axis. While dtnAtmo

has a tail of
poles around 5.2 mHz which stretches away from the real axis into the fourth quadrant,
dtnVAL-C

admits poles in extremely close proximity to the real axis around the whole high-
frequency range. By definition, close to these poles the magnitude of dtnVAL-C

is extremely
large. Hence, the poles of dtnVAL-C

close to the real frequency axis are responsible for
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Figure 6.2: In (a) and (b) the power spectrum obtained with different models of the
atmosphere is compared. The white crosses mark the ridges reported from MDI obser-
vations [KRSSL13]. In (c) and (d) the absolute value of dtn as a function of frequency
(y-axis) and harmonic degree ` (x-axis) is shown. A slice through ` = 200, marked in (c)
and (d) by the dashed red line, is displayed in figures (e) and (f). Here, we regard dtn
as a function of frequency. Real and imaginary parts are shown in the upper panel while
the lower panel displays the pole structure.
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the lines of reduced power observed in the spectrum of the VAL-C model. They seem to
be caused by the drastic increase in sound speed in the upper chromosphere featured in
this model of the solar atmosphere, see Fig. 2.7b. In this regard, it is interesting to note
that Remark 2.12 extends to the setting in which dtnVAL-C

is considered as a function
of frequency. This implies that frequencies at which dtnVAL-C

has a pole are exactly
those frequencies for which the exterior problem does not admit a unique solution in
H1([a,RV]). Furthermore, for the case of the homogeneous medium it is shown in [Tay11,
Chapter 9.7, following equation (7.64)] that poles of DtN with respect to the frequency
coincide with resonances1 of the exterior problem. Assuming that these results can be
transferred to the inhomogeneous solar atmosphere would allow to conclude that the
lines of reduced power in the spectrum of the VAL-C model are caused by resonances
introduced by reflections in the upper chromosphere.

ω1 ω2

max

max/2

FWHM

(a) The FWHM of a peak in the power
spectrum (e.g. Fig. 6.4) is the width |ω2−
ω1| at half the maximum amplitude.
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(b) The FWHM of acoustic modes with orders
1 ≤ n ≤ 12 (black dots) reported in [KRSSL13,
LS15] based on MDI observations. The orange
line shows the power law approximation 2γ(ω).

Figure 6.3: Relation between full width at half maximum (FWHM) of acoustic modes and
attenuation in the computational framework of [GBD+17]. In (b) we recreated [GBD+17,
Fig. 8] using the same data sets as in this reference.

Let us now continue with the discussion of the power spectrum. A cut through the
power spectrum at ` = 200 shown in Fig. 6.4 allows for a closer comparison with observa-
tions. Here, frequencies below and above 5.2 mHz have been normalized independently
and are discussed separately below.

• For low frequencies the Atmo and VAL-C models yield similar results. The simulated
ridges with both atmospheric models display a small misalignment with respect to
the observations which is well-known in the literature, see e.g. [BFF+20b, Fig. 18]
or [GBD+17, Fig.10]. This is expected as the background Model S does not cap-
ture the surface layers perfectly [RCN+99]. Note that this misalignment is much
larger than the difference between the two competing atmospheric models, hence
the modelling error stemming from the surface layers apparently dominates here.
Additionally, the attenuation model used in this study is oversimplified: In the
framework of [GBD+17] the full width at half maximum of a peak (FWHM) in

1Please see also [Tay11, Proposition 7.8] in which scattering poles and resonances are identified.
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Figure 6.4: Cut through the power spectrum at ` = 200. Low and high frequencies have
been normalized independently.

the power spectrum is proportional to the attenuation γ. The power law damp-
ing model only accounts for the dependence of the FWHM on the frequency (see
Fig. 6.3b), while observations, see e.g. [KRS04], show that the FWHM is a strongly
increasing function of the harmonic degree ` as well. This point is discussed further
in Section 6.4. Overall these results indicate that the influence of the atmospheric
model for frequencies below 5.2 mHz appears to be relatively small.

• For frequencies above the acoustic cut-off both atmospheric models yield signifi-
cantly different results. Unfortunately, neither of the models shows a satisfactory
agreement with the MDI observations. This has also been reported in [BFF+20b].
For the VAL-C model the lines of reduced power are also clearly visible. For ex-
ample, at around 5.5 mHz where a pole of dtnVAL-C

is located (see Fig. 6.2f) the
power based on the VAL-C model attains a local minimum, which is in disagree-
ment with the MDI data. An outlook on further research towards resolving the
discussed discrepancies will be given in Section 6.4.

6.1.3 Cross covariance and time distance diagram

Time-distance helioseismology [DJHP93] studies the solar interior by analyzing the time
it requires waves to travel between two locations on the solar surface which is encoded in
the so called cross-covariance function. Plotting the cross-covariance as a time-distance
diagram allows for a visual intepretation of travel times. Fig. 6.5b displays such a time-
distance diagram computed from MDI data provided in [RKS+97]. This plot displays
the cross-covariance as a function of temporal correlation time lag between any two
points which have the same angular distance on the solar surface. The distinguished
feature are the ridges which are related to different paths the wave can travel between
both locations. This is illustrated in Fig. 6.5a using ray theory [Gou84], which is an
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(a) Wave paths in ray approximation. (b) MDI observations.

(c) Atmo. (d) VAL-C.

Figure 6.5: Time distance diagram obtained from the cross-covariance. White for positive
values and black for negative values.
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approximation justified in the high-frequency regime. Here, the energy of the wave is
visualized as a ray path which is orthogonal to the wavefront. Under the assumption
that a simple local dispersion relation is valid2, it is possible to compute the ray path for
each mode ` simply by integrating a quantity which involves the sound speed, see [Kos11,
Section 4.5] for details. As the waves travel deeper into the Sun they are refracted by the
increase in sound speed towards the core. After reaching a lower turning point r̂t, which
in the setting of [Kos11] is located at ĉ(r̂t) = r̂tω/

√
`(`+ 1), they return to the surface.

The first skip in the time-distance diagram then corresponds to the ray which connects
two points on the surface directly, i.e. the first arrival. For the second skip the wave is
reflected once at the surface and so on. For further interpretation we refer to [GBS10,
Section 3.2] and references therein.
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Figure 6.6: Comparison of the expectation value of the cross-covariance with observations.

Assuming a convenient source of excitation, the expectation value of the cross covari-
ance C(θ, ω) can be obtained from the imaginary part of the Green’s function [GBD+17].
For the special setting in this chapter it is given by (see [BFF+20b] for a derivation):

C(θ, ω) =
Π(ω)

8πω
ρ̂(1)

∑

`

(2`+ 1)F`(ω) Im [G`(1, 1, ω)]P`(cos θ). (6.8)

Here, θ ∈ [0, π] is the angular distance between the two points on the surface, P` are the
Legendre polynomials of degree ` and F` is a filter function to be specified below. The
expression C(θ, t) in the time domain is obtained by applying the Fourier transform.

2This assumptions breaks down near the upper turning point of the ray.
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The time-distance diagrams based on the Atmo and VAL-C models are displayed
in Fig. 6.5c and Fig. 6.5d, respectively. To remove high-degree modes the filter F` =
1/2(1− tanh (0.03− `)) for ` < 300 and zero else was used. Additionally, a low-frequency
filter has been applied to the observations to filter out noise from granulation3 and su-
pergranulation. The most striking difference to the observations, c.p. Fig. 6.5b, is that
the ridges in the observed time-distance diagram fade at large distances. This is caused
by an observational effect known as foreshortening where spatial resolution on the Sun
decreases towards the limb. Apart from this, the qualitative agreement between obser-
vations and simulations is reasonable and comparable to the results in the literature, see
e.g. [GBD+17, Fig. 12].

Fig. 6.6 displays cuts through the cross-covariance at θ ∈ {30◦, 60◦, 90◦}. Such a plot
has also been presented in [GBD+17, Fig. 13]. For the first few skips the relative ampli-
tudes and widths of the simulations match the observations reasonably well. However,
we record that small deviations can already be detected easily with the unaided eye. In
view of the inaccuracies already observed in the power spectrum (see Fig. 6.4), one can
also not expect to see a perfect match with the observations. The most noticeable defect
might be that the widths of the skips are slightly underestimated in our simulations.
Concerning the atmospheric models, no significant differences between Atmo and VAL-C
can be observed in terms of how well the observations are reproduced. This will change
in the next experiment which focusses on waves propagating at high-frequencies.

Double ridge structure at high-frequency

Jefferies et. al. [JOS+97] noticed that the time-distance diagram of high-frequency waves
based on observations taken from the South pole exhibits a double-ridge structure. The
ridges are split into a lower main ridge and an upper satellite ridge separated by gaps.
The authors of [JOS+97] argued that this structure may arise due to reflection of high-
frequency acoustic waves in the chromosphere, that is due to resonance effects. However,
also alternative interpretations exist [SSJ04] attributing this phenomenon to an interfer-
ence of waves with frequencies above and below the acoustic cut-off, which may have
been introduced by a special choice of the filter. The filter in question given by

F`(ω) = exp

(
−(ω − ω0)2

2s2

)
exp

(
−(`− `0)2

(δ`)2

)
(6.9)

with ω0/2π = 6.75 mHz, s/2π = 0.75 mHz, `0 = 125 and δ` = 33. The frequency and
spatial components of the filter are displayed in Fig. 6.7d. The resulting time-distance
diagram computed with MDI data [RKS+97] is shown in Fig. 6.7a. The gaps in the first
two ridges are clearly visible.

The double-ridge structure has been successfully reproduced in simulations by Fournier
et. al. [FLH+17] using equation (2.51) with an atmospheric extension based on the VAL-
C model [VAL81]. Additionally, it has been demonstrated that the gaps in the ridges
are missing if the Atmo extension, which the existing atmospheric radiation boundary
conditions [BCD+18, FLH+17, BFP20] for helioseismology rely on, is employed to model
the atmosphere. It is interesting to check whether these results can be reproduced here.

3Granulation and supergranulation are convective phenomena which can be observed at the solar
surface. Their traces are superimposed on the oscillation signal of the ascoustic modes and should
therefore be filtered out for this study.
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Figure 6.7: Double ridge structure of high-frequency time-distance diagram. Shown is
the absolute value of the expected cross-covariance on a log scale with large values being
yellow and small values black.
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The time-distance diagram with the exact transparent boundary condition for the
Atmo model is shown in Fig. 6.7c. No significant gaps in the ridges are visible. On the
other hand, the gaps appear in the corresponding time-distance diagram based on the
VAL-C model shown in Fig. 6.7b. This may be interpreted as an indication that the VAL-
C model could be physically more appropriate than the Atmo model. To be fair, it should
be pointed out that the agreement of the VAL-C results with the MDI observations is
obviously not perfect either.

6.1.4 Conclusion on accuracy and purpose of approximate trans-
parent b.c.

The experiments of this section were based on exact transparent boundary conditions
which can only be realized in a one-dimensional setting, that is if the PDE at the contin-
uous level is fully-separable. For axisymmetric or fully three-dimensional discretizations
approximate transparent boundary conditions like learned IEs have to be used instead.
The main objective of the following two sections is to investigate the influence of the
approximate transparent boundary condition on the accuracy of the power spectrum and
the expectation value of the cross-covariance. The one-dimensional setting assumed in
this chapter allows for a direct comparison with the reference result computed with the
exact transparent boundary condition. This raises the question on the level of accuracy
the approximate transparent boundary conditions should be able to achieve. From the
results of this section we infer the following conclusions.

• In the low-frequency regime the influence of the transparent boundary conditions
seems to be small. As argued in the discussion of Fig. 6.4, the deviations from the
observations appear to stem from other dominant sources not directly related to
the atmospheric model. Therefore, it should be sufficient if the power spectra and
cross-covariances (Fig. 6.6) based on the exact transparent boundary conditions can
be reproduced with a relative accuracy in the region of 10−2 − 10−5.

• In the high-frequency regime the observables computed based on the Atmo extension
and the VAL-C model display a fundamentally different behavior as expected from
the comparison of dtn functions shown in Fig. 6.1 and Fig. 6.2c-Fig. 6.2f. We do
not claim to know which of these models - if any - is the correct one to incorporate
the solar atmosphere into the scalar equation of helioseismology. With respect to
transparent boundary conditions we merely want draw the following two conclu-
sions. Firstly, the VAL-C model is certainly interesting for helioseismology (see e.g.
Section 6.1.3) so that transparent boundary conditions for its efficient implemen-
tation in axisymmetric or three-dimension discretizations should be investigated.
Currently, no such conditions are known in the literature. We will fill this gap
in Section 6.3. Secondly, the uncertainty on the appropriate atmospheric model
calls for flexible transparent boundary conditions which can adapt in case the back-
ground model changes. Their natural flexibility also commends learned IEs in this
context.

A final remark should be given to put the investigations following in Section 6.2
and Section 6.3 into perspective. In these experiments we will push for extremely high
accuracy with learned IEs even though this is probably excessive in view of the application
as argued above. This is in order to examine the accuracy and flexibility of learned IEs for
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a nontrivial example. Certainly, helioseismology provides a significantly more interesting
proving ground than the toy examples considered in Chapter 4.

6.2 Comparison with ARBC for the Atmo model

It is natural to consider the Atmo model first for which local transparent boundary con-
ditions to compare with are available. These so called ‘Atmospheric Radiation Boundary
Conditions’ have been introduced in [BCD+18] and were then further developed in a se-
ries of papers [FLH+17, BFP20, BFF+20b, BFF+20a]. Most of them are based on local
approximations of the non-local condition

dtnnonlocal
(λ`) =

1

â
− ik̂

√

1− α̂∞

âk̂2
− λ̂`

k̂2
. (6.10)

The non-locality here stems from the square root of the Laplace-Beltrami operator (rep-
resented by λ̂` in the separable setting). In fact, there is a zoo of different approximations
available which can be described by the tensor-product ansatz (3.10) using N = 0. i.e.
AΓΓ and BΓΓ are the only nonvanishing matrix elements. This justifies to employ the
notation dtn for these transparent boundary conditions. It is beyond the scope of this
thesis to consider all of these conditions. Therefore, we focus here on

dtnS-HF-1a(λ`) =
1

â
− ik̂ +

i

2k̂

α̂∞
â
, (6.11)

which the researchers have singled out in their latest report [BFF+20a] as their favourite
condition because of its high accuracy and independence of λ̂` (that is BΓΓ = 0) which
the authors argue is more convenient to implement in three dimensions. Additionally,
also the condition

dtnA-RBC-1(λ`) = −ik̂ (6.12)

will be considered, which is of the form of a Sommerfeld radiation condition for the
wavenumber k̂.

To assess the accuracy of these conditions, equation (6.2) is solved on the interval
[0, â] with a being the end of Model S where the exact transparent boundary condition
(6.3) at r̂ = â is replaced by one of the conditions (6.10), (6.11) or (6.12). Source and
receiver are positioned at the solar surface. An analogous experiment has been carried
out in [BFF+20a, Section 5.3.] and we should obtain qualitatively similar results here.
A perfect agreement cannot be expected though as details of the implementation may
vary. For example, different approaches to compute the contribution ∆x̂ρ̂

−1/2 appearing
in the potential (6.1) or the parameter α̂∞ = −ρ̂′(â)/ρ̂(â) from the data lead to different
results, e.g. this work uses α̂∞ ≈ 6588.55 while [BFF+20a] employs α̂∞ = 6663.62. We
use a constant attenuation of 20µHz as in the reference. Additionally, a comparison with
learned IEs shall be performed here which can easily be realized. To this end, it suffices
to solve the optimization problem (4.2)-(4.3) to obtain the learned dtnN(λ̂`) approxima-
tion to the exact dtnAtmo

(λ̂`) numbers and then proceed as above. All experiments in
this chapter are based on the reduced symmetric ansatz for the learned IE matrices, as
introduced in Section 4.1.1.
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6.2.1 Power spectrum

Firstly, the influence of the transparent boundary condition on the computed power
spectrum will be investigated. Let P `(ω) denote the reference power spectrum computed
based on the exact transparent boundary condition (6.3), and let P `

app(ω) denote the
power spectrum computed using any of the other (approximate) transparent boundary
conditions from above. Fig. 6.8 displays the relative error

|P `(ω)− P `
app(ω)|/|P `(ω)| (6.13)

for different transparent boundary conditions. The upper panel of the figure shows the
results for the atmospheric radiation boundary conditions which are in good agreement
with the literature, c.p. [BFF+20a, Fig.11]. Computations using learned IEs are displayed
in the lower panel. Some of the results are as expected:

• The nonlocal condition is the most accurate among the atmospheric radiation
boundary conditions.

• The accuracy of learned IEs improves exponentially fast with increasing N .

Other results are less obvious or even surprising:

• For ` ≤ 200 learned IEs with N = 0 match the accuracy of the nonlocal condition
while for N = 4 they even surpass the latter in accuracy for all modes. This is
astonishing since in contrast to learned IEs, it is not feasible to implement the
nonlocal condition in dimensions larger than one.

• For all conditions the error is largest around the acoustic cut-off frequency.

To shed light on these observations, it is useful to compare the approximation of
dtnAtmo

(λ̂`) achieved by the different transparent boundary conditions. Results for 3.0,
5.3 and 6.5 mHz are displayed in Fig. 6.9. For 3.0 and 6.5 mHz the behavior of dtnAtmo

(λ`)
for ` ≤ 1000 is approximately given by a quadratic function in `, respectively an affine
linear function in λ̂`. This extends to other frequencies away from the acoustic-cutoff and
explains the good performance of lowest order learned IEs. Around the acoustic cut-off
frequency the behavior of dtnAtmo

is more complex so that a few additional degrees of
freedom are required for its accurate resolution. This is also clearly visible in the plot of
the relative error provided in the lower panel of the figure. The increase in complexity of
dtnAtmo

around the acoustic cut-off is related to a ‘transition of phase’: For small frequency
|Re dtnAtmo | � | Im dtnAtmo | while |Re dtnAtmo | � | Im dtnAtmo | for high frequencies. This
reflects the fact that as the frequency inreases the surface layers of the Sun become
increasingly transparent and waves can propagate out into the atmosphere. Additionally,
the plots of the relative error clearly demonstrate that learned IEs with N = 4 and away
from the cut-off even for smaller N are more accurate than the nonlocal condition. It is
apparently more appropriate to approximate dtnAtmo

by a rational function rather than
by a square root.

6.2.2 Expectation value of cross-covariance

Next the influence of the transparent boundary condition on the expectation value of
the cross-covariance will be investigated. Following common practice in time-distance
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(a) Nonlocal (b) S-HF-1a (c) A-RBC-1

(d) N = 0 (e) N = 1 (f) N = 4

Figure 6.8: Relative error for power spectra obtained with different transparent bound-
ary conditions. Upper panel: Atmospheric radiation boundary conditions, lower panel:
Learned IEs.
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Figure 6.9: Comparison of dtn approximations for the Atmo model. Top: Real part,
Middle: Imaginary part and bottom: relative error | dtn(λ̂`)− dtnapp(λ̂`)|/| dtn(λ̂`)|.
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helioseismology, see [GB05, Section 4.3.1.], certain parts of the time-distance diagram
will be isolated by applying appropriate filters. A combination of two Gaussian filters

F`(ω) = exp

(
−(ω − ω0)2

s2

)
exp

(
−(ωR�/`− v0)2

δv2

)
, (6.14)

with s/2π = 0.3 mHz and δv = 12.3 km/sec, can be used to isolate waves with frequency
around ω0 and speed v0. Following [BFF+20b, Section 9.3], low-frequency (ω0/2π, v0) =
(3 mHz, 125.2 km/s) and high-frequency (ω0/2π, v0) = (6.5 mHz, 250.4 km/s) waves will
be considered. The corresponding filters are displayed in Fig. 6.10a and Fig. 6.11a,
respectively.

Fig. 6.10 shows the results for waves with frequencies around 3 mHz and speeds of
125.2 km/s. The reference cross-covariance Cref(θ, t) obtained with the exact transparent
boundary condition is shown in Fig. 6.10b. The results obtained with the approximate
transparent boundary conditions along cuts through θ ≈ 14◦ and θ ≈ 28◦ are displayed
in the two lower panels. For the unaided eye no difference between reference cross-
covariance Cref(θ, t) in gray and any of the respective approximations Capp(θ, t) in colors
are visible. However, in the absolute error |Cref(θ, t) − Capp(θ, t)| significant differences
between the different transparent boundary conditions emerge. An exponentially fast
convergence for the learned IEs with increasing N is observed. At N = 0 the accuracy
of the nonlocal condition is matched and at N = 2 machine accuracy is reached. In view
of the shape of the filter, these results are consistent with the relative error for the dtn
approximation at 3.0 mHz shown in Fig. 6.9a. The magnitude of the absolute error for the
S-HF-1a condition is in line with the results from [BFF+20b, Section 9.3]. Although this
condition is expectedly the least accurate among the considered transparent boundary
conditions as it approximates dtnAtmo

merely by a constant, the achieved absolute error of
order ∼ 10−6 is nevertheless impressive and as discussed in Section 6.1.4 probably more
than sufficient for the application.

The results for waves with frequences around 6.5 mHz and speeds of 250.4 km/s are
displayed in Fig. 6.11. The absolute errors are slightly larger since the boundary condition
exerts more influence on higher frequency waves. Consequently, N = 4 was necessary
to achieve near machine precision accuracy with learned IEs. Apart from this, similar
results as for the previous experiment are obtained.

Overall, the presented experiments demonstrate that learned IEs are well-suited for
modelling a solar atmosphere based on the Atmo model. Thanks to the exponentially
fast convergence, very few additional DOFs are sufficient to obtain highly accurate he-
lioseismic observables. Although the atmospheric radiation boundary conditions cannot
compete with learned IEs in terms of accuracy, they provide an attractive alternative
because of their computational simplicity (e.g. no optimization step is required). As
mentioned previously, the accuracy that these conditions provide is presumably already
sufficient if one assumes that the solar atmosphere is well-represented by the Atmo model.
However, as seen in Section 6.1.3 there seem to be indications that this is not the case.
Since the sound speed in the Atmo model is extended by a constant starting from about
500 km above the photosphere, while the actual sound speed in the Sun increases sharply
in the upper chromosphere towards the corona such discrepancies also do not come as
a surprise. Therefore, it is crucial to develop transparent boundary conditions for more
realistic models of the solar atmosphere like the VAL-C model. This task is tackled in
the next section by leveraging the flexibility of learned IEs.

