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Abstract

The corona is the Sun’s outer atmosphere which is more than 100 times hotter than the
solar surface. It can be brilliantly observed in the extreme-ultraviolent (EUV) and soft
X-ray passbands. What heats the corona is one of the fundamental questions in solar and
plasma physics. The answer must address the origin of the energy input into the corona
and how the observed coronal features form and evolve as the consequence of the energy
input.

To understand the built-up of the corona during the formation of the active region
through magnetic flux emergence in the photosphere, we use the output of a magnetic
flux emergence simulation to drive a magnetohydrodynamics (MHD) simulation for the
corona. The braiding of magnetic fieldlines in the photosphere induces currents in the
corona. The Ohmic dissipation of the induced currents heats the coronal plasma to over
1 MK. The proper treatment on the energy balance, as in the real corona, allows the model
to synthesise EUV emission directly comparable to observations.

In the coronal model numerous bright coronal EUV loops form during the formation
of a sunspot pair in the model photosphere. The coronal loops are rooted at the outer edge
of the sunspots, where an enhanced upward Poynting flux is produced by the interaction of
flows and magnetic field structures. The thermal dynamics and energetics of the plasma
in individual magnetic fieldlines are consistent with the expectation of traditional one
dimensional loop models with prescribed heat input.

At each instance of time, EUV loops are along magnetic field lines. However, their
temporal evolution can be radically different, because the EUV emission is governed by
the convolution of the temperature and density of the coronal plasma. When the footpoints
of emerging magnetic fieldlines consecutively move through a spot of enhanced energy
input at the outer edge of the sunspot, an apparently static EUV structure is created by
the plasma in the emerging magnetic fieldlines. This gives an essentially new view on the
relation of EUV loops to magnetic fieldlines.

Moreover, transverse oscillations of coronal loops triggered in the model can be
clearly identified in synthetic observations. For observations of the Sun, the technique
of coronal seismology is used to deduce the physical properties in an oscillating loop. We
apply the same technique to our synthetic data to derive the average field strength in the
loop and compare it to the actual value in the simulation. It is close to the average field
strength that would give an identical total wave travel time through the coronal loop. This
result can serve as a benchmark for coronal seismology.

The results in this thesis shed new light on dynamics during the built-up of coronal
loop structures in response to the emergence of magnetic flux in the photosphere. This
model highlights the power of realistic three dimensional models to resemble features
in the real corona. It also emphasises the essential necessity of treating the plasma and
the magnetic field at the same time, in order to self-consistently model dynamics of the
coronal plasma.
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1 Introduction

The corona is the outer atmosphere of the Sun. The name "corona" actually refers to the
crown of the Sun. Having a brightness in the visible light similar to that of the full Moon,
it is still too faint compared to the glaring disk of the Sun. But in a total solar eclipse,
when the light from the disk of the Sun is shaded by the Moon, the corona is visible by
the naked eyes, as a halo around the Sun. An example of the brightness and shape of the
corona in a total solar eclipse is shown in Fig. 1.1. The sky lit by the corona is so dark
that Mercury and Venus are clearly visible nearby the Sun.

The most mysterious nature of the corona is that it is extremely hot, more than 100
times hotter than the surface of the Sun. The first hint on the temperature of the corona
comes from the spectral lines (e.g. the "green line" at 5030 Å and the "red line" at 6374 Å)
that was observed since the solar eclipse in 1869. These spectral lines could not be un-
derstood until Grotrian (1939) and Edlén (1943) identified them as the forbidden lines
from highly ionized ion, which are Fe ix for the "red line" and Fe xiv for the "green line".
Although from present point of view, this is a very direct evidence of the high temperature
of the corona, neither Grotrian nor Edlén gave a clear statement about the temperature of
the corona. Alfvén (1941) first argued that the corona is hot (Peter and Dwivedi 2014).

Modern models has been able to draw a much clearer picture on the stratifications
of the solar atmosphere, as shown in Fig. 1.2. The corona is filled with tenuous plasma
(density<10−12 kg m−3) that is million-degree hot. The corona is connected with the lower
atmosphere, i.e. the photosphere and the chromosphere, by the transition region that is
suggested to have thickness of only a few hundred kilometres (Mariska 1992). In the
transition region, the temperature steeply rises by more than one order of magnitude, and
the density also drops significantly because the pressure need to be continuous in general.
Therefore, the transition region separates two worlds with extremely different thermal
properties: the hot and tenuous corona, and the cool and relatively dense chromosphere.
The transition region is usually consider as the base of the corona.

In such a hot and tenuous coronal environment, hydrogen, the richest element in the
solar atmosphere, is fully ionized. Heavier elements, for example the iron, are also highly
ionized. They give rise to emission in the extreme-ultraviolet (EUV) passband. Mean-
while the solar surface does not contribute any EUV emission. Therefore, space-based
EUV imaging telescopes and spectrometers become the best way to observe the corona
and the only way for the corona in the solar disk.

The imaging telescopes use filters to collect the photon at a particular range of wave-
length that covers a target emission line. An EUV emission line is mainly contributed
by plasma at a characteristic temperature, which is referred as its formation temperature.
Thus the observation by a certain filter can samples the plasma at the formation tempera-
ture of the target line. For instance, the 171 Å filter used by several telescopes samples the
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Figure 1.1: A photo taken at the moment of a total solar eclipse in 2008, at Jiuquan/Gansu,
China. Credit: Feng Chen
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1 Introduction

Figure 1.2: Sketch of the density and temperature profiles in height from the photosphere
to the corona based on the VAL (Vernazza-Avrett-Loeser) model (Vernazza et al. 1981).
Image courtesy of Eugene H. Avrett.

Fe ix line emission dominated by the plasma at a temperature around 1 MK (e.g. a range
of 0.3 in log10 T [K]). Spectrometers use a slit obtain the profile of EUV spectral lines,
from which we can derive the intensity, shift of the line center (the Doppler shift), and line
width. The line-of-sight motions of coronal plasma can be deduced straightforward from
the Doppler shift of spectral lines. The non-thermal width of a spectral line, in addition
to its width determined by the thermal motions of electrons, are suggested as a clue of
the stochastic motion of the coronal plasma on unresolved scales. Thus the imaging and
spectroscopic observation are complementaries to each other.

The high resolution EUV images reveal an astonishing look of the corona. The corona
is highly inhomogeneous. Above the quiescent Sun that covers a large area of the solar
disk, the corona appears quite diffused, despite of some bright patches that are usually
co-spatial with small magnetic structures in the lower atmosphere. However, the corona
in active regions, which are the areas with large and strong magnetic flux concentrations,
is much brighter and highly structured. In Fig. 1.3 we show an EUV image of a very
common active region taken in the 171 Å channel of the Atmosphere Imaging Assem-
bly (AIA, Lemen et al. 2012), together with the line-of-sight (LOS) magnetic field in the
photosphere. The most prominent structures in the active region corona are the numer-
ous elongated loop-like structures that arch over the solar surface (see also Fig. 2.1) and
connect opposite magnetic polarities in the photosphere.

These EUV structures, known as the coronal (EUV) loops, are considered as the emis-
sion from the hot plasma confined by the magnetic fieldlines (see detailed discussions in
Sect. 2.3). The EUV loops are supposed to outline the coronal magnetic field, as how the
magnetic field of a magnet is visualized by iron filings.

A individual coronal loop is a relative stable structure in a time period of hours. While
we can still get some impression on the dynamics of the coronal plasma by following
moving patterns in a time series of EUV images. But the dynamical nature of the corona
is better revealed by spectroscopic observations. As a general character over the full solar
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Magnetic field (b) 

EUV emission (1 MK) (a) 

Figure 1.3: EUV loops and magnetogram in an active region on the Sun. Panel (a): An
image in the AIA 171 Å channel that has mainly contribution of 1 MK hot plasma. Panel
(b): The line-of-sight component of the magnetic field in the photosphere in the same field
of view of (a). Right panels are the full disk EUV image and magnetogram, where the red
boxes indicate the field-of-view of (a) and (b). Images are produced by the helioviewer
project. Credits: SDO (NASA)

12



1 Introduction

disk, redshift is found in the spectral lines formed at transition region temperatures (i.e.
of the order of 105 K), while the spectral lines formed at temperatures above 1 MK show
blueshift. This suggests a systematic flow pattern in the transition region and the corona
(Peter and Judge 1999). When zooming into an active region, a map of the Doppler
velocity can capture various flow patterns in the loop system, such as the siphon flows
that travel from one side of a loop to the other side, upflows that bring materials to fill
the loop, and downflows showing the drainage of materials to the loop footpoints. At the
outer boundary of active regions, blueshifted coronal spectral lines with a significantly
enhanced non-thermal line width are observed (Doschek et al. 2008). This spectral feature
is suggested to be turbulent outflows of plasma along open magnetic fieldlines, which may
contribute to the solar wind.

Heating of the corona
When the high temperature of the coronal plasma is accepted as a solid truth, the question
of what heats the corona rises. The fundamental energy source of the Sun is the nuclear
fusions in its core. The energy is transport outwards by radiations and convective motions.
Thus the average temperature is known to decrease monotonically from the core to the
surface. However the outer atmosphere, i.e. the corona, is hotter than the surface.

The high temperature of corona is a mystery from the conventional point of view.
In natural thermodynamic process, heat can only flow from high temperature materials
to low temperature ones. The corona is at least 100 times hotter than the solar surface.
Direct transport of heat from the solar surface to the corona would violet the second law
of thermodynamics.

Moreover, the corona is optically thin, which means that the mean free path of photons
is much larger than the spatial scale of the corona. The photons from either the corona
itself or the solar surface can travel through the corona almost freely. Even though the
amount of energy needed to heat the corona is only a very small portion of the total
radiation flux at the solar surface, the coronal plasma can not be heated by the radiation
from below.

Therefore, there must be a source of heating that balances the loss by the radiation
and heat conduction, and maintains the high temperature of the coronal plasma. The
heating mechanism remains a puzzle. This is known as the coronal heating problem. The
solution must present a mechanism that is able to produce an energy budget in the corona
sufficient to maintain its high temperature. More importantly, one has to describe the
spatial distribution and the temporal variation of the heating, which can properly interpret
the formation and evolution of the structures observed in the corona.

Present understanding on the heating mechanism

Although many attempts were made to reveal the heating mechanism of the corona, few
of them were close to the success. While the debate are still ongoing, people in general
agree that the energy needed to heat the corona is essentially from the lower atmosphere,
and the magnetic field plays a very important role in transporting the energy from the
solar surface to the corona (Schrijver and Zwaan 2000, Aschwanden 2004). The most
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1 Introduction

plausible heating mechanisms have a similar basic scenario, in which the interaction of
the ubiquitous convective motions and magnetic field in the photosphere gives rise to a
energy flux that is transported by the magnetic field into the corona. Eventually the Ohmic
dissipation converts the (free) energy of coronal magnetic field to the internal energy of
the coronal plasma.

Based on the relation of the time scale of the driving motions to the Alfvén time scale,
which measures the time needed for a disturbance to propagate through a coronal mag-
netic fieldline, the present heating mechanisms fall into two categories, i.e. the alternative
current (AC) heating and the direct current (DC) heating.

AC heating

Waves are ignited ubiquitously in the lower solar atmosphere by the interaction of granular
motions and the magnetic field. The upward propagating waves, albeit partly reflected at
the transition region, are still expected to take a significant amount energy into the corona.
The energy flux of the waves are converted into the internal energy of the coronal plasma
by the Ohmic dissipation of the currents induced by the magnetic disturbances of the
waves. These currents change their directions on a time scale smaller than the Alfvén time
scale in a magnetic fieldline. Therefore this type of heating is referred as the alternative
current heating.

One of the difficulties for the AC heating was that in classical theories the Alfvén wave
is very non-dissipative. This led to a problem that even though enough waves energy flux
may enter the corona, few is converted to the internal energy of the coronal plasma. The
phase mixing (Heyvaerts and Priest 1983) and resonance absorption (Ionson 1978) effect,
which allow the wave to convert their energy more efficiently, are considered as the likely
ways to cope with this problem.

The presence of the ubiquitous waves were confirm by a large scale spectroscopic
observation on the corona at the solar limb (Tomczyk et al. 2007). While this observation
found that the wave energy flux is not yet enough to heat the corona. However, the waves
in smaller scales may still contribution a significant energy flux. Theoretical works on
the wave excitation, propagating and dissipation in a magnetic flux tube rooted in the
photosphere (van Ballegooijen et al. 2011, 2014, see also Sect. 2.6.1) showed that the
Aflvénic waves are able to transport and deposit enough energy to heat the corona.

DC heating

The stochastic granular motions in the photosphere can twine the footpoints of the mag-
netic fieldlines or magnetic flux tubes as illustrated in Fig. 1.4. This is usually referred as
magnetic fieldline braiding. The braiding gives rise to tangling of magnetic fieldlines that
induces currents in the corona (Parker 1983). The time scale of the braiding is typically
much longer than the Aflvén time scale, thus, the induced currents are direct currents.
Parker (1988) further suggested that the magnetic energy can be released by reconnec-
tions between entangled magnetic fieldlines, which is known as nanoflares. The dissi-
pation process in nanoflares can be considered as the Ohmic dissipation of the currents
induced by the entangled magnetic fieldlines.

The flux tube tectonics mechanism proposed by Priest et al. (2002) is also based on

14



1 Introduction

Figure 1.4: Sketch for the braiding of the magnetic filed by footpoint motions. The plains
z=0 and z=L present the solar photosphere, where a group of magnetic flux tube of a
length of L are rooted. The space between the two plains is the corona. The stochastic
motion in "one" photosphere (i.e. z=0) takes the footpoint of a flux tube and braids it
around the other flux tubes. This figure is taken from Parker (1983).

magnetic braidings. They suggested that (shearing) motions in the photosphere can build
magnetic separatrix surfaces in the corona, and currents are induced at these surfaces.
According to the authors, the name of "flux tube tectonics" is an analogy to geophysical
plate tectonics, where energy is also built up and dissipated along shape boundaries (as in
the separatrix surfaces with induced currents).

A recent high resolution observation in the EUV passband found interlaced thin and
bright structures near the footpoints of coronal loops (Cirtain et al. 2013). These struc-
tures are interpreted as an observational evidence of the magnetic braiding. Theoretical
investigations on the energy budget provided by the braiding (e.g. van Ballegooijen 1986,
Galsgaard and Nordlund 1996, Rappazzo et al. 2008) also suggest it to be a very likely
mechanism to heat the corona.

Summary of the heating mechanisms

Both the AC and DC heatings has been extensively studied in many observations and
theoretical analysis (see Sect. 2.6.1 and Sect. 2.6.3.2). Still they remains to be the most
likely candidates to solve the mystery of the coronal heating. Meanwhile new suggestions
on the origin of hot plasma comes out with the continuous refinements on observations

15



1 Introduction

(De Pontieu et al. 2011). Finally the heating of the coronal plasma probably does not
relay on a single mechanism.

People generally agree that the energy budget in the lower atmosphere is more than
sufficient to heat corona, and the magnetic fieldlines is the important agent responsible
for the transport and dissipation of the energy. While the dissipation process, which de-
termines the conversion rate of the magnetic energy to the internal energy of the coronal
plasma, remains not fully clear.

The distribution and variation of the heat input in the corona eventually drive the
formation of coronal structures and dynamics. Conversely, Investigations on the response
of the corona to the heating can give us constraints and clues on the heat deposition in the
real corona. Great efforts have been made on building coronal models, in which the heat
input is either given by (semi)empirical parametrisation, or self-consistently produced
based on certain mechanisms (e.g. braiding or waves), as introduced in the next chapter.
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2 Modelling the corona: from scaling
laws to realistic 3D models

2.1 Basics of magnetohydrodynamics
Magnetohydrodynamics (MHD) is a general tool to study the dynamics of the magnetized
fluid, such as the plasma in the solar atmosphere. Detailed introduction on the MHD
theory and its validity in the solar atmosphere are available in some classical text books
(e.g. Priest 2014). Here, we briefly describe the equations governing the evolution of the
coronal plasma.

MHD equations
MHD equations consider the basic conservation laws for mass, momentum and energy.
The form of the MHD equations would depend on the choice of primary variables and
physical ingredients in a model.

By choosing ρ the density, u the velocity, B the magnetic field, and eth the thermal
energy density, the equations governing the evolution of resistive plasma can be written
as

∂ρ

∂t
+ ∇ · (ρu) = 0 , (2.1)

∂u
∂t

+ (u · ∇)u =
1
ρ

[
−∇p + ρg + j × B + ∇ · τ

]
, (2.2)

∂B
∂t

= ∇ × (u × B) − ∇ × (η∇ × B) , (2.3)

∂eth

∂t
+ (u · ∇) eth = −

γ

γ − 1
p (∇ · u) + H − Lrad − ∇ · q . (2.4)

Here p is pressure and j the current that is related to B by µ0j=∇ × B, where µ0 is the
vacuum permeability. g is the gravitational acceleration, τ the viscous stress tensor, η the
resistivity, γ the adiabatic index (or heat capacity ratio), H the volumetric heating rate,
Lrad the radiative loss (rate), and q the heat conduction flux.

The continuity equation (Eq. (2.1)) reflects that the mass of a plasma parcel is a
constant, because there is no mass generation or annihilation. The equation of motion
(Eq. (2.2)) describes the change of the velocity of a plasma parcel by external forces in-
cluding the pressure gradient, the Lorentz force, the viscous force and the gravity. The
energy equation (Eq. (2.4)) accounts for the change of the thermal energy due to mechan-
ical works, heat conduction, as well as direct heatings and the loss through radiation.
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2 Modelling the corona: from scaling laws to realistic 3D models

Assuming η to be a constant in space, the induction equation (Eq. (2.3)) can be rewrit-
ten as

∂B
∂t

= ∇ × (u × B) + η∇2B. (2.5)

The first term on the right hand side is the induction of magnetic field, while the second
term is the diffusion of magnetic field due to a non-vanishing resistivity of the coronal
plasma.

Finally the equations above are closed by the equation of state. For an ideal polytropic
gas, the equation of state is written as

p =
ρ

µ̃mp
kBT, (2.6)

where kB is the Boltzmann constant, mp the proton mass, and µ̃ mean atomic weight (e.g.
unity fully neutral hydrogen and 0.5 for fully ionized hydrogen).

Magnetic energy and the Poynting flux
The energy density of a magnetic field is evaluated by

emag =
B2

2µ0
.

Its temporal evolution can be obtained by the dot product of B/µ0 to both sides of
Eq. (2.3), which leads to

∂emag

∂t
+ ∇ · S = − u · (j × B) − µ0ηj2, (2.7)

where S is the Poynting flux evaluated by

S = ηj × B −
1
µ0

(u × B) × B. (2.8)

The left hand side of Eq. (2.7) shows the change of the magnetic energy in a finite
volume due to the flux of electromagnetic energy, i.e. the Poynting flux, at the surface of
this volume.

The right hand side of Eq. (2.7) accounts for the exchange of magnetic energy with
other forms of energy. The first term is the exchange with the kinetic energy through the
work done by the Lorentz force (a decrease of emag) or the work done by plasma against
the Lorentz force (a increase of emag). The second term evaluates the loss of magnetic
energy by Ohmic dissipation, which is added to the thermal energy of the plasma. This is
known as the Ohmic heating.

Alfvén’s frozen-in theorem
In a perfectly conductive fluid, where the electric conductivity, σ=1/(µ0η), is infinite,
the fluid and magnetic fieldlines must move together in the direction perpendicular to the
magnetic fieldlines. Therefore the magnetic fieldlines are frozen in the fluid. This is a
consequence of the induction part in Eq. (2.5).
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2.1 Basics of magnetohydrodynamics

The frozen-in theorem inspires a common method in practical analysis to follow mag-
netic fieldlines, which are imaginary objects. A magnetic fieldline passing through a
particle (a infinitely small fluid element in continuum material) will be frozen to this par-
ticle in later time. Therefore one can follow the motion of this particle and calculate the
magnetic fieldline through this particle at each instant of time. This reveals the evolution
of a magnetic fieldline. Similarly, one can depict the evolution of a magnetic flux tube,
i.e. a bundle of magnetic fieldlines, by tracing the particles on a curve enclosing the cross
section of the flux tube.

When the electric conductivity is not infinitely large, the diffusion effect allows mag-
netic field to move through fluid. The diffusion time scale (τd) for the magnetic field to
diffuse through a length scale L is evaluated by

τd =
L2

η
. (2.9)

If the diffusion time scale is much larger than the time scales of other processes in the
system (e.g. most of the astrophysical objects), the frozen-in theorem can still be applied.

Plasma β

Plasma β is an important parameter in MHD. It indicates the predomination of the mag-
netic field or the plasma. It is commonly defined as the ratio of the gas pressure ( pgas ) to
the magnetic pressure (pmag), i.e.

β =
pgas

pmag
, (2.10)

where the magnetic pressure is defined as B2 / (2µ0). From the point of view of the energy
density, we can use the relations eth=pgas/(γ − 1) and emag=pmag and rewrite β as

β =
1

γ − 1
eth

emag
. (2.11)

Similarly, It can also be rewritten by definitions of the sound speed (cs) and the Aflvén
speed (vA) as

β =
2
γ

c2
s

v2
A

. (2.12)

When β is below unity, the magnetic field takes the dominance. The frozen-in theorem
is expressed in a way that the plasma is confined by the magnetic field. In the solar corona,
where β is typically less than 10−2, the plasma motion perpendicular to the magnetic field
is only subject to the movement of the magnetic fieldlines. For example, the eruption of a
magnetic structure will take the material confined in the magnetic field.

In contrast, when β is well above unity, plasma motions are predominately determined
by the pressure gradient force. Consequently, the magnetic field frozen in the plasma has
to passively follow the motion of the plasma. For instance, in the solar photosphere (not
in/around strong magnetic flux concentrations) the magnetic field is passively pushed by
the granular motions into the granular lanes.
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2 Modelling the corona: from scaling laws to realistic 3D models

2.2 Coronal energy balance
Although the evolution of the coronal plasma is governed by the full MHD equations,
what essentially determines the density and temperature in a coronal model is the energy
balance. The most important ingredients are the heating, radiation, and thermal conduc-
tion in Eq. (2.4).

Structures in the corona are relatively stable. Even if the heating ceases, a bright
structure in the corona can still sustain for about half an hour (Klimchuk 2006). This is
known as the coronal cooling time scale. Furthermore, the typical flow speed in a non-
erupting active region is smaller than the coronal sound speed. Therefore, as the first
step to understand the energy balance in corona structures, we can assume a hydrostatic
equilibrium, i.e. the time derivatives and velocities in the MHD equations vanish. With
this assumption, the energy conservation (Eq. (2.4)) reads,

0 = H − Lrad − ∇ · q. (2.13)

If we integrate Eq. (2.13) over the volume of the corona and assume that the heat conduc-
tion flux vanishes at the surface of the volume, the total energy input by the heating must
be balanced with the total energy loss through the radiation. While the heat conduction
plays a role to redistribute the thermal energy in space.

Radiation
The energy loss through the optically thin radiation, Lrad, is evaluated by

Lrad = n2
e Λ(T ), (2.14)

where, ne is the electron number density, and Λ(T ) a function of temperature (T ) that
accounts for the contributions from coronal emission lines (Mariska 1992). This function
peaks around T=105 K, which corresponds to the temperature in the transition region.
As a result of the gravity, the number density at the transition region is also consider-
ably higher than that in the corona . Therefore the transition region, as the corona base,
contributes the most optically thin radiation.

Heat conduction
Spitzer (1962) derived that the heat conduction flux in fully ionized plasma, q can be
written as

q = − κ0 T 5/2b (b · ∇T ), (2.15)

where κ0=1.8 × 10−10 W m−1 K−7/2 is the coefficient given by Spitzer (1962), T the tem-
perature, b the unit vector of the magnetic field. The heat conduction, known as the
Spitzer heat conduction, depends strongly on the temperature. At typical coronal tem-
peratures (e.g. more than 1 MK), the Spitzer heat conduction is extremely efficient to
transport thermal energy. However this characteristic put a severe challenge to numerical
experiments, as discussed later in Sect. 3.1.2.

Furthermore, the heat conduction flux shown above is parallel to the magnetic field.
In the solar corona the thermal conduction perpendicular to the magnetic field is weaker
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than the parallel conduction by many orders of magnitude. Therefore the perpendicular
heat conduction is usually neglected for studies on the corona.

Heating rate

The form of the heating rate remains unknown, until the coronal heating problem would
be solved. It is the most important ingredient of the energy balance (Eq. (2.13)). When
an equilibrium is established in the corona, the heat conduction must be able transport the
heat input, which consequently sets the temperature profile. Meanwhile the radiation loss
must eliminate the energy brought down by the heat conduction, which sets the density at
the coronal base, as well as the density profile in the corona.

In real practice of coronal modelling, the heating has to be either assumed (Sect. 2.4,
Sect. 2.5 and Sect. 2.6.3.1), or produced self-consistently through proposed mechanisms
(Sect. 2.6.1 and Sect. 2.6.3.2).

2.3 Concept of coronal loops
Coronal EUV loops, the thin and bright structures seen in EUV images, are the most com-
mon building blocks in the solar corona, particularly in active regions (e.g. in Fig. 1.3).
They are considered to represent the hot plasma confined in coronal magnetic field. This
widely accepted interpretation is based on the following characteristic physical conditions
in the corona.

