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Summary

The study of stellar oscillations allows one to constrain the structure and dynamics of stel-
lar interiors to a precision that cannot be achieved with other methods. This dissertation
focusses on the measurements of the parameters (frequencies, amplitudes, linewidths, and
rotational splitting) of the global modes of solar-like oscillations observed in the Sun and
in the Sun-like star HD 52265. The thesis is organized in three main parts: (i) an im-
plementation and validation of a global fit of stellar oscillation power spectra using solar
observations, (ii) an application of this method to original 4-month-long CoRoT observa-
tions of the solar-like star HD 52265, and (iii) an extension of the fitting method to time
series with gaps. My main results concern HD 52265: the mode frequencies of the radial,
dipole and quadrupole modes are measured with the highest precision achieved so far for
a solar-type star and, for the first time, I measure unambiguously the effect of rotation on
oscillations in a solar-type star.

Analysis of 14 years of disk-integrated solar observations with SoHO/VIRGO: This
data set spans more than a full sunspot cycle. Based on the maximum likelihood method
I perform global fits of the solar oscillation power spectra using 4 months of observations
at a time. The global parametric model prescribes smooth variations of the parameters
with radial order. I determine the parameters of solar p modes with degrees ` ≤ 2 ranging
over 14 consecutive radial orders. The model parameters include rotation and the incli-
nation angle of the rotation axis to the line of sight. By comparison with published mode
frequencies, I find that my measurements are essentially unbiased and have errors that are
consistent with expectations, hence validating my global fit for application to Sun-like
stars other than the Sun.

Analysis of 4 months of CoRoT observations of HD 52265: This star is particularly
interesting as it is a Sun-like star and it hosts a planet. At the time of writing, the observa-
tions of HD 52265 provide the best oscillation power spectrum which is currently avail-
able for a distant solar-like star. In particular, the radial, dipole, and quadrupole modes
of oscillation are well resolved over a range of 10 consecutive radial orders. The derived
large and small separations, ∆ν = 98.84 ± 0.12 µHz and δν = 8.14 ± 0.20 µHz, provide
strong constraints on the density, mass, and age of the star. For example, the precision on
the mean stellar density is 0.4% and the precision on the mass is about 2%. Even though
the azimuthal components of the non-radial modes of oscillation are not resolved there
is direct evidence for rotational broadening of the peaks in the power spectrum, which
allows to measure the stellar angular velocity Ω and the inclination angle i of the rotation
axis. Combined with estimates of rotation derived from the modulation of the light curve
by the passage of starspots, I find 2.1 ≤ Ω/Ω� ≤ 2.5 and 27◦ ≤ i ≤ 55◦. Assuming
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Summary

the stellar rotation axis and the normal to the orbital plane of the companion are aligned,
i = ip, the radial velocity measurement of Mp sin ip can be turned into a constraint on the
mass of the companion: 1.3 ≤ Mp/MJup ≤ 2.4. This strongly suggests that HD 52265b is
a planet and not a brown dwarf, while it also illustrates the connections between astero-
seismology and exoplanet science.

Fitting method for the analysis of gapped time series: I implement a new MLE method
to determine the mode parameters of solar-like oscillations with higher precision and less
bias compared to a standard fitting method. In the case of a 2 week observation of one
single mode of solar-like oscillation with a signal-to-noise ratio S/N = 6, and using a
typical single-site observation window (duty cycle of 30%), the frequency estimate of the
new method is by a factor of two more precise than the estimate obtained with the old
method. The analysis of ground-based observations of stellar oscillations should benefit
from the application of the new fitting method.
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1 Introduction

1.1 General purpose of helio- and asteroseismology

Helio- and asteroseismology are tools to investigate the interior structure and the evolution
of the Sun and distant stars. Many stars of various types and evolutionary stages undergo
global oscillations, which can be observed at the stellar surface in brightness or velocity.
These oscillations, in particular their frequencies, contain precious information on stellar
interiors, e.g. the sound speed. See, e.g., Cox (1980), Unno et al. (1989), and Aerts et al.
(2010) for general presentations of the theory of stellar oscillations and, e.g., Christensen-
Dalsgaard (2002) for a review of helioseismology.

The theory of stellar structure is a well-established branch in astrophysics (e.g. Kip-
penhahn and Weigert 1990, Hansen et al. 2004). Until only recently, tests of the theory of
stellar structure and evolution relied mostly on the study of stellar clusters where stars are
assumed to have the same age and chemical composition (e.g. VandenBerg and Stetson
2004). However, helio- and asteroseismology make possible the study of the structure of
isolated stars and offer independent methods to test and refine the theory of stellar evolu-
tion. The confrontation of the measured oscillation frequencies and those calculated from
models provide stringent constraints on the input physics of the models.

Thanks to our ability to make images of the solar surface, about 107 modes of os-
cillations have been measured in the Sun. This provides a very detailed model of the
sound speed, temperature, density, and internal rotation of the Sun (e.g. Gough et al.
1996, Christensen-Dalsgaard et al. 1996, Thompson et al. 2003). The detection of os-
cillations in distant stars is a lot more challenging. Asteroseismology is becoming a
reality thanks to advanced ground-based spectrographs (e.g., CORALIE, VLT/UVES,
AAT/UCLES, HARPS) and the space missions MOST (Microvariability and Oscilla-
tions of STars, Walker et al. 2003), CoRoT (Convection, Rotation, and planetary Tran-
sits, Baglin et al. 2006) and Kepler (Borucki et al. 2010). A few tens of modes of global
oscillations (radial, dipole, and quadrupole modes) have been detected at once in several
solar-like pulsators: for example, αCen A, B (Bouchy and Carrier 2002, Kjeldsen et al.
2005), Procyon (e.g., Arentoft et al. 2008), η Boo (Kjeldsen et al. 2003), 70 Oph A (Car-
rier and Eggenberger 2006), HD 49933 (Michel et al. 2008, Appourchaux et al. 2008),
HD 181420 (Michel et al. 2008, Barban et al. 2009), HD 181906 (Michel et al. 2008,
García et al. 2009), KIC 6603624, KIC 3656476, KIC 11026764 (Chaplin et al. 2010),
and HAT-P-11 (Christensen-Dalsgaard et al. 2010). In the future, the asteroseismology
of many thousands of stars in various stages of their evolution will enable us to tackle
several long-standing problems, such as stellar dynamos, stellar convection, and the rota-
tional history of stars.
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1 Introduction

The main outcome of asteroseismic studies are precise estimates of the fundamen-
tal stellar parameters, e.g. stellar radii, masses, ages, and initial chemical compositions.
These are required in several fields of astrophysics. For instance, Prantzos (2009) argues
that the age-metallicity distribution, which is an indicator for the chemical evolution of
the Milky Way, is difficult to interpret due to uncertainties in the stellar ages. While clas-
sical age estimates, e.g. from isochrones, have typically uncertainties of ∼ 50% (Saffe
et al. 2005), seismic mass constraints are expected to be much more precise. For a star
of solar age, the uncertainty on the seismic age may be as low as a few hundred million
years as we shall see in this thesis.

Another potential application of asteroseismology is the study of solar and stellar
magnetism, and stellar activity cycles in particular (e.g. Rempel 2008, Lanza 2010). This
requires the study of the internal rotation, convection, and magnetic activity of many stars.
The latitudinal differential rotation or the depth of the convection zone can potentially be
measured by means of asteroseismology, as demonstrated by Verner et al. (2006), using
disk-integrated observations of solar oscillations.

The detection and characterization of exoplanets have become one of the most vibrant
fields in astrophysics. Stello et al. (2007) emphasized the importance of asteroseismology
to supplement planetary transit measurements. Transit measurements and follow-up spec-
troscopy must be supplemented by the asteroseismology of planet-host stars in order to
constrain the fundamental parameters of the planets within a few percent, especially their
masses and ages. Space missions like Kepler and especially PLATO (if selected) plan to
exploit this exciting possibility.

1.2 Observations of solar-like oscillations
Oscillations in stars like the Sun are excited by turbulent convection in the near surface
layers (e.g. Goldreich and Keeley 1977, Stein et al. 2004). In addition to Sun-like stars,
solar-like oscillations can also be observed in K and G giants, e.g. ξ Hya (Frandsen et al.
2002), or ε Oph (De Ridder et al. 2006). Solar-like stellar oscillations can be measured
both by photometry and spectroscopy. Photometric observations of stellar oscillations
measure the brightness variations of the star. Periodic expansion and contraction lead to
temperature variations which cause a change in the light flux. The oscillations in the Sun
have very low intensity amplitudes of a few ppm. In addition the displacement of the
stellar surface caused by the oscillations can be measured spectroscopically in terms of
Doppler shifts of the absorption lines in the spectrum of the star. In the Sun, the line-
of-sight doppler velocities are of the order of a few cm/s, which is small compared to
surface convective motions or the 2 km/s rotation. The mode amplitudes result from the
complicated interplay of mode excitation and damping (e.g. Houdek et al. 1999). Kjeldsen
and Bedding (1995) found that the velocity amplitude, vosc, of solar-like oscillations scales
like vosc ∝ (L/M)α where L and M are the luminosity and the mass of the star, and α ∼ 0.7
Samadi et al. (2007b). The oscillation amplitude increases as a star evolves on the main
sequence towards the red giant branch.

Photometric observations are technically less demanding than spectroscopic observa-
tions. On the other hand, velocity measurements have a significantly lower level of back-
ground noise relative to the oscillation signal (e.g. Harvey 1988, and compare Figure 1.1
and Figure 2.2 in this work).
2



1.2 Observations of solar-like oscillations

Figure 1.1 shows an observation of the Sun with the GOLF instrument (Global Oscil-
lations at Low Frequencies, Gabriel et al. 1997, Gelly et al. 2002) aboard the SoHO space-
craft (Solar and Heliospheric Observatory). This instrument measures disk-integrated ra-
dial velocities as a function of time, v(t). The top panel of the figure shows a two-hour
section of a time series with a cadence of 20 seconds. The five-minute oscillations of the
Sun which were first detected by Leighton et al. (1962) are evident. Information on the
modes of individual oscillations may be recovered in Fourier space. For this purpose, the
bottom panel of Figure 1.1 shows a power spectrum, P, of a one-year GOLF time series.
Only the radial, dipole, and quadrupole modes (` ≤ 2) are clearly visible. Modes of higher
spherical-harmonic degrees have much lower amplitudes in disk-integrated sunlight. The
comb-like structure in Figure 1.1 is the characteristic signature of high overtone, low-
degree (n >> `) solar-like oscillations. This pattern of solar-like oscillations is discussed
in Section 1.3.

In the case of the Sun it is also possible to record spatially resolved images of the solar
surface as a function of time. This is realized for instance by the MDI instrument (Michel-
son Doppler Imager, Scherrer et al. 1995) aboard SoHO. Such observations allow one to
study modes of much higher degree (` up to about 3000). The study of the high-degree
modes enables us to investigate the subsurface layers of the Sun in three-dimensions. For
reviews of the field of local helioseismology see Gizon and Birch (2005) and Gizon et al.
(2010b).

The precision on asteroseismic inferences, e.g. stellar mass and age, depends on the
precision of the determined mode frequencies. This requires long and uninterrupted time
series with high signal-to-noise ratio. The total length T of a time series determines
the frequency resolution, 1/T , in Fourier space. Gaps in the time series result in the
convolution of the Fourier spectrum with the Fourier transform of the observation window.
Due to this convolution the power in a frequency bin is spread over some frequency range.
Furthermore, the Fourier amplitudes at different frequencies become correlated. These
two effects make the data analysis significantly more complicated (see Chapter 4 of this
work).

Long and uninterrupted time series can only be achieved by setting up ground-based
networks of telescopes or by observing from space. There are two main ground-based
observation networks dedicated to helioseismology, BiSON (Birmingham Solar Oscilla-
tions Network, e.g. Chaplin et al. 1996) and GONG (Global Oscillation Network Group,
e.g. Harvey et al. 1996). Both networks consist of six stations located at different lon-
gitudes to guarantee a high duty cycle of the data. BiSON data for instance extend now
over three decades and accomplish a duty cycle of ∼ 80% in long-term on a yearly basis
(Chaplin et al. 1996). Asteroseismic observations on the ground rely on collaborations
organizing multi-site campaigns, e.g. WET (Whole Earth Telescope, Nather et al. 1990)
and the Delta Scuti Network1. In the near future the SONG network (Stellar Observations
Network Group, e.g. Grundahl et al. 2008) is expected to provide long-term (∼4 month)
radial-velocity measurements of distant stars with a duty cycle comparable to the BiSON
data.

Observations from space guarantee long time series and high duty cycles (& 90%).
These observations are also not affected by perturbations of the earth atmosphere. SoHO

1http://www.univie.ac.at/tops/dsn/intro.html
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1 Introduction

Figure 1.1: Disk-integrated observation of solar acoustic oscillations. The top panel
shows a 2-hour section of a time series of the Sun observed with the GOLF instrument
aboard the SoHO spacecraft. The time series shows radial velocity measurements of the
disk-integrated light of the Sun. The five-minute oscillations are clearly visible. The bot-
tom panel presents the solar power spectrum of a 1 year observation with GOLF. The
comb-like structure of the solar oscillations is evident. The power in the grey-shaded sec-
tion is shown in the inset. The Sun-as-a star power spectrum is composed of low-degree
modes as indicated by the numbers labeling each peak. The red arrows define the regular
spacing of the individual modes in terms of the large separation, ∆ν = νn+1 ` − νn`, and the
small separation, δν = νn` − νn−1 `+2.
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1.3 Basic properties of solar-like oscillations

for instance is operating since 1996 and carries three experiments suited for helioseismic
studies: GOLF, MDI, and VIRGO. The VIRGO instruments (Variability and solar IRadi-
ance and Gravity Oscillations, Fröhlich et al. 1995, 1997) measure irradiance fluctuations,
which will be used in this thesis. This year the Solar Dynamics Observatory (SDO) was
launched to replace the SOHO/MDI instrument. For asteroseismology, the CoRoT and
Kepler space telescopes provide time series with a total length of 4-6 months and a duty
cycle of about ∼ 90%.

1.3 Basic properties of solar-like oscillations
Here I provide a brief outline of the main properties of solar-like stellar oscillations. Solar-
like oscillations are caused by acoustic waves trapped in spherical-shell cavities. They are
also known as p modes, for pressure modes. Acoustic waves propagate with the speed of
sound c =

√
γp/ρ where γ is the first adiabatic exponent, p is pressure and ρ is density.