128



(a) Filter (b) Time-distance

40 50 60 70 80 90

−1

0

1

t

C(θ, t)

ref

40 50 60 70 80 90

10−6

10−9

10−12

10−15

Absolute error

nonlocal S-HF-1a N = 0 N = 1 N = 2

(c) Slice at θ ≈ 14◦

110 120 130 140 150

−1

0

1

t

C(θ, t)

ref

110 120 130 140 150

10−6

10−9

10−12

10−15

Absolute error

nonlocal S-HF-1a N = 0 N = 1 N = 2

(d) Slice at θ ≈ 28◦

Figure 6.10: Cross-covariance for waves filtered around 3.0 mHz and speed 125.2 km/sec.

129



(a) Filter (b) Time-distance

70 75 80 85 90 95 100

−1

0

1

t

C(θ, t)

ref

70 75 80 85 90 95 100

10−3

10−6

10−9

10−12

10−15

Absolute error

nonlocal S-HF-1a N = 0 N = 1 N = 4

(c) Slice at θ ≈ 36◦

150 160 170 180 190

−1

0

1

t

C(θ, t)

ref

150 160 170 180 190

10−3

10−6

10−9

10−12

10−15

Absolute error

nonlocal S-HF-1a N = 0 N = 1 N = 4

(d) Slice at θ ≈ 72◦

Figure 6.11: Cross-covariance for waves filtered around 6.5 mHz and speed 250.4 km/sec.
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6.3 Evaluation of learned IEs for VAL-C model

This section represents the analogoue of the previous section for the VAL-C model. In
contrast to the Atmo model, an analytic formula for the dtnVAL−C

function of the VAL-C
model is not known. Therefore, equation (6.2) is solved numerically on the interval [â, R̂]

with â < R̂ and boundary condition G̃`(â) = 1 to obtain dtnVAL-C
(λ`) = −(∂r̂G̃`)(â).

Here, in contrast to the experiments for the Atmo model, a is located directly at the
height of the photosphere.4 Then the minimization problem (4.2)-(4.3) is solved with
the reduced, symmetric ansatz to obtain the learned dtn numbers dtnN(λ`) as before.
In comparison with the toy examples considered in Chapter 4, the weights should de-
cay slower for the purpose of helioseismology to resolve modes up to ` = 1000. This
motivates the choice ω` ∼ exp (−`/45). The modal Green’s function corresponding to
an atmosphere modelled by learned IEs instead of meshing it can then be obtained by
solving the equation (6.2) on [0, â] with boundary condition (∂r̂G̃

N
` )(â) = − dtnN(λ`).

6.3.1 Power spectrum

The power spectrum is again a reasonable starting point for the investigations. The
relative error (6.13) for increasing N is displayed in Fig. 6.12. As for the Atmo model,
the error decreases exponentially fast as N increases. However, opposed to the Atmo

model the error does not accumulate around 5.3 mHz. This might be expected since
the atmospheric cut-off frequency in the VAL-C atmosphere cannot be described by a
constant anymore as for the Atmo model. Rather, the error peaks at those frequencies at
which poles of dtnVAL-C

occur, cp. Fig. 6.2f. Nevertheless, as N increases these poles can
be captured by learned IEs so that very accurate power spectra are obtained.

6.3.2 Expectation value of cross-covariance

Next the influence of the transparent boundary condition on the expectation value of
the cross-covariance will be investigated. Firstly, the experiments from Section 6.2.2 are
repeated for the VAL-C model. The results for waves with frequencies around 3 mHz
and speeds of 125.2 km/s shown in Fig. 6.13 are similar to the Atmo model and do not
require further discussion. The results for waves with higher frequencies around 6.5 mHz
displayed in Fig. 6.14 are more interesting since the cross-covariance exhibits a different
structure compared to the Atmo model (cp. Fig. 6.11 (c)). The signal splits from a single
into a double skip. A similar phenomenon has already been observed in Section 6.1.3 and
will be investigated in the context of learned IEs further below. Concerning the accuracy
of the transparent boundary condition, the performance remains unaffected.

4This is computationally more efficient than placing the truncation boundary at 500 km above the
photosphere which was only done in Section 6.2 because the atmospheric radiation boundary conditions
we compared with rely on this setup.
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(a) N = 0 (b) N = 1

(c) N = 2 (d) N = 4

Figure 6.12: Relative error for power spectra obtained from learned IEs with respect to
meshed VAL-C atmosphere.
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Figure 6.13: Cross covariance for waves filtered around 3.0 mHz and speed 125.2 km/sec.
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Figure 6.14: Cross covariance for waves filtered around 6.5 mHz and speed 250.4 km/sec.
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Travel-time accuracy

As an additional test it is also interesting to calculate the travel time perturbation defined
by (see [GBD+17, Section 8.2])):

δτN :=

∞∫

−∞

W̄ (Cref − CN) dω, W (ω) ∼
∞∫

−∞

w(t)∂tC(θ, t)eiωt dt.

Here, w(t) is a temporal window function and W̄ denotes the complex conjugate of W .
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Figure 6.15: Travel-time perturbation |δτN | with respect to meshed atmosphere.

For this experiment w was simply chosen as a Gaussian which isolates the first skip of the
cross-covariance, see Fig. 6.15 (a). Further, Cref is the reference cross-covariance based
on a meshed atmosphere and CN the cross-covariance obtained from learned IEs using
N infinite element DOFs. The travel-time perturbation is shown in Fig. 6.15 (b). An
exponentially fast convergence with increasing N is observed.

Double ridge structure for high-frequency

In Section 6.1.3 it was seen that the high-frequency time-distance diagram based on the
VAL-C model exhibits a double ridge structure which is in qualitative agreement with
observations. It is important to investigate whether this feature can be reproduced using
learned IEs. Indeed, Fig. 6.16c demonstrates that the double ridge already appears in the
time-distance diagram obtained with learned IEs of the lowest order N = 0. In view of
the previous experiments, it is not surprising that differences to the reference result with
a meshed atmosphere (Fig. 6.16b) can scarcely be discerned by the unaided eye. These
findings demonstrate that learned IEs are able to reproduce an important physical feature
observed in observations at high-frequency. This is a considerable improvement over the
established methods which are less flexible with respect to the atmospheric model and
consequently would need to resort to meshing the atmosphere for reproducing the double
ridge feature.
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(a) MDI observations (b) VAL-C (c) Learned IE N = 0

Figure 6.16: Double ridge structure of high-frequency time-distance diagram. Shown is
the absolute value of the expected cross covariance on a log scale with large values in
yellow and small values in black.
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Figure 6.17: Approximation of dtnVAL-C
by dtnN from learned IEs for a truncation bound-

ary located at 0.5 Mm above the photosphere. The lower panel displays the exact poles
of dtnVAL-C

and their numerical approximation with learned IEs.
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Pole structure of the chromosphere

The shortcoming of the Atmo model to reproduce the double-ridge feature is clearly related
to the fundamentally different structure of dtnVAL-C

and dtnAtmo
in the high-frequency

regime, see Fig. 6.1. The resonance effects caused by the sharp increase of the sound
speed in the upper chromosphere featured in the VAL-C model are reflected in the pole
structure of dtnVAL-C

. It is an important question for the application whether learned IEs
can resolve this complex behavior. The learned dtnN functions using N infinite element
DOFs are displayed in Fig. 6.17a and Fig. 6.17b. Additionally, the poles of the rational
function dtnN are shown. It can be observed that the learned poles are placed exactly at
the location of the exact poles, which turn out to be simple. As N increases one pole after
another is covered and an excellent approximation of dtnVAL-C

is already achieved with
N = 4. The situation is reminiscent of the toy example of a discontinuous exterior wave
speed treated in Section 4.2.3. This experiment shows that learned IEs are ideally suited
for dealing with complicated exterior models as represented by the VAL-C atmosphere.

6.4 Discussion and outlook

The results in this chapter characterize learned IEs as a promosing tool for computational
helioseismology. A comparison with atmospheric radiation boundary conditions for the
Atmo model presented in Section 6.2 showed that a significant gain in accuracy could be
obtained by replacing these conditions with learned IEs. However, the more interesting
domain of application for learned IEs are realistic atmospheric models exemplified here
by the VAL-C model for which no other transparent boundary conditions are available
to date. In Section 6.3 we demonstrated the great potential of learned IEs in this set-
ting. Nevertheless, our experiments also show that much remains to be done to leverage
the full potential of learned IEs in helioseismology. If neither the Atmo nor the VAL-C
model reproduce the observed power spectra above the atmospheric cut-off accurately
(see Fig. 6.4), then the extremely high-accuracy achievable with learned IEs seems cur-
rently mostly an overkill. This calls for urgent efforts to improve the model of the solar
atmosphere to achieve a better agreement with observations. Some comments on this
task are given in the section below.

6.4.1 Tuning the power spectrum

To improve the agreement of the computational results with observations, the coefficients
of the background model and the source have to be tuned so that the differences between
the computed and observed power spectrum are minimized. We discuss this endeavor
separately for frequencies below and above the acoustic cut-off frequency.

Below the acoustic cut-off frequency

As argued previously, for low frequencies the atmospheric model exerts only minor influ-
ence on the power spectrum. This is related to the fact that low-frequency waves cannot
penetrate past the steep gradients in the surface layers. So this part is about tuning the
model of the solar interior.

Sound speed and density in the interior of the Sun are known with high accuracy.
For example, the maximum difference between the square of the sound speed of Model S
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and the Sun is merely 0.4 % [KSS+97, BCCD+97]. The surface layers pose some special
challenge as mentioned earlier. Consequently, concerning sound speed and density one is
looking for small and localized corrections to an already accurate background model.

Wave attenuation is arguably less well modelled so far. This is illustrated by an
experiment shown in Fig. 6.18. In the left part of the Fig. 6.18a a damping model 2γ(ω, `)
is plotted, which has been determined from the measured FWHM available at the ridges
shown in black. The power law damping model from Fig. 6.3b is also shown in the right
part of Fig. 6.18a for comparison. Particularly for small ` these models differ significantly,
which suggests that the power-law damping model may overestimate the attenuation of
low degree modes. This point is investigated further in Fig. 6.18 where cuts through the
power spectrum computed using the different attenuation models are displayed. While
the linewidths are very similar for ` = 300, the `-dependent attenuation model determined
from the data leads to considerably smaller linewidths at ` = 50. Implementing such an
`-dependent attenuation in a axisymmetric or fully-three dimensional simulations might
be challenging though. To complicate5 matters further the attenuation should also be
a function of depth which has e.g. been considered in [BKD04]. Additionally, in the
framework of [GBD+17] source covariance amplitude and attenuation are coupled which
means that these quantities cannot be updated independently in inversions. All these
issues seem to render tuning and implementation of the damping model as one of the
outstanding challenges for the scalar problem of helioseismology.

Above the acoustic cut-off frequency

High-frequency waves are interesting because they hold the potential of probing the solar
chromosphere. The inferences that can be drawn from the presented experiments about
the suitability of the atmospheric models for representing the chromosphere are at best
fragmentary. On the one hand, the VAL-C model allows to qualitatively reproduce the
double-ridge feature seen in observations. On the other hand, the simulated power spec-
trum Fig. 6.2b shows lines of reduced power which are inconsistent with observations.
The Atmo model does not run into the latter problem, yet the simulated power spectrum
does not match the observations either. Therefore, it seems to be necessary to solve an
inverse problem to invert for the atmosphere. This is an interesting task for future re-
search, which could however be complicated by the increasing influence of the magnetic
field in the chromosphere. For example, [FJC+04] propose that high-frequency acoustic
waves could be reflected from the magnetic canopy6. This is a potential problem since the
magnetic field is currently neglected in the scalar equation of helioseismology. Despite
these challenges, the inverse problem for the atmosphere will have to be addressed in
forthcoming research.

5A dependence on depth could however be implemented very easily.
6The magnetic canopy is a horizontal layer of the magnetic field located in the low chromosphere

above field-free regions in the photosphere.
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(a) Attenuation model.
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Figure 6.18: Damping model according to FWHM from data [KRSSL13, LS15] shown as
the black ridges in the figure.
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Chapter 7

Learned IEs as transmission
conditions in sweeping
preconditioners

The first half of this thesis was concerned with the application of learned IEs as trans-
parent boundary conditions. In particular, a single truncation boundary or interface was
considered on which learned IEs were applied to implement the DtN map of an unmeshed
exterior domain. This chapter provides two generalizations. Firstly, any finite number
of artifical interfaces can be treated. Secondly, these interfaces can be placed inside the
computational domain so that part of the exterior domain whose DtN map needs to
be represented by learned IEs is covered by a mesh. This paves the way for applying
learned IEs as transmission conditions on subdomain interfaces of domain decomposition
methods.

In this chapter a special partition of the domain into sequential layers will be consid-
ered which has become very popular in the context of sweeping preconditioners. Recently,
these types of preconditioners have achieved impressive results when applied to certain
kinds of time-harmonic wave equations. Even though a zoo of different sweeping-type
preconditioners exists by now (see [GZ19] for an overview), these methods seem to share
as key ingredient that the DtN operator at subdomain interfaces is approximated by a
PML. Unfortunately, this turns out to be the Achilles heel of these approaches because
for media containing strong reflections PML does not deliver an accurate approximation
of DtN [GZ18, GZ19, PHL20]. Since the first part of this thesis suggests that learned
IEs are very suitable for treating such problems, the objective of this chapter is clear:
Replace the PML-based transmission conditions in sweeping preconditioners by learned
IEs and investigate whether this can remedy the observed issues.

The outline of this chapter is as follows. Section 7.1 provides a brief and non-technical
discussion on why time-harmonic wave equations are difficult to solve numerically, espe-
cially in the presence of reflections. Furthermore, recent strategies for solving the arising
linear systems are outlined. Section 7.2 introduces sweeping preconditioners in the set-
ting of the double sweep optimized Schwarz method (DOSM) [GZ19]. This framework is
advantageous because it exposes the role of DtN in the sweeping algorithm very clearly
and facilitates the use of learned IEs in this setting. Numerical experiments in which
sweeping preconditioners with moving PML and learned IE based transmission condi-
tions are compared are presented in Section 7.3. The main aim of these experiments is
to investigate to what extent learned IEs can overcome the limitations of moving PMLs
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for problems including strong reflections. Even though the examples considered in Sec-
tion 7.3 are toy problems, they are very useful for understanding the results for the more
complicated application to helioseismology presented in Chapter 8.

7.1 Difficulties in solving time-harmonic wave equa-

tions

This section provides a brief and necessarily incomplete introduction to the difficulties
of solving time-harmonic wave equations. More detailed and thorough expositions may
e.g. be found in [EG12, GZ19]. Here, the focus is on problems exhibiting excessive
reflection of waves. Reflections may for example be caused by certain types of boundary
conditions or drastically varying coefficients and pose the main obstacle for applying
sweeping preconditioners to helioseismology.

The pollution effect is one of the main issues in the numerical discretization of
time-harmonic wave equations and can already be observed for the constant coefficient
Helmholtz equation. It describes the observation that the FEM solution starts to differ
significantly from its best approximation in the trial space as the wavenumber increases.
Babuška and Sauter [BS97] showed that this effect is in fact unavoidable under reason-
able assumptions on the Galerkin FEM in dimensions larger than one. The quest for
discretization methods that mitigate the pollution effect is an active area of research.
However, to the best of our knowledge, discretization methods that eliminate this prob-
lem entirely and could also be applied to helioseismology do not exist. The usual remedy
to preserve accuracy of the solution is to scale the number of DOFs in proportion to
the wavenumber. In the high-frequency regime this gives rise to extremely large linear
systems.

The linear systems arising from the standard variational formulation of the Helmholtz
equation are severely ill-conditioned. This can partly be attributed to a lack of coerciv-
ity, which is one of the crucial ingredients for establishing condition number bounds for
Poisson-like problems. If one is willing to consider non-standard variational formulations
and discretization methods, it is possible to obtain positive (semi-)definite system matri-
ces. For example, Moiola and Spence [MS14] introduced a coercive variational formulation
for the Helmholtz equation in the interior of a star-shaped domain with impedance bound-
ary conditions or in a star-shaped exterior domain with Dirichlet boundary conditions.
This formulation can be obtained in a standard manner by multiplying the equation by
a test function and integration by parts, yet conforming discretizations would necessitate
the use of finite elements with C1-regularity. Another approach is to work with least
squares formulations which are naturally coercive. For example, in the paper [LMMR00]
the Helmholtz equation is reformulated as a first-order system which is then treated by an
adapted multigrid solver. Related is the discontinuous Petrov Galerkin (DPG) method,
which may be interpreted as a special kind of least squares approach (see [DG11, Section
2] for this interpretation). By breaking the tie between trial and test space, one is at
liberty to adapt the latter for obtaining good stability properties. A wavenumber explicit
analysis of a DPG method for the Helmholtz equation has been given in [DGMZ12].
Adaptive multigrid solvers for DPG discretizations of acoustic and electromagnetic prob-
lems have been presented very recently [PD21]. The DPG approach is potentially also
interesting for helioseismology. However, trying to develop an efficient DPG solver for the
solar application would be a new research project on its own and is certainly beyond the
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scope of this work. Here we want to investigate whether the ill-conditioning inherent in
the standard variational formulation can be fixed by developing suitable preconditioners.

When choosing a solver for large sparse linear systems one is faced with the decision
between iterative and direct solution approaches. While direct solvers are very attractive
due to their natural robustness, their complexity in time and memory consumption scales
suboptimally1 for applications in three dimensions. Many iterative solution approaches
instead, e.g. Krylov subspace methods, only require the application of matrix-vector
products and are therefore potentially much better suited for large-scale applications.
The catch is that the rate of convergence of Krylov methods depends on the condition
number, respectively spectrum of the linear system, so that preconditioning is almost
always required to arrive at an accurate solution in an acceptable number of iterations.
Unfortunately, good preconditioners for time-harmonic wave equations are difficult to
find.

For Poisson-like problems the efficiency of multigrid methods as preconditioners or
even as stand-alone solvers is hard to compete with. Unfortunately, standard multi-
grid methods are not suitable for solving time-harmonic wave equations, see e.g. [EG12,
Section 3.3] for explanations. Strategies to overcome this problem seem to go in two dif-
ferent directions. Either, one tries to fix the multigrid method by suitable adaptations,
see e.g. the wave-ray multigrid approach of [BL97], or one applies the multigrid method
for solving a closely related, easier problem whose solution operator may be used for
preconditioning the original problem. A popular approach for the latter option is the so
called shifted Laplacian preconditioner [EVO04]. Here one considers a Helmholtz prob-
lem with a wavenumber that is shifted into the complex plane, i.e. k2 7→ k2 + iε(k). If
ε = O(k2) the shifted problem can be solved efficiently using standard multigrid [CG17].
On the other hand, in order to guarantee that GMRES converges independently of k when
preconditioned by means of the inverse of the shifted operator only a shift of ε = O(k)
can be tolerated [GGS15]. Obviously, there is a significant gap between how much one is
allowed to shift to maintain a good preconditioner and how much one needs to shift to
obtain an operator which can be inverted efficiently. In numerical experiments not shown
here we tried to apply this preconditioning strategy to helioseismology but the mentioned
gap was considerably too large to overcome.

In 2011 Engquist and Ying [EY11b] proposed sweeping preconditioners as a new
approach to tackle high-frequency Helmholtz problems. The method has been quickly
extended to other time-harmonic wave equations like the Maxwell system [TEY12] and
sparked a wave of further research articles presenting variants or extensions (see e.g.
[CX13a, CX13b, Sto13, TPEY14, ZND16] only to name a few). The main idea is to
partition the domain into a sequence of layers and sweep through this layered partition in a
sequential fashion. During the sweep the subdomain problems are solved one after another
and information is transmitted via appropriate transmission conditions at subdomain
interfaces. At the continuous level this follows the principle of optimized Schwarz methods
[Gan06], while at the discrete level it becomes a block LU factorization [GN00] (see [GZ19]
for a proof of this equivalence). Despite the underlying algorithmic structure being known
for quite a while, the sweeping algorithm was not overly successful until Engquist and Ying
[EY11b] added a missing ingredient - a highly accurate approximation of DtN provided

1Here we are referring to the vanilla version of multifrontial solvers based on nested dissection which
yield the exact solution apart from round-off errors. New developments which aim to improve the
complexity, e.g. by applying compression algorithms, will be mentioned later.
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by a moving PML2. From then on sweeping preconditioners emerged as one of the most
efficient strategies for solving time-harmonic wave equations in the high-frequency regime.

Unfortunately, PMLs only deliver accurate approximations of DtN for media that
are free of reflections. This may lead to deteriorating performance or even complete
breakdown of the preconditioner if reflections occur in abundance. To the best of our
knowledge, this has been pointed out first by Gander and Zhang in [GZ18] who showed
in a numerical experiment featuring a wavenumber with strong contrast3 between layers
that the performance of sweeping preconditioners deteriorates drastically as the contrast
increases. They concluded with the final statement that “One must therefore investigate
an approximation different from PML for the Dirichlet to Neumann operator in the case
of non-constant wave numbers.” Chapter 7 and Chapter 8 of this thesis aim to investigate
the question whether learned IEs could provide such an approximation. Our answer will
reflect the current limitation of learned IEs which require separability of the PDE (and
tensor-product discretizations) to deliver accurate results. Namely, if the equation is
separable, then learned IEs are able to provide accurate and efficient approximations of
DtN even if an excessive number of reflections is present. However, once separability is
slightly violated learned IEs cease to be efficient in presence of reflections since they are
only able to represent the DtN maps of separable equations, which can differ significantly
from the true DtN maps of the perturbed non-separable equation whose solution is
sought. Therefore, further research is needed to develop learned IEs which can be applied
to non-separable equations.

On the other hand, also alternative solution strategies should be considered. Recently,
progress has been achieved in controllability methods [GNTT20, AGR20] which transform
the Helmholtz equation into the time-domain and seek the corresponding time-harmonic
solution there. These methods rely on an efficient solver for wave equations in the time-
domain. This seems almost impossible to realize for the helioseismology problem because
the majority of the mesh elements are extremely small as a consequence of the strong
refinement in the surface layers (see e.g. Fig. 8.2). Hence, extremely restrictive CFL
conditions (in the best case local) are to be expected which would render time-domain
solutions very expensive. This would also limit the applicability of the related time-
domain preconditioner recently proposed by Stolk [Sto21]. Nevertheless, time-domain
methods may certainly be of interest for other type of applications.

