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Abstract

Many energetic and transient plasma phenomena take place in collisionless solar
coronal environment. The classical binary collision in the corona takes relatively
longer time than the usual time scale of the phenomena, and the mean free path of
plasma is around 1 AU in coronal condition. Therefore the collisionless transport
dominates the plasma evolution in this environment. From recent observations of
solar flares, the spectrum shows a clear broken-power-law distribution, which
indicates a strong influence of collisionless plasma transport effect. Another
important topic in solar corona physics is the magnetic reconnection which is assumed
to take place prior to the solar flare. To break the frozen-in condition in strongly
magnetized collisionless plasma, some resistive effect should take place to reduce the
curl-B generated current, i.e. the anomalous resistivity causes the current reduction in
central current sheet.

In this thesis the anomalous resistivity is first studied from a linear estimation in
a current carrying system. A multi-fluid description of plasma is used to study the
waves and instabilities with coronal plasma parameters. As we know the localized
electrostatic structures influence significantly on plasma transport in current carrying
system. Two instabilities, the Buneman instability and the modified two stream
instability (MTSI), are identified and their frequency wave-number (w-k) spectra are
analyzed. To estimate the resulting anomalous resistivity in the instability saturation
stage, we compare with the previous Vlasov simulation results. We found, in
contrast to the general understanding that Buneman mode contributes primarily to the
generated anomalous resistivity, an obliquely propagating modified two stream
instability also generates a non-negligible anomalous resistivity.

Because of the energy gap between the coronal reconnection outflow and the
observed chromospheric hard X ray (HXR) emission, an existence of loop-top fast
shock was proposed for a secondary acceleration of electrons. We performed a
one-dimensional electromagnetic particle-in-cell simulation with a reflective
boundary, which mimics the coronal soft X ray (SXR) loop. Because of the
accumulation of magnetic field, a clear fast mode magnetosonic shock formed on
upstream side of the reflective boundary. Electron and ion heating are shown in the
downstream of the fast shock. An original reconnection outflow with 7 kel kinetic
energy can be finally accelerated to around /20 keV’, which is the typical energy level
of the observed flare footpoint emissions.

As to the frequently observed flare broken-power-law spectrum, which is best

fitted by two different distribution index, we are interesting in the generation
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mechanism of this specific spectrum. For high energy electrons traveling downward
to chromosphere in the coronal loops, a return current model is proposed to satisfy the
charge neutrality condition in corona and also the Faraday’s induction law in flaring
loops. With a stationary background ion species and two counter-streaming electron
species, Buneman and electron-electron two stream instability take place in the
current-free system. In the Vlasov simulation with periodic boundary condition,
electrostatic double layers (DLs) are generated to dissipate the drifts of
counter-streaming electrons. Plasma heating is a natural consequence in the final
stage of plasma evolution. In the system the electrostatic double layers take the role
as an energy converter. DLs first accumulate kinetic energy from electron drifts for
its growth of electric field energy, and in the late stage of DLs evolution the wave
energy is further converted into thermal energy of plasma. Interestingly the spectrum
of downward propagating electron finally shows a broken-power-law distribution,
which corresponds to the frequent observed footpoint emissions. The result shows
that a broken-power-law spectrum on flare footpoints is possibly a consequence of

collisionless plasma transport with electrostatic DLs.
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1 Introduction

1.1 Overview on Solar Corona Observations

The visible part of our sun that can be seen with naked eyes is the so-called photosphere.
Like the surfaces of other stars in Galaxy, the sun emanates the optical radiations that has
an effective blackbody temperature approximately 7, ~ 5785K. However, for observa-
tions with different bands of emissions such as hard X-ray (HXR), soft X-ray (SXR) or
radio wavelength, the photosphere becomes invisible for eyes but other solar structures
can be seen by instruments.

Beneath the photosphere is the solar convection zone, which is defined as the height
for standard one solar radius (Ry = 700Mm) from the solar centroid core to the top of
convection zone. And above which, the photosphere is the lowest layer of solar atmo-
sphere, and above photosphere lies the the rarer and more dynamical chromosphere, and
the outer most solar atmosphere is the solar corona.

Along the radial direction of the solar atmosphere, the temperature decreases from the
bottom of photosphere T' = 5785K to the value 7' = 4300K on the top. The chromosphere
lies about 2000km above the photosphere. The temperature rises across the chromosphere
from 7 = 4300K of the bottom to about 7 = 1 X 10*K on the top, and it reaches 7" =
2 x 10°K in solar corona. Solar corona is a highly non-uniform region, in the sense
of magnetic field and thermal pressure. Several large-scale and highly energetic events,
such as solar flares and coronal-mass-ejections (CMESs), take place therein. Also, the
plasma dynamics and magnetic field geometry in this region are very complicated, the
solar corona environment has attracted a substantial interests from the solar-terrestrial
interaction study, and the solar corona is usually considered as a natural environment for
plasma experiments. Therefore, the evolutions of the spectrum of energetic particles in
this collisionless environment are the primary tools and themes of many coronal studies.

Concerning the topic of energetic plasma transport in collisionless corona, we briefly
introduce the selected solar environments that we are interested. Conventionally, solar
corona is surficially subdivided into three regions, which by individual has very different
magnetic field and plasma density characteristics: (1) solar active regions, (2) quite sun
and (3) coronal holes.

1. Active Regions

Active regions are the locations of highly magnetic field concentrations. With the
dynamic plasma motions in photosphere and chromosphere, the magnetic activities in
corona exhibit perminant features, e.g. magnetic reconfigurations, flux cancellation and
magnetic field reconnection processes.
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Figure 1.1: Composite soft X-ray image of the sun observed on 1992 Aug 26 with
Yohkoh. The labels indicate the locations of active regions (AR; dark grey), quiet sun
regions (QS; light grey), and coronal holes (CH; white) (Aschwanden 2001).

The overall area of solar active regions accounts for a relatively samll fraction of
the entire coronal surface. The most pronounced expression of a typical coronal active
region is the appearance of sunspot groups, which stretch strong magnetic fields from
solar convection zone to corona. Sunspot groups are the regions that possess a major
magnetic polarity, accompanying with a considerable amount of relatively small-scale
oppositely-polarized poles. Active regions are comprised mainly of closed magnetic field
lines because of the bipolar nature of magnetism (V - B = 0: no magnetic single pole
exists), although the observational existence of magnetic single poles is still a puzzle and
its creation mechanism attracts high interests contemporarily from the solar physicists.
It’s currently believed the single poles reveal partially the extensive magnetic strucutres
beneath corona.

In the region of highly magnetic polarity alternations, various energetic and dynami-
cal processes such as corona mass ejections (CMEs), solar flares and the associate plasma
heating occur continuously. A prominent plasma heating phenomenon that can be seen
from solar soft X-ray (SXR) is the bright corona loops, which are caused by the plasma
filling from the chromospheric plasma evaporation (this is the consequence of energetic
coronal plasma bombardment) and the SXR loop usually has a longer lifetime than the
HXR transient events. Solar SXR loops are hotter and denser plasma regions than its am-
bient environment, and they are the common post-products of the plasma ejection from
coronal looptop. The spatial extension of solar SXR loops covers a wide range of scale
according to their different equilibrium conditions.
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1.1 Overview on Solar Corona Observations

2. Quiet Sun

In the early days of solar study, the remaining areas except the solar active regions
were dubbed the quiet sun regions. However, with time many dynamic processes have
been discovered all over the solar surface, the name ’quiet sun’ is considered as a mis-
nomer, only justified in a relative term of levels. Dynamic processes in the quiet sun range
from many small-scale phenomena such as network heating events, nanoflares, explosive
events, bright points, and soft X-ray jets, and to large-scale structures, such as transe-
quatorial loops or coronal arches. The distinction between active regions and quiet sun
regions becomes more and more blurred because most of the large-scale structures that
overarch quiet sun regions are rooted in active regions. A good working definition is that
quiet sun encompass all closed magnetic field regions (excluding active regions), clearly
demarcating the quiet sun territory from coronal holes that encompass the open magnetic
field regions.

3. Coronal holes

The northern and southern polar zones of the sun have generally been found to be
darker than the equatorial zones during solar eclipses. Waldmeier (1957) thus coined
those zones as "Koronale Locher" (in German, i.e., coronal holes). Today it is fairly
clear that these zones are dominated by open magnetic field lines, which act as efficient
conduits for flushing heated plasma from the corona into the solar wind, if there are any
chromospheric upflows at their footpoints. Because of this efficient transport mechanism,
coronal holes are empty of high temperature plasma most of the time, and thus appear
much darker than the quiet sun, where heated plasma upflowing from the chromosphere
remains trapped until it cools down and precipitates back to the chromosphere.

Like our Earth atmosphere displays a large variety of cloud shapes, the solar corona
exhibits an equally rich menagery of loop morphologies, which can reveal important clues
about the underlying magnetic reconnection and reconfiguration processes. The rapidly
varying processes, which all result from a loss of equilibrium and also called eruptive
processes, such as flares, coronal mass ejections or small-scale variability phenomena,
take place in the coronal active regions.

Among which we are more interested in solar flares, not only because flare is the most
energetic phenomenon but also because of its rich relevant plasma physics that can possi-
bly be applied to many plasma environments, which sometimes have great similarity, e.g.
the terrestrial magnetosphere or even the laboratory torus geometry. A flare process is
associated with a rapid energy release in the solar corona, believed to be driven by stored
non-potential magnetic energy and triggered by instabilities during the magnetic recon-
figuration. Such energy release process results in the acceleration of nonthermal particles
and eventually causes heating of coronal/chromospheric plasma. These processes emit
radiation in almost all wavelengths. To study the solar flare plasma dynamics, electro-
magnetic emission in the hard X-ray range of ex = 10 — 300keV is very helpful since
the high spectral energy nature of solar flares. Nevertheless after the impulsive phase of
flares, the emission spectrum gradually switches to soft X-ray range (ex < 10keV), there-
fore with the observation instruments in that energy range can help to build a complete
scenario of flare evolution. The temporal and delicate spatial profiles of flare spectra are
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the major criteria and diagnostics of flare evolution, and should also be used as the final
judgments of all the proposed mechanisms. In the following section we will primarily
introduce the basic flare spectra features.

1.2 Electron Spectrum Evolution during Solar Flares

Electromagnetic emissions of the hard-X-ray (HXR) in the energy range (ex = 10 —
300keV) is mainly caused by plasma thick-target radiations, which are the interactions
between the relativistic electrons and background thermal ions. Solar HXR provides the
primary diagnostics of plasma acceleration and transport evolution in the coronal loops. In
the view that solar HXR is generated in the collisional chromosphere by the pricipitating
electrons from collisionless corona, the informations about plasma transport come mainly
from the HXR energy spectra of pricipitation cites, the energy-dependent timing and the
temporal evolution of other emission bands. Therefore with the piecewise informations
from HXR, models of plasma transort are proposed to reconstruct the corresponding mag-
netic topology and allow us to localize the primary particle acceleration sites, comparing
to the strong HXR emission footpoints.

The ultimate goal of the diagnostics is to utilize the remote observations on the recon-
struction of a global physical picture to understand the particle energization and transport
characteristics in solar flares. The theoretical and observational milestones of solar flare
study in the last 20 years are the creation of loop-top HXR source model and the elec-
tron time-of-flight measurements, which both point out consistently that the acceleration
and injection of energetic particle occur in between the reconnection site and the SXR
coronal loops (Masuda et al. 1994). With the high spatial resolution and the wide energy
range capability of photometers onboard the sattelite RHESSI, fine temporal variations
of solar flares spectra are revealed and hence refocus our attentions to the observational-
compatible models.

Basically there are several interesting characteristics of flare HXR emissions, and
those representative facts are used as criteria of determining feasible models: (1) Looptop
HXR source, (2) Time-of-flight delays, (3) Chromospheric height dependent HXR peaks
and (4) Soft-hard-soft spectral evolutions.

1.2.1 HXR Sources above Coronal SXR Loop

Conventionally, the solar flares are classified into two categories. According to the time
profiles of solar flares, flares with the long-lived and slow-developing SXR and HXR pro-
files with a clear inverted Y-shaped are considered as the results of magnetic reconnection.
This type of flares has the name two ribbon flares’; A different mechanism, seems, is re-
quired for the explanation of the other type of flares, which have a much shorter and
impulsive HXR profile, the so called *compact flares’.

The discovery of hard X-ray sources located above the soft X-ray-bright flare loops
(see Fig. 1.2) by Masuda et al. (1994) represented a major breakthrough in locating the
sites of particle acceleration sources downword magnetic reconnection points (Fletcher
& DePontieu 1999). Previously it was not clear whether HXR-emitting electrons are

6
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Figure 1.2: Coronal soft X-ray and hard X-ray emission observed during the Masuda flare
(Masuda et al. 1994)

accelerated inside or outside prominent soft X-ray flare loops. However, since plasma
densities above flare loops are relatively low, no hard X-ray emission was expected in
this collisionless plasma above flare loops. Therefore, Masuda’s discovery of hard X-ray
emission above soft X-ray-bright flare loops changed our minds.

With this observational evidence of the looptop hard X-ray source, it is claimed by
Masuda that these two kinds can be caused by the same mechanism with different emis-
sion demonstrations, i.e. these two types have the shared characteristics. The unified
picture of these two kinds of solar flares is supported by the so called ’Masuda flare’
event in the active region (NOAA 6994 on 13 January 1992), of which it consists of a
clear structure of two SXR ribbons with a fast-evolving single spike of HXR at > 20keV.
With the help of the integrated power of the hard X-ray telescope and the soft X-ray tele-
scope on board the Yohkoh satellite (Ogawara et al. 1991), and with its highly increased
spatial resolution, an intense HXR source is identified well above the apex of coronal
SXR-loop. For this event the "looptop” HXR source is significantly higher than the top of
SXR loop about 10°km and has no direct counterpart of SXR image.

Also, the consequence of the looptop HXR observation suggests the existence of a
collisional high density region in the original dilute collisionless corona. Considering
the possible magnetic field geometry of the HXR-corresponding high energy particles,
the formation of a magnetosonic fast shock above the looptop HXR source is speculated.
Therefore the high energy particles, inverted from the looptop HXR emission, are pro-
posed as the products of a fast shock acceleration.
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Figure 1.3: Theoretical prediction of time-of-flight delays of coronal loop HXR emissions
(Aschwanden & Schwartz 1996)

1.2.2 HXR Time-of-Flight Delays

Although the energized nonthermal electrons propagate with relativistic speed, it still
takes a finite time to travel from the coronal acceleration site to the chromospheric pre-
cipitation (and hard X-ray emission) site. Suppose that the electrons of the distribution
in the whole energy range is accelerated synchronously and leaves the acceleration site at
the same time, particles of the same pitch angle with higher energy should arrive the chro-
mospheric emission site in a relatively shorter time than the lower energy ones. Hence
a time delay of HXR peaks in different photon energies is expected from spectrum ob-
servations. Such energy-dependent time delays due to velocity dispersion is named as
time-of-flight (TOF) delays, and they have been measured from BATSE/CGRO data in
virtually all flares with pulse structures.

The relative time delays between adjacent energy channels are generally very small.
To measure reliably such small time delays beyond the temporal resolution or time bin-
ning of the instrument, a trick is simply used that implements a cross-correlation tech-
nique with interpolation at the maximum of the cross-correlation coefficient (CCC), which
yields a sub-binning accuracy if the photon statistics are sufficiently high. For most of the
flare cases, with a inferred flare loop size and TOF delays measurements, a direct deduced
conclusion is that the particle acceleration time is much shorter than the free-streaming
time, implying that the particle acceleration take place synchronously at the loop cusp
regions, but not in the propagation path. A theoretical time-dependent hard X-ray photon
spectrum is shown in Fig.1.3, in which a time-dependent electron injection spectrum is
computed (Aschwanden & Schwartz 1996).
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Figure 1.4: Altitude measurements of the northern and southern hard X-ray sources, car-
ried out by using RHESSI observations for the 2002-Feb-22 flare, are shown (Aschwan-
den et al. 2002).

1.2.3 Chromospheric Height-Dependent HXR Peaks

Coronal loop footpoint sources generally show nonthermal hard X-ray spectrum during
flares. Hard X-ray footpoint sources coincide with the endpoints of soft X-ray flare loops,
so they have to be located in the chromosphere or slightly above in the transition region.
This is expected from the thick-target bremsstrahlung model, if acceleration of precipitat-
ing electrons takes place at (collisionless) coronal heights. The height of these hard X-ray
footpoint sources depends on the electron energy as well as on the chromospheric density
n,(h) as a function of altitude 4 which determines the stopping depth of precipitating elec-
trons (see e.g. Brown et al. (2002a)). A simplified derivation of the height of hard X-rays
sources 1s given by Brown et al. (2002), which is given with the assumptions of (1) no
mirroring of particles, (2) full target ionization, (3) 1D Coulomb collisional transport, ne-
glecting pitch angle changes, and (4) power law function for electron injection flux energy
spectrum. Altitude measurements of the hard X-ray sources carried out by using RHESSI
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Figure 1.5: Simulation of spectral evolution during a flare. The spectra were calculated
with the CHIANTTI code by Phillips (2004), except that the nonthermal component varies
in time between 10% and 100% of the total thermal energy. The resulting spectra are
shown (left), and the temporal evolution of the fluxes at 20, 30, and 50keV are shown (top
right).

observations for the 2002-Feb- 22 flare are shown in Fig.1.4, and the centroid height of
hard X-ray footpoint sources is located at progressively lower altitudes with higher ener-
gies, as pointed out in Matsushita et al. (1992). The source-averaged electron spectrum of
different HXR peaks are obtained via numerical inversion of the photon spectrum, and it
also confirmed the basic broken power-law found by using forward-fitting (Holman et al.
2003).