Assuming an ideal gas law, we have p/ρ = RT/µ, where T is temperature, R is a constant,
and µ is the mean molecular weight. The sound speed, c ∝ √

T/µ, increases towards the
center of the star as does the temperature. For the Sun c ∼ 10 km/s at the surface and
c ∼ 500 km/s at the center.

For a spherical, non-rotating star, stellar oscillations can be expressed as a superpo-
sition of spheroidal eigenmodes. In a spherical-polar coordinate system with radius r,
colatitude θ, and longitude φ, a scalar quantity, like pressure, can be written as

p(r, θ, φ, t) = Re
∑

n`

∑̀
m=−`

An`m pn`(r)Ym
` (θ, φ) exp(i2πνn`mt). (1.1)

where Ym
` is a spherical harmonics, An`m is a complex mode amplitude, and pn`(r) is

the eigenfunction of the mode with frequency νn`m. For a spherical-symmetric star the
mode frequencies of the individual azimuthal components of a multiplet are 2` + 1-fold
degenerate. Each mode of oscillation is labeled by a set of three integers {n`m}: the
radial order n denotes the number of nodes in the radial direction, the spherical harmonics
degree ` corresponds to the total number of lines of node on the sphere, and the azimuthal
order m = −`,−`+1, . . . , ` corresponds to the number of node lines that cross the equator.
Modes with ` = 0 are called radial modes. Modes with ` ≥ 1 are non-radial modes. At
fixed frequency, the penetration depth of a particular mode depends on degree `: modes
with low ` penetrate deeper into the stellar interior than modes with higher `. At fixed
`, modes with large values of n penetrate deeper than modes with low n. Thus, different
modes probe different regions of a star.

Tassoul (1980) derived a very useful asymptotic expression for the p-mode frequen-
cies in the limit n >> `. The result may be written as (see also Gough 1986)

νn` '
(
n +

`

2
+ ε

)
∆ν − [A`(` + 1) − B]

∆ν2

νn`
, (1.2)

where

A =
1

4π2∆ν

[
c(R)

R
−

∫ R

0

1
r

dc
dr

dr
]
. (1.3)
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In Equation (1.2) ε = ε(ν) and B are determined by the reflection properties near the
surface (e.g., Gough 1986) and the large separation is

∆ν =

[
2
∫ R

0

dr
c(r)

]−1

. (1.4)

The large separation is the inverse of the sound travel time through the stellar diameter.
It scales like the dynamical time scale and is proportional to the square root of the mean
stellar density: ∆ν ∝ ρ1/2. Equation (1.2) describes a uniform spacing of modes with
constant angular degree ` and consecutive radial order n:

∆νn` ' νn+1 ` − νn`. (1.5)

The large separation is easy to measure in the solar power spectrum in Figure 1.1.
Neglecting the term in the surface sound speed in Equation (1.3) and assuming B to

be small (Gough 1986) the second term of Equation (1.2) gives rise to the small frequency
separation between adjacent ` = 0 and ` = 2 modes:

δνn` = νn` − νn−1 `+2 ' −(4` + 6)
∆ν

4π2νn`

∫ R

0

1
r

dc
dr

dr. (1.6)

The small separation is illustrated in Figure 1.1.
Deviations from spherical symmetry lift the degeneracy and cause a splitting of the

azimuthal components. For example, magnetic fields and stellar rotation. Rotation lifts
entirely the azimuthal degeneracy of the frequencies. For a star that rotates slowly with
angular velocity Ω(r, θ) around the polar axis θ = 0, the mode frequencies can be written
to first order as

νn`m = νn`0 +
m
2π
〈Ω〉 (1.7)

with

〈Ω〉 =

∫ R

0
dr

∫ π

0
dθ Kn`m(r, θ)Ω(r, θ). (1.8)

The kernel function Kn`m gives the spatial sensitivity of the mode’s frequency perturba-
tion to rotation; it depends solely on the eigenfunctions of the unperturbed spherically-
symmetric stellar model (e.g., Christensen-Dalsgaard 2002). The rotational frequency
splitting is defined as

δν(rot)
n`m = νn`m − νn`0. (1.9)

For the Sun, the rotational splitting can be measured for thousands of modes using spa-
tially resolved observations of oscillations. The above equation can be inverted by solving
a linear system of equations. This gives the internal angular velocity as a function of lat-
itude and depth down to about half the solar radius (e.g., Howe 2009). A major achieve-
ment of helioseismology has been the discovery that the latitudinal differential rotation of
the Sun persists throughout the entire convection zone, until it transitions to rigid body
rotation in the radiative zone.

For uniform rotation, i.e. Ω = const., Ledoux (1951) derived an expression for the
rotational splitting:

δν(rot)
n`m =

m
2π

(1 −Cn`)Ω ' m
2π

Ω (1.10)

Here, Cn` is the Ledoux constant, which is << 1 for a slowly rotating star.
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1.4 Interpretation of stellar oscillation frequencies

1.3.1 Other types of stellar oscillations
This work is focused on solar-like oscillations, i.e. randomly excited and damped p modes.
For the sake of completeness I note that there are also other types of oscillations and
excitation mechanisms.

For gravity, or g modes, the restoring force is buoyancy. G modes are expected in
the Sun but have not been unambiguously confirmed so far. They have great potential to
probe the central regions of the Sun since their amplitudes are at maximum there. For a
recent review on the quest for solar g modes, see e.g. Appourchaux et al. (2010). In other
types of stars g modes have been observed, e.g. in evolved stars like subdwarf B (sdB)
stars and white dwarfs (e.g. Green et al. 2003, Winget and Kepler 2008).

Concerning the excitation mechanism, the oscillations in many stars are driven by a
heat engine, the κ−mechanism (see e.g. Cox 1980). A κ-mechanism may sustain oscil-
lations in certain regions of a star where the opacity κ = κ(ρ,T ) increases with density
and temperature. This condition is satisfied for some stars in partial ionization zones of
particular elements. Oscillations which are excited by a κ-mechanism are long-lived with
respect to the length of the observation (τ >> T ) and are commonly described in terms of
sine functions. A κ-mechanism acts in a large variety of oscillating stars, e.g. Cepheids,
βCepheids, δScuti stars, sdBs, and white dwarfs (e.g. Aerts et al. 2010).

1.4 Interpretation of stellar oscillation frequencies
The goal of asteroseismology is to deduce stellar fundamental parameters, in particular
the radius, mass, and age, from the frequency measurements. For distant stars the seis-
mic measurements are restricted to a few tens of modes only. For solar-like stars the
frequency separations ∆ν and δν have particular high diagnostic potential. As discussed
in Section 1.3 the large separation is linked to the mean density of the star, ∆ν ∝ ρ1/2, and
is thus directly related to its mass and radius.

The small separation δν is sensitive to the age of the star. The integral in Equation (1.6)
is sensitive to the sound speed gradient dc/dr near the stellar core. Nuclear burning leads
to an increase of the helium fraction in the core while the hydrogen content goes down.
Thus, the mean molecular weight µ increases. Assuming that the core temperature does
not change much while the star remains on the main sequence, the sound speed decreases
in the core and dc/dr gives a positive contribution to the integral in Equation (1.6). Thus,
δν decreases as the star evolves.

Figure 1.2 shows an asteroseismic Hertzsprung-Russell diagram (HRD, Christensen-
Dalsgaard 1984, 1988), i.e. a representation of the small separation versus the large sep-
aration. Here the asteroseismic HRD shows stellar evolutionary tracks for models with
solar initial chemical composition and various stellar masses. The asteroseismic HRD
illustrates how measurements of the large and small frequency separation can be related
to the stellar mass and the core hydrogen abundance, i.e. the evolutionary state of the
star. Thus accurate measurements of ∆ν and δν translate into precise estimates on the
stellar mass and age within a few percent. The prospects of deducing the stellar mass
and age from measurements of ∆ν and δν strongly depend on proper modeling. For in-
stance, Christensen-Dalsgaard (1993), and Monteiro et al. (2002) pointed out that the
stellar models are sensitive to several parameters, e.g. the heavy-element abundance, the
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1 Introduction

Figure 1.2: Asteroseismic Hertzsprung-Russell diagram, i.e. a representation of the small
separation δν versus the large separation ∆ν. The solid lines show stellar evolutionary
tracks for stars with various masses and solar chemical composition. The dotted lines
correspond to isopleths of constant central hydrogen abundance. The fraction of hydro-
gen at the star’s center is indicated by the numbers at the right end of each dotted line.
Estimates of the large and the small separations derived from the data analysis of stellar
time series allow to constrain the mass and the evolutionary state of a particular object.
Figure courtesy of J. Christensen-Dalsgaard.

initial hydrogen abundance, and the mixing length parameter of convection in the stellar
models.

In addition to the determination of stellar fundamental parameters seismic measure-
ments may also be used as diagnostics of several internal properties of the star. Sharp
features in the sound speed profile of the star can give oscillations in the regular pattern of
the mode frequencies of solar-like oscillations. These acoustic glitches may be analyzed
in terms of the second difference, ∆2νn` = νn−1,` − 2νn` + νn+1,`, and have a high diagnostic
potential even for low-degree modes with ` ≤ 3. By means of the second difference it is
possible to measure the envelope helium abundance (e.g. Basu et al. 2004), the location
of the near-surface helium ionization zones (e.g. Verner et al. 2006, Houdek and Gough
2007), and the depth of the base of the convection zone (e.g. Monteiro et al. 2000, Ballot
et al. 2004, Verner et al. 2006, Houdek and Gough 2007). The asteroseismic inference of
stellar structure requires very precise estimates on the mode frequencies. Monteiro et al.
(2000) pointed out that the precision of the mode frequencies must be better than 0.1 µHz
to determine the depth of the convection zone. Such high precision is only achieved if
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long and continuous time series and oscillation spectra with high signal-to-noise ratio are
available. Verner et al. (2006) predicted the required length of a time series to detect the
signatures of the helium ionization zones (T = 3 months), the depth of the convection
zone (T = 6 months), and the envelope helium abundance (T = 10 months). Now that
time series of such lengths are made available by CoRoT and Kepler, the measurement of
such interior properties may become feasible even for distant stars.

1.5 Maximum likelihood estimation of
stellar oscillation parameters

Helio- and asteroseismology rely on accurate mode frequencies. Maximum Likelihood
Estimation (MLE) is a well established method in helioseismology to extract the solar
p-mode parameters from the power spectrum (e.g. Anderson et al. 1990, Schou 1992,
Toutain and Appourchaux 1994, Appourchaux et al. 1998, 2000, Gizon and Solanki
2003). The standard MLE is based on the assumption that the frequency bins in the
power spectrum are uncorrelated. Thus, uninterrupted time series are required. MLE has
been applied recently to analyze time series of solar-like oscillations (e.g. Appourchaux
et al. 2008, Barban et al. 2009, García et al. 2009, Deheuvels et al. 2010). I will use MLE
to analyze Sun-as-a-star data and the CoRoT observation of HD 52265.

The maximum likelihood method allows to estimate the parameters of a particular
model based on the statistics of the power spectrum of an observed signal. Let ỹi = ỹ(ti)
be the signal in the time domain sampled at times ti = i∆t, where i = 0, 1, . . . ,N − 1 is an
integer and ∆t is the sampling time. The total length of the observation is T = (N − 1)∆t.
The discrete Fourier transform of the observed signal is defined as

ŷ j =
1
N

N−1∑
i=0

ỹi e−i2πν jti for j ∈ N, (1.11)

with the frequency ν j = j/T and the frequency resolution 1/T . The power spectrum is the
squared magnitude of the discrete Fourier transform, i.e. P(νi) = |y(νi)|2. Woodard (1984)
showed that the solar power spectrum is distributed as a χ2 with two degrees of freedom.
The probability density for the power at frequency νi is thus an exponential distribution

f (Pi) =
1

Pi

exp
(
−Pi

Pi

)
, (1.12)

where Pi = P(νi) is the observed power and Pi is the expectation value of Pi. For solar-
like oscillations the expectation value of the power near a mode frequency ν0 can be
modeled by a Lorentzian function (power of an exponentially damped harmonic oscillator,
Anderson et al. 1990).

Pi(µ) = HL(ν) = H
1 +

(
ν − ν0

Γ/2

)2−1

. (1.13)

Here, H is the peak amplitude of the Lorentzian and Γ is the the full width at half max-
imum (FWHM) which is related to the lifetime τ of the mode by τ = 1/πΓ. In the Sun,
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the mode linewidth of the low-degree five-minute oscillations is about Γ ∼ 1 µHz corre-
sponding to a lifetime of τ ∼ 4 days. I introduced the notation Pi = Pi(µ) to point out that
the expectation value of the power is modeled by a set of parameters

µ = {ν0,Γ,H}. (1.14)

If the section of interest of the power spectrum contains more than one mode (and modes
with ` ≥ 1) the power spectrum can be modeled as a sum of Lorentzians. In that case µ
contains the mode parameters (ν0,Γ,H) of each mode and possible additional parameters,
e.g. the stellar angular velocity Ω. The vector µ may also contain the parameters which
describe the stellar and instrumental background in the power spectrum.

Because the frequency bins are independent, the joint probability density function
(joint PDF) of the power spectrum is given by the product of probabilities

F(µ) =
∏

i

f (Pi,µ). (1.15)

In practice one minimizes the likelihood function

L(µ) = − ln F(µ) =
∑

i

(
ln Pi(µ) +

Pi

Pi(µ)

)
. (1.16)

The ultimate goal of the MLE is to find the maximum likelihood estimates, µ?, that max-
imize the probability of observing the sample data:

µ? = arg min
µ
L(µ). (1.17)

There are several methods to minimize L(µ). I applied the downhill simplex method
(Chapter 2 and 3 of this thesis) and the direction set method (Chapter 4 and 5 of this
thesis, e.g. Press et al. 1992).