In contrast to most iterative solution approaches, direct solvers are usually very robust
with respect to problem and discretization parameters. They deliver the exact solution of
the linear system up to round-off errors caused by finite precision arithmetic. Direct solver
are also advantageous for multiple right hand sides since once a factorization of the matrix
has been computed solving the linear system is comparatively cheap. Popular examples of
direct solvers include PARDISO [SGFS01], MUMPS [ADLK01] and SuperLU [Li05]. The in-
herent robustness of these solvers comes at the expense of superlinear complexity in time
and storage requirements. A recent approach to improve on these drawbacks is motivated
by the observation that in applications it is often not necessary to solve the linear systems
down to machine accuracy. This allows to introduce certain approximations during the
factorization stage which can reduce storage costs and speed up computations. A poten-
tial target for these approximations are off-diagonal blocks of dense Schur complement
matrices which arise during the factorization process. Depending on the PDE in question

2Alternatively, sweeping preconditioners can be implemented using the framework of hierarchical
matrices [EY11a].

3Similar to the jumping wavenumber (2.40) introduced in Section 2.2.1.
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these off-diagonal blocks may exhibit a low-rank structure which can be utilized for their
efficient approximation and storage by compression techniques, e.g. using H-matrices
[Hac99], Block Low-Rank (BLR) format [AAB+15] or hierarchically semiseparable ma-
trices (HSS) [XCGL10]. The success of this approach is then determined by the ability
of these techniques to efficiently represent the off-diagonal blocks for the time-harmonic
wave equation to be solved. We refer to references [BH07, EZ18, GS17] for theoretical
and numerical studies for the Helmholtz equation. Applications to seismic wave prop-
agation suggest that significant improvements over plain direct solvers can be obtained
[WdHX11, WAB+13]. Further improvements may be expected by utilizing special com-
pression techniques which are adapted to the highly oscillatory nature of time-harmonic
wave equations. For instance, directional H2-matrices [B1̈7, BM17] are a promising de-
velopment, albeit the corresponding efficient matrix arithmetic is still incomplete. Very
recently, Liu et al. [LGCL20] proposed a solver which leverages the butterfly algorithm
[MB96] during the compression stage. This algorithm has been successfully applied to
represent e.g. Fourier transforms [Yin09] and Fourier integral operators [CDY09] which
demonstrates its potential for highly-oscillatory problems. The authors conclude that the
resulting solver is able to attain quasi linear complexity in time and memory consumption
for Helmholtz and Maxwell problems in the high-frequency regime. As the code is pub-
licly available, the performance of this solver for applications in helioseismology should
be investigated in future studies.

7.2 Double sweep optimized Schwarz method

The landmark paper [EY11b] by Engquist and Ying triggered a surge of variations on the
sweeping algorithm. These algorithms often differ significantly in their derivations and
formulations which renders it extremely difficult to grasp their underlying similarities and
differences. In their review paper [GZ19] Gander and Zhang showed that many of these
methods can be understood in the framework of the double sweep optimized Schwarz
method (DOSM). Here, as in [PHL20], only a special case of DOSM will be considered
which gives rise to the original sweeping preconditioner of Engquist and Ying. This allows
to simplify the presentation considerably and is sufficient for the purpose of this thesis.
Readers interested in the more general case (overlapping partitions, different transmission
operators ...) are referred to the extensive review article [GZ19].

For J ∈ N let

Ω̄int =
J−1⋃

j=0

Ω̄j, Ωj ∩ Ωk = ∅ for j 6= k,

be a non-overlapping decomposition of the interior domain into sequential layers Ωj for
j = 0, . . . , J − 1, see Fig. 7.1 or Fig. 7.2 for examples. The layering of the partition
implies a distinguished direction into which the sweep is performed. The forward sweep
starts at Ω0 and proceeds along the direction of increasing j to subdomain ΩJ−2. The
backward sweep returns from ΩJ−1 in reverse order to Ω0. Fig. 7.1 shows a sketch in
which the subdomains have been arranged from left to right, i.e. starting with Ω0 on the
far left and ending with ΩJ−1 on the far right. In this case, the sweep operates along
the horizontal direction starting from the left with the forward sweep. Proceeding with
the notation, we define the subdomain interfaces Γj := ∂Ωj−1 ∩ ∂Ωj for j = 1, . . . , J − 2.
Additionally, it is convenient to introduce two empty interfaces Γ0 = ΓJ = ∅.
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ΩjΩj−1 Ωj+1

Ωext
j

Γj Γj+1

: Ij.: Γj,: Ej,

forward sweep

Figure 7.1: Decomposition of domain into layers and corresponding partition of the DOFs.

Let L denote the generic elliptic differential operator of equation (2.15). From (2.16)
recall the disjoint decomposition of ∂Ωint into a Dirichlet part, a Neumann part and a
transparent boundary. To define the sweeping algorithm, it is convenient to summarize
all these boundary conditions as B∂Ωint

u = g on ∂Ωint, where the operator B∂Ωint
is defined

piecewise as

u = gD on ΓD,

∇u · nΓN = gN on ΓN ,

MΓDtN (u) +∇u · nΓ = 0 on Γ,

for data gD ∈ H1/2(ΓD) and gN ∈ H−1/2(ΓN). Contrary to Chapter 2, we will allow for
Γ = ∅ here. In the numerical experiments presented in Section 7.3 also periodic boundary
conditions on part of ∂Ωint will be used which can be incorporated into the corresponding
finite element space.

In Section 7.2.1 the sweeping algorithm will first be stated at the continuous level
for solving the equation Lu = f in Ωint. A corresponding matrix version at the discrete
level follows in Section 7.2.2. In this context we also explain how learned IE based trans-
mission conditions can be realized. Aspects of computational complexity are dicussed in
Section 7.2.3.

7.2.1 PDE level

Let uj denote the restriction of u to subdomain Ωj. To formulate the (exact) transmission
conditions, the DtN j map associated with the interface of Γj is required. To this end,

denote by Ωext
j = ∪j−1

i=0 Ω̄i the exterior domain which couples via the interface Γj to Ωj.
Then DtN j is given by

DtN j : w 7→ − (aij)∇v · nΓj , (7.1)
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where v solves

Lv = 0 in Ωext
j ,

B∂Ωint
v = g on ∂Ωext

j \ ∂Ωj, (7.2)

v = w on Γj.

Now all definitions are available to understand DOSM at the continuous level as
presented in Algorithm 1. This algorithm starts from an initial guess (u

(0)
j )J−1

j=0 and
iteratively computes an approximate solution. For completeness, one should mention that
the transmission conditions are omitted if Γj = ∅, i.e. for j = 0 and j = J . A convergence
analysis of DOSM is available in [GZ19]. Under reasonable assumptions, the solution

(u
(1)
j )J−1

j=0 obtained after one double sweep across the domain already coincides with the
exact solution provided that exact DtN j maps are used as transmission operators. Of
course, this is infeasible in practice due to the cost associated with computing the exact
DtN j operators. Therefore, accurate and efficient approximations of DtN j are required
on all interfaces Γj between subdomains. To this end, similar strategies as in the case of
transparent boundary conditions can be applied. More detail is given in the next section
which introduces DOSM at the matrix level.

Algorithm 1: Double sweep optimized Schwarz method at the PDE level

Forward sweep: Given the last iterate u
(n−1)
j in Ωj , j = 0, . . . , J − 1 solve successively

for j = 0, . . . , J − 2

Lu(n− 1
2

)

j = f in Ωj ,

B∂Ωint
u

(n− 1
2

)

j = g on ∂Ωint ∩ ∂Ωj ,

− (aij)∇u
(n− 1

2
)

j · nΓj + DtN ju
(n− 1

2
)

j = − (aij)∇u
(n− 1

2
)

j−1 · nΓj + DtN ju
(n− 1

2
)

j−1 on Γj ,

u
(n− 1

2
)

j = u
(n−1)
j+1 on Γj+1.

Backward sweep: Solve successively for j = J − 1, . . . , 0

Lu(n)
j = f in Ωj ,

B∂Ωint
u

(n)
j = g on ∂Ωint ∩ ∂Ωj ,

− (aij)∇u(n)
j · nΓj + DtN ju

(n)
j = − (aij)∇u

(n− 1
2

)

j−1 · nΓj + DtN ju
(n− 1

2
)

j−1 on Γj ,

u
(n)
j = u

(n)
j+1 on Γj+1.

7.2.2 Matrix level

Let L be a matrix representation of the differential operator L obtained from a suitable
discretization. Although this thesis only considers conforming finite element discretiza-
tions, various other approaches would likewise be possible. To state DOSM at the matrix
level, a suitable partition of the DOFs is required. Let v denote a discrete vector con-
sisting of all the DOFs. Restrictions to a subset of DOFs will be denoted by attaching
suitable subscripts. The following definitions are illustrated in Fig. 7.1.

• Let vΓj
denote the DOFs associated with the interface Γj,

147



• Let vIj denote the interior DOFs of subdomain Ωj. These are obtained by taking

all DOFs in Ω̄j and removing the contributions from the interfaces Γj and Γj+1.

• Let vEj denote the DOFs of the exterior domain Ωext
j . This does not include the

DOFs on the interface Γj, yet the DOFs on all other interfaces contained in Ωext
j .

According to these definitions, the discrete solution on Ω̄j can be written as uj =
(uΓj

, uIj , uΓj+1
). Moreover, the partition above induces a corresponding partition of the

matrix L. For example, LIjIj denotes the submatrix of L associated with the contribution
from the interior of Ωj. On an interface Γj the matrix will be split into Lint

ΓjΓj
+ LΓjΓj ,

where LΓjΓj contains contributions from the interface only and Lint
ΓjΓj

contains coupling
terms from the interior of Ωj or Ωj−1 especially volume terms close to Γj. Furthermore,
let RΓjv = vΓj denote the restriction of v to Γj. Using these definitions Algorithm 2
states DOSM at the matrix level.

Algorithm 2: DOSM at matrix level

Forward sweep: Given the last iterate u
(n−1)
j in Ωj, j = 0, . . . , J − 1 do

successively for j = 0, . . . , J − 2: Set u
(n− 1

2
)

Γj+1
= RΓj+1u

(n−1)
j+1 and solve

[
LIjIj LIjΓj
LΓjIj Lint

ΓjΓj
+Mj DtNext

j

]
u

(n− 1
2

)

Ij

u
(n− 1

2
)

Γj


 =


f Ij − LIjΓj+1

u
(n− 1

2
)

Γj+1

f̃
(n− 1

2
)

Γj


 , (7.3)

with

f̃
(n− 1

2
)

Γj
= f

Γj
− LΓjIj−1

u
(n− 1

2
)

Ij−1
+
(
MjDtNext

j − LΓjΓj

)
RΓju

(n− 1
2

)

j−1 .

Backward sweep: Do successively for j = J − 1, . . . , 0: Set u
(n)
Γj+1

= RΓj+1u
(n)
j+1 and

solve

[
LIjIj LIjΓj
LΓjIj Lint

ΓjΓj
+Mj DtNext

j

][
u

(n)
Ij

u
(n)
Γj

]
=



f
Ij
− LIjΓj+1

u
(n)
Γj+1

f̃
(n− 1

2
)

Γj
.


 .

To complete the description of Algorithm 2, the matrices Mj and DtNext
j still need to

be specified. Here, Mj is simply the mass matrix of the FEM discretization on Γj. The
matrix DtNext

j is the discrete representation of DtN j associated with the particular dis-
cretization L of the differential operator L including boundary conditions4. It is obtained
by taking the Schur complement with respect to all DOFs exterior to Ωj, i.e.

Mj DtNext
j =

(
LΓjΓj − LΓjEjL

−1
EjEj

LEjΓj

)
. (7.4)

Practical realization of DOSM

DOSM at the matrix level is usually implemented differently than described in Algo-
rithm 2. This is related to the fact that the matrix DtNext

j is dense. Hence, to solve the
linear system (7.3) directly, one would first need to invest the effort to assemble this ma-
trix, which would require inversion of LEjEj and then deal with the resulting dense block
associated with the DOFs on Γj. A better approach already known from Section 3.1.1,

4This could also include radiation conditions imposed on the artificial truncation boundary Γ.
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which preserves the sparsity structure of L and also paves the way for introducing ap-
proximations of DtNext

j , is to write the linear system in Algorithm 2 in the equivalent
form



LIjIj LIjΓj 0

LΓjIj Lint
ΓjΓj

+ LΓjΓj LΓjEj

0 LEjΓj LEjEj







u
(n− 1

2
)

Ij

u
(n− 1

2
)

Γj

u
(n− 1

2
)

Ej


 =




f
Ij
− LIjΓj+1

u
(n− 1

2
)

Γj+1

f̃
(n− 1

2
)

Γj

0


 . (7.5)

Here, the dense block on Γj has been exchanged for a sparse linear system which,
however, now additionally involves all DOFs in Ωext

j . It is easy to see that this does
not result in an efficient numerical method yet. For example, on the last subdomain
j = J − 1 the complete original linear system would need to be solved. Therefore, to
obtain an efficient algorithm, approximations of DtNext

j have to be introduced which allow
to compress the exterior system in Ωext

j .

From Section 3.1 it is already known how to derive and even assess the accuracy of
a variety of such approximation for discretizations L which are of tensor-product form.
Hence, to utilize this framework it will be assumed as in equation (3.7) that

[
LΓjΓj LΓjEj

LEjΓj LEjEj

]
=

[
AΓjΓj AΓjEj

AEjΓj AEjEj

]
⊗Mj +

[
BΓjΓj BΓjEj

BEjΓj BEjEj

]
⊗Kj, (7.6)

where Kj represents the stiffness matrix on Γj as usual. As shown in Proposition 3.1, the
matrix DtNext

j diagonalizes in the basis of generalized eigenfunctions {v`} of the matrix
stencil (Mj, Kj), i.e.

DtNext
j v` = dtnext(λ`)v`,

so that all information about DtNext
j is contained in the scalar function

dtnext(λ) := AΓjΓj + λBΓjΓj − (AΓjEj + λBΓjEj)(AEjEj + λBEjEj)
−1(AEjΓj + λBEjΓj).

(7.7)

According to the results of Chapter 3, the quest for efficient approximations of DtNext
j

now boils down to the following question: Is it possible to find small matrices Ã, B̃ ∈
C(N+1)×(N+1) such that

dtnN(λ) := ÃΓjΓj + λB̃ΓjΓj − (ÃΓjẼj
+ λB̃ΓjẼj

)(ÃẼjẼj + λB̃ẼjẼj
)−1(AẼjΓj + λB̃ẼjΓj

)

(7.8)

provides a approximation of dtnext(λ)? Here, Ẽj is a set of artificial exterior DOFs which
is supposed to be much smaller than Ej. Therefore, if this question can be answered in
the affirmative, the matrix

[
L̃ΓjΓj L̃ΓjẼj

L̃ẼjΓj L̃ẼjẼj

]
=

[
ÃΓjΓj ÃΓjẼj

ÃẼjΓj ÃẼjẼj

]
⊗Mj +

[
B̃ΓjΓj B̃ΓjẼj

B̃ẼjΓj
B̃ẼjẼj

]
⊗Kj, (7.9)

represents a compressed version of the full exterior system (7.6) and can be used to replace
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the latter in equation (7.5). More precisely, the linear system (7.5) is replaced5 by



LIjIj LIjΓj 0

LΓjIj Lint
ΓjΓj

+ L̃ΓjΓj L̃ΓjẼj

0 L̃ẼjΓj L̃ẼjẼj







u
(n− 1

2
)

Ij

u
(n− 1

2
)

Γj

u
(n− 1

2
)

Ẽj


 =




f
Ij
− LIjΓj+1

u
(n− 1

2
)

Γj+1

f̃
(n− 1

2
)

Γj

0


 , (7.10)

which is much cheaper to solve because Ẽj contains significantly fewer DOFs than Ej.
Typically, it suffices to include the DOFs from the neighbouring subdomain Ωj−1 into Ẽj
to obtain a good approximation of DtNext

j , while Ej would contain all DOFs in ∪j−1
i=0 Ωi.

Thanks to the extensive studies in the previous chapters, it is by now clear how the
question raised above can be answered and how Ã and B̃ can be obtained. To apply
learned IEs, the reference dtn function in the objective function (4.2) simply has to be
replaced by dtnext. Apart from this, the optimization process runs as asual. For the
numerical experiments in this and the following chapter the reduced symmetric ansatz
will be employed as default.

Alternatively, it is possible to obtain the matrices Ã and B̃ by any6 other tensor-
product discretization of DtN discussed in Appendix C. The approximation by a PML is
by far the most commonly7 employed in sweeping preconditioners. To this end, the PML
is often started right at the interface Γj and spreads over the neighbouring subdomain
Ωj−1. For a tensor-product PML the matrices Ã and B̃ can then be obtained similarly
as discussed in Appendix C.1, where the complex stretching terms need to be adapted to
the specific equation and geometry.

At this point it is important to mention that in contrast to learned IEs sweeping
preconditioners using PMLs can be derived without recourse to a particular type of
discretization. This proceeds as follows. It is assumed that on subdomain Ω0 a PML is
present. To represent DtN j the equation (7.1) would need to be solved on Ωext

j , which
is too expensive as discussed previously. Therefore, the PML on Ω0 is moved somewhere
close to Ωj. This attenuates the waves and justifies to replace the large domain Ωext

j by a
much smaller truncated exterior domain ΩPML

j . In practice, often the choice ΩPML
j = Ωj−1

is made. The compressed linear system in (7.10) is then obtained directly by assembling
the linear system of the complex stretched PDE on ΩPML

j ∪Ωj. More information on this
approach can be found in the literature, see e.g. [GZ19, Remark 13 and Remark 14] in
the setting of DOSM or [EY11b] for the original sweeping preconditioners.

If the DtNext
j matrices are replaced by one of the approximations discussed above,

DOSM in general no longer converges in one double sweep to the exact solution. In
practice, the algorithm is then usually applied as a preconditioner for GMRES using zero
initial guess u

(0)
j = 0 for j = 0, . . . , J − 1.

Remark 7.1 (Relation between dtnext
j and dtn j). The presentation in this subsection was

concerned with the discrete level at which the dtnext
j function of a given discretization needs

to be resolved. The latter in turn is an approximation of a continuous dtn j function which
is characterized as in Chapter 2 of this thesis. Assuming that the differential operator

5Computing the right hand side f̃
(n− 1

2 )

Γj
involves an application of DtNext

j as well (see the definition

given in Algorithm 7.3), which is likewise replaced by the efficient approximation of DtNext
j obtained by

swapping L in equation (7.4) with L̃.
6Of course, this discretization has to be suitable for the equation and the geometrical setup.
7Actually, it is the only one the author is aware of.
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L = A ⊗ MΓ + B ⊗ KΓ has tensor product structure and that the interfaces Γj are
positioned at locations {aj} along the direction of stratification the ODE for determining
dtn j is given in analogy to Section 2.1 as

[A+ λ`B] Λr(λ`) = 0 on (a0, aj),

with Λaj(λ`) = 1 and an appropriate8 boundary condition at r = a0. Then dtn j(λ) :=
−∂rΛr(λ)|r=aj . If this ODE is discretized following the ansatz of equation (7.6), i.e.
the differential operators A and B on [a0, aj] are represented by the matrices A and B
appearing in equation (7.6), then the discrete approximation to dtn j obtained from this
discretization takes the form of dtnext

j given in (7.7). In the numerical experiments below

the numerical approximation dtnext
j of dtn j is often so accurate that both functions may

be used interchangeably.

7.2.3 Computational costs of transmission conditions

In the setting of transparent boundary conditions treated in the first half of this thesis
learned IEs need to be implemented merely at a single interface which realizes the coupling
between the bounded interior domain and the usually unbounded exterior domain. The
associated computational costs have been discussed in Section 4.1.4. Let us recall here
from this section that learned IEs differ from tensor-product PMLs solely in how the
learned IE matrices Ã and B̃ in (7.9) are obtained. Once these matrices have been
determined, the solution of the linear systems proceeds as for tensor-product PMLs and
is usually even more affordable since the learned IE matrices manage to achieve the same
accuracy using less DOFs and sparser matrices, see Section 4.2.2. Hence, solving the
optimization problem to determine the learned IE matrices poses the only potentially
critical point.

In the context of sweeping preconditioners learned IEs are required on all subdomain
interfaces Γj for j = 1, . . . , J − 1. Hence, J − 1 optimization problems (4.2)-(4.3) have
to be solved. In this regard, the following observations about the optimization problems
should be kept in mind.

• They only have to be solved once during the offline stage in which the preconditioner
is set up.

• The problems for different interfaces are completely independent which allows for
simple and efficient parallelization.

• The costs for their solution is independent of the space dimension d.

Based on these considerations it is reasonable to expect that the additional overhead
stemming from the optimization procedure will be negligible - at least asymptotically
with increasing complexity of the problem. The majority of the time will be spent in
the online phase in which the preconditioner is applied since this requires the solution of
d-dimensional linear systems9 on the subdomains Ωj for j = 0, . . . , J − 1. Consequently,
the number of required GMRES iterations, which determines how often the precondi-
tioner needs to be applied, is the critical factor that will be monitored as a measure of
performance in the numerical experiments presented in Section 7.3.

8This is obtained from B∂Ωintu = g.
9As the subdomains are thin, these can be regarded as quasi d − 1-dimensional problems. Still, it

remains the dominating cost.
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7.3 Numerical experiments

Before applying the introduced techniques to helioseismology, it is useful to consider
simple problems on the unit square. This allows to isolate the key issues which are
expected to occur for the application in helioseismology and investigate them one after
another. To this end, we consider the Helmholtz equation

−∆u− k2(x, y)u = f

in Ω = [0, 1]2. For all experiments to follow periodic boundary conditions are imposed
on the left and right boundary of the square. At the bottom a homogeneous Neumann
boundary condition is set. Two different boundary condition at the top will be studied:
either a PML or a homogeneous Neumann boundary condition. All experiments use a
random source (set to zero in the topmost layer where PML could be present) as the right
hand side and a tolerance of 10−7 for GMRES. Finite elements of order p = 4 will be used
throughout this section. Sweeping is performed in the vertical direction, i.e. from top to
bottom for the forward sweep. To this end, the unit square is partitioned into vertical
layers of equal thickness as sketched in Fig. 7.2. To maintain accuracy for high-frequency
the number of layers J has to grow proportional to the wavenumber. In the experiments
below the relation between J and k is chosen such that each wavelength is resolved by at
least twelve DOFs. For some geophysical applications this might seem a little excessive,
yet in view of the forthcoming results of Section 8.1 this requirement is reasonable for
helioseismology.