• High electric conductivity
The electric conductivity in the solar corona is sufficiently high, thus the frozen-in
theorem can be well applied. This insures that the plasma can not move across
magnetic fieldlines, while it may still move parallel to magnetic fieldlines. A mag-
netic flux tube can be an analogy to a water pipe, in which water (as the plasma in
confined in the magnetic field) can only flow along the pipe.

• Low plasma β
The plasma β in the corona is usually below 10−2. Therefore a magnetic flux tube is
a rigid structure. The material confined in a magnetic tube has to follow the shape
of the magnetic fieldlines that arch over solar surface (Fig. 2.1) and are rooted at
opposite magnetic polarities on the solar surface (Fig. 1.3).
The other important implication is that a large pressure gradient can be built across
magnetic fieldlines. This means that even neighbouring magnetic fieldlines may
have very different density and temperature. The corresponding pressure gradient
has almost no impact on the magnetic field structure.

• Highly anisotropic heat conduction
The heat conduction in the corona is predominantly along magnetic fieldlines. The
heat transport across the magnetic fieldline in very inefficient compared to the par-
allel transport. Therefore a coronal magnetic flux tube can be considered as an
adiabatic pipe that has no heat exchange with its neighbours.
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2 Modelling the corona: from scaling laws to realistic 3D models

Figure 2.1: Illustration of a coronal loop model. The background is an EUV image in the
171 Å channel of Transition Region And Coronal Explorer (TRACE) sampling emission
from 1 MK hot plasma. It shows numerous coronal loops arching over the solar surface.
The arched blue band illustrates a loop model with a uniform cross section. S is the
coordinate along the loop. Figure is taken from Reale (2014). Background image is from
TRACE, credit: NASA / LMSAL.

In together, a magnetic flux tube in the corona can be treated as a rigid and adiabatic
pipe. The density and temperature of the hosted plasma are almost only determined by
the thermal dynamics along the pipe. This leads to the term "coronal loop". A coronal
loop refers to a coronal magnetic loop that hosts a coronal plasma loop, which appears as
a coronal EUV loop in observations.

Coronal loops are the most important object in a coronal model. The concept of
coronal loops was widely used to construct of analytical models (Sect. 2.4) or one/three
dimensional numerical models (Sect. 2.5 and Sect. 2.6.1). In Fig. 2.1 we show an illustra-
tion of the one dimension loop models. These model solve a hydrodynamic problem in a
coordination (S in Fig. 2.1) along magnetic fieldlines in the corona.

Models enclosing a full active region (Sect. 2.6.2 and Sect. 2.6.3) must still demon-
strate how coronal loops are formed in the model. Fig. 2.2 shows an example of 3D active
region models in which a coronal loop is self-consistently formed (see the model strategy
in Sect. 2.6.3 and Sect. 3.2). In Fig. 2.2 the magnetic flux tube outlined by group of mag-
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2.4 Scaling laws

Figure 2.2: A coronal loop identified in a 3D active region model. The image at the bottom
(corresponding to the photosphere) shows the vertical magnetic field. Blue surface is for
the temperature of 105 K, which represents the transition region, i.e. the coronal base. Red
surface, showing loop filled with plasma, is for the number density of 109 cm−3. Green
lines are the magnetic fieldlines that host the plasma loop. The domain is part of a 3D
simulation (Sect. 3.2.2: high resolution run). The distance between the two sunspots is
about 40 Mm. The visualization is produced by VAPOR.

netic fieldlines connects two sunspots in the photosphere and hosts hot coronal plasma of
a density of 109 cm−3, as usually observed on the Sun.

2.4 Scaling laws
Scaling laws show the general relations of the fundamental parameters of the corona, such
as its length scale, heat input, density, temperature. The scaling laws derived by Rosner,
Tucker, and Vaiana (Rosner et al. 1978, hereafter RTV), which is based on the coronal
energy balance in a hydrostatic equilibrium (Eq. (2.13)), has been extensively exploited
to understand the basic features of the corona.

The basic assumption includes that

• the loop (as a thin magnetic tube) has a uniform cross section,

• the temperature peaks at the loop apex, and the temperature gradient vanishes at the
apex,

• the density is uniform, which is validated by the large density scale height at coronal
temperatures,
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2 Modelling the corona: from scaling laws to realistic 3D models

• the volumetric heat rate is a constant.

The corresponding energy balance for this constant cross-section loop (magnetic tube)
can be written as

0 = H0 − n2
e Λ(T ) +

d
ds

(
κ0 T 5/2 dT

ds

)
, (2.16)

where s is the coordinate along the loop, and H0 the constant heating rate.
We can derive the scaling relations of the density and temperature to the heat input in

an more simplified scenario. Given that the transition region contribute the most radiative
loss (Sect. 2.2), we further assume that the radiation is negligible in the majority of the
coronal loop, and concentrated at the footpoint (at the coronal base). This implies that the
heat input is balanced by the heat conduction in the loop part above its footpoint. While
at the footpoint of the loop, the radiation is equal to the heat conduction. The amount
of the energy transferred by the heat conduction to the footpoint is exactly the total heat
deposited in the loop.

Relation of the temperature to the heating rate

Above the loop footpoint, the volumetric heating rate is balanced by the heat conduction.
The integral of the energy balance from a position s in the loop to the loop apex is written
as ∫ L

s
H0ds′ = −

∫ L

s
d
[
κ0T 5/2(s′)

dT (s′)
ds′

]
, (2.17)

where L is the half length of the loop. The integral yields

H0(L − s) = −

[
κ0T 5/2(s′)

dT (s′)
ds′

]∣∣∣∣∣∣s
′=L

s′=s

. (2.18)

By the boundary condition that the gradient of temperature vanishes at the loop apex, we
obtain

H0(L − s) = κ0T 5/2(s)
dT (s)

ds
. (2.19)

We integrate Eq. (2.19) along the loop and obtain

H0L2

2
=

2κ0

7
T 7/2(s)

∣∣∣∣∣s=L

s=0
. (2.20)

The temperature at the loop footpoint, T (0), is much smaller than that at the apex, i.e. the
peak temperature (Tmax) of the loop. Therefore, by neglecting T (0), the scaling relation
of the peak temperature to the heating rate and the loop length is

Tmax ∝ H2/7
0 L4/7. (2.21)

Relation of the density to the heating rate

At the footpoint of the loop, the radiative loss is balanced mostly by the heat conduction
that transports the heat deposited in the loop to the footpoint, while the local heating can
be neglected. The energy balance is written as

n2
eλT−1/2 = −

dq
ds
, (2.22)
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where the contribution function for the radiative loss, Λ(T ), can be approximated by
λT−1/2, and q is the heat conduction flux. We multiply κ0T 5/2 to this equation and ob-
tain

κ0λ n2
e T 2 = − κ0T 5/2 dT

ds
dq
dT

=
1
2

dq2

dT
. (2.23)

The integral of Eq. (2.23) over the temperature reads

2κ0λ

3
n2

e

[
T 3(L) − T 3(0)

]
= q2(L) − q2(0). (2.24)

The heat conduction flux at the apex, q(L), is zero, because the gradient of temperature
vanishes at the loo apex. The apex temperature, T (L), is Tmax. From these conditions, we
obtain √

2κ0λ

3
ne T 3/2

max = − q(0), (2.25)

which gives the relation of the density to the heat conduction flux at the coronal base.
From Eq. (2.19), we can derive

q(0) =

[
−κ0T 5/2(s)

dT (s)
ds

]
s=0

= − H0L, (2.26)

which is consistent the concept that the heat conduction transfers all the heat input in the
loop to the footpoint. By substituting q(0) into Eq. (2.25), the density can be related to H0

by
ne T 3/2

max ∝ H0L. (2.27)

We can use Eq. (2.21) to eliminate T and obtain

ne ∝ H4/7
0 L1/7. (2.28)

Implications of the scaling laws

First of all, the scaling laws show that for a given loop (i.e. a fixed L) the peak temperature
and the density in the loop increase with the volumetric heat rate. This can be understand
by putting an extra heating into an equilibrium loop. The heat conduction has to increase
to transport the extra heat, which leads to a larger temperature gradient along the loop and
a higher peak temperature. The radiation also has to increase to balance the extra energy
input, which leads to a higher density at the base. Together with the larger density scale
high, the whole loop gets a higher density when an new equilibrium is established.

Furthermore, the scaling relation for the temperature shows that the peak temperature
only weakly depends on the heating rate. For example, when the heating rate is enhanced
by an order of magnitude, the peak temperature only increases by about a factor of 2. In
comparison, the density, as well as the coronal emission, has a stronger dependency on
the heating rate. Thus the most important issue in coronal heating problem is actually not
to sustain a high temperature, but to sustain a proper density that can produce the correct
amount of emission at the coronal temperatures.

For a fixed heating rate, one may get an impression from Eq. (2.21) and Eq. (2.28) that
longer loops have a higher temperature and density than shorter loops for the same mount
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2 Modelling the corona: from scaling laws to realistic 3D models

of heat input. However, it is not true. This can be better understand if we consider the
energy input flux, FH, which is defined in general as

FH(s) =
1

A(s)

∫ L

s
H(s) A(s) ds, (2.29)

where A is the area of the cross section of the loop. This definition shows that the total
heat input in the volume of the loop comes from an energy flux (e.g. produced by waves
or magnetic braidings) that goes through the base of the loop. The increase in either the
volumetric heating rate or in the volume (i.e. length) of the loop would require a higher
energy flux through the base (assuming the base area unchanged). In the case considered
by the RTV scaling laws, the energy flux through the loop base is evaluated by

FH(0) = H0L.

Therefore, Eq. (2.21) and Eq. (2.28) are rewritten as,

Tmax ∝ F2/7
H (0) L−2/7, (2.30)

ne ∝ F4/7
H (0) L−3/7. (2.31)

It is clear that longer loops would have lower peak temperature and density for a given
energy flux into the loop, because the energy flux has to be distributed in a larger volume,
which means that the volumetric heating rate would decrease.

2.5 One dimensional loop models
One dimensional (1D) loop models has a similar base as the scaling laws. They also
consider a 1D structure that is shaped by the magnetic field (as in Fig. 2.1). However, 1D
loop models are usually beyond the regime of hydrostatic equilibrium. A typical 1D loop
model numerically solves the full hydrodynamic problem, i.e. the conservations of mass,
momentum and energy, in a coordinate along the magnetic fieldline. The magnetic field
usually does not explicitly play a role. While the area of the loop cross-section, which is
related to the inverse of the magnetic field strength along the loop, can be included 1D
models.

Although 1D loop models seem to have a rather simple setup, it has many clear ad-
vantages. A few of them are summarise as the following.

• 1D model is the most simple model that can give the distributions of the plasma
properties (and velocities for non-static solutions) along the loop. In contrast the
scaling laws only consider the peak temperature and a characteristic density.

• 1D loop models can solve a time-dependent problem, which allows people to study
the evolution of the density, temperature and velocity in the loop. This stimulates
comparisons with the temporal evolution observed on the Sun.

• When solved numerically, 1D loop models can achieve high resolutions with a more
affordable computational demand, compared to multi dimensional models. Actually
even with the computation power at nowadays, only 1D loop models are able to use
a grid spacing that resolves the steep temperature gradient in the transition region
well.
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Therefore 1D models was the most popular modelling approach on corona dynamics
in the last three decades. They were used to study the flow pattens that are driven by
various distributions of the heating rate and different geometries of the loop (Boris and
Mariska 1982, Mariska and Boris 1983). Hansteen (1993) studied the response of the
loop plasm to an episodic heating that would be given by nanoflares (Parker 1988). These
models properly treated the corona energy balance, albeit with a prescribed heating rate,
and were able to produce synthetic spectra that are comparable to actual spectroscopic ob-
servations. They found interpretations to the systematic red shift (i.e. downward motion
of plasma) observed in the transition region spectral lines at that moment. Müller et al.
(2003, 2004) studied the condensation of plasma in coronal loops. These models aimed to
understand the dynamics in coronal rains where cool materials were observed to fall back
to the solar surface. These models showed that the insufficient heating versus the energy
loss at the loop apex can trigger the catastrophic cooling of the loop plasma. Recently,
Mikić et al. (2013) investigated 1D loop models with non-uniform or asymmetric cross
sections that are derived from a more realistic magnetic configuration. They demonstrated
the impacts of cross section profile to the behaviour of the loop plasma. Numerous studies
are summarized comprehensively in the up-to-date reviews by Reale (2010, 2014), which
show many successes of 1D models on propelling our understandings on the structures
and dynamics of coronal loops.

1D models also have shortages that can not be essentially eliminated. The most critical
one is that the heating rate in a 1D model must be prescribed, because in a purely 1D setup,
most of the heating mechanisms can not be modelled in a fully self-consistent manner. To
self-consistently produce a heat input to a loop, the cross section of the loop has to be
spatially resolved, as in 3D reduced MHD models (see details in Sect. 2.6.1).

They also have difficulties on directly modelling loops in evolving magnetic struc-
tures. One might cope with this by a collection of 1D models with different geometry
setups which would depict the change of the magnetic structure. However this method
still have the problem of no self-consistency.

Such problems can be handled in 3D models introduced in the next section.

2.6 Three dimensional models

The 3D nature of the corona can only be self-consistently reproduced by 3D models.
Depending on the aims of the studies and availability of resources, difference models may
include different ingredients. Some may focus on the characters of the heat input, thus
disregard the plasma properties that probably does not impact the heat input much. While
some may aim to study the dynamical response of the coronal plasm to a prescribe heating
rate.

In Sect. 2.6.1 and Sect. 2.6.2 we introduce several typical simplified 3D models, which
often focus on modelling one particular properties of the corona. Then Sect. 2.6.3 gives a
review on more sophisticated realistic models that can give a comprehensive description
on the plasma and magnetic field in the corona.
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2.6.1 Reduced MHD models of coronal loops

Reduced MHD models (Strauss 1976) are 3D models for a loop structure. They assume
a very strong time-independent longitudinal background magnetic field that corresponds
to a magnetic flux tube. These models only solve the velocity and magnetic disturbances
transverse to the background magnetic. Such setups intend to model the energy input
into a loop by interactions of the velocity field and magnetic fieldlines at the footpoint of
loop. The driving velocity field still has to be given empirically. These models have been
used to test the energy input from the Alfvén wave turbulence (van Ballegooijen et al.
2011, 2014) and the fieldline braiding (Rappazzo et al. 2008). A reduced MHD model
can produce a relation of the heating rate to the loop parameters. Such a relation can be
used as a parametrisation of the heating in other models to study the coronal structure are
formed in response to the heat input (Sect. 2.6.3.1).

2.6.2 Magneto-frictional models of active regions

Magneto-frictional models solve the induction equation by assuming that the velocity in
the induction equation is proportional to the Lorentz force. This is motivated by the low
β of the corona. The evolution of the coronal magnetic field is determined by motions
perpendicular fieldlines. These motions is primarily driven by the Lorentz force. The
magnetic field in the magneto-frictional models will finally relax to a force-free state,
because a vanishing velocity requires a vanishing Lorentz force.

In a magneto-frictional model Cheung and DeRosa (2012) followed the evolution of a
growing active region. They used a time series of observed vertical magnetic field (lower
panels in Fig. 2.3) as the bottom boundary and investigated how the coronal magnetic
field relaxes to a force-free state. In each individual fieldline they evaluated an artifi-
cial emission that is defined as a function of the integral of j2 along the fieldline. The
synthetic images (upper panels in Fig. 2.3), obtained by integrating the emission along
a chosen line-of-sight, appear similar to the actual EUV observation sampling emission
from 1 MK hot plasma, as shown in Fig. 2.3. This result may suggest that the magneto-
frictional models, albeit highly simplified, still provide some valuable information on the
heating distribution in the active region corona. Magneto-frictional models are usually
less computationally demanding (compared to Sect. 2.6.3 in the following). Thus they
can model the evolution of active regions on a time scale of days and on a spatial scale of
several hundred Mm, with relatively affordable computations.

2.6.3 Realistic active region models

Realistic models intend to have a more comprehensive description on the physical pro-
cesses in the corona, which include at least a fully compressible MHD problem with the
coronal energy balance. The model parameters are set to match with the solar corona as
closely as possible. The highest Reynolds number achieved in these models has to com-
promise to the limit of computation powers, as what also happens to most of the numerical
experiments on astrophysical plasma. Nonetheless, these models are able to produce very
realistic density and temperature structures that are consistent with typical values derived
from observations. One can use the density and temperature in the model to synthesise
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Figure 2.3: Artificial emission produced by a magneto-frictional model driven by the
observed magnetic field in the photosphere. Upper panels show the artificial emission
that is assumed to be related to the heating along individual fieldlines (see Sect. 2.6.2 for
details). Lower panels are the observed line-of-sight magnetic field in an emerging active
region, which drives the evolution of the coronal magnetic field in the magneto-frictional
model. This figure is taken from Cheung and DeRosa (2012).

observations in the EUV and X-ray passbands. These synthetic observations can be di-
rectly compared with actual observations. From these comparisons, we can investigate the
physical processes responsible for the consistency or inconsistency between the models
and the reality. In this way, these models can shed light on the natures of the heat input,
thermal properties and dynamics in the real corona.

2.6.3.1 Models with parametrised heating

The heat input in this type of models is described by either empirical parametrisations
(Mok et al. 2008) or the relations derived by reduced MHD models (Lionello et al. 2013).
In either case the heating rate is related to the magnetic field, which implies that the
heating should be essentially from the interact of the fluid motion and the magnetic field
in the lower solar atmosphere, as proposed by the DC or AC heating mechanisms. Despite
of using a parametrised heating rate, these models solve the MHD problem with a proper
coronal energy balance. Thus they are still suitable for studies on the dynamical response
of the active region corona to a certain heat input. The plasma properties in the model can
be used to synthesise coronal emission that is directly comparable to observations. A nice
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Synthetic 171 Å emission  

Figure 2.4: Synthetic 171 Å emission seen from four different viewpoints. The synthetic
loop shows an almost constant cross section along the loop. This figure is taken from
Mok et al. (2008).

example of the synthetic emission in shown in Fig. 2.4. Mok et al. (2008) synthesised the
emission at 171 Å, which is mainly from the plasma at 1 MK, and integrated the emission
along four different lines-of-sight (the four panels of Fig. 2.4). From all four viewpoint,
the loop found in the synthetic observation shows a non-expanding cross section, which
is a well-known feature of real loops observed in X-ray and EUV passbands.

2.6.3.2 Models acounting for magnetic braidings

Some more sophisticated active region models considers the heating from the field-
line braiding (Parker 1972, 1983) and the flux tube tectonics (Priest et al. 2002) self-
consistently in the full MHD problem. A series of models under the same strategy has
been very successful on investigating the formation of coronal loops and various dynam-
ics in the loops.

Gudiksen and Nordlund (2002, 2005a,b) firstly showed that the Ohmic dissipation
from the currents induced by the braiding of magnetic fieldlines is sufficient to maintain
a coronal temperature of over 1 MK. The synthetic coronal emission from the model is
similar to observations (Fig. 2.5a,b). In their model (hereafter Gudiksen model), the mag-
netic field is based on a potential field extrapolated from an observed magnetogram of an
real active region (Fig. 2.5c). They implemented an artificial horizontal velocity driver in
the photosphere of the model. The velocity driver reproduces the general characters of
the granular motions on the Sun. The footpoints of magnetic fieldlines are twined around
each other by the velocity field, as proposed by Parker (1972, 1983) and Priest et al.
(2002). The magnetic energy is converted to the internal energy of the coronal plasma in
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(a) 

(b) 

(c) 

Figure 2.5: Synthetic emission showing the coronal loops in the Gudiksen model. Panel
(a): Synthetic emission in the 171 Å channel. Panel (b): Synthetic emission in the 195 Å
channel that is mainly from the 1.5 MK plasma, which is slight hotter than that sampled
by the 171 Å images. Panel (c): Vertical magnetic field at the bottom of the simulation
domain, i.e. the photosphere. Line 1 and line 2, which are magnetic fieldlines, indicate
two loops identified in the 171 Å image, and line 3 shows a loop identified in the 195 Å
image. Note that line 2 connects through the outside of the domain, due to the periodical
lateral boundary. This figure is taken from Gudiksen and Nordlund (2005b).

a rate proportional ηj2, where η is the resistivity and j is the current. The magnetic field
in their model photosphere and the synthetic EUV images are shown in Fig. 2.5. The syn-
thetic 171 Å and the 195 Å images (showing the emission from plasma at a temperature
of 1.5 MK) show a highly structured corona. The emission structures are found generally
in line with magnetic fieldlines, as indicated by the three lines in Fig. 2.5.

As a key parameter of this type of model, η is typically determined by the relation

Rgrid
m =

U ∆x
η

, (2.32)

where Rgrid
m is grid magnetic Reynolds number, when choosing the grid spacing, ∆x, as

the length scale, and U is the characteristic speed. In this type of model Rgrid
e should be
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about unity, so that the dissipation is only efficient at the smallest spacial scale resolved
by the model. If we choose the typical sound speed in the corona (100 km s−1) as U and
δx≈100 km, the corresponding η is of the order of 1010 m2 s−1. This resistivity seems to be
much larger than the value suggested by the classical transport theory (e.g. 10 m2 s−1). A
larger η would yield a more diffused structure for the current. However the total amount
of dissipated energy is expected to be unchanged, as long as η is determined by Eq. (2.32).
This is supported by previous studies on the energy input through the Ohmic dissipation
of induced currents (Hendrix et al. 1996, Galsgaard and Nordlund 1996, Rappazzo et al.
2008). Therefore, although present numerical experiments are still far from resolving the
dissipation scale in the real corona, these models are expected to dissipation the same
amount energy as on the Sun.

In the models, the heating rate drops exponentially in height with a scale height rang-
ing from 5 to 10 Mm. This generally applies to the averages heating rate (Gudiksen and
Nordlund 2002) and that along individual fieldlines (van Wettum et al. 2013). This scale
height is in between the pressure scale height in the chromosphere and that in the corona.
Consequently, the heating per particle, which is defined as the volumetric heating rate
over the number density, peaks at the transition region (Bingert and Peter 2011). When
following the temporal variation of the heating rate in a magnetic fieldline, Bingert and
Peter (2011) found evidences for both continuous and intermittent heating. By discretis-
ing the Ohmic heating in the coronal into individual events, Bingert and Peter (2013)
showed that the amount of energy released by a single event is mainly about 1017 J, which
is consistent with nanoflares proposed by Parker (1988).

Peter et al. (2004, 2006) investigated the properties of the spectral lines synthesised
from the Gudiksen model. They found that the synthetic spectral lines at transition region
temperatures have a systematic redshift as observed on the Sun (Peter and Judge 1999).
Furthermore the temporal variations in the line intensities and the Doppler velocities also
show a good match with observations. In another model, Hansteen et al. (2010) found
an interpretation for the blueshift generally observed in coronal spectral lines. Peter and
Bingert (2012) showed that the appearance and temporal variations of the loop, which
identified in the synthetic EUV observations, are similar to those in observations modern
EUV imaging telescope. The analysis on the temperature and density distributions in the
model coronal sheds new light on the long-known puzzle of the apparently non-expanding
cross section of the loops observed EUV and X-ray passbands.

The result discuss above is not tuned to fit a particular active region, but to studies
the general behaviours of the corona. Bourdin et al. (2013) built a model that is based on
a magentogram and a horizontal velocity field from actual observations. The geometry
of the loop structures in the model active region is well consistent with the stereoscopic
observations to the same active region. The Doppler velocity patterns in the active region
is reproduced by the synthetic spectra from the model as well.

The realistic 3D models are a big step forwards from previous modelling approaches.
They capture the essential physics underlying the observational features. When more
details are revealed by the high quality observation, the realistic models serve as the best
tool to investigate the heating of the corona and the dynamics in coronal structures.
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2.7 Formation of active regions through the magnetic
flux emergence

Most of the coronal loops are observed in solar active regions, which are the area with
large scale strong magnetic flux concentrations. The interaction of the flows and the
magnetic field in active regions are very likely to offer the energy budget for formation
of coronal loops. Moreover, major solar activities, such as solar flares and coronal mass
ejections (CMEs), are also born in active regions. Thus the formation and evolution of
solar active regions, in particular their magnetic structures, are always intriguing topics.

During the formation stage of an active region, which is usually on a time scale of
days, a large amount of magnetic flux emerges in the photosphere. The emerged flux
forms strong magnetic flux concentrations of opposite magnetic polarities that has a length
scale of several tens Mm (e.g. lower panels of Fig. 2.3). This is commonly interpreted as
a magnetic flux tube breaking into the photosphere. The magnetic flux tubes are expected
to be intensified by the dynamo process in the convection zone, buoyantly rise to the solar
surface, and bring the magnetic flux further into the upper solar atmosphere (Fan 2009,
Cheung and Isobe 2014). While another interpretation suggests that magnetic flux con-
centrations could be intensified near the solar surface by turbulent convections (Kleeorin
and Rogachevskii 1994, Brandenburg et al. 2012, Warnecke et al. 2013). Thus there is no
need for an intensified magnetic flux tube coming from the deeper convection zone.