I note that the assumption of independent frequency bins in Equation (1.15) is valid
only if the observed time series is continuous and does not contain gaps. Gabriel (1994)
derived a joint PDF for the Fourier line of a gapped time series. In Chapter 4, maximum
likelihood estimators of gapped time series are implemented for the first time and tested
for solar-like oscillations and long-lived oscillations.
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2 Implementation and validation of a
global fit of stellar oscillation power
spectra using solar observations

The main objective of this work is the analysis of time series of Sun-like stars. My inten-
tion is to implement a global fit of stellar oscillation power spectra. For global fits, the
complete oscillation power spectrum is fitted at once including all identified low-degree
modes (` ≤ 2). I will further assume that the mode parameters frequency, linewidth, and
amplitude vary smoothly with the radial order n so that a simplified parameterization can
be used. I will calibrate and check it with Sun-as-a-star data from the VIRGO instrument
onboard SoHO. The SPM data from the VIRGO instrument measure irradiance variations
of the disk-integrated sunlight. In Section 2.1, I will describe the data that I use for the
analysis. The parameterization of the solar power spectrum for the global fit is presented
in Section 2.2, and finally, the results of the analysis are discussed in Section 2.3.

2.1 Solar observations with SoHO/VIRGO
The objective of the VIRGO instrument is the investigation of the solar interior using
p modes measured from spectral irradiance and radiance variations. A detailed descrip-
tion of the VIRGO-instrument is given by Fröhlich et al. (1995). Two sunphotometers
(SPM) are part of the VIRGO-instrument and measure the disk-integrated spectral irradi-
ance at three different wavelengths (blue at λ = 395 nm, green at λ = 500 nm, and red at
λ = 865 nm) with a cadence ∆t = 1 min. SoHO has observed the Sun since 1996 allow-
ing the measurement of solar p-mode parameters over more than a full sunspot cycle. For
the global fit of the solar data I will split the VIRGO data into blocks of about 4 month
according to the length of a typical CoRoT long run. This allows us to study many blocks
of nearly uninterrupted time series of the Sun. The SPM data of the VIRGO instrument
is well suited to test the global fit and to explore its performance for asteroseismic appli-
cation.

The Level 2 data of VIRGO/SPM was downloaded from the public SoHO science
archive at ESAC (European Space Astronomy Centre). The data set contains in total
4916 days of observation covering almost 14 years (1/1/1996 - 19/11/2009). For this
analysis, I use the data of the green filter. The data reduction of the raw lightcurves was
carried out year by year. The time series of each year was detrended using a two-day
triangular filter. Missing data and outliers bigger than 7 σ were replaced by zeros. The
full time series is shown in Figure 2.1. Next, the full time series was divided into sections
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2 Implementation and validation of a global fit using solar observations

Figure 2.1: Fourteen years of Sun-as-a-star data obtained with SoHO/VIRGO (SPM-
instrument, green channel). For practical reasons only one data point every 1000 points
is shown. The grey shaded regions are 35 sections with a length of 120 days each and a
duty cycle ≥ 97%. The black regions are sections of the data set which does not have a
duty cycle ≥ 97% for a block of 120 days. Details on the data reduction are given in the
text.

with a length of T = 120 days. For the data analysis I only chose sections with a duty cycle
higher than 97 %. The constraint on the duty cycle ensures a time coverage comparable to
CoRoT observations and allows us to apply the standard maximum likelihood estimation
as described in Section 1.5. In this way the full VIRGO data set was divided into 41
blocks of 120 days with 35 blocks fulfilling the condition on the duty cycle. These "good"
4-month blocks data are displayed in Figure 2.1.

Figure 2.2 shows the power spectrum of a 120 day VIRGO time series. The comb-
like structure of low-degree p modes is evident in the frequency region 2200 µHz < ν <
4100 µHz. The power of the solar p modes peaks around ν ∼ 3000 µHz corresponding
to a period of ∼ 5 min on top of a frequency-dependent background. The background
increases at low frequencies. The background noise in the VIRGO irradiance observa-
tions is much higher than the background in velocity data (cf. Figure 1.1). The noise
background is due to convection and photon noise. There is clear evidence for modes
with ` ≤ 2 as shown in the inset. The large separation ∆ν and the small separation δν02

between modes with ` = 0, 2 are easy to see.
A common representation of solar-like oscillations is the echelle diagram (Grec et al.

1983) where the power at a given frequency is plotted against the frequency modulo a
folding frequency ∆̃ν. In other words, the power spectrum is divided into ∆̃ν-wide inter-

12



2.1 Solar observations with SoHO/VIRGO

Figure 2.2: Oscillation power spectrum of a 120 day time series observed with
SoHO/VIRGO. The solar-like oscillations are evident between ν = 2000 − 4000 µHz.
The vertical dashed lines mark the frequency range of the global fit. The power in the
grey shaded region is amplified in the inset. It shows two series of modes with ` ≤ 2
corresponding to the sections n∗ = 23 − 24 in Figure 2.3. The large separation ∆ν and the
small separation δν are indicated by horizontal arrows.

Figure 2.3: Echelle spectrum of the oscillation power spectrum from Figure 2.2. The
frequency resolution is reduced by a factor of three for clarity. The folding frequency is
∆̃ν = 135.3 µHz. Three distinct ridges corresponding to modes with ` = 0, 1, and 2 are
clearly visible. The distance between the ridges for modes with ` = 0 and ` = 2 is the
small separation δν. In this particular realization, there is a very weak signature of ` = 3
modes. The horizontal dashed lines mark the frequency range of the global fit. The right
y-axis is an integer which denotes the n?’s section of width ∆̃ν.
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2 Implementation and validation of a global fit using solar observations

vals which are plotted section by section. The folding frequency ∆̃ν is chosen to be close
to the large separation ∆ν. For a proper choice of ∆̃ν all modes with the same angular de-
gree ` are arranged along individual ridges. As an example, Figure 2.3 shows the echelle
diagram of the power spectrum in Figure 2.2. For ∆̃ν = 135.3 µHz the echelle diagram
shows three individual ridges corresponding again to modes with angular degree ` = 0, 1,
and 2. The small separation δν02 between the ridges ` = 0 and ` = 2 is evident. Modes of
oscillation with ` = 3 are expected at lower frequencies with respect to the ` = 1 ridge.
In this particular example, there is only a weak indication for ` = 3 modes. For some of
the 35 blocks the ` = 3 modes are in the noise. I consider only modes with ` = 0, 1, and
2 in the global fit.

2.2 Parameterization of the global fit
Here I describe the parameterization of the expectation value of the solar oscillation power
spectrum for the global fit. The expectation value of the power of a mode of solar-like
oscillation is commonly modeled by a Lorentzian line profile (e.g. Anderson et al. 1990).
This corresponds to the power of an exponentially damped harmonic oscillator. Thus, the
expectation value of the power of the full solar power spectrum, P(ν), is given as the sum
of Lorentzians Ln`m(ν) on top of a global background model, B(ν):

P(ν) =
∑
n`m

Ln`m(ν) + B(ν), (2.1)

where, each mode of oscillation is characterized by a set of mode numbers {n`m}. The
Lorentzian line profile of each mode is given by

Ln`m(ν) = Hn`m(i)
1 +

(
ν − νn`m

Γn`m/2

)2−1

, (2.2)

where Hn`m(i) is the mode height. The mode height for each mode depends on the incli-
nation angle i of the rotation axis with respect to the line of sight. The parameters νn`m

and Γn`m are the mode frequency and the mode linewidth. Mode frequencies, linewidths,
and amplitudes can be described in terms of smooth functions of the radial order n or
the frequency ν. I will describe the specific functional form of these parameters in the
following sections.

For the global fit itself, I will apply a two-step fitting strategy. In the first step, I will
do a fit of the full power spectrum to determine the solar background noise. In the second
step, I will derive maximum likelihood estimates of the oscillation parameters from a
global fit of the oscillation power spectrum.

2.2.1 Fit of the solar background noise
Figure 2.4 shows the power spectrum of a 120 day VIRGO time series on a double-
logarithmic scale. The frequency-dependent background consists of solar and non-solar
contributions. The solar contribution to the background includes convection, e.g. granu-
lation, mesogranulation, and supergranulation (e.g. Fröhlich et al. 1997). The non-solar
contribution to the background is photon noise. The fit of the solar background noise is
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2.2 Parameterization of the global fit

Figure 2.4: Fit of the solar background noise. The grey power spectrum corresponds
to a 120 day time series observed with SoHO/VIRGO. The green spectrum is smoothed
with a 25 µHz-boxcar. The red line is the fit of the smoothed power spectrum including
the oscillation signal and the background noise. The blue dashed line represents the
background noise alone composed of two Harvey models (yellow dashed lines) and a flat
photon noise background (purple dashed line).

Table 2.1: Results of the fit of the solar background noise [Eq. (2.3)-(2.6)]. The values
correspond to the mean and the 1σ standard deviation derived from fits of 35 blocks of
120 day time series of obtained from observations with SoHO/VIRGO.

Convection terms A1 = (1.607 ± 0.082) ppm2 µHz−1

A2 = (0.542 ± 0.030) ppm2 µHz−1

τ1 = (1390 ± 30) s
τ2 = (455 ± 10) s

Photon noise PWN < 0.004 ppm2 µHz−1

P-mode signal PS = (0.081 ± 0.008) ppm2 µHz−1

νc = (3036 ± 48) µHz
σ1 = (625 ± 107) µHz
σ2 = (942 ± 62) µHz
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performed in the frequency range between 100 µHz ≤ ν ≤ 8300 µHz. The upper limit
is set by the Nyquist frequency νNy = 1/(2∆t) ≈ 8300 µHz. I perform a least-square
fit of a smoothed power spectrum to suppress large point-to-point variations and the fine
structure of the solar p modes. For the smoothing I applied a 25 µHz boxcar. The expecta-
tion value of the smoothed power spectrum, Psmooth, is modeled by two terms, one which
describes the p-mode signal, Posc, and one describing the background noise, N:

Psmooth(ν) = Posc(ν) + N(ν). (2.3)

I model the background noise, N(ν), by three components. Two components describe
the solar contribution to the background, e.g. granulation, meso- and supergranulation.
The third component is a flat photon noise, PWN:

N(ν) =

2∑
i=1

Ai

1 + (τiν)4 + PWN. (2.4)

Here, Ai and τi denote the amplitude and the time scale of the i-th component. The
two terms describing the solar background are similar to a Harvey model (Harvey 1985)
except that the exponent is different (Harvey used an exponent of 2). I found an exponent
of 4 fits the smoothed power spectrum better. This confirms the study of Michel et al.
(2009) who found that the exponent for the green channel of VIRGO/SPM is close to
4. According to Harvey (1985) the expected time scales are τ ∼ 5 min for granulation,
τ ∼ 3 h for mesogranulation and τ ∼ 1 day for supergranulation.

The power excess caused by the p modes of the Sun is modeled with an empirical
envelope. Kallinger et al. (2010) for example used a Gaussian to model the p-mode en-
velope of Red Giants. In this study I found that a better fit of the envelope of the p-mode
spectrum may be achieved by a function which is defined as

Posc = PSF(ν, νc, σ1, σ2), (2.5)

where PS is the amplitude of the envelope and F is a function of the form

F(ν, νc, σ1, σ2) =


[
1 +

(
ν−νc
σ1

)2
]−2

, ν ≤ νc[
1 +

(
ν−νc
σ2

)2
]−2

, ν > νc

. (2.6)

The function F is composed of two halves of squared Lorentzians with central frequency
νc and widths σi (i = 1, 2) for frequencies below and above νc respectively. I emphasize
that the function F describes the envelope of the full oscillation spectrum (for the Sun in
the frequency range 2 mHz . ν . 4 mHz) and not the envelope of one single p mode.

Figure 2.4 shows the result of the fit of the smoothed power spectrum, Psmooth, and
the solar background noise, N(ν). Table 2.1 lists the results of the least-square fit of the
solar background noise including the parameters of the p-mode envelope. The numbers
correspond to the mean and the 1σ standard deviation derived from fits of all 35 blocks
of VIRGO data. The characteristic time scale τ2 ≈ 7.5 min corresponds well to the typ-
ical time scale of solar granulation. The time scale τ1 ≈ 23 min is short compared to
the mesogranulation time scale given by Harvey (1985). However, Michel et al. (2009)
note that the mesogranulation peak in the power spectrum may range up to ∼ 1 µHz
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2.2 Parameterization of the global fit

corresponding to a time scale of 1000 s. This is consistent with the time scale τ1 mea-
sured in this work. Supergranulation cannot be detected here since it peaks at frequencies
10 µHz ≤ ν ≤ 100 µHz, i.e. outside of the fitting region. For the photon noise I only
give an upper limit since it is extremely low in 80% of all VIRGO power spectra which
I analyze here. As expected, the power excess caused by the p modes is centered around
3 mHz.

For the estimation of the oscillation parameters the functional form and the parameters
of the model for the background noise N(ν) are fixed. For the estimation of the oscillation
parameters the background is only considered by a free scaling parameter, cbg. I assume
that the non-smoothed background noise can be written as

B(ν) = cbg · N(ν). (2.7)

2.2.2 Mode frequencies and rotational splitting
The estimates of the oscillation parameters are determined by a global fit, i.e. a simulta-
neous fit of the identified modes in the oscillation power spectrum. The frequency range
of the global fit is constrained between 2200 µHz ≤ ν ≤ 4100 µHz, i.e. the frequency
range where p modes are easily identified in the power and echelle spectra (Figure 2.2
and Figure 2.3). I only include those modes in the fit which can be easily identified and
which are clearly above the noise level. At ν < 2200 µHz and ν > 4100 µHz the modes
are in the noise.

The model of the oscillation power spectrum takes into account the regular pattern
of solar-like oscillations. In terms of frequencies, this pattern is defined by the large and
small separation, ∆ν and δν. Here, the the mode frequencies of the p modes, νn`0 = νn`,
are parameterized by a low-order polynomial of the radial order n.

Figure 2.5 shows an echelle spectrum according to Broomhall et al. (2009). These
measurements are based on 23 years of BiSON-data. In the frequency range which is
considered for the global fit, the frequencies can be fitted quite well with a 2nd-order
polynomial:

νn` =

2∑
i=0

c(`)
i (n − n0)i ` = 0, 1. (2.8)

where the c(`)
i are free parameters of the fit. The parameter n0 is an integer and denotes

an arbitrarily chosen "central" radial order. Here, I chose n0 = 21, i.e. near the maximum
signal-to-noise of the solar p modes and close to the center of the frequency range of the
global fit. In Equation (2.8), the c(`)

i can be interpreted as follows: for a particular `, c(`)
0

is the central mode frequency of the mode with radial order n0, c(`)
1 is an "average" large

separation, and c(`)
2 is the first-order deviation from a constant large separation, i.e. the

curvature of the ` = 0 and ` = 1 frequency ridges in the echelle spectrum. Note that
the modeling of the central frequencies with ` = 0 and ` = 1 using a simple parabola is
applicable only in the frequency range 2200 µHz ≤ ν ≤ 4100 µHz. If a larger frequency
range is used, one would need a higher order polynomial.