The moving PML will always extend over one layer. Since one layer is two elements
thick, this implies for p = 4 that there are nine DOFs in the sweeping direction within
this layer. As a tensor-product PML is used, the exterior system can be written in the
form A⊗M+B⊗K as shown in Appendix C.1. In the considered case A and B are 9×9
matrices and A contains 49 nonzero entries. On the other hand, the symmetric ansatz
for the learned IEs introduced in Section 4.1.1 results in (N + 1)× (N + 1) matrices with
3N + 1 nonzero entries. Hence, in terms of the number of nonzero elements the moving
PML is comparable to learned IEs with N = 16.

In all experiments the objective function (4.2) will be set up in terms of the continuous
eigenvalues λ` even though the generalized eigenvalue equation Kw` = λ`Mw` holds in
terms of the discrete eigenvalues λ`. This is done for the sake of efficiency since the
continuous eigenvalues are analytically known while the discrete eigenvalues would need
to be computed numerically. The discrete eigenvalues converge towards the continuous
ones as the resolution is increased, yet, for a fixed discretization the above approach
always introduces a certain error. Therefore, it can in general not be expected that the
iteration numbers converge to one as N is increased when the discretization remains
fixed but will start to stagnate at a couple of iterations (usually 3-4 for 12 DOFs per
wavelength).

7.3.1 Constant sound speed

Consider the simplest case of constant k(x, y) = k first. In the top layer of the decom-
position either a PML or a homogeneous Neumann boundary condition is implemented.
Wavenumbers k ∈ {12, 24, 48, 96} are considered. Note that these are not multiples of
2π, i.e. not resonances. The GMRES iteration numbers for moving PML and learned IEs
for this configuration are compared in Table 7.1. The two different boundary conditions
are discussed separately:
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(a) J = 3

Ωj−1

Ωj

Ωj+1

(b) J = 6 (c) J = 12 (d) J = 24

Figure 7.2: Meshes for experiments on unit square, which is partitioned into J layers.
Each such layer has a thickness of two elements in vertical direction.

• If a PML is present at the top the moving PML (’mPML’) achieves small iteration
numbers which are almost stable with respect to the frequency. The iteration
numbers for learned IEs decrease as N increases since the approximation of dtnext

improves. As mentioned above, the tensor-product PML is based on N = 8. The
approach using learned IEs with N = 8 converges for k ∈ {12, 24, 48} at least twice
as fast as the moving PML. According to the discussion above, the corresponding
linear systems are also sparser than those obtained from usage of moving PML.

• The stability of the moving PML approach is lost when the PML at the top of
the domain is removed. Even though a complete breakdown is not observed, the
iteration numbers increase noticeably with the wavenumber. In contrast, the results
for learned IEs with N = 10 are comparable to those obtained with a PML at the
top of the domain.

PML at top

k J N = 0 N = 2 N = 4 N = 6 N = 8 N = 10 mPML

12 3 16 7 4 3 3 3 7

24 6 39 10 5 3 3 3 7

48 12 119 20 6 5 3 3 8

96 24 - 50 12 7 6 5 9

Homogeneous Neumann b.c. at top

k J N = 0 N = 2 N = 4 N = 6 N = 8 N = 10 mPML

12 3 48 9 6 4 4 3 9

24 6 46 16 8 5 5 5 11

48 12 - 162 26 7 6 4 21

96 24 - - - 225 38 8 34

Table 7.1: GMRES iteration numbers for constant wavenumber and two different bound-
ary condition at the top of the domain. A dash ’-’ means that the desired tolerance was
not achieved after 250 iterations.

The difference between the two boundary conditions can be explained by considering
the corresponding dtnext functions. Fig. 7.3 displays these functions and their approx-
imation by moving PML and learned IEs respectively for k = 96 on an interface of a
typical layer. While the dtnext function for a PML at the top is smooth and can be
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well-approximated by the moving PML, it exhibits poles on the real axis for a Neu-
mann boundary condition. Since the moving PML only includes information from the
neighbouring layer, it is oblivious10 of the Neumann boundary condition at the top and
consequently of the poles of dtnext. Learned IEs on the other hand are naturally aware
of the boundary condition since they are based on approximation of dtnext which con-
tains full information about the complete half-space problem. Hence, they can adapt
to the specific problem and obtain small iteration numbers irrespective of the boundary
condition.
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Figure 7.3: The dtnext function (real part) for k = 96 on one of the layer interfaces for
different boundary conditions at the top of the domain. The black crosses dtnext(λ`)
display the function values only at the eigenvalues λ` = `2 while the gray solid line
dtnext(λ) represents a much finer sampling. The discrete approximations dtnN obtained
with moving PML and learned IEs using N = 10 are shown in red and blue colors,
respectively. The lowest panel in figure (b) displays the analytic poles of dtn in orange
while the poles of dtnN for learned IEs are shown in blue.

For the simple example at hand it can easily be understood analytically why the dtnext

function for the reflective boundary condition admits poles for λ ≤ k2 while it is smooth
when an absorbing boundary condition is imposed. The dtn = −∂yΛa(λ) function for the

10By construction the moving PML approximation (red dots in the figure) is exactly the same for cases
(a) and (b).
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Neumann problem on a layer interface y = a is determined by the solution of the ODE

−∂
2Λy(λ)

∂2y
− k2

λΛy(λ) = 0, (7.11)

Λa(λ) = 1, ∂yΛb(λ) = 0,

for k2
λ = k2 − λ and b = 1. By inspection the solution is given by

Λy(λ) = cos (kλ(b− y))/ cos (kλ(b− a)),

so that dtn(λ) = −σλ tan (kλ(b− a)). This function admits poles and roots lying exactly
on the real line given by

λjpole = k2 −
(
π(2j + 1)

2(b− a)

)2

, λjroot = k2 −
(

π(2j)

2(b− a)

)2

, (7.12)

for j ∈ N0. These poles and their numerical approximation by the poles of dtnN using
learned IEs are displayed in the lowest panel of Figure 7.3b. The poles for large λ are not
detected by the learned IEs because they are insufficiently covered by the sample points
λ`. Of course one could try to approximate these poles as well by including samples of
dtnext also at non-eigenvalues into the objective function. Future studies could investigate
whether this might lead to a further improvement of the iteration numbers or a faster
convergence in N .

Note that formula (7.12) implies that λjpole ≤ k2, i.e. the poles are limited to the
propagating part of the spectrum. This has direct consequences for the approximation
of dtnext:

• As the number of poles of dtn on the positive real line grows linearly with k and
dtnN can only cover N simples poles at a time, we need to increase N linearly with
k if all poles of dtn should be well-approximated. This is consistent with the results
of Table 7.1 where for higher wavenumbers larger N were required to achieve small
iteration numbers.

• Even though the moving PML yields a good approximation of dtn for λ > k2,
which explains its respectable performance for small wavenumbers for the Neumann
boundary condition, it will eventually break down as k and thereby the number of
poles increases since the approximation for the propagating modes is completely
wrong.

If the Neumann boundary condition is replaced by an impedance condition of the
form ∂yΛb(λ) = iωΛb(λ) the poles for λ ≤ k2 vanish11. Indeed, in this case the solution
of the ODE is given by

Λy(λ) =
(kλ − k)e(b−y)ikλ + (kλ + k)e−(b−y)ikλ

(kλ − k)e(b−a)ikλ + (kλ + k)e−(b−a)ikλ
.

The corresponding dtn function

dtn(λ) = −ikλ
(
ikλ sin ((b− a)kλ)− k cos ((b− a)kλ)

kλ cos ((b− a)kλ)− ik sin ((b− a)kλ)

)

has no real poles for λ ≤ k2 since the denominator does not vanish. This statement
holds for a constant sound speed and may extend to the case where the sound speed is
continuous. However, the next Section 7.3.2 demonstrates that poles can occur near the
real axis once the latter assumption is dropped.

11For the case of constant wavenumber.
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7.3.2 Jumping wavenumber between layers

Besides boundary conditions, reflection of waves can also be triggered by local inhomo-
geneities of the wavenumber. To demonstrate this, we consider a wavenumber which
jumps between layers according to a parameter α ∈ [0, 1]. On one layer the wavenum-
ber will be given by k+ = (1 + α/2)k while on the neighbouring layers it jumps to
k− = (1 − α/2)k and so on. The contrast between layers |k+ − k−| = αk increases
with the k and α. It is well-known from similar experiments considered in the litera-
ture [GZ18, GZ19, PHL20] that the moving PML approach breaks down as the constrast
between layers increases.

The iteration numbers with moving PML and learned IEs for PML boundary condi-
tions at the top of the domain are shown in Table 7.2. The performance of the moving
PML indeed deteriorates drastically as the contrast increases. For α = 1/4 and k = 96 the
desired tolerance cannot be achieved anymore within the set limit of 250 iterations. On
the other hand, with learned IEs as transmission conditions convergence can be achieved
within a few iterations (4-5) throughout the entire range of considered frequencies and
contrasts.

Moving PML

k J α = 0 α = 1/16 α = 1/8 α = 1/4 α = 1/2 α = 1

12 3 7 7 8 7 7 8

24 6 7 10 13 17 20 26

48 12 8 15 24 50 71 98

96 24 9 42 83 - - -

Learned infinite elements: N = 12

k J α = 0 α = 1/16 α = 1/8 α = 1/4 α = 1/2 α = 1

12 3 3 3 3 3 3 3

24 6 3 3 3 3 3 3

48 12 3 3 3 3 3 3

96 24 4 5 5 4 4 4

Learned infinite elements: α = 1/4

k J N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

12 3 6 4 3 3 3 3

24 6 15 5 4 3 3 3

48 12 37 19 7 4 4 3

96 24 - 208 55 25 15 4

Table 7.2: GMRES iteration numbers for wavenumber which alternates |k+ − k−| = αk
between consecutive layers. PML boundary condition implemented at the top. A dash
’-’ means that the desired tolerance was not achieved after 250 iterations.

To understand these results it is again illuminating to examine the corresponding
dtnext functions and their approximation by moving PML and learned IEs, respectively.
Plots of these fuctions for α = 1 and k = 96 on an interface of a typical layer are shown in
Fig. 7.4. The dtnext function again exhibits poles in close proximity to the real axis, this
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Figure 7.4: The dtnext function (real part) for a jumping wavenumber between layers.
The contrast is equal to αk where the plot displays the case α = 1 and k = 96. The black
crosses dtnext(λ`) show the function values only at the eigenvalues λ` = `2 while the gray
solid line dtnext(λ) represents a much finer sampling. The discrete approximations dtnN
obtained with moving PML and learned IEs using N = 12 are shown in red and blue
colors, respectively. The lower panel displays zooms of the regions marked in the upper
panel.
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time induced by the sharp contrast between layers. Again the moving PML is unsuited
for this situation while learned IEs can adapt. It is astonishing that the approximation
by learned IEs is seemingly able to detect also some minor variations of dtnext which
on first sight appear not to be covered by the samples dtnext(λ`). This can for instance
be seen in the lower right panel of Fig. 7.4. Close to λ = k2 the dtnext function has
some local inhomogeneities which seem to be noticed by the learned IEs even though the
optimization has only access to information12 at the sample points dtnext(λ`). Apparently,
tiny variations in the input are sufficient to trigger a response of the optimization routine.

7.3.3 Perturbations from the background model

The previous experiments demonstrated that learned IEs perform well for perfectly strat-
ified media even in the presence of strong reflections. However, many media of practical
interest are only approximately stratified in the sense that the properties of the medium
can be regarded as small perturbations from a perfectly stratified background. Since
the equations for the approximately stratified medium may not be separable anymore,
learned IEs (in their current form) cannot be applied directly to build asymptotically
exact sweeping preconditioners for such problems as they only provide transmission con-
ditions for the background model. Nevertheless, as long as the perturbations from the
background model are small we can try to precondition the problem using learned IEs
based on the background model. The following experiment investigates the performance
of this approach for the simple model problem

−∆u− (1 + ε)k2u = f

on the unit square with boundary conditions set up as before. Here, ε ≥ 0 is a small
parameter which represents the strength of the perturbation from the background model
ε = 0. For the sake of the experiment we will pretend in this section that we only have
access to the background model to build the transmission conditions for the learned IEs.
This is to mimic the situation for realistic problems in which the perturbation would be
spatially dependent ε = ε(x) so that the perturbed equation ceases to be separable. Here
ε is chosen to be constant because this allows for a much more accessible analysis and
visualization of the arising issues.

The GMRES iteration numbers for Neumann and PML boundary conditions at the
top of the domain are shown in Table 7.3. Four different preconditioning strategies are
compared: the first table displays the results for the moving PML approach. The sec-
ond contains the results for preconditioning the perturbed system with the direct solver
inverse of the background model (ε = 0). This is of course not very practical since a
direct solution of the linear system for ε = 0 is not cheaper than for ε 6= 0. There-
fore, the third table presents the iteration numbers for the case when the inverse of the
background model is approximated using sweeping preconditioners with learned IE trans-
mission conditions. The final table gives the result for applying sweeping preconditioners
with learned IEs directly13 to the system for ε 6= 0 with transmission conditions still
based on the background model.

The results can be summarized as follows:

12Neither the imaginary part of dtnext at the sample points λ`, which is not shown in the figure, seems
to give any obvious indication that special behavior should occur around λ = k2.

13This means that the matrices LIjIj , LIjΓj , LΓjIj and Lint
ΓjΓj

in equation (7.5) are assembled based on
the perturbed model.
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Moving PML

k ↓ J/ε→ 0.0% 0.0625% 0.125% 0.25% 0.5% 1.0% 2.0% 4.0%

12 3 9/7 9/7 9/7 9/7 9/7 9/7 9/7 9/7

24 6 11/7 11/7 11/7 11/7 12/7 12/7 12/8 13/8

48 12 21/8 21/8 20/8 20/8 20/8 20/8 19/8 21/9

96 24 34/9 34/9 33/9 35/8 32/9 32/9 36/9 33/10

Direct solver inverse of background model

k ↓ J/ε→ 0.0% 0.0625% 0.125% 0.25% 0.5% 1.0% 2.0% 4.0%

12 3 1/1 5/5 5/5 5/6 6/6 7/7 8/9 10/11

24 6 1/1 5/5 6/5 6/6 7/7 8/8 10/10 14/13

48 12 1/1 7/6 8/6 10/7 11/8 15/9 18/12 30/17

96 24 1/1 11/7 14/8 19/10 22/12 33/16 50/22 85/37

Learned IE N = 10 for background model on layer

k ↓ J/ε→ 0.0% 0.0625% 0.125% 0.25% 0.5% 1.0% 2.0% 4.0%

12 3 3/3 5/5 5/5 5/6 6/6 7/7 8/9 9/11

24 6 5/3 5/5 5/5 6/6 7/7 8/8 10/10 14/13

48 12 4/3 7/6 9/6 10/7 11/8 15/9 20/12 31/17

96 24 8/5 12/7 15/8 21/10 25/12 35/16 53/22 88/37

Learned IE N = 10 for perturbed model on layer

k ↓ J/ε→ 0.0% 0.0625% 0.125% 0.25% 0.5% 1.0% 2.0% 4.0%

12 3 3/3 5/4 5/4 6/5 7/5 7/5 8/6 9/7

24 6 5/3 6/4 6/5 7/5 8/5 10/6 13/7 19/9

48 12 4/3 8/5 10/6 13/6 17/7 25/8 36/10 56/13

96 24 8/5 14/7 20/8 36/10 59/12 138/15 350/23 439/121

Table 7.3: GMRES iteration numbers for perturbations of strength ε from the background
model. Results are given in the form x/y where x are the numbers for hom. Neumann
boundary conditions at the top and y the numbers for a PML boundary condition.

• The iteration numbers for the moving PML are essentially independent of the
strength of the perturbation. This was to be expected since the dtnext approxi-
mation provided by PML does not adhere14 to the background model. Even if this
advantage renders PMLs very attractive for applications they are still unable to
cope with problems involving strong reflections.

• Based on the experiments of the last sections one would try to resolve this issue
by replacing the moving PML in the sweeping preconditioners by learned IEs as
was done in the final table of Table 7.3. Unfortunately, this does not work well for
Neumann boundary conditions as the iteration numbers increase drastically with
the strength of the perturbation and the contrast. Only tiny perturbations ε < 0.1%
can be tolerated. This leads to the conjecture (see also [PHL20]), which will be
investigated in more detail below, that the dtn function in presence of reflections
must be extremely sensitive to perturbations.

14Since we allow the PML to be aware of the perturbation.
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• Taken the last observation for granted leads to the conclusion that in the pres-
ence of reflections learned IEs should only be used to approximate the inverse of
the background model. The question whether the background model yields a good
preconditioner for the perturbed system is investigated in the second table of Ta-
ble 7.3. The iteration numbers for Neumann boundary conditions are significantly
lower than in table four, although still larger than for PML boundary conditions,
so that somewhat larger perturbations may be tolerated. The iteration numbers in
the third table are almost the same as in the second which demonstrates that the
direct solver inverse of the background model can be realized (nearly) efficiently
with learned IEs.
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Figure 7.5: The upper panel shows Re dtnext
ε (λ) corresponding to the perturbed

wavenumber (1 + ε)k2. The lower panel displays the relative error | dtnext
ε=0(λ) −

dtnext
ε (λ)|/| dtnext

ε=0(λ)| w.r.t. to the dtnext
ε=0 function corresponding to the background

sound speed. The panel is vertically divided into two parts, where the results on the
left side are for a homogeneous Neumann boundary condition at the top of the domain
and the results on the right for a PML at the top. The lowest panel shows roots and
poles of dtnε=0.

Above it was conjectured that applying learned IEs directly to the perturbed problem
for Neumann boundary conditions fails because of high sensitivity of dtn with respect to
perturbations. Fig. 7.5 investigates this claim. The first panel shows the dtnext

ε function
of the perturbed problem for Neumann and PML boundary conditions. This is obtained
by solving equation (7.11) with k2

λ replaced by k2
λ,ε = (1 + ε)k2 − λ. The second panel

displays the relative error

| dtnext
ε=0(λ)− dtnext

ε (λ)|/| dtnext
ε=0(λ)|
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with respect to the background model. While the error for PML boundary conditions
is smooth and remains reasonably small even for strong perturbations, it is very large
with unbounded peaks for Neumann boundary conditions. For the simple problem under
considerations this behavior can easily be explained analytically. The dtnε function of
the perturbed problem is given by

dtnε(λ) = −kλ,ε tan (kλ,ε(b− a)).

Since

∂ε dtnε=0(λ) = − k2

2kλ
tan (kλ(b− a))− kλ(1 + tan2 (kλ(b− a)))

where kλ,ε=0 = kλ, the relative error to first order is given by

| dtnε=0(λ)− dtnε(λ)|
| dtnε=0(λ)| = ε

∣∣∣∣
k2

2k2
λ

+
1

tan (kλ(b− a))
+ tan (kλ(b− a))

∣∣∣∣+O(ε2).

The first order term has singularities at the roots and poles of λ 7→ tan (kλ(b− a)) which
were given in equation (7.12) and are marked in the lowest panel of Fig. 7.5 as gray and
black crosses, respectively. This accounts for the occurence of the peaks in the middle
panel of Fig. 7.5.

7.3.4 Non tensor-product meshes

In their current form learned IEs are based on the assumption of a tensor-product dis-
cretization, i.e. they assume that the linear system exterior to the transmission interface
has the form (7.6). In this case it has been shown in Proposition 3.1 that the DtNext

j :=

M−1
j

(
LΓjΓj − LΓjEjL

−1
EjEj

LEjΓj

)
map diagonalizes in the basis V = {v0, v1, . . .} of the

generalized eigenvectors of the matrix stencil (Mj, Kj), i.e. the matrix

V −1 DtNext
j V (7.13)

is diagonal. For discretizations which are not of tensor-product form this statement no
longer holds true. From an algorithmic perspective there is no obstruction to applying
learned IEs for preconditioning linear systems stemming from non-tensor product dis-
cretizations though. However, as theoretical justification is lacking the consequences of
violating the assumption of tensor-product structure need to be studied.

(a) J = 3 (b) J = 6 (c) J = 12 (d) J = 24

Figure 7.6: Simplicial meshes for experiments on unit square, which is partitioned into J
layers. Each such layer has a thickness of four simplices in vertical direction.
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This section investigates this issue for the simple case of a uniform simplicial discretiza-
tion of the unit square for the constant coefficient Helmholtz equation as considered in
Section 7.3.1. The series of meshes shown in Fig. 7.6 is the simplicial counterpart of
the quadrilateral meshes displayed in Fig. 7.2. The GMRES iteration numbers on these
simplicial meshes are displayed in Table 7.4. These results can be directly compared to
the ones on tensor-product meshes from Table 7.1 since the computational setup differs
only in the choice of the mesh. On the simplicial meshes the iteration numbers stagnate
around 9-11 iterations no matter how large N is taken. As a results, the moving PML
is now able to achieve lower iteration numbers than learned IEs in the presence of a
PML boundary condition at the top of the domain. Although the iteration numbers for
learned IEs are overall higher than on tensor-product meshes, the behavior with respect
to the frequency is not impaired. As for tensor-product meshes a very mild growth of
the iteration numbers with respect to the frequency is observed which would need to be
countered by increasing N .

PML at top

k J N = 0 N = 2 N = 4 N = 6 N = 8 N = 10 mPML

12 3 18 10 10 10 10 10 6

24 6 45 12 10 10 10 10 7

48 12 134 21 11 11 11 11 7

96 24 - 52 14 11 11 11 8

Homogeneous Neumann b.c. at top

k J N = 0 N = 2 N = 4 N = 6 N = 8 N = 10 mPML

12 3 42 8 9 9 9 9 8

24 6 40 13 10 10 10 10 12

48 12 - 161 24 12 10 10 20

96 24 - - - 242 43 12 34

Table 7.4: GMRES iteration numbers for a constant wavenumber on the simplicial meshes
shown in Fig. 7.6. Polynomials of order p = 4 weres used for the FEM. A dash ’-’ means
that the desired tolerance was not achieved after 250 iterations.

The increased number of iterations required on simplicial meshes stems from off-
diagonal entries of V −1 DtNext

j V . Indeed, Fig. 7.7 displays this matrix on the mesh
shown in Fig. 7.6b for different polynomial degrees p. For p > 1 off-diagonal blocks
of size 2 × 2 are observed to appear in a regular pattern, which is not yet understood.
The size of the blocks could be related to the fact that each layer is composed of two
layers of two simplices in the vertical direction. The majority of these off-diagonal blocks
are of far smaller magnitude than the diagonal elements, which explains why sweeping
with learned IEs is still effective. Note also that the eigenvectors in the matrix V have
been ordered according to increasing magnitude of the corresponding eigenvalue and
that the magnitude of the off-diagonal blocks in V −1 DtNext

j V is very small for the small
eigenvalues yet increases for the larger ones. This makes sense since the continuous DtN j

operator is diagonal in the basis of the continuous eigenfunctions and the discrete DtNext
j

map converges to the continuous operator as the discretization is refined. While the small
eigenvalues are already well resolved by the discretization, the large ones are not which
explains the large magnitude of their corresponding off-diagonal blocks.