In spite of the debate origin of magnet flux tubes, the emergence of the flux tube from
the upper convection zone to the corona has been extensively investigated. However,
most of the studies were aimed on the evolution of the magnetic field, and treated the
plasma and radiation in the solar atmosphere in highly simplified manner (e.g., Fan 2001,
Abbett and Fisher 2003, Manchester et al. 2004, Archontis et al. 2004, Magara 2006).
Later models (Abbett 2007, Fang et al. 2010, 2012) made effort to improve the model
atmosphere by including semi-empirical radiation in the lower solar atmosphere, radiative
loss in the corona, and empirical heating related to the magnetic field.

Martínez-Sykora et al. (2008, 2009) studied the emergence of a twisted flux from the
upper convection zone into the lower corona, on a spatial scale more representative for
plage patches (of the order of 10 Mm). This model accounts for the radiative transfers
in the lower atmosphere, with the anisotropic heating conduction and the optically thin
radiation in the corona. The heating is added by the Ohmic dissipation. Although this
model has a very sophisticated description on the atmosphere, the spatial scale is much
smaller than typical solar active region. Furthermore, the magnetic features in this model
did represent that in active region. However, it is much too computationally demanding
to extend the models that consider convection zone and the corona at the same time into
large spacial scales, e.g. representing active regions (of the order of 100 Mm).

Concerning more on the magnetic field structures from the convection zone up to the
photosphere, highly realistic models have become possible to studies the sunspots struc-
tures (Heinemann et al. 2007, Rempel et al. 2009b) and the granulations in and around
the sunspot Rempel et al. (2009a) on large spatial scales. With the proper treatment on
the radiative transfer and equation of state, these models produced synthetic features that
appears similar to even the finest observations. (Cheung et al. 2010) studied the emer-
gence of a twisted magnetic flux tube through the upper convection zone. A pair of big
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Figure 2.6: A pair of sunspots formed in the photospheric level of an flux emergence
simulation. The upper panel shows the vertical magnetic field. The lower panel shows a
vertical cut along the red dashed line and extending 7.5 Mm below the photosphere, where
a torus shaped magnetic flux tube was injected at the beginning of the simulation. In the
vertical cut, the footpoints of this flux tube are rooted at x=12 to 20 Mm and x= − 12 to
−20 Mm, symmetrically. They can be identified as the regions with the highest magnetic
field strength. Meanwhile, the body of the flux tube has become very fragmented. This
figure is taken from Cheung et al. (2010)

sunspots formed after the flux tube breaks into the photosphere, as shown in Fig. 2.6. The
diameter of each sunspot is about 10 Mm. The field strength in the sunspots can exceed
2000 G. These features are quite comparable to real active regions. Rempel and Cheung
(2014) further applied the same modelling strategy on full life of an active region, from
the emergence to the decay. Compared with models of Martínez-Sykora et al. (2008,
2009), these models have similarly sophisticated treatment on the radiative transfer in the
lower atmosphere, and their spatial scale has been comparable to typical active regions.
However, they have to omit the upper atmosphere, i.e. the corona.

2.8 Motivation and aim of this study
The coupling of different layers in the solar atmosphere, is considered to be a key under-
stand the solar atmosphere. Many efforts have been made to understand the formation of
the coronal features and their connections to the lower atmosphere, as we have introduced
in the sections above. How coronal structures in an active region form at the same time
of the emergence of magnetic flux in the photosphere is a peak that is not yet conquered.
However, depicting a comprehensive picture on the plasma properties, magnetic struc-
tures would require the model to properly treat the fundamental physics from convection
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zone to the corona. Unfortunately such a model would be much too computationally
demanding for the present-day computing power.

Both the realistic flux emergence model spanning from convection zone to the photo-
sphere (Cheung et al. 2010, Rempel and Cheung 2014) and the realistic coronal models
that covers the atmosphere starting the photosphere (the Gudiksen model, Bingert and
Peter 2011, Bourdin et al. 2013) have been very successful in their own regime. This
inspires us to couple a coronal simulation to a flux emergence simulation.

The convection zone and the photosphere are basic in the high β regime, where the
fluid drives the magnetic field evolution. Meanwhile the majority of the corona is in
the low β regime, where the magnetic field dominates over the plasma. Therefore, the
coupling between the two models is actually driving the coronal simulation with the flux
emergence simulation (see Sect. 3.2.3 for the implementation), while the back reactions of
the corona to the photosphere, which are supposed to be minor during the flux emergence,
are omitted. Nonetheless, this provides the unique model in which we can study the
corona dynamics driven by magnetic flux emergence.

This coupled model has the following advantages compared with previous models.

• It has a proper treatment on the energetics of the coronal plasma, compared with
flux emergence models with a simplified atmosphere (Sect. 2.7).

• It has a self-consistent heat input from the interaction of the fluid and the magnetic
field in the photosphere, compared with coronal models using a prescribed heating
rate (Sect. 2.6.3.1).

• It has an evolving magnetic structure in response to the vast magnetic flux emer-
gence. This is substantially different with coronal models, in which the mag-
netic field only changes gently and slightly due to braidings in the photosphere
(Sect. 2.6.3.2).

• It can model an active region on a spatial scale of 100 Mm, which is one order
of magnitude larger than that of the model solving the flux emergence from the
convection zone to the corona (Sect. 2.7).

In the coronal model driven by magnetic flux emergence we will study the energy
budget for coronal loops, the dynamics of the loops, and the evolution of EUV and mag-
netic structures. The comparison to previous models will highlight how this model shed
new light on the dynamics in a forming active region.

In Chap. 3, we first give a description on the numerical method. Then we introduce
the basic properties of the flux emergence simulation and the configuration of the coronal
simulation. Finally, we describe how the coupling of the flux emergence simulation and
the coronal simulation is implemented.

In Chap. 4 we show the analysis focused on the first loop-like structure found in the
synthetic EUV images. We exam the thermal dynamics along the magnetic fieldline host-
ing the EUV loop, and compare the dynamics with traditional 1D loop models. Further-
more, we demonstrate how the density and temperature structures in 3D space determin
the cross section of the EUV loop. Finally we reveal the character of the energy input
in the lower atmosphere that essentially triggers the formation of the loop. This analysis
depict an overall picture of the built-up of a coronal loop in a forming active region.
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We then focus on the evolution of EUV loops and the magnetic field in Chap. 5. By
tracing the evolution of the apparent EUV structure (i.e. the EUV loop) and a bundle of
magnetic fieldlines (i.e. the magnetic loop), we show that their evolution are not identical,
even through in any static image a EUV loop is nicely along the magnetic fieldline. The
reason is found by investigating how the heat input in individual magnetic fieldlines sets
their density and temperature when the footpoints of these fieldlines are advected into the
sunspot by the coalescent flow in the photosphere. This analysis reveals the substantial
difference between the dynamics in an emergence active region and that in a stable active
region.

In Chap. 6 we study the transverse oscillations in coronal loops, which is an example
of the detailed dynamics in the model. The damped oscillation can be well identified
by the synthetic imaging and spectroscopic observations. Its (synthetic) observational
properties is very similar with oscillations observed in real corona. Thus the realistic
model can serve as a test case for techniques applied on real observation, such as corona
seismology.

Finally we summarise the results in Chap. 7 and discuss further extensions of the
present work.
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3 Coronal simulations driven through
the bottom boundary

3.1 Numerical method

3.1.1 Governing equations
We use the Pencil Code1 to numerically solve the MHD problem. The equations for
coronal simulations in the Pencil Code read,

∂ ln ρ
∂t

= − (u · ∇) ln ρ − ∇ · u , (3.1)

∂u
∂t

= − (u · ∇)u +
1
ρ

[
−∇p + ρg + j × B + 2ν∇ ◦

(
ρS

)]
, (3.2)

∂A
∂t

= u × B − ηµ0j , (3.3)

∂ ln T
∂t

= − (u · ∇) ln T − (γ − 1)∇ · u +
1

cVρT

(
ηµ0j2 + 2ρνS 2 − ∇ · q − Lrad

)
, (3.4)

where ν is the viscosity, η the resistivity, cV the specific heat capacity at constant volume,
A the vector potential, and S the rate-of-strain tensor written as

S =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
−

1
3
δi j ∇ · u. (3.5)

In the energy equation (Eq. (3.4)), ηµ0j2 is the Ohmic heating from the dissipation of
free magnetic energy, and 2ρνS 2 is the viscose heating from the dissipation of the kinetic
energy. The heat flux of the Spitzer heat conduction, q, is written as

q = − κ0 T 5/2b(b · ∇ T ), (3.6)

which is the same as Eq. (2.15). The energy loss through the optically thin radiation, Lrad,
is evaluated by

Lrad = n2
e Λ(T ), (3.7)

as in Eq. (2.14). We use the contribution function, Λ(T ), given by Cook et al. (1989).
The MHD equations are solved together with the equation of state for an ideal gas

(Eq. (2.6)). We use µ̃=0.667, as given by Bingert and Peter (2011). In total this set of

1https://github.com/pencil-code/
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equations describes the evolution of the fully compressible plasma with a proper treat-
ment on the energy balance in the solar corona including the heat conduction along the
magnetic field, the loss of energy through the optically thin radiation, and the heating by
the dissipation of the magnetic and kinetic energy. The spatial derivatives are evaluated
by a sixth order center finite difference scheme, while the time integration is discussed in
Sect. 3.1.2 and Sect. 3.1.3.

Induction equation of the magnetic field

We solve the induction equation of the vector potential, A. The magnetic field is defined
by

B = ∇ × A. (3.8)

This guarantees that the magnetic field is perfectly solenoidal, i.e.

∇ · B = ∇ · (∇ × A) = 0.

The curl of Eq. (3.3) reads,

∇ ×

(
∂A
∂t

)
= ∇ × (u × B) − ∇ × (ηµ0j) . (3.9)

With the Ampère’s law, µ0j = ∇ × B, this equation can be written as

∂B
∂t

= ∇ × (u × B) − ∇ × (η∇ × B) , (3.10)

which is the common form of the induction equation of magnetic field, i.e. Eq. (2.3). We
have the freedom to add the gradient of scalar, ∇φ, to the right hand side of Eq. (3.3).
This is know as the gauge for the induction equation of A. The curl of ∇φ vanishes, thus
the gauge does not change the equation of B. In our simulations, we apply the resistive
gauge, which adds ∇(η∇ ·A) to Eq. (3.3). When η is a constant in space, Eq. (3.3) can be
formulated to

∂A
∂t

= u × B + η∇2A. (3.11)

Limiting the Alfv́en speed

The Alfvén speed in the model solar atmosphere can be extremely high, particularly above
the sunspots. As described later in Sect. 3.2 we use a non-uniform grid spacing in the
vertical direction of the coronal simulation. The smallest grid spacing is 32 km near the
bottom. Therefore, the time step would be severely limited by the very high Alfvén speed
and the small grid spacing.

We control the Alfvén speed by limiting the Lorentz force to obtain a large time step,
as applied by Rempel et al. (2009b). When the Alfvén speed exceeds vA0=2000 km s−1, a
factor defined as

fA = v2
A0

(
v4

A + v4
A0

)−1/2
(3.12)

is applied to the Lorentz force, i.e. the j×B term in Eq. (3.2). The corresponding effective
Alfvén speed (ṽA) in the model is evaluated by ṽ2

A = v2
A fA, which can not exceed vA0 as
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the result of the limiting. For a coronal loop of a density of 109 cm−3 and a magnetic field
strength of 100 G, the original Alfvén of about 6500 km s−1 is reduced by a factor of about
3. The model corona still keeps a sufficiently low plasma β. The effective Alfvén speed is
larger than the fastest sound speed (e.g. 150 km s−1) in the model by more than one order
of magnitude. Therefore, the plasma beta in the corona is still well below the 10−2.

3.1.2 Time step constraint
The MHD equations is integrated in time by an explicit third order Runge-Kutta scheme
described by Williamson (1980). The time step is limited by the Courant-Friedrichs-Lewy
(CFL) condition. The time step, δt is evaluated by

δt = min
(
cδt
δxmin

umax
, cδt,v

δx2
min

Dmax

)
, (3.13)

where δxmin is the minimum grid spacing, umax the largest flow/wave speed including the
sound speed and Alfvén speed, and Dmax the largest diffusivity. c is a coefficient less than
unity. Here we use cδt=0.8 and cδt,v=0.4.

Under typical coronal conditions, the time step limited by the thermal diffusivity of the
Spitzer heat conduction is significantly smaller than all the others. The thermal diffusivity
is defined as

χ =
κ0T 5/2

cVρ
, (3.14)

Given a grid spacing of 200 km, the heat conduction time step for the corona plasma of a
density of 109 cm−3 and a temperature of 2 MK is evaluated as

δtspitzer = cδt,v
δx2

min

χ
≈ 6 × 10−5 s. (3.15)

The second smallest time step in our simulation is usually limited by the viscosity and
resistivity that are determined by the grid Reynolds number, Eq. (2.32). For the typical
viscosity and resistivity we use, the correspond time step is about 5× 10−3 s, which larger
than δtspitzer by two orders of magnitude.

We are interested in the evolution of an active region corona in a period of the order
of hours. Given the time step constraint by the heat conduction, it would require about
108 step, which is a high computational demand. One solution to this problem is using
implicit time stepping schemes which are unconditionally (numerically) stable for any
length of time step. The disadvantage of using implicit time stepping schemes is that they
need to solve a large system of linear equations. This requires inverting of the global
scale matrix which is very computationally demanding. Moreover in massively parallel
computations as what we do (e.g. usually with 4096 processors), the global message com-
munication between processors may become a substantial limit to the computation speed.
(In comparison, explicit time stepping schemes would mainly require communications of
the boundary information between neighbouring processors.)

Finally even though implicit schemes are unconditionally stable in the numerical as-
pect. The largest time step is still limited by the characteristic time scale of the physical
variations of the model. The computational demand and the communication bottleneck in
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massively parallel computations may make the actual speed up even lower. In real prac-
tice, a code using an implicit time stepping scheme for the heat conduction (Gudiksen
et al. 2011) can actually gain a speeding-up of about 4.

3.1.3 Sub-cycle for the heat conduction
As an alternative to using the implicit time stepping scheme, we treat the heat conduction
term in a loop separated from the main MHD equations. This choice is based on that the
time step limited by the heat conduction is significantly smaller than the second smallest
time limit.

Let δt2nd denote the second smallest time step limit. When we evolve the full MHD
equation from tn to tn + δt2nd, we first evolve the continuity equation, the momentum
equation, and the energy equation without the heat conduction term. This set of equations
can be evolved stably by the explicit Runge-Kutta time stepping scheme with a time step
of δt2nd.

Then in a "sub-cycle" for the heat conduction, we can consider an energy equation
that only contains the heat conduction term, which reads

∂ ln T
∂t

= −
1

cVρT
(∇ · q) . (3.16)

This equation is integrated in time with a time step δtSpitzer. The time integrate in the sub-
cycle is repeated until the time in the sub-cycle is evolved by δt2nd in total. Therefore the
amount of iterations in the sub-cycle is about δt2nd/δtSpitzer.

In this way the full MHD equations are evolved from tn to tn + δt2nd. The computation
on the majority of the equations can be reduced by a factor of about δt2nd/δtSpitzer. Thus
we get a significant speed up compared to evolving the full equations with δtSpitzer.

3.1.4 Super time stepping in the sub-cycle
In practice, δtSpitzer is usually smaller than δt2nd by two orders of magnitude. The amount
of iterations in the sub-cycle is usually of the order of 100. By applying a super time step-
ping scheme on the time integration of the energy equation in the sub-cycle, we are able
to evolve it with a time step significantly enhanced from δtSpitzer. Therefore the amount of
iterations in the sub-cycle is reduced correspondingly.

The super time stepping is a (family of) very efficient method to speed up computa-
tions for parabolic equations, such the heat conduction problem. It is essentially a class
of multi-step Runge-Kutta method. By doing s sub-steps in a full time step of the super
time stepping, it achieves a time step that is enhanced from the time step determined by
the CFL condition (i.e. the time step for the ordinary Runge-Kutta method) by a factor
proportional to s2.

In our simulation, we implement the method described by Meyer et al. (2012). The
sub-steps are designed based on the recursion relation of shifted Legendre polynomials.
Therefore, it is also referred as the Runge-Kutta-Legendre (RKL) method. Here we give
only a brief description of this method.

A general parabolic equation is written as
∂U
∂t

= Lpara(U), (3.17)
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where U is a variable and Lpara is a parabolic operator. When this equation is evolved
one time step forward, i.e. from tn to tn+1=tn + δtRKL, the RKL scheme with s sub-steps is
written as

Y0 = Un

Y1 = Y0 + µ̃1 δtRKL Lpara(Y0)

Y j = µ jY j−1 + ν jY j−2 + (1 − µ j − ν j)Y0

+ µ̃ j δtRKL Lpara(Y j−1) + γ̃ j δtRKL Lpara(Y0) ; 2 ≤ j ≤ s

Un+1 = Ys, (3.18)

where Un and Un+1 are the solutions at tn and tn+1, respectively. Y j is the approximate
solution at each sub sub-step. The recursion relation is determined by the parameters µ j,
µ̃ j, ν j, and γ̃ j. These parameters are defined as

µ̃1 =
4

3 (s2 + s − 2)
, µ j =

2 j − 1
j

b j

b j−1
,

µ̃ j =
4 (2 j − 1)

j (s2 + s − 2)
b j

b j−1
, ν j = −

j − 1
j

b j

b j−2
,

γ̃ j = − a j−1 µ̃ j , a j = 1 − b j ,

b j =
j2 + j − 2
2 j ( j + 1)

, 2 ≤ j ≤ s

b0 = b1 = b2 =
1
3
. (3.19)

If the time step of Eq. (3.17) limited by the CFL condition is δtpara, the time step
constraint for the RKL method is

δtRKL ≤
s2 + s − 1

4
δtpara. (3.20)

Meyer et al. (2012) noted that people should use odd values of s, for sake of a better
numerical stability. For our simulation, we can in principle choose an odd value of s′, so
that δtRKL is equal to δt2nd. Therefore the evolution of Eq. (3.16) from tn to tn + t2nd could
be done by one RKL step with s′ sub-steps, and there is actually no need for the sub-cycle
iteration. However, in real practice we find that using a large s is very likely to be unstable,
particularly in 3D simulations. The typical s value we use in our simulations is 3 or 5.
Compared to the ordinary third order Runge-Kutta scheme (containing 3 sub-steps), s=3
achieves an enhancement of 2.5 in time step, as determined by Eq. (3.20), with few extra
computation. For s=5, we obtain an enhancement in time step of 7. The computational
demand is also increased because more sub-steps need to be calculated. In together we
get a speeding-up of about 4.
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Summary for the time stepping strategy

In summary, the most severe time step constraint in our simulation is from the Spitzer
heat conduction along the magnetic field, i.e. δtSpitzer, which is usually smallest than the
second smallest time step, δt2nd, by 2 orders of magnitude. We evolve the majority of the
MHD equations with δt2nd by a third order Runge-Kutta scheme, and evolve an energy
equation that only considers the heat conduction in a sub-cycle. The energy equation in
the sub-cycle is a parabolic equation that can be evolved with the Runge-Kutta-Legendre
scheme. With this method, we are able to evolve the energy equation in the sub-cycle with
a time step of δtRKL that is enhanced from δtSpitzer by a factor of about 2.5 to 4. Therefore
the number of iterations in the sub-cycle is reduced. In total, by using the sub-cycle and
the RKL scheme we can achieve a significant speeding-up compared to evolving the full
MHD equations with the smallest time step (δtSpitzer). The speeding-up factor varies during
the simulation, because it depends on the ratio of δt2nd to δtRKL. Nonetheless it is supposed
to be better than the speeding-up factor if we would use an implicit time stepping scheme
for the heat conduction, because we usually execute massively parallel computations on
over 4000 processors, which would severely limit the efficiency of implicit schemes.

3.2 Model setup
The idea of our coupled model is that we use the output at the photospheric layers in a
flux emergence simulation as the bottom boundary of a coronal simulation spanning from
the photosphere to the upper corona. In this way we drive the coronal simulation and
study the structures and dynamics in the model corona driven by the flux emergence in
the photosphere.

Here we give a description of the flux emergence simulation used as the input at the
boundary (Sect. 3.2.1), the configuration of the coronal simulation (Sect. 3.2.2), and the
approach to drive the coronal simulation from the bottom boundary (Sect. 3.2.3).

3.2.1 The flux emergence simulation
The flux emergence simulation is done by the MPS/University of Chicago Radiative MHD
(MURaM) code (Vögler et al. 2005, Rempel et al. 2009b). This code accounts for the
non-gray radiative transfer and a realistic equation-of-state (EOS) for the partially ion-
ized plasma in the lower solar atmosphere. Simulations from the MURaM code can
model the magnetoconvection in the upper solar convection zone, and the plasma and
magnetic properties in the lower solar atmosphere. These highly realistic simulations are
comparable to state-of-the-art observations.

The advantage of driving the corona with simulation data is that these simulations
successfully resemble the key features in photosphere of the real Sun. The data from
the simulation offer the full information on the evolution of the density, temperature, ve-
locity and magnetic field. Some of these quantities in the photosphere are still difficult
to measure directly from observations, for example the horizontal component of the ve-
locity. Previous coronal simulations usually use an artificial velocity field similar to the
typical granular motions in the photosphere. However this trades off the self-consistency
in the evolution of the velocity and magnetic field. Therefore the realistic simulation is a
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(c)

(a) (b)

(d)

Figure 3.1: Evolution of the vertical magnetic field in the photosphere of the flux emer-
gence simulation. It demonstrates the emergence and coalescence of magnetic flux in the
photosphere in 6 solar hours. See Sect. 3.2.1 for details.

good option as a self-consistent driver for coronal simulations, in particular if we intend
to study the flux emergence process.

The flux emergence simulation we use is designed by Cheung et al. (2010) and Rempel
and Cheung (2014). The computational domain covers an area of 147.5×73.7 Mm2, and
spans 16.4 Mm in the vertical direction. The horizontal grid spacing is 96 km and the
vertical is 32 km. The bottom boundary is 15.7 Mm below the model photosphere, where
the average optical depth is unity. Therefore the simulation is mainly designed to study
the emergence of a flux tube from the upper convection zone to the photosphere.

The simulation is first relaxed to a non-magnetic convection. As the start of the flux
emergence, a semi-torus magnetic flux tube is advected kinematically across the bottom
boundary by a vertical velocity of 500 m s−1. After the semi-torus is fully advected into
the domain, it then evolves freely. The flux tube has no imposed twist, i.e. the magnetic
field is purely in the direction of the axis. It contains a total magnetic flux 1.7×1022 Mx.
The magnetic field strength is 10.6 kG at the axis.

The magnetic flux tube buoyantly rises through the convection zone and reach the
photosphere. During the process it is fragmented by the interaction with the convective
motions. In the photosphere, many small scale magnetic elements, with a field strength of
a few hundred or over one thousand Gauss, appear first (Fig. 3.1a). Later the small mag-
netic elements start to coalescent with each other and form larger magnetic flux patches
(Fig. 3.1b and c). At about 27 h after the injection of the flux tube at the bottom, a pair
of Sunspots forms in the photosphere (Fig. 3.1d). Each sunspot has a diameter of about
15 Mm. The highest magnetic field strength at the center may exceed 2000 G. These
model sunspots are very similar to a large active region in the real Sun.

We extract a full set of variables in four consecutive horizontal layers in the model
photosphere with a 25 s cadence. We use this dataset as the bottom boundary that will
drive the coronal simulation. The number of horizontal layers are determined by the sixth
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3 Coronal simulations driven through the bottom boundary

order central finite difference scheme in the Pencil Code, which requires three ghost cells
at the bottom boundary. We would put one more layer in the first cell of the computation
domain. Therefore, four horizontal layers in total are required. (see Fig. 3.2 and detailed
descriptions in Sect. 3.2.3).

3.2.2 Setup of the coronal model
The coronal simulation focuses on the further evolution of the emerged magnetic field
from the photosphere into the higher solar atmosphere and the dynamical response of the
coronal plasma to the injection of the magnetic energy.

3.2.2.1 Computation domain

The domain of the coronal simulation is identical to the flux emergence simulation in the
horizontal direction. We conduct two numerical experiments with different designs for
the grid (hereafter, the low resolution run and the high resolution run), as following.

• Low resolution run
This is preparatory test for later high resolution simulations. The horizontal do-
main of 147.5×73.7 Mm2 is resolved 256×128 grid points, which yields a 576 km
grid spacing. The computation domain that spans 73 Mm upward from the photo-
sphere is resolved by 256 grid points. We use a non-uniform grid in the vertical
direction. The grid spacing is 32 km at the bottom (to match that of the flux emer-
gence simulation), and about 300 km in the coronal part.

• High resolution run
This is our production run based on the successful preparatory low resolution test.
The horizontal domain of 147.5×73.7 Mm2 is resolved 1024×512 grid points. The
horizontal grid spacing is 144 km, which is higher than that of the low resolution run
by a factor of 4. In the vertical direction, we use non-uniform grid with 256 points
to resolve a reduced domain height of 50 Mm, because we found in the low resolu-
tion run that the interesting features and dynamics are mainly below the height of
20 Mm. The vertical grid spacing is 32 km at the bottom, and 190 km in the coronal
part of the domain.