Figure 2.6 shows the small separation δ02 and δ13 as a function of the radial order n.
The small separations were determined from the frequency measurements of Broomhall
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2 Implementation and validation of a global fit using solar observations

Figure 2.5: Solar p-mode frequencies of modes with ` = 0, 1 in echelle format. The
frequencies are derived from 23 years of BiSON observations (Broomhall et al. 2009).
The 1σ error bars are smaller than the size of the symbols. The red lines show a
2nd order polynomial fit in the frequency range 2200 µHz ≤ ν ≤ 4100 µHz, i.e. the
frequency range of the global fit (indicated by the horizontal dashed line). The red
dashed extended line is the continuation of the 2nd order polynomial to frequencies
ν ≤ 2200 µHz. The blue dashed lines represent a 3rd order polynomial fit for frequencies
1500 µHz ≤ ν ≤ 4100 µHz

et al. (2009). Figure 2.6 demonstrates that the small separation can be approximated well
by a linear function of n. Given the small separation, δνn` = νn` − νn−1`+2, the central
frequencies of modes with angular degree ` = 2 are

νn−1,2 = νn0 − δν02, (2.9)

where the small separation is described as

δν02 = c(2)
0 + c(2)

1 (n − n0) . (2.10)

The coefficients c(2)
i are free parameters and can again be interpreted as follows: c(2)

0 is the
small separation between the ` = 0 mode with n = n0 and the nearby ` = 2 mode with
n = n0−1. The coefficient c(2)

1 is the first-order deviation from a constant small separation.
Note that the small separation δ13 could be modeled in the same way but ` = 3 modes are
not considered in this analysis.

The individual azimuthal components of the multiplets of non-radial modes (` ≥ 1)
are split due to the rotation of the Sun. For a mode of angular degree ` there are 2`+ 1 az-
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2.2 Parameterization of the global fit

Figure 2.6: Small separation δ02 and δ13 as a function of radial order n. The small sep-
aration is determined based on the frequency measurements of Broomhall et al. (2009).
The solid red lines are linear fits to the measured small separations within the frequency
range of the global fit, i.e. 2200 µHz ≤ ν ≤ 4100 µHz or 15 ≤ n ≤ 28 (indicated by the
vertical dashed lines). The red dashed extended lines show the continuation of the linear
fit to lower frequencies and lower radial orders respectively.

imuthal components denoted by m. Here, I assume slow rigid body rotation with angular
velocity Ω. Thus, the splitting of the azimuthal components does neither depend on the
radial order n nor on the azimuthal component m. Under these simplifying assumptions I
write [cf. Equation (1.10)]

νn`m = νn` + mΩ/2π for − ` ≤ m ≤ `. (2.11)

The rotational splitting Ω/2π of the azimuthal components of the non-radial modes is a
free parameter of the global fit.

2.2.3 Mode linewidths
For the Sun, the linewidths of the p modes in the power spectrum depend on frequency.
Overall, the linewidth increases with frequency and reaches a plateau of Γ ∼ 1 µHz (or
τ = 1/πΓ ∼ 4 days) at frequencies between 2500 µHz ≤ ν ≤ 3000 µHz. This particular
frequency dependence of the mode linewidth can be observed for low- to medium-degree
modes (e.g. Chaplin et al. 1998, Libbrecht 1988, Komm et al. 2000). Figure 2.7 shows
the mode linewidth of solar radial p modes (` = 0) as a function of the radial order n.
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2 Implementation and validation of a global fit using solar observations

Figure 2.7: Mode linewidth (FWHM) of the radial modes (` = 0) of the Sun determined
from about 4.5 years of BiSON-data (Chaplin et al. 1998). The mode linewidth is shown
as a function of radial order n. The range of the global fit is indicated by the vertical
dashed lines. The solid red line represents a 3rd order polynomial fit to the linewidth in the
frequency range of the global fit, i.e. between 2200 µHz ≤ ν ≤ 4100 µHz or 15 ≤ n ≤ 28.
The dashed red extended lines show the continuation of the fit beyond the range of the
global fit.

The mode linewidths were determined from about 4.5 years of BiSON-data by Chaplin
et al. (1998). For 18 . n . 23, there is a slight dip of the linewidth. The physics
of the frequency dependence of the p-mode linewidths is complicated. It is determined
by the interplay of mode damping and excitation (e.g. Houdek 2006). As demonstrated
in Figure 2.7 the linewidth of the radial modes can be well approximated by a simple
3rd-order polynomial within the range of the global fit. Thus, I parameterize the mode
linewidth of the radial modes, Γn` = Γn0, as

Γn0 =

3∑
i=0

gi(n − n0)i, (2.12)

where the coefficients gi are free parameters and n0 is defined as in Section 2.2.2. Note that
this empirical model may have to be modified if modes outside the chosen frequency range
are included in the analysis. I note again that the particular choice of the frequency range
for the global fit is solely based on the visibility of p modes in the solar power spectrum
and is not motivated by having a simple dependence of Γ on n (or on ν). Chaplin et al.
(1998) also showed that the linewidth of modes with 0 ≤ ` ≤ 3 obey the same frequency
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2.2 Parameterization of the global fit

dependence, i.e. at a given frequency the linewidth depends very little on the angular
degree. Therefore, I assume that:

Γn1 = Γn0, Γn−1,2 = Γn0. (2.13)

I further assume that the mode linewidth does not depend on the azimuthal order m,
i.e. Γn`m = Γn`.

2.2.4 Mode amplitudes and mode visibility
Solar oscillations show a characteristic distribution of mode amplitudes with a maximum
at ν ∼ 3000 µHz. This amplitude distribution is the result of the interaction of modes
excitation and damping (for details, see e.g. Goldreich et al. 1994, Houdek 2006).

For the global fit the amplitude envelope is modeled by a simple parameterized func-
tion. In Section 2.2.1 the envelope of the power of the solar p modes is modeled quite well
by Equations (2.5)-(2.6). This functional form is adopted to determine the mode height
Hn`m(i) of a mode at frequency νn`m:

Hn`m(i) =
A2

`

πΓn`m
E`m(i) F(νn`m, ν0, σ̃2, σ̃2). (2.14)

In the equation above, A` is the maximum of the amplitude envelope for modes with a
particular angular degree `. The envelope F(νn`m, ν0, σ̃1, σ̃2) is given by Equation (2.6).
The center of the amplitude envelope is denoted by ν0 and σ̃i (i = 1, 2) are the widths
of the envelope below and above ν0. Assuming energy equipartition of the azimuthal
components of the non-radial modes, Gizon and Solanki (2003) showed that the visibility
of the individual m-components depend on the inclination angle, i, of the rotation axis with
respect to the line of sight. The mode visibility, denoted by E`m(i) in Equation (2.14), is
given by

E`m(i) =
(` − |m|)!
(` + |m|)!

[
P|m|` (cos i)

]2
. (2.15)

Here, Pm
` (cos i) denotes the associate Legendre function of degree ` and order m (e.g.

Abramowitz and Stegun 1965). Thus the model of the mode heights, Hn`m(i), includes
seven free parameters: three parameters (ν0, σ1,2) for the amplitude envelope, three pa-
rameters (A`) for the maximum of the envelope for a particular `, and the inclination of
the rotation axis which defines the height ratio of the azimuthal components.

The mode height, Hn`m, is measured in ppm2/µHz. In the literature (e.g. Appourchaux
et al. 2008, Barban et al. 2009), one often finds the mode amplitude, An`m, measured in
ppm which is related to the mode height and the mode linewidth according to

An`m =
√
πHn`mΓn`m. (2.16)

2.2.5 Asteroseismic constraints on Ω and i

Basic stellar oscillation parameters, e.g. mode frequencies, linewidths and amplitudes,
may be determined with a fit of a suitable line profile to a peak in the Power spectrum of
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2 Implementation and validation of a global fit using solar observations

a star. Furthermore, it is possible to infer the rotation of a star and the inclination angle of
its rotation axis from the analysis of the time series. The inclination angle of the rotation
axis may be inferred from the height ratios of the azimuthal components of the non-
radial modes (see Section 2.2.4). Gizon and Solanki (2003) investigated the estimation of
rotation and inclination by means of Monte Carlo simulations of long and uninterrupted
time series. They demonstrated that for a star rotating at least twice as fast as the Sun and
for an inclination angle i ≥ 30◦ both parameters may be estimated with high precision.
Gizon and Solanki (2003) and Ballot et al. (2006, 2008) pointed out that a simultaneous
fit of the rotational splitting and inclination angle of the rotation axis may be difficult to
achieve for slowly rotating stars. In this context, a slow rotator is a star for which the mode
linewidth Γ is of the same order or larger than the rotational splitting, i.e. 2πΓ/Ω & 1. In
such a case the inclination angle i cannot be inferred correctly. However, the so-called
projected splitting Ω sin i can still be estimated accurately. The difficulties of measuring
Ω/2π and i independently for slow rotators should be kept in mind when interpreting the
results of the global fit of the VIRGO data of the Sun and the HD 52265-data in the next
chapter.

2.3 Global fit of the VIRGO data

In this section, I present the results of the global fit of 35 120-day blocks of VIRGO data.
The determination of the solar p-mode parameters is performed with the maximum like-
lihood estimation method (Section 1.5). I applied many random guesses to minimize the
log-likelihood function [Equation (1.16)]. This allows us to test the stability of the fitting
procedure by comparing the distributions of the initial guesses with the results of the fit.
A high number of random initial guesses also improves the chance to recover the global
minimum of the log-likelihood function instead of being confined to a local minimum.
For the analysis of the VIRGO data in this work, I used 100 random guesses for each of
the 35 realizations. The guesses are uniformly distributed around reasonable initial values
for each parameter. For the frequencies and linewidths, these initial parameters are taken
from Broomhall et al. (2009) and Chaplin et al. (1998) respectively. The initial values for
the parameters of the amplitude envelope are taken from Table 2.1. The guesses of the
rotational splitting and the inclination angle of the rotation axis are uniformly distributed
in the range 0.1 µHz ≤ Ω/2π ≤ 1.3 µHz and 0◦ ≤ i ≤ 90◦ respectively.

Figure 2.8 shows an example of the global fit to one block of a 120 day VIRGO time
series. The figure shows the observed power spectrum and the expectation value of the
power obtained with the global fit. The global fit covers a total of 14 radial orders of
modes with ` ≤ 2. At first sight, the result of the fit looks reasonably good over the full
range of the fit. An alternative representation of the result of the global fit is given in
Figure 2.9. The figure shows small sections of the observed power spectrum around the
fitted p modes, and the corresponding expectation value of the power deduced from the
global fit. The sections are ordered according to their angular degree ` and their radial
order n. At the bottom of Figure 2.9, there are average line profiles of modes with ` ≤ 2.
These average line profiles are simply averages from the sections above. The averaging
over several radial orders allows us to inspect the results of the global fit. It is evident,
that the average line profile of the non-radial modes (` = 1, 2) is slightly broader than the
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2.3 Global fit of the VIRGO data

Figure 2.8: Global fit of the solar oscillation power spectrum. Top panel: Power spectrum
of a 120 day time series of SoHO/VIRGO data (black) in the frequency range covered by
the global fit performed in this work. The expectation value of the power determined with
the fit is drawn as a red line. The three frequency regions (i)-(iii) indicated by the vertical
dashed lines are shown enhanced in the panels below. Any of the panels (i)-(iii) shows
one mode with ` = 2, ` = 0, and ` = 1 (from left to right).
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2 Implementation and validation of a global fit using solar observations

Figure 2.9: Global fit of the solar power spectrum of a 120 day time series of
SoHO/VIRGO-data. The figure shows small sections of the observed power spectrum
(black) centered around the mode frequencies. The modes are ordered by their angular
degree ` (increasing from left to right) for 12 consecutive radial orders (n increasing from
top to bottom). The green line represents the fit, i.e. the expectation value of the power. At
the bottom the red line is an average over the radial orders shown above with an average
fit in green. Note that the average ` = 0 mode is slightly more narrow than the non-radial
modes (` = 1, 2) but the azimuthal components are not resolved (for a detailed discussion,
see Section 2.3.4).
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2.3 Global fit of the VIRGO data

average line profile of the radial ` = 0 modes. This can be interpreted as the signature
of rotational splitting of the azimuthal components of the non-radial modes. The splitting
Ω/2π is small compared to the mode linewidth Γ, i.e. 2πΓ/Ω ∼ 2, so that the individual
azimuthal components are not resolved.

Figure 2.8 and Figure 2.9 demonstrate that the global fit of the solar oscillation power
spectrum leads to a qualitatively reasonable results. For a quantitative evaluation, I per-
formed a global fit for all 35 blocks of VIRGO power spectra. In the following sections,
I discuss the results of the estimation of the solar p-mode parameters in detail.

2.3.1 Mode frequencies
Figure 2.10 shows the distributions of the 100 initial guesses and the corresponding fit
results of the frequency parameters for one block of a 120 day time series of VIRGO
data. The panels in Figure 2.10 show the distributions of the coefficients c(`)

i from Equa-
tion (2.8) and (2.10. The result of the global fit for each coefficient shows a single peaked
distribution compared to the uniformly distributed set of initial guesses. The parameters
of the best fit, i.e. those which minimize the log-likelihood function are all located close to
the maximum of the distribution. The distributions of the individual parameters of all 35
blocks of VIRGO data show similar characteristics as those shown in Figure 2.10. Thus,
the global fit of the mode frequencies is stable and does not show a significant bias for
any of the parameters. The estimates of the coefficients c(`)

i allow us to calculate the mode
frequencies of the m = 0 components according to Equations (2.8)-(2.10).