1.2.4 Soft-Hard-Soft Spectral Evolution

Petrosian et al. (2002) made a study of looptop sources and footpoints in Yohkoh events.
They found that the spectral index of the looptop source is softer than the footpoints on av-
erage by a factor of 1. Masuda et al. (1994) first noted a third HXR source situated above
the looptop. Alexander and Metcalf (1997) analyzed this event carefully, concluding that
the looptop source can be best described by a thermal component with a non-thermal tail.

The source-averaged hard X-ray spectra of flares initially often show a steep spectral
slope (soft), which flattens at the peak of the flare (hard), and then becomes steeper again
(soft) in the decay phase of the flare. This evolutionary pattern has been called the soft-
hard-soft evolution. The thermal spectrum has a much steeper slope than the nonthermal
power law in the range of 20 — 30keV. The soft-hard-soft (SHS) spectral evolution often
seen in impulsive flares (Grigis 2004) and this important observation about the time be-
havior of the HXR flux has already been made in the late 1960s by Parks and Winckler
(1969) and Kane and Anderson (1970). The SHS may contribute to both the downward
and upward motions of nonthermal sources along the flare loop (Sui et al. 2006).

It is found that the soft-hard-soft behavior appears in both, coronal source and foot-
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points. This is a strong indication that soft-hard-soft is a feature of the acceleration mech-
anism rather than a transport effect (Battaglia and Benz 2006). A theoretical result of the
spectum from simulation is shown in Fig.1.5 (Phillips 2004).

1.3 Open Questions in Solar Flare Research

1.3.1 Particle Acceleration

Magnetic reconnection is the trigger mechanism of energy release in most of the solar
flare models. This process reconnects the original two seperated magnetic field lines into
a new field line of a lower energy state, and it is a way of converting the stored magnetic
energy into particle thermal and kinetic energy. It takes place usually above the coronal
cusp-region, and it is believed to be the primary energy source that generates the observed
high-energy particles in terms of HXR photons.

According to a large scale coronal structure consideration, i.e. the MHD model, the
plasma velocity of reconnection outflow is close to the coronal Alfvén speed. A typical
Alfvén speed calculated from SOHO/EIT measurements of 30 coronal loops in active
regions (Aschwanden 1999a), at the possible height of reconnection sites, is in the range
of V4 = 1000 ~ 3000km/sec, which is less than 1% speed of light and has a thermal
distribution characteristics. However, even till now there is only one observation that can
be interpreted as the direct signature of reconnection outflow, which demonstrates a clear
supra-arcade downflow in (McKenzie, D.E. & Hudson, H.S. 1999) with a value V,,, =
100 — 200kms™!, which is apparently lower than the expected Alfvén speed. Nevetheless,
during solar flares electron energy derived from photo emission can reach tens of keV in
the loop-top HXR sites, and reaches few hundreds keV in the footpoint HXR sites. The
particle velocity that can generate HXR up to > 100keV is from 10% to 60 ~ 70% speed
of light. So what causes the further acceleration after plasmas leave the reconnection site?
The electron spectrum from HXR emissions, on the contrary, exhibits a characteristics of
nonthermal distribution instead of the original thermal coronal distribution. Then what
causes the evolution of particle distribution?

At any rate, a secondary acceleration mechanism should exist between the recon-
nection site and the HXR emission locations to bridge the observational discrepancy of
plasma kinetic energy.

Strong electromagnetic waves, which are generated in magnetic reconnection pro-
cesses as well as during plasma propagation, have the ability to accelerate particles out of
the thermal distribution to the higher nonthermal energy range. Nonthermal particles in
solar flares can be accelerated by mainly three mechanisms as was summarized in Chap.
11 of Aschwanden (2006): (1) DC electric field acceleration, (2) stochastic acceleration,
and (3) shock acceleration.

(1) DC Electric Field Acceleration

When an electric DC field is applied to a plasma, electrons and ions are accelerated
in opposite directions, but the attraction between opposite electric charges causes an im-
peding electric dragging force or friction, which depends strongly on the ion-collision
frequency. However, for large relative velocities the frictional force can become smaller
than the accelerating force, and electrons can be accelerated freely out of the thermal

11
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distribution.
The run away velocity of a plasma distribution embedded in an externally-applied
electric field Ep is (Knoepfel & Spong 1979)

E
v = (=)' (1.1)

where Ep is the Dreicer electric field (Dreicer 1959) defined as

E, = q,-l;z/l
Ay

(1.2)

in the above expression /nA is the Coulomb logarithm.

According to the electric field intensity, DC field acceleration can be further sub-
divided into (1) Sub-Dreicer electric field and (2) Super-Dreicer electric field. Sub-
Dreicer acceleration requires large-extended reconnection current sheet to accelerate par-
ticle to the observed energy. For the model proposed by Holman (1985), an electric field
E ~ 3% 10719 (statvolt cm™!) in the current sheet with a typical flare loop size L ~ 30Mm
can accelerate electrons to an energy W =~ 100kev. This energy gain is sufficient to the
observed HXR spectrum.

Practically the sub-Dreicer electric filed model can explain the nonthermal electron
distribution in most HXR spectra. But several difficulties are still unsolved in this model,
e.g. the stability of the assumed large scale current sheet and the location of the accel-
eration site. For a large current sheet, small perturbation in the system can cause tearing
mode instability (Sturrock 1966) and the current sheet would eventually break into small
magnetic islands, as a signature of bursty HXR emission (McAteer et al. 2007). On the
other hand if one assumes a large-scale DC electric field between the coronal reconnection
site and chromospheric footpoints, the energy-dependent timing of electrons accelerated
in this DC electric field contradicts the observed time-of-flight (TOF) delays (Aschwan-
den & Schwartz 1996). Also, if a static or steady electron beam current is assumed, the
return-current cancellation is the problem in many DC electric field models. The return
current can limit the acceleration efficiency severely (Brown & Melrose 1977).

The super-Dreicer model which with a more strong DC electric field (E > Ep) is
proposed to overcome the requirement of a large scale current sheet in sub-Deicer model,
and the particles can be accelerated to the desired energy level in a raletive short length.
This model avoids the difficulties that a large current sheet is unstable for tearing mode
instability, and the particle acceleration time is much shorter than the propagation time,
which satisfies the observed TOF delays from flare HXR emissions. However the exact
mechanism that can generate such a strong electric field (E; = 10Vem™ for a length
L = 10?cm) in the reconnection outflow region is still an unknown.

Other DC electric field acceleration mechanisms are also proposed, e.g., the model of
field-aligned electric potential drops. Electric potential drops can be caused in many ways,
and one of the possibilities is that the potential drop is created by the field aligned elec-
trostatic double-layers (DLs). Electrostatic double-layer is basically a demonstration of
charge seperation in plasma. A strong electric field locates in the center of this structure to
sustain the charge seperation and creates a net potential. Generally a solar flare is difficult
to be described by only a single double-layer because such strong electric field requires

12
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a very strong current density. The bulk velocity of the required current should be much
higher than its thermal velocity, which is difficult to be generated in reconnection outflow
(Volwerk 1993). Consequently the acceleration by many double-layers is proposed to
overcome this difficulty. Basically plasma acceleration by several weak double-layer is
a stochastic process, hence a higher energy particle requires a longer time to be acceler-
ated. Therefore the drawback of this model, like other earlier mentioned models, is the
inevitable inconsistency with the TOF delay of HXR observations.

(2) Stochastic Acceleration

There is, generally, a broadband spectrum of waves present in plasma environment,
some waves will have constructive interference and others have destructive interference
with the gyromotion of the charged particles and with the local plasma oscillation. The
energy transfer between broadband waves and particles can be described as a stochastic
process. In this mechanism the interactions of wave and charge particles is a random
collision process, hence some parts of particle distribution experience a net energy gain
while some parts are slowed down via the same interactions. The efficiency of the most
proposed stochastic acceleration models depends on the turbulent level of background
waves, and the accelerations are primarily caused by the resonance of particles with vari-
ous modes of electromagnetic or electrostatic waves.

In general the concept of stochastic acceleration has several advantages over the pre-
vious DC electric field acceleration. First, since wave-particle interaction is a microscopic
process, it can be averaged out in a macroscopic scale, the compensation of charge neu-
trality by return current is not necessary. Second, as long as the turbulent region is large
enough for sufficient wave-particle interaction, any energy level of charge particles can
be reached via this mechanism, i.e. there is no energy limit on the particle acceleration.

Nevertheless, there are also some drawbacks of this model. The primary problem
is the origins of the high level electromagnetic wave turbulence. The turbulence level
in solar sorona is almost impossible to measure, therefore the observed spectra can be
reproduced with an arbitrarily tune on the assumed perturbation level. Also, the primary
controversy of this model is that the stochastic acceleration does not satisfy the TOF delay
observation, which demands a coherent acceleration of particles in all energy range and it
possibly is the most important judgement of the applicable acceleration mechanisms.

(3) Shock Acceleration

Particle acceleration in shock structures has been theoretically and observationally in-
vestigated and became a well-established astrophysical acceleration mechanism for high-
energy particles. Shocks are nonlinear waves that are generated by the steepening mech-
anism from the original linear waves (i.e. perturbation level is smaller than background
values). Suppose the bulk velocity of a plasma flow is higher than the characteristic speeds
of ambient plasma, the waves fronts of the upward propagating waves accumulate in the
direction of upstream and become steepened at a certain distance away from the wave
sources. To have the sources of wave generation, obstacles of plasma flow are usually re-
quired for the shock formation in natural environment. Shock theory tells us that entropy
increases across a shock, and the entropy increase becomes greater as the shock strength
increases. This is the main difference of a shock from the ordinary waves, of which the
entropy does not change, then a wave is basically a reversible process.

Shock acceleration is also called Fermi acceleration. For particles that cross a shock
once, this process is also called ’shock drift acceleration’, which is a first-order Fermi
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Figure 1.6: Standard model of HXR emission in solar corona (Masuda et al. 1994) and
the shock geometry in the reconnection outflow region (Tsuneta & Naito 1998).

acceleration process. While particles that are scattered multiple times across a shock
structure experience diffusive shock acceleration, or sometimes is called as shock surfing
acceleration’. The latter type of diffusive shock acceleration is not much different from
stochastic acceleration (Jones 1994), which is a second-order Fermi acceleration process.

The shock acceleration of solar energetic particles events (SEPs) was first proposed by
Wild et al. (1963) who interpreted the metric type II burst as evidence for a coronal shock
wave (Kallenrode 2003). With the magnetic field topology deduced from observation,
Masuda et al. (1994) suggested that the looptop HXR source is a demonstration of fast
magnetosonic shock, and this shock generated the observed footpoints and looptop high
energy electrons (see Fig. 1.6 left).

Fermi acceleration has been applied to solar flare loops that trap high-energetic pro-
tons (Bai et al. 1983), as well as to reconnection outflows in solar flares (Somov & Kosugi
1997, Tsuneta & Naito 1998). The geometry of the later model is demonstrated in Fig. 1.6
(right). Except the intermediate shocks, which is difficult to be observed but theoretically
exists, fast shock and slow shock are proposed as efficient accelerators for the observed
high energy particles in solar flares (Hoshino 2002, Kuramitsu 2005, Shiota 2005).
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Figure 1.7: The basic broken power-law. A low-energy spectrum is consistent with a
multi-thermal plasma with a broad temperature distribution, while the high energy spec-
trum is consistent with a non-thermal distribution (Piana 2003)

1.3.2 Particle Transport: Formation of Broken-Power-Law Spectrum

The two dimensional magnetohydrodymanics simulation (2D MHD) of the reconnection,
which mimic the solar corona during flare, has revealed the exsistence of a fast magne-
tosonic shock sandwiched by two slow shocks in the reconnection outflow region (Shiota
2005). The dependence on heat conductivity of the physical variables in the outflow
region, such as temperature, density, and velocity, are studied by Yokoyama & Shibata
(1997). Plasma heating on the downstream side of fast shock is confirmed and believed
to be the loop-top HXR source of flare.

The one dimentional particle-in-cell simulation (1D PIC) confirms the exsitence and
efficiency of the fast magnetoshonic shock (Wu 1984). The shock surfing acceleration is
found competent to produce the suprathermal electrons occurred in the shock transition
region, where a series of largeamplitude electrostatic solitary waves (ESWs) are excited
by Buneman instability under the interaction between the reflected ions and the incoming
electrons (Hoshino 2002). Krauss-Varban (1989) have shown that the fast Fermi process
in the de Hoffman-Teller frame (HTF) is equivalent to shock drift acceleration (SDA) in
the normal incidence frame (NIF) where the upstream velocity is parallel to the shock
normal.

The mentioned PIC simulations (Wu 1984) used the reflective boundary condition,
which intended to represent the SXR loops that results in the waves and plasmas reflec-
tions. However the total reflective boundary can not include the skin depth effects of SXR
loops and the real modification on acceleration from this effect is still an unknown.

The possible fast shock acceleration of plasma of the loop top HXR emission and the
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Figure 1.8: A broken power-law spectrum with a flattening in low-energy (< 30keV)
range (Lin and Schwartz 1987).

explanation of coronal loop footpoints spectrum will be discussed in Chap. 4

The SMM measurements with HXRBS and GRS demonstrated that there are flare
events in which the observed emission spectrum in the 20keV — 20MeV photon energy
range cannot be described by a single-power-law function (Dennis 1988, Vestrand 1988,
McTiernan & Petrosian 1991, L.i 1995). The spectrum usually exhibits a harder tendency
in the higher energy part than that of the lower energy range (Piana 2003). The space-
averaged HXR spectrum of the broken-power law with a typical high energy hardening
can be seen in Fig. 1.7. However, there are also numbers of observations that report
the ’flattening of the spectrum’ in the low energy range below 30keV (Lin and Schwartz
1987), as shown in Fig. 1.8. The fact that two or more indices are required for the
spectrum fit indicates the observed emission via bremsstralung is caused by different pop-
ulation of high energy particles, or can it be a result of distribution evolution by a certain
particle transport mechanism?

The observed *broken’ spectrum in the hard X-ray range can be formed as a result of
superposition of radiation from two sources, each of which has its own ’single’ power law
spectrum and, perhaps, other differing parameters. However, the possible existence of an
electron population with a broken’ energy spectrum, resulting from the flare acceleration
process, should also be considered (Lin and Schwartz 1987).

According to the latest TOF observations by Aschwanden & Schwartz (1996), the
plasma acceleration time should be much shorter than the transport time, and the obser-
vation of subsecond pulses in hard X-rays suggests that particles of all energies are syn-
chronized before they ’exit’ the acceleration region. The proposed injection mechanism
gives a physical picture that, supposed that we can put a probe at the exit of acceleration,
the plasma distribution is a nonthermal or single power law, hence it is interesting to as-

16



1.3 Open Questions in Solar Flare Research

certain the possibility if the broken power law is a natural result of particle transport in
solar corona.

There are a number of literatures addressing on the return current influences of the
particle transport in coronal loops (Karlicky 1993, Zharkova 1997, Bogachev & Somov
2007). These models discussed the effects of return-current-caused particle acceleration
(Boswell 2006), and also the effects of magnetic mirror trap (Zharkova 2005), and the
eventually resulted particle distribution evolution. However, with the inferred TOF ob-
servation the acceleration might not be so practical for observed broken power law HXR
spectrum. Return current is necessary for the charge and current neutrality conservation in
coronal loops, and the influence of the beam-generated return-current should be essential
for the particle dynamics during the propagation.

Therefore, for plasma transport research we start from the instability-generated anoma-
lous resistivity in a current carrying system. In Chap. 3 the influence of anomalous
transport caused by electrostatic phase space structures will be addressed, and nonlinear
estimation of the generated anomalous resistivity in a current system will be given therein.
For the plasma transport in the collisionless coronal loop environment, the influence of
return current on particle distribution evolution and the associated rich plasma physics
will be discussed in Chap. 5.
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2 Plasma Stability Analysis

2.1 Plasma Description in Multi-Fluid Limit

Charge seperation and the unilateral motion of single species in a plasma system play
important roles in the wave and particle dynamics of the high frequency range (w <
wymp) and also short wave length limit (1 <« Ayyp), and those special characteristics
could account for many influential plasma instabilities which are out of the description
of magnetohydrodynamics (MHD). To study the instability in warm magnetized plasma
with relative drifts between different species, a set of multifluid equations for different
species with Maxwell’s equations are required (in cgs units) to formulate this system.

ON; .
—L+V-NV;V)=0 (2.1)
ot
Vi 9,57, —ej(ﬁ+‘7"><§) 2.2)
Ot J J ijj a m]- C '
dP; . d
W :S]-E(ijj) (23)
V-B=0 (2.4)
V-E=d4r) eN, (2.5)
L. 10B
VXE=——— 2.6
c ot 2.6)
L Ax L 10E
VXB:7Z€]'N]'V]'+ZE (2.7)

In the system described above there are 11 physical quantities as free variables. The
number density of species j, N;, the three velocity components, V., V,,, V;., the thermal
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pressure P;, three magnetic field components B, B, B; and three electric field components
E. E, E.. 'To have a self-consistent system, the number of physical equations should
agree with the number of physical unknowns. In principle equation (2.4) is equivalent to
equation (2.6), since a divergence of any vector-field curl is always zero (V- (V X A) =0).
Taking divergence on equation (2.6) and (2.7), we found that they are equally defined
already in equations (2.4) and (2.5). Hence we have two scalar equations, equations
(2.1) and (2.3), and three triple-vertor equations, the equation (2.2), (2.6) and (2.7). In
this multifluid system there are 11 unknowns with 11 equations, therefore this is a self-
consistent solvable system.