162



0 5 10

0

5

10

p = 1

0 10 20

0

10

20

p = 2

0 20 40

0

20

40

p = 4

10−8

10−6

10−4

10−2

100

Figure 7.7: DtN map V −1 DtNext
j V in the eigenbasis on the simplicial mesh shown in

Fig. 7.6b for different polynomials degrees p. The eigenvectors in V have been ordered
according to increasing magnitude of the corresponding eigenvalues. For clarity of pre-
sentation the largest entry of the matrix has been normalized to one.
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Chapter 8

Sweeping for helioseismology in
axisymmetric setting

In this chapter, the techniques developed in previous parts of this thesis are combined
and applied for preconditioning the scalar equation of helioseismology in an axisymmetric
setting. Firstly, the axisymmetric discretization itself and the implementation of learned
IEs for this configuration will be introduced in Section 8.1. This constitutes an exten-
sion of the results from Chapter 6 where only one-dimensional discretizations, which are
possible in a fully-separable setting, have been considered. The adaptations in the axi-
symmetric case are minor since the same learned IE matrices as in Section 6.3 can be
used for representing the VAL-C atmosphere. However, in order to sweep as in Chap-
ter 7 one has to go one step further. Being able to represent the DtN operator of the
atmosphere with learned IEs is not sufficient for this purpose. Now also accurate and
efficient realizations of DtN operators at concentric layers inside the Sun (see Fig. 8.2)
are required as transmission conditions on subdomain interfaces. In view of the results
of Chapter 7, this is challenging in at least two aspects.

• The DtN operator at the discrete level only diagonalizes for tensor-product dis-
cretizations as explained in Section 7.3.4. This reduces the effectiveness of learned
IE on general meshes. Unfortunately, obtaining accurate synthetic observables for
helioseismology (see Section 8.1) requires meshes which feature a strong refinement
in the surface layers and this is incompatible with the tensor-product structure.
Therefore, it has to be investigated whether learned IEs are appropriate for the
realistic meshes introduced in Section 8.1.

• In contrast to the solar atmosphere, the interior of the Sun cannot be assumed
to be spherically symmetric. This would defy the purpose of local helioseismology
which aims at probing the three-dimensional structure of the solar interior. Hence,
a good preconditioner also has to be able to deal with (small) perturbations from
the separable background model. Ideally, it should be robust with respect to these
perturbations. In light of the results of Section 7.3.3, this poses a serious challenge
for learned IEs.

To avoid having to face all problems at once, Section 8.2 starts with sweeping for
the separable background model. Section 8.3 then proceeds to consider sound speed
perturbations. Finally, Section 8.4 draws conclusions from the presented experiments on
the benefits and limitations of using learned IEs as transmission conditions in sweeping
preconditioners.
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8.1 Implementation of learned IEs in axisymmetric

setting

The experiments in Chapter 6 were limited to the case in which sound speed and density
are radially symmetric and there is no background flow. If one of these assumptions
breaks down, the equations cannot be reduced to a set of ODEs anymore and solving
PDEs in two or three dimensionsal geometries becomes necessary. Therefore, this section
illustrates how to implement learned IEs in an axisymmetric setting. The extension to
a fully three dimensional discretization is from a theoretical point of view even simpler,
yet computationally more demanding.

The framework for treating solar oscillations under axial symmetry has been in-
troduced in [GBD+17] and is briefly recalled here for the special case of a vanishing
background flow which is sufficient for the purpose of this section. Let (r, θ, φ) denote
standard spherical coordinates with z representing the rotation axis of the Sun. Under
the assumption that the background model is symmetric around the z-axis the solu-
tion u of equation (2.52) can be decomposed into a series of longitudinal Fourier modes
u =

∑
m

um(r, θ)eimφ. To obtain the coefficients um(r, θ), a set of independent PDEs in the

domain Σ = {(r, θ) | 0 ≤ r ≤ a; 0 ≤ θ ≤ π} sketched in Fig. 8.1 has to be solved.

z

r

χ

θ

Γ

Σ

Figure 8.1: Generating section Σ of the geometry for axisymmetric computations. A
point in Σ can be described in spherical coordinates (r, θ) with radius r and colatitude
θ. Alternatively, coordinates (χ, z) can be used, where χ = r cos(θ) is the distance to the
z-axis.

For implementational purposes, it is useful to employ the alternative coordinates (χ, z)
in Σ, where χ = r cos(θ) is the distance to the z-axis. Equation (2.52) for each mode is
then given by

qmum − ∇̃ · ∇̃um = ρ1/2fm
c
, (8.1)

with qm = q−m2/χ2 and the two dimensional gradient and divergence operators

∇̃F = eχ∂χF + ez∂z, ∇̃ · F =
1

χ
∂χ(χFχ) + ∂zFz.
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Here, eχ and ez represent unit vectors in χ and z-direction, respectively. For deriving
the variational formulation, integration in Σ is perfomed with respect to the measure
χdΣ = χdχdz and a homogeneous Neumann boundary condition is assumed on the z
axis. The interior part of the sesquilinear form is then given by

∫

Σ

(
∇̃um∇̃v̄m + qmumv̄m

)
χdΣ.

To model the solar atmosphere, learned IEs will be imposed on the truncation bound-
ary Γ at r = a as a transparent boundary condition. From the equation above it follows
that the sesquilinear forms associated with the operators MΓ and KΓ are given by

KΓ(u, v) =

∫

Γ

∇̃um∇̃v̄m χdΓ, MΓ(u, v) =

∫

Γ

umv̄m χdΓ.

The weighting with χ and the homogeneous Neumann boundary condition on the axis
ensure that the eigenvalues λ` in KΓv` = λ`MΓv` are given by λ` = `(` + 1)/a2. The
operators A and B are the same as introduced in Section 2.4.2, which implies that the
dtn function for the axisymmetric computation coincides1 with the one used in the one-
dimensional setting considered so far. This in turn coincides with the dtn function for
a three-dimensional discretization. In particular, the same learned IE matrices A and B
can be used in a one-dimensional, axisymmetric or fully three-dimensional discretization
of the equations.

(a) 1.5 mHz (b) 3.0 mHz (c) 6.0 mHz

Figure 8.2: Meshes for axisymmetric computation.

The last ingredient required for the implementation is a mesh which resolves the waves
properly. To this end, it is well-known that a constant number of DOFs per wavelength

1In the actual implementation the Sun is again scaled to the unit ball as in Chapter 6. To avoid
cluttering of notation, this subtlety is suppressed here.
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are necessary to maintain accuracy of the computational solution as the frequency in-
creases. Hence, mesh construction should be based on the wavelength in radial direction
given by λr = 2πω/c(r). Our strategy for mesh generation is to start at the solar core
and successively add concentric layers with thickness equal to the local wavelength to
the mesh until reaching the truncation boundary. Since each such layer contains two
elements in radial direction, a resolution of 2p DOFs per radial wavelength is ensured.
Because the oscillations in the angular direction are expected to be of similar order as in
the radial direction, we allow the grid cells in θ direction to be at most one and a half
times longer than in r direction. This results in a very large number of mesh elements
close to the surface as the example meshes for 1.5, 3.0 and 6.0 mHz displayed in Fig. 8.2
show. The strategy employed here is motivated by [GBD+17], yet differs from the ap-
proach considered in this publication to some extent, most notably in the fact that these
researchers used a fixed mesh constructed for 9.0 mHz to carry out the computations
for all the frequencies in the range [0, 9.0] mHz. Thereby the issue of how many points
per wavelength are actually needed to obtain an accurate solution for lower frequencies,
e.g. 3.0 mHz, is avoided, since the problem is overresolved. While this approach might
be resonable for an axisymmetric simulation, it is clearly infeasible for three-dimensional
computations. Therefore, the question of how many points per wavelength are necessary
to obtain accurate helioseismic quantities has to be studied. The following experiment
may give an indication based on the computed power spectrum.

(a) p = 3 (b) p = 5 (c) p = 7

Figure 8.3: Power spectrum computed using elements of order p, which results into 2p
DOFs per radial wavelength.

The power spectrum is computed based on the VAL-C model for the solar atmosphere.
Learned IEs are implemented as transparent boundary conditions directly at the photo-
sphere (i.e. a = R� or â = 1 in scaled coordinates). In particular, the computational
domain, respectively the mesh, only extends up to the photosphere. The Green’s function
Gm is obtained by solving equation (8.1) for a source fm ∼ δ(x − xs). The source xs is
placed at the north pole so that only the m = 0 mode is present in the Green’s function
Gm := G. The power spectrum is obtained as usual by projecting the Green’s function
into spherical harmonics

P `(ω) =
Π(ω)

ω

π∫

0

ImG(θ, ω)P`(cos(θ)) sin(θ) dθ,

see [GBD+17, Section 7.5] for a detailed derivation of this formula.
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The power spectra for learned IEs with N = 3 using 6, 10 and 14 DOFs per radial
wavelength are shown in Fig. 8.3. Firstly, the right plot, which displays the results us-
ing 14 DOFs per wavelength, demonstrates that learned IEs seem to work well in the
axisymmetric setting since the power spectrum is in good agreement with the observa-
tional results (white crosses) as well as with the result obtained using the one-dimensional
discretization (Fig. 6.2b). The left plot demonstrates that 6 DOFs per wavelength are
insufficient to obtain a reasonable accuracy since unphysical artifacts are clearly visible in
the power spectrum. Note that the most severe problems occur for the low frequencies on
which the transparent boundary condition has little influence. Hence, these problems are
not caused by the latter but stem from insufficient spatial resolution. Some artifacts even
remain when 10 DOFs per wavelength are employed. Based on this experiment it seems
reasonable to recommend a resolution of 12 DOFs per wavelength or higher. It should
be investigated in future studies whether this demand can be relaxed by constructing
meshes which feature a local refinement around the Dirac source.

The presented experiment demonstrates that discretizations in dimension larger than
one lead to extremely large linear systems. This serves as motivation for the second
part of this chapter in which the application of sweeping preconditioner for the iterative
solution of these systems will be studied.

8.2 Sweeping for the background model

This section presents the results for sweeping for the background Model S in the solar
interior and model VAL-C for the atmosphere. Wave attenuation is modelled according to
the power law model as shown in Fig. 6.3b. A Dirac source placed at the surface provides
the right hand side. The tolerance for GMRES is set to 10−6. Sweeping is performed
on the meshes described in the previous Section 8.1 (see Fig. 8.2 for examples) and the
number of layers J scales accordingly2. As in Chapter 7 only the continuous eigenvalues
are used in the construction of learned IEs. To improve the accuracy of the discrete
representation of the Laplace-Beltrami operator the subdomain interfaces are curved by
applying an appropriate deformation to the mesh.

The GMRES iteration numbers for sweeping with learned IEs are shown in Table 8.1.
A comparison with moving PMLs is not presented here since this approach fails to con-
verge in an acceptable number of iterations. Using learned IEs GMRES converges despite
violation of the tensor-product structure, albeit in a significantly larger number of itera-
tions than for the simple model problems considered in Chapter 7. The iteration numbers
for p = 4 tend to be a bit larger than for p = 6. This may be related to the fact that
the problem with p = 4 is still underresolved as dicussed in Section 8.1. Moreover, it
is interesting to note that the iteration numbers decrease up to N = 4 or N = 5 and
then start to stagnate. This is reminiscent of the behavior observed for the model prob-
lem on simplicial meshes as considered in Section 7.3.4. A plausible explanation could

2The scaling of J (see e.g. Table 8.1) is not perfectly linear in ω since the mesh construction mechanism
introduced in Section 8.1 incorporates some additional special constraints. As explained before, the radii
of the layer interfaces are determined according to the radial wavelength. However, there are some
exceptions. For example, to prevent the layer which includes the solar core from becoming thicker than
0.3R� (which would lead to unacceptable resolution) we break this rule and enforce a refinement. Another
exception may occur when the marching algorithm reaches the radius of the truncation boundary a. To
preserve the mesh quality, we take care here that the last and second to last layer are of comparable
thickness.
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p = 4

mHz J N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

1 5 61 23 12 10 9 9 9 9

2 8 - 137 61 33 30 29 29 29

3 11 - - 109 48 19 19 19 19

4 14 - - 89 64 16 16 16 16

5 18 - 208 60 35 36 37 38 38

6 21 - 129 27 25 72 15 14 13

7 25 - - 51 42 41 62 193 97

p = 6

mHz J N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

1 5 65 20 14 9 9 9 9 9

2 8 - 155 75 31 25 23 23 23

3 11 - - 124 58 16 13 12 12

4 14 - - 88 80 15 13 12 12

5 18 - 203 52 28 32 34 35 35

6 21 - 181 32 25 16 14 14 14

7 25 - - 59 43 49 41 39 39

Table 8.1: GMRES iteration numbers for solar background model using VAL-C as atmo-
spheric model. A dash ’-’ means that the desired tolerance was not achieved after 250
iterations.

be as follows. Recall that deviation from the tensor-product structure introduces off-
diagonal blocks into the representation of DtNext

j in the discrete eigenbasis as illustrated
in Fig. 7.7. However, the elements in blocks associated with the most significant part
of the spectrum have a substantially smaller magnitude than the diagonal entries. By
construction, increasing N only improves the approximation of these diagonal entries3

via learned IEs. The off-diagonal blocks remain completely untreated and will at some
point start to dominate the overall error even though they have comparatively small
magnitude. Treating this issue would require the development of learned IEs which are
not tied to tensor-product discretizations.

From the results of Table 8.1 no clear behavior of the iteration numbers on the fre-
quency can be detected even though in light of the experiments presented in Chapter 7
a mild growth for fixed N could have been expected. Different factors are at work here
which may account for this behavior. Firstly, the error introduced by violation of the
tensor-product structure may simply dominate the overall error, i.e. the iteration num-
bers are already so large that the growth with frequency cannot be detected. Secondly,
the damping in the power law model (see Fig. 6.3b) increases with the frequency. This is
a significant aid for keeping the iteration numbers under control as the frequency grows.
Thirdly, the medium properties of the Sun are not constant as for the majority of ex-
periments considered in Chapter 7. Therefore, waves propagating at different frequencies
inside the Sun behave differently. For example, the steep density gradient in the surface
layers effectively represents a Dirichlet boundary condition for low-frequency waves which
leads to reflections while high-frequency waves may escape into the atmosphere. This will

3Actually, even the diagonal entries of DtNext are also only approximately represented by dtnext(λ`).
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in turn leave traces in the corresponding dtnext functions as will be investigated further in
Section 8.3. Overall, the usual rule that the level of difficulty increases proportionally to
the frequency should be considered with some caution for the helioseismology problem.

8.3 Sweeping for sound speed perturbations

For applications in local helioseismology one would like to be able to compute solutions
also for perturbations of the background model. In this section the performance of sweep-
ing with learned IEs for a very simple model of sound speed perturbations is considered.
Let cS(r) denote the sound speed of the background model, which serves as the reference
in the construction of learned IEs. Then the perturbed equation whose solution is desired
is formulated in terms of the perturbed sound speed

c := cS(r)
√

1− ε, (8.2)

where ε is a constant. This gives rise to a sound speed perturbation of strength ε =
|c2

S− c2|/c2
S. The perturbation is set to zero for r larger than the solar radius so that the

atmosphere remains unperturbed.
The advantages of considering such simple perturbations from the background model

are twofold. Firstly, as the perturbed model remains separable a similar investigation
as in Section 7.3.3 can be carried out to examine the sensitivity of the corresponding
dtnext functions. This will allow to gain insights into the arising issues, which is the main
objective of this work. Secondly, as only the sound speed is perturbed while the other pa-
rameters remain fixed, i.e. no density perturbations or background flows are introduced, a
clear correspondence between a single parameter (the strength of the perturbation ε) and
the iteration numbers will emerge. Hence, a statement can be made about the strongest
perturbations for which sweeping with learned IEs is still effective. From helioseismic
inversions it is known that perturbations of strength ε = 0.4 % [KSS+97, BCCD+97]
have to be expected.

mHz ↓ J/ε→ 0.0 % 0.0625 % 0.125 % 0.25 % 0.5 % 1 % 2 %

1 5 9 (1) 10 (6) 11 (7) 12 (9) 14 (11) 16 (14) 21 (20)

2 8 23 (1) 28 (12) 33 (16) 43 (24) 59 (37) 80 (52) 115 (80)

3 11 12 (1) 14 (11) 17 (15) 25 (23) 45 (44) 87 (85) 169 (166)

4 14 12 (1) 12 (7) 13 (9) 15 (11) 18 (15) 26 (24) 52 (50)

5 18 35 (1) 36 (6) 36 (7) 37 (8) 39 (9) 43 (12) 53 (17)

6 21 14 (1) 14 (6) 14 (6) 14 (7) 14 (9) 15 (11) 18 (15)

Table 8.2: GMRES iteration numbers for sweeping with learned IEs using N = 7 for
a sound speed perturbation of strength ε. The numbers given in round brackets were
obtained for preconditioning with the direct solver inverse of the background model.

The GMRES iteration numbers in terms of the perturbation are displayed in Table 8.2.
Here, learned IEs were used to realize the inverse of the background model since this is
expected4 to be more robust than other approaches (see the discussion in Section 7.3.3).

4Other experiments not shown here prove that this intuition derived from the simple model problem
treated in Section 7.3.3 indeed applies to the setting of helioseismology.
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For comparison the iteration numbers for preconditioning with the direct solver inverse
of the background model are displayed in round brackets.

For small perturbations significantly lower iterations numbers are obtained with the
direct solver since the approximation of DtNext cannot be improved beyond a certain
treshold due to violation of the tensor-product structure. However, the differences tend
to level out as ε increases as the error caused by deviation from the background model
starts to dominate.

The strength of the perturbations which can be tolerated is observed to depend
on the frequency in a manner which may run counter to the intuition of most non-
helioseismologists. For instance, at 3 mHz the iteration numbers are extremely sensitive
to the perturbation while for the higher frequency of 6 mHz perturbations of even 2 %
can easily be tolerated. As in Section 7.3.3 an analysis of the dtnext

ε functions belonging
to the perturbed problem sheds light on this matter. These functions and their relative
error

| dtnext
ε=0(λ)− dtnext

ε (λ)|/| dtnext
ε=0(λ)|

with respect to the background model are compared for 3.0 and 6.0 mHz in Fig. 8.4. For
both frequencies an interface close to 0.86R� has been considered. While dtnext admits
poles close to the real axis for 3.0 mHz which render it extremely sensitive to perturba-
tions, it is smooth for 6.0 mHz and thus relatively stable against perturbations. From
previous investigations it is known that the appearance of poles close to the real axis
is associated with the reflection of waves. As mentioned before, the reflection of low-
frequency waves is caused by the steep gradients in the surface layers. High frequency
waves on the other hand can penetrate through this obstacle and escape into the atmo-
sphere. Therefore, their corresponding dtnext functions remain unaffected by the strong
stratification of the surface layers.

8.4 Discussion and assessment of learned IEs for sweep-

ing

Finally, it is reasonable to draw some conclusion from the experiments presented in
Chapter 7 and Chapter 8. The aim here is to provide guidelines in which kind of situations
learned IEs in their current form can serve as suitable transmission conditions in sweeping
preconditioners. To this end, the discussion is arranged in terms of properties of the
medium in which the waves propagate.

Smooth media. The simplest case of a smooth medium is represented by the con-
stant coefficient Helmholtz equation with PML boundary conditions as considered in
Section 7.3.1. Notwithstanding our result that learned IEs can achieve lower iteration
numbers than moving PMLs, we would still recommend to stick to moving PMLs to solve
such problems. This is not due to efficiency concerns (see Section 7.2.3) but based on the
following other reasons.

• Learned IEs derive their extremely high accuracy from a preprocessing step in which
the dtn(λ`) numbers are computed by solving ODEs and the learned matrices A
and B are obtained by running an optimization algorithm. Moving PMLs instead
operate without invoking additional optimization routines and are consequently
easier to realize from an implementational perspective.
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Figure 8.4: The upper panel of figures (a) and (b) shows Re dtnext
ε (λ) corresponding to

the perturbed sound speed (8.2) at the respective frequency. The lower panel displays
the relative error | dtnext

ε=0(λ)− dtnext
ε (λ)|/| dtnext

ε=0(λ)| w.r.t. to the dtnext
ε=0 function corre-

sponding to the background sound speed.
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• Moving PMLs do not require separability of the PDE at the continuous level. As
long as the medium is free of reflections they seem to work well. On the other
hand, for learned IEs in their current form the separability is a crucial assumption.
At the moment, only small perturbations from separable background media can be
treated.

• Moving PMLs are not tied to a particular type of discretization. For example,
Table 7.1 and Table 7.4 demonstrate that the same performance is achieved on
tensor-product and simplicial meshes. Even though learned IEs still work on more
general meshes (see Section 7.3.4 and Section 8.2), they require tensor-product
structure to reach peak performance.

Separable equations with strong reflections. The dtn or dtnext functions of these
kinds of media are characterized by the occurence of poles close to the positive real axis.
The experiments in Section 7.3.1 and Section 7.3.2 demonstrate that learned IEs are
ideally suited to resolve this behavior. As the number of poles close to the positive real
axis appears to grow linearly with k, the number of infinite element DOFs N would need
to be increased accordingly to cover these poles. This does not pose a major issue for
the overall complexity of the method since the number of nonzero entries of the learned
matrices A and B likewise only grows linearly with N . In addition, irrespective of the
dimension d of the problem only d = 1 dimensional problems need to be solved to obtain
the dtnext functions for setting up the corresponding optimization problems for the learned
IEs. Therefore, learned IEs appear to be the optimal choice to tackle these problems. The
only remaining issue here seems to be the reduced performance once the tensor-product
structure is violated (cp. Section 7.3.4 and Section 8.2). Hence, potential extensions of
learned IEs which would allow to remove this assumption should be investigated in future
studies.

Perturbations from separable equations. At present, learned IEs are solely able to
represent DtN maps of separable media. Therefore, when trying to apply them to small
perturbations from those separable media the crucial question becomes whether the DtN
maps of the perturbed medium remain close to the separable background. If the medium
is free of reflections, the results of Section 7.3.3 indicate that this can be answered in the
affirmative and consequently learned IEs operate efficiently.