3.2.2.2 Initial conditions

In the early stage of the flux emergence simulation, the flux tube is still in the convection
zone. These period is not particularly interesting for the study of coronal dynamics. Only
in the later stage, when the strong magnetic flux concentrations start to form, the coronal
dynamics becomes worth of studies. Therefore, the start of the coronal simulations are
usually later than t=20 h in the flux emergence simulation.

The low resolution run starts at t=21 h, while the high resolution run starts at t=24 h,
because we found in the former that the first coronal feature only appear after t=25 h.

The initial atmosphere is design to have a stratification similar to the real solar atmo-
sphere. The temperature at the bottom is 5100 K. It increases to 1 MK in the corona part,
with a transition at about 3 Mm in height. The density at the bottom is set by the average
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3.2 Model setup

density of the horizontal layers from the flux emergence simulation. The density profile
is calculated from the hydrostatic equilibrium.

The initial magnetic field in the coronal simulation is a potential field determined by
the vertical magnetic field at the bottom, which is from the photospheric magnetic field in
the flux emergence simulation. In this stage the magnetic field in the photosphere is still
mainly distributed small scale magnetic elements. The coronal magnetic field is almost
completely reconfigured when the stronger magnetic field from the flux tube emerges
through the photosphere and expands to the higher atmosphere.

3.2.2.3 Boundary conditions

The lateral boundaries are periodic for all variables. This potentially allows magnetic
fieldlines in the emerging active region to connect to the outside of the simulation domain
(e.g. the white solid line in Fig. 2.5, albeit in a stable active region). However, we would
like to keep the emerging active region in the simulation isolated from neighbouring active
regions (due to the periodic lateral boundary). The original flux emergence simulation has
developed an enough quiescent Sun area around the emerging active region, so that the
magnetic fieldlines in the active region mainly connect the two sunspots. Otherwise, one
has to manual set up some quiescent Sun magnetic field around the active region, as what
was implemented by Bourdin et al. (2013).

At the top boundary, the temperature is set to have a zero gradient, so that the heat flux
vanishes at the top boundary. This makes sure that the model corona will not be heated by
any external heat flux from the top. The velocity vanishes and the density is extrapolated
upward with the hydrostatic equilibrium. This sets up a hydrostatic top boundary, because
the dynamics at the top is of no interest in this model. The magnetic field is connected
to a potential field, which is a common approximation to the coronal magnetic field on
the large scale. While some slight currents are built at the interface of the non-potential
magnetic field and the potential one, the corresponding Ohmic heating is very weak and
has no impact on the plasma properties in the region of interest.

The bottom boundary, which is set by the input from the flux emergence simulation,
is the time-dependent driver of the coronal simulation. The implementation is described
in detail in the next section, i.e. Sect. 3.2.3.

3.2.3 Coupling of the flux emergence and corona model

To drive the coronal simulation by the input from the flux emergence simulation, we first
need to convert the variables to those can be used in the coronal simulation, i.e. ln ρ, ln T ,
u, and A.

The input from the flux emergence simulation contains the density, internal energy,
momentum and magnetic field. The density can be directly used. The velocity can be de-
rived straightforward from the density and momentum. The temperature can be deduced
by the density and internal energy through the realistic (tabular) equation of state used by
the MURaM code (Vögler et al. 2005).

Our coronal simulations use the vector potential, A, as the variable for the induction
equation. Therefore we need to calculate the vector potential from the magnetic field.
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3 Coronal simulations driven through the bottom boundary

3.2.3.1 Preparing the vector potential

From the relation of A and B, and the Ampère’s law, we obtain

∇ × (∇ × A) = µ0j,

which can be written as
∇(∇ · A) − ∇2A = µ0j, (3.21)

The current, j, in the four layers from the flux emergence simulation is evaluated by the
curl of B in the same dataset. The dataset is periodic in the horizontal direction, which
allows us to use a sixth order central difference to calculate the horizontal derivatives.
However, this dataset has only four point in the vertical direction, thus we use a four-
point-stencil one-side difference for the vertical derivatives.

We have the freedom to choose the gauge for the vector potential. When the difference
between two vector potentials A1 and A2 can be written as

A1 = A2 + ∇ φ, (3.22)

where φ is an arbitrary scalar, the magnetic fields defined by A1 and A2 are identical,
because

B1 = ∇ × A1

= ∇ × (A2 + ∇ φ)
= ∇ × A2 + ∇ × (∇ φ)
= ∇ × A2

= B2. (3.23)

Here we apply ∇ · A = 0 in Eq. (3.21) and obtain

∇2A = − µ0j. (3.24)

Both the flux emergence simulation and the coronal simulation are periodic in the
horizontal dimension , thus we apply a two dimensional Fourier transform on Eq. (3.24)
in each horizontal layer respectively. In the Fourier space,

∂

∂x
→ ikx, and

∂

∂y
→ iky,

where kx and ky are the wave number. The partial differential equation, Eq. (3.24), is
converted into a set of ordinary differential equations (ODEs) that reads,

d2Âx

dz2 = k2Âx − µ0 ĵx, (3.25)

d2Ây

dz2 = k2Ây − µ0 ĵy, (3.26)

d2Âz

dz2 = k2Âz − µ0 ĵz, (3.27)
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where Âx is the Fourier transform of Ax (the same for the other components of A and j),
and k2 = k2

x + k2
y . The relations, B = ∇ × A and ∇ · A = 0, are also rewritten as

B̂x = ikyÂz,−
dÂy

dz
(3.28)

B̂y =
dÂx

dz
− ikxÂz (3.29)

B̂z = ikxÂy − ikyÂx (3.30)

0 = ikxÂx + ikyÂy +
dÂz

dz
. (3.31)

The task is to solve the system of the second order ODEs in the four horizontal lay-
ers. We use a fourth order Runge-Kutta method to integrate Eq. (3.25), Eq. (3.26), and
Eq. (3.27) from l=0 to l=3, where l=0 is the lowest layer and l=3 the highest. For exam-
ple Eq. (3.25) is decomposed into two first order ODEs, which are written as

du1

dz
= u2, (3.32)

du2

dz
= k2

xÂx − µ0 ĵx, (3.33)

where u1=Âx, and u2 = dÂx
dz . Eq. (3.26) and Eq. (3.27) can be reformulated in the same

way.
At l=0, the boundary values for u1 and u2 (i.e. Âx, Âx, Âx, and their vertical derivatives)

are defined as,

Âx, l=0 =
−ky B̂z, l=0

ik2 ,

(
dÂx

dz

)
l=0

= B̂y, l=0 (3.34)

Ây, l=0 =
kx B̂z, l=0

ik2 ,

dÂy

dz


l=0

= − B̂x, l=0 (3.35)

Âz, l=0 = 0,
(
dÂz

dz

)
l=0

= 0. (3.36)

With these boundary values, we can integrate Eq. (3.32) and Eq. (3.33) and get the solution
for Âx, Ây, and Âz in all four layers. The vector potentials are given by the inverse Fourier
transform. The curl of the vector potential well resembles the input magnetic field.

3.2.3.2 Time dependent update

The cartoon in Fig. 3.2 shows how the coronal model is driven by the flux emergence
model. The physical quantities (converted into the variables of the coronal simulation) in
the four horizontal layers from the flux emergence simulation are copied to the bottom of
the coronal simulation (three ghost cells and the first cell in the computation domain).
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z

xy 𝜌, T, u, B  from flux emergence

Figure 3.2: Cartoon showing the coupling of the flux emergence simulation and the coro-
nal simulation. The image is the vertical magnetic field in the photosphere. The frame
above the image present the computational domain of the coronal simulation, with x, y,
z the coordinate axes. The blue cube is the bottom boundary (three ghost cells) of the
coronal simulation. The physical quantities (ρ, T , u and B correspond to the density, tem-
perature, velocity and magnetic field) in the bottom boundary is from the flux emergence.

The input from the flux emergence simulation has 1536×768 grid points. This data has
to be reformed to the grid of the coronal simulation, i.e. 256×128 for the low resolution
run and 1024×512 for the high resolution run. We use a nearest-neighbour method to
interpolate the data in each horizontal layer.

The data from the flux emergence simulation has time cadence of 25 s, which is very
sufficient to capture the evolution of plasma and magnetic structures in the photosphere.
The boundary values for the coronal simulation at each time step (Ut) is calculated by a
linear interpolation between two consecutive data sets of the flux emergence simulation,
i.e.

Ut = UL +

(
UR − UL

tR − tL

)
(t − tL) (3.37)

Here t is the time, UL the first data set before the current time, UR the first data set after the
current time. tL and tR, which follow tL ≤ t ≤ tR, are for the two datasets, respectively.

At the beginning of the coronal simulation, the atmosphere is stratified in the verti-
cal direction, but uniform in the horizontal direction. However, the input from the flux
emergence simulation has already developed some density and temperature structures.
The initial magnetic field in the coronal simulation is the potential field extrapolated from
vertical magnetic field in the highest horizontal layer (i.e. l=3). But the magnetic field
in the lower horizontal layers (i.e. l=0 to l=3) are not potential. Therefore, at the very
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beginning of the coronal simulation, there is a considerable mismatch between the values
copied from the flux emergence simulation and those set by the initial condition of the
coronal simulation. We switch on the driver at the bottom in a time-dependent manner in
the first 5 min of the coronal simulation. The values in the lowest cells (Uinit, i.e. in the
three ghost cells and the first cell in the computation domain) are set by

Uinit = w U0 + (1 − w) Ut, (3.38)

where U0 is the values defined by the initial condition, Ut defined by Eq. (3.37), and w
the weight that decreases from 1 to 0 linearly in time in the first 5 min of the coronal
simulation.
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4 Coronal loops formed in an
emerging solar active region

* Sect. 4.2 to Sect. 4.6 are Sect. 3 to Sect. 7 in the article A model for the formation of the
active region corona driven by magnetic flux emergence by F. Chen, H. Peter, S. Bingert,
and M. C. M. Cheung, published in Astronomy & Astrophysics, 564, A12 (2014), DOI:
10.1051/0004-6361/201322859. Reproduced with permission from Astronomy & Astro-
physics, c© ESO

4.1 Introduction
The primary goal of the coronal model is to investigate how the coronal structures (e.g.
coronal loops) form during the emergence of the magnetic flux tube, and how well the
model features match the real corona. Therefore, we first analyse the data of the low
resolution run for the general properties of the coronal loop formed in the model. Here
we focus on a time period of about 30 min when the first coronal loop becomes visible in
the synthetic EUV images.

In this chapter we first give a detailed description on the first EUV loop formed dur-
ing the flux emergence (Sect. 4.2). We then compare the thermal dynamics and ener-
getic along the loop with the classical understandings from traditional 1D loop models
(Sect. 4.3). The 3D nature of the loop, which is beyond the regime of 1D loop models, is
highlighted in Sect. 4.4. Finally Sect. 4.5 discusses the enhancement of the energy input
in the model photosphere that triggers the loop formation.

4.2 Coronal loops appearing in an emerging active region

4.2.1 Magnetic expansion into the corona
Driven by the magnetic flux emergence through the bottom boundary, the magnetic field
expands into the corona. In Fig. 4.1 we show an overview of the evolution of the magnetic
field in the coronal simulation over four hours. We select the fieldlines at an early stage
of the simulation by random seeds in a small volume in the lower middle of the computa-
tional box and trace their evolution. 1 Thus the lines in the three lower panels of Fig. 4.1

1The algorithm for fieldline tracing used by VAPOR with the results shown in Fig. 4.1 is described at
http://www.vapor.ucar.edu/docs/vapor-renderer-guide/flow-tab-field-line-advection. It assumes that field-
lines are frozen in the plasma elements (i.e., infinite conductivity) everywhere and follows the motions of
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Figure 4.1: Overview of evolution of magnetic field. The top row shows the magnetogram
at the bottom boundary in the photosphere at three different times (vertical magnetic field).
The horizontal extent in the top panels is 147.5×73.7 Mm2. The bottom row shows the
evolution of a group of magnetic fieldlines in the coronal model driven by the flux emer-
gence. The color coding on the fieldlines shows the magnetic field strength (red is low
and purple is high). The bottom of the 3D rendering boxes are the same magnetogram as
the top row. The times in the panels refer to the time since the start of the flux-emergence
simulation. See Sect. 4.2.1.

show the same set of fieldlines and how they evolve in time.
At 23.0 h, there are already lots of small-scale flux-concentrations in the photosphere.

Low-lying fieldlines connect these small elements (not shown in the figure). As discussed
in Cheung et al. (2010), these small flux concentrations are part of the flux tube brought
to the surface through the near-surface convection. Because of the large scale of the
emerging flux tube, the large-scale magnetic connections in the figure (at 23 h) show a
bipolar pattern.

After two hours evolution at about 25.2 h, more magnetic flux emerged through the
photosphere and the small-scale flux-concentrations begin to coalesce. Now the large-
scale magnetic field concentrations start to become visible in the photosphere. This is
also illustrated by the fieldlines whose footpoints are moving closer to each other now
concentrating near the simulated spots. The magnetic field strength near the footpoints
increases. At the same time, the fieldlines expand upward into the higher atmosphere.

After another two hours, around 27.2 h, a pair of simulated spots, where the magnetic
field strength is over 3000 G, has formed in the photosphere. Now at the end of the
coalescence process the footpoints of the fieldlines are bundled closely together. The
central part of the set of fieldlines continues to expand into the higher corona.

The evolution of the magnetic field at the bottom boundary of our coronal model fol-
lows that in the flux emergence simulation, of course, albeit at a reduced spatial resolution.
While most of the fine structures are lost due to the lower resolution, the photospheric

plasma elements. The influence of magnetic diffusivity is discussed in Sect. 4.3.
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4.2 Coronal loops appearing in an emerging active region

magnetic field still captures the formation of sunspots by coalescence of small (down to
the resolvable scale) flux elements.

4.2.2 Appearance of a coronal loop
One of the key interests of this study is whether coronal loops will form during the active
region formation. Here and in most of the cases in this paper the term coronal loop refers
to a loop-like structure identifiable in (real or model-synthesized) EUV observations of
the corona. Whenever we refer to the magnetic field that confines the plasma contributing
to the EUV loop emission, we always use the term magnetic tube.

To perform a direct comparison between our model and observations, we synthesize
EUV images using the AIA response function (Boerner et al. 2012), following the pro-
cedure of Peter and Bingert (2012). Here we concentrate at the AIA 193 Å channel. It
looks similar but not identical to 171 Å and 211 Å channels, which sample the 1 to 2 MK
plasma, too. The 193 Å and 211 Å channels have also contributions from cooler plasma,
in particular in quiet regions. However, this does not play a major role in our active region
(model).

To form a coronal loop visible in EUV, one has to bring up enough plasma into the
upper atmosphere along a fieldline and heat it to at least 106 K. In our model, the heating
is by dissipation of currents which are induced by braiding of magnetic fieldlines through
photospheric motions. If the magnetic field strength in the photosphere is low, the plasma
motion can braid the magnetic fieldlines efficiently, but the induced currents will be weak,
too. On the other hand, the braiding does not work in very strong magnetic flux concentra-
tions, because there the plasma motions are suppressed. Both moderately high magnetic
field and horizontal velocity are needed to induce enough current. This favorable com-
bination is found at the periphery of sunspots, and in particular in our model after some
25.5 h after the start of the flux-emergence simulation. Therefore all times (usually given
in minutes) mentioned in the remainder of the paper will refer to this time, i.e., in the
following t=0 refers to 25.5 h after the start of the flux emergence simulation.

Once the energy input into the corona is sufficient, EUV loops will start to form.
In Fig. 4.2 we show the synthesized images for the AIA 193 Å channel integrated along
the vertical and the horizontal coordinate at two different times 20 minutes apart. These
views correspond to observations near the disk center (top panels) and at the limb (bottom
panels). The left column shows a snapshot at t=14 min, just after the first EUV loop
appears. At this time we see a single EUV loop forming, at later times more loops form at
different places. Here we concentrate on the first single EUV loop in order to better isolate
the processes triggering its formation.2 The right panels of Fig. 4.2 show the coronal
emission at t=34 min, after the loop started to fragment into several individual loops (see
Sect. 4.4.2). From almost no emission to clearly detectable count rates in the synthesized
images it takes only ≈5 min (see the animation with Fig. 4.2). In this paper we will mainly
concentrate on the initial evolution of the loop system during about 15 min.

The EUV loop is rooted in the periphery of the simulated spots, which is clear from the
top panels of Fig. 4.2 showing an overlay of magnetogram and emission. This is consistent
with the long-known observation fact that the footpoints of coronal loops are not in the

2In a more recent not yet fully finished numerical experiment we see also multiple loops forming at this
early stage, so the limited spatial resolution in this model plays a role, too.
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Figure 4.2: Evolution of synthesized coronal emission and magnetic field. The top panels
show photospheric magnetograms (vertical component), overlaid with the synthesized
coronal emission as it would be seen in the AIA 193 Å channel. The bottom panels
show synthesized AIA 193 Å images as seen from the side. The synthetic emission is
integrated along the line of sight , comparable to what is seen at disk center (top) or the
limb (bottom). The two columns show snapshots from the simulation 20 minutes apart.
Times refer to 25.5 h after the start of the flux-emergence simulation. The dashed line
in the left panels shows the fieldline at the spine of the loop selected for the analysis in
Sect. 4.3. See Sect. 4.2.2.

umbra at the higher field strengths, but in the periphery, the penumbra (Bray et al. 1991).
Even though the flux emergence simulation does not contain a proper penumbra (Cheung
et al. 2010) it is clear that the loops are rooted in a region where convection can do
considerable work to the magnetic field in the photosphere (see Sect. 4.5) and thus induces
strong currents in the corona.

The visible top of the EUV loop rises upwards by 10 Mm within 20 min, which means
a 10 km s−1 average upward velocity of the apex. The cross section of the EUV loop
expands in the vertical direction during this rise. However, the EUV loop expands even
more strongly in the horizontal direction after its initial appearance as a relative thin tube
of up to 5 Mm diameter and 45 Mm length. Finally the emission covers the whole area
in-between the two simulated spots, with a few fragments in the relatively diffuse loop
emission (Fig. 4.2b).

The above discussion, in particular the late fragmentation, shows that a 3D treatment
of the loop formation is essential. Still, in the early phase, the loop evolution appears to
be close to a single monolithic loop. Therefore, we first analyze the 1D evolution along
the spine of the emerging loop in Sect. 4.3. The full 3D aspects and the trigger of the loop
formation will be addressed after that in Sects. 4.4 and 4.5.
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4.3 The 3D loop collapsed to one dimension
In the solar corona, the high electric conductivity prevents slippage of the fully ionized
plasma across the field. The dominant magnetic energy assures that the Lorentz force
determines motions perpendicular to the magnetic field. The anisotropic heat conduction
quickly spreads the thermal energy along the fieldlines. Under such circumstances, often
a simplified 1D model along a magnetic fieldline is sufficient to describe a coronal loop,
although EUV loops are 3D structures in nature, as we show in this study.

In a 3D model, one can analyze the dynamics and thermal structures along a certain
magnetic fieldline, which should then give results equivalent to that of a 1D loop model.
For the loop forming in our 3D model, this applies in the early phase, when the loop is
still confined to a thin magnetic tube. This assumption breaks down in the later phase,
when the loop fragments into several substructures (see Sect. 4.4).

The spine of a EUV loop, which can be considered as being the central magnetic field-
line in the structure, is assumed to be static in most 1D models. However, it evolves in a
self-consistent manner in 3D models. For 3D models of mature active regions (Gudiksen
and Nordlund 2005a,b, Bingert and Peter 2011), the magnetic field evolution follows the
shuffling of footpoints of the fieldlines by granular motions and the change in morphol-
ogy is very gentle. It is quite different in our model. When the first coronal loop becomes
visible, the flux emergence is still going on, and the coronal magnetic field changes dra-
matically. To analyze the evolution of an equivalent 1D model, we need to follow the
magnetic fieldline in time and extract all physical quantities along this evolving fieldline.

During this tracing, we assume that magnetic fieldlines are frozen-in with the plasma
elements, as it should be in the case of high electric conductivity. Although there is
a constant numerical resistivity in the induction equation in our simulation, the typical
diffusion speed over 10 Mm is on the order of 1 km s−1, which is smaller than the typical
velocities (perpendicular to B) associated with the expansion of the magnetic fieldlines.
In practice, we first follow the motion of the plasma element at the apex of a magnetic
fieldline, and then calculate the new fieldline passing through the new position of this
plasma element.

4.3.1 Thermal structure and dynamics of the loop
We choose a fieldline along the spine of the loop seen in the AIA 193 Å image at t=14 min,
when the loop is clearly defined (left panels of Fig. 4.2). In Fig. 4.3 we show a space-time
diagram for this fieldline traced following the strategy above. The coordinate along the
magnetic fieldline is normalized by the instantaneous length integrated between the two
photospheric footpoints of the magnetic fieldline. During the time we investigate the
evolution of the loop (approx. 14 min to 24 min) the fieldline at its spine lengthens by
some 10% to 15%.

In the very early stage, the plasma along the fieldline is still cold and the pressure
near the top is low. In this early phase (t<14 min), there is some weak draining along the
fieldline, due to the slow rise of the fieldline driven by the flux emergence.

At t≈14 min, Ohmic heating increases through the whole loop, and the coronal tem-
perature quickly increases to over 1 MK (Fig. 4.3a, b). Here we analyze the temporal
change in the heating, and discuss in Sect. 4.5 the self-consistent trigger of the increase
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Figure 4.3: Space-time diagram of emerging loop. All properties are shown as functions
of normalized arc length along the fieldline at the spine of the forming loop and time.
Because the fieldline is followed in time, its length is changing and the arc length along
the fieldline is normalized to the length at the respective time. The loop footpoints are
at arclengths 0 and 1. In the velocity plot positive velocities (red) indicate a flow in the
direction of arc lengths from 0 to 1 (“to the right”). In the color scale for the temperature
green roughly corresponds to the peak contribution to the AIA 193 Å channel. The marks
4a, 4b, and 4c in the right panel indicate the times shown in the three panels of Fig. 4.4.
See Sect. 4.3.1.

of the heating rate in the 3D model. Very efficient heat conduction along the loop ensures
an almost constant temperature along the fieldline in the coronal part (Fig. 4.3b). At the
same time, the heat conduction transfers the energy deposited in the corona down to the
cold dense chromosphere and induces an evaporation upflow (Fig. 4.3d). This flow fills
the loop with plasma as is reflected by the increase of loop pressure in the Fig. 4.3c.

On the particular fieldline we analyze here, the plasma starts to increase its tempera-
ture at around t=14 min. On other fieldlines (reaching slightly greater apex heights) the
heating sets in earlier. Thus some emission in the AIA 193 Å channel can be seen already
before t=14 min.

In a later stage (t>16 min), the Ohmic heating drops and the filling of the loop gradu-
ally ceases (Fig. 4.3a, d). The pressure gradient at this moment is not sufficient to balance
gravity and thus to maintain an equilibrium. As a result, the plasma starts to drain, as
demonstrated by the downflows in Fig. 4.3d after t≈20 min. The loop temperature, which
is over 2.5 MK after t≈19 min, is maintained for a long time. This is consistent with the
long cooling times for these high temperatures (Klimchuk 2006), which is about 30 min.
The energy evolution of the loop is further analyzed in detail in Sect. 4.3.2.

There is a local pressure peak in the lower part on each side of the loop from
t=13.5 min to 18 min. These peaks result in both upward and downward pressure gra-
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4.3 The 3D loop collapsed to one dimension

dient forces, which drive the flows to the loop top and the loop feet. The temperature of
the downflow is 104 K to 105 K, which corresponds to transition region temperatures; that
of the upflow is 106 K, which corresponds to coronal temperature. This would cause the
transition region lines (formed below 0.5 MK) to be redshifted and the coronal lines to be
blueshifted. Thus, this is consistent with observations (Peter 1999, Peter and Judge 1999)
and in line with processes found by Spadaro et al. (2006) in 1D models and by Hansteen
et al. (2010) in 3D models.

4.3.2 Energetics in the emerging loop
To investigate the energy budget controlling the thermal structure of the loop and its dy-
namics we derive the governing equation of the evolution of the energy along a (field) line
that moves with the velocity perpendicular to the line itself, with the following assump-
tions.

1. Constant cross section.
B is invariant along the magnetic tube, which is the same as to say that the loop has
a constant cross section. Therefore, the unit vector of the magnetic field, b, satisfies

∇ · b =
1
|B|
∇ · B + B · ∇

1
|B|

= 0 .

2. No compression perpendicular to the loop.
The velocity is decomposed into u‖b + u⊥δ, with the parallel u‖ = u ·b, the perpen-
dicular component u⊥ = |u − u‖b|. Here b is the unit vector of the magnetic field,
and b · δ = 0. We assume the magnetic tube is not compressed by the flows in the
perpendicular direction, which implies ∇·(u⊥δ) = 0. This assumption is appropriate
for a rigid 1D loop model, although it is not the case in our 3D simulation.

3. Heat conduction parallel to the loop.
The heat flux is along the magnetic field, i.e., q = q‖b. Because B is invariant along
the magnetic tube,

∇ · q = b · ∇q‖ + q‖∇ · b = b · ∇q‖.