Note that plasma environment we considered, the solar corona, has a low plasma
number density that the collision cross sections of each species are small. The mean-free-
path of coronal plasma is about one astronomical unit (1AU), hence the binary collision
term in momentum equation (2.2) between different species is neglected, i.e. there is no
momentum transfer via collisions. In a multifluid collisionless plasma, the interactions
among species are correlated through the total electric field E and total magnetic field B
that are generated by charge and current spatial distributions.

To analyze the system stability, we use the perturbation theory to divide every physical
quantities into a background term with a small distrubance (0 = (Jo+¢1). In homogeneous
environment condition, the small perturbation term can be expressed as a propagating
wave, which is of the form: exp i(I? -7 — wt). Here K = 2/ is the wave number of a
specific Fourier wave component that has frequency w = 2nv. The linearized multifluid
equations then are

K-
nj = Ny 2.8)
%]
2 - 2P = . €j "l ﬁj X]; . - =4
wi iy — S ;KK -ilj) — lw*j;(6E + ) —iw,jil; X ;=0 (2.9)
j
e; o icCw,? 5o z g
S5E = SRR -] (2.10)
m; QWO ; c
e 5 icw,i’ o
Tp=—— (Kx ] (2.11)
m]- CUO']'
R,
) (2.12)

f: Zo-j(ﬁj"'l_jj
J

Wy
where the notations o ;, w,; and @ are defined as below
O'ijjej (213)
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w,=w-R-U, (2.14)

a = w - *K? (2.15)

Equation (2.10) is the wave equation which is used to solve dispersion relation, and it
is also expressed as

2 252

- - K — —
¢ - 6E+1-6E+i

471'—)

0 (2.16)

w
where [ is a unit tensor. To obtain the dispersion relation we replace the terms i; and

RK-i ;in e(;uation (2.12) by an inner product of a tensor with SE, then replace the term f
in equation (2.16). The detailed derivation can be found in appendix A, here we just use
the derived results after a complicated algebra.
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replace K-i ; and if; in equation (2.17) and (2.18) to (2.16), the wave equation can be
expressed as
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This is the general dispersion relation of a multifluid plasma, in which a warm mag-
netized plasma with bulk velocity of each species is considered. No further assumptions
are made except the drift velocity is parallel to the background magnetic field (B 0.

To find the eigen solutions of this governing equation, we look for a set of specific
K and w that makes the determinant of the leading tensor zero. We expand the leading
tensor in equation (2.19) into a nine-components format.

a; d dj
by by, by |-6E=0

1 C2 C3
Eigen values are found when the condition that the determinant is equal to zero is satisfied.

a; d dj
by by by ||=0

i C2 C3

Without losing the generality we set a geometry with the magnetic field B = By2 and
= . .
the wave vector K = K% + K.Z. To look for a compact expression and a symmetric form
of the off-diagonal terms, the tensor can be rearranged as

K. —n*cos*6 K K., + n’*cosfsinf
K, K, —n? K, 6E =0 (2.20)
K. +n*cosfsinf K K. — n*sin’6

where n = Kc/w is the index of refraction, 6 is the angle between wave vector K and
. =g . . .
magnetic field B. The nine-components of dielectric tensor K are

J o *]

K.=1-
Zj: [wz[wfj(wfj — S?Kz) — Q?(wfj — S?chosze)]

2,202 2p2 0 2
ws W (W, — 5K cos’0) ]

iw? Qjw, (W, — S 2K*cos6) ]

K, =
Y Z]: [wz[wfj(wfj - S?KZ) - Q?(wfj - S?chosze)]
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It is interesting to notice the symmetry in the dielectric tensor that, K, = -K,,,, K., =

-K, and K, = —K

yer

2.1.1 Simplified Case: Waves in Cold Plasma

Without an energy souce, such as a relative drift velocity betwen species, there is only
plasma oscillation in system, indicating frequency w is always a real value. However
plasma becomes unstable when free energy is supplied and the wave amplitude from small
distrubances can grow. To classify various wave modes existing in this system, we start
from a simplified case that a cold plasma (§ ; = 0: sound speed) and zero drift (U =0) are
assumed. The wave equation (2.20) is reduced to the Altar-Appleton dispersion relation.

S —n’cos’d8 —iD  n*cosBsind
iD S —n 0 6E =0 2.21)
n*cosOsind 0 P — n?*sin*6

23



2 Plasma Stability Analysis

The dielectric components S, D and P are reduced to cold plasma forms

W,
_ pj
§ _1_2[0)2_9?]

J

p=- 3|5 |

gl

J
Eigen modes are found by letting the determinant equal to zero; hence the dispersion
relation can be further expanded into a polynomial form

Ant =B +C =0 (2.22)
where
A = S sin*6 + Pcos’0 (2.23)
B = RLsin*6 + PS (1 + cos*6) (2.24)
C = PRL (2.25)

Two extra notations used here, R = S + D and L. = § — D, define the right-handed and
left-handed polarized waves, which are respectively efficient at electron and ion cyclotron
accelerations perpendicular to the background magnetic field. The dispersion can also be
expressed in terms of the angle 8

P(n*> —=R)(n*> - L)
(Sn? - RL)(n?* —

fan*6 = — (2.26)

For the waves propagating along B, (@ = 0), it demands the numerator of equation (2.26)
vanish. Hence there are three wave modes

(a) P = 0 (Plasma Oscillations)

(b) n* = R (wave with Right-handed polarization)

(¢c) n* = L (wave with Left-handed polarization)

For perpendicular propagation, i.e. § = n/2, the denominator should vanish. There are
two waves

(a) n* = P = 0 (Ordinary wave)

(b) n* = RL/S (Extraordinary wave)

The plasma waves in warm plasma are basically the thermal extension of waves in cold
plasma limit. The detailed description of pure warm plasma waves without instability can

be found in the textbook by Swanson (1989).
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2.2 Current Driven Instabilities

2.2 Current Driven Instabilities

Form the kinetic point of view on the plasma stability, a Maxwellian distribution is the
only solution of a thermal equlibrium state, or for a less strict constraint, a local thermal
equilibrium is required. As the tendency of a natural system, the lowest energy state is
always preferred for the direction of system evolution. With a relative drift of different
species that comprise the plasma, a free energy source is provided and the plasma distri-
bution is biosed from a thermal equilibrium. In a current carrying system, or sometimes
even in a current-free plasma system, several kinds of instabilities can be driven to work
collectively to reduce the free energy source back to a marginal stability condition. The
physical explanation of the generation of current driven instability is as follow. In col-
lisional condition the lowest energy state, the thermal equlibrium, is achieved when the
binary collisions creat the viscosity, or electric resistivity in charged particle envirnment,
which converts the drift kinetic energy to thermal energy of each species. In collision-
less plasmas, the localized electric fields generated by electrostatic instabilities play the
role as obstacles that provides the effective collisions with bulk drifting charged particles.
The bulk energy of charged particles is used to amplify the locally generated electrostatic
waves, and when the amplitude of these structures is sufficiently large to influence the
kinetics of charged particles, an effective electric resistivity is created to bring the plasma
environment back to equlibrium.

2.3 The Identical Nature of Ion Acoustic and Buneman
Instability

In 1946, Landau (1946) found the Vlasov-Maxwellian equations can be treated and solved
as an initial value problem rather than using the Fourier transform by Vlasov (1945).
The original difficulty of the occurrence of inconsistent solutions, which is caused by
maintaining only the principal values when integrating in the complex velocity space
around the sigularity points, is avoided by applying the Laplace transform of the time
variable in Vlasov equation (see, e.g. J. Baumjohann (1997)). From the Landau solution
with both the ion and electron thermal motions, i.e. (m;/m, # oo0), the ion-acoustic
instability is recognized as a wave-particle resonance when the relative bulk velocity of
electrons is close to the ion-acoustic speed ¢; = V&1 /m;.

Buneman (1958) in the year 1958, with the cold multi-fluid approximation, discovered
that the a current-driven instability occurs when the phase velocity of a wave perturbation
is close to the electron drift w/k ~ V,,, and this mode has a collective nature of Coulomb
interaction, the so-called Buneman instability. The Buneman instability has been claimed,
even in many contemporary works, as an essentially different mode from the ion-acoustic
instability (Fredrick 1970, Mantei 1976, Mascheroni 1977, Sato 1980). Some multi-fluid
models of warm plasma try to include the LLandau resonance effect (Lapuerta 2001) in the
energy equation. Having the concept that these two modes are different, sometimes the
Buneman and ion-acoustic modes are compared within the same parameter range (Suko-
vatov 2004). Also with a careless discrepency, the Buneman mode is also misinterpreted
as an ion-acoustic mode with its conventional instability criterion w/k =~ ¢, (Jovanovic
2004).
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2 Plasma Stability Analysis

We start from a fully kinetic consideration to ascertain the current-driven instability
in a different range of electron drift velocity V4. We intend to demonstrate how these
two modes share the same wave-particle interaction nature, and they are just the two
revealments of the same instability.

Starting from the classical L.andau-Laplace procedure (L.andau 1946), where the Laplace
transform on the time variable 7 in Vlasov equation has been used rather than the Fourier
transform, the solutions of Vlasov equation are contributed by the sum of residues, which
demands the dispersion relation become zero.

D(l?,w):1+z f 2, OF’/GV =0 (2.27)

The Laplace transform portrayed that the considered condition is an initial value prob-
lem. More importantly the Laplace transform results in a conclusion that the complex ve-
locity space integration should go under the poles (Swanson 1989), and also the principal
of causality is reflected explicitly in this transform (Krotscheck 1978, Diaz 1981, Stoof
1993). The wave-particle L.andau resonance effect, which is demonstrated as a sigularity
in the denominator (w — k-7, is expressed when the denominator approaches zero. In
particular, the nature of Landau resonance is due to those particles whose velocity nearly
matches the wave phase velocity, either thermal velocity or oscillation velocity, and those
particles exchanging energy with waves.

The solution of Eq. (2.27) is obtained when a set of frequencies w(k) = w,(k) + iy(k)
is found with a given k. According to the residue theory (see, e.g. Arfken (1995)), for
the velocity integration containing sigularities, there are three possible integration paths,
depending on the location of sigularities in the complex velocity space.

The three possible paths are: (1) ¥ > 0 instability, (2) y < 0 damping and 3) y = 0
wave. Then the element of integration in Eq. (2.27) can be expressed as

fwd K- OF /3 > 0 & path (1)
2 e P S 2 V——, a
W Eeoryor oy | ) T Y P
2 Jo A = R.OF, 9% _ OF,
w=k-V Pf d*v, i/ v+27r' 1, ooy, ¥ <0 < path (2)
oo w—k-v ov

We are not interested in pure wave behavior here, i.e., vy = 0, then two integration
results of Landua contour are shown in the above expression. For instability, the imagi-
nary part of frequency is positive, therefore the pole in the contour is in the upper plane
of velocity integration, and the whole integration stays the same. However, if we expect
damping to take place, i.e. the imaginary part of frequency is negative, the integration
then consists two parts, the pricipal integration along real velocity axis and the residues
of sigularity poles in the lower plane of velocity integration. Because before starting solve
D(l?, w) = 0, there is no way to know the imaginary part y is positive or negative, we have
to select the expected phenomena is either instability y > 0 or damping v < 0. With the
selected integration path, we obtain a set of w(k) = w,(k) + iy(k) by solving Eq. (2.27).

The most important step then is to check if the obtained w(k) = w, (k) + iy(k) satisfies
our path selection. If the obtained growth rate is y(k) < 0 from integration path (1), which
obviously violates the assumption, we may conclude that only the assumption (2) and

26



2.3 'The Identical Nature of Ion Acoustic and Buneman Instability

path (2) are true for the specific k in the plasma setup. By the same token, the obtained
growth rate y(k) > 0 is only true for assumption (1) and integration path (1). Though it
is sometimes misinterpreted, the significance of the LL.andau contour should be addressed
at this point. The integration either along path (1) or path (2) is a complete expression of
kinetic theory and it is equivalent to the original velocity integration in Eq. (2.27), and
the whole information of Landau resonance is preserved.

With the merit of Taylor expansion on the above Cauchy integral, the L.andau contour
integration can also be expressed in terms of plasma dispersion function Z(¢;), which is
sometimes also called Fried-Conte function because Fried and Conte first tabulated in
1961. Assume a Maxwellian distribution function for every species in plasma.

3/2
F' — J __] 2 ) 2
o (ZﬂTj) exp( 2Tj(v V]))

The velocity integration in original dispersion relation Eq. (2.27) is expressed as
2 50 I - 2
ﬁf dsvk' OF ;/0v prj

2 = T 12.2
K J w-k-¥ kv

|1+ &2
where

—o0 2 —k-V
Z,:_mf 2 EPX), Wk
&) =m . g & s

For a quasi-cold plasma (vy; = 0, hence &; > 1) in plasma dispersion function Z(¢;), the
plasma dispersion function Z(¢;) for species j is expanded as

+ oniexp(—£%) (2.28)

(&) = [—f To@ T am

where o depends on the location of sigularity poles that exists in the upper or lower plane
of complex velocity space.

0, vy>0 < Instability
o=x 1, vy=0 & Wave
2, v <0 & Damping

Replacing the velocity integration of distribution by the expansion of Fried-Conte func-
tion Z(&;), we obtain the general electrostatic dispersion relation.

. wfn. wa,e
Dk,w, +iy) =1+ e [1+&Z(6)] + 122 [1+&.Z(E)]=0 (2.29)
Ti Te

This is the general kinetic dispersion relation for electrostatic perturbations, i.e. it can
be applied to instability, wave or damping cases. To point out the nature of wave-particle
interaction, indeed, the term "Landau damping" is used for situations when the growth
rate y(k) < 0, i.e. the damping cases. Nevertheless, the general term "Landau resonance”
describes the wave-particle interaction when the wave with phase-velocity V,, = w/k is
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2 Plasma Stability Analysis

equal to particle velocity, therefore it applies to any value of growth rate y(k), instability
or damping.

It is well-known that under thermal equilibrium condition all waves will tend to damp
out. However, if there is one species of plasma flow through another species, the distri-
bution function is deflected from equilibrium and phase-space instability is supposed to
appear and draw the plasma distribution back to original thermal equilibrium state. With
the interest of instability in plasma, the velocity integration along path (1) is chosen and
the coeflicient o in Eq. (2.28) is equal to zero as a natural consequence that all poles
locate in the upper plane.

Ion acoustic wave becomes unstable when the electron bulk velocity (drift) is larger
than ion sound wave. And through L.andau resonance effect, the thermal electrons which
have similar velocity as ion sound velocity give their kinetic energy and contribute to the
wave amplification.

However from fluid approach, O. Buneman in 1958 discovered the famous fluid-like
electrostatic streaming instability. The Buneman instability was identified by O. Bune-
man with a consideration of collective Coulomb interaction (which is determined, small-
angle collision) between plasma particles, since the colse (large-angle) collisions are rare.
Hence via this process, the kinetic energy of electron bulk motion can be converted into
wave fluctuation energy. With the consideration of a collective Coulomb interaction, the
cold plasma assumption was made, then the dispersion relation proposed by Buneman
from fluid equation is

2
wZ

wpi pe
Dk,w, +iy)=1-— - —5———=0 (2.30)
WT (k- Vi —w)?

The cold plasma assumption, on the other hand, is equivalent to the condition when
electron drift is much larger than its thermal velocity.

From kinetic point of view, plasma with temperature indicates particle can move ran-
domly and have statistically a Maxwellian distribution. However in cold ummagnetized
plasma limit, the only motion that plasma charged particle experiences is the harmonic
oscillation at the plasma frequency w,; = (47n e /m;)"/, independent of the wave length.
Equations (2.29) and (2.30) explain the limits of wave-particle energy exchange mecha-
nism for a partial range in velocity distribution or a collective Coulbomb interaction of
plasma species. This limit approach gives a mistaken impression that the Buneman in-
stability, which is derived from the cold fluid equations in Eq.(2.30), is different from the
kinetic ion-acoustic instability essentially. In order to verify that the fluid-like Buneman
instability is also caused by kinetic .andau resonance, we should start from kinetic theory,
the kinetic dispersion relation Eq.(2.27).

For current driven instabilities we consider two species, the drifting electrons and
background ions. We preserve the first two terms in the dispersion function expansion
Eq.(2.28), and this process mimics the fact that the thermal velocity is very small com-
pared to any wave phase velocity and drift velocity, i.e. the cold plasma approximation.
The ion and electron elements in Eq. (2.29) can be approximated as

1 1
1 +§iz(§i) ~ 1+ (—1 - E = —2—5.2 (231)
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1 1
1+&Z2E) =1+ (-1 -—=)=——= 2.32
HEZE) =T+ (-1 = 55) = ~55 (2.32)
where
w w-k-V,
fi= b=
kVTl' kVTe
The distribution functions of the drifting electrons and background ions are as follows.
me \* m
F.) == el (A A 2.
) (27rTe) €XP( 2T V=Ve) ) (2.33)
m 32 e
Fi(¥) = | =— ——y? 2.34
0= (5] e (-] @31

With the distributions in Egs. (2.33) and (2.34), the normalized Doppler-shifted phase-
velocity &; and &, in Egs. (2.31) and (2.32) can be now replaced in Eq. (2.29). Then we
have

Dl +iv) = 1+ ot Ky 2 B (2.35)
,w, +iy) =1+ - + - ——— .
Kva. 2w? Kvi,  2w-k-V,)2
2 2
—1_ e Ype -0

w? (lz : ‘76 - w)2

Apparently, the above equation has the same expression as the one proposed by Bune-
man (1958). Hence, it proves that the Buneman instability is just the ion-acoustic insta-
bility in cold plasma limit, which demands the thermal velocity is much less than electron
bulk velocity (V,. < V) and the LLandau resonance effect is also preserved.