However, in presence of reflections DtN respectively dtn is very sensitive to pertur-
bations. For helioseismology the results of Section 8.3 show that only perturbations up
to 0.4 % may be tolerated by the preconditioner. Larger perturbations would cause se-
vere problems especially around the physically very important range of 3 mHz. Even
though these results are not entirely satisfactory, we think that an implementation in
three dimensions and an application to the iterative solution of inverse problems could
be attempted based on the current setup. In this regard, it is an advantage that the
preconditioner in the present form only depends on the background model, which implies
that it only has to be set up once and can then be used throughout the whole iterative
process. On the other hand, this could also turn out to be a limitation since the pre-
conditioner cannot5 be updated should the iteratively determined model start to deviate
significantly from the background. Moreover, the high-sensitivity of dtn to perturbations

5Perhaps one could define a new background model though by suitably averaging the model obtained
from the iterative process.
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caused by the presence of reflections implies that sweeping for a partition of the Sun into
spherical shells with tensor-product learned IEs can never be stable against perturba-
tions. Therefore, in order to develop a learned IE based preconditioner which is robust
w.r.t. perturbations and scales up to the vector-valued equations of helioseismology the
assumption of tensor product structure, respectively separability at the continuous level,
needs to be overcome.

Additionally, it would be interesting to consider different decompositions of the Sun
that are not concentric. For example, instead of sweeping from the core to the surface
one could think about sweeping along the angular direction. However, this would require
new kinds of learned IEs which incorporate periodicity requirements of the corresponding
DtN maps. In this regard, the work of Joly, Li and Fliss [JLF06] in which DtN maps
for periodic waveguides which contain local perturbations have been constructed could
be of particular relevance.

The preceding discussion shows that the introduction of learned IEs as transmission
conditions in sweeping algorithms is certainly an interesting development, particularly for
problems involving reflections. This provides motivation to pursue further extensions of
learned IEs, e.g. to non-separable equations. Some comments on this plan will be given
in the outlook.
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Chapter 9

Conclusion

On the face of it, the scope of this thesis seems rather broad. We have dealt with seemingly
diverse topics such as travel times of waves in the Sun, poles of meromorphic functions and
sweeping preconditioners for time-harmonic wave equations. On a closer look, however,
all these topics are intimately connected with the DtN operator of a stratified medium
and its representation through a meromorphic dtn function. Whether it be the accuracy of
transparent boundary conditions of tensor-product type, the structure of high-frequency
time-distance diagrams of the Sun, or the convergence rate of sweeping preconditioners, in
the end, it all boils down to understanding and approximating dtn . From a philosophical
point of view, this is the main conclusion of this work. A more detailed account on the
practical contributions of this thesis is given below.

9.1 Summary of results

Chapter 2: DtN maps for time-harmonic waves in separable exterior domains.
At the beginning of this thesis, a generic framework to describe DtN maps of separable,
stratified media has been introduced. In its separable form, DtN is determined by a
scalar function dtn , which is initially defined on the spectrum of a suitable self-adjoint
differential operator on the truncation boundary and usually admits a natural meromor-
phic extension to the complex plane. We identified dtn for several problems arising in
applications, e.g. obstacle scattering or helioseismology, and demonstrated that the cor-
responding dtn functions fulfill a common set of properties. Indeed, for the dtnVAL−C

function of the solar atmosphere and the dtnhom,2d
function of the homogeneous medium

we managed to verify these properties analytically. Based on features of dtn functions
and some natural assumptions, for example ellipticity, a well-posedness analysis for the
problem on the truncated domain with DtN as transparent boundary condition has been
presented. While such a well-posedness result for the constant coefficient Helmholtz equa-
tion is surely not new, see e.g. reference [DI01], the main novelty of our approach lies in
its generality, accomplished by identifying universal properties of dtn functions.

Chapter 3: Tensor-product discretizations of DtN. The thesis continued at the
discrete level by considering transparent boundary conditions of tensor product form.
Such conditions lead to DtNN approximations which can be described in the same way as
the continuous DtN operator. The DtNN matrix diagonalizes in the discrete eigenbasis
of a suitable self-adjoint operator on the truncation boundary and is fully determined
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by a rational function denoted by dtnN . Motivated by similar studies for specific infi-
nite elements in the literature [DI01], we carried out a semi-discrete error analysis, which
shows that the H1-error for the approximate solution is determined by the ability of dtnN
to approximate dtn on the spectrum of −∆Γ or a more general self-adjoint operator on
the truncation boundary. This result is valid for any transparent boundary condition of
tensor-product form provided that dtnN fulfills certain properties. By appealing to results
of rational approximation theory and exploiting the meromorphic structure of dtn , we
showed that exponential convergence rates on compact subsets of the spectrum are possi-
ble. We also extended this easily to a global convergence result on the complete spectrum
and in the fully-discrete setting, albeit without an explicit rate and under restrictive as-
sumptions on the mesh width. Our approach via rational approximation theory is novel
and holds the potential of unifying and extending the exponential convergence results
which have been derived for various transparent boundary conditions of tensor-product
type in the literature, see e.g. [LS98, HSZ03b] for tensor-product PMLs, [DG98, DI01]
for conjugated Astley-Leis infinite elements and [HN09] for Hardy space infinite elements.
Note that the cited references do not cover1 highly inhomogeneous exterior media like
the solar atmosphere towards which our approach is geared.

Chapter 4: Learned infinite elements for individual wavenumbers. This chap-
ter introduced learned IEs, which are novel transparent boundary conditions for stratified
media. They are obtained by solving a non-linear least squares problem in which the mis-
fit between dtn and dtnN is penalized. After a reduction step, the number of additional
DOFs in the linear systems, which remain sparse, only grows linearly with N . This
makes learned IEs extremely competetive with other popular transparent boundary con-
ditions. Several numerical examples, e.g. treating inhomogeneous exterior domains and
waveguides, illustrate the great flexibility of our approach.

The results of this chapter are to a large extent based on the paper [HLP21], yet this
thesis offered the following extensions. The results for elliptical truncation boundaries
presented in this thesis are new. In [HLP21] only the setting in which separation with
respect to the Laplace-Beltrami operator is possible has been treated, which does not
cover the case of elliptical coordinates. The other extensions are more subtle. Firstly, the
reduced ansatz for the learned IE matrices introduced in Section 4.1.1 differs from the
one used in the paper. Here, we imposed symmetry as an additional assumption, which
leads to N −1 less free complex parameters in the optimization problem and is beneficial
for efficient treatment of the arising linear systems. This additional assumption does not
impair the accuracy of learned IEs with respect to the paper. Secondly, we studied the
condition number of the learned IE matrices and found that the distance of the poles
of dtn to the spectrum of the self-adjoint operator on the truncation boundary is an
important factor.

Chapter 5: Learned IEs providing uniform approximation in the wavenumber.
The learned IEs of Chapter 4 can only be used for one specific wavenumber. By modi-
fying the objective function, this chapter introduced learned IEs which can be used for
all wavenumbers in a bounded region of the complex plane. An application to the com-
putation of resonances for a simple model problem has been presented. If the objective

1Among the cited references only [HSZ03b] deals with the inhomogeneous case. However, the medium
is requested to allow for a description by an analytic function which does not cover the case of jumping
wavenumbers or the VAL-C atmosphere of the Sun.
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function is suitably chosen, then its value seems to predict the validity of the computed
resonances reliably and only linear eigenvalue problems need to be solved. The results of
this chapter are new and unpublished.

Chapter 6: Modelling the solar atmosphere with learned IEs. The complexity
of the solar atmosphere requires flexible transparent boundary conditions. The results of
this chapter show that learned IEs seem to be ideally suited for this purpose. In particular,
the accuracy of helioseismic observables, like the expectation value of the cross-covariance,
improves exponentially fast with increasing N . This renders learned IEs very efficient
and accurate. They also represent the first transparent boundary conditions that are able
to incorporate the drastic temperature gradient present in realistic models of the solar
chromosphere. So far only the approximation of dtnVAL−C

by learned IEs, cp. Fig. 6.17,
has been published in the literature [HLP21]. The remainder of this chapter is new.

Chapter 7: Learned IEs as transmission conditions in sweeping precondition-
ers. The transmission conditions between subdomain interfaces in sweeping algorithms
are usually approximated using a moving PML. In the presence of strong reflections,
approximation of dtn by PML fails, which may lead to complete breakdown of the sweep-
ing preconditioner. Our results show that for separable media which allow for tensor-
product discretizations this problem may be overcome by exchanging the moving PML
with learned IEs. It should be stressed though that the assumption of separability is
crucial. The presence of reflections renders dtn functions extremely sensitive to pertur-
bations. Therefore, learned IEs in their current form can only be used for non-separable
equations if these can be regarded as nanoscopic perturbations of separable equations.

While the use of learned IEs in sweeping preconditioners is new, the insight that
reflections render DtN very sensitive to perturbations has been published previously in
[PHL20]. Here we extended the discussion from this paper by linking high sensitivity of
DtN to the pole structure of the corresponding dtn functions.

Chapter 8: Sweeping for helioseismology in axisymmetric setting. While the
experiments considered in Chapter 7 are toy problems, which were cooked up to isolate
specific difficulties, this chapter presented an application of sweeping with learned IEs
to a realistic problem from helioseismology. Notwithstanding that violating the tensor-
product structure of the mesh leads to a small loss of performance, the iteration numbers
for the background model are still acceptable. In consistency with the results of Chapter 7
only small perturbations from the separable background can be tolerated. In particular,
the sensitivity peaks around the physically important range of 3.0 mHz, which can be
explained by the presence of strong reflections exemplified in the corresponding dtn func-
tions.

9.2 Outlook

Learned IEs have been developed over the course of the last two years. Neither this time
period nor the scope of this thesis is sufficient to explore their full potential. Below some
open problems and directions for further research are suggested. This list is surely not
exhaustive - various other extensions are conceivable.
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Learned IEs for non-separable problems and efficient linear solvers for helio-
seismology. As discussed previously, sweeping with learned IEs can currently only be
applied to the solar background model or tiny perturbations thereof. This is because
learned IEs can merely represent the DtN operator of the background model, which,
in presence of reflections, differs significantly from the non-separable DtN operator of
the perturbed problem that would actually be required in the sweeping algorithm. To
overcome this issue, learned IEs for non-separable equations need to be developed. In
this case neither DtN nor DtNext can be (fully) diagonalized, respectively fully described
by a scalar dtn or dtnN function. Therefore, we expect that a significantly larger amount
of parameters will have to be included in the optimization problem to obtain a learned
DtN matrix which delivers an accurate approximation of DtN . To keep the costs for
solving the optimization problems feasible, it is desirable to enforce some sparsity struc-
ture between the unknowns. Despite our expectation that the development of learned IEs
for non-separable problems will require considerable efforts, in view of their success for
separable problems involving strong reflections, we regard such an endeavor as justified.

Vector-valued problems and systems: Galbrun’s equation. The scope of this
thesis is limited to scalar equations. Many applications involve several fields which are
vector-valued, e.g. the propagation of electromagnetic waves described by the Maxwell
equations. Since the radiation condition may couple different fields, as for instance the
Silver-Müller radiation condition, the corresponding DtN maps will most likely not allow
for a description through a single (scalar) dtn function. The treatment of such equations
requires new ideas and is an interesting direction for further research.

In the context of helioseismology the most pressing extension would be the develop-
ment of learned IEs for the vector-valued Galbrun’s equation. Recently, well-posedness of
this equation [HH21, Hal21] has been established. Moreover, Halla [Hal21] showed that
the system in the solar atmopshere under the assumption of spherical symmetry and the
Cowling approximation can be reduced to a fourth-order scalar equation for a certain
potential. Although this may allow recourse to the scalar case, non-separable learned IEs
could be required to utilize this reduction step.

Replacing the optimization solver by rational approximation techniques. Ac-
cording to the results of Chapter 3, transparent boundary conditions of tensor-product
type lead to a rational approximation problem (see equation (3.10)) for determining dtnN .
Learned IEs, as introduced in Chapter 4, solve this problem by relying on a non-linear
least squares method, which does not make notable use of the rational nature of dtnN .
Moreover, non-linear least squares solvers are usually not incorporated as a standard
component of finite element packages, which could render learned IEs unattractive for
other researchers. Therefore, it would be beneficial if the learned IE matrices could be
obtained more directly by a rational approximation algorithm. A candidate for this job
could be the recently proposed AAA (adaptive Antoulas–Anderson) algorithm [NST18],
which already received a lot of attention. However, it is not immediately clear how
to apply this algorithm to our problem since it is formulated for rational functions in
barycentric representation which are quotients of two polynomials with exactly the same
degrees. It would be a significant advantage, if we could start directly with the more
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efficient reduced ansatz from (4.14) which setting A00 = B0j = 0, j = 0, . . . , N results in

dtnN(λ) = −
N∑

j=1

A2
0j

Ajj + λ
(9.1)

and infer the matrix entires directly from the algorithm. Note that this requires an
algorithm which is applicable for rational functions which are quotients of polynomials
with degrees N − 1 and N , respectively. A modification of the AAA algorithm which
allows this has been proposed recently by Derevianko and Plonka [DP21]. It would be
very interesting to compare its performance to our current approach based on non-linear
least squares.

Numerical experiments for three-dimensional problems. In this thesis only two
dimensional finite element simulations have been presented. From a theoretical point
of view, the extension of learned IEs to three-dimensional interior domains is straight-
forward. Also, the dtn function for the solar atmosphere is the same in a fully-separable,
axisymmetric or three-dimensional setting. Therefore, for helioseismology one can use
the same learned IE matrices in any case and they deliver always the same accuracy. The
difficulty of three-dimensional simulations rather lies in their increased computational
effort which requires a careful implementation and sufficient computational resources.

Separation beyond elliptical coordinates. A natural generalization of elliptical co-
ordinates exists in three dimensions. Prolate or oblate spheroidal coordinates are ob-
tained by rotating the elliptical coordinate system around a focal or non-focal axis of the
ellipse. The Helmholtz equation in these coordinates is separable into so called spheroidal
wave functions. This may be of interest for the efficient treatment of e.g. cigar-shaped
obstacles.

Extension of well-posedness analysis at continuous level. The well-posedness
analysis for the interior problem with DtN as transparent boundary condition does not
cover the case of elliptical truncation boundaries in which DtN is only separable up to an
isomorphism, which represents a scaling with the length of the normal vector. Likewise,
it was assumed in (C-IV) that the diffusion matrix is proportional to the identity on Γ.
Violation of this assumption would lead to a similar issue. In order to generalize the
analysis it would clearly be desirable to eliminate these assumptions. To this end, the
application of more sophisticasted analytical tools than employed in this thesis, e.g. the
concept of T -coercivity [BCZ10], should be investigated.

Extension of error analysis for transparent boundary conditions of tensor-
product type. The error analysis for tensor-product discretizations of exterior prob-
lems presented in Chapter 3 should be extended in various ways. First and foremost,
the exponential convergence rates have to be extended from compact subsets to the en-
tire spectrum. We presented a corresponding attempt for the Helmholtz equation in
Section 3.3.3, which still contains one factor whose dependence on N is not explicitly
controlled yet, see Remark 3.25. It should be investigated whether the growth bounds on
| dtn(λ)| valid for λ ∈ R+, which follow from Lemma 2.3, can be extended to the regular-
ized dtn reg

Np(λ) function for λ within certain ellipses D(N2α, η) ⊂ C. This would allow to
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conclude global exponential convergence from Proposition 3.24. It should also be men-
tioned that the whole endeavor would be much simpler if stronger rational approximation
results than in Proposition 3.13 could be derived. The shortcoming with the result of
this proposition is its exponential dependence on the length of the interval, respectively
supremum norm of dtn reg

Np . Further exploration of rational approximation theory may help
to overcome these deficits and facilitate the derivation of exponentially fast convergence
rates on a global scale. Our final aim is to extend the fully-discrete convergence result of
Corollary 3.23 to an explicit error estimate in N and the mesh width h.

Relation between poles of dtn and resonances. Several indications for a relation
between the poles of dtn and resonances phenomena can be found in this thesis which
should be explored further. As pointed out in Section 6.1.2, by generalizing the results
of [Tay11, Chapter 9.7] it should be possible to identify poles of dtnVAL-C

(λ̂`, σ̂(ω)) with
respect to the frequency ω as resonances. This would be an interesting theoretical con-
tribution to the area of high-frequency helioseismology. Then again, in the context of
this thesis the poles of dtnVAL-C

with respect to the first argument λ̂` have been the
primary focus of interest. In Remark 2.12 these poles have been characterized as those
complex numbers for which the corresponding ODE problem is not well-posed. Moreover,
in several numerical experiments it was observed also for other dtn functions that the
presence of strong reflections in the medium, which allow for the occurence of resonance
phenomena, pushes the poles closer to the real axis. Adding attenuation to the problem
will in contrast increase the imaginary part of the poles. At present, a sound theoretical
explanation of these phenomena is missing.

Reduction step for learned IEs working uniformly in the wavenumber. Learned
IEs which work for all wavenumbers in a bounded set as introduced in Chapter 5 do not
yet offer the same level of efficiency as their single-wavenumber compatriots from Chap-
ter 4. This stems mainly from adhering to dense learned IE matrices and the large
number of residual blocks which arise from having to fit dtn now also as a function of
the wavenumber. A sparsification step for the learned IE matrices seems inevitable. This
could e.g. be based on a generic ansatz using matrices with a fixed bandwith or by includ-
ing knowledge about the trajectories of poles of dtn into the objective function. If these
attempts to improve efficiency turn out to be successful, then applications to large-scale
resonance problems seem realistic. Another interesting research direction would be the
use of learned IEs in time-domain simulations.

Approximation of dtn in the supremum norm. The objective function for learned
IEs is currently based on a weighted `2-Norm, which is justified according to Theorem 3.20
(ii) and (iii), whereas the approximation error estimate for dtnN functions established in
Section 3.2.3 holds in the supremum norm. To eliminate this discrepancy2 it would be
interesting to solve the minimization problem for learned IEs in the supremum norm.
In this regard, we may benefit from techniques developed in the field of control theory
since the minimization of analytic functions in the supremum norm is a central part of
so called H∞ methods used in this field, see e.g. [ZD98]. The role of the dtnN function
is played here by the so-called transfer function which relates inputs and outputs of the
system which should be controlled. Often the transfer function seems to have a similar

2On finite subsets of the spectrum this is not really an issue due to equivalence of norms.
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Schur complement structure as dtnN which could facilitate the use of these techniques
for our purpose.

Learned perfectly matched layers. A considerable amount of research has been
carried out on improving the PML method, for example, on optimizing the profile of
the absorption function [BHNPR07, BHNPR08]. In light of the results from Chapter 3,
the accuracy of a tensor-product PML can be assessed in terms of how accurate the
dtnN{A,B} function approximates dtn . The matrices A and B have been explicitly
derived in Appendix C.1 in terms of the PML parameters, e.g. the absorption profile and
the thickness of the extension layer. To optimize the PML parameters it therefore seems
natural to proceed analogously as for learned IEs. One could set up a minimization
problem as in (4.2)-(4.3), yet, instead of optimizing for the matrix entries of A and
B, one would optimize for the PML parameters that minimize the misfit. It should
be kept in mind though that this approach is still limited by the requirement that the
underlying medium allows for an analytic continuation of the solution into the complex
plane. Therefore, it will not be able to reach the flexibility of learned IEs.
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Appendix A

Tools from functional analysis and
theory of PDEs

This appendix recalls some basic analytical tools needed in the analysis presented in
Chapter 2 and Chapter 3.

A.1 Functional analysis

Definition A.1. For two Hilbert spaces X and Y denote the set of bounded linear oper-
ators mapping from X to Y by L (X, Y ).

For T ∈ L (X, Y ) and y ∈ Y consider the problem of finding x ∈ X such that

Tx = y. (A.1)

If T is invertible with T−1 ∈ L (Y,X), then clearly x = T−1y and (A.1) is well-posed.
The Fredholm alternative covers the more general case when T is only invertible up to a
compact perturbation.

Theorem A.2 (Fredholm alternative). Let T = S−K, where K ∈ L (X, Y ) is compact
and S ∈ L (X, Y ) bijective with S−1 ∈ L (Y,X). Then one of the following holds.

• Either the equation (A.1) is uniquely solvable for any y ∈ Y .

• Or, it holds that 0 < dim(ker(T )) = dim(ker(T ∗)) <∞ and (A.1) has a solution if
and only if the right hand side y ∈ Y fulfills the compatability condition

(y, x)Y = 0 for all x ∈ ker(T ∗).

Proof. Upon multiplying (A.1) by S−1 and using the ideal property of compact operators
we can assume that S = Id. The statement for this case is shown in [Bre11, Theorem
6.6] or [Eva98, Appendix D, Theorem 5].

A.2 Tools from PDE theory

First we introduce a right inverse for the trace operator.
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Theorem A.3 (Right inverse of trace operator). Let Ω ⊂ Rd be a bounded Lipschitz do-
main. There exists a bounded linear operator Z : H1/2(∂Ω)→ H1(Ω) such that tr ◦Zg = g
for all g ∈ H1/2(∂Ω).

Proof. See [Wlo87, Theorem 8.8] or [McL00, Thm. 3.37].

Functions in H2(Ω) have a normal trace in H1/2(Ω) if ∂Ω is sufficiently regular.
Green’s first identity also allows to define the normal trace of a function u ∈ H1(Ω)
under the additional requirement that ∆u ∈ L2(Ω).

Proposition A.4 (Weak normal derivative). Let Ω ⊂ Rd be a bounded Lipschitz domain
and let n denote the exterior normal vector on ∂Ω. If u ∈ H1(Ω) and ∆u ∈ L2(Ω), then

〈
∂u

∂n
, v

〉

∂Ω

:=

∫

Ω

∇u∇Zv + ∆uZv dx (A.2)

defines a weak normal derivative in H−1/2(∂Ω) and

∥∥∥∥
∂u

∂n

∥∥∥∥
H−1/2(∂Ω)

≤ ‖Z‖
(
‖u‖H1(Ω) + ‖∆u‖L2(Ω)

)
. (A.3)

For u ∈ C2(Ω̄) this definition coincides with the usual normal derivative.

Proof. The Green’s formula (A.2) and the estimate1 (A.3) are proven in [McL00, Lemma
4.3] (in fact, for general second order operators in divergence form and under slightly
weaker regularity assumptions). Additionally, the statement that definition (A.2) coin-
cides for u ∈ C2(Ω̄) with the usual normal derivative follows from Green’s first identity
and density of C1(Ω̄) in H1(Ω).