These assumptions are consistent with traditional 1D loop modeling. They do not
fully hold in the 3D loop we find in our numerical experiment, but are appropriate for the
purpose of the comparison made in Sect. 4.3.

In general, the conservation of thermal energy is written as

∂eth

∂t
= − (u · ∇) eth −

γ

γ − 1
p (∇ · u) + Q − L − ∇ · q . (4.1)

With the above assumptions this energy budget can be rewritten as

∂eth

∂t
= − u‖ (b · ∇) eth − u⊥ (δ · ∇) eth −

γ

γ − 1
p
[
∇ ·

(
u‖b

)
+ ∇ · (u⊥δ)

]
+ Q − L − b · ∇q‖. (4.2)
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4 Coronal loops formed in an emerging solar active region

Here eth is the thermal energy per unit volume, following eth = p/(γ − 1). p is the
plasma pressure. L denotes the radiative losses through optically thin radiation, and q‖ =

−κ0T 5/2(b · ∇T ) is the heat flux along the magnetic field.

∂eth

∂t
= −u‖ (b · ∇) eth − u⊥ (δ · ∇) eth −

γ

γ − 1
p (b · ∇) u‖ + Q − L − b · ∇q‖. (4.3)

We move the term related to u⊥δ to the left-hand side of the equation and define(
∂eth

∂t

)
s

=

[
∂eth

∂t
+ u⊥ (δ · ∇) eth

]
. (4.4)

This can be considered as a type of material derivative.
With this the energy budget reads,

(
∂eth

∂t

)
s

= − u‖ (b · ∇) eth︸            ︷︷            ︸
(1)

−
γ

γ − 1
p (b · ∇) u‖︸                    ︷︷                    ︸

(2)

+ Q︸︷︷︸
(3a,3b)

− L︸ ︷︷ ︸
(4)

− b · ∇q‖︸       ︷︷       ︸
(5)

. (4.5)

Energy is added through Q = QOhm +Qvisc, with the Ohmic heating (3a) QOhm = ηµ0 j2 and
viscous heating (3b) Qvisc = 2ρνS2, where j is the current and S is the rate-of-strain tensor.
In an equilibrium model, the time derivative and velocity would vanish, and the energy
would be balanced between heating (3), radiative losses (4) and heat conduction (5). In
our time-dependent 3D model, the loop never reaches an equilibrium. The advection of
thermal energy along the loop is given by term (1) and the compressional work (combined
with the change in eth due to the compressibility of the plasma) by term (2) in the above
equation.

In the following, we discuss the energy budget along the same fieldlines as in
Sect. 4.3.1 before, during, and after the loop formation. For this we concentrate on the
times t=13.5 min, 14.5 min, and 22.0 min which are indicated in Fig. 4.3 by the marks 4a,
4b, and 4c, which refer to the respective panels in Fig. 4.4 showing the terms (1) to (5) in
the energy budget along the fieldline.

4.3.2.1 Initiation phase

In this early stage, there is a weak siphon flow in the loop (Fig. 4.3d), which is probably
driven by the stronger heat input near the left footpoint. Because the loop is cool (T<5 ×
104 K), the heat input is more or less balanced by radiative losses (Fig. 4.4a). At this time
the loop would be invisible in EUV images with count rates below the sensitivity (of AIA
observations). But at this moment, the Ohmic heating starts to increase. Although at the
normalized arc length of 0.3 viscous heating is of the same magnitude as Ohmic heating,
it is in general lower than Ohmic heating by at least one order of magnitude. Thus the
increase of Ohmic heating is the primary cause of loop formation.

4.3.2.2 Formation phase

At t=14.5 min, the Ohmic heating is high in the middle part of the fieldline, giving rise
to the loop formation. Within less than a minute, the Ohmic heating rate has risen to a
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Figure 4.4: Energy budget along the loop at three different times. The panels show snap-
shots during the phases of initiation (a), formation (b), and cooling (c) at the time given
with each panel. These times are indicated to the right of Fig. 4.3d by the marks 4a, 4b,
and 4c. The terms in Eq. (4.5) are shown accordingly to the labels in the plots, the num-
bers correspondingly to those in Eq. (4.5). The line colors follow the same definition in
all panels. Dashed lines indicate negative, solid lines positive values. The arc lengths
are normalized, with 0 and 1 corresponding to the two footpoints of the fieldline in the
photosphere. See Sect. 4.3.2.
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4 Coronal loops formed in an emerging solar active region

roughly constant level of almost 10−3 W m−3 in the hot coronal part (Fig. 4.4b). Consid-
ering that the coronal part covers 20 Mm to 30 Mm along the loop, this implies an energy
flux of ≈104 W m−2 into the loop, which would be consistent with estimates for coronal
heating in active regions derived from observations (Withbroe and Noyes 1977).

The Ohmic heating rate in other 3D MHD models (Gudiksen and Nordlund 2005a,b,
Bingert and Peter 2011) drops (on average) exponentially with height, which is also true
when following individual fieldlines (van Wettum et al. 2013). These previous models
were describing a mature active region with a relatively stable magnetic configuration in
which the footpoints are shuffled around. In contrast, in the present model the emerging
magnetic field rises into the corona. Thus the interaction between the rising magnetic
fieldlines hosting the loop and the ambient magnetic field also contributes to the currents
along the loop, so that the Ohmic heating rate is quite constant along the loop (Fig. 4.4b).
The viscous heating is almost two orders of magnitude lower, so that the Ohmic heating
dominates the energy input.

The heat conduction term is negative near the apex, i.e., it transports the energy added
by the Ohmic heating to the lower part of the loop. Ultimately, the energy is radiated
close to the footpoints where the temperature is low.

The advection term at normalized arc lengths of 0.15 to 0.3 (and symmetric on the
other side of loop) demonstrates the evaporation upflow filling the loop (Fig. 4.3d). This
converging flow towards the loop top provides compressional work adding energy near
the loop apex. This compressional work nearly equals the Ohmic heating at the loop top.

The effect of all contributions, i.e., the right-hand side of Eq. (4.5), is positive. This
leads to a net rise of ∂eth/∂t on the order of eth/τ≈10−3 W m−3 (see Fig. 4.4b). In the
coronal part of the loop the number density is about n≈109 cm−3. Therefore the required
increase of the energy eth=

3
2nkBT to reach coronal temperatures of about T≈106 K is on

the order of τ≈1 min. This time is compatible with the synthesized images, in which we
see the loop forming in a matter of minutes (see animation attached to Fig. 4.2).

In their 2D study Hurlburt et al. (2002) implicitly assumed that the corona adjusts
instantly to changes in the heat input because they employ a series of (static) equilibrium
models. Here we see that the timescale for the evolution of the loop (minutes) is compara-
ble to the timescale of the energy injection from the photosphere through the Poynting flux
(see also Sect. 4.5). Thus one has to account for the evolution of the thermal properties in
a dynamic model.

4.3.2.3 Cooling phase

After the heating ceases the loop enters a slow cooling phase (Fig. 4.4c). Owing to the
drop of Ohmic heating, the plasma pressure falls, the plasma loses its support, and the
loop drains. Consequently, decompression is the dominating cooling agent at the apex,
as is illustrated by the negative contribution of the compression work throughout the top
half of the loop (Fig. 4.4c). Along with the draining, advection transports energy from
the loop top to the lower parts. In this late phase the dominant heating of the apex is
due to heat conduction from the sides. Potentially, such situations can lead to a loss of
equilibrium and catastrophic cooling (Müller et al. 2003, 2004), which we do not observe
here because the heating is not concentrated strongly enough towards the footpoints.

In 3D models with a more stable magnetic field configuration, the loop can reach a
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Figure 4.5: Divergence of velocity along the loop at t=14.5 min during the loop formation
phase. The total divergence −∇ · u is shown in black, the parallel component in red, and
the perpendicular component in blue. The arc length along the fieldline is normalized to
the loop length. See Sect. 4.3.2.4.

(quasi-) equilibrium state, and remain stable for a longer time (Peter and Bingert 2012).
In our model, the magnetic field is expanding due to the flux emergence. Thus the loop
cannot reach a (quasi-) equilibrium state and remains a transient feature evolving fast on
a timescale of much less than 30 min (see animation with Fig. 4.2). This is underlined
by the fact that the main cooling agent (in the top part) is decompression of the plasma
driven by the expansion of the magnetic field.

4.3.2.4 Perpendicular compression

A static rigid 1D loop model only accounts for the compression work from velocity par-
allel to the magnetic fieldline. However, the compression or expansion perpendicular to
the fieldline contributes to the thermal energy density in a 3D model, in particular, if the
loop is expanding and interacting with the ambient magnetic field, as it is the case here.

To evaluate the role of the perpendicular compression, we split the divergence of
the velocity, ∇ · u, into its parallel component ((b · ∇) u‖) and its perpendicular compo-
nent. The latter is evaluated by ∇ · u − (b · ∇) u‖. Figure 4.5 shows these contributions
at t=14.5 min, i.e., during the loop formation phase. For consistency with Fig. 4.4 we
plot −∇ · u. A positive value in Fig. 4.5 implies convergence/compression, and a negative
one implies divergence/expansion. Near the loop top, the parallel contribution shows a
converging pattern, because evaporation flows from loop footpoints meet at the loop top
(cf., Fig. 4.3). In contrast, the perpendicular contribution shows a diverging pattern at the
top. This is corresponding to the expansion of the magnetic tube which will be discussed
in Sect. 4.4.1. Still, the net effect is a compression of the plasma. In the lower part of the
loop the total divergence is basically determined by the parallel contribution.

Although the perpendicular divergence has non-negligible contribution throughout the
loop, the profile of the total divergence mostly follows that of the parallel contribution.
This suggests that the 1D description of the flow in the loop is still acceptable at this stage.
However, later the loop shows a clear 3D nature, which is discussed in the next section.
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4 Coronal loops formed in an emerging solar active region

Figure 4.6: 3D Visualization of the location of the bright loop at time t=14 min. The green
lines show the fieldlines roughly outlining the volume of the first bright loop appearing
in the simulation. The bottom plane shows the vertical component of the photospheric
magnetic field. A density cut in the vertical plane halfway between the footpoints of
the loops perpendicular to the loop is indicated by the large green square. On this cut red
indicates chromospheric densities, and blue enhanced coronal densities of about 109 cm−3.
Lower densities in the corona are transparent. The black square in dashed line on the
midplane indicates the field of view in Fig. 4.8. See Sect. 4.4.

4.4 The 3D nature of the loop

4.4.1 Evolution of the magnetic envelope

To study the magnetic envelope of the EUV loop seen in the synthesized 193 Å images,
we investigate the evolution of a magnetic tube that is (at one particular time) roughly
co-spatial with the volume of the EUV loop. We define the magnetic tube based on
a vertical cut perpendicular to the loop plane in the middle between the two sunspots
(x=73 Mm) at the time t=14 min (see Fig. 4.6). On this plane, we choose several points
roughly enclosing the cross section of the synthesized AIA 193 Å loop as starting points
to follow magnetic fieldlines. This set of fieldlines defines the magnetic tube that we study
further. We follow the magnetic tube in time by the same method as used in Sect. 4.3 and
investigate the evolution of the cross section of the tube in the vertical midplane between
the loop footpoints (large green square in Fig. 4.6).

We depict the temporal evolution of the cross section of the magnetic tube in the ver-
tical midplane in Fig. 4.7. The magnetic tube moves upward as a whole and the cross
section is significantly deformed. From t=14 min to t=22 min the cross section contracts
in the vertical direction and expands significantly in the horizontal direction. This ap-
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Figure 4.7: Evolution of cross section of the magnetic tube roughly encompassing the
loop appearing in the synthesized AIA 193 Å images (cf. Fig. 4.2). The symbols show
the positions of the fieldlines used to define the magnetic tube in the vertical midplane
between the loop footpoints (cf. green square in Fig. 4.6). The same symbols indicate the
same fieldline at the times color coded according to the legend. See Sect. 4.4.1.

pearance of the magnetic tube is consistent with the rise of the synthesized AIA 193 Å
loop spine in the vertical direction and its significant horizontal expansion (see Fig. 4.2
and attached animation). An oblate shape of flux tubes was recently also reported by
Malanushenko and Schrijver (2013) who analyzed the cross section of thin flux tubes in
a potential field model. They found that the cross section is distorted for the end-to-apex
mapping. That the magnetic tubes in the corona will be non-circular in cross section has
already been reported before (Gudiksen and Nordlund 2005b).

4.4.2 Fragmentation of the loop
In Fig. 4.2 (and the attached animation) one can see that the synthesized AIA 193 Å loop
is a thin bright structure at the early stage, and then expands. The single bright loop breaks
into several individual strands, which is best seen in the top view of the box (Fig. 4.2b).
We use the term fragmentation for this process. Inspecting the temporal evolution in the
movies attached to Fig. 4.2 it is clear that this fragmentation means that the original loop
fades and new fragments or strand continuously form and dissolve, giving the overall
impression of a fragmentation. So this fragmentation is not to be understood in a way as a
piece of wood would splinter, but as a coming and going of strands in a growing envelope.

To investigate this process, we show in Fig. 4.8 vertical cuts through the box in the
midplane between the two footpoints. This midplane is roughly perpendicular to the loop
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Figure 4.8: Temperature, density and synthesized AIA 193 Å emission in a vertical mid-
plane between the loop footpoints (cut at x=73 Mm). The left and right column show
snapshots 10 min apart at the times indicated in the top panels. In the temperature plots
green roughly represents the temperature of maximum contribution to the 193 Å channel.
The black symbols indicate the cross section of the magnetic tube discussed in Sect. 4.4.1
and Fig. 4.7. The field of view roughly matches the black square in dashed line in Fig. 4.6.
See Sect. 4.4.2.
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(same plane as discussed above, cf. Fig. 4.6). The fragmentation of the loop is visible in
the coronal emission emerging from this plane (bottom row of Fig. 4.8). At the later stage
(Fig. 4.8f) individual patches of AIA 193 Å emission have formed that would correspond
to individual strands of the larger envelope.

To understand this EUV loop fragmentation we have to investigate the temperature
and density structure in the vertical plane. For this we show in Fig. 4.8 also the tempera-
ture (top) and density (middle) in the vertical midplane. During the 10 min between the
two snapshots shown in the left and right column, the temperature and density structures
move upward, and expand horizontally. The density structure looks less smooth than the
temperature which is in part because of the draining and filling of the corona.

The 193 Å emissivity (bottom row) is the product of the density squared and the tem-
perature response function for that channel (Boerner et al. 2012). The latter largely (but
not only) reflects the contribution function of Fe xii, which is strongly peaked with a max-
imum near 1.5 MK. In effect, the strong 193 Å emission originates from locations where
the density is high and the temperature is near the peak of the response function for this
particular channel. Consequently, the 193 Å emission pattern is neither cospatial with the
density nor with the temperature structure, as is also clear from comparing the panels
in the right column of Fig. 4.8 at the later time. The emission structure appears to be
much more fragmented than both the temperature and density structure. This is simply
because the density and temperature structures are not cospatial, and thus the convolu-
tion of the (smooth) density and temperature structures leads to the more clumpy coronal
193 Å emission. The same is also true for the other AIA coronal channels, which we do
not show here.

We note that we find in this work a temperature gradient perpendicular to the loop
spine with an increasing temperature with height (from about z=14 Mm to 22 Mm). This
is similar to the model of Peter and Bingert (2012) who proposed a new mechanism to
explain the constant cross section of coronal loops. Thus some parts of the high density
structure at higher temperatures are cut off by the temperature response (or contribution)
function, and in EUV emission the loops looks as if having a constant cross section,
even though the plasma loop, i.e., the density structure, expands along the loop, or more
precisely, with the magnetic tube. Even though we do not investigate this further in detail
here, the 193 Å loop shown in Fig. 4.2 from the side has roughly constant cross section.
This is based on the same process as outlined by Peter and Bingert (2012).

4.5 What triggers the loop formation?

The appearance of the model corona is compatible with EUV observations in the sense
that a clearly distinguishable loop forms in the synthesized images. The question re-
mains why the loop forms at that particular time and position. We investigate this
by checking the energy input into the loop which is given through the Poynting flux,
S̃ = (ηj − u × B/µ0) × B. Near the bottom boundary, the driving by the photospheric
convective motions from the flux-emergence model induces strong currents, which are
mainly confined to the bottom layers. The amplitude of the resistive term, ηj drops very
fast with height and becomes much smaller than the u × B/µ0 term, in particular in the
area near the simulated spots. Thus when studying the energy input into the coronal part
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4 Coronal loops formed in an emerging solar active region

of the loop it is sufficient to investigate the u × B part alone,

S = −
1
µ0

(u × B) × B . (4.6)

In Fig. 4.9 we show the vertical component of the Poynting flux S in horizontal slices
at three heights, from the photosphere (z=0.32 Mm) to the coronal base (z=2.02 Mm).
There is a clear enhancement of the upward-directed Poynting flux surrounding the
sunspot areas forming sort of a ring around the sunspot (green in Fig. 4.9 for z=0.32 Mm).
This enhancement is at least a factor of five to ten with respect to the surrounding quiet
Sun area or the center of the sunspot. In the former the magnetic field is too weak, in the
latter the strong magnetic field suppresses the horizontal motions, so that in these regions
no considerable upward directed Poynting flux can be found. This is consistent with the
widely known observational fact that coronal loops in EUV and X-rays do not originate
from the center of sunspots where the magnetic field is the strongest, but from the periph-
ery of sunspots, i.e., the outer parts of the penumbra. In our model this is reflected by the
fact that only in the periphery is the upward Poynting flux significantly enough to power
coronal loops.

At the coronal base (z=2.02 Mm) the Ponynting flux has the strongest enhancement
near both footpoints of the loop, being typically another factor of about three higher than
in the already enhanced region in the sunspot periphery. In Fig. 4.9, this shows up as
the red spots in the panel for z=2.02 Mm. However, in the photosphere (z=0.32 Mm)
only the right footpoint shows an enhancement of the Poynting flux, but not the left one.
A closer inspection at the bottom boundary shows that this enhancement near the right
footpoint in the photosphere is due to small magnetic flux elements which are advected
by the convective motions into the strong magnetic field of the sunspot. These magnetic
flux elements have sizes of ≈3 Mm, which is the scale of energy input into the loop and is
not too far from the smallest resolvable scale in this model.

We miss a lot of the small-scale motions and fine magnetic structures in the photo-
sphere when we map the original flux-emergence simulation to the grid of the coronal
simulation (see Sect. 3.2.3). This can have two consequences. First, the energy input into
the corona in our model is reduced, because we miss the Poynting flux on these smaller
scales, at most this is a factor of two. Because the temperature scales with the energy
input to the power of 2/7 (Rosner et al. 1978), this would have only a minor impact on
the temperature, but it might be that the coronal density in our model is too low by up
to a factor of 2 in some places. Second, the higher spatial resolution in the photosphere,
properly resolving granulation, will give rise to finer structures in the corona, too. These
conclusions are supported by the preliminary results from a high-resolution numerical
experiment.

To further investigate the vertical Poynting flux at the footpoints of the loop we study
the temporal variation of the vertical Poynting flux in different heights along the loop.
We do this in terms of averages in a small horizontal section around the loop as indicated
by the rectangles in Fig. 4.9. The sizes of the rectangles are slightly different for the left
and right footpoints and for different heights in order to best capture the Poynting flux
enhancement. The positions of the rectangles are fixed in time. The resulting averages as
a function of time are plotted in Fig. 4.10.
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Figure 4.9: Zoom into the emerging active region at t=14 min. The top two panels show
the synthesized AIA 193 Å emission integrated along the vertical and the magnetic field,
Bz, at the bottom boundary. The lower three panels show the vertical component of the
Poynting flux, S z, at three heights. The red and white lines indicate the same magnetic
fieldline at the spine of the loop as shown in Figs. 4.2. The white boxes around both
footpoints in the lower panels indicate the regions where we calculate the average vertical
Poynting flux in Fig. 4.10.
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Figure 4.10: Temporal evolution of the vertical Poynting flux at the loop footpoints at
three different height from the surface (top panel) to the coronal base (bottom panel).
Here we show the averages in horizontal regions around the fieldline indicated in Fig. 4.9
by the respective boxes. The dashed lines are for the left footpoint, and solid lines are for
the right footpoint.

At z=0.32 Mm, the vertical Poynting flux at the right footpoint (solid) increases sig-
nificantly by more than 6 MW/m2 during the 12 min shown in the plot around the time
the loop appears (Fig. 4.10). A Fourier analysis clearly shows that this increase is modu-
lated with a timescale of about 4 min, which is close to the 5-minutes oscillations in the
photosphere and close to the lifetime of granules. In contrast, the left footpoint shows
no significant increase over time, but only the granulation modulation. That the left and
the right footpoint show a different behavior in the photosphere is not surprising, because
in the flux emergence simulation these two footpoint regions, which are located in the
different sunspots, evolve independently.

The situation is different higher up in the atmosphere. At z=1 Mm and 2 Mm both
footpoints show a significant increase, with the the right footpoint preceding the rise of
the left footpoint at both heights.

Based on the timing shown in Fig. 4.10 one can sketch the following scenario. At the
right footpoint in the low photosphere the upward Poynting flux is increasing because of
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the near-surface convection driven by the flux emergence simulation. This disturbance
of the field then travels upward through the high-plasma-β region and can be seen in
the upper photosphere near z=1 Mm and further propagates upward to the coronal base at
z=2 Mm, where plasma-β is below unity. Here we can see a steeper rise after the magnetic
stresses have been built up slowly from below. We also see a clear rise on the left footpoint
at the coronal base at z=2 Mm. However, this increase lags behind the rise in the right
footpoint by some 30 s, which is close to the Alfvén crossing time (with a loop length
above z=2 Mm of about 40 Mm and an average Alfvén speed of about 2000 km/s in the
coronal part). This underlines that the magnetic disturbance travels from the right coronal
base to the left coronal base and triggers there a perturbation, that in the end leads to an
increased Poynting flux also on the left side. From the left footpoint at z=1 Mm we can
see that this disturbance can penetrate a bit into the high-β region, but cannot reach all the
way down into the photosphere (to z=1 Mm). This is also because of the strong density
stratification.

In conclusion, the time profiles of the Poynting flux at different heights imply that the
enhancement at one (right) footpoint near the bottom induces the increase of Poynting
flux in higher layers on the same side. This also induces an increase of the Poynting
flux on other side of the loop at the coronal base, but not down to the photosphere. As a
consequence of the similarly increased Poynting fluxes on both sides at the coronal base,
the heat input into the loop is comparably symmetric as already discussed in Sect. 4.3.2.

Other loops that form later show similar features. A further numerical experiment
with increased spatial resolution will have to show if this result can be substantiated. In
particular, this will have to investigate to what extent the small-scale evolution of the
(inter-)granular magnetic fields can make their way up into the corona and thus alter the
spatio-temporal evolution of the Poynting flux in both loop footpoints at the coronal base.

4.6 Summary

In this paper, we presented a coronal model of an emerging active region driven by a sim-
ulation of magnetic flux emergence from the convection zone through the photosphere.
The magnetic field expands into the corona, while a pair of simulated spots forms in the
photosphere. Ohmic dissipation heats the coronal plasma, while heat conduction along
magnetic fieldlines, radiative losses through optically thin radiation, and flows carry away
the energy input. The treatment of the full energy balance ensures that the coronal pres-
sure is set self-consistently and allows us to synthesize the EUV emission from the model
corona.

Once sufficient magnetic flux was emerged through the surface and the coalescence of
small-scale magnetic patches formed large-scale magnetic patches turning into sunspots,
the first EUV coronal loops form within minutes. The EUV loop rises upwards, expands
significantly in the horizontal direction, and, most importantly, fragments into several
individual EUV structures, i.e., the changing heat input produces new strands in a growing
envelope.

The energy input is driven by the advection of the magnetic field in the photosphere,
i.e., by the horizontal convective motions. Connected by magnetic fieldlines through
the corona, the regions of enhanced Poynting flux at one end induce an increase of the
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4 Coronal loops formed in an emerging solar active region

Poynting flux at the other end at the coronal base. The upward directed Poynting flux
leads to an increased energy input giving rise to the heating of the coronal plasma and
the enhancement of the pressure due to the evaporative upflows. The emerging magnetic
field hosting the forming loop rises into the ambient magnetic field and currents also build
up near the upper part. These contribute to the Ohmic heating in the top part of the loop
leading to a nearly constant heat input along the loop.

In its early evolution the coronal loop behaves (at least concerning the energy budget)
similarly as a conventional 1D loop model would predict if we would prescribe the energy
input. However, in the later stages the loop shows its true 3D nature. The horizontal
magnetic expansion and in particular the fragmentation of the EUV emission are a clear
indication that a 1D model would not be sufficient to describe a newly forming emerging
loop. In the cross-sectional cut perpendicular to the EUV loop, the temperature and the
density structure are comparably smooth but not exactly cospatial. This gives rise to the
fragmented appearance of the loop in EUV emission with threads (or loop-fragments, or
strands) with diameters much smaller than the typical spatial structures in temperature or
density.