Although it has been claimed that no Landau resonance effect in fluid-like Buneman
instability (Lapuerta 2001, Melrose 1986, Ahedo 2001), the misinterpretation should be
corrected. From kinetic point of view, Landau resonance occurs due to the energy ex-
change between a wave with phase velocity V,, = w/k and particles in the plasma with
velocity approximately equal to V,, either the particle thermal velocity or the plasma
oscillation velocity of simple harmonic motion. The Landau resonance of ion-acoustic
instability describes that the wave resonates with the particles of same themal velocity,
while the Landau resonance of Buneman instability indicates the wave resonates with the
particles with Langmuir oscillating velocity.

In cold plasma case, any perturbation will cause the particles to oscillate at the plasma
frequency w,; = (4rne*/m;)'/? , independent of the wave number k (or wavelength A).
The phase velocity of waves differs according to individual wave number, although the
group velocity is zero. Buneman instability takes place when there is a bulk motion of
electrons. From Eq. (2.35) and Fig. (2.1) we can see that the instability is caused by
the phase-mixing of the backward-propagating electron Langmuir wave and ion Lang-
muir oscillation. The wave-particle interaction process is as follows. When a perturbation
appears in this current carrying system, mathematically the perturbation can be decom-
posed into waves of different wavelength, although for ions the frequency is always ion
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Figure 2.1: The dispersion curves of cold plasma from Eq.(2.35).

plasma frequency and for electrons it is the Doppler-shifted electron Langmuir frequency.
We should remember that in Eq. (2.35) the Landau resonance effect is included because
we started from kinetic theory and the wave-particle interaction is expressed explicitly in
the denominator of Eq. (2.27). At the resonance, the Langmuir-oscillating ions at spe-
cific wavelength have the same phase-velocity as the backward Doppler-shifted electron
Langmuir wave. As a consequence the negative-energy electron Langmuir wave trans-
fers energy to amplify ion Langmuir oscillations, and this is a collective behavior because
whole ions oscillate at the same frequency.

With thermal effects, the electron and ion Langmuir waves start to propagate and their
group velocities become electron-acoustic and ion-acoustic velocities. In this considera-
tion the higher terms in Eq.(2.28) should be retained, since these two terms &; and &, are
not so small anymore. According to this argument, we preserve three terms in Eq.(2.28),
and the two elements &; and &, become

1 3 1 3
1+§,-Z(§,-)% 1+(_1_2_§,2_E):_2_§,2 1+2—§:2) (236)
1 3 1 3
1+ er(fe) ~ 1+ (—1 - @ - 4—54) = —E 1+ E) (237)
because &; and &, are still larger than unity, they can be further approximated to
1 3 k*vz. K*C%
L+ 62(6) ~ 3501 =527 = - S (- — (2.38)
1 3 -1 kzv%e ka@ 2 kzcge N
L+ &2 = —2—52(1 - 2—52) =5 \d-7) - (2.39)
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Figure 2.2: The dispersion curves of warm plasma from Eq.(2.40).

Replacing Eq.(2.38) and (2.39) into the dispersion relation Eq.(2.29), the obtained
equation is exactly the one derived from warm multifluid equations (Aggarwal 1979), the
Buneman mode in warm plasma.

2
wZ

w-.
Dk, w, +iy) =1 — P be =0 240
(k, w, +1y) Ww? —k2C2 (w—kVae)? - kK2CE, =

In Fig.(2.2) we can see the original ion Langmuir oscillation starts to propagate be-
cause of the thermal effects, and the group velocity dw/dk of ion branch is the ion-acoustic
velocity.

If the thermal velocity compare to wave phase velocity is not so small, as shown above,
more higher order terms should be considered. From this derivation we can see clearly the
fluid-like Buneman instability , shown in Eqgs.(2.28) and (2.40), is only the approximation
of ion-acoustic mode when thermal effects are not so important. Both of these instabilities
share the same nature of wave-particle interaction, i.e. the L.andau resonance effect, and
this is clearly shown because we started from the full kinetic consideration. The denom-
inator in velocity integration depicts the truth that wave-particle resonance takes place
when phase velocity is close to particle velocity, either partially in thermal distribution
or as-a-whole in cold plasma limit. That is comprehensible that the multifluid dispersion
relation fails to describe the indivudual thermal motion of particles, but treats plasma as a
collective object. Therefore the Buneman and ion-acoustic modes are the same instability,
which share the same [Landau resonance effects but demonstrate in different drift velocity
limits.
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3 Current Driven Low-Frequency
Electrostatic Waves in the Solar
Corona

3.1 Introduction

The solutions of important solar physical problems like the heating of the corona, re-
connection and electron acceleration are thought to be closely related to low-frequency
plasma waves (Priest & Forbes 2000). Coronal plasma waves can be driven, e.g., by elec-
tron beams in current-carrying system. Indeed, the existence of current concentrations in
the solar atmosphere can be inferred from observed properties of the solar magnetic field
(Sui & Holman 2003) and from the observed plasma motion in the photosphere (Biich-
ner 2006a). There it was shown that the strongest currents are generated in the direction
parallel to the solar magnetic field. They reach their highest concentration at sites of con-
siderable connectivity changes of the magnetic field along the magnetic arcs which are
anchored in the moving photospheric plasma. With the ongoing concentration of coro-
nal currents the corresponding current carrier velocity exceeds the threshold of plasma
instabilities. The excited waves can cause an effective dissipation of the current energy
which leads to a violation of the frozen-in condition of magnetic fields and allows mag-
netic reconnection in principle (Biichner & Daughton 2007, Leonid & Kulsrud 2006).
The problem of reaching a sufficient amplitude of the turbulence to achieve the necessary
amount of anomalous resistivity in current sheets was well described in the past (Coroniti
1985, Treumann 2001).

Several candidate mechanisms have been proposed for the microscopic origin of anoma-
lous resistivity. Anomalous transport can be created due to ion-acoustic turbulence (By-
chenkov et al. 1988), due to the kinetic Alfven wave instability (Voitenko 1995, Bellan
1999), lower-hybrid drift waves (Davidson & Gladd 1975) and lower-hybrid waves (Ott
et al. 1972). Waves in lower hybrid frequency range driven by modified two-stream in-
stability have been studied recently by means of quailinear theory (McMillan & Cairns
2006) and kinetic simulation (McMillan & Cairns 2007). Theoretical approach to study
of turbulence evolution and calculation of nonlinear saturation level, as well as derivation
of anomalous transport properties is usually proceeded by means of quasi-linear theory
(Vedenov 1963).

The results of the quasi-linear approach to the problem of anomalous resistivity was
recently summarized by Yoon & Lui (2006) and obtained for two limiting cases of current-
driven instabilities, for the Buneman instability of parallel to the magnetic field propa-
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gating waves if the electrons stay unmagnetized (Buneman 1959) and for the modified
two-stream instability (MTSI) in the case where the electrons are highly magnetized and
the waves propagate mainly perpendicular to the magnetic field (Ott et al. 1972)). Cur-
rently, however, it was shown that it is important to consider the non-linear evolution of
plasma waves since structures may be formed, which enhance the collisionless dissipa-
tion (Biichner & Elkina 2006). Some efforts have been done to incorparate anomalous
resistivity model into overall dynamics of current sheet. Reconnection model with ion-
acoustic turbulent-induced resistivity have been proposed by Coroniti (1985) and Uzden-
sky (2003).

While modern multi-spacecraft observations could proof the existence of transport
due to plasma waves in collisionless current sheets of the Earth’s magnetosphere (Panov
et al. 2006), it is impossible to directly observe plasma waves and their consequences
in the solar corona. Hence theoretical investigations are needed to clarify the excitation
conditions, the possible nonlinear evolution of waves in the corona.

Here in this paper we investigate which modes most probably are excited by currents
in the solar corona. In order to find the linear dispersion properties of waves driven by
parallel currents we developed a solver for the set of multi-fluid equations. We consider
an electron-beam plasma model of the solar corona we take into consideration electron
inertia and thermal effects. 'This approach permits us to study phenomena which are
relevant down to scales of the order of ~ ¢/w,,. and characteristic times up to a);j, where
wpe 18 the plasma frequency. For the most unstable waves we then estimate the achievable
collisionless dissipation rate assuming trapping as the leading saturation mechanism.

First, in Section 3.2, we describe our plasma model for solar coronal current flows and
discuss the limits of applicability of a multi-fluid approach. Then we solve the dispersion
relation for appropriate solar coronal parameters. Section 3.3 is devoted to a parametric
study of the plasma instability of parallel and obliquely propagating unstable waves gen-
erated by currents flowing parallel to the solar magnetic field. Finally, in Section 3.4, we
present an estimate of the collisionless dissipation rate resulting from the two main modes
identified by the linear dispersion analysis and section 3.5 contains our conclusions.

3.2 Multi-Fluid Linear Dispersion Analysis

The multi-fluid equations describing electrons drifting parallel to an external magnetic
field against a thermal ion background at rest is given by

ON, 9
+ V- (N,Va) =0 (3.1)
o1
Wa oy vy, 4 Yo _da g, VeXB,

meNy My,

Here we used the following notation V, for the drift velocity of particlci specie, P,
for the pressure, m, for the mass. k; is the component of the wave vector k parallel to
a homogeneous and constant external magnetic field By, kg is the Boltzmann constant
Wpe = V/(4me*n,/m,) are plasma frequencies of electrons and ions, respectively, Ap, =
Vie/ Wy 18 the Debye length. N, are the plasma species’ number densities.
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3.2 Multi-Fluid Linear Dispersion Analysis

As noted on the right-hand side of momentum equation the binary-collision viscous
term (5, Rop -) is neglected since the mean free path of solar coronal plasma is much larger
than the sacle length of coronal loop, and interesting phenomena of wave particle reso-
nance such as LLandau damping is negligible in the considered wavelength range. In the
visous term R is the momentum transfer rate from species g to . The gravitational term
(g) 1s also neglected for the simplicity of consideration.

Instabilities as well as the resulting generation of anomalous resistivity are irreversible
thermaldynamics processes, which we expect energy could exchange with surroundings,
hence the isothermal equation of state is a reasonable assumption. The general isotropic

energy equation

dPa
ar O dt

(maN ) 3.2)

where ¢, = T,/m, is the sound velocity with the isothermal specific heats ratio:
Yo =1

The multi-fluid equations 3.1 and 3.2 have to be solved together with the Maxwell
equations for the electromagnetic field

L d4x . 10E . 10B
VXxB=— NV + —— VXE=—— 3.3
ch +c8t c Ot (3-3)

V-E*:4nzqazva V-B=0

In warm plasmas thermal effects contribute to wave dispersion. In order to determine
the limits of applicability of the fluid equations 3.1 let us consider the resonance condition
for wave-particle interactions that is beyond the scope of a fluid description. In fact,
wave-particle interactions become relevant when the argument of the plasma dispersion
function, derived for a linearized Vlasov equation, diverges (Gary et al. 1984). At kX B, =
0, i.e. for parallel propagating waves with wave frequency w, the corresponding resonant
factors are given by

 w,—kV
V20 Ve

Resonant particles can gain energy by Landau-damping of the plasma waves. Particles
can be considered non-resonant (Gary et al. 1984) as long as || > 1, practically, as long
as the wave’s phase velocity differs by more than a thermal speed from the center of the
distribution function. We will take this into account to estimate the limits of applicability
of our solutions of the "warm” plasma set of multi-fluid and Maxwell equations (3.1 and
3.3).

At the linear stage each physical quantity can be expressed as a sum of an average
and a small perturbation term. Let us look for solutions in form of a planar wave (A =
Ag+Ajexp l(l? X - wt)). Then the linearized plasma equations become

L«

3.4)
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k- i,
My = Ny (3.5)
Wiy
- = o =g ﬁaf X ]; . = R
Wity — ARE - ) - iwmq—(éE + )  iWraita X By = 0 (3.6)
Mg c
and the Maxwell equations become
@ =2 icza) 02 - 2 - a P icw 02 > 2
do 5 - —”(kk- —‘”—z)j and  2op = JZE 2y (3.7)
. AW, c . o,
where
j=> o ﬁa+z7f'ﬁ“ (3.8)
Wiy

Here w.o = w — k - U, is the wave frequency Doppler shifted as in a moving with
the drift velocity frame and a = w? — ¢*k*. Notations Q,, and o, are cyclotron frequency
and charge density, which are defined as (qaﬁ/ cmy) and N,q,. Since here we focus on
low-frequency electrostatic waves Faraday’s law implies that the wave vector is parallel
to the perturbed electric field (l? I 61?), hence b = (c/ a))l? x SE=0. The resulting linear
dispersion relation of electrostatic waves is (see, e.2., Aggarwal (1979)):

2 (02 oo 2
W, (827 cos™ 0 — wy,)

F(w, k) =
(&) Za: W (2 — w?) — ¢ (k- Q2 cos? 0 — k? - w?,)

=1 (3.9)

In a cold unmagnetized plasma with c¢,, = 0 the Buneman instability dominates, the
long wavelength limit of the general ion acoustic instability in case of finite plasma tem-
peratures. For the parallel propagation direction with the electron drift velocity V., one
obtains the dispersion analyzed by Buneman (Buneman 1958):

2i wz
Py —F = (3.10)
(C() —k- Vde)2

Assuming a small growth rate y < w equation (3.10) yields for the fastest growing
wave mode w = Wy, + Yy,

1{m\"
Wy, = E 1+§(2]’;) ] (311)

1/3
el
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3.3 Parametric Investigation for Solar Coronal Conditions

In the cause of a Buneman instability the energy is exchanged by a resonance with
Langmuir oscillations in the electron reference frame. Hence the Doppler-shifted Lang-
muir oscillations (w =~ (kVg. cos @ — w,.)) of the negative energy branch exchange wave
energy with an ion plasma oscillations at the characteristic frequency (w = wy,;).

The instability against waves, propagating almost perpendicular to the magnetic field,
is usually called "Modified Two-Stream Instability (MTSI) (Buneman 1963, Ott et al.
1972). Assuming magnetized electrons and unmagnetized ions the dispersion relation (3.9)
reduces for propagation angles 8 ~ 90° to

2 2 2
Wiy m; Wiy cos”o

0P me (@ -k Va)? B G
Solving (3.13) one finds that the fastest growing mode occurs at
R (3.14)
Here wyy is the lower-hybrid frequency given by
w?)e 1/2
wig = a)p,-(l + Q_g) (3.15)

In case of wf,e > 2, i.e. in weakly magnetized plasmas, the lower-hybrid frequency

reduces to wry =~ VQ.Q;. However, in the general case of an arbitrary propagation the
dispersion relation (3.9) can be solved only numerically.

3.3 Parametric Investigation for Solar Coronal Condi-
tions

At the present time the plasma parameters of the solar corona and the coronal magnetic
field strength are not very well known, yet. On the other hand, as shown in section 3.2 the
magnetization, expressed in terms of the ratio of the characteristic frequencies Q2 and wf,e,
plays a crucial role in determining the stability properties of a current driven plasma. Let
us consider a range, e.g. for the plasma beta, the ratio of plasma over magnetic pressure,
from 8 = 16ankT /B> = 14 to 8 < 1 (Gary & Alexander 1999). Numerical simulations
have shown that critical current concentrations can be found in the lower corona (Biich-
ner 2006a). The coronal plasma is fully ionized with a typical average electron and ion
temperatures of the order of T, = 10°K, so we will consider isothermal plasma condi-
tions T, = T;. At a height of, say, 5 Mm = 5 X 10°m above the photosphere the number
density of the quasi-neutral plasma has dropped down to about n,; = 1 X 10°cm™ while
the magnetic field strength can change in a wide range, say, from 100 to 2500 G. The
corresponding plasma beta is 8 = 3x 107 =3 x 1072 and the characteristic frequency ratio
Q./wpe 1s in the range 0.15 — 1.5. From simulations one can estimate a current carrier
velocity and relate it to an electron bulk velocity V., which has to exceed the electron
thermal velocity in order to trigger an ion-acoustic type instability in the solar corona
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Parameters Corona(Active Region)  Flare
n.(cm™) 1x10° 1 x 101
T.(K) 1 x 10° 3x 107
Table 1 T:(K) 1 x 108 3x 106
B(G) 100 + 2500 100
B = Permar | Pmagnetic 0.0003 = 0.03 0.1
Q./wpe 1.5+0.15 0.32

(Biichner 2006b). Within these parameter ranges (Table 1) we investigate the properties
of current-driven instabilities numerically by solving equation (3.9).

First, let us consider the dependence on the actual magnetic field strength. Fig. 3.1
depicts the solution of the multi-fluid dispersion relation (3.9) for a fixed electron bulk
velocity Vy. = 1.5v, and for waves propagating at an angle § = 20° with respect to
the magnetic field. Shown are the solutions for three different degrees of magnetization
Q./wp = 0.5, 1.0, 1.5). The figure also demonstrates the relation of the dispersion
branches w(k) to the eigenmodes of the plasma, the Doppler shifted LLangmuir (LW) and
electron-cyclotron (EC) wave with positive wave energy and the Doppler shifted Lang-
muir (LW*) and electron-cyclotron (EC*) wave with negative wave energy. The growth
rate y is depicted by a dashed line and the corresponding real frequency by a dotted line.
Fig. 3.1 shows that the coupling with the Doppler shifted Langmuir waves (LW*) occurs
in the range k; = 0.8 — 1.25. The strength of the coupling with the Doppler shifted elec-
tron cyclotron wave depends strongly on ./w,.. The different branches of instability
can be identified by considering the excitation mechanisms. In fact, the instability will
be excited by a coupling between negative (Doppler-shifted LLangmuir and electron cy-
clotron) energy waves and positive energy ion plasma waves. Doppler-shifted electron
cyclotron wave exists in a magnetized plasma due to an anomalous Doppler effect (Ne-
zlin 1976). These two negative energy wave modes interact with the ion wave. Hence two
branches of instability have to be expected. Originally, the instabilities and waves were
named for specific conditions. The Buneman mode is identified for a parallel propagating
wave. Upper-hybrid (UH) wave modes (characteristic frequency: wyy = (w3, + Q)'?)
and lower-hybrid waves wyy (see equation 3.15) are defined as waves propagating in the
direction perpendicular to the magnetic field. Generalizing these two instability modes,
derived for one-dimensional wave propagation directions, to the general case of arbi-
trary propagation angles, we unify the confusing terminology which is used in the litera-
tures. In fact, for perpendicular propagation directions Q, > w,, and § = +r/2 Langmuir
waves become UH waves while electron cyclotron waves become ILH waves. In the case
Q, < wp and § = +x/2 Langmuir waves approach LH waves and electron cyclotron

waves approach the UH wave branch.