The VIRGO-observations analyzed here span over roughly 14 years. They cover the
full solar cycle 23 and the onset of solar cycle 24. It is known that solar p-mode frequen-
cies vary with solar magnetic activity (e.g. Woodard and Noyes 1985, Chaplin et al. 2001,
Gelly et al. 2002). Recent studies (e.g. Howe et al. 2002, Chaplin et al. 2007, Salabert et al.
2009, 2010) investigated frequency shifts of low-degree solar p modes. Figure 2.11 shows
the variation of the mode frequencies between 1996-2008 as determined in this work. The
frequency shift is defined as the difference of a particular mode frequency measured at a
certain time and the mean frequency averaged over the full time span. Each point in Fig-
ure 2.11 is a yearly average, i.e. the frequency shift is averaged over 2-3 blocks of VIRGO
data. In 1998 and 1999, there are only two blocks with duty cycles higher than 97%, in
2003 no data set fulfills this requirement (cf. Section 2.1, Figure 2.1). The frequency shifts
are furthermore averaged over modes in the frequency range 2500 µHz ≤ ν ≤ 3300 µHz.
In this frequency range the considered modes have both a high signal-to-noise ratio and
a rather small mode linewidth of Γ ≤ 2 µHz ensuring a small frequency uncertainty of
the individual frequency estimates. In this way, frequency shifts for modes with angular
degree ` = 0, 1, and 2 are determined. Figure 2.11 shows a clear correlation between the
frequency shift of the solar p modes and the solar surface activity during cycle 23 between
1996-2007. The mode frequencies increase during solar maximum (∼1999-2002) and de-
crease again with decreasing surface activity. Note that the extended minimum with very
low surface activity beyond 2007 is also recovered in the frequency shifts as the frequen-
cies remain small. Interestingly, the frequencies for the ` = 0 and ` = 2 modes tend to
increase slightly in 2007 and more significant in 2008 while the ` = 1 mode frequencies
keep decreasing. This is in agreement with the studies of Salabert et al. (2009, 2010)
who interpret the `-dependent changes of the frequency variations in terms of different
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2.3 Global fit of the VIRGO data

Figure 2.11: Solar cycle variation of the mode frequencies determined in this work. The
VIRGO data used for this analysis covers the solar cycle 23 and the onset of solar cycle
24. The frequency shifts are defined as the difference between a particular mode fre-
quency, νn`, and the mean frequency, 〈νn`〉, averaged over the full data set. The mode
frequencies are determined with global fits of 35 blocks of 120 day time series of VIRGO
data. They are averaged over one year, i.e. 2-3 blocks, and p modes with frequencies be-
tween 2500 µHz ≤ νn` ≤ 3300 µHz. Different symbols and colors correspond to different
angular degrees of the modes (black: ` = 0; red: ` = 1; blue: ` = 2). The size of the bar
for each symbol represents the 1σ error.

responses to the spatial distribution of the magnetic field. In this context, the increase of
the frequencies of the ` = 0 and ` = 2 modes may indicate an onset of solar cycle 24
with increasing activity at high solar latitudes. The absolute values for the frequency shift
obtained in this analysis can be compared directly with Salabert et al. (2010) who also
analyzed the VIRGO data during solar cycle 23. Considering the total shift of the mode
frequencies, i.e. the difference between the solar minimum and the solar maximum, they
found shifts of the order of ∼ 0.2 µHz for ` = 0 modes and ∼ 0.3 µHz for the ` = 1 and
` = 2 modes in the green channel of VIRGO/SPM. In this work, the total frequency shift
is of the same order of magnitude. The frequency shift of the ` = 1 modes seems to be
slightly higher during maximum solar activity (1999-2002) than the ` = 0 modes. I note
that the error estimates of Salabert et al. (2010) are much smaller than the error bars in
this analysis. This may be attributed to the length of the time series that are analyzed in
both studies. In this work, I analyzed 4-month time series while Salabert et al. analyzed
time series with a total length of one year.
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Table 2.2: Mode frequencies, νn`, determined with a global fit of 35 blocks of 4 month
time series of VIRGO data. The results given here correspond to the central frequency of
the m = 0 components. The mode frequencies correspond to the mean of the measure-
ments of the 35 blocks. The uncertainties are 1σ error bars for a 4 month observation (see
text in Section 2.3.1 for details on the derivation of the uncertainty estimates).

Mode frequency νn` [µHz]
n ` = 0 ` = 1 ` = 2

14 2218.07 ± 0.16
15 2228.94 ± 0.11 2291.90 ± 0.13 2351.88 ± 0.13
16 2362.45 ± 0.08 2425.63 ± 0.09 2485.94 ± 0.10
17 2496.20 ± 0.07 2559.62 ± 0.07 2620.22 ± 0.07
18 2630.20 ± 0.06 2693.86 ± 0.06 2754.77 ± 0.06
19 2764.45 ± 0.06 2828.37 ± 0.06 2889.56 ± 0.06
20 2898.95 ± 0.06 2963.12 ± 0.07 3024.60 ± 0.06
21 3033.70 ± 0.07 3098.14 ± 0.07 3159.89 ± 0.07
22 3168.70 ± 0.07 3233.41 ± 0.06 3295.43 ± 0.09
23 3303.94 ± 0.08 3368.94 ± 0.06 3431.21 ± 0.12
24 3439.43 ± 0.11 3504.72 ± 0.08 3567.25 ± 0.15
25 3575.17 ± 0.14 3640.76 ± 0.11 3703.53 ± 0.20
26 3711.15 ± 0.18 3777.06 ± 0.15 3840.06 ± 0.25
27 3847.39 ± 0.22 3913.62 ± 0.21 3976.83 ± 0.31
28 3983.87 ± 0.28 4050.43 ± 0.29

Table 2.2 lists the central frequencies of the modes determined with the global fit in
this work. The measured frequencies correspond to the mean derived from the frequency
estimates of the 35 blocks of VIRGO data. The uncertainty estimates correspond to 1σ
error bars of a 4 month observation. To derive these uncertainties, the standard devia-
tions from frequency measurements during one year, i.e. 2-3 blocks of VIRGO data, are
averaged over the full time span of the observation. Here it is assumed that the mode
frequencies do not change much within one year of observation. The results of the fit of
the mode frequencies is also illustrated in Figure 2.12. In this figure, the results of my
global fit are directly compared with the mode frequencies of Broomhall et al. (2009).
The Broomhall frequencies are determined from 23 years of observation with BiSON.
Due to the length of the data set, the uncertainties of the Broomhall frequencies are small
compared to the uncertainties determined in this work. This is particularly true at low
frequencies ν . 3700 µHz where the mode linewidth is small. At higher frequencies the
uncertainties are comparable. I note that only ∼ 40% of all frequency estimates match
the Broomhall frequencies within 1σ and only ∼ 60% within 3σ. The deviations may be
attributed to the simplicity of the 2nd-order polynomial that is used here to describe the
mode frequencies. As described in Section 1.4, sharp features in the sound speed profile
cause variations of seismic observables, in particular the mode frequencies. These acous-
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Figure 2.12: Frequencies of solar p modes determined with a global fit of 35 blocks of
120 day time series of VIRGO data. The measured frequencies, νn`, are plotted versus
the difference of νn` and the corresponding mode frequency from Broomhall et al. (2009),
νn`,BiSON. The width of the symbols in horizontal direction corresponds to the 1σ error
of a 4 month observation derived in this work. The measured frequencies are ordered by
their angular degree ` (left: ` = 0; middle: ` = 1; right: ` = 2;) and by their radial order
(increasing from bottom to top of each panel). The Broomhall frequencies are derived
from 23 years of BiSON data. The uncertainties for frequencies ν . 3700 µHz are small
compared to the error estimates determined in this work. At higher frequencies, they
are comparable to the uncertainties determined in this work. The difference between the
frequencies obtained with the global fit in this work and the BiSON frequencies can be
attributed to the parabolic dependence of the mode frequency with radial order that was
applied to parameterize the mode frequencies in this work.

tic glitches can be related for example to the bottom of the convection zone or at the He II
ionization zone near the surface (e.g. Gough 1990, Monteiro et al. 2000, Basu et al. 2004,
Ballot et al. 2004). These departures from the regular frequency pattern cannot be recov-
ered by the 2nd-order polynomial. This is also illustrated in Figure 2.13 where the large
separation of the radial modes, ∆ν0, is plotted as a function of frequency. The frequency
dependence of the large separation is shown for the frequency measurements of this anal-
ysis as well as for the BiSON frequencies of Broomhall et al. It is obvious that the global
fit allows us to measure the global frequency dependence of the large separation, i.e. the
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Figure 2.13: Large separation ∆ν of the solar radial modes (` = 0) as a function of fre-
quency. The solid red line shows the large separation deduced from the mode frequencies
from Table 2.2, i.e. the results of this work. The dashed red lines represent the 1σ error.
The symbols show the large separation determined from 23 years of BiSON observations
(Broomhall et al. 2009). For frequencies ν > 3500 µHz the symbol size represents the 1σ
uncertainty of ∆ν, at lower frequencies the error is smaller than the symbol size.

overall increase of the large separation with frequency, but not the point-to-point variation
that is visible in the BiSON frequencies.

Based on the frequency estimates determined in this work (Table 2.2), the mean large
and small separation may be calculated. The solar large separation, ∆ν�, depends on the
frequency, i.e. it increases with frequency (Figure 2.13). Therefore I calculate the mean
solar large separation according to

〈∆ν�〉 = 〈νn+1,` − νn`〉n` with 20 ≤ n ≤ 22, ` ≤ 2. (2.17)

Here, 〈∆ν�〉 is a weighted average over the three radial orders with the highest signal-to-
noise ratio (see Table 2.4) and degree ` ≤ 2. Thus, I obtain a mean large separation of the
Sun: 〈∆ν�〉 = (135.01 ± 0.05) µHz.

Using the same arguments as for the large separation, I calculate a mean small sepa-
ration of the Sun according to

〈δν�〉 = 〈νn0 − νn−1,2〉n with 20 ≤ n ≤ 22, (2.18)

i.e. again a weighted average over the three radial orders with the highest signal-to-noise-
ratio. Thus I obtain: 〈δν�〉 = (9.13 ± 0.05) µHz.
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2.3 Global fit of the VIRGO data

Figure 2.14: Uncertainties of the mode frequencies of the radial modes (` = 0). The red
symbols represent the uncertainty of the global fit of 35 blocks of 120 day time series of
VIRGO data (cf. Table 2.2). The solid line corresponds to theoretical uncertainties of an
individual mode of oscillation according to (Libbrecht 1992).

The estimates of the frequency uncertainty listed in Table 2.2 correspond to 1σ error
bars of a 4 month observation. To assess the order of magnitude of these uncertainty
estimates, they may be compared to a theoretical estimate according to Libbrecht (1992).
Libbrecht derived a relation for the frequency uncertainty σν of an individual mode of
solar-like oscillation as a function of the signal-to-noise ratio H/B, the total length T of
the observation, and the mode linewidth Γ:

σ2
ν = f (β)

Γ

4πT
with: f (β) = (1 + β)1/2[(1 + β)1/2 + β1/2]3. (2.19)

Here, β is the inverse signal-to-noise ratio, B/H, where H is the height of the mode in the
power spectrum, and B is the background noise at the location of the mode. Theoretical
estimates of the frequency uncertainty according to Equation (2.19) are calculated using
the results of this work for the mode linewidth Γ, the mode height H, and the background
noise B (see Section 2.2.1). Estimates on the mode linewidth Γ and the signal-to-noise
ratio H/B are listed in Table 2.4 and will be discussed in detail in Sections 2.3.2 and
2.3.3 respectively. Figure 2.14 compares the measured frequency uncertainties of the
radial modes (` = 0) with the theoretical expected estimates. The frequency uncertainty
determined in this work is of a reasonable order of magnitude. However, compared with
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2 Implementation and validation of a global fit using solar observations

Figure 2.15: Distribution of 100 initial guesses (thick, grey) for the linewidth parameters
and the corresponding results of the global fit (fine, black) for one particular block of
a 120 day VIRGO time series. The individual panels correspond to the coefficients gi

(i = 0, 1, 2, 3) of a 3-order polynomial according to Equation (2.12). The vertical dashed
lines in each panel denote the best fit.

the uncertainty estimates according to Libbrecht’s formula, they are smaller by a factor of
about two to three. The differences are particularly evident at low and high frequencies,
i.e. for modes with a small signal-to-noise ratio. This may again be attributed to the simple
2nd-order polynomial that is used to model the mode frequencies. Obviously the mode
frequencies at low signal-to-noise ratio are mainly constrained by the fit of the modes
with high signal-to-noise. Furthermore I emphasize that the Libbrecht formula gives the
frequency uncertainty of a single mode of oscillation. Thus, they cannot be compared
directly with the frequency uncertainties derived from the global fit which is performed
here.

2.3.2 Mode linewidths
The mode linewidth of the radial modes, Γn0, is parameterized by a 3rd order polynomial
of the radial order n [cf. Section 2.2.3, Equation (2.12)]. Figure 2.15 shows the distri-
butions of the 100 initial guesses of the linewidth parameters, gi (i = 0, 1, 2, 3), and the
corresponding results of the global fit for one block of a 120 day VIRGO time series.
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2.3 Global fit of the VIRGO data

Figure 2.16: Mode linewidth, Γn0, of the radial modes (` = 0) as a function of the corre-
sponding mode frequency, νn0. The linewidth is determined with a global fit of 35 blocks
of 120 day VIRGO time series. The solid red line indicates the result obtained in this anal-
ysis including the 1σ error bar (dashed red line, see text for details). The black symbols
represent the mode linewidth of the radial modes according to Chaplin et al. (1998).

While the initial guesses for all linewidth parameters are uniformly distributed, the dis-
tributions of the fit show a single peak. The best fit for any of the parameters is located
close to the maximum of theses distributions. Even though the distributions of the fits are
not quite symmetric, they suggest that a potential bias of the individual coefficients gi is
rather small. Thus, the fit of mode linewidth is stable and overall reliable.