Our model of the formation and evolution of a EUV coronal loop in an emerging active
region sheds new light on our understanding of coronal loop formation. A further analysis
of this and more advanced numerical experiments will have to investigate the differences
(and similarities) of the evolution of coronal loops seen in different wavelength bands,
in particular towards X-rays, and how the forming loops would appear in spectroscopic
observations. Of particular interest will be the further investigation of the evolution of
the magnetic field structure in relation to the spatial structure of the synthesized coronal
emission.
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5 Relation of EUV loops to magnetic
field lines

* Sect. 5.1, Sect. 5.2.3, Sect. 5.3.2.1, Sect. 5.3.6 and Sect. 5.4 are taken from the
main text of the article Magnetic jam in the corona of the Sun by F. Chen, H. Peter,
S. Bingert and M. C. M. Cheung, published in Nature Physics 11, 492–495 (2015), DOI:
10.1038/nphys3315. Sect. 5.2 (except Sect. 5.2.3) and Sect. 5.3 (except Sect. 5.3.2.1 and
Sect. 5.3.6) are taken from the supplementary materials of the same article.

5.1 Introduction
The dominance of the magnetic field in the corona gives rise to the sharp appearance of
coronal loops seen in EUV or X-rays (see Fig. 5.1): if energy is deposited on a magnetic
fieldline, heat conduction in the ionised gas will redistribute that energy efficiently along
only that fieldline (but not across). Consequently, the plasma along that fieldline becomes
visible in EUV and X-rays: the coronal emission shows the magnetic field in a similar
way as iron filings are used in school to show fieldlines of a magnet.

Because direct measurements of the coronal magnetic field are notoriously difficult
(Peter et al. 2012), mainly extrapolations of the observed magnetic field at the surface
provide the magnetic information in the corona (De Rosa et al. 2009). Stereoscopic ob-
servations can provide the three-dimensional (3D) structure of coronal loops (Aschwan-
den et al. 2008). Comparing EUV images and extrapolations reveals that loops seen in
EUV indeed outline fieldlines (Feng et al. 2007). This paradigm underlies both one-
dimensional modeling (Rosner et al. 1978, Mariska et al. 1982, Priest 2014), where the
thermodynamics of the coronal plasma is often treated in detail along assumed static
fieldlines, and magnetofrictional modeling (Yang et al. 1986, Cheung and DeRosa 2012),
where an instantaneous thermal equilibrium is often assumed along dynamic fieldlines.
On the real Sun we will not find these extreme cases, but a changing magnetic field host-
ing plasma with an evolving thermal structure, as described by the full equations of mag-
netohydrodynamics (MHD, Priest 2014).

Models accounting for this 3D structure and evolution of the solar corona point to
a mismatch between magnetic and thermal structure (Mok et al. 2008), which plays an
important role to understand the cross section of coronal loops (Peter and Bingert 2012).
The thermal evolution, i.e., when plasma gets heated and when a loop becomes visible in
EUV, is coupled in a much more subtle time-dependent way to fieldlines and heat input
than often assumed. Thus, in general the appearance of coronal loops depends not just on
the instantaneous position and shape of fieldlines but also on their evolution.
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5 Relation of EUV loops to magnetic field lines

3D MHD model synthesized 304 Åobservation

(a) (b)

SOO / AIA 304 Å / He II

Figure 5.1: The upper atmosphere of the Sun seen in light emitted by about 100 000 K hot
plasma. Panel (a) shows an observation from space with the Solar Dynamics Observatory
(SDO) taken in the 304 Å band dominated by emission from singly ionised He. The limb
of the Sun is indicated by the dashed line. Coronal loops are mostly seen edge-on rising
some 40 000 km above the limb. Panel (b) shows a numerical simulation as described
in this paper. It shows the synthesised emission in the same 304 Å channel integrated
horizontally through the computational box of a numerical experiment. Similar to the real
Sun, loops arch above the surface (dashed line).

We show that such scenarios are realistic for situations on the Sun, and thus our un-
derstanding of the structure and evolution of the solar corona, and ultimately the heating
processes, will have to fully acknowledge the intimate interaction of the thermal evolution
of coronal loops and the changing magnetic structure. In a similar way, the thermal evo-
lution of coronal loops (in flares) has long been recognized to be caused by an interaction
with a time-dependent magnetic structure (Forbes and Acton 1996, Priest 2014).

To investigate the corona above a solar active region we conduct a 3D numerical exper-
iment. For this we solve the problem of MHD in which the induction equation describing
the magnetic field is coupled to the conservation of mass, momentum and energy of the
plasma. In the energy balance we account for heat conduction along the magnetic field,
optically thin radiative losses and heating through Ohmic dissipation. Our model follows
the philosophy of previous studies where the magnetic field is driven at the surface of the
Sun, which is the lower boundary of the model (Gudiksen and Nordlund 2002, Bingert
and Peter 2011, Bourdin et al. 2013). In contrast to earlier models, we drive our system
by a separate model of an emerging sunspot pair (Rempel and Cheung 2014). This way
coronal loops form in the emerging active region in response to the enhanced Poynting
flux into the corona at locations where magnetic field is pushed around, similar to flux
braiding (Parker 1972) or flux-tube tectonics (Priest et al. 2002). This new study on the
evolution of thermal and magnetic properties is based on the same simulation as used
before to investigate the formation of active region loops (Chen et al. 2014).

72



5.2 Following (a bundle of) magnetic field lines and an EUV loop in time

5.2 Following (a bundle of) magnetic field lines and an
EUV loop in time

Conventionally, it is agreed that coronal loops seen in the EUV and X-ray images ap-
proximately indicate the magnetic field lines. This is because the magnetic energy is
dominating in the corona, the emitting plasma is confined by magnetic field, and the heat
conduction is very sufficient along magnetic field lines. Stereoscopic observations (Feng
et al. 2007) and 3D simulations (Gudiksen and Nordlund 2005a,b, Bingert and Peter 2011)
of active regions with a gradual evolution of the (photospheric) magnetic field support this
concept. However, if the magnetic field would be dynamic, for example, during the for-
mation of an active region, this concept has to be questioned, in particular if the timescales
of the magnetic evolution and the thermal evolution of the plasma would be different.

To investigate the spatial relation between coronal loops and magnetic field lines, we
need to follow the field lines in time. For this we assume that plasma elements are frozen-
in to the magnetic field lines, which is true if the magnetic Reynolds number is large,
and which is the case in most of the corona. Then we follow the motion of a selected
plasma element and calculate the magnetic field line through the plasma element at each
instant time. In our numerical model, we have to employ a certain magnetic diffusivity,
which unfortunately allows plasma to move across the magnetic field lines. However, the
average diffusion speed across 10 Mm is of the order of 1 km/s. This is much smaller
than the typical perpendicular velocity (of well above 10 km/s) due to the expansion of
the magnetic field, as will be detailed below.

The snapshot cadence of the numerical simulation is 30 s, which sufficiently captures
the evolution of MHD variables in our simulation. When we follow the field lines as
outlined above, the selected plasma element might move across several grid points in one
time step. However, because the evolution of the MHD variables is smooth, we can safely
use a cubic spline method to interpolate the snapshots to a sufficiently high cadence of 1 s
and use this to follow the gas packages on the fieldlines. We tested this interpolation for
part of the time series by writing snapshots with 1 s cadence and found the same results.

5.2.1 Axis of a magnetic tube

To follow the magnetic field, we select twelve points in the vertical middle plane of the
simulation box as seeds. This plane is in the middle between the two sunspots in the
photosphere and perpendicular to the connecting line between the spots. Thus it is also
roughly perpendicular to the EUV loops that form and connect the opposite polarities
of the emerging active region. Of these seeds, eleven form a circle of roughly 2 Mm in
diameter and the twelfth is in the middle of that circle. The initial selection of these twelve
points is chosen so that at some time (t=130 s) these points roughly encircle the EUV loop
that forms. Basically the 11 points define a magnetic tube and the twelfth point is on the
axis of that tube.

We follow these fieldlines in time (backwards and forwards). First we trace each
fieldline from each of the initial points. Then we follow the fieldline in time by assuming
that the fieldlines are frozen-in with the gas. In practice, we follow the gas parcel near
the apex of the fieldline using the plasma velocity at that location, and then use the new
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location of that gas parcel at the next time step as the new point for tracing the fieldline
at that next time step. This is done forward and backward in time until the time period of
interest is covered. The electric conductivity in the model is sufficiently high so that the
(numerical) diffusion speed of the plasma through the magnetic field is small compared to
the actual speed of the rising magnetic field lines. For each of the fieldlines we calculate
the positions of their respective intersections with the middle plain, ri, where i is the index
from 1 to 12. The position of the center of the magnetic tube in the middle plan, cmag, we
define as

cmag =
1

12

12∑
i=1

ri .

Tracing the field line for each time step from this point provides us with the fieldline of
the axis of the magnetic tube. We chose this procedure because the magnetic tube will
change its shape while expanding. In general, a tube with a circular cross section will
get deformed into a more elongated (or even more strangely shaped) cross section (Chen
et al. 2014). By using the axis of the magnetic tube we get a better representation of the
evolution of the magnetic tube independent of the shape of the cross section of the tube.
The center fieldlines plotted in red color in Fig. 5.2 and its attached movie, as well as in
Fig. 5.7 are these axis of the magnetic tube.

The vertical speed associated with the upward expansion of the apex of the fieldline
is about 30 km/s, as can be seen by inspection of the movie attached to Fig. 5.2 (or in
Fig. 5.7).

5.2.2 Axis of an EUV loop
To follow (the axis of) the EUV loop we use the emission synthesised in the 193 Å band as
it would be observed with AIA (Lemen et al. 2012). This shows plasma at temperatures of
about 1.5 MK. We calculate the center-of-gravity of the emission in the vertical midplane
and calculate the magnetic fieldline through this point.

If the emission at each gridpoint in the midplane is εi, and the position of that gridpoint
is ri, then the center-of-gravity of the emission is

cemiss =

∑
i εiri∑

i εi
.

For convenience (with no impact on the result) we carry out the summations only over
those gridpoints with an emissivity above a certain threshold (20 DN/pixel/s/Mm).

For each timestep we now calculate this center position of the EUV loop in the mid-
plane and follow the magnetic fieldline through it. This fieldline we define as the axis
of the EUV loop (plotted in blue color in Fig. 5.2 and its attached movie, as well as in
Fig. 5.7).

5.2.3 Evolution of the EUV loop and fieldlines
In Fig. 5.2 we show the synthesised 193 Å observation when integrating horizontally
through the computational domain. This snapshot reveals a coronal loop hosting 1.5 MK
hot plasma. Following the temporal evolution in the movie ( further snapshots in Fig. 5.7
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Figure 5.2: Snapshot of the coronal loop in the numerical simulation. This shows synthe-
sised emission as seen in a wavelength band at 193 Å dominated by Fe xii forming near
1.5 MK. Panel (a) displays the loop from the side with the emission integrated through
the computational box at time 130 s. The emission pattern remains more or less at the
same place (cf. Fig. 5.7 in Sect. 5.3.5). In contrast, the fieldlines expand, here indicated
by the same fieldline shown at three different times (0 s, 130 s, and 600 s). For comparison
the blue line shows the fieldline through the center of the emission structure at 130 s (see
Sect. 5.2 for a more precise definition of the red and blue lines). To get a better impression
of the 3D structure, panel (b) shows the middle part of the loop integrated along the loop
(from x=70 Mm to 77 Mm as indicated by the dotted lines in panel a). Here the image
shows again the 193 Å channel emission, the blue diamond the center of the EUV loop
and the red triangles the position of the fieldline in the x=74 Mm plane at the same three
times as in panel (a). These plots cover only part of the computational domain (≈ 150 ×
75 × 50 Mm3 in the x, y,and z directions).

in Sect. 5.3.5) it is evident that the EUV loop forms, becomes bright and then starts fading
over the course of a good fraction of an hour. Most importantly, the EUV loop, i.e., the
pattern visible in the 193 Å channel, remains at more or less the same place. In particular
the EUV loop is not expanding upwards.

This is in contrast to the evolution of the magnetic field. Also in Fig. 5.2, we overplot
one single fieldline at different times. This fieldline moves upwards while the active
region is emerging. In Fig. 5.2 (and the movie) we also show the coronal emission in a
vertical slab in the middle of the loop (and perpendicular to the loop) to emphasise how
differently the pattern of the EUV emission evolves compared to the magnetic structure.
There is no mass flow across fieldlines. We emphasise that at each snapshot the EUV loop
is roughly following a fieldline, but at each time it is a different fieldline that is aligned
with the EUV loop.
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5.3 Thermal evolution and coronal emission along indi-
vidual fieldlines

In order to understand the difference in temporal evolution of the EUV structures and
the magnetic field lines we first investigate the actual heat input on individual fieldlines.
For this we use the fieldlines mentioned in Sect. 5.2. We then study how this heat input
establishes the density and temperature structure along the fieldlines. Eventually, this sets
the EUV emission along the fieldlines. Finally by relating the evolution of the fieldlines
to the Poynting flux at the coronal base we can understand what causes the magnetic field
to apparently move through the EUV loop.

For the study of the temporal evolution we choose an arbitrary zero time, t=0. At this
time the loop as seen in EUV is just about to form. We use this zero time throughout
the manuscript, so negative times refer to the temporal evolution before the EUV loop
formed. All the times given in figures and movies are with respect to this zero time.

5.3.1 Heat input for individual fieldlines
The density and temperature structure along each fieldline is set by the heat input. To de-
scribe the temporal evolution of the heat input we investigate two aspects, the volumetric
heat input due to Ohmic dissipation near the loop apex, and the flux of magnetic energy
into the loop at the coronal base.

For the volumetric heating we investigate the Ohmic heating of the crossing point of
the respective fieldline with the vertical midplane between the two sunspots. Because the
setup is quite symmetric it is close (but not identical) to the heat input at the apex of the
fieldline. Following the fieldline in time as outlined in Sect. 5.2 we find the time variation
of the heat input near the apex for that particular fieldline. In Fig. 5.3a we show this for the
twelve fieldlines discussed in Sect. 5.2 that coincide with the bright EUV loop at t≈130 s.
It is clear that each fieldline is heated for some 50 s, with all the fieldlines defining the
magnetic tube of roughly 2 Mm diameter peaking over times from t≈130 s to 160 s.

To investigate the flux of magnetic energy into the coronal part of the fieldline we
study the vertical Poynting flux at be base of the corona for each fieldline. For simplicity
we use the height of z=2.9 Mm, which is the average height where the temperature
rises above 105 K. In general the Poynting flux is defined as S = η j×B − (v×B)×B/µ0,
with the current j, the magnetic field B, velocity v, magnetic resistivity η, and the
magnetic permeability µ0. At the base of the corona, where the magnetic energy density
already dominates the thermal energy density, the first term involving the currents is
negligible. The (v×B)×B term contains the contribution from emerging horizontal fields
and (almost) vertical fields being shifted around, e.g., following the concept of braiding
(Parker 1972) or the tectonics (Priest et al. 2002). Because we consider only the energy
input into the fieldlines reaching coronal heights, we consider only the latter part. Finally,
we are left with the contribution to the vertical Poynting flux involving the velocity v⊥
perpendicular to the magnetic field. So in terms of the components along the horizontal
x- and y-directions and the vertical z-direction the vertical Poynting flux is

S z = −
1
µ0

(
v⊥x Bx + v⊥y By

)
Bz. (5.1)
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Figure 5.3: Heating along individual field lines. The coloured lines show the temporal
variation of the heating for the twelve fieldlines as defined in Sect. 5.2. Panel (a) shows
the volumetric energy deposition due to Ohmic dissipation at the cross section of the
respective field line and the vertical midplane between the footpoints. This is close to the
apex of the respective fieldline. The dotted line displays an envelope for the heat input.
Panel (b) shows the magnetic energy flux into the loop, viz. the vertical component of the
Poynting flux as defined in Eq. (5.1), at the base of the corona. For comparison the dotted
envelope from panel (a) is plotted in panel (b), too, just scaled to roughly match the peak
of the Poynting flux.

We evaluate this quantity for each of the fieldlines at the base of the corona (at each of its
legs). The temporal evolution of this quantity (for the “right” leg at x≈95 Mm; cf. Fig. 5.5)
is shown in Fig. 5.3b for the set of twelve fieldlines. Just as the Ohmic heating at the apex
of the fieldlines, this energy input shows a clear (double) peak in time. Comparing the two
panels of Fig. 5.3 shows that the energy input at the base of the corona precedes the heating
rate at the apex by about 30 s (the dotted lines in both panels). For a typical Alfvén speed
of some 500 km/s this is the time delay expected for the magnetic disturbances traveling
up the half loop length of some 15 Mm from the coronal base.

5.3.2 Hot spot of Energy input
The discussion above shows clearly the increase and subsequent decrease of the heat input
on individual expanding fieldlines. To investigate the cause for this transient heating on a
fieldline, we follow the footpoints of the fieldlines at the base of the corona and relate it
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Figure 5.4: Evolution at the solar surface while the coronal loop forms. Panel (a) shows
the vertical magnetic magnetic field and panel (b) the vertical component of the Poynting
flux, both in the photosphere. These snapshots are taken at the time t=130 s. The con-
centration of magnetic field in panel (a), seen in red, shows the location of one of the two
sunspots that form the active region in this simulation. For the time t=−600 s we indicate
a number of positions by the diamonds that are located at the footpoints of fieldlines that
transverse the bright coronal loop later. The asterisks and triangles show the position of
these locations at later times t=+130 s, and +1200 s, when they are carried with the co-
alescent flow forming the sunspot. The field-of-view covers only a small fraction of the
whole computational domain (≈ 150 × 75 Mm2 in the horizontal directions).

to the vertical Poynting flux at the base of the corona as defined in Eq. (5.1).

5.3.2.1 Magnetic braiding in the photosphere

The cause for the transient enhancement of the heating of individual fieldlines is found
at their roots. The coalescent flow that forms the sunspot drives magnetic patches to-
wards the strong magnetic field of the sunspot (Rempel and Cheung 2014, Cheung et al.
2010). This is illustrated by the arrows in Fig. 5.4 that display the horizontal flows in the
photosphere. At the outer edge of the spot there will be a region of enhanced (vertical)
Poynting flux, i.e., of upward directed flux of magnetic energy. This is similar to the flux-
tube-tectonics model (Priest et al. 2002) where (horizontal) shuffling of magnetic patches
leads to an upward directed flux of magnetic energy, which is then available to heat the
coronal plasma. Because each fieldline is pushed into the spot and thus transverses the
region of the enhanced Poynting flux, the heat input into the corona along individual field-
lines is transient (see detailed discussion in Sect. 5.3.2.2 and movie attached to Fig. 5.5).
Thus EUV loops will show up wherever strong (horizontal) gradients of the magnetic field
are present at the footpoints, similar to the tectonics model (Priest et al. 2002).
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Figure 5.5: Hot spot of Poynting flux at the base of the corona. The image shows the
vertical Poynting flux at the base of the corona as defined in Eq. (5.1). The red region in
the middle of the image shows the location of the enhanced Poynting flux. This is the hot
spot of energy flux into the corona. The white lines show the projection of the magnetic
fieldlines of the magnetic tube defined in Sect. 5.2 at time t=130 s. The diamonds and the
triangles indicate the position of the footpoints of these fieldlines at times t=0 s and 600 s.
The pattern of the Poynting flux remains rather stable over 10 minutes. The field-view
and the polygon roughly encircling the hot spot are the same as in Fig. 5.4.

5.3.2.2 Hot spot at the coronal base

In Fig. 5.5 we display the vertical Poynting flux at the time t=130 s along with the pro-
jection of the twelve selected field lines as defined before in Sect. 5.2. The pattern of the
vertical Poynting flux is relatively stable over the course of more than 10 minutes (cf. the
movie attached to Fig. 5.5). In particular, the increased Ponyting flux in the middle of the
panel remains roughly at the same position forming some sort of hot spot. This hot spot
at the base of the corona is roughly co-spatial with the increased Poynting flux at the solar
surface (the black polygon in Fig. 5.5 is at the same position as the polygon in Fig. 5.4
showing the Poynting flux at the surface).

While the fieldlines evolve and rise into the atmosphere they move (roughly) horizon-
tally at low heights. Thus at the base of the corona they transverse the hot spot of the
Poynting flux. This is evident by inspection of the movie attached to Fig. 5.5. Of course,
while the fieldline transverses the hot spot, the Poynting flux at the coronal base changes
slowly. This is the reason why a dip is seen between two peaks of the Poynting flux in
Fig. 5.3b. However, it is not the temporal change of the Poynting flux at the base of the
corona that is responsible for the increase of the heating. Instead, the main effect for this
is the footpoint of the fieldline transversing a hot spot of Poynting flux at the base of the

79



5 Relation of EUV loops to magnetic field lines

corona.

5.3.3 Temperature and density along individual fieldlines
While a fieldline is rising upwards through the lower atmosphere (with up to 10 km/s to
30 km/s vertically), the density decreases continuously (before time t≈130 s; Fig. 5.6a).
This is because the rising fieldline is lifting up the cool material and the upwards directed
pressure gradient is no longer able to counteract gravity. Thus the plasma drains down-
wards along the fieldline. In part, the loss of mass for individual fieldlines is also due
to numerical imperfections of the simulation: (hyper) diffusion that is needed to smooth
out numerical instabilities allows the plasma also to diffuse across fieldlines. In this early
phase, when the fieldlines rise through the chromosphere, this can account for up to about
half of the mass loss of individual fieldlines. However, this might not be too unrealis-
tic considering that on the real Sun in the cool chromosphere there will be significant
cross-field diffusion of mass, because the plasma is only partially ionised there. Once the
temperature on the fieldline starts to rise (around t≈130 s) the cross-field mass diffusion
no longer plays a role.

After the heating on the fieldline sets in, the temperature will rise (for the set of field-
lines considered here, this happens at t≈130 s; see Fig. 5.6b). The draining of the mass
from the fieldline and the increase of the heating rate together leads to a very strong in-
crease of the heating per particle, which is responsible for the very sharp increase in
temperature. Within some 50 s the peak temperature along the expanding fieldline is ris-
ing from basically chromospheric temperature to well above 1 MK, eventually reaching
some 3 MK.

In response to the heating of the plasma along the fieldline, heat conduction back to
the surface together with the enhanced energy input in the low parts of the atmosphere
leads to heating and evaporation of cool plasma into the upper atmosphere. The resulting
upflows cause a gradual increase of the density (from time t≈130 s to 250 s; Fig. 5.6a).

Once the heating on that fieldline ceases (around t≈200 s; Fig. 5.3), the temperature
remains high, because the coronal cooling time is of the order of the better part of an
hour. However, the density starts dropping soon after the heating stopped (from time
t≈250 s onwards; Fig. 5.6a). This can be illustrated with the help of long-known equilib-
rium considerations, even though the variability in the modelled system is more complex.
The temperature T and the pressure p (and thus the density ρ) are basically set by the
heat input H; under equilibrium conditions they follow power laws (Rosner et al. 1978),
T ∝H2/7, ρ∝H4/7, i.e., the density is more sensitive to changes of the heat input than
the temperature. Therefore the density adjusts faster to the drop of the heat input af-
ter t≈200 s. (The density drop for each individual fieldline occurs after the temperature
passed through the temperature of maximum response of the EUV passband and is thus
not of major relevance for the phenomenon described here; see below).

This filling and draining along fieldlines has been described earlier for this 3D model
(Chen et al. 2014), and the average rate of change of the mass in the top 20 Mm of
the fieldline is consistent with the (mostly vertical) mass flow across the chromosphere-
corona boundary. In Fig. 3 of our previous study (Chen et al. 2014) the mass exchange is
summarised: increased heating causes an evaporative upflow in the bottom part, and later
when the fieldline expanded further, the velocity pattern in the upper part reverses and
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Figure 5.6: Temporal evolution at the apex of fieldlines. Panels (a) and (b) show the
temporal variation of the temperature and density near the apex of each of the evolving
fieldlines. These are the same fieldlines as in Fig. 5.3 with the same color coding. Panel
(c) displays the synthesised emission, also at the intersection of the respective fieldline
with the vertical midplane. The normalised temperature response curve (for the central
fieldline) of the AIA 193 Å channel dominated by Fe xii is overplotted as a dotted line in
panel (b). The emission of the whole EUV loop (integrated over the vertical midplane) is
shown as a dashed line in panel (c).

the loop starts draining. (Note that the velocity in that Fig 3 is along the loop, e.g., red
on the left side and blue on the right side does not imply a siphon flow, but evaporation
into the corona). In addition to this, the lower transition region is pushed down due to the
increase in pressure following the heating in the upper layers, similar to what has been
found in quiet Sun network model (Hansteen et al. 2010). Together with the expansion
of the fieldlines, this would produce a pattern of net redshifts in the transition region and
blueshifts in the hotter regions as found in observations (Peter and Judge 1999).

This behaviour of the temperature and density along the fieldline is consistent with
one-dimensional models of coronal loops with variable prescribed heating rates (Mariska
1987). However, here we self-consistently describe the heat input along each fieldline in
the 3D model as determined by the fieldlines being moved across the hot spot of Poynting
flux at the base of the corona.
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5 Relation of EUV loops to magnetic field lines

5.3.4 EUV emission along individual fieldlines

What we see of the corona is neither the temperature nor the density, but the photons that
are emitted by the plasma. Thus we synthesise the emission from the model as it would be
seen by an EUV instrument. Here we concentrate on the 193 Å channel of AIA/SDO that
images emission from mainly Fe xii forming at about 1.5 MK. For this we use the same
procedures as outlined before (Peter and Bingert 2012, Boerner et al. 2012), implicitly
assuming ionisation equilibrium.