In this range the two primary unstable modes, the MTSI mode and Buneman mode,
are well pronounced, although their names are obtained in the cold plasma limit (see
Section 3.2). The MTSI mode is due to a lower-hybrid frequency resonance in the per-
pendicular direction while the Buneman instability corresponds to oscillations near the
ion plasma frequency for all propagation directions. As one can see from the left panel
in Fig. 3.1, in the case of weaker magnetic fields Q,/w,. = 0.5 the Buneman instability
occurs at shorter wavelength rather than the MTSI. With increasing magnetization, how-
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Figure 3.1: (Color online) Wave dispersion for different magnetic field strengths Q,/w,, =
0.5, 1.0, 1.5, for a propagation angle 6 = 20° with respect to the magnetic field. The
electron bulk velocity is V;, = 1.5 - v,. Solid lines depict the branches w(k), related to the
Doppler shifted Langmuir and electron-cyclotron waves of positive wave energy branch
(LWandEC), and of negative wave energy branch (LW*andEC™). The dashed line depicts
the corresponding growth rate vy, the real frequency is depicted by a dotted line. is shown
by dotted line.

39



3 Current Driven Low-Frequency Electrostatic Waves in the Solar Corona

Figure 3.2: (Color online) Directional dependence (kjdp. vs. k, Ap.) of the normalized
growth rate y/w,; (upper panel) and of the real frequency w/w,; of low-frequency elec-
trostatic waves propagating at arbitrary angles with respect to the magnetic field in the
solar corona. As in Fig. 3.1, the results are shown for three different magnetization levels
Q./wy = 0.5, 1, 1.5, an electron drift velocity V. = 1.5v,, and temperatures T, = T;.
The solid contours indicate the resonance regions &, =~ 1, where strong resonant wave-
particle interactions will take place and the multi-fluid approach breaks down. The red
dashed line depicts the short wavelength limit (large kyAp.), where kinetic plasma effects,
e.g., collisions, must be taken into account.

ever, the spatial spectrum of the MTSI driven waves shifts toward the shorter wavelengths
range, while the wave spectrum due to the Buneman instability in parallel direction prac-
tically does not shift in the wave number space at all.

Fig. 3.2 depicts the directional dependence, i.e. the dependence on kjdp, and &, Ap.,
of the growth rate y/w,; (upper panel) and the real frequency w/w,. for low-frequency
electrostatic waves propagating at arbitrary angles with respect to the magnetic field in
the solar corona. As in Fig. 3.1 the results shown for three different magnetization levels
Q./w, = 0.5, 1, 1.5 were obtained assuming an electron drift velocity V, = 1.5 -
v and temperatures 7, = 7;. The solid contours indicate the resonance regions &, =~
1, where strong resonant wave-particle interactions will take place and the multi-fluid
approach breaks down. The red dashed line depicts the short wavelength limit (large
ky), from where on kinetic plasma effects, e.g., collisions, must be taken into account.
This two-dimensional spatial spectrum reveals that the fastest growing instability is due
to a coupling with the Doppler shifted Langmuir waves, which propagate in the parallel
direction (the Buneman mode in one dimensional propagation).

For the typical parameter range of the lower corona the oblique mode, the inner branch
of the spectrum that couples to LH waves in the perpendicular propagation direction, ex-
hibits the highest growth rate. Fig. 3.3 depicts the dependence of the growth rate of these
fastest growing waves (inner branch) on electron drift velocity and plasma beta. Our
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Growth rate of inner branch

Figure 3.3: Normalized growth rate (y/w,;) of the inner branch on dependence of the
electron drift velocity, which is normalized to the electron thermal speed, and the plasma
beta. The color coding depicts the normalized to the ion plasma frequency growth rate.
The plasma parameters, except the electron drift velocity as a variable, are the same as
those used in the other Figures.

multi-fluid analysis is valid only for sufficiently large electron bulk velocities, for which
the wavelength of Buneman-unstable modes exceeds the Debye length so that kinetic ef-
fects can be neglected. Hence we show only results obtained for sufficiently large electron
drift velocities exceeding the electron thermal speed. As it can be seen in Fig. 3.3 the wave
growth is faster in low beta conditions in the lower corona, where the magnetic fields are
strongest, and for larger electron bulk velocities. Fastest growing are parallel propagating
waves (see the right panel in Fig. 3.2 that corresponds to . /w,, = 1.5 ) that correspond
to the Buneman mode. On the other hand in weaker magnetic field regions with higher
plasma beta and for slower electron bulk velocities the highest fastest growing waves of
the inner branch are obliquely propagating (see the left panel in Fig. 3.2 that corresponds
t0 Q./wp = 0.5).

Our linear instability analysis has revealed, therefore that the most unstable low-
frequency electrostatic wave instabilities occur in the parallel propagation direction. These
waves couple to Doppler shifted Langmuir oscillations although they belong to different
branches for different magnetic field strength. For small plasma beta (strong magnetic
fields) and strong drifts the MTSI mode growth becomes comparable to that of the Bune-
man mode. Since the MTSI mode propagates at oblique angles this information is lost in
the usually used one-dimensional instability analyzes.
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3.4 Nonlinear Saturation

The dc coronal heating, magnetic reconnection and particle acceleration require a suffi-
ciently large amount of dissipation, e.g. resistivity, which would dissipate the coronal
currents. Since binary collisions are inefficient in the collisionless corona, anomalous
dissipation due to irreversible wave-particle interactions is needed (Biichner 2006b). Un-
fortunately, a self-consistent treatment of the saturation of the wave growth and the cor-
responding nonlinear evolution requires messy numerical kinetic simulations (Biichner &
Elkina 2005).

Before such simulations are performed, let us first estimate the saturated wave power
and the corresponding anomalous transport properties. Such estimate can be carried out
by considering the momentum transfer between the current-driven plasma waves driven
by non-resonant fluid instabilities, as described above, and the plasma (Davidson & Gladd
1975). This approach uses the fact that the saturation of non-resonant instabilities is not
sensitive to the details of distribution functions. Instead, it depends mainly on macro-
scopic quantities, on the number density and the electron bulk drift momentum. The mo-
mentum conservation law of electrons can be written in the form of generalized Ohm’s
law for the electrostatic fluctuations, as one can find in the equation (19) of the reference
by Yoon & Lui (2006).

where 17 denotes the anomalous resistivity and J = en, ‘761@ is the current density of the
drifting electrons. In order to estimate < 6nz;61zj ¢ >, we carry out a Fourier transformation

on 6n2 and 6E ¢ with the use of linearized Poisson equation g,0n, = —xqik0E., where y,
is the electric susceptibility of species a.
One obtains the estimated anomalous resistivity during saturation

n= fdklm(kx e)Wka (317)
menvde

This equation is first derived in eq.(23) of the reference by Davidson & Gladd (1975).
In the above expression W, = (1/2)6EF, exp(2y,t) is the spectral wave energy density of
the electric field fluctuations. Let us estimate the maximum contributions to the integral
in (3.17) for the Bunemann and the lower hybrid modes separately with 1 and ;5 as the
contributions of the Bunemann and the lower hybrid waves. Using the analytical solution
of the dispersion relation for the Buneman (3.10) and the modified two stream instabilities
(3.13), we can estimate the anomalous resistivity resulting from the interaction of the two
unstable wave modes with the electrons as follows

2 m\"* w8 2w
ng = > (_) . st and Mg = 5 —sat (318)
nm;V o \Mme Wi nm;V o, WLH

Note that the wave growth saturates after an equilibrium is established between the
electron friction force and the accelerating electric field. The corresponding momentum
balance can be as Hirose (1978), Ishihara et al. (1981)
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Equation 3.19 allows one to estimate the change of the electron drift velocity AV, as

2
(4 Wsat mWska

AV = — _seomide
m? [(Waa)* + Y 2

(3.20)

The saturation of narrow-spectra waves moves the system to a marginally stable state
(Sizonenko & Stepanov 1971). Let us estimate the saturation level of the waves due to
particle trapping in the potential wells of the fastest growing waves. The fastest growing
mode saturates if k,|AV| = w,,, where w,, is the maximum real frequency obtained from
the dispersion relation. The electric wave power at saturation can, therefore, be estimated
as

2 3
m wmwres
Wear = —55— (3.21)
e’k2
2 = . . .
where wyes = —wpe + ki - Vg, For comparison, in cold plasmas the electrostatic satura-

tion amplitude of purely parallel propagating waves is approximately as W, =~ 0.25 -
(me/m)n.m, V2 (Hirose 1978).

For the analytical solutions of the Buneman- and the modified two-stream instabilities
(see Section 3.2) one can now obtain the saturation levels for the arising two unstable
modes and compare them by calculating their ratio

B 2 1/2 B
Wsat _ km,LH Uk (ml) WL Wsat

— = 03= = —
Wil ko, MLy wpi Wil

=8 if Q. =wp (3.22)

sat m

Equation (3.22) indicates that for the moderate plasma magnetization condition Q. /w . =
1, typically for the lower solar corona, the contributions of anomalous transport from
MTSI instability is of the same order of magnitude as the Buneman mode.

3.5 Conclusion

We investigated the dispersion properties of current-driven solar coronal plasma instabil-
ities by solving the linearized multi-fluid plasma and the field equations. In particular we
looked for low-frequency waves, which supposedly will carry most of the energy, released
by the currents, and electrostatic waves, which interact most efficiently with the plasma
particles. We did not restrict our analysis to either the perpendicular or the parallel wave
propagation directions with regard to the external magnetic field.

We have performed a parametric study on the dependence of unstable waves linearly
within the most probable parameter ranges of the solar coronal plasma. We have found
that two basic low-frequency instabilities are excited and all transitions between them. In
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order to identify the physical mechanisms of the instabilities we analyzed the dispersion
properties of the system. It appeared that two negative-energy Doppler-shifted LLangmuir
and electron-cyclotron modes are excited that can couple to the positive energy plasma
eigenmodes. This way a Buneman instability can be excited due to the coupling of ion-
plasma oscillations with a Doppler-shifted Langmuir wave. Lower hybrid modes, on the
other hand, result from a coupling of Doppler-shifted electron-cyclotron waves with the
ion-plasma oscillations.

We further looked for the propagation direction dependence of the wave growth. We
found that the Buneman- instability reaches the highest growth rates for a mode prop-
agating parallel to magnetic field. Oblique modes form the longer wavelength part of
the spectrum if Q, < w,.. They become comparable to the parallel modes for medium
magnetic field strengths Q, ~ w,..

Since the magnetic field strength of the corona varies over a wide range, we have
especially addressed the influence of the actual plasma beta on the wave growth. Another
important dependence, we have studied, is that of the electron bulk drift velocity, which
can only indirectly, via numerical simulations, be inferred from solar observations.

According to our studies the modified two-stream instability (MTSI), which is negligi-
ble in weak magnetic fields, becomes significant in stronger magnetic fields. The resulting
obliquely propagating waves can, therefore, be regarded as the most relevant mode in the
corona above active regions.

In order to estimate the relevance of low-frequency electrostatic waves for the macro-
scopic dynamics of the solar corona we considered the possible saturation level of the
growing waves. We found that for typical solar coronal parameters both, the fastest grow-
ing Buneman and the MTSI instabilities, reach about the same order of magnitude satura-
tion level, i.e. although M TSI anomalous resistivity is smaller than Buneman resistivity, it
still contributes considerable amount to the anomalous current dissipation. The absolute
value can be judged upon by the corresponding “effective collision rate” which reaches
up to v = 2(m./m)*Pwy. = 0.6w,; (Hirose 1978) for the Buneman instability and a few
fractions of this value for the MTSI. Since the saturation amplitude further depends on the
electron bulk velocity it will vary within a range of v,;s C 0.2w,; — lw,;. This is close to
what is obtained earlier by one-dimensional Vlasov-code simulations of the Bunemann in-
stability in strong magnetic fields and for a electron bulk drift velocity V,, = 2.4v,,. There
an effective collision frequency v.rr = 0.5w,; is obtained (Biichner & Elkina 2006).

Note that for the non-linear interaction of the current carriers with the fully devel-
oped two-dimensional spectrum of electrostatic coronal plasma waves one can expect a
stronger anomalous resistivity and higher “effective collision rates” than those, estimated
here and obtained by one-dimensional self-consistent turbulence simulations.
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4 Looptop Fast Shock: The Secondary
Acceleration

4.1 Introduction

Magnetic reconnection in solar corona is generally considered as the trigger mechanism
and the primary energy source of solar flares, which is a catastrophic phenomena that re-
leases the largest amount of photonic energy in our solar system. Observational evidence
of coronal magnetic reconnection has been obtained considerably from the Yohkoh project
in the last decade. Many reconnection models that based on the reconstructed magnetic
topology, as well as the large scale MHD simulations of coronal loops (Shimizu et al.
2005, Yokoyama & Shibata 1997), are also proposed to explain the plasma dynamics dur-
ing solar flares. The hard X-ray (HXR) observations of the coronal looptop and footpoints
show that the charged particles, both electrons and ions, can reach hundreds keV or even
up to MeV level during the impulsive stage of solar flare, and this corresponds to a very
high particle velocity v > 0.5¢ for electrons. However, the direct reconnection outflows
are not readily observable. The first evidence of high-speed downflows above flare loops
is observed by Yohkoh/ SXT during the 1999-Jan-20 flare, showing dark voids flowing
downward from the loop cusp regions, with speeds of v ~ 100 —200km - s~1. In all proba-
bility, with the observational deduced plasma parameters above the loop cusp region, the
AlfVen velocity is only in the range of v ~ 1000 — 3000km - s~!, which is still much less
than the particle velocity observed from HXR emission.

To bridge the energy discrepancy between the theoretical (and also the observational
case mentioned above) plasma outflow velocity and the plasma velocity observed from
HXR spectrum, numerous secondary acceleration models have been proposed for the ap-
pearance of high energy particles in the context of solar flares. In principle, the secondary
plasma acceleration mechanisms of the reconnection outflow can be categorized into three
kinds: (1) DC electric field acceleration, (2) stochastic acceleration and (3) shock accel-
eration.

The DC electric field acceleration, which is further sub-classified as the super-Dreicer
(Holman 1985, Tsuneta & Naito 1998) and the sub-Dreicer (Litvinenko & Somov 1995,
Litvinenko 1996) accelerations, is mainly a particle acceleration by an assumed electrical
potential jump between the reconnetion outflow and HXR emission sites. The primary
difficulty of this mechanism is the existence of such a potential jump. Beside, any model
with static or steady electric DC fields faces the problem that the electron beam current
requires the counterstreaming return current, which severely limits the acceleration effi-
ciency. Contrast to the DC field acceleration, stochastic acceleration is a mechanism that
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plasma is accelerated by AC electromagnetic waves.

Since a broadband of wave spectrum is expected in the reconnection outflow, some
waves can have constructive interference and others destructive interference with the par-
ticle gyromotion, via whistler waves (Steinacker 1992, Hamilton 1992) and lower hybrid
waves (Benz 1987, McClements et al. 1990). The energy transfer between waves and par-
ticles is therefore a stochastic process. Basically, the concept of stochastic acceleration
accomplishes some advantages over the concept of (large-scale) DC electric field accel-
eration, i.e. the accelerating fields occur on a microscopic scale and completely average
out over a macroscopic volume, so that no return current problems occur, which require a
strong filamentation of the acceleration region in DC electric field models. Nevertheless,
the major quarrels of stochastic acceleration are on the exsitence of sufficiently strong
wave turbulence in the outflow, which cannot be measured easily, and the inconsistency
of this model to the HXR time-of-flight delay measurement.

The concept of shock acceleration in the solar flares context is mainly developed for
type L radio bursts, for which the shock speed that propagates outward to interplanetary
space can be estimated from the soft X-ray images and the inferred plasma frequency.
In the realm of astrophysics, fast shock in the supernova remnants has been proposed as
the particle accelerator for high energy protons and Galatic cosmic rays. Particle-in-cell
(Lee et al. 2004) and hybrid simulations (Winske 1985, Burgess 2006) are performed
the precise scenarios of shock accelerations for Earth’s bow shock condition. The new
aspect of shock acceleration of coronal plasma is from some observational and theoretical
speculations, which indicate that a pair of slow shocks with a sandwiched fast shock can
create a viable environment for the plasma acceleration in the reconnection outflow, and
the accelerated plasma is further injected along magnetized coronal loop downward to
create the chromospheric footpoints HXR emissions. The first observational evidence
of the looptop fast shock is presented in the famous work by Masuda et al. (1994), in
which the flare is observed by Yohkoh HXT and SXT and a clear looptop HXR source
is identified. This HXR source located distinctively above the beneath SXR loop, which
has a higher density and stronger magnetic field strength. The high plasma temperature
T ~ 2 x 10*K of the looptop HXR source is speculated as a consequence of the fast shock
heating, for which the waves are generated and reflected back from the obstacle-like SXR
loop. A standing fast shock is formed between the reconnection site and the SXR loop by
the wave steepening mechanism and its particular magnetic field geometry.