The estimates of the coefficients gi obtained for each of the 35 blocks of VIRGO data
allow one to determine the mode linewidth Γn` according to Equations (2.12)-(2.13). I
found that the mode linewidth does not depend significantly on the sunspot cycle. Thus,
I define the result of the global fit as the median of all 35 blocks. I define the 1σ error
such that the uncertainty interval covers 68% of the results of all blocks. For the radial
modes (` = 0) the results are shown in Table 2.4 and Figure 2.16. In Figure 2.16 the
mode linewidth, Γn0, is plotted versus the corresponding mode frequency. For compar-
ison, the BiSON linewidths according to Chaplin et al. (1998) are presented, too. The
mode linewidths determined in this analysis reflect the overall frequency dependence
quite well. The overall increase of the linewidth with frequency, the plateau in the range
2500 µHz . ν . 3000 µHz including a small dip, and the steep increase at higher fre-
quencies are well recovered. Compared to the BiSON linewidths however, the dip of
the mode linewidth which is expected around ν ∼ 3000 µHz is less pronounced and
slightly shifted to smaller frequencies. Here, the steep increase of the mode frequencies
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2 Implementation and validation of a global fit using solar observations

Table 2.3: Results of the global fit of the amplitude envelope of solar p modes. The
parameters are determined with global fits of 35 blocks of 120 day VIRGO time series.
The table lists the mean and the 1σ error of the individual parameters of the amplitude
envelope. In order to consider amplitude variations over the solar cycle, the 1σ error
corresponds to the mean of yearly uncertainty estimates, i.e. the standard deviation of 2-3
blocks of VIRGO data is averaged over the full time span of the observation.

Parameters of the amplitudes envelope
Center of the envelope: ν0 = 3067 ± 26 µHz
Width of the envelope: σ̃1 = 564 ± 36 µHz

σ̃2 = 678 ± 28 µHz

Maximum of the envelope: A0 = 4.64 ± 0.13 ppm
A1 = 6.08 ± 0.15 ppm
A2 = 3.69 ± 0.11 ppm

starts already at ν ≈ 3000 µHz. Thus, the linewidths for modes with n = 22 − 24 or
3100 µHz ≤ ν ≤ 3500 µHz are slightly overestimated compared to the corresponding Bi-
SON linewidths. However, even those linewidths match the BiSON measurements within
a 3σ uncertainty range. The slight mismatch may be attributed to the simplified parame-
terization by a 3rd-order polynomial, that is used here to describe the mode linewidth over
the full frequency range of the fit. Furthermore, the measurement of the mode linewidth of
the low-degree solar p modes is often based on much longer data sets than the ones used
in this analysis. The BiSON linewidths shown as a reference here are obtained from an
analysis of a 32 month solar power spectrum so that the results of the global fit concerning
the mode linewidth are still satisfying.

2.3.3 Oscillation amplitudes

The mode amplitudes and the corresponding mode heights are parameterized by an enve-
lope function according to Equations (2.14)-(2.16). This envelope allows one to describe
the p-mode amplitudes with angular degree ` ≤ 2 in the full oscillation power spectrum
using only six free parameters. Three parameters describe the center, ν0, and the width, σ̃i

(i = 1, 2), of the envelope, the other three parameters, A` (with ` = 0, 1, 2), are the max-
ima of the amplitude envelope for the corresponding angular degree `. Figure 2.17 shows
the distributions of the 100 initial guesses and the corresponding results of the global fit of
these parameters for one block of a 120 day VIRGO time series. Comparing the uniform
distribution of the initial guesses with the fit results, it is obvious that the global fit allows
a reliable estimation of the parameters of the amplitude envelopes. The distributions of
the fit results show a well defined single peak. The best fit is close the maximum of any
of the distributions.

The maxima of the amplitude envelope,A`, and thus the mode amplitudes in the indi-
vidual blocks of VIRGO data show a significant variation during the solar cycle, i.e. mode
amplitudes are smaller during the solar maximum and higher during the solar minimum.
In order to derive an uncertainty estimate for the amplitudes according to a 4 month time
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2.3 Global fit of the VIRGO data

Table 2.4: Mode parameters of the radial modes (` = 0) of the Sun obtained in this work.
The parameters are the result of a global fits of 35 blocks of 120 day VIRGO time series.
The error intervals correspond to a 4 month observation. The fit ranges over 14 consec-
utive radial orders (column 1). The mode frequencies νn0 (column 2) correspond to Ta-
ble 2.2 (see also Section 2.3.1). Column 3 lists the mode linewidth, Γn0. The values for the
linewidth correspond to the median of the results of the 35 blocks. The 1σ error intervals
are defined such that 68% of all fits fall within the bounds set by the subscripts/exponents
(i.e. 34% of the fits below/above the median). Column 4 shows the mode amplitudes,
An0 =

√
πHn0Γn0. The values are the mean amplitudes of all 35 blocks of VIRGO data.

To take amplitude variations over a solar cycle into account, the 1σ error corresponds to
the mean of yearly uncertainty estimates, i.e the standard deviation of the amplitudes of
2-3 blocks of VIRGO data is averaged over the full 14 years of data. Column 5 lists the
signal-to-noise ratio of the oscillation modes. It is defined as the ratio of the mode height,
Hn0, and the background noise at the frequency of the corresponding mode, B(νn0).

n νn0 [µHz] Γn0 [µHz] An0 [ppm] Hn0/B(νn0)

15 2228.94 ± 0.11 0.95+0.23
−0.27 1.44 ± 0.08 2.7

16 2362.45 ± 0.08 1.06+0.17
−0.14 1.81 ± 0.09 4.2

17 2496.20 ± 0.07 1.09+0.19
−0.13 2.29 ± 0.09 7.7

18 2630.20 ± 0.06 1.04+0.10
−0.11 2.90 ± 0.09 14.9

19 2764.45 ± 0.06 0.97+0.12
−0.10 3.60 ± 0.11 28.2

20 2898.95 ± 0.06 0.99+0.10
−0.13 4.27 ± 0.12 45.9

21 3033.70 ± 0.07 1.07+0.14
−0.10 4.62 ± 0.13 56.0

22 3168.70 ± 0.07 1.35+0.16
−0.12 4.54 ± 0.13 49.2

23 3303.94 ± 0.08 1.85+0.19
−0.11 4.13 ± 0.12 34.1

24 3439.43 ± 0.11 2.64+0.18
−0.08 3.56 ± 0.10 20.2

25 3575.17 ± 0.14 3.84+0.15
−0.21 2.97 ± 0.08 11.2

26 3711.15 ± 0.18 5.42+0.24
−0.31 2.43 ± 0.07 6.1

27 3847.39 ± 0.22 7.39+0.48
−0.47 2.00 ± 0.06 3.4

28 3983.87 ± 0.28 9.96+0.73
−0.73 1.64 ± 0.05 1.9
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2 Implementation and validation of a global fit using solar observations

Figure
2.17:

D
istribution

ofthe
100

initialguesses
(thick,grey)and

the
corresponding

results
ofthe

globalfit(fine,black)ofthe
am

plitude
param

eters
for

one
particular

block
of

a
120

day
V

IR
G

O
tim

e
series.

T
he

individual
panels

correspond
to

the
central

frequency
ν

0
(top

left),
the

w
idth

σ̃
i (i

=
1
,2;

top
m

iddle/right)
and

the
m

axim
um

of
the

am
plitude

envelopeA
`

(`
=

0
,1
,2,

bottom
row

)
according

to
E

quations
(2.14)-(2.15).T

he
verticaldashed

line
in

each
paneldenotes

the
bestfit.

36



2.3 Global fit of the VIRGO data

Figure 2.18: Mode amplitudes, A0, of the radial modes (` = 0) as a function of the mode
frequency, νn0. The amplitudes are determined from global fits of 35 blocks of 120 day
VIRGO time series. The amplitudes are computed according to Equations (2.14)-(2.16).
The solid line represents the mean amplitudes, the dashed lines correspond to 1σ error
bars.

series, I adopt the same approach as for the mode frequencies. The amplitude parameters
are averaged over the 35 blocks of VIRGO data, i.e. over 14 years. The 1σ error estimates
are defined as the mean of yearly uncertainties. That implies the standard deviations of
the individual parameters from within 1 year, i.e. 2-3 blocks of VIRGO data, are averaged
over the full time span. Table 2.3 shows the mean and the 1σ error estimates on the in-
dividual parameters of the amplitude envelope. The center of the amplitude envelope is
at ν0 = 3067 ± 26 µHz confirming the maximum power of low-degree solar p modes at
∼ 3 mHz. For the radial modes, I derive a maximum amplitude ofA0 = 4.64± 0.13 ppm.
This result matches former measurements of the luminosity amplitude of low-degree so-
lar p modes reasonably well. For instance, Kjeldsen and Bedding (1995) measured a
luminosity variation of (δL/L)550 = 4.7 ± 0.3 ppm where the index refers to a luminosity
variation at a wavelength of λ = 550 nm. This value is determined from velocity mea-
surements of low-degree solar p modes using a scaling relation derived in the same paper.
Kjeldsen and Bedding (1995) relate the bolometric luminosity variation and the variation
at a particular wavelength λ via

(
δL
L

)
bol

=

(
δL
L

)
λ

λ

623nm
Teff

5777K
. (2.20)
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2 Implementation and validation of a global fit using solar observations

Using this scaling relation, the amplitudes of the radial modes determined in this analysis
at λ = 500 nm can be converted to a reference wavelength of λ = 550 µHz. Thus, I
obtain a luminosity variation of (δL/L)550 = 4.22± 0.12 ppm. Kjeldsen and Bedding also
rescaled former measurements from Woodard and Hudson (1983), Jimenez et al. (1990),
and Toutain and Froehlich (1992) and converted them to a reference of λ = 550 nm. Those
studies were based on solar intensity measurements and led to a luminosity variation of
3.6 ppm ≤ (δL/L)550 ≤ 6.5 ppm which matches the results obtained in this analysis very
well.

The estimates of the amplitude parameters allow us to calculate the mode heights,
Hn`m, and the mode amplitudes, An`m, according to Equations (2.14)-(2.16). The mode
amplitudes and their corresponding 1σ error bar is calculated in the same way as for the
amplitude parameters above. I note that the mode amplitudes for modes with ` = 1, 2
follow the same functional form and are only shifted by a factor of A1/A0 ≈ 1.3 and
A2/A0 ≈ 0.8. The amplitudes An0 of the radial modes and their corresponding uncertainty
are shown in Figure 2.18 and listed in Table 2.4. The table also shows the signal-to-noise
ratio Hn0/B(νn0) for the radial oscillations. It is defined as the ratio of the mode height
Hn0 to the background noise B(νn0) at the frequency of the corresponding mode, νn0. The
modes included in this analysis have a signal-to-noise ratio of 2 . Hn0/B(νn0) . 60.

2.3.4 Solar rotation and the inclination of the rotation axis
The solar rotation and the inclination of the rotation axis can in principle be measured
from the splitting of the azimuthal components of the non-radial modes (` ≥ 1) and their
mode height ratio respectively (for details, see Gizon and Solanki 2003). In this analysis
I assumed the splitting to be independent of the azimuthal order m and the radial order n,
i.e. rigid body rotation.

Figure 2.19 shows the solar power spectrum and expectation value for a 120 day block
of VIRGO data for modes with angular degree ` ≤ 2 averaged over 12 radial orders
(cf. Figure 2.9). In this particular example, I obtained a rotational splitting
Ω/2π = 0.40 µHz and an inclination angle i = 76◦. Due to the solar mode linewidth
of Γ & 1 µHz and thus 2πΓ/Ω > 2, the azimuthal components of the non-radial modes are
not resolved. However, the average line profile of the non-radial modes is broader than
the average line profile of the radial ` = 0 modes. This broadening can be attributed to
the contribution of the |m| > 0 components to the overall line profile. I conclude that the
global fit allows us to detect the signature of rotation in the oscillation power spectrum of
a slowly rotating star like the Sun. Finally, Figure 2.20 demonstrates the overall good per-
formance of the global fit. The figure shows the ratio of the observed power spectrum and
the expectation value determined with the global fit, i.e. the ratio of the black and the red
lines in Figure 2.19. This ratio is distributed around one and does not show a significant
bias.

The estimates for Ω/2π and i for the particular 120 day block of VIRGO data dis-
cussed above are derived from a global fit with 100 random initial guesses. The distribu-
tion of these guesses and the corresponding fits are shown in Figure 2.21. The best fit of
the rotational splitting, Ω/2π = 0.40 µHz, seems to be slightly underestimated consider-
ing the distribution of the fit results. For the inclination angle, i, the distribution of the fit
results does not even show a clear peak. On the other hand, the distribution of the pro-
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2.3 Global fit of the VIRGO data

Table 2.5: Results of the global fit for the solar rotational splitting, Ω/2π, the inclination
angle of the rotation axis, i, and the projected splitting, Ω/2π sin i. The numbers in the
second column correspond to the median and the 1σ error of global fits of 35 blocks
of 120 day VIRGO time series. The 1σ error is defined such that 68% of all fits fall
within the interval given by the subscripts/exponents. For reference some approximate
intervals for the expected parameters are listed in the third column. The rotational splitting
corresponds to surface rotation rates between latitudes 0◦ ≤ λ ≤ 60◦. The inclination of
the solar rotation axis is inclined from the normal to the ecliptic plane by ∼ 7◦. The given
interval considers that the actual inclination during a particular observation block depends
on the ephemerides of the Sun.

Parameters for the Sun Global fit (this work) Reference solar values

Rotational splitting Ω/2π [µHz] 0.52+0.12
−0.08 ∈ [0.37, 0.45]

Inclination i [◦] 56 ± 11 ∈ [83, 90]

sin i 0.82+0.09
−0.12 ∈ [0.993, 1]

Ω/2π sin i [µHz] 0.424+0.038
−0.036 ∈ [0.37, 0.45]

jected splitting, Ω/2π sin i, shows a distinct peak with the best fit being very close to the
center of this distribution. This confirms the results of Ballot et al. (2006, 2008): it is very
difficult to measure the rotation and the inclination of the rotation axis reliably for slowly
rotating stars. However, the projected splitting, Ω/2π sin i, can be measured precisely and
unbiased.

The results for the rotational splitting Ω/2π, the inclination i, and Ω/2π sin i obtained
from global fits of all 35 blocks of VIRGO data are summarized in Table 2.5. The numbers
correspond to the median and the 1σ error of all 35 blocks. The table gives also reference
values for the individual parameters. The reference interval for Ω/2π corresponds to a
surface rotation rate at latitudes 0◦ ≤ θ ≤ 60◦. The reference interval for the inclination
considers that the solar rotation axis is inclined with respect to the normal of the ecliptic
by ∼ 7◦ (Carrington 1863). The actual inclination for a particular block of VIRGO data
depends on the ephemerides of the Sun. The estimates on Ω/2π and i obtained in this anal-
ysis are significantly biased with respect to the reference values, i.e. the rotational split-
ting, Ω/2π = 0.52+0.12

−0.08 µHz, is overestimated and the inclination angle, i = 56◦ ± 11◦, is
underestimated. On the other hand, the projected splitting, Ω/2π sin i = 0.424+0.038

−0.036 µHz,
is in very good agreement with the expected solar reference value.