The 193 Å channel has a temperature response function G(T ) that peaks sharply at
about 1.5 MK. Consequently, when following an individual fieldline that is heated in time,
the contribution to the 193 Å channel will be significant just during the time the fieldline is
at the matching temperature (cf. Fig. 5.6b). The actual emission is then given by n2 G(T ),
where n is the (electron) density. To characterize the emission from any given fieldline,
we show the emission at the intersection of the fieldline with the midplane used before in
Fig. 5.6c. This reflects the emission near the apex of the fieldline.

The increase of the coronal emission on an individual fieldline peaks sharply
(Fig. 5.6c) when the temperature is close to the peak of the contribution function G(T ).
The timescale for the brightening of an individual fieldline is thus determined by the rise
time of the temperature, and is of the order of 50 s. Figure 5.6 shows that the peak of the
coronal emission for each individual fieldline is during the phase of rising density, well
before the density drops because the heating for the respective fieldline ceased. Thus the
temporal variability of the coronal emission for each individual fieldline is mainly gov-
erned by the evolution of the temperature: Each fieldline brightens shortly after it was
heated and it temperature rose quickly.

So ultimately each of the expanding fieldlines is brightening according to the time
when the footpoint of the fieldline transverses the hot spot of the Poynting flux at the base
of the corona causing the enhanced heat input. Consequently the fieldlines lighten up in
succession according to their expansion. This is evident from the set of fieldlines shown
color coded in Figs. 5.3 and 5.6c for the heat input and emission.

The above discussion concentrates on the results relating to EUV instruments, e.g.,
the Atmospheric Imaging Assembly (AIA, Lemen et al. 2012). Currently EUV imag-
ing provides the highest spatial resolution in the corona, significantly higher than X-ray
observations, e.g. with the recent XRT instrument (Golub et al. 2007). However, the re-
sponse in temperature for X-ray instruments is quite different than EUV instruments. The
EUV bands typically show plasma over a temperature range of 0.3 in log10 T [K] (fwhm
of the response function, Boerner et al. 2012), i.e. a factor of 2. In contrast, the X-ray
instruments typically image plasma at higher temperature over wider range of tempera-
ture (peak of response function near 8 MK, covering a factor of 4 in temperature, Golub
et al. 2007). This different response might change the situation quite a bit, in particu-
lar because the temperatures in the model loop discussed here reach peak temperatures of
about 3 MK. Work including the synthesis of X-ray emission to discuss this in more detail
is underway.
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Figure 5.7: Magnetic fieldline moving through EUV loop. This image sequence shows
the evolution of the synthesized EUV emission in the 193 Å band of AIA dominated by
plasma at 1.5 MK radiating in Fe xii. The red line shows the fieldline in the expanding
magnetic field, the blue line the fieldline through the center of the EUV emission pattern
at each snapshot. This is similar to panel (a) in Fig. 5.2.

5.3.5 Magnetic fieldlines moving through stationary EUV loop

In Fig. 5.7 we show the temporal evolution of the resulting EUV loop when seen from
the side together with the position of the center fieldline of the magnetic tube selected
in Sect. 5.2. The magnetic tube is constantly moving upwards, from an apex height of
≈12.5 Mm at t=50 s to ≈17 Mm at 200 s corresponding to a speed of 30 km/s. The expan-
sion of the fieldlines slows down at greater heights because they are now running into the
fieldlines that emerged before. Until the end of the time series shown in Fig. 5.7 at t=600 s
the magnetic tube expanded only another 2.5 Mm, corresponding to an average speed of
about 5 km/s.

While each individual fieldline brightens up for only some 50 s to 100 s the successive
brightening of the expanding fieldlines causes a comparably stationary bright loop visible
in coronal EUV emission (Fig. 5.7). In particular the apex height of the center of the EUV

83



5 Relation of EUV loops to magnetic field lines

Figure 5.8: Cartoon showing the interplay between magnetic field expansion and the EUV
loop. A coalescent flow forming the sunspot drags the magnetic field in the photosphere
near the solar surface into the sunspot. In response a hot spot of enhanced upward directed
Poynting flux, S , forms (red arrow). The expanding fieldlines (blue) move upwards and to
the side. When they transverse the hot spot of Poynting flux, the plasma on that fieldline
gets heated and brightens up. As the fieldline expands further, it leaves the hot spot and
gets darker again. In consequence a bright coronal EUV loop forms (orange) and remains
rather stable while the successively heated fieldlines move through.

loop (blue line in Fig. 5.7) varies only slightly between z≈14.5 Mm and ≈15.5 Mm, while
over the same time the magnetic tube rose by more that 7 Mm.

The EUV loop formed by the expanding fieldlines shows some variability of its bright-
ness at the apex, but it remains bright for well over 10 min (dashed line in Fig. 5.6c). How-
ever, after about t≈550 s the loop starts fading away because the hot spot of the Poynting
flux at the base of the corona gets weaker.

5.3.6 Summary of the mechanism

This mechanism is illustrated by the cartoon in Fig. 5.8. During the emergence of mag-
netic flux forming a sunspot pair the field is pushed upwards and to the sides. In sunspots
the magnetic field is very strong and convection is suppressed. Thus the flow driving the
coalescence of the magnetic field come to a halt. Whenever a fieldline is crossing the
region of enhanced Poynting flux, energy is deposited along that fieldline and the plasma
on it is heated. Consequently this fieldline becomes visible in EUV for a short time. With
successive fieldlines passing the hot spot of Poynting flux, they all brighten roughly at
the same place, creating the illusion of a static emission pattern forming a loop, while the
magnetic field is moving. Future work will have to show to what extent this scenario also
holds for X-ray emission that typically forms over a broader range of temperatures than
the EUV bands.
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5.4 Conclusions
In our 3D numerical experiment we find that the temporal evolution of the magnetic field
in the corona can be radically different from that of the patterns seen in the coronal emis-
sion. This implies that modeling the temporal evolution of EUV loops as 1D structures
following a static fieldline is a problematic concept in regions where the magnetic field
is evolving, i.e. whenever the Sun gets dynamic — and interesting. Thus many of the
time-dependent 1D loop models that have been used as the workhorse in coronal studies
over the last two decades need to be reconsidered. In cases where one can reasonably
assume a static magnetic structure confining the plasma, a 1D model might describe the
loop sufficiently well. In principle, a model combining several lD models could account
for changes in loop length (Martens and Kuin 1983) or magnetic connectivity (López
Fuentes and Klimchuk 2010) to mimic the emergence process, but such a multiple-1D-
model would suffer from the lack of self-consistency. Only if treated in (2D or) 3D, the
photospheric motions that drive the magnetic changes will lead to a self-consistent inter-
action of the neighbouring fieldlines that result in a (variable) spatial pattern of heat input.
Still, at any given snapshot the coronal EUV loops in our 3D model outline magnetic field
lines. Therefore EUV observations should provide useful information when implemented
into procedures to recover a snapshot of the coronal magnetic field through extrapolation
methods (Malanushenko et al. 2014). In summary, the magnetic and thermal evolution
of the corona should be treated as a coupled system in a single problem — this requires
to have a more holistic view of the magnetic and thermal properties of the corona when
addressing the question of the structure, dynamics and heating of the corona.
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6 Oscillation of the coronal loop in a
realistic coronal model

* Sect. 6.1 is Sect. 1 in the first submitted version of the article Using coronal seis-
mology to estimate the magnetic field strength in a realistic coronal model by F. Chen and
H. Peter, published in Astronomy & Astrophysics, 581, A137 (2015), DOI: 10.1051/0004-
6361/201526237. Sect. 6.2 to Sect. 6.5 are Sect. 3 to Sect. 6 in the first submitted ver-
sion of the same article. Reproduced with permission from Astronomy & Astrophysics,
c© ESO

6.1 Introduction
Waves in the corona are extensively studied in numerous theoretical analysis and ob-
servations by all means (e.g. see reviews by Nakariakov and Verwichte 2005, Banerjee
et al. 2007, Wang 2011, De Moortel and Nakariakov 2012). Oscillations of coronal loops,
which is essentially a signature of the waves in the corona, can be a mean to diagnose the
properties of corona loops, for example, the magnetic field strength. This was proposed as
coronal seismology by Uchida (1970) and Roberts et al. (1984). In addition to the plasma
properties that usually have to be assumed or deduced in various ways, for example the
spectroscopic diagnostics (Mariska 1992), the key of coronal seismology is to determine
the mode of the oscillation and the phase speed of the corresponding wave. In practice in
the last two decades, the oscillations of coronal loops were mainly measured either by the
displacements and disturbances in extreme ultraviolet (EUV) images (Aschwanden et al.
1999, Nakariakov et al. 1999, De Moortel et al. 2000, Nakariakov and Ofman 2001, As-
chwanden and Schrijver 2011, Yuan and Nakariakov 2012, Verwichte et al. 2013b, Guo
et al. 2015), or by the periodic patterns in the Doppler velocity obtained from EUV spec-
trometers (Ofman and Wang 2002, Wang et al. 2003, 2007, Van Doorsselaere et al. 2008,
Erdélyi and Taroyan 2008, Ofman and Wang 2008, Mariska and Muglach 2010, Tian et al.
2012). The deduced magnetic field strength is typically between 10 G and 100 G, which
is generally consistent with that derived from extrapolations on the coronal magnetic field
(Schrijver et al. 2006, Wiegelmann and Sakurai 2012).

Meanwhile, a lot of theoretical efforts are also made to explore the impacts of the
complexities of real coronal loops, such as the curved geometry, density stratification, and
non-uniform cross section (Van Doorsselaere et al. 2004, Verwichte et al. 2006, Erdélyi
and Verth 2007, Arregui et al. 2007, Goossens et al. 2009, Ruderman and Erdélyi 2009,
Selwa et al. 2011). De Moortel and Pascoe (2009) tested the estimate of the magnetic field
strength by coronal seismology in a three-dimensional (3D) model, in which the magnetic
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6 Oscillation of the coronal loop in a realistic coronal model

field strength and number density along the target coronal loop are constant (Pascoe et al.
2009). This configuration prescribed a single and definite reference value, and the authors
did find a difference between the reference and the deduced magnetic field strength. In the
real corona the magnetic field strength varies along the loop, so does the number density,
despite of the large density scale height in the corona. Aschwanden and Schrijver (2011)
and Verwichte et al. (2013a) compared the magnetic field strength deduced by coronal
seismology with that obtained from a potential or force-free extrapolation on the coronal
magnetic field. Because of the limitation of the assumptions (i.e. potential or force-free),
it is uncertain if the extrapolated magnetic fieldline actually matches the observed loop.
Promising examples were presented by Feng et al. (2007). They showed that the magnetic
fieldlines in a linear-force-free extrapolation do follow the loop structures reconstructed
from stereoscopic observations.

Given all the difficulties of clinching the reference values from observations, it is in-
deed helpful to test coronal seismology in a model corona, which has realistic plasma
properties and a magnetic field configuration similar to that of a real active region. Re-
cent forward coronal models (Gudiksen and Nordlund 2005a,b, Bingert and Peter 2011)
account for the cooling through the optically thin radiation and the highly anisotropic heat
conduction along magnetic fieldlines. The horizontal motions in the model photosphere
braid the magnetic fieldlines. The Ohmic dissipation of the currents induced along the
coronal magnetic fieldlines is sufficient to heat the coronal plasma to over one million K.
The energy distribution in this type of model is well consistent with the expectation of
the nanoflare mechanism (Bingert and Peter 2013). The proper treatment on the energy
balance allows these models to resemble the plasma properties in the real corona, so that
the synthesised emission from these models can be directly compared with real observa-
tions. These model successfully explain some basic features of coronal loops (e.g. the
non-expanding cross section by Peter and Bingert 2012). A one-to-one data driven sim-
ulation can reproduce the appearance and dynamics in the particular solar active region
that drives the simulation (Bourdin et al. 2013).

Being successful in modelling the plasma properties and general dynamics of the
corona, a further challenge is how well the loop oscillation in a realistic model resem-
bles that on the real Sun. We analyse the synthetic observations, in which we clearly see
some loop oscillations, as an observer, and estimate the magnetic field strength from the
oscillation parameters. The model has a magnetic field configuration of a typical bipole
active region. This give us a chance to compare the magnetic field strength derived by
coronal seismology with the actually value in the model, which varies along the coronal
loop as in the reality. This comparison is a complementary to the previous numerical
experiment (De Moortel and Pascoe 2009) and observations (Aschwanden and Schrijver
2011, Verwichte et al. 2013a), and helps us to understand the implication of the derived
field strength, when coronal seismology is applied to actual observations.
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brightening

oscillating loop

synthetic AIA 211 Å t = 200 s

Figure 6.1: System of coronal loops synthesised from a 3D MHD model. This shows how
the model corona would appear in the AIA 211 Å channel that is dominated by Fe xiii
observing plasma at mainly 2 MK. The distance between the two footpoints of the loops
is about 35 Mm. The lower arrow indicates the position where the brightening happens
(more details in Sect. 6.2.1). The upper arrow points to the oscillating loop we analyse in
detail (Sect. 6.2.3).

6.2 Oscillation in the synthetic observation

6.2.1 Trigger of the oscillation

In addition to the continuous evolution of the coronal loops, some loops start to oscillate
when a brightening happens in the lower left part of the active region (see the lower arrow
in Fig. 6.1) at t≈200 s (for convenience, time is related to 4350 s after the start of the
simulation).

The brightening is due to an enhancement of the Ohmic heating along the fieldlines at
the flank of the active region. The cool plasma is quickly heated to a temperature at which
the response function of the AIA 211 Å channel peaks. The increase of the Ohmic heating
comes from the increase of the currents, which is due to some forced reconfiguration of
the coronal magnetic field. The increase of the currents also results in a transient increase
of the Lorentz force, which drives a kick perpendicular to the fieldlines. The disturbance
can propagate from the brightening site across the active region and trigger the transverse
oscillation of other loops. The oscillation is clear, albeit not violent, in the associated
animation of Fig. 6.1.

For a rough estimate, given a length scale (distance from the brightening site to the
farthest visible loop) of about 25 Mm and a wave speed of 2000 km s−1, the travel time
across the active region is about 12 s. With the cadence of the animation (Fig. 6.1), the
oscillation starts almost at the same time as the brightening.
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Figure 6.2: Map of the Doppler velocity obtained by fitting the synthetic Fe xiii 202 Å line
as observed from the top of the active region. The black solid line show the position of
the slit, along which we get a time series of the Doppler velocity (Sect. 6.2.2). This time
series is equivalent to the data from a sit-and-stare observation (Sect. 6.2.2).

The oscillation, which is mainly in the normal direction of the loop, lasts for about
300 s, and decays gradually. It appears very similar to the transverse oscillations, which
are widely found in the EUV observations and usually interpreted as the standing, fast
kink mode (Nakariakov and Verwichte 2005). Our model allows us to conduct a twofold
experiment, in which we, as an observer, measure the oscillation from the synthetic ob-
servation instead of the original variables of the model, and then compare the magnetic
field strength deduced from coronal seismology with the actually value we already know
from the model.

6.2.2 Synthetic spectral and the sit-and-stare observation

Although the loop oscillation is very clear in the animation for the eyes, its quantification
is difficult because the oscillation amplitude is not significantly larger than the width of
the coronal loop. The alternative is to measure the velocity disturbances from synthetic
spectroscopic observations. For this purpose, we simulate an observation from the top
of the active region, i.e. as if we observe an active region at the solar disk center. With
the procedure described by Peter et al. (2004, 2006), we use the temperature, density, and
vertical velocity in our model to synthesise the Fe xiii 202 Å line.

The line profiles are typically single peak Gaussians whose width is determined by
the local plasma temperature and the distribution of the line-of-sight (vertical in this case)
velocities. By fitting the spectral lines, we obtain the line intensity and the Doppler ve-
locity in the model active region. The Doppler velocity map in Fig. 6.2 shows the flows
in the active region. The ideal way to identify the periodic velocity disturbance corre-
sponding to the oscillation is the sit-and-stare observation mode. In such a mode, the
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Table 6.1: Parameters of the synthetic oscillating loop

parameter symbol value derived by

coronal loop length L 45 Mm
oscillation period P 52.5 s Eq. (6.1)
damping time τ 125 s Eq. (6.1)
temperature T 1.5 MK
internal density ni 5.7 × 108 cm−3

density ratio ne/ni 0.12
kink mode speed ck 1730 km/s Eq. (6.3)
inverted |B| Bkink 79 G Eq. (6.4)
average |B| 〈B〉 92 G Eq. (6.5)

spectrometer will obtain a time series of the spectra at a fixed location. For the synthetic
observations, we choose a artificial slit along the y direction located at the center of the
field of view (solid line in Fig. 6.2). We extract the line intensity and the Doppler velocity
along this slit with a 10 s time cadence. This time series can be considered as the data
from a sit-and-stare observation focusing on the apex of an oscillating loop.

6.2.3 Measurement of the transverse loop oscillation
Similar to what is applied on real sit-and-stare observations (e.g. Wang et al. 2009,
Mariska and Muglach 2010), we produce a time-space diagram from the synthetic spec-
troscopic observation. In the diagram the horizontal dimension is the time, and the vertical
dimension is the position along the slit. Panel (a) and (b) in Fig. 6.3 show the time-space
diagram for the line intensity and the Doppler velocity along the part of the slit covering
the oscillating loop.

The line intensity does not show any clear oscillation in the y direction. This is con-
sistent with the impression from the synthetic AIA images that the oscillation (at the loop
apex) is predominately in the z direction (i.e. along the line-of-sight). The oscillation in
the Doppler velocity is much more evident. It starts at around t=200 s, which is similar to
the timing in the synthetic AIA images.

We use a black box to mark the location of the bright loop in the intensity map in
Fig. 6.3 (a), and extract the Doppler velocity in the same black box in Fig. 6.3 (b). By
averaging in the y direction, we obtain the mean Doppler velocity in the loop as a function
of time, which is shown by the black symbols in Fig. 6.3 (c). They show a clearly damped
oscillation.

We fit this oscillation by

f (t) = A0exp
(
−

t − t0

τ

)
sin

[
2π
P

(t − t0)
]

+ A1t + A2, (6.1)

where t is time, P the period, τ the damping time-scale, t0 the initial time, and A0 the
amplitude. In addition, A1 and A2 account for a linear background. By fitting the curve
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Figure 6.3: Results from the synthetic spectroscopic observation in a sit-and-stare mode
and the fitting to the oscillation in the synthetic spectral data. (a): The time-space diagram
of the line intensity along part of the slit in Fig. 6.2. (b): The time-space diagram of the
Doppler velocity along the same slit. The black boxes are identical in both panels. They
show the location of oscillating bright loop, and the time during which the oscillation is
evident. (c): The average Doppler velocity in the bright loop as a function of time. This
is an average between y=28 Mm and y=29.5 Mm (i.e. in the y direction of the black box).
The red line is the fit with a damped sinusoidal function, Eq. (6.1).
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Figure 6.4: The cross correlations between the oscillation measured at the loop apex
(i.e. in the slit in Fig. 6.2) and those measured at other four different positions along
the same loop, which includes two at the midway from the apex to footpoints, and two
close to the footpoints. The solid line shows the self-correlation of the oscillation at the
loop apex. The time lag spans from −100 to +100 s, which is about four times of the
oscillation period (52.5 s at the loop apex). The red diamonds indicate the peaks of the
cross correlation functions. See Sect. 6.2.3 for details.

with a uniform weight, we obtain a period of P=52.5 s and a damping time of τ=125 s.
We apply the same analysis on some other slit positions. When the slits are located in

the midway from the loop apex to the loop feet, the average Doppler perturbation in the
loop appears very similar to that at the apex (except the amplitude). Fitting with Eq. (6.1)
also yields a period and a damping time consistent with the results at the loop apex.

Particularly when we put the slit close to the footpoints, the actually velocity pertur-
bation projected into the vertical direction is considerably reduced, and the oscillatory
pattern is also contaminated by flows along the magnetic field. Therefore, for these slits
we first use a curve fit to remove the smoothly varying contribution due to the parallel
flows, then fit the oscillation with Eq. (6.1). The oscillation periods measured near the
footpoints are still consistent with that at the apex, albeit the damping time at these places
may not be reliable.

In addition to the measurement of the oscillation parameters, the identification of the
corresponding wave mode is equally important. In the synthetic EUV images the loop
oscillates primarily in the transverse direction without any visible stationary node along
the loop. This implies that the oscillation is very likely to be a fundamental kink mode.
The phase difference of the velocity disturbance measured at different positions along the
loop is helpful to strengthen this point, because for a fundamental kink mode, the phase
difference should vanish.

To estimate the phase difference, we use the cross correlations of the oscillation, i.e.
the best fitting function to the average Doppler velocity, at five positions to that at the
apex (Fig. 6.4). The time-lag is between −100 and +100 s, which is sufficiently larger
than the oscillation period. In Fig. 6.4 it is clear that all cross correlation functions peak
at about zero time-lag. This confirms that the oscillations at different positions have no
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6 Oscillation of the coronal loop in a realistic coronal model

phase difference. Moreover, the peak values of the correlations are close to unity, which
also confirms that the oscillations are very similar at different positions.

The missing phase difference in the normal velocity disturbances at different positions
of the loop also confirms that the loop oscillates as a whole. From the animation asso-
ciated to Fig. 6.1, we find that oscillation behaves like a kink model oscillation, and the
footpoints appear to be the nodes of oscillation1. These "observational" properties suggest
that the oscillation is a fundamental kink mode oscillation.

6.3 Estimate of the magnetic field strength
As derived by Edwin and Roberts (1983) the phase speed of the kink mode (ck) in a
slender magnetic flux tube with uniform density is related to the internal and external
Alfvén speed (vAi and vAe) by

ck =

(
ρiv2

Ai + ρev2
Ae

ρi + ρe

)1/2

, (6.2)

where ρ is density, and subscripts i and e refer to internal and external, respectively. In
observations of coronal loop oscillations it is a common practice to estimate ck as

cobs
k =

2L
P
, (6.3)

where L is the loop length and P the oscillation period (e.g Nakariakov et al. 1999).
By further assuming that the internal and external magnetic field of the loop are about

equal and applying the effective Alfvén speed in Eq. (6.2), we obtain

ck =
|B|
√
µ0ρi

(
2

1 + ρe/ρi

)1/2 (
fAi + fAe

2

)1/2

. (6.4)

To derive plasma properties for the magnetic field estimate, we choose a group of mag-
netic fieldlines within the cross section of the oscillating loop for the internal properties
and another group of magnetic fieldlines in the ambient corona outside the cross section
of the loop for the external properties. We extract the density and temperature along the
magnetic fieldlines, and get the average profiles for each group of magnetic fieldlines,
respectively. In Fig. 6.5 (a), we plot the number density and temperature profiles along
the loop, as well as those outside the oscillating loop.

Because most of the theoretical models and observations only consider the coronal
part of the loop, we drop the cool part for this study. We define this as the part where
the temperature is below 1 MK, which is marked in Fig. 6.5 by the gray background. It is
clear in Fig. 6.5 that the temperature and density profiles in the coronal part are flat. This
is also expected in the real corona, because of the highly efficient heat conduction and the
large density scale height at such high temperatures.

1The amplitude of the normal velocity disturbance along the loop would make this statement more solid
(Yuan, D., private communication). However, such information is often not available in real observations.
Here, we intent to focus on the information that is available in typical observations
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Figure 6.5: Plasma parameters and magnetic field strength along the loop as functions of
normalized arc length. (a): Solid lines show the temperature (black) and number density
(blue) in the oscillating coronal loop (i.e. internal). Dashed lines show the temperature
(black) and number density (blue) in the ambient corona (i.e. external). (b): the magnetic
field strength along the loop. The red solid line indicates the derived coronal magnetic
field strength, Bkink, and the red dashed line the average magnetic field strength, 〈B〉 de-
fined by Eq. (6.5). The position along the loop is normalized by the total loop length
(53 Mm). The position 0.0 and 1.0 are the two footpoints at the photosphere. The grey
areas are the lower atmosphere, where T < 1 MK. The loop length in the coronal part of
the loop is about 45 Mm. See Sect. 6.2.3.

We calculate the average density in the coronal part inside and outside the loop, and
obtain ρi=3.8 × 10−12 kg m−3 (ni=5.7 × 108 cm−3) and ρe=4.4 × 10−13 kg m−3 (ne=6.5 ×
107 cm−3). Therefore the density ratio (ρe/ρi) is about 0.12, which is similar to the typical
assumptions applied for tube models and for the inversion of observations (e.g. 0.1 by
Nakariakov and Ofman 2001). The loop length in the coronal part is roughly 45 Mm.
Together with the oscillation period from the fitting (Sect. 6.2.3), we obtain cobs

k =1730 km
s−1 from Eq. (6.3). Finally a coronal magnetic field strength of Bkink=79 G is estimated
from Eq. (6.4).