The existence of a looptop fast shock has also been confirmed in a large-scale two
dimensional MHD simulation of coronal reconnection (Shimizu et al. 2005, Yokoyama
& Shibata 1997). The plasma was heated at the downstream side of fast shock, revealed
as a high temperature maxwellian distribution according to the MHD regime. However,
from the flare HXR observations the spectrum of plasma distribution usually contains a
supra-thermal tail which makes the distribution divert from Maxwellian. In general the
plasma energy of the supra-thermal is much higher and the origin this supra-thermal par-
ticles is still one of the major issues in solar physics. To understand the acceleration
mechanism, in addition to the MHD plasma heating mechanism caused by the conserva-
tion of magnetic moment from upstream to downstream of shock, we are interested in the
fine structure of shock which is the main location that generates the supra-thermal tail of
plasma distribution. In this transition region several drift microinstabilities are possible to
exist according to the relative motion of the injected and the reflected plasma flows. With
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Figure 4.1: The 1D EM PIC simulation setup for fast shock study. A reflective boundary
is set to exhibit the reflective characteristic of SXR loop, which has high density and
strong magnetic field. Plasmas are pushed back at this boundary because of the small
cycltron radii.

a high Mach number inflow, the reflected plasma streams backward against the injected
plasma and eventually forms a sufficient condition for Buneman instability, which leads
to a resulting fast heating. On the other hand, if we consider a preheated inflow electrons,
an ion-acoustic instability can take over the plasma heating and acceleration. Likewise, a
complete process, starting from Buneman instability and the accompanying electron heat-
ing to the following ion-acoustic instability, is also considered by Papadopoulos (1988).
Since both of Buneman and ion-acoustic modes are mainly electrostatic in nature, the
strong bipolar DC electric field of these modes are good sources of anomalous resistivity
that can cause the plasma heating, and the steepened phase space structure at shock front
becomes a perfect accelerator for the supra-thermal tail distribution. Levinson (1992) also
discussed the self-generated whistler waves, and in later stage the lower hybrid instability,
can accelerated plasma at a perfect parallel shock.

In this work, we perform a one dimensional electromagnetic particle-in-cell simula-
tion (1D EM PIC) to study the plasma acceleration in a fast shock transition region and the
plasma heating in the shock downstream side. In Sec. 4.2 we discuss the feasible plasma
parameters that can represent the reconnection outflow condition in the cusp region of
solar flare loops. In Sec. 4.3 the results of 1D EM PIC simulation are discussed. The
plasma kinetic energy level after shock acceleration is also compared with the observed
solar flare HXR spectrum. A brief summary is given in the conclusion.
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4.2 The Investigation of Solar Flare Reconnection Out-
flow Parameters

Because of the plasma in the coronal reconnection outflow is of low density and tempera-
ture, it is difficult to retrieve the physical characteristics from the thermal or bremsstrahlung
radiations. Therefore the plasma parameters of the reconnection outflow can only be as-
sumed based upon the reconnection models, accompanying with the observation from the
measurable sources in the flare surroundings.

In general, the plasma density at the base of corona (H = 2500km above the photo-
sphere) is higher (Aschwanden 2006), for coronal holes n ~ (0.5 — 1.0) x 103¢m™, for
quiet sun 72 = (1.0—2.0) x 108cm™ and for active regions n ~ (0.2 —2.0) x 10°cm™. How-
ever in the upper corona, which corresponds to the possible magnetic reconnection site,
the plasma density drops to the range n ~ 1 x 107cm™. The magnetic field strength in the
reconnection outflow region is also an unknown, we therefore have to find a reasonable
value either from the beneath SXR loop or from the global MHD simulation result that
corresponds to the reconnection outflow. As described in the previous part, the direct ev-
idence of outflow speed is very rare and also an unnegligible uncertainty of the magnetic
field strength, the plasma outflow speed in the work is basically assumed to the value of
Alfvén speed outside of the current sheet diffusion region.

The plasma density, both for electrons and ions, is chosen to be n = 1.56 X 107cm™
as the lowest value measured in the 30 active region loops (Aschwanden 1999), and this
mimics the ambient density near coronal current sheet. The magnetic field strength out-
side the reconnection difusion region, before the magnetic tension relaxation, is assumed
to be B = 90G and this is not an unresonable value for the compressed current sheet
of the solar active regions, e.g. the magnetic modeling of the preflare configuration re-
vealed that a highly sheared fluxtube erupted and triggered reconnection with the overly-
ing large-scale magnetic field (Zhang et al. 2000). The Alfvén velocity with these density
and magnetic field strength is then v ~ 5 X 10%m - s7!, and this is the assumed reconnec-
tion outflow speed in our simulation. The temperature of the outflow ions and electrons
are assumed to be equal, and their temperatures are 7; = 7, = 0.3M K which would not
generate HXR nor radio emissions and this is not shown in real solar observation. With
this temperature, the Debye length Ap, = +/T,/4nn.e? is about 1em. To save the simu-
lation time, we assume the mass of ions is m; = 9m,, hence the sound speed is therefore
vy = VT m; =7.2% 10%km - s71.

The setup of our 1D EM PIC simulation is shown in Fig.4.1. Because the obstacle
of the coronal reconnection outflow, the SXR loop, is of higher density and magnetic
field strength, charged particles are basically reflected back from their small gyro radii
in collisionless plasma. To describe the plasma injected into simulation domain carrying
magnetic field with, we deploy an initial electric field transverse to plasma drift motion.
When plasma travels across the electric field, according to Ampere’s law, it automatically
generated a magnetic field perpendicular to both plasma drift and electric field.

When the plasma flows together with perpendicular magnetic field and reached the
simulation reflective boundary, plasma is pushed backward to upstream of the flow, and a
fast magnetosonic shock is generated because of the kinetic current driven instabilities. In
the nonlinear stage of instability development, plasma acceleration and heating become

48



4.3 Fast Shock Formation and Particle Acceleration

2.00E+08

+ BPE+O7

E/E+0O7

__| _|E+||||

2.00 E

Z_||||E+||||_f
WhE-

Il 1 Il 1 Il Il 1 Il 1 Il 1 1 ! 1 1 1
III:I B A0E+01 1.268E+02 1.92E+02

Figure 4.2: The phase space plot (X and UX) of electrons and ions in the final stage of
simulation. The blue dots indicate ions and orange dots indicate electrons. It is clearly
shown in the downstream of shock the temperature of electron and ions are much higher
than the injected plasma.

the direct consequences of the kinetic effect of fast shock, which is the plasma dynamics
revealed in kinetic approach but not in MHD shock study. The detailed kinematics of
plasma acceleration is discussed in the next section.

4.3 Fast Shock Formation and Particle Acceleration

In our simulation, plasma that consists electrons and ions are injected from the left bound-
ary. Because of a reflective boundary and the incoming magnetic field carried with
plasma, magnetic field starts to accumulate from the reflective boundary and the reflected
plasma drift together with the injected flow formulates the counterstreaming beams. Sev-
eral phase space instabilities are possible to be triggered in this environment. With a
strong relative motion, the electrostatic two-stream instability starts to appear. Elec-
trostatic two stream instability is generally a wave-wave interaction between the two
Doppler-shifted electron Langmuir waves, carried by incoming beam and reflected beam,
and with exchanging momentum between these two species, hence the plasma phase-
space structures are created.

For electrostatic stability analysis of a system that plasma dirft is perpendicular to the
ambient magnetic field, the dispersion relation can be written as

1 = Xw; (wi; — Qicos’O)|w; — w (K>S + Q) + K>S :Qcos 0] (4.1)

where 6 is the angle between plasma drift and magnetic field, and § ; is the sound speed
of species j.
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Figure 4.3: The magnetic field intnesity that is perpendicular to the plasma drifts. In the
region close to to reflective boundary the magnetic field accumulates, showing a signature
of fast magnetosonic shock.

From the injected plasma parameters as described, the strong plasma heating is ob-
served in the late stage of simulation when the reflected beams interact with the injected
beams. The original quasi-nonthermal plasma with temperature 7; = 7, = 0.3MK is
heated up to the level of T = 100 — 1000M K. This is shown clearly in Fig. 4.2. And also
because of the generated strong electric field in the shock structure, the original injection
plasma with E = 7keV bulk kinetic energy is accelerated to £ = 120keV. The temper-
ature is the common observed coronal plasma temperature above active regions, and the
bulk kinetic energy the accelerated plasma is also the typical value that is retrieved from
the coronal footpoints HXR emission.

The magnetic field perpendicular to the plasma flow is shown in Fig. 4.3. This value is
much larger comparing to the magnetic field along the drift direction, indicating this is a
quasi-perpendicular shock. In the figure it shows that the magnetic field is accumulated in
the shock and downstream region, which exhibits a signature of fast magnetosonic shock.

Since the simulation is of one dimensional assumption, we excluded the effect that
plasma can flow out of the region freely along magnetic field line and the related injec-
tion mechanism is not considered. In a two dimensional configuration the location of
fast shock can stay more or less the same distance from the obstacle, however in a one
dimensional configuration the shock is propagating back to the injection boundary.

4.4 Conclusion
The plasma acceleration via a fast shock is investigated for solar corona parameters. With

a reflective boundary that mimics the coronal SXR loop, the magnetic field carried by the
injected plasma flow accumulated, and the reflected beam generates drift instabilities in
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4.4 Conclusion

the shock find structures. Similar to many previous previous shock acceleration studies,
which are mainly applied to explain the observed high energy ions in supernova remnants,
we found the ion and electron heatings in the downstream of shock transition region.

For the simulation setup, the parameters of the injected plasma flow are basically
assumed from the observations of the ambient environment, since the values from direct
observations are difficult to obtain in this frequency range. The assumed velocity of the
plasma flow is basically the Alfvén velocity outside the reconnection diffusion region.

A fast shock is generated between the injection and the reflective boundaries. The fast
shock is efficient in accelerating charged particles, the original plasma with bulk energy of
7keV can be eventually accelerated up to 120keV. Although the injection mechanism from
the downstream to loop footpoints is not discussed in this one dimensional simulation, the
energy level in the late stage shows the fast shock acceleration is a very good accelerator
to explain the observed HXR spectrum.
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S Transport due to Current-Free
Electrostatic Double Layers

5.1 Introduction

The forward-fitting of Hard X-Ray (HXR) observations provide a number of energetic
electrons and the instantaneous electron flux of solar flares(Aschwanden 1999). The
HXR emission from a flare can be characterised by its location either as coronal or as
chromospheric. The coronal emission provides relatively low energy photons (< 30keV).
Its characteristics are consistent with a hot quasi-thermal plasma radiation. The chro-
mospheric footpoint’ emission, on the other hand, is thought to be generated by a vast
number of non-thermal particles accelerated during a flare (Fletcher 2005).

The electron spectra, deduced from the HXR observations, exhibit different power-law
indices at the footpoints and in the upper corona. The footpoint X-ray fluxes, obtained by
HXIS in a range of 16-30 keV (MacKinnon 1985), were found to be only 15 —28% of the
fluxes obtained by extrapolating the same energy range from HXRBS spectra at higher
energies of 25-300 keV (Zharkova 1997). These results indicate that electron dissipation
must occur during the propagation, especially of the lower energy electrons, while the
higher energy part electron spectrum stays approximately unchanged.

In a fully ionized plasma, a magnetic field is induced by the injected energetic electron-
beam. According to Faraday’s induction law, the magnetic field flux maintains as a con-
stant in a perfectly-conducting environment. Hence, a backward propagating electron-
beam is therefore generated by the induced electromotive force to cancel the flux change,
and the generated return current compensates the injected beam current (Zharkova 1997).

In collisional model with Ohmic heating, return current energy losses in a fully ionised
coronal plasma were shown to have a noticeable effect on the injected beam dynamics in
depth, particularly at the chromospheric level (Emslie 1980). Hence, the electron in-
teraction with induced electric fields may govern the beam dynamics. As a result, less
energetic electrons might not reach the deep chromosphere, but loose their energy already
in the lower corona (Aschwanden 2002).

The type of the excited electrostatic instabilities depends on the composition of beams
and return-currents (Davidson 1983), i.e. on the ratio of their fluxes. The evolving unsta-
ble plasma waves can result into particle anomalous transport at nonlinear stage. Assum-
ing a collisional thick target model (Brown 1971), the spectrum obtained from the solar
flare on 23 July 2002, for example, suggested an instantaneous electron flux of more than
2x10%¢s7! above 20 keV for 100 s (Holman et al. 2003). Taking the RHESSI source sizes,
a conservative lower limit for the electron flux is 2.6 X 10%¥cm™2s71. For a beam speed of
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the order of 10%cms™!, this implies a beam-electron number density of 2.6 x 108¢m™. In
all likelihood the area is a factor of 5 to 10 lower, and the electron flux per unit area is
5-10 times higher (Fletcher 2005). This means that beam number density and the coronal
background number density are, perhaps, comparable.

A stability analysis of a dilute beam plasma system (107 < n,/n, < 107!) of the
excitation of Langmuir waves was carried out by Rowland & Vlahos (1985). In the case
of a higher beam density (n,/n, ~ 0.2) electron-acoustic waves become unstable (Mc-
Quillan & McClements 1988). The possible excitation of low-frequency ion-acoustic and
ion-cyclotron waves by dense beams was studied in (Cromwell et al. 1988). Numerical
simulation studies have shown that ion-acoustic (Biichner & Elkina 2005) and electron-
acustic waves can heat the plasma. This causes an efficient dissipation of the electron flux
through energy conversion.

Electron beam instabilities can lead to the development of electrostatic Double Layers
(Biichner & Elkina 2006). DLs are unique nonlinear electric field structures in free-
energy supplied environments. An ideal DL consists of an unipolar electric field, i.e. it
exhibits a monotonic potential drop, and the charge neutrality condition is violated locally
(Langmuir 1929). Dynamically, however, DLs are formed by accumulating electron phase
space holes which are characterized by bipolar electric fields (Block 1977). A sufficient
condition for a DL structure is a net potential drop through the entire layer. For electrons
with energies less than the first potential ramp a DL provides an obstacle, which would
stop the electrons at the ramp. The stagnation of the electron flow can dissipate the flow
energy and heats the reflected electrons. In order to describe a basic feature of DLs, the
local charge separation, at least a multifluid approach is required.

Double layers in current-free beam plasma, where a dense beam is neutralized by a
return-current, are studied in the laboratory (Hairapetian & Stenzel 1990). Current-free
DL.s in solar coronal plasma were considered, e.g., in (Alfven & Carlqvist 1967); Khan
(1989); Boswell et al. (2006). A combined action of anomalous resistivity and DLs was
proposed to explain the dissipation of cosmic jets (Borovsky 1986). An analytical model
of the diffusive acceleration of particles in auroral plasma due to interaction with weak
double layers was developed by (Lotko 1986). Auroral electron acceleration by double
layers was considered, e.g., by (Borovsky 1992). Auroral acceleration requires multiple
weak double layers, organized in a chain along the field lines, to form a sufficently large
total potential drop. Generally double layers can effectively accelerate electrons and cause
a complicated nonlinear dynamics in the system, which has to be studied by means of
numerical simulations.

A numerical study of DLs with semi-open boundary condition was performed by
(D.L.. Newman 2001). They intended to explain the ionosphere DC parallel electric field
observed by the FAST (Fast Auroral SnapshoT) satellite (Lynch 2001). The dynamics
of electron holes, created by an ion-acoustic instability, was discussed therein. The for-
mation of DLs as a result of the nonlinear development of an electron current-driven
instability was studied by means of a Vlasov code simulation (Biichner & Elkina 2006).

It is an open question, however, through which mechanism DLs are created in a return-
current beam-plasma system, that is typical for the solar corona. Also, it is unclear that
what is the precise mechanism of energy conversion from bulk current kinetic energy to
electrostatic wave energy and, at later stages, to electron and ion thermal energy via the
interaction with DLs.
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Figure 5.1: The normalized largest growth rates of waves propagating along beam and
return-current directions shown as functions of density and temperature ratio for the real
mass ratio of electrons and ions (m;/m, = 1836). Larger growth rates correspond to
electron-electron acoustic (EE) mode while smaller growth ones correspond to the ion-
acoustic (IA) mode.
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Our goal is to analyze the stability of return-current beam plasma system in the solar
corona and to investigate the consequences of the resulting wave-particle interaction, i.e
whether it might explain the broken-power-law electron spectrum retrieved from solar
HXR observations.

In section 5.2, we carry out a linear dispersion analysis for the most probable coronal
parameters. To consider the nonlinear instability evolution, we performed a 1D Vlasov-
code simulation and also its spectral analysis. These results are presented in section 5.3.
At the nonlinear stage of the DLs evolution, fast electron holes are formed after electrons
are accelerated by DLs. The dynamics of this unique phenomenon is discussed in section
5.4. There we discuss also the heating of ions and electrons. To address the formulation of
the broken-power-law spectra and the discrepency of electron distributions retrieved from
both footpoint- and coronal emission, the dissipation and relative anomalous transport
characteristics of electrons are discussed in section 5.5.

A brief summary and a discussion of the implication of our results for the solar corona
are given in section 5.6.

5.2 Basic Equations and Linear Dispersion Analysis

A counter-streaming return-current beam plasma becomes unstable and the generated
waves dissipate the electron bulk motion, even though their net current is zero. To study
the dispersion characteristics of this system a multifluid model is considered.

We assume a current and charge-neutrality system, i.e

gaNe =0 GelNoVae =0 (5.1)
Sen-o 3

where N, represents the densities of the beams, V;, is the mean velocity in the beam flow
direction and vy, is the thermal velocity of the beam electrons. For collisionless plasma,
large amplitude electrostatic waves have strong influence on the anomalous momentum
transport property, hence the electrostatic condition (I; = (c/ w)k x §E = 0) is assumed,
which indicates k || E.