The uniqueness proof given in Proposition 2.15 appeals to the unique continuation
principle for elliptic PDEs in the following form.

Theorem A.5 (Unique continuation principle). Let L be an elliptic partial differen-
tial operator of order two with C∞ real-valued coefficients in the principal part and L∞loc

complex-valued lower-order terms in some open connected subset Ω of Rd. If Ω0 is a
non-empty open connected subset of Ω, if u is an H1

loc(Ω) function such that Lu belongs
to L2

loc(Ω) and such that

|Lu| ≤ C(|u|+ |∇u|) in Ω, u|Ω0
= 0,

then u = 0 in Ω.

Proof. See [Ler19, Thm. 3.8.].

1In the reference there is a generic constant C on the right hand side of (A.3). However, in our case
it is easy to see that C = ‖Z‖.

186



Appendix B

Spectral characterization of Sobolev
spaces on Γ

Let Γ be the outer boundary of some bounded domain Ωint ⊂ Rd. We assume that Γ
admits the structure of a smooth d−1-dimensional closed manifold. The DtN operators,
which are the central object of this thesis, operate on certain function spaces defined on
Γ. To describe the smoothness properties of DtN and connect to the interior PDE posed
on Ωint, it is natural to work with traces of functions defined in Sobolev spaces on the
interior domain. Different options to define such trace Sobolev spaces exist. A common
approach, e.g. presented in [LM72, Chapter 1, Section 7.3], is to cover Γ by a partition
of unity and define the trace space based on Hs(Rd−1) by employing local coordinates.
The resulting spaces are denoted Hs(Γ) in the following.

Even though this definition might be convenient to work with in many situations, it
is not well-suited for describing the smoothness properties of DtN . Recall that DtN
is defined in terms of an elliptic, self-adjoint, second order differential operator K̃Γ =
M−1/2

Γ KΓM−1/2
Γ with compact resolvent. Let (λ`, w`) be the corresponding eigenbasis.

In particular,
K̃Γw` = λ`w`, ` ∈ N0.

The eigenfunctions {w`} are smooth, form a complete orthonormal system of L2(Γ) and
the eigenvalues grow towards infinity

|λ0| ≤ |λ1| ≤ . . .→∞,

see e.g. [Gil95, Lemma 1.6.3]. Moreover, the ellipticity condition ensures that the spec-

trum is bounded from below (see [Gil95, Lemma 1.6.4]). If K̃Γ = −∆Γ is the Laplace-
Beltrami operator, then the lower bound is in fact zero, yet in view of a separation
with respect to elliptical coordinates in which part of the spectrum can be negative (see
Fig. 2.5b) we should treat the general case here. In the following, we want to show that
an equivalent norm on Hs(Γ) is given by

u 7→
( ∞∑

`=0

(1 + |λ`|)s |〈u,w`〉Γ|2
)1/2

. (B.1)

This definition is significantly more convenient to work with for analyzing DtN . Equation
(B.1) is a generalization of [LM72, Remark 7.6], which provides an intrinsic definition of
Hs(Γ) in terms of the Laplace-Beltrami operator on Γ. Its derivation requires some
preliminaries.
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B.1 Hilbert space interpolation

This section collects some basic facts about Hilbert space interpolation extracted from
[LM72, Chapter 1, Section 2.1].

• Let X, Y be two separable Hilbert spaces with inner products (·, ·)X and (·, ·)Y
respectively such that

X ⊂ Y, X dense in Y with continuous injection. (B.2)

• We want to define a self-adjoint, positive (spectrum in [0,∞)) unbounded operator

Λ : Dom(Λ)→ Y, Dom(Λ) := {u ∈ Y | Λu ∈ Y }.

• This can be achieved by the following construction. Let Dom(S) denote the set of
u’s such that

v 7→ (u, v)X , v ∈ X,
is continuous with respect to the topology induced by Y . Then an unbounded
operator S on Y with domain Dom(S) can be defined by

(Su, v)Y := (u, v)X .

The operator S is self-adjoint and strictly positive

(Sv, v) = ‖v‖2
X & ‖v‖2

Y

owing to the continuous injection X ↪→ Y . Then one can set

Λ = S1/2, (B.3)

which is self-adjoint, positive in Y and has domain X.

Definition B.1. Under assumption (B.2) and with definition (B.3) define

[X, Y ]θ := Dom(Λ1−θ), 0 ≤ θ ≤ 1.

The space [X, Y ]θ is endowed with the graph norm of Λ1−θ, i.e

u 7→
(
‖u‖2

Y + ‖Λ1−θu‖2
Y

)1/2
.

The following result will be used later: If Λ1 and Λ2 are two positive, self-adjoint
operators in Y with Dom(Λ1) = Dom(Λ2) = X, then

Dom(Λ1−θ
1 ) = Dom(Λ1−θ

2 )

and the induced graph norms are equivalent. This means that the space [X, Y ]θ does not
depend on the concrete operator Λ used for its definition, yet is linked intrinsically to X
and Y .

The following result describes interpolation between the trace spaces:

Theorem B.2. For all s1, s2 in R with s1 > s2 it holds that

[Hs1(Γ), Hs2(Γ)]θ = H(1−θ)s1+θs2(Γ), 0 ≤ θ ≤ 1,

with equivalent norms.

Proof. See [LM72, Theorem 7.7 of Chapter 1].
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B.2 Spectral characterization of Hs(Γ)

We apply the interpolation theory from the previous section to X = Hs(Γ) for some
s > 0 and Y = L2(Γ). Note that assumption (B.2) is fulfilled.

• An appropriate operator Λ can be defined as a regularized version of K̃Γ, i.e.

Λ = K̃Γ + cId,

where c > 0 is large enough so that Λ is strictly positive, i.e. ‖Λu‖L2(Γ) & ‖u‖L2(Γ).

This is possible since the spectrum of K̃Γ is bounded from below.

• Let m ∈ N. Then Λm is an elliptic differential operator of order 2m. According to1

[Gil95, Lemma 1.3.6 (c)], an equivalent norm on H2m(Γ) is given by

‖u‖H2m(Γ) ' ‖u‖2
L2(Γ) + ‖Λmu‖2

L2(Γ). (B.4)

Since Λm is strictly positive and continuous from H2m(Γ) → L2(Γ), it also holds
that

‖u‖2
L2(Γ) . ‖Λmu‖2

L2(Γ) . ‖u‖2
H2m(Γ).

Therefore, (B.4) implies that

H2m(Γ) = Dom(Λm).

• Applying the interpolation theory introduced in the previous section toX = H2m(Γ)
and Y = L2(Γ) then yields

[H2m(Γ), L2(Γ)]θ = Dom(Λ(1−θ)m), 0 ≤ θ ≤ 1.

• On the other hand,

[H2m(Γ), L2(Γ)]θ = H2m(1−θ)(Γ), 0 ≤ θ ≤ 1,

according to Theorem B.2.

• Combining the previous two equations leads to

H2m(1−θ)(Γ) = Dom(Λ(1−θ)m), for m ∈ N, 0 ≤ θ ≤ 1.

Since m can be any arbitrary positive integer

Hs(Γ) = Dom(Λs/2)

for any s > 0 follows. As

Λs/2u =
∞∑

`=0

(c0 + λ`)
s/2〈u,w`〉Γw`,

an equivalent norm on Hs(Γ) is given by

‖u‖2
Hs(Γ) '

∞∑

`=0

(c0 + λ`)
s |〈u,w`〉Γ|2 '

∞∑

`=0

(1 + |λ`|)s |〈u,w`〉Γ|2, (B.5)

where the second equivalence follows by a short calculation.

1This result is valid for pseudo-differential operators on closed Riemannian manifolds.
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• We can extend the norm (B.5) to s ∈ R and identify the resulting spaces H−s(Γ)
for s > 0 with the dual space [Hs(Γ)]∗ in the usual manner via the scalar product
on L2(Γ). Indeed, let l ∈ [Hs(Γ)]∗ be given. By the Riesz representation theorem
there exists u ∈ Hs(Γ) such that l(v) = 〈u, v〉Hs(Γ) for all v ∈ Hs(Γ). Define

ũ :=
∞∑

`=0

〈u,w`〉Γ (1 + |λ`|)sw`.

Then

‖ũ‖2
H−s(Γ) =

∞∑

`=0

(1 + |λ`|)2s (1 + |λ`|)−s |〈u,w`〉Γ|2 = ‖u‖2
Hs(Γ),

so ũ ∈ H−s(Γ) and

l(v) = 〈u, v〉Hs(Γ) =
∞∑

`=0

〈u,w`〉Γ (1 + |λ`|)s 〈v, w`〉Γ = 〈ũ, v〉Γ. (B.6)

That is, any l ∈ [Hs(Γ)]∗ is of the form (B.6) for some ũ ∈ H−s(Γ) and the estimate

|l(v)| ≤ ‖ũ‖H−s(Γ)‖v‖Hs(Γ)

holds.
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Appendix C

Popular transparent boundary
conditions of tensor-product type

This appendix presents a survey on transparent boundary conditions for the constant
coefficient Helmholtz equation (2.27) in the exterior of a ball with Sommerfeld radiation
condition at infinity as introduced in Section 2.2.1. For ease of notation, the mapping Ψ
is omitted here, so that the equation to be treated is

(
−r1−d∂r(r

d−1∂r)−
a2

r2
∆Γ − k2 Id

)
u(r, x̂) = 0, r ≥ a, (C.1)

lim
r→∞

r(d−1)/2

(
∂u

∂r
− iku

)
= 0.

The wavenumber k is assumed to be a positive constant. The aim is to demonstrate
that several popular transparent boundary conditions (e.g. tensor-product PMLs and
classical infinite elements) can be described in terms of the tensor-product framework
introduced in Section 3.1. To this end, the matrices A and B in the ansatz (3.7) have
to be identified. By means of (3.10) this immediately yields their corresponding dtnN
function. According to the results of Section 3.3, the approximation of dtn achieved
with dtnN is the decisive measure of accuracy for any transparent boundary condition of
tensor-product type. This serves as motivation for Section 3.4 in which a comparative
study of the considered conditions based on this criterion is conducted.

C.1 Tensor-product PML

The technique of Perfectly Matched Layers (PML) has been introduced by Berenger
[Ber94]. The basic idea is to truncate the unbounded domain by an artificial layer in which
the waves are gradually attenuated. In the considered setting of a separable geometry,
instead of the exterior domain [a,∞)×Γ a finite domain [a, η)×Γ is considered for η > a.
Within the PML layer, the following transformation is applied to the radial coordinate:

r̃ = r +

r∫

a

iσ(t). (C.2)

Here, σ is the absorption coefficient (usually depending on the wavenumber). Apparently,
this procedure can be interpreted as a complex coodinate stretching. It is based on the
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requirement that the coefficients involved in A and B admit an analytic extension into the
complex domain. The complex coordinate stretching only affects the operators A and B
while the tangential operators KΓ and MΓ remain unchanged. In particular, the tensor-
product structure at the continuous level is preserved. The corresponding matrices A and
B can be derived as follows, see also reference [CM98] in which the PML formulation in
curvilinear coordinates has been introduced originally.

Define the auxiliary functions

s(r) := (1 + iσ(r))−1 , s̃(r) := 1 +
i

r

r∫

a

iσ(t). (C.3)

Note that rs̃ = r̃ and
∂r̃

∂r
= 1 + iσ(r) = s−1.

Therefore,

−r̃1−d∂r̃(r̃
d−1∂r̃) = r1−ds̃1−ds∂r(r

d−1s̃d−1s∂r)

and (C.1) in transformed coordinates is given by

(
−r1−d∂r(r

d−1s̃d−1s∂r)−
a2

s̃3−dr2
∆Γ −

k2

s̃1−ds

)
u = 0.

To derive a weak formulation, this equation is multiplied with a test function v̄ which van-
ishes at r = η. Using that the measure is given by (r/a)d−1drdx̂, where dx̂ = ad−1dSd−1

in terms of the measure on Sd−1, integration by parts on Γ yields:

η∫

a

∫

Γ

{
−∂r(rd−1s̃d−1s∂ru)v̄ +

a2rd−1

s̃3−dsr2
∇Γu∇Γv̄ −

k2rd−1

s̃1−ds
uv̄

}
1

ad−1
drdx̂ = 0.

Integration by parts with respect to r leads to

−
η∫

a

∫

Γ

∂r(r
d−1s̃d−1s∂ru)v̄

1

ad−1
drdx̂

=

η∫

a

∫

Γ

s̃d−1s∂ru∂rv̄
(r
a

)d−1

drdx̂−
∫

Γ

DtN (u)v̄�r=adx̂,

with DtN (u) = −(∂ru)�r=a. Here s(a) = s̃(a) = 1 has been used. It follows that

a(u, v) =

∫

Γ

DtN (u)v̄�r=adx̂ (C.4)

with

a(u, v) =

η∫

a

∫

Γ

{
s̃d−1s∂ru∂rv̄ +

a2

s̃3−dsr2
∇Γu∇Γv̄ −

k2

s̃1−ds
uv̄

}(r
a

)d−1

drdx̂.
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In principle, the full spectrum of finite element techniques (hp-FEM, adaptivity, etc.)
could be applied for discretizing this sesquilinearform. Here, we use a tensor-product
discretization (with real-valued shaped functions)

ψα(r, x̂) = gµ(r)φi(x̂), α = (i, µ) ∈ {1, . . . , nΓ} × {0, . . . , N}, (C.5)

to fit the PML formulation into the framework (3.7). Later in this thesis, cf. Section 4.2.2,
also adaptive discretization techniques will be considered which cannot be described in
the tensor-product form (3.7). The choice (C.5) allows to write the system matrix as

Lαβ = a(ψβ, ψα) = a(ψα, ψβ)

=




η∫

a

s̃d−1s∂rgµ∂rgν

(r
a

)d−1

dr − k2

η∫

a

1

s̃1−ds
gµgν

(r
a

)d−1

dr



∫

Γ

φiφj dx̂

+




η∫

a

a2

s̃3−dsr2
gµgν

(r
a

)d−1

dr



∫

Γ

∇Γφi∇Γφj dx̂ (C.6)

= A(k, σ)µ,νMij +B(σ)µνKij,

with A(k, σ)µ,ν = A(1)(σ)µ,ν + k2A(2)(σ)µ,ν . For wavenumber independent scaling profiles
σ, the matrices are independent of k.

It follows that (C.4) transforms into the linear system
[
LΓΓ LΓE

LEΓ LEE

][
uΓ

uE

]
=

[
M DtNN uΓ

0

]
, (C.7)

with the left hand side being of the tensor-product form (3.7) and DtNN representing
the discrete approximation of DtN . By eliminating the exterior degrees of freedom, we
obtain that DtNN is given by the Schur complement

DtNN uΓ = M−1
(
LΓΓ − LΓEL

−1
EELEΓ

)
uΓ,

which is in agreement with formula (3.5).

C.2 Classical infinite elements

Whereas PMLs work with standard finite element shape functions and realize the radia-
tion condition by means of a coordinate stretching, classical infinite elements incorporate
the desired asymptotic behavior into the trial space by using specialized shape functions,
see [Ast00] for a review. The variational formulation of (C.1) is usually first derived in a
bounded exterior domain, e.g. in a ≤ r ≤ R where R > a is finite. A radiation condition
∂ru− iku = w is imposed at r = R.

The bilinear and linear form of the variational formulation are given by

a(u, v) = lim
R→∞




R∫

a

∫

Γ

{
∂ru∂rv +

a2

r2
∇Γu∇Γv − k2uv

}(r
a

)d−1

drdx̂−
∫

ΓR

ikuv dΓR


 ,

(C.8)

f(v) =

∫

Γ

DtN (u)v dx̂+ lim
R→∞

∫

ΓR

wv dΓR. (C.9)
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To compute the matrix of the linear system, the trial and test functions (C.5) are
inserted and the limit R → ∞ is taken. The system matrix can be written as before in
the form (3.7), i.e. Lαβ = a(ψβ, ψα) = Aµ,νMij +BµνKij, with

Aµν = lim
R→∞




R∫

a

(
∂rgν∂rgµ − k2gνgµ

) (r
a

)d−1

dr − ikgν(R)gµ(R)

(
R

a

)d−1

 (C.10)

Bµν = lim
R→∞

R∫

a

a2

r2
gνgµ

(r
a

)d−1

dr (C.11)

for ν = 0, . . . , N and µ = 0, . . . , N . To calculate the matrix entries, the shape functions
have to be fixed. Different choices are possible and give rise to different infinite elements.
Two of the most popular variants for d = 3 are presented here. In a comparative study
of different formulations presented in [Ger98], these two approaches have emerged as the
most suitable for exterior problems.

The trial functions in both formulations are given by

g0(r) =
(a
r

)
eik(r−a), gν(r) =

(a
r

)ν+1

eik(r−a) − g0(r), ν ≥ 1,

to represent the correct asymptotic decay as inferred from the Atkinson-Wilcox expansion
(C.18). Two possibilities of choosing the test functions are discussed separately.

C.2.1 Unconjugated Burnett formulation

In the unconjugated Burnett formulation the test function is chosen equal to the trial
function, i.e.

g0(r) =
(a
r

)
eik(r−a), gµ(r) =

(a
r

)µ+1

eik(r−a) − g0(r), µ ≥ 1.

The matrix entries of Aµ,ν and Bµν can be described in terms of the integrals

Ij :=

∞∫

a

(a
r

)j
e2ik(r−a) 1

a
dr, (C.12)

for j = 1, 2, . . .. Special care is required to treat the case ν = µ = 0 since some of the
integrals are undefined as R→∞. However, after calculating the integrals on [a,R] the
oscillatory components, which would diverge as R →∞, actually cancel each other out,
and a finite value is obtained. Finally, one obtains

Aµ,ν =





J00 (µ = 0, ν = 0)

J0ν − J00 (µ = 0, ν ≥ 1)

Jµ0 − J00 (µ ≥ 1, ν = 0)

Jµν − J0ν − Jµ0 + J00 (µ ≥ 1, ν ≥ 1)

(C.13)

Bµν = a





I2 (µ = 0, ν = 0)

Iν+2 − I2 (µ = 0, ν ≥ 1)

Iµ+2 − I2 (µ ≥ 1, ν = 0)

Iν+µ+2 − Iν+2 − Iµ+2 + I2 (µ ≥ 1, ν ≥ 1)

(C.14)
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with

Jµν =

{
1
a
− ik (µ = 0, ν = 0)

(µ+1)(ν+1)
a

Iµ+ν+2 − ik(µ+ ν + 2)Iµ+ν+1 − 2k2aIµ+ν (µ 6= 0, ν 6= 0).

The integrals Ij can be computed by using a recursion relation [Bur94]:

Ij =
2ika

j − 1
Ij−1 +

1

j − 1
, j ≥ 2,

I1 = e−2ika
[
−Ci(2ka)− i Si(2ka) + i

π

2

]
,

where Si and Ci are the well-known sine and cosine integrals, see [AS64, Chapter 5].

C.2.2 Conjugated Astley-Leis formulation

The test function in the conjugated Astley-Leis formulation is chosen as

g0(r) =
(a
r

)3

e−ik(r−a), gµ(r) =
(a
r

)µ+3

e−ik(r−a) − g0(r), µ ≥ 1.

With this choice the oscillatory parts of the test and trial functions cancel each other out.
Thanks to the weighting factor 1/r2, all integrals are well-defined. The matrix entries
can be written in terms of elementary functions:

Aµν =





R00 (µ = 0, ν = 0)

R0ν −R00 (µ = 0, ν ≥ 1)

Rµ0 −R00 (µ ≥ 1, ν = 0)

Rµν −R0ν −Rµ0 +R00 (µ ≥ 1, ν ≥ 1)

(C.15)

Bµν = a2





Ql=2
00 (µ = 0, ν = 0)

Ql=2
0ν −Ql=2

00 (µ = 0, ν ≥ 1)

Ql=2
µ0 −Ql=2

00 (µ ≥ 1, ν = 0)

Ql=2
µν −Ql=2

0ν −Ql=2
µ0 +Ql=2

00 (µ ≥ 1, ν ≥ 1)

(C.16)

for

Ql
µν :=

a−l+1

ν + µ+ l + 1
, Rµν := −ik(µ+ 2− ν)Ql=1

µν + (ν + 1)(µ+ 3)Ql=2
µν .

Since this ansatz is linear in ik, it can be extended to solve the wave equation in the
time domain [Ast96, ACC98].

In both approaches the term on the right hand side in (C.9) containing the unknown
function w = O(R−2) vanishes as R → ∞, so that the familiar relation between DtNN

and Schur complement (3.5) is recovered at the discrete level.

C.3 Hardy Space Infinite Elements

One of the main difficulties in designing methods for wave equations posed in unbounded
domains is the appropriate integration of a radiation condition which selects outgoing
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waves. Classical infinite element methods proceed by matching the series expansion
of outgoing waves. Hardy Space Infinite Elements (HSIEs) introduced by Hohage and
Nannen [HN09] choose a different approach. They are based on the pole condition [SD95,
HSZ03a, HSZ03b], which characterizes outgoing waves by means of the Laplace transform.
The basic idea can be illustrated in the one-dimensional example

−u′′(r)− k2u(r) = 0 r ≥ a.

The general solution is of the form

u(r) = C+e
ikr + C−e

−ikr,

for constants C+ and C−. Here C+e
ikr corresponds to the outgoing and C−e−ikr to the

incoming solution. Taking the Laplace transform

(L f)(s) :=

∞∫

0

e−srf(r) dr, Re(s) > 0,

of this equation yields

(L u)(s) =
C+

s− ik +
C−
s+ ik

, Re(s) > 0.

This means that u is outgoing if and only if L u has no pole in the lower complex half-
plane. Actually, L u can be extended holomorphically to C\{+ik,−ik} and u is outgoing
if and only if L u belongs to the Hardy space H−(R) consisting of those square integrable
functions which are boundary values of holomorphic functions in the lower half-plane.

The transformed equation lends itself to a Galerkin discretization by using finite
dimensional subspaces of H−(R). In practice, an additional transformation to the unit
disk is first applied because the corresponding space on the disk admits a convenient
orthonormal basis. The HSIE method is thus a Galerkin method, albeit using a rather
exotic variational formulation and unfamiliar spaces.