6.4 Comparison with the actual magnetic field strength

The magnetic field strength varies along the coronal loop in both the real corona and
our numerical model. Therefore, the value deduced from coronal seismology does not
necessarily represent the field strength at any particular position of the loop, but is an
average through the coronal part of the loop. The profile of the magnetic field strength
along the loop in our model is plotted in Fig. 6.5 (b).
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6 Oscillation of the coronal loop in a realistic coronal model

The arithmetic mean of the magnetic field strength along the loop is 120 G. However,
this mean value does not provide much physical meaning. The reason is that coronal
seismology estimates the magnetic field strength from the observed average wave speed
defined as Eq. (6.3), and the actual wave speed is (usually) not a constant through the
loop. Therefore the derived magnetic field strength is an average related to local wave
speed (or say, wave travel time).

Aschwanden and Schrijver (2011) defined

〈B〉 = L
[∫ L

0

ds
B(s)

]−1

, (6.5)

where s is the coordinate along the arc of the loop. This definition corresponds to a flux
tube with a uniform field strength that has the same oscillation period. In our model,
〈B〉 is 92 G, as indicated by the red dashed line in Fig. 6.5 (b). The arithmetic mean is
clearly larger than 〈B〉, because the upper part of the loop, where the local magnetic field
is weaker (i.e. lower local wave speed and larger local wave travel time), contributes more
to 〈B〉 than the lower part of the loop does. On the other hand, 〈B〉 shows a much better
match with Bkink. This is in line with the concept that the magnetic field strength estimated
by coronal seismology represent the average magnetic field related to the average wave
speed.

The magnetic field strength inverted from the loop oscillation, Bkink, is still 14%
smaller than 〈B〉 , which implies that the actual wave speed is slightly underestimated
from the theoretical value. The complexities of actual coronal loops (as well as the loop
in our model) could lead to such a deviation. One possible explanation might be the aspect
ratio (i.e. width/length) of the loop. For the loop analysed in this paper, the aspect ratio
of 0.045 is about three times larger than typical observations for long loops (e.g. taking a
loop width of 2 Mm and a loop length of about 150 Mm). Edwin and Roberts (1983) noted
that the actual kink mode speed is equal to ck defined by Eq. (6.2) only when the width of
the flux tube is significantly smaller than the wavelength of the disturbance. Otherwise,
it decreases with an increasing aspect ratio, which is in line with the trend found in our
model.

6.5 Discussion and summary
In this paper we present the loop oscillation found in a realistic coronal model driven by
magnetic flux emergence through the photosphere (i.e. the bottom boundary). The treat-
ment of the energy balance in the model allows us to produce a synthetic spectroscopic
observation, in which the transverse loop oscillation can be clearly observed. The oscil-
lation is further identified as the fundamental fast kink mode. The oscillation patterns
found in the EUV corona synthesised from our 3D MHD model can be used for a direct
comparison to the parameters of the oscillations seen in the solar observations. In contrast
to the Sun, in our model we can directly check the plasma parameters and the magnetic
field strength in the oscillating loop.

Damping is commonly found in transverse loop oscillations. The damping time is par-
ticularly important, because it reflects the rate at which the wave energy is converted into
another form. Using a scaling relation derived from numerical models, Nakariakov et al.
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(1999) found that the magnetic Reynold number deduced from the observed damping
time may be about nine orders of magnitude smaller than the classical value (e.g. 1014).
Ofman and Aschwanden (2002) analysed the scaling relation of damping time to loop
parameters and estimated an anomalous large viscosity of 109.2±3.5 m2 s−1, which yields a
Reynolds number at least five orders of magnitude smaller than the classical value. These
results imply that the wave energy could be converted into heat much more efficiently.
However, Goossens et al. (2002) showed that the observed fast damping of transverse
loop oscillations can be explained by the damping of quasi-mode kink oscillations, whose
rate is independent of the dissipation. Thus, they suggested that there is no need for the
anomalously large viscosity.

More recently Verwichte et al. (2013b) analysed 52 observed loop oscillations and
found that the damping time is related to the oscillation period by τ = αPγ, where
log10α=0.44±0.31 and γ=0.94±0.12. The period (T=52.5 s) and damping time (τ=125 s)
of the oscillation in our model fit this scaling relation very well. It may suggest that the
loop oscillation and its damping resemble the actual observations to some extent. The
viscosity and resistivity in our typical models is of the order of 1010 m2 s−1 (Bingert and
Peter 2011), which is essentially determined by the grid spacing in the numerical models
(in the present study we use 5×109 m2 s−1). This value happens to be in line with range
found by Ofman and Aschwanden (2002) in a sample of 11 observed loop oscillations.
The earlier study of one single case by Nakariakov et al. (1999) gave a value in the lower
end of the range given by Ofman and Aschwanden (2002). From this we conclude that
the value of the diffusivity in our model (109.7 m2 s−1) is consistent with the average from
observations (109.2 m2 s−1) looking at a wide rang of oscillation loops. If we take the
loop half width (w≈1 Mm) as the length scale, the dissipation time would be about 100 s,
which is close to the damping of the oscillation in our model. It implies that in our model
the dissipation is the dominant damping agent for the oscillation.

We apply the coronal seismology method to the observations synthesised from our
model corona in the same way as done for observations. From this we obtain an average
magnetic field strength of Bkink=79 G. The actual magnetic field strength in the model
varies significantly through the loop. The value at the coronal base is about five times
larger than that at the loop apex and Bkink is more close to the latter one. Furthermore
we find Bkink to be about 14% smaller than the average magnetic field, which would give
an identical total wave travel time through the loop (Aschwanden and Schrijver 2011).
This may be due to the complexity of the coronal loop. We conclude that the magnetic
field strength deduced by coronal seismology can be a good representative of that in the
upper part of a coronal loop, while the magnetic field strength varies significantly along
the loop, in our model and most probably also on the real Sun.
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In this work we present a realistic coronal model that is driven by magnetic flux emer-
gence at the bottom boundary. The modelling strategy of the coronal model is based
on a series of numerical experiments (Gudiksen and Nordlund 2002, 2005a,b, Bingert
and Peter 2011, Bourdin et al. 2013) that accounts for the optically thin radiation, highly
anisotropic heat conduction, and heating by the Ohmic dissipation of the currents induced
in the corona by the braiding of magnetic fieldlines in the photosphere. To drive the
coronal model with magnetic flux emergence, we use the output from a realistic MHD
simulation, which properly solves the radiative transfer and considers a realistic equation
of state in the solar photosphere. Such simulations can resemble observed photospheric
plasma and magnetic features very well. The output of the flux emergence simulation,
which describes a fully self-consistent evolution of the plasma properties, velocity and
magnetic field, can be considered as the data from an actual observation if such observa-
tions could be done.

The proper treatment on the energy balance in the coronal simulation allows us to
synthesise coronal EUV emission from the density and temperature in the model. We find
that loop-like EUV structures similar to real coronal EUV loops become visible during the
formation of strong magnetic flux concentrations through the coalescence of small-scale
magnetic elements in the photosphere.

The analysis of the energy input to the corona shows that the coronal loops are formed
at places where enhanced upward Poynting flux is produced by the interaction of the flows
and the magnetic structures in the photosphere (in the form of coalescent flows moving
into the forming sunspot), as proposed by the fieldline braiding (Parker 1983) or flux-tube
tectonics (Priest et al. 2002) mechanisms. The energy flux provides the free magnetic
energy that can heat the coronal plasma through the Ohmic dissipation.

When the Ohmic heating is increased in the corona, the heat conduction transports the
energy deposited in the corona along the magnetic fieldline to the dense lower atmosphere,
i.e. the footpoint of the magnetic fieldline. Consequently, the pressure at the footpoint
increases and drives an evaporation flow that takes hot plasma into the corona. This gives
rise to the a coronal loop that is bright in EUV observation. The scenario is consistent
with the results in traditional 1D loop models with a prescribed heating rate.

In the vertical plane in the middle of the simulation domain we find that neither tem-
perature structure nor the density structure is co-spacial with the EUV structure (e.g. the
cross section of the EUV loop), because the EUV loop is a convolution of the local plasma
density and temperature. And the cross section of the EUV loop can change in a time scale
of minutes according to the variations of the density and temperature. The investigation
on the cross section profile of EUV loops is essentially beyond the ability of traditional
1D models, and can only be done in multi-dimensional models.
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In the model we are able to deepen our understanding on the relation of EUV loops to
magnetic fieldlines by following their evolution. In each snapshot of the model coronal,
the EUV loops are nicely in line with the magnetic fieldlines. This is consistent with the
relation that is commonly expected (c.f. Sect. 2.3) and is supported by observations (Feng
et al. 2007). However, the evolution of the EUV loops and the magnetic fieldlines could
be different in an emergence active region. When the magnetic fieldlines continuously
emerge and expand upward, the apparent EUV structure (i.e. the EUV loop) remains
roughly at the same height.

We find a hot spot, which is a small area of enhanced energy input, at the outer edge of
the sunspot. The footpoints of emerging magnetic fieldlines are advected into this hotspot
consecutively by the coalescent flow into the sunspot. These fieldlines get heated one
after another. As a result, each fieldline is bright in a certain EUV passband (e.g. the
AIA 193 Å channel) for only a short period of time. Thus, the EUV loop seen at different
moments in time is contributed by the plasma in different magnetic fieldlines. This creates
an apparently static EUV structure, while the actual magnetic fieldlines are continuously
expanding upward. This scenario suggests the importance of treating the magnetic field
together with the plasma, particularly when the magnetic field is evolving significantly.

Moreover, we analysis the transverse loop oscillations in the model. The loop oscil-
lation can be clearly identified and measured from the synthetic observation. This shows
the power of realistic models on reproducing observational properties. We further esti-
mate the (average) magnetic field strength from the oscillation parameters, employing the
technique of coronal seismology that is extensively applied to observed loop oscillations.
The deduce (average) magnetic field strength represents the field strength in the upper part
of the corona loop, when the magnetic field strength varies along the loop as in the real
corona. This helps us to better understand what the result means, when the this technique
is applied to estimate the magnetic field strength in real coronal loops.

This work presents a series of investigations on the formation and evolution of the
coronal plasma and magnetic field in an emerging active region, which are barely touched
by previous models. It also highlights the strong power of realistic 3D simulations on the
coronal modelling.

The coupling of two models both following the realistic modelling strategy makes one
step forward to the comprehensive picture of the dynamical coupling of the solar atmo-
sphere. As the next step, this work can be continued to further deepen our understanding
of the corona dynamics.

Coronal dynamics driven by the emergence of twisted flux tube
In this work we use the emergence of a flux tube that has no imposed twist. This flux
tube creates a magnetic field quiet symmetric in respect to the middle vertical plane of
the domain. The most evident overall flow pattern in the photosphere is the coalescent
flow pointing to the sunspots. While in observations, the asymmetry in the magnetic
field topology is very common. Apparent rotation of the sunpots and shearing flows in
the active region often give rise to the transverse magnetic field in between the sunspots.
These features may be modelled by the emergence of a flux tube containing a certain
amount of twist. Cheung et al. (2010) gave an example of the significant rotation of the
forming sunspots, when a (an unrealistically) strongly twisted flux tube breaks into the
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photosphere (see also Fig. 2.6).
A meaningful improvement to present model is to drive coronal simulations with the

emergence of flux tubes that contain different amount of twist. This series of the models
will be able to better represent the diverse situations on the Sun. The build-up of coronal
features in response to the different photosphere dynamics can bring us more insights on
the dynamical coupling between different layers in the solar atmosphere.

Detailed comparison between realistic models and observations
Modern high resolution and high time cadence imaging and spectroscopic observations
help us to explore the solar corona in unprecedented detail. At the same time, the devel-
opment in computing powers allows people to conduct realistic simulations that can be
directly comparable to observations of the corona. In this work we have shown that the
general features in the synthetic observations are well in line with with actual observa-
tions. A more comprehensive comparison between the model and observations can better
exploit the power of realistic models.

A comprehensive comparison would list as many as possible fundamental observa-
tional characteristics of the corona, and compare them with the corresponding model
synthetics. If the model could reproduce a particular observational feature, this gives us
an opportunity to reveal the physical process underlying the appearance. When the model
fails to reproduce a certain feature, it leads to the question of what is missing in the model.
It may be that a particular model setup is not appropriate for the comparison with this ob-
servational property, or the fundamental physics responsible for this feature is missing.
Then this can at least provide us a hint on what needs to be improved in the model. In
this way, these comparisons would help us to review where we are standing and which
direction we should head to.
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Mok, Y., Mikić, Z., Lionello, R., and Linker, J. A.: 2008, ApJ 679, L161

Müller, D. A. N., Hansteen, V. H., and Peter, H.: 2003, A&A 411, 605

Müller, D. A. N., Peter, H., and Hansteen, V. H.: 2004, A&A 424, 289

Nakariakov, V. M. and Ofman, L.: 2001, A&A 372, L53

Nakariakov, V. M., Ofman, L., Deluca, E. E., Roberts, B., and Davila, J. M.: 1999,
Science 285, 862

Nakariakov, V. M. and Verwichte, E.: 2005, Living Reviews in Solar Physics 2, 3

Ofman, L. and Aschwanden, M. J.: 2002, ApJ 576, L153

Ofman, L. and Wang, T.: 2002, ApJ 580, L85

Ofman, L. and Wang, T. J.: 2008, A&A 482, L9

Parker, E. N.: 1972, ApJ 174, 499

Parker, E. N.: 1983, ApJ 264, 642

Parker, E. N.: 1988, ApJ 330, 474

Pascoe, D. J., de Moortel, I., and McLaughlin, J. A.: 2009, A&A 505, 319

Peter, H.: 1999, ApJ 516, 490

Peter, H., Abbo, L., Andretta, V., Auchère, F., Bemporad, A., Berrilli, F., Bommier, V.,
Braukhane, A., Casini, R., Curdt, W., Davila, J., Dittus, H., Fineschi, S., Fludra, A.,
Gandorfer, A., Griffin, D., Inhester, B., Lagg, A., Degl’Innocenti, E. L., Maiwald, V.,
Sainz, R. M., Pillet, V. M., Matthews, S., Moses, D., Parenti, S., Pietarila, A., Quantius,
D., Raouafi, N.-E., Raymond, J., Rochus, P., Romberg, O., Schlotterer, M., Schühle,
U., Solanki, S., Spadaro, D., Teriaca, L., Tomczyk, S., Bueno, J. T., and Vial, J.-C.:
2012, Experimental Astronomy 33, 271

106



Bibliography

Peter, H. and Bingert, S.: 2012, A&A 548, A1

Peter, H. and Dwivedi, B. N.: 2014, Frontiers Astron. Space Sci. 1, 2

Peter, H., Gudiksen, B. V., and Nordlund, Å.: 2004, ApJ 617, L85

Peter, H., Gudiksen, B. V., and Nordlund, Å.: 2006, ApJ 638, 1086

Peter, H. and Judge, P. G.: 1999, ApJ 522, 1148

Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press

Priest, E. R., Heyvaerts, J. F., and Title, A. M.: 2002, ApJ 576, 533

Rappazzo, A. F., Velli, M., Einaudi, G., and Dahlburg, R. B.: 2008, ApJ 677, 1348

Reale, F.: 2010, Living Reviews in Solar Physics 7, 5

Reale, F.: 2014, Living Reviews in Solar Physics 11, 4

Rempel, M. and Cheung, M. C. M.: 2014, ArXiv e-prints

Rempel, M., Schüssler, M., Cameron, R. H., and Knölker, M.: 2009a, Science 325, 171

Rempel, M., Schüssler, M., and Knölker, M.: 2009b, ApJ 691, 640

Roberts, B., Edwin, P. M., and Benz, A. O.: 1984, ApJ 279, 857

Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978, ApJ 220, 643

Ruderman, M. S. and Erdélyi, R.: 2009, Space Sci. Rev. 149, 199

Schrijver, C. J., De Rosa, M. L., Metcalf, T. R., Liu, Y., McTiernan, J., Régnier, S., Valori,
G., Wheatland, M. S., and Wiegelmann, T.: 2006, Sol. Phys. 235, 161

Schrijver, C. J. and Zwaan, C.: 2000, Solar and Stellar Magnetic Activity, Cambridge
University Press

Selwa, M., Ofman, L., and Solanki, S. K.: 2011, ApJ 726, 42

Spadaro, D., Lanza, A. F., Karpen, J. T., and Antiochos, S. K.: 2006, ApJ 642, 579

Spitzer, L.: 1962, Physics of Fully Ionized Gases, Interscience, New York (2nd edition)

Strauss, H. R.: 1976, Physics of Fluids 19, 134

Tian, H., McIntosh, S. W., Wang, T., Ofman, L., De Pontieu, B., Innes, D. E., and Peter,
H.: 2012, ApJ 759, 144

Tomczyk, S., McIntosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley, D. H., and
Edmondson, J.: 2007, Science 317, 1192

Uchida, Y.: 1970, PASJ 22, 341

107



Bibliography

van Ballegooijen, A. A.: 1986, ApJ 311, 1001

van Ballegooijen, A. A., Asgari-Targhi, M., and Berger, M. A.: 2014, ApJ 787, 87

van Ballegooijen, A. A., Asgari-Targhi, M., Cranmer, S. R., and DeLuca, E. E.: 2011,
ApJ 736, 3

Van Doorsselaere, T., Debosscher, A., Andries, J., and Poedts, S.: 2004, A&A 424, 1065

Van Doorsselaere, T., Nakariakov, V. M., Young, P. R., and Verwichte, E.: 2008, A&A
487, L17

van Wettum, T., Bingert, S., and Peter, H.: 2013, A&A 554, A39

Vernazza, J. E., Avrett, E. H., and Loeser, R.: 1981, ApJS 45, 635

Verwichte, E., Foullon, C., and Nakariakov, V. M.: 2006, A&A 452, 615

Verwichte, E., Van Doorsselaere, T., Foullon, C., and White, R. S.: 2013a, ApJ 767, 16

Verwichte, E., Van Doorsselaere, T., White, R. S., and Antolin, P.: 2013b, A&A 552,
A138

Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., and Linde, T.: 2005,
A&A 429, 335

Wang, T.: 2011, Space Sci. Rev. 158, 397

Wang, T., Innes, D. E., and Qiu, J.: 2007, ApJ 656, 598

Wang, T. J., Ofman, L., and Davila, J. M.: 2009, ApJ 696, 1448

Wang, T. J., Solanki, S. K., Curdt, W., Innes, D. E., Dammasch, I. E., and Kliem, B.:
2003, A&A 406, 1105

Warnecke, J., Losada, I. R., Brandenburg, A., Kleeorin, N., and Rogachevskii, I.: 2013,
ApJ 777, L37

Wiegelmann, T. and Sakurai, T.: 2012, Living Reviews in Solar Physics 9, 5

Williamson, J. H.: 1980, Journal of Computational Physics 35, 48

Withbroe, G. L. and Noyes, R. W.: 1977, ARA&A 15, 363

Yang, W. H., Sturrock, P. A., and Antiochos, S. K.: 1986, ApJ 309, 383

Yuan, D. and Nakariakov, V. M.: 2012, A&A 543, A9

108



Acknowledgements

My sincere thanks to

• my supervisor Prof. Dr. Hardi Peter for the encouragement and advices
on my research, as well as the other countless helps through these years

• my advisor committee, Prof. Dr. Manfred Schüssler and Prof. Dr. Ansgar Reiners,
who always kindly arrange time for my requests on discussions and meetings

• Dr. Robert Cameron for always sharing his talent and sense of humour with us, and
Dr. Mark Cheung for many helps throughout my doctoral study

• the coronal dynamics team members: Dr. Sven Bingert, Dr. Philippe Bourdin, Dr.
Tijmen van Wettum, Dr. Jörn Warnecke, Mr. Krzysztof Barczynski

• Jörn for many helpful comments on the thesis, and Dr. Nai-Hwa Chen,
Dr. Li Feng, Dr. Lijia Guo for reading part of the thesis and "Tu Cao" (informal
Chinese for "commenting"), and Dr. Leping Li for very productive discussions in
the lunch queue.

• Prof. Dr. Mingde Ding, Prof. Dr. Pengfei Chen, and Prof. Dr. Cheng Fang
in Nanjing University for the generous support on my visits to Nanjing and many
constructive discussions

• folks in the IMPRS who always make the school active, and the coordinators, Dr.
Dieter Schmitt and Dr. Sonja Schuh for their great efforts to keep the school well
organised.

• the Chinese community at MPS for all the fun in our get-togethers

• Dr. Siyi Feng, Mr. Ruoyu Liu, Mr. Shiwei Wu at MPIA (Heidelberg), Mr. Shi Shao
at MPA (Garching) and my friends in the US for kindly treating me during my visit

• my parents and parents-in-law for their support and encouragement.

Thanks for Nanjing and Göttingen
that bring me my wife,

Heng Cui,
who is the light of my life.

109





Publications

Articles published in peer-reviewed journals that are included in this thesis

• F. Chen and H. Peter, Using coronal seismology to estimate the magnetic field
strength in a realistic coronal model, 2015 A&A, 581, A137

• F. Chen, H. Peter, S. Bingert, and M. C. M. Cheung, Magnetic jam in the solar
corona, 2015 Nature Physics, 11, 492

• F. Chen, H. Peter, S. Bingert, and M. C. M. Cheung, A model for the formation of
the active region corona driven by magnetic flux emergence, 2014 A&A, 564, A12

Contributions in peer-reviewed articles that are not included in this thesis

• L. M. Yan, H. Peter, J. S. He, H. Tian, L. D. Xia, L. H. Wang, C. Y. Tu, L. Zhang,
F. Chen, K. Barczynski, Self-absorption in the solar transition region, 2015 ApJ,
811, 48

• M. C. M. Cheung, P. Boerner, C. J. Schrijver, P. Testa, F. Chen, H. Peter, and
A. Malanushenko, Thermal Diagnostics with SDO/AIA: A Validated Method for
DEMs, 2015 ApJ, 807, 143

• J. Zhang, B. Zhang, T. Li, S. H. Yang, Y. Z. Zhang, L. P. Li, F. Chen, and H. Peter,
Coronal heating by the interaction between emerging active regions and the quiet
Sun observed by SDO, 2015 ApJL, 799, L27

• L. P. Li, H. Peter, F. Chen, and J. Zhang, Conversion from mutual helicity to self-
helicity observed with IRIS, 2014 A&A, 570, A93

111





Curriculum vitae

Name : Feng Chen

Date of birth : 29. 06. 1986

Place of birth : Shandong, China

Date of Marriage : 11. 08. 2014

Spouse : Heng Cui

Nationality : Chinese

Education

09/2002 – 06/2005 High School Affiliated to Shandong Normal University, Jinan

09/2005 – 06/2009 Bachelor of Science
Department of Astronomy, Nanjing University, Nanjing

09/2009 – 12/2011 Master of Science
Department of Astronomy, Nanjing University, Nanjing
Thesis title : Spectroscopic analysis
of coronal extreme ultraviolet waves

02/2012 – 04/2015 Doctoral student
IMPRS at the University of Göttingen and
Max Planck Institute for Solar System Research,Göttingen

113


	Abstract
	Introduction
	Modelling the corona: from scaling laws to realistic 3D models
	Basics of magnetohydrodynamics
	Coronal energy balance
	Concept of coronal loops
	Scaling laws
	One dimensional loop models
	Three dimensional models
	Reduced MHD models of coronal loops
	Magneto-frictional models of active regions
	Realistic active region models
	Models with parametrised heating
	Models acounting for magnetic braidings


	Formation of active regions through the magnetic flux emergence
	Motivation and aim of this study

	Coronal simulations driven through the bottom boundary
	Numerical method
	Governing equations
	Time step constraint
	Sub-cycle for the heat conduction
	Super time stepping in the sub-cycle

	Model setup
	The flux emergence simulation
	Setup of the coronal model
	Computation domain
	Initial conditions
	Boundary conditions

	Coupling of the flux emergence and corona model
	Preparing the vector potential
	Time dependent update



	Coronal loops formed in an emerging solar active region
	Introduction
	Coronal loops appearing in an emerging active region
	Magnetic expansion into the corona
	Appearance of a coronal loop

	The 3D loop collapsed to one dimension
	Thermal structure and dynamics of the loop
	Energetics in the emerging loop
	Initiation phase
	Formation phase
	Cooling phase
	Perpendicular compression


	The 3D nature of the loop
	Evolution of the magnetic envelope
	Fragmentation of the loop

	What triggers the loop formation?
	Summary

	Relation of EUV loops to magnetic field lines
	Introduction
	Following (a bundle of) magnetic field lines and an EUV loop in time
	Axis of a magnetic tube
	Axis of an EUV loop
	Evolution of the EUV loop and fieldlines

	Thermal evolution and coronal emission along individual fieldlines
	Heat input for individual fieldlines
	Hot spot of Energy input
	Magnetic braiding in the photosphere
	Hot spot at the coronal base

	Temperature and density along individual fieldlines
	EUV emission along individual fieldlines
	Magnetic fieldlines moving through stationary EUV loop
	Summary of the mechanism

	Conclusions

	Oscillation of the coronal loop in a realistic coronal model
	Introduction
	Oscillation in the synthetic observation
	Trigger of the oscillation
	Synthetic spectral and the sit-and-stare observation
	Measurement of the transverse loop oscillation

	Estimate of the magnetic field strength
	Comparison with the actual magnetic field strength
	Discussion and summary

	Summary and outlook
	Bibliography
	Acknowledgements
	Publications
	Curriculum vitae