The dispersion relation of electrostatic linear perturbations in the return-current beam
system is:

2 2 2

W wp,RC

pi wp,Beam
I= 2 2 2 * 2 2
w _12 2

(w*Beam k2§ Beam) (W*Rc k2§ RC)

A basic beam-plasma fluid-like instability is the Buneman mode (Buneman 1958)
(or ion-acoustic (IA), if thermal corrections are considered). In a return-current system,
however two electron populations exist. Their relative drift may cause also an electron-
acoustic instability (Gary 1993).

To identify the different possible excitation mechanisms, we performd a sub-system
dispersion analysis. In the beam-plasma system (without the third term on the righthand
side of eq. (5.2)) and the return-current beam plasma system (without the first term on the
righthand side of eq. (5.2)), the ion-acoustic (IA) and the electron-electron two stream
instability (EE) can be recognized respectively via a detailed comparison of growth rates

(5.2)
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Figure 5.2: Dispersion relations for m;/m, = 25. Wave frequencies (red dotted lines) and
growth rates of unstable modes (blue dashed lines) in a warm return-current beam plasma.

and dispersion characteristics. The electron-electron coupling (EE) leads to a much higher
growth rate if the real mass ratio is applied.

We solve the linear dispersion equation (5.2) for the parameters of solar coronal loops,
with the real mass ratio (m;/m, = 1836) to find the dominant mode in the system. In
Fig. 5.1, the growth rates along the directions of beam and return-current are shown
as functions of density and temperature ratios. For isothermal beam and return-current
(T'Beam/ TPiasma = 1) 1on-acoustic mode is excited along return-current direction and an
electron-electron (EE) two-stream instability in the beam direction. Beams ejected from
the primary acceleration sites can, however, be heated along the path of propagation be-
fore interaction with the background plasma. Hence, the dependence on the temperature
ratio has also to be studied.

For larger temperature ratios (7'geam/T piasma > 1) and comparable electron densities
of the beam and return-current (Ng.um/Npiusme = 1), the IA and EE mode switch their
propagation directions. The energy transport of Doppler-shifted electron acoustic waves
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Figure 5.3: Electric field history E,(x,f). Double layers appears at Ta);j = 1400. Two
pronounced phase velocities are (1) the original electron-acoustic waves velocity V., and
(2) the velocity of fast electron holes V,;, = 2V,,

of beam and return current can be clarified by analyzing the coupling of the waves.

In order to compare with numerical simulation results, we carried out a linear disper-
sion analysisa for a mass ratio (m,;/m, = 25). The result with reduced mass ratio is shown
in Fig. 5.2. With the assumed electron temperature and current density of solar flares
(Aschwanden 2006), the thermal velocity of electron V,, ~ 2.58keV = 5x 10°cm - s~! and
the bulk velocity of the beam is V4, ~ ¢/3 = 1 x 10%m - 5! (Kudriavtsev 1989);Fletcher
(2005). During flares the beam temperature increases several times above the coronal
plasma (Aschwanden 2006), hence we assume that the thermal velocity of the beam is
twice the thermal velocity of the return-current:

VaBeam = —Varc = 2Viure (5.3)

Vth,Beam = 2Vth,RC = 2Vth,ion
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Figure 5.4: The spectra of simulation at different time are shown in each panels, 1) T:
0 = 700w, 2) T: 0 = 1400w, 3) T: 0 — 2800w,,. The color-coded indices show the 2D
FFT transform coeflicient. On nonlinear stage fast electron holes appear, and propagate

at velocity of return-current drift 2V,, = V,,
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NRC = NBeam = ion/2

The dispersion analysis reveals two unstable waves modes (see Fig. 5.2). Along the di-
rections of the reverse current (negative K) an electron-acoustic wave propagates due to an
electron-electron two-stream instability. The maximum growth rate y = 1.5w,; = 1/3w,,
is the characteristic growth rate of the resulting electron-electron two-stream instability,
which is from a coupling of the forward propagating beam electron-acoustic wave and
backward propagating return-current electron-acoustic wave.

Along the beam direction (positive K) an ion-acoustic (IA) wave grows unstably due
to a coupling between the backward propagating beam electron-acoustic wave and the
forward propagating ion-acoustic wave, and the maximum growth rate is ¥ ~ w,;. The
wave frequencies are depicted by red dotted lines, and their growth rates are depicted by
blue dashed lines. (Note that in our analysis the injected beam propagates in the positive
direction)

The growth of unstable waves continues until the free energy of the system is reduced
to marginal instability conditions. In order to study the resulting wave-particle interaction
and the nonlinear evolution we use a fully kinetic 1D Vlasov code simulation.

5.3 Double Layer Formation and Spectrum Analysis

The evolution of an electron beam instability was investigated by means of an one-
dimensional (1D) electrostatic Vlasov-Ampere code (Elkina & Biichner 2006). The code
is based on an unsplit conservative finite-volume numerical discretization scheme, and it
uses an open-boundary condition to study the evolution of the current-driven instability.

To study the nonlinear evolution of DLs in a current-neutralized beam plasma, we
performed a simulation with the same parameters as in dispersion analysis (equation 5.3),
i.e., a hot electron beam and an ambient cooler return-current electron drifting in the
opposite direction to maintain the current neutrality condition. Both beams are modeled
by drift-Maxwellian distributions. Ions forms a stationary background at the beginning of
the simulation with a Maxwellian distribution.

We use an moderate artificial mass ratio m;/m, = 25 to distinguish the difference in
ion and electron motion. The assumption of an artifitially low mass ratio is necessary to
allow the ions to respond within a resonable simulation time. The length of the simulation
domain is 32004pg. With typical solar flare parameters, this corresponds approximately to
~ 12min a 10"m flaring coronal loop (Aschwanden 2006). A periodic boundary condition
is a reasonable and sufficient assumption for a such long system.

DLs can be created at the nonlinear stage if the Bohm condition (Bohm 1949) is
satisfied, i.e.

Jo = ne2kT,/m, (5.4)

which is satisfied for the solar flare plasma parameters used in our simulation setup (equa-
tion 5.3).

The simulation is performed until (7" = ZSOOw;j), which allows to investigate the
complete evolution of DLs. The spatial-temporal evolution of the electric field is shown
in Fig. 5.3. During the linear stage (7" < 700w;§) the electron-acoustic waves (EE-mode)

60



5.3 Double Layer Formation and Spectrum Analysis

time=31 8.2400;:

te

VIV

5 10 15 20 25 30
X, ¢l

Figure 5.5: Electron and ion phase spaces are given at time 7' = 318a)1;l.1 = 1590w;§.
Electric field potential e¢/kgT. normalized by electron temperature is shown by solid
line.

appear first in accordance with the linear stability prediction (see Fig. 5.2), which propa-
gate along the return-current direction.

The nonlinear stage of the instability is characterized by the apperance of double lay-
ers. As one can see in Fig. 5.3 multiple double layers are created and later dissipated.
Their life-time is about 755 ~ 800 wl‘,j. All double layers initially, during the first half
of their life-time, move in the direction of the return-current electron flow. In the second
half of their life-time DLs change their direction and start to move in the beam direction.
A similar behaviour of double layers was observed in two-ion population plasma used to
simulate auroral weak double layers (Yajima & Machida 2001).

The characteristics of unstable waves and nonlinear structures, their frequencies and
wave numbers, can be obtained via a spectral analysis of the generated electric field for
different time intervals.

Fig. 5.4 depicts the spectra for the simulation intervals (1) 7 : 700w3}; 2) T :

pe>
1400a);1 and 3) T : ZSOOw;j. The color-coding indicates the spectral intensity of the

e

modes

N-1 /M-1 ) )
Alk, w) = Z (Z a(x, t)e%sw] e vk (5.5)

n=0 \ s=0

The wave frequencies obtained by the linear dispersion analysis are superposed (red
curves) in Fig. 5.4. At the linear stage (1) one can see that the first excited wave is propa-
gating in the direction of the return-current (negative K). This agrees with the prediction
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Figure 5.6: Spatially averaged electron distribution function corresponding to beam and
plasma. Averaged current contribution are shown by continious line.

of the linear theory that EE mode grows faster. The second period (2) corresponds to the
appearance of DLs. The excited wave spectrum is broader both in wave numbers as well
as in frequency. Note that the phase-velocity of unstable waves increases but does not
reach the drift velocity, yet.

Before stage (3) DLs start to decay and, consequently, the fast electron holes generated
by the double layers take over the global dynamics of the simulation in this third phase,
already as post-products of the interaction with DLs.

5.4 Dynamics of Fast Electron Holes

A real DL consists of several asymmetric bipolar electric field structures which all to-
gether cause a net potential drop. DLs primarily affect electrons in two ways: (1) As the
phase space structures shown in Fig. 5.5 near X = 20(c/w,.) and X = 8(c/wp.), the first
potential dip on the positive side of DL stops low-energy electrons since electrons are ac-
celerated toward the higher potential side. (2) The overall potential difference accelerates
those electrons that are able to cross the first barrier.

Contrary to the initial electron-acoustic waves (EE) generated by the interaction of
beam and return-current electrons at the linear stage, fast electron holes result from a
secondary electron two-stream instability via the interaction of DLs-accelerated return-
current electrons with the background low speed return-current electrons. In the simu-
lation interval shown in Fig. 5.5, the generation of fast electron holes is in the intervals
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X =15-18(c/wpe) and X =5 = T(c/wpe).

The additional third electron beam is created by the DL, with its own chracteristic
drift and thermal velocities. To analyze the fast electron holes triggered by the third elec-
tron beam, we performed a sub-system dispersion analysis in which the thermal spread
and drift difference of DLs-accelerated return-current electrons and the background low
speed return-current electrons are considered. The rough estimate of the resulting sec-
ondary two-stream instability caused by the third beam shows that the electron holes
should propagate at a speed of (Vs = 2V, = Vi) to the background ions. This explains
the observed phase velocity of the fast electron holes. Note that the calculated potential
drop in Fig. 5.5 is normalized by initial thermal energy of electron beam, and the potential
drop at this stage is around (e¢/kT, = 0.4 =~ 103.6eV), showing the characteristic of a
weak DL.

5.5 Plasma Heating and Anomalous Transport

The energy transfer is always an attractive topic in solar coronal studies. During flares,
evolution of the plasma distribution takes place in the beam precipitation from the upper
corona to the chromosphere. The question to be addressed is: Can the broken-power-
law spectrum be explained by the energy and momentum transfer due to the excitation of
DLs?

Consider both the energy range of Hard X-Ray emissions (> SkeV) and Soft X-Ray
emissions (< SkeV). The HXR mostly are generated via thick-target bremsstrahlung
while SXR result from free-free electron scattering. A consequence of plasma heating in
coronal loops are the bright emissions of soft X-rays and extreme ultraviolet (EUV) radi-
ations. Coronal HXR emissions correspond to low photon energies (< 30keV), and their
characteristics are consistent with the radiation from a hot quasi-thermal plasma. Instead
the chromospheric *footpoint” emission is thought to be generated by a vast numbers of
non-thermal particles accelerated during a flare.

Let us further assume that the electrons are beamed from the primary acceleration sites
at the topside of coronal loops, the electron spectra are primarily nonthermal (Antonucci
1995). Then the observed coronal thermal emission in the collisionless coronal plasma
should be generated through dissipation of the original nonthermal electron beam.

The simulated evolution of the space-averaged distributions of beam electrons as well
as of the return-current electrons is depicted in Fig. 5.6. One can see the space-averaged
distribution of the original non-thermal beam (V,; > V,.) exhibits heating after the ap-
pearance of DLs at 7 = 1400w;§ = 280a);l.1. A similar behavior is observed in the
space-averaged distribution of the return-current, which can be seen in the lower panel
of Fig. 5.6. As one can see in the figure DLs can inhibit the bulk motion of electrons.
This is not the behavior of ideal DLs that consist only of a potential drop. The separately
concerned plots of electron distributions shows that the direct beam- and return-currents
are enormously slowed down, while the non-thermal distribution is broadening. This af-
fects mostly the lower energy part of electrons which contribute rather to the generation
of SXT and coronal HXR. Another interesting point to notice is that the higher energy
part of the direct beam is not incfluenced too much, which might explain the nonthermal
chromospheric HXR sources. Note that (Zharkova 1997) drew a similar conclusion that
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Figure 5.7: Combined spatially-averaged electron distribution function of beam and re-
turn current. For the right panel, the space-averaged downward-propagating (V, > 0)
distribution function at (" = 421a)‘l.1) is shown in blue dashed line, while the initial dis-

tribution is shown in black solid line.
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5.6 Discussion and Conclusion

the return-current mainly results into electron density depletion and the spectrum flatten-
ing at low energy part, with using their CEM model (Collisional, Electric and converging
Magnetic field).

Consider their effects on electrons, we suggest that DLs play a role as an energy
converter that transfers the original bulk energy of beam into thermal energy. The same
effect is true for the return-current. After DLs transformed the electron drift energy into
thermal energy, they gradually fade away. The reason is that the acceleration of fast
electron holes takes away electric field energy. DLs disappear when free beam energy
drops to the marginal threshold of any instability. In Figure 5.6 the averaged electron
motion of individual species, their currents, are shown as black solid lines. The heavier
background ions are also thermalized meanwhile.

To understand the observed HXR broken-power-law spectrum, we look at the com-
bined space-averaged distribution of beam and return-current. As one can see in Fig. 5.7,
a considerable amount of return current electrons is dragged along by the beam toward
the positive propagation direction after the appearence of DLs (T" = 421a);l.1). This results
in a total density increase of the downward-propagating electrons (positive V,), especially
in the low energy range. The right panel of Fig. 5.7 shows the space-averaged distribution
at simulation time 7" = 421a);l.1 in blue dashed line, comparing with the initial distribution
in black solid line, the low energy electron for the downward-propagating part (positive
V.) has a higher density than higher energy range, hence we obtained a broken-power-law
spectrum at the late stage of electron beam evolution. Note that the initial thermal veloc-
ity of return current electron is ¢/6, which is also the normalized velocity in simulation,
therefore the normalized energy in the spectrum is around 7keV. To compare with the
observed HXR spectrum, our spectrum of electron distribution evolution from simulation
agrees in non-relativistic energy range, e.g. the normalized energy E = 16 corresponds to
112keV in flare HXR spectrum.

The plasma environment we simulated here is the quasi-homogeneous part of the coro-
nal loop above the transition region. Below the transition region the plasma density has
strong density gradient. The impact cross section depends on the background plasma den-
sity and the incoming electrons, with different drift energy, should cause emission peaks
at different altitude in chromosphere, as shown in Fig. (4) of (Aschwanden 2002). If
this electron beam created at the late stage of the nonlinear beam evolution can further
travel down to the chromosphere by maintaining this distribution characteristics, it even-
tually radiates HXR through collisional Bremstrahlung. Since the downward-propagating
electron is dense in low energy part, two indeces are required for the drift-Maxwellian
distribution fitting, hence revealing a broken-power-law energy spectrum.

5.6 Discussion and Conclusion

In order to understand the evolution of electron spectrum in the solar corona we have
investigated the interaction of a precipitating beam of energetic electrons with its self-
generated return current. For this purpose we have carried out a linear instability analysis
and an one-dimensional Vlasov code simulation of a return-current beam plasma system
for typical coronal parameters.

In preceding studies, instabilities in beam-current systems are usually considered of
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ion-acoustic type (Watt et al. 2002); (Biichner & Elkina 2006). This is the case of only
one electron beam in the system. An energetic electron beam in the corona will, however,
induce an oppositely directed return current flow which maintains the current-free condi-
tion. Our sub-system dispersion analysis, applied to coronal plasma parameters, shows
that forward and backward unstable waves are generated by different origins. In addi-
tion to an ion-acoustic instability along the original electron beam direction, an electron-
acoustic two-stream instability is excited along the return-current direction. The later one
has larger growth rate and dominates the linear stage.

To consider the nonlinear instability evolution and wave-particle interaction of the
saturated state, a Vlasov code simulation was performed. We found that multiple double
layers develop in the system. Spectrum analysis of the generated electric field allowed us
to analyze the evolution of the nonlinear structures out of the linear instability phase, the
so called double layers (DLs).

After the appearence of DLs also fast electron holes also appear. Due to electron ac-
celeration by the DLs. As post-products of DLs, these fast electron holes propagate at
the drift velocity of the return-current. The phase velocity estimate from dispersion anal-
ysis and from the spectrum analysis shows that the fast electron holes result from a sec-
ondary electron two-stream instability which are generated by the self-interacting return-
current electron beams. The unique generation mechanism of this nonlinear dynamical
phenomenon has not been reported in the previous study of beam and return-current sys-
tem. We conclude that in a current-free return-beam coronal plasma fast electron holes
are generated from a secondary two-stream instability.

Note that this mechanism would also appply to the observed topside ionosphere fast
electron holes if the plasma comprises of a drifting beam and background ions. Indeed,
space plasma observations of the FAST (Fast Auroral SnapshoT) satellite have discovered
a variety of nonlinear localized electric field structures in the auroral ionosphere. Isolated
bipolar field structures have been observed in the downward current region where they
have been interpreted in terms of electron phase-space holes moving upward at speeds on
the order of electron drift velocities (Ergun 1998). Our analyses have revealed a similar
behavior of fast electron holes for the solar coronal condition at the late stage of evolution
that propagate at the drift speed of the return-current.

But, mainly, our results can explain the deduced electron beam density of the chromo-
spheric footpoints (Fletcher 2005) and the commonly observed broken-power-law HXR
spectrum of the solar corona.