While using the HSIE for problem (C.1), the Laplace transform is only applied in the
radial coordinate. To simplify the derivation of the variational formulation in the exterior
domain, some rescaling is helpful. If the solution is sought in the form

ũ(r̃, x̂) = (r̃ + 1)(d−1)/2u((r̃ + 1)x̂),

for the radial coordinate r̃ := |x|/a and x̂ ∈ Γ, the PDE transforms to

− 1

a
∂2
r̃ ũ−

(
ak2 +

Cd
a

+
a

(r̃ + 1)2
∆Γ

)
ũ = 0 (C.17)

for Cd = (d− 1)(3− d)/4.
It holds that:

(∂r̃ũ)�r̃=0 =

(
d− 1

2

)
u�Γ − aDtN (u).

Therefore, multiplying (C.17) by a suitable test function ṽ and integrating by parts
leads (cf. [HN09]) to:
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∫

Γ

DtN (u)vdx̂ =
(d− 1)

2a

∫

Γ

uv dx̂+

∞∫

0

∫

Γ

1

a
∂r̃ũ∂r̃ṽ drdx̂

+ a

∞∫

0

∫

Γ

(∇Γũ∇Γṽ

(r̃ + 1)2
− k2ũṽ − Cd

a2

ũṽ

(r̃ + 1)2

)
drdx̂.

The bilinear form on the right hand side is then transformed to the corresponding
Hardy space on the unit disk and discretized in the radial coordinate with respect to a
basis thereof. In the tangential coordinate a standard finite element discretization on Γ
is employed. Such a tensor-product discretization then again leads to a linear system of
the form (3.7). According to reference [HN09], the radial matrices are given by

A = A(1) − k2A(2),

A(1) =
d− 1

2a

(
1

0

)
− 2iκ0

a
T TN,+TN,+ −

2Cdi

κ0a
T TN,−D−2

N TN,−,

A(2) =
2ai

κ0

T TN,−TN,−, B =
2ai

κ0

T TN,−D−2
N TN,−,

with the tridiagonal matrices

DN = id(N+1)×(N+1) +
1

2iκ0




−1 1

1 −3 2

2 −5 3
. . . . . . . . .

N −2N − 1




and

TN,± =
1

2




1 ±1

1 ±1
. . . . . .

1 ±1




Here, κ0 represents a tuning parameter. For scattering problems it is usually chosen
proportional to the wavenumber.

C.4 Local absorbing boundary conditions

The previously discussed techniques involve some artificial extension of the computa-
tional domain beyond the truncation boundary. Local absorbing boundary conditions,
in contrast, are implementable directly on the coupling boundary. To this end, an ap-
proximate relation between the DtN map and the solution on the coupling boundary,
which may include derivatives, is employed. Such relations are often derived from exact
or asymptotic expansions of the solution. As a popular representative of the class of
local absorbing boundary conditions the first and second order conditions from Bayliss,
Gunzburger and Turkel [BGT82] will be discussed here.
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The derivation of these conditions in the exterior of a sphere can be sketched as
follows (see [BGT82] for details) . The solution of the Helmholtz equation fulfilling the
Sommerfeld radiation condition admits the Atkinson-Wilcox expansion

u(r, x̂) =
eikr

kr

∞∑

j=0

Fj(x̂)

(kr)j
, (C.18)

with smooth functions Fj. The series and its term by term derivatives converge absolutely
and uniformly in the exterior of the sphere [Wil56]. The idea is to derive a differential
relation on the coupling boundary which fits the computed solution to the first m terms
of (C.18). The sequence of operators defined by

B1u =

(
∂

∂r
− ik +

1

r

)
u, Bmu =

(
∂

∂r
− ik +

2m− 1

r

)
Bm−1u (C.19)

annihilates the first m terms of the expansion (C.18). This implies that

(Bmu)�r=a= O
(

1

a2m+1

)
. (C.20)

For computational efficiency it would be desirable to choose m large. Otherwise, the
coupling boundary has to be placed very far away from the scatterer to obtain an accurate
solution which requires a large computational domain. At first sight, however, only the
lowest order condition B1u = 0, which can be written as ∂ru = (ik − 1/r)u, seems
straightforward to implement as the other conditions involve higher order derivates in r.
Nevertheless, the second order condition can be written as

DtN (u) = −
(
∂u

∂r

)
�r=a= A(a, k)u−B(a, k)∆Γu (C.21)

by using the Helmholtz equation in spherical coordinates to replace the second deriva-
tives with respect to r by tangential derivates. The functions A(a, k), B(a, k) are given
in Table C.1. The conditions for m > 2 are more complicated to realize since stan-

d = 2 d = 3

m = 1 m = 2 m = 1 m = 2

A(a, ω) α− 1
2a

(
3

8a2
− 3ik

2a
− k2

)
/α α α

B(a, ω) 0 a2

2a2α
0 a2

2a2α

Table C.1: Coefficients of the absorbing boundary conditions of [BGT82] in formula
(C.21) for dimension d and order m. Here α(k, r) = −ik + 1/r.

dard H1-conforming finite elements lack the required smoothness on Γ to allow for an
implementation of the higher-order tangential derivatives. Although higher-order local
absorbing boundary conditions have been realized based on special finite elements provid-
ing more regularity on the coupling boundary [GPK97] or introducing auxiliary variables
[Giv01], they seem to be rarely used in practice.

The conditions of [BGT82] for the two-dimensional case are derived analogously ex-
cept that the exact expansion (C.18) is replaced by an asymptotic expansion in polar
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coordinates. They can also be written in the form (C.21) with coefficients provided in
Table C.1.

In the finite element method equation (C.21) is implemented as

∫

Γ

DtN (u)v�r=a dx̂ =

∫

Γ

A(a, ω)uv +B(a, k)a2∇Γu∇Γv dx̂.

Hence, local aborbing boundary conditions also lead to a linear system of the form
(C.7) with

LΓΓ = A(a, k)M +B(a, k)a2K, LΓE = LEΓ = LEE = 0.
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Appendix D

Solving the minimization problem
for learned IEs

This appendix provides some details on the solution of the optimization problem for
learned IEs. Both the minimization problem for fixed wavenumber (4.2)-(4.3) and the
one including several wavenumbers (5.5)-(5.6) are of non-linear least squares type. The
Levenberg-Marquardt algorithm is one of the most popular approaches for solving such
problems. It is described in detail in standard texts on numerical optimization, see e.g.
[NW06, Kel99]. Various open source implementations are readily available of which we
use the ceres-solver [AMO]. These implementations usually require from the user
the implementation of the cost function and its Jacobian, which will be calculated in
this appendix. For the reduced symmetric ansatz involving a fixed wavenumber this is
relatively simple and will be covered in Appendix D.1. Such a description has already
been provided in [HLP21] for the slightly different ansatz we used in this publication.
The general case of several wavenumbers presented in Appendix D.2 is somewhat more
invovled, yet still manageable.

D.1 Reduced symmetric ansatz for single wavenum-

bers

Appendix D.1.1 describes the objective function and its Jacobian for A,B ∈ C(N+1)×(N+1)

with N being fixed. In practice, one usually solves the optimization problem successively
for increasing N = 0, 1, . . .. The result from iteration N should then be used to construct
a good initial guess for iteration N + 1 as described in subsection Appendix D.1.1.

D.1.1 Solving the optimization problem for a fixed N

The objective function is given by

J(A,B) =
1

2

∑
`
ω2
` |f`|2, (D.1)

with f`(A,B) := dtn(λ`)−dtnN(λ`) and dtnN(λ`) as defined in (4.14). The cost functions
f` and their gradients depend on the parameters

{A0j}Nj=0 ∪ {Ajj}Nj=1 ∪ {B0j}Nj=0.
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A potential difficulty could arise from the fact that A and B are complex matri-
ces while the available implementation of the Levenberg-Marquardt algorithm might be
limited to real parameters. However, this is easily resolved by splitting into real and
imaginary parts

Anm = ReAnm + i ImAnm

and treating ReAnm and ImAnm as two separate real parameters.
The gradients of the cost functions can easily be calculated analytically:

∂f`
∂ ReA00

= −1,
∂f`

∂ ReB00

= −λ`.

For n ≥ 1:

∂f`
∂ ReA0n

= 2
(A0n + λ`B0n)

(Ann + λ`)
,

∂f`
∂ ReB0n

= 2λ`
(A0n + λ`B0n)

(Ann + λ`)
,

and
∂f`

∂ ReAnn
= −(A0n + λ`B0n)2

(Ann + λ`)
2 .

The derivatives with respect to the imaginary part can be obtained from

∂f`
∂ ImAnm

= i
∂f`

∂ ReAnm
,

∂f`
∂ ImBnm

= i
∂f`

∂ ReBnm

.

Please note that the cost functions are complex-valued, so depending on the implemen-
tation they may have to be split into real and imaginary parts as well.

Successive learning

A description of the whole pipeline starting with the computation of dtn(λ`) is given in
Algorithm 3.

Algorithm 3: Successive learning of matrices A and B

1: Define Nmax, Lmax

2: for ` = 0 : Lmax do
3: Compute dtn(λ`) by solving (2.12a)-(2.12b).
4: end for
5: Initialize Ã ∈ C, B̃ ∈ C randomly.
6: for N = 0 : Nmax do
7: Obtain A,B ∈ C(N+1)×(N+1) by minimizing (D.1) with Levenberg-Marquardt

using Ã, B̃ as initial guess. The gradients for the cost function have been
described in Appendix D.1.1.

8: Prepare new initial guess: Ã, B̃ ∈ C(N+2)×(N+2).
9: Initialize upper block of Ã, B̃ by A,B.

10: Set ÃN+1,N+1 to one or a good guess for the poles if available.
11: Fill Ã0,N+1 and B̃0,N+1 with small (nonzero) random numbers.
12: end for
13: return Learned matrices A,B for N = 0 : Nmax.

A few additional remarks are given below.
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• Often there is an analytic reference solution for dtn(λ`) available so that the solution
of the ODEs can be skipped.

• The purpose of the loop over N in Algorithm 3 is to provide a good initial guess
for the optimization. Basically, the learned matrices from step N are reused as an
initial guess for step N + 1. With this technique the learned dtnN+1(λ`)-function in
step N + 1 starts at the value of the minimizer of step N plus the additional term

(Ã0,N+1 + λ`B̃0,N+1)(Ã0,N+1 + λ`B̃0,N+1)

ÃN+1,N+1 + λ`
.

In order to prevent the cost function from starting too far away from the minimizer
of the previous step, this contribution should be small. This is the motivation for
filling Ã0,N+1 and B̃0,N+1 with small random numbers. These should be nonzero
to avoid getting stuck at the minimizer of step N . If a good guess for the poles is
available then setting −ÃN+1,N+1 equal to one of these poles can be beneficial.

D.2 Full ansatz for uniform approximation in wavenum-

ber

Consider misfit functions of the form

J(A(1), A(2), B) =
1

2

∑
`

∑
k
ω`,k|f`,k|2,

with

f`,k = dtn(λ`, k)− SΓΓ(`, k) + SΓE(`, k)SEE(`, k)SEΓ(`, k)

= dtn(λ`, k)− SΓΓ +
N∑

j′=1

N∑

j=1

S0j′
[
S−1
EE

]
j′−1,j−1

Sj0

for
S(`, k) = A(1) + g(k)A(2) + λ`B.

Such objective functions arise in the minimization problem (5.5)-(5.6). The problem
(4.2)-(4.3) for a fixed wavenumber is covered as a special case by setting g(k) = 0 and
A(1) = A. The derivatives of f`,k with repect to the matrix entries of ReA(1), ReA(2),
ReB, ImA(1), ImA(2) and ImB have to be computed.

Let us start with some preliminary observations to simplify differentiation of the
inverse S−1

EE.

• The derivative of a matrix Y with respect to a parameter α is given by

∂Y −1

∂α
= −Y −1∂Y

∂α
Y −1. (D.2)

• An application of (D.2) yields:

∂S−1
EE

∂ ReA
(1)
nm

= −S−1
EE

∂S−1
EE

∂ ReA
(1)
nm

S−1
EE.
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For n = 0 or m = 0 the derivative vanishes since in this case SEE is independent of
ReA

(1)
nm. For n ≥ 1 and m ≥ 1 let Enm denote the N ×N matrix with 1 at position

(n,m) and zero elsewhere and

T nm := −S−1
EEEn−1,m−1S

−1
EE. (D.3)

Then

∂S−1
EE

∂ ReA
(1)
nm

= T nm,
∂S−1

EE

∂ ReA
(2)
nm

= g(k)T nm,
∂S−1

EE

∂ ReBnm

= λ`T
nm,

∂S−1
EE

∂ ImA
(1)
nm

= iT nm,
∂S−1

EE

∂ ImA
(2)
nm

= ig(k)T nm,
∂S−1

EE

∂ ImBnm

= iλ`T
nm.

The following cases of (n,m) have to be destinguished:

• n = m = 0:
∂f`,k

∂ ReA
(1)
00

= −1.

• For n ≥ 1 and m = 0:

∂f`,k

∂ ReA
(1)
n0

=
N∑

j′=1

S0j′(`, k)
[
SEE(`, k)−1

]
j′−1,n−1

.

• For n = 0 and m ≥ 1:

∂f`,k

∂ ReA
(1)
0m

=
N∑

j=1

Sj0(`, k)
[
SEE(`, k)−1

]
m−1,j−1

.

• For n ≥ 1,m ≥ 1:

∂f`,k

∂ ReA
(1)
nm

=
N∑

j′=1

N∑

j=1

S0j′(`, k)T nmj′−1,j−1(`, k)Sj0(`, k).

The derivatives with respect to ReA(2),ReB, ImA(1), ImA(2) and ImB are obtained
by multiplying the derivate with respect to ReA(1) by g(k), λ`, i, ig(k) and iλ`, respec-
tively.

D.2.1 Symmetric ansatz for uniform approximation in wavenum-
ber

For a symmetric ansatz only the entries of A(1)A(2) and B below the diagonal have to
be considered as free variables. For the derivative the following modifications of the full
ansatz described above have to be made:

• For n = 0 and m ≥ 1:

∂f`,k

∂ ReA
(1)
0m

=
N∑

j′=1

S0j′(`, k)
[
SEE(`, k)−1

]
j′−1,m−1

+
N∑

j=1

Sj0(`, k)
[
SEE(`, k)−1

]
m−1,j−1

.

• For n = 1 and m ≥ 1 with n 6= m the definition of T nm in (D.3) has to be modified
to

T nm := −S−1
EEEn−1,m−1S

−1
EE − S−1

EEEm−1,n−1S
−1
EE.
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Appendix E

Derivation of dtn jump

This appendix provides auxiliary computations for the case of a jumping wavenumber in
the exterior domain introduced in Section 2.2.1 and featured in the numerical experiments
of Section 4.2.3. These derivations are also included in the supplementary material of our
publication [HLP21].

For ν, a > 0 consider the problem

−1

r

∂

∂r

(
r
∂u

∂r

)
+

(
k2(r)− ν2

r2

)
u = 0 r > a,

u(a) = 1,

with radiation condition at infinity. For some a ≤ RJ <∞ let the wavenumber be given
by

k(r) =

{
kI r < RJ,

k∞ r > RJ,

for some kI , k∞ > 0.

The solution is given by

uν(r) =

{
AJ
νJν(kIr) +BJ

νYν(kIr) r < RJ,

CJ
νH

(1)
ν (k∞r) r > RJ,

with constants AJ
ν , B

J
ν , C

J
ν ∈ C to be determined by the following three constraints:

• Boundary condition at r = a:

AJ
νJν(kIa) +BJ

νYν(kIa) = 1. (E.1)

• Continuity at r = RJ:

AJ
νJν(kIRJ) +BJ

νYν(kIRJ)− CJ
νH

(1)
ν (k∞RJ) = 0. (E.2)

• Continuity of derivative at r = RJ:

AJ
νkIJ

′
ν(kIRJ) +BJ

νkIY
′
ν(kIRJ)− CJ

νk∞(H(1)
ν )′(k∞RJ) = 0. (E.3)
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Solving (E.1) for AJ
ν gives

AJ
ν =

1−BJ
νYν(kIa)

Jν(kIa)
. (E.4)

Using this equation to eliminate AJ
ν from (E.2) and (E.3) leads to the linear system

[
Jν(kIa)Yν(kIRJ)−Yν(kIa)Jν(kIRJ)

Jν(kIa)
−H(1)

ν (k∞RJ)
Y ′ν(kIRJ)Jν(kIa)−Yν(kIa)J ′ν(kIRJ)

Jν(kIa)
−k∞

kI
(H

(1)
ν )′(k∞RJ)

][
BJ
ν

CJ
ν

]
=

[
−Jν(kIRJ)

Jν(kIa)

−J ′ν(kIRJ)
Jν(kIa)

]
.

Denote the matrix in this equation as MJ
ν . We have

det(MJ
ν ) = −k∞

kI

(H
(1)
ν )′(k∞RJ)

Jν(kIa)
[Jν(kIa)Yν(kIRJ)− Yν(kIa)Jν(kI¸RJ)]

+
H

(1)
ν (k∞RJ)

Jν(kIa)
[Y ′ν(kIRJ)Jν(kIa)− Yν(kIa)J ′ν(kIRJ)] .

Hence,

(MJ)−1
ν =

1

det(MJ
ν )

[
−k∞

kI
(H

(1)
ν )′(k∞RJ) H

(1)
ν (k∞RJ)

−[Y ′ν(kIRJ)Jν(kIa)−Yν(kIa)J ′ν(kIRJ)]
Jν(kIa)

Jν(kIa)Yν(kIRJ)−Yν(kIa)Jν(kIRJ)
Jν(kIa)

]
.

The solution of the linear system is given by

BJ
ν =

1

det(Mν)

[
k∞
kI

(H(1)
ν )′(k∞RJ)

Jν(kIRJ)

Jν(kIa)
−H(1)

ν (k∞RJ)
J ′ν(kIRJ)

Jν(kIa)

]
(E.5)

and

CJ
ν =

1

det(Mν)

[
[Y ′ν(kIRJ)Jν(kIa)− Yν(kIa)J ′ν(kIRJ)]

Jν(kIRJ)

Jν(kIa)2
(E.6)

− [Jν(kIa)Yν(kIRJ)− Yν(kIa)Jν(kIRJ)]
J ′ν(kIRJ)

Jν(kIa)2

]
.

This yields the dtn function

ζ(ν) = −∂uν(a)

∂r
= −kI

[
AJ
νJ
′
ν(kIa) +BJ

νY
′
ν(kIa)

]
. (E.7)

A reference solution for a sound-soft scattering problem in the exterior of a disk with
radius Rs can easily be obtained from the previous computations. Firstly, the radius of
the truncation boundary has to be replaced by the radius of the scatterer, i.e. set a = Rs.
Assume that a plane wave g = − exp(ik∞x) is incident on the disk. It is well-known that
g admits an expansion into the orthonormal functions

v0 =
1√

2πRs

, v` =
1√
πRs

cos(`ϕ), for ` ≥ 1

given by

g = −J0(k∞r)
√

2πRsv0 −
∑

`=1

2i`J`(k∞r)
√
πRsv`.

Hence, by separation of variables the solution in polar coodinates is

u(r, ϕ) = u0(r)J0(k∞Rs)
√

2πRsv0(ϕ) +
∞∑

`=1

u`(r)2i
`J`(k∞Rs)

√
πRsv`(ϕ),

or simply

u(r, ϕ) = u0(r)J0(k∞Rs) +
∞∑

`=1

u`(r)2i
`J`(k∞Rs) cos(`ϕ). (E.8)
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Case of no jump: In the special case

k∞ = kI := k (E.9)

there is no jump and the following computation shows that the dtnhom
function of the

homogeneous medium is recovered from (E.7). A straight-forward calculation using (E.9)
yields:

det(MJ
ν ) = −(H

(1)
ν )′(kRJ)

Jν(ka)
[Jν(ka)Yν(kRJ)− Yν(ka)Jν(kRJ)]

+
H

(1)
ν (kRJ)

Jν(ka)
[Y ′ν(kRJ)Jν(ka)− Yν(ka)J ′ν(kRJ)]

=
1

Jν(ka)

[
− J ′ν(kRJ)Jν(ka)Yν(kRJ)− iY ′ν(kRJ)Jν(ka)Yν(kRJ)

+ J ′ν(kRJ)Yν(ka)Jν(kRJ) + iY ′ν(kRJ)Yν(ka)Jν(kRJ)

+ Jν(kRJ)Y ′ν(kRJ)Jν(ka) + iYν(kRJ)Y ′ν(kRJ)Jν(ka)

− Jν(kRJ)Yν(ka)J ′ν(kRJ)− iYν(kRJ)Yν(ka)J ′ν(kRJ)
]

Since four of the terms cancel out, one obtains

det(MJ
ν ) = Jν(kRJ)Y ′ν(kRJ)− J ′ν(kRJ)Yν(kRJ) + i

Yν(ka)

Jν(ka)

[
Jν(kRJ)Y ′ν(kRJ)− J ′ν(kRJ)Yν(kRJ)

]

=

(
1 + i

Yν(ka)

Jν(ka)

)
W{Jν(kRJ), Yν(kRJ)}

=
H

(1)
ν (ka)

Jν(ka)
W{Jν(kRJ), Yν(kRJ)},

where W{Jν(kRJ), Yν(kRJ)} = Jν(kRJ)Y ′ν(kRJ) − J ′ν(kRJ)Yν(kRJ) is the Wronskian. A
similar calculation yields that

BJ
ν =

1

det(Mν)

[
(H(1)

ν )′(kRJ)
Jν(kRJ)

Jν(ka)
−H(1)

ν (kRJ)
J ′ν(kRJ)

Jν(ka)

]

=
1

det(Mν)

i

Jν(ka)
W{Jν(kRJ), Yν(kRJ)} =

i

H
(1)
ν (ka)

.

As

1−BJ
νYν(kIa) =

Jν(ka)

H
(1)
ν (ka)

,

it follows from (E.4) that AJ
ν = 1/H

(1)
ν (ka). Inserting this into the ansatz for the solution

yields uν(r) = H
(1)
ν (kr)/H

(1)
ν (ka) for r < RJ and hence dtn jump

(λ) = dtnhom,2d
(λ). The

reference solution (E.8) then takes the explicit form

u(r, ϕ) =
H

(1)
0 (kIr)

H
(1)
0 (kIRs)

J0(kIRs) +
∞∑

`=1

H
(1)
` (kIr)

H
(1)
` (kIRs)

2i`J`(kIRs) cos(`ϕ).
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[ZND16] L. Zepeda-Núñez and L. Demanet. The method of polarized traces for
the 2D Helmholtz equation. J. Comput. Phys., 308:347 – 388, 2016.
doi:10.1016/j.jcp.2015.11.040.
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