Figure 2.22 shows the estimates on Ω/2π and sin i for all 35 blocks of VIRGO data.
Both parameters are correlated and equally distributed around a constant Ω/2π sin i. The
color map represents the shape of the joint PDF (or the log-likelihood function) in the
Ω/2π-sin i plane. The colors correspond to the value of the joint PDF function obtained
from global fits for various pairs of variates, (Ω/2π, sin i). For each point, the value of
the joint PDF is averaged over all 35 blocks of VIRGO data. The estimates for Ω/2π and
i for all 35 blocks are located around the maximum of the joint PDF. The joint PDF is
very flat around its maximum (see bottom panel of Figure 2.22). So, it is very difficult
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2 Implementation and validation of a global fit using solar observations

Figure 2.19: Solar power spectrum and the corresponding global fit for modes with an-
gular degree ` ≤ 2 averaged over 12 radial orders for one 120 day block of VIRGO data
(cf. Figure 2.9). The observed power is shown in black, the expectation value of the
power in red. The vertical tick marks indicate the central frequencies of the azimuthal
components which are separated by the rotational splitting Ω/2π. The rotational splitting
is assumed to be independent of the radial order and the azimuthal order. The blue and
green profiles at the bottom of each panel show the individual odd and even azimuthal
components of the corresponding averaged line profile.
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2.3 Global fit of the VIRGO data

Figure 2.20: Ratio of the observed solar power spectrum and the expectation value of
the power from Figure 2.19 for modes with ` ≤ 2. The observed power and the fit are
averaged over 12 radial orders. Note that there is no systematic bias for any of the three
cases indicating the reliability of the global fit.
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2 Implementation and validation of a global fit using solar observations

Figure 2.21: Distribution of 100 initial guesses (thick, grey) and the corresponding fits
(fine, black) of the rotational splitting Ω/2π (top) and the inclination angle i of the rota-
tion axis (middle) for one 120 day block of VIRGO data. The bottom panel shows the
projected splitting, Ω/2π sin i, composed of the distributions in the panels above. The
vertical dashed lines indicate the parameters of the best fit.

42



2.4 Discussion: Is the global fit good enough for asteroseismology?

to give a reliable estimate of Ω/2π and i. Finally, the shape of the joint PDF allows us
to give the following statement concerning the purely asteroseismic measurement of the
solar rotation and the inclination of the rotation axis: within a 3σ error interval I find
that the rotational splitting can be constrained between 0.30 µHz ≤ Ω/2π ≤ 1.05 µHz
corresponding to a rotation period of 11 days≤ Prot ≤39 days. The inclination angle of
the rotation axis can be constrained between 0.4 ≤ sin i ≤ 1.0 (or 24◦ ≤ i ≤ 90◦). The two
parameters are correlated and their product is Ω/2π sin i = 0.424+0.038

−0.036 µHz within a 1σ
error bar.

Given the reliable estimate of Ω/2π sin i from the analysis of the time series, the in-
dividual estimates on Ω/2π and i may be further constrained when complementary mea-
surements are taken into account. Figure 2.23 shows a 120 day VIRGO time series and the
corresponding power spectrum at low frequencies (data courtesy of C. Fröhlich). There
are two peaks at ν = 0.40 µHz and ν = 0.59 µHz. These peaks may be attributed to active
regions dragged by solar rotation with a period of Prot = 29 days and Prot = 20 days re-
spectively. There are also two possible harmonics at ∼ 1 µHz and ∼ 1.4 µHz. I emphasize
that this is just one example. For various blocks of data, the exact position of the features
in the low frequency power spectrum may vary slightly. Combining the estimate on the
solar surface rotation with the seismic estimate on Ω/2π sin i allows us to constrain the
inclination angle of the solar rotation axis (see intersection of the corresponding lines in
Figure 2.22). Thus, I obtain 0.66 ≤ sin i ≤ 1.0 or (41◦ ≤ i ≤ 90◦). Note that in this case
the uncertainty on the inclination angle of the rotation axis is dominated by the precision
of the rotation measurement, i.e. a more precise constraint on the solar rotation allows one
to estimate of the inclination angle more precisely.

2.4 Discussion: Is the global fit good enough for
asteroseismology?

In this chapter I implemented a global fit of stellar oscillation power spectra. The global fit
was tested using 4 month blocks of Sun-as-a-star observations from SoHO/VIRGO which
cover a total time span of about 14 years. The parameterization of the expectation value of
the power spectrum takes into account the regular pattern of the global p-mode spectrum
in terms of smooth functions of the radial order n and the frequency ν. With the global fit I
am able to measure the oscillation parameters of the solar p modes as accurate as expected
for a 4 month observation. The large and small frequency variations are measured without
bias over the radial orders 15 ≤ n ≤ 28. Variations of the p-mode parameters over the
course of the solar cycle are recovered. Since the Sun is a slowly rotating star, only
Ω sin i could be measured accurately. The independent estimates on Ω and i are biased.
The simplified parameterization of the expectation value of the global oscillation power
spectrum reduces the number of free parameters for the global fit significantly. In this
analysis, the global fit includes 14 radial orders and modes with ` ≤ 2 and contains 20 free
parameters. A fit with independent parameters for frequencies, linewidths, and amplitudes
contains 128 free parameters. The reduction of the number of free parameters reduces the
computation time significantly and minimize the risk of premature convergence of the
fit. However, due to the simplified model some information is lost, e.g. the details of the
variation of the large separation with frequency.
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2 Implementation and validation of a global fit using solar observations

The global fit can be applied to time series of distant stars. However, the time series
and the star itself have to fulfill several requirements. Time series of distant stars have a
significantly higher noise level than observations of the Sun. The observed star has to be
bright enough so that the oscillation signal is above the noise background. Furthermore,
the data have to be continuous and long enough so that modes with particular radial order
n and angular degree ` are resolved in the power spectrum. To adopt a simple parameter-
ization of the expectation value of the oscillation power spectrum, the mode parameters
of stellar oscillations have to vary smoothly with radial order. Thus, stars that are very
Sun-like seem to be particularly suited. The stars must provide an oscillation spectrum
that allows one an unambiguous identification of the angular degree ` of the modes. For
instance, HD 49933 (Appourchaux et al. 2008) is an F5 dwarf which shows a clear oscil-
lation power spectrum of solar-like p modes but the mode linewidth is comparable to the
small separation such that an unambiguous mode identification is not possible.

Furthermore, the star must not be too evolved. When a solar-like star evolves from the
main sequence towards its subgiant phase it may exhibit so-called mixed modes which
have the characteristics of p modes near the surface and g modes near the stellar core.
These modes show a clear deviation from the regular frequency spacing of modes with
subsequent radial orders. In such a case, the mode frequencies cannot be described with
a simple smooth function. HD 49385 (Deheuvels et al. 2010) is an evolved solar-like star
which is in the transition from the main sequence to the post-main sequence phase. It
exhibits mixed modes which show a clear deviation from the regular frequency spacing.

In the next chapter I will present the analysis of the time series of the Sun-like star
HD 52265 which was observed with CoRoT for 4 months. HD 52265 delivers an excellent
solar-like power spectrum that fulfills all requirements discussed above and allows one to
adopt the global fit.
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Figure 2.22: Map of the joint PDF in the Ω/2π-sin i plane (top panel). The colors rep-
resent the value of the joint PDF for a pair of parameters, (Ω/2π, sin i), determined with
global fits of 35 blocks of 120 day VIRGO time series. The symbols show the results
for Ω/2π and i of the global fits of the 35 blocks of VIRGO data. The solid and dashed
black lines represent the fit result of Ω/2π sin i = 0.424+0.038

−0.036 µHz. The horizontal dotted
lines mark the position of the two peaks in the low frequency power spectrum in Fig-
ure 2.23 and are attributed to solar surface rotation. The contour line shows the 3σ error
of Ω/2π sin i around the minimum of the likelihood function. Bottom panel: Cut through
the log-likelihood function at constant Ω/2π sin i = 0.424 µHz, i.e. a cut along the solid
black line in the upper panel.
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2 Implementation and validation of a global fit using solar observations

Figure 2.23: Solar surface rotation determined from the low-frequency power spectrum.
The top panel shows a 120 day VIRGO time series. The bottom panel displays the cor-
responding power spectrum at low frequencies. The dashed line shows the power spec-
trum oversampled by a factor of 10. The vertical green lines mark two peaks which
are attributed to the surface rotation of the Sun. The peaks are at ν = 0.40 µHz and
at ν = 0.59 µHz corresponding to a rotation period of T = 29 days and T = 20 days
respectively.
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3 Asteroseismic analysis of the
solar-like star HD 52265

In this chapter, I analyze the solar-like star HD 52265 which was observed continuously
for about four months with the CNES-ESA space telescope CoRoT. HD 52265 was pro-
posed as a possible CoRoT target by L. Gizon in 2005 and selected as a primary target
for a CoRoT long-run thanks to the efforts of the CoRoT Scientific Committee (LRa2,
November 2008 to March 2009). The analysis of the data presented in this thesis is origi-
nal. In parallel, the HD 52265 data are being analyzed independently by several members
of the CoRoT Data Analysis Team (DAT), led by J. Ballot. The CoRoT observations are
supplemented by spectroscopic follow-ups with the Narval1 spectropolarimeter installed
on the Bernard Lyot Telescope at the Pic du Midi Observatory (France), led by C. Catala
and H. Bruntt. My results were presented as a poster at the 2010 HELAS IV International
Conference (Gizon et al. 2010a) and will be submitted for publication shortly. They were
compared to the other results from the DAT in the poster by Ballot et al. (2010), which
has resulted in another publication since then (Ballot et al. 2011).

The star HD 52265 is particularly interesting as it is very similar to the Sun with
respect to its fundamental parameters and it is the only solar-like star which was known
to host a planet before the launch of CoRoT. The known properties of both the central star
and its companion are summarized in Section 3.1. The photometric observations with
CoRoT are presented in Section 3.2. In Section 3.3, I will present the HD 52265 power
spectrum. The determination of the stellar background is presented in Section 3.4. In
Section 3.5 and 3.6, I describe the parameterization of the power spectrum model, the
estimation of errors using Monte Carlo simulations, and the global fit itself. The results
of the global fit are presented in Section 3.7.

3.1 The solar-like star HD 52265

HD 52265 (CoRoT 1426, HIP 33719) is a Sun-like star of spectral type G0 V with mag-
nitude mV = 6.29 (Perryman et al. 1997). In the past, HD 52265 was a target of var-
ious spectroscopic surveys which provided us with numerous measurements of its stel-
lar parameters. For details on particular measurements see Gonzalez et al. (2001), San-
tos et al. (2004), Takeda et al. (2005), Valenti and Fischer (2005), Gillon and Magain
(2006). In addition to the CoRoT observation of HD 52265, spectroscopic follow-ups with
Narval@Bernard Lyot were carried out in December 2008 and January 2009 (Ballot et al.

1http://www.ast.obs-mip.fr/projets/narval/v1/
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3 Asteroseismic analysis of the solar-like star HD 52265

Figure 3.1: Location of HD 52265 (red cross) in the Hertzsprung-Russell diagram (HRD).
The size of the symbol represents the uncertainties on the effective temperature and
the luminosity. The other symbols show solar-like stars observed with CoRoT (green
crosses) and Kepler (blue diamonds) as well as the Sun (red asterisk) and αCen A,B
(black crosses). Stellar evolutionary tracks are taken from Marques et al. (2008). They
correspond to evolutionary tracks of stars with solar metal abundances and masses be-
tween 0.8 ≤ M/M� ≤ 1.6. The solid sector of each track represents the evolution on the
main sequence, the dashed sector the post-main sequence evolution.

2011). Overall, the stellar parameters of the individual studies match fairly well, the
most important differences are discussed below. Some important stellar parameters of
HD 52265 are summarized in Table 3.1.

The luminosity of HD 52265 can be derived from the Hipparcos parallax (Perryman
et al. 1997, van Leeuwen 2007), its magnitude, the bolometric correction, and the solar
bolometric magnitude of the Sun. It is determined to be log(L/L�) = 0.29 ± 0.05 (Valenti
and Fischer 2005). Combined with an effective temperature of Teff = 6100± 60 K (Ballot
et al. 2011), HD 52265 is located close to the Sun in the Hertzsprung-Russell diagram
(HRD) as shown in Figure 3.1. In fact, among all solar-like stars observed with CoRoT
so far (see Michel et al. 2008, Appourchaux et al. 2008, Barban et al. 2009, García et al.
2009, Deheuvels et al. 2010, Mathur et al. 2010), HD 52265 is the most Sun-like star in the
HRD. The figure also shows the first solar-like stars observed with Kepler (Christensen-
Dalsgaard et al. 2010, Chaplin et al. 2010). The stellar evolutionary tracks shown in the
HRD are taken from Marques et al. (2008, Model Grid A) and show the evolution of stars
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3.1 The solar-like star HD 52265

Table 3.1: Parameters of the Sun-like star HD 52265 determined from non-seismic mea-
surements and their respective references. Parameters from Ballot et al. (2011) are based
on ground-based follow-ups during the HD 52265 CoRoT observation.

Non-seismic parameter Value Reference

Distance d [pc] 28.95 ± 0.34 van Leeuwen (2007)

Temperature Teff [K] 6100 ± 60 Ballot et al. (2011)

Surface gravity
log g [cm/s2] 4.35 ± 0.09 Ballot et al. (2011)

Luminosity log(L/L�) 0.287 ± 0.048 Valenti and Fischer (2005)

Metallicity [Fe/H] 0.19 ± 0.05 Ballot et al. (2011)

Mass M/M� 1.05 ± 0.15 Valenti and Fischer (2005)

Mass M/M� [1.19, 1.22] various authors?