Since the return-current is a reasonable assumption in coronal loops because of the
ejected electron beam propagates through a fully ionized plasma, DLs are expected to
generate and influence the electron transport in the beam and return-current system. As
shown in the individual space-averaged distribution of beam and return-current electrons,
we found that higher energy beam electrons are not influenced very much but lower energy
beam electrons are. The kinetic energy of the slowed-down beam electrons changes the
electron propagation direction of return-current. As a consequence, the combined elec-
tron distribution clearly exhibits a density increment of downward-propagating electrons
(positive V,). Hence, we suggest that the observed broken-power-law spectrum is a natu-
ral consequence of the interaction of beam electrons with the self-generated current-free
DLs.
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6 Summary

The plasma transport properties in the collisionless solar corona environment have been
extensively studied in this thesis. The influence of the collisionless transport was first
investigated in this work from the key mechanism that triggers a coronal reconnection,
the origin of the anomalous resistivity in the coronal current sheet, then it follows the
particle acceleration via the collisionless looptop fast shock. In the last chapter we also
demonstrate that the common observation of broken-power-law HXR spectrum is simply
a result of plasma collisionless interaction with the self-generated electrostatic double
layers.

One of the main results in this collisionless transport study is the derivation of the
general multifluid dispersion relation. This general dispersion relation allows a plasma
stability analysis in the linear stage, and it also help us on the identification of the unstable
waves that in later stage creates the plasma phase space structures, which can eventually
cause great influence to the characteristics of plasma transport.

The primary conclusions of each chapter are summarized into following:

1. Electrostatic instabilities generated by multifluid drift motion

In a free energy supporting plasma system, instabilities take place to bring the energy
state back to equilibrium. In a multifluid plasma consideration, the relative drift motion
between each species plays the role as the supporting free energy. From the derived gan-
eral dispersion relation in section 2.1 the system evolution tendency was analyzed. The
derived dispersion relation is the extension of many previous works, and the breakthrough
points of this equation is the consideration that excludes many further assumptions, such
as a specific propagation angle, the cold plasma or electrostatic wave limits. Because
the dispersion relation considers also the relative motions the growth rates of feasible
instabilities can also be calculated instead of the wave frequencies only.

Because of the phase space structures generated by the electrostatic instabilities, mag-
netic reconnections can be triggered in collisionless plasma environment. We also focus
on the idetification of instabilities. A "sub system" method that can use to distinguish the
origin of instability is also developed.

In an one dimensional beam plasma system, two of the famous instatilities, the ion
acoustic instability and Buneman instability, are discussed to share the same characteris-
tics and they are just the two revilements of same mode, one is considered from kinetic
point of view and the other from fluid limit. We further argued, from the kinetic theory
derivation, that the multifluid description of plasma contains the Landau resonance effects
since its expression is the same with the dispersion relation derived from kinetic theory.

2. Anomalous resistivity created by current driven instabilities

The linear stability analysis and nonlinear saturation estimation are carried out for
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the parameter range of coronal plasma. For instability propagating along the direction
of background magnetic field line and plasma drift motion, Buneman mode is the only
dominant mode. However, deviate away from the parallel propagation the modified two
stream instability (MTSI) also plays an important role, and the growth rate of this mode
is comparable to the growth rate of the Buneman mode in the low plasma beta and high
relative drift condition. In general this two dimensional dispersion analysis obtains the
information that is usually lost in the extensively considered one dimensional dispersion
analysis.

In the nonlinear saturation estimation of the instability generated anomalous resistiv-
ity, we use the criteria that the electrostatic waves reach saturation level when the plasma
particles are trapped in potential wells of instability. After trapping the drifts of differ-
ent species are reduced and the system is reduced back to marginal stable state. Via this
criteria the estimated anomalous resistivity generated by MTSI reaches the same order of
magnitude as the Buneman instability. We concluded that in a real current driven plasma
environment the anomalous resistivity contributed from MTSI mode should be taken into
consideration as well as the widely studied Buneman mode.

3. Particle acceleration via the coronal looptop fast shock

From modern solar coronal HXR observations, the energy of energetic particles dur-
ing solar flares is retrieved for different stages. The real plasma outflow of the coronal
reconnection sites is seldom directly observed then this quantity is usually refered as the
Alfvén velocity outside the diffusion region. In both methods the obtained plasma veloc-
ity is still much less than the plasma energy obtained from the coronal footpoint HXR
emissions. This observation discrepancy implies a secondary acceleration mechanism in
addition to the plasma acceleration by magnetic reconnection.

In this PIC simulation with a reflective boundary condition, which is assumed to
mimic the obstacle-like coronal SXR loop, a looptop fast mode shock is formed between
the reflective boundary and the injecting plasma. The mode of this shock is identified
by the signature of the increase of both background magnetic field and plasma density.
With the parameters assumed from the local Alfvén velocity, the original 7keV quasi-
nonthermal plasma outflow can eventually be heated up to a temperature with the ther-
mal velocity 2/3c¢ speed of light. These thermal plasma can be further synchronized to
be injected to the coronal foot point, and revealing emission spectrum in the level of
100 — 200keV, which is the usual observed footpoint HXR radiation.

4. Double layers and the resulting broken-power-law spectrum

The electrostatic double layers, which are generated by large scale phase space struc-
ture, play important roles in the coronal plasma transport. The original Maxwellian
plasma beam injected from the primary acceleration sites gradually evolves into a broken-
power-law distribution via the interaction with double layers.

There are three plasma species in our Vlasov code simulation, an injected electron
beam, the background ions and the induced return current of electrons. The return current
electron is induced by the injected electron beam according the Ampere’s law.

In general there are two instabilities in this system, the forward going Buneman or ion
acoustic mode propagating in the direction of injected electron beam, and the backward
going electron acoustic mode. Because of the smaller mass of electrons the instability
growth rate of electron acoustic mode is higher than the ion acoustic mode in the instabil-
ity linear stage. Therefore the initial free energy goes to this mode instead of ion acoustic
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instability. In the nonlinear stage of simulation large scale electrostatic double layers are
generated. Starting from the appearance double layers the bulk motion of injected elec-
tron beam and return current electron beam are slowed down. Partially the electrons of
return current is dragged along with injected beam, and hence the spectrum in the later
stage of simulation has the characteriscs of broken-power-law. Although this spectrum
looks like the origins of the spectrum coming from two different sources, in our simu-
lation it is shown that spectrum can also be a natural consequence of plasma transport,
as a result of plasma interaction with double layers. The dynamics and energy transfer
between plasma and waves are also discussed in that chapter.

For the extension of this thesis, the actual acceleration mechanism in the fine structure
of looptop fast shock still requires a detailed study, which should contain linear dispersion
analysis of the unstable waves in shock transition layer and a more suitable boundary
condition for simulation that can represent the real coronal SXR loops. We propose that a
multifluid fluid simulation can, till some level, reveal the intresting physics on this topic.
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A Derivation of the General Multifluid
Dispersion Relation

Waves in multifluid plasma have been discussed quite extensively in the plasma research
of past few decades. One of the most detailed discussion is summarized by Swanson
(1989) of the previous work of multifluid waves, and the instabilities in some limits were
also discussed therein. Therefore, the basis of the knowledge in a multifluid plasma sys-
tem is substantial.

Nevertheless, because of the high complexity in the multifluid system, a general dis-
persion relation for the waves and instabilities in a warm magnetized plasma with relative
drifts between different species has not been obtained yet. In spite of some limited cases,
we also intend to find a general expression that is electromagnetic in nature and the prop-
agation angle is arbitrary referring to background magnetic field. Because of the intention
to extend to such a general range, the difficulty of mathematical algebra is expected, al-
though few previous works have been focused on some specific limits and were useful to
their applications. However, to obtain a general dispersion relation can help us to identify
waves and instabilities, and the discrepancy of previous works can be bridged as well.

To find out the general dispersion relation, we start form a set of conservation equa-
tions of mass, momentum and energy. Because the plasma is comprised charged particles,
the Maxwell’s equations are also used to describe the interaction between each species.
In our consideration the binary collision term is neglected, therefore this equation is not
applicable to very high density situation where the binary collision takes an important
role. The linearized multifluid equations are as follows
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where the notations w,; and « are defined as below
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As discussed in section 2.1, we are looking for i; and K- if; in terms of an inner
product of a tensor with SE. Therefore we start from K - (A.2)
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In the above equation, the magnetic perturbation b can be derived from Maxwell’s
equation b = ﬁ[? x 6E, then U ; X b be expanded as
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Substituting this back to equation A.8, we have
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In equation A.10, K- R 9 ;) is the term that has not been replaced. To solve we use
Kx(A2)
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Again, the term 9 ;- il; in the above equation is the term that has not been replaced.
To solve this we let the background magnetic field is parallel to the drifts of each species
Q,//U; and then use 3, - (4.2)
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Then we Substitute this back to equation A.11
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Put (A.13) back to (A.10) to replace the last term w. ]J? - (il X 9 ;) then we obtain
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Till this step we have found the term (I? - il;), which should be replaced into wave
equation to find out dispersion relation. Therefore we leave the equation A.14 temporar-
ily and look for a replacement of another term i ;.

Equation A.3 is the wave equation which can be used to solve dispersion relation, and
it can be expressed as
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In the above equation if; X 9 ; has not been transformed, so we use 9 i X (A.2)
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Now replace this term back to equation A.16, we obtain
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In equation A.19 we have obtained the information of if; in terms of K- ;and Tensor-

SE. Combining with the equation A.14 that replaces the term K- ;» We can obtain an
equation that is expressed in the form of Tensor-6F only, the so called dispersion relation.

The procedures are, first replacing i; in equation A.5 to obtain fin terms of K - it s
and then putting finto the wave equation A.15. Till this step, the only term we should
replace is K-i ;» which can be solved by equation A.14. The derived general dispersion
relation, equation 2.19 for a warm magnetized plasma with relative drifts is obtained, and

this relation applies to all wave propagation angles.
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B Wave and Instability Identification
in a Multi-Fluid Plasma

With the one-fluid assumption of a warm magnetized uniform plasma, there are only three
characteristic waves exsiting in the system. This approach is the so-called magnetohydro-
dynamics (MHD) limit, and it is applicable and useful for most of the large spatial-scale
and low-frequency plasma phenomena. However, mumerous highly energetic processes
in space plasma environment such as the particle acceleration in solar flares, or the plasma
transport in the laboratory Tokamak plasma, the kinetic effects should be considered in
order to reflect the self-generated dynamics precisely and also avoid the abuse of physi-
cal parameters assumptions, which are sometimes over-estimated in the sigle fluid model.
The kinetic effects also play important roles in the particle acceleration mechanism or in
the so-called collisionless resistivity (Anomalous resistivity), for which the necessary gen-
eration of local electric field is a key feature, and this is neglected in the charge-neutrality
ideal MHD assumption.

In principle, an electric field in the plasma waves is demonstrated as one or a few
charge-separation sites in the wave fine-structures. In a fully kinetic approach, the net
spatial charge depends on the plasma distribution of each species, hence the value of the
local net charge can be either positive or negative accumulated and local electric fields are
generated. Nevertheless, the kinetic approach of solving plasma problems usually faces
the difficulty of system complexity, especially in the numerical simulations, an inevitable
process is to seek for a compromised fluid description that contains the "to-some-level”
kinetic effect. To obtain the required information of the localized electric field in plasma,
the multi-fluid treatment is a good expression for saving the charge seperation character-
istics, and it also maintains the Gaussian shape plasma distribution for each species so
that the advantage of an efficient numerical calculation is preserved.

In a multifluid system, more plasma waves and instabilities are expected than in MHD,
and indeed these waves are of higher frequency than those in the MHD limit because of
the individual motions (as relative moving fluids) of different species, and most important
of all the mutual interaction of different species are also considered. In addition, numer-
ous kinds of current driven instability are triggered in the multifluid system according to
the provided free energy, which are exihibited as the relative drifts of each species. In
appendix A we derived the general electromagnetic dispersion relation of a warm magne-
tized plasma. In this section it is focused on the method of how to distinguish the different
instabilities in a three-fluids electrostatic plasma.

Because of the complexity in multifluid system, many waves and instabilities were
previously studied under assumptions, such as the wave propagation angle is either in
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Figure B.1: The dispersion curves of a three-fluids system is shown in this plot. The
upper panel exhibits the real frequencies of each branches and the lower panel shows the
corresponding grwoth rates of the unstable modes.

parallel or perpendiclar to ambient magnetic field. Different names are given for differ-
ent conditions, and sometimes even for the waves of the same branch in the dispersion
surface. Therefore it causes great confusion for the understanding of the wave nature and
also the transition from one angle to another. In addition, even for a single propagation
direction names are sometimes misused when there are more than two species existing
in the system. The wave frequencies, the real part of the solution of dispersion relation,
are connected to each branches, therefore the instability modes shown in dispersion plot
are considered the same although their corresponding growth rates are very different. To
introduce the basic concept of waves and instabilities identification, we should start from
an electrostatic case in the multifluid system.

In Fig. B.1 a typical three-fluids dispersion plot along the direction of magnetic field
is shown. An ion species appears in the system as the background medium and the disper-
sion curves are all based on the ion reference frame. In this setup there are two counter-
streaming electron species drifting along the background magnetic field. All these three
components are cold, in order to discuss the simplest case, and the charge-neutrality is
set, 1.e. the total electron density is equal to the background ion density. The positively
drifting electron beam has a normalized velocity V) 47, = 3, which is normalized to the
unit of background Alfvén velocity, and the negatively drifting electron has a velocity
Vaaripr = —4.5.

Several wave modes and two instabilities are shown in this plot. Because of the rela-
tive drift between ions and electrons, the electron plasma frequencies are Doppler-shifted
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Figure B.2: The real frequency and growth rate of the electron-electron system are shown
in this plot. The relative speed between two electrom species is the same as the value used
in Fig. B.1.

referring to ions. This Doppler-shift effect is demonstrated as the inclined frequency
branches, either with positive or negative slops. In the reference of electrons, we see
the electron Langmuir waves propagate both forward and backword to the drift, although
in fact they are just oscillations and their group velocities are zero, two Doppler-shifted
branches of one drifting species are shown in the dispersion plot. To distinct one wave
from the other in this Doppler-shifted pair, we call a branch is forward propagating if the
phase velocity is faster than the drift velocity in the ion rest frame, and backward propa-
gating if the phase velocity is slower than the drift velocity. With this discrepancy there
are two electron Langmuir waves to both the positively drifting and negatively drifting
electron species. It is the same to the background ion, two ion Langmuir oscillations are
also propagating forward and backward to ion reference frame. One point to be addressed
is, the information of this ion Langmuir oscillation do not really propagate, since in cold
plasma limit the sound velocities are zero, but the phase velocities are not zero.

With the knowledge of how to distinguish different waves, we then look at the drift
instabilities caused by the wave-coupling of those branches. It’s clear that two instabilities
correspond to the forward and backward directions. It is quite surprising that, although the
dispersion curves of the real wave frequency are similar for both propagation directions
and the drift velocities are not too different, which is shown in the upper panel of Fig.
B.1, the corresponding growth rates of these coupling have very different values, which
is shown in the lower panel of Fig. B.1. In reality this suggests that the causes of these
instabilities can come from different origins, but the complicated dispersion curves does
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Figure B.3: The real frequency and growth rate of the electron-ion system are shown in
this plot. The electron existing here mimics the backward drifting flow, and the relative
speed between ion and electron is the same as the value used in Fig. B.1.

not allow a clear distinction of wave coupling at the first glance. To clarify the instability
nature, we carry out a "sub-system" analysis to identify the instability modes in a complex
system.

With an implied electromagnetic field, in general, species with smaller mass usually
respond to the force more instantaneously and heavior particles require longer time to
react according to the higher inertia. Therefore in a two electrons and one ion species
system, we expect the interaction between the two electron species would respond faster,
and the frequencies and growth rates can be found from the dispersion relation

2 2
w pe2

(W—-Fk-Va? (w—-Fk-Vy)

(B.1)

The dispersion curves of Eq. B.1 are shown in Fig. B.2. It is obvious the instability
shown here is the result of the interaction of two electron LLangmuir waves, or the electron
acoustic waves when the thermal effects of electron are considered. Hence it is appropriate
to call this instability an "electron acoustic instability". It is shown that the highest growth
rate along the background magnetic field is around ¥y = 15w, with the relative drift
between two electrons V = 7.5.

With the same token, the interaction between the background ion and the forward
streaming electrons can also be analyzed with the consideration of these two species only.
The expected wave coupling in this circumstance is between the backward propagating
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electron Langmuir wave and the forward propagating ion Langmuir wave, or the electron
acoustic wave with ion acoustic wave in thermal case, and this has been studied by Bune-
man (1958) in his famous work. The dispersion relation of the sub-system is expressed
as

2 2

wpi pe
0=1- T (BZ)
W (w—k- Ve

The dispersion curves of Eq. B.2 are shown in Fig. B.3. We can see the highest
growth rate in this case is around y ~ 3w,,; with a drift between ion and electron V = 3. It
is very different from the growth rate of electron acoustic instability, and conventionally
this instability is called "Buneman instability".

To the first order of correctness, the interactions of every two species are consid-
ered. The last interaction between the background ion and the backward drifting electron
shows no instability because the electron acoustic instability in the negative direction has
a much higher growth rate and with the same electrostatic nature, therefore the provided
free energy is taken by the forward drifting electron instead of the background ion, an-
other Buneman mode is not expected in this direction. In this analysis, it is shown that
even a single interaction between each two species in a multifluid complex system is still
preserved as its orginal characteristics with only two species. The abundence of infor-
mations contained in a multi-species system can be actually broken down and analyzed
in a relatively physical transparent "sub-system". Therefore with the "sub-system" we
described here, it is possible to identify different modes in a complicated system.
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