Radius R/R� 1.255 ± 0.033 Valenti and Fischer (2005)

v sin i [km/s] 3.6+0.3
−1.0 Ballot et al. (2011)

Age [Gyr] 2.7+0.7
−1.5 Valenti and Fischer (2005)

Chromospheric emission
log R′(HK) −5.02 Wright et al. (2004)

? Mass estimates obtained from isochrone fits (Gonzalez et al. 2001, Santos et al. 2004, Takeda et al. 2005,
Valenti and Fischer 2005); typical uncertainties are of the order of σM = 0.02-0.05 M�.

with solar initial chemical composition and masses between 0.8 ≤ M/M� ≤ 1.6. Note
that the evolutionary tracks are not representative for HD 52265 because this star is metal-
rich. Its metallicity was determined in the range of [Fe/H] = 0.19 ± 0.05 (Valenti and
Fischer 2005) and [Fe/H] = 0.25 ± 0.06 (Santos et al. 2004). Tables with abundances of
individual elements can be found, for example, in Gonzalez et al. (2001) and Valenti and
Fischer (2005).

The most controversial parameter that was measured spectroscopically for HD 52265
is the v sin i. Valenti and Fischer (2005) and Gillon and Magain (2006) measured rela-
tively high values of v sin i = 4.7 ± 0.5 km/s and v sin i = 5.0 ± 1.3 km/s respectively.
However, Valenti and Fischer admit that their result may be systematically overestimated
for metal-rich stars with temperatures larger than 5800 K. The most recent study with
Narval@Bernard Lyot led to a smaller value of v sin i = 3.6+0.3

−1.0 km/s (Ballot et al. 2011).
From spectroscopic measurements, fundamental parameters like the stellar mass and

radius can be derived. For instance, the stellar radius was estimated from the luminosity
and the effective temperature to be R = 1.255±0.033 R� (Valenti and Fischer 2005). They
also measured a mass of M = 1.05 ± 0.15 M� using spectroscopic constraints. Note that
this value is at the lower end of the mass estimates for HD 52265. Other authors derived
masses based on isochrones that are centered around M ≈ 1.2 M� (e.g. Gonzalez et al.
2001, Santos et al. 2004, Valenti and Fischer 2005).
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3 Asteroseismic analysis of the solar-like star HD 52265

Table 3.2: Spectroscopic constraints on the planet HD 52265b and its orbit around
HD 52265 according to the most recent study of Butler et al. (2006).

Parameter Value

Mp sin ip [MJup] 1.09 ± 0.11

Period [days] 119.290 ± 0.086

Semi major axis a [AU] 0.504 ± 0.029

Eccentricity e 0.325 ± 0.065

Amplitude K [m/s] 42.1 ± 3.1

Isochrones were also used to estimate the age of HD 52265. Gonzalez et al. (2001) and
Valenti and Fischer (2005) determined an age of τ = 2.1 ± 0.3 Gyr and τ = 2.7+0.7

−1.5 Gyr
respectively. Gonzalez et al. also deduced the stellar age from the magnetic activity
(Donahue 1993, Henry et al. 1996) which was measured in terms of the chromospheric
emission of the Ca II-lines, log R′HK . This way, they found a higher age of τ = 4 Gyr. In
this context, note that the magnetic activity is fairly close to the solar value implying that
HD 52265 is expected to be magnetically quiet (e.g. Wright et al. 2004).

The asteroseismic analysis of the CoRoT observation of HD 52265 is expected to
provide more precise constraints on the fundamental parameters such as mass, radius and
age. For details, see the discussion in Section 6.2.

3.1.1 The planet HD 52265b
The discovery of a companion orbiting HD 52265 was reported independently by Butler
et al. (2000) and Naef et al. (2001). The planet HD 52265 b was discovered spectro-
scopically by the radial velocity method. Its parameters and its orbit were revised by
Butler et al. (2006). The parameters determined in these studies agree well within their
corresponding error bars. According to the recent measurement of Butler et al. (2006),
HD 52265 b is a planet with a projected mass of Mp sin ip = 1.09 ± 0.11 MJup in a long-
period and fairly eccentric orbit. The respective parameters are listed in Table 3.2.

Based on Hipparcos intermediate astrometric data, Han et al. (2001) determined the
inclination angle, ip, of the normal to the orbital plane of HD 52265b with respect to the
line of sight. They determined i = 178.5◦ implying that the system is observed nearly
pole-on. Thus, the mass of the HD 52265b would be Mp ∼ 42 MJup, i.e. clearly above the
most conservative brown dwarf mass limit of MBD > 13 MJup which is defined by the min-
imum mass for deuterium burning (for a review, see e.g. Burrows et al. 2001). However,
Pourbaix (2001) suggested that the results of Han et al. are systematically biased due to
the adopted data reduction procedure. I will discuss the perspective of constraining the
mass of the companion HD 52265b by means of the asteroseismic analysis of its host star
in Section 6.3.
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3.2 Observation of HD 52265 with CoRoT

3.2 Observation of HD 52265 with CoRoT

CoRoT is a CNES-ESA space telescope which performs high precision photometry (see
e.g. Baglin et al. 2006). The mission comprises two simultaneous science objectives, a
planet finding program and a stellar seismology program. The latter part of the mission
includes so-called long runs and short runs, where a limited number of target stars (∼50
objects) are observed continuously for up to ∼150 days and ∼20 days respectively. The
continuity of the long photometric observations is ensured by the polar orbit of the satellite
which allows one the observation of a particular field of stars for ∼180 days. Then, the
satellite is turned by 180◦ from the field of view in the galactic centre to the anticentre
and vice versa.

HD 52265 was a primary target of the second long run directed at the galactic anti-
centre (LRa2) from 11/13/2008 to 3/11/2009. During that time, it was observed for about
117 days. Standard data reduction and correction for instrumental effects as described
in Samadi et al. (2007a) was applied to the raw data to generate a N2-level time series.
The N2-level data provide the stellar flux (in electrons/s) on a regular temporal grid in
the heliocentric reference frame with a sampling of ∆t = 32 s. The duty cycle of the
N2-level data of HD 52265 is 94.6%. The N2-level data contain a very strong noise
component for a few minutes of each orbit when the telescope crosses the South Atlantic
Anomaly (SAA). The data during these times cannot be used and are removed. Thus, the
duty cycle becomes 90.2%. Removing bad data points during the crossing of the SAA
also produces an observation window with very short but regular gaps. Thus, the win-
dow function exhibits a lot of peaks due to the satellite orbit and its harmonics as well as
daily aliases. However, since the gaps are very short, they can be interpolated effectively
using an inpainting algorithm (Sato et al. 2010). This reduces the window effects in the
power spectrum significantly (see Figure 3.2). There remains a long-term trend in the raw
lightcurve, i.e. the electron flux decreases slowly over the observation run. Such trends
are visible in the N2-level data of many objects and are thus attributed to instrumental ef-
fects. In the case of HD 52265 this trend was removed by a fit of a 3rd-order polynomial.
The lightcurve after applying all corrections is shown in Figure 3.2.

3.3 The power spectrum of HD 52265

From the lightcurve of the 117 day CoRoT observation of HD 52265 in Figure 3.2,
I computed a power spectrum using the Fast Fourier Transform algorithm (FFT). The
power spectrum in the frequency range between ν = 0.1 µHz and the Nyquist frequency
1/(2∆t) = 15.6 mHz is also shown in Figure 3.2. The power spectrum of HD 52265
shows the typical characteristics of a Sun-like star, in particular including an excess of
power due to solar-like low-degree p modes around ν ∼ 2000 µHz. For frequencies
ν ≤ 2000 µHz, the background power increases due to stellar convection. For frequen-
cies ν ≥ 3000 µHz, the background is rather flat and dominated by photon noise. The
properties of the stellar background will be discussed in detail in Section 3.4. There are
two peaks at very low frequency around ν ∼ 1 µHz which are interpreted as signatures
of stellar surface rotation (see Section 3.3.2). Despite all efforts to interpolate the gaps
in the time series of HD 52265, there remain some signatures of the satellite orbit in the
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3 Asteroseismic analysis of the solar-like star HD 52265

Figure 3.2: Lightcurve of the 117 day CoRoT observation of the Sun-like star HD 52265
after applying all steps of data reduction and interpolation as described in Section 3.2 (top
panel). The bottom panel shows the corresponding power spectrum in the frequency range
between ν = 0.1 µHz and the Nyquist frequency at 15.6 mHz. The vertical dashed lines
at ν = 23.2 µHz and ν = 323.3 µHz correspond to the first harmonics of the daily alias
and the satellite orbit respectively. The two dotted lines at ν ∼ 1 µHz can be interpreted
as surface rotation of the star (see Section 3.3.2). The grey shaded region at ν ∼ 2000 µHz
represents the frequency range of the low-degree p-modes.
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3.3 The power spectrum of HD 52265

Figure 3.3: Oscillation power spectrum of HD 52265. The comb-like structure of
the solar-like low-degree p modes is clearly visible in the frequency range between
1600 µHz . ν . 2600 µHz. The inset shows a zoom into the grey shaded frequency
region which spans about two radial orders. Low-degree p modes with ` ≤ 2 are iden-
tified as indicated by the numbers. The horizontal arrows show the large separation, ∆ν,
and the small separation, δν.

power spectrum. Even though the daily alias at ν = 11.6 µHz and the satellite orbit at
ν = 161.7 µHz (according to an orbit period of ∼ 103 minutes) are suppressed, their
corresponding first harmonics are still visible. However, the relative amplitudes of these
peaks are smaller than 1% compared to the central peak of the window function so that
they are not expected to affect the data analysis significantly.

Figure 3.3 shows the oscillation power spectrum of HD 52265. The power spectrum
in the frequency range 1600 µHz . ν . 2600 µHz shows the comb-like structure which
is typical for solar-like low-degree p modes. The oscillation peaks in the power spectrum
appear in regular series: a pair of peaks close together and a separated third peak (see
inset of Figure 3.3). Those peaks can be identified unambiguously as modes with ` ≤ 2
(see Section 3.3.1). From the oscillation power spectrum, some rough estimates for the
large and small separation can be determined by eye: the large separation is of the order of
∆ν ∼ 100 µHz, and the small separation between modes with ` = 0 and 2 is δν02 ∼ 8 µHz.
The maximum of the power distribution of the low-degree p modes is at ν ∼ 2200 µHz
corresponding to a period of T ∼ 7.5 minutes.
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3 Asteroseismic analysis of the solar-like star HD 52265

Figure 3.4: Echelle spectrum of the 117 day CoRoT observation of HD 52265 (top panel).
The folding frequency is ∆̃ν = 98.57 µHz. For clarity, the frequency resolution in any
∆̃ν-wide interval is reduced by a factor of three by rebinning. The ordinate on the right
hand side, n?, is a running number which labels the n?’s interval of length ∆̃ν. There
are three distinct ridges corresponding to modes with angular degrees ` = 0, 1, and 2.
The bottom panel shows a collapsed power spectrum, i.e. the ∆̃ν-wide intervals averaged
between 17 ≤ n? ≤ 24. There is no evidence for modes with ` = 3, neither in the echelle
spectrum nor in the collapsed power spectrum.
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3.3 The power spectrum of HD 52265

Figure 3.5: Power spectrum of the 117 day CoRoT time series of HD 52265 at low fre-
quencies. The solid line shows the original power spectrum, the dashed lines is oversam-
pled by a factor of 10. The two green lines represent the assumed signatures of the surface
rotation at Ω/2π = 0.91 µHz and Ω/2π = 1.07 µHz corresponding to a rotation period of
Prot = 12.7 days and Prot = 10.8 days respectively.

3.3.1 Echelle spectrum

I construct an echelle spectrum with the folding frequency ∆̃ν = 98.57 µHz. The echelle
spectrum in Figure 3.4 shows three clearly distinct ridges. The particular structure with
three distinct ridges allows us a direct identification of the ` = 0, 1, and 2 ridges by
comparison with the Sun (cf. Figure 2.3). The two ridges which are close together are
identified as ` = 0 and ` = 2 while the single ridge is identified as ` = 1. The echelle
spectrum does not show any evidence for modes of higher `, in particular no ` = 3 modes
which would be expected to be close to the ` = 1-ridge.

To further demonstrate the existence of modes with ` ≤ 2, I also construct a collapsed
power spectrum, i.e. a power spectrum where the ∆̃ν-wide intervals in the frequency re-
gion of the p modes are averaged. The collapsed power spectrum is also shown in Fig-
ure 3.4. It confirms the existence of three distinct peaks corresponding to modes with
` ≤ 2. There is again no evidence for ` = 3 modes. However, if there is power caused by
` = 3 modes, it may be washed-out in the collapsed power spectrum due to the curvature
of the corresponding ridge in the echelle spectrum. Based on the analysis of the echelle
spectrum so far, I will only include modes with angular degree ` ≤ 2 in the global fit.
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3 Asteroseismic analysis of the solar-like star HD 52265

Table 3.3: Parameters of the least-square fit to the power spectrum of HD 52265 using the
model according to Equations (2.3), (2.5), (2.6), and (3.1). The error estimates correspond
to 1σ standard deviation returned by the fitting algorithm (gradient expansion algorithm).

Harvey models A1 = (45.3+5.6
−5.0 ) ppm2 µHz−1

A2 = (2.3 ± 0.3) ppm2 µHz−1

τ1 = (40900+4700
−4200 ) s

τ2 = (1800+270
−230 ) s

Photon noise PWN = (0.476 ± 0.010) ppm2 µHz−1

P-mode signal PS = (0.276+0.080
−0.062 )ppm2 µHz−1

νc = (2320+190
−180 ) µHz

σ1 = (960+800
−440 ) µHz

σ2 = (310+440
−180 ) µHz

3.3.2 Power at low frequencies: signature of stellar rotation
The analysis of the lightcurve may allow one to derive an estimate on the surface rotation
of the star. The signature of rotation in the lightcurve arise from starspots which are
dragged by the rotating stellar surface. This leads to a modulation of the lightcurve and
a power excess in the low-frequency part of the power spectrum. The study of the low-
frequency part of the power spectrum may lead to useful constraints on the stellar rotation
as shown by e.g. Appourchaux et al. (2008). In other cases the lightcurves of solar-like
stars did not show any signatures of stellar activity (e.g. Deheuvels et al. 2010). The
HD 52265 lightcurve in Figure 3.2 looks similar to a solar time series in the sense that it
is affected by stellar activity.

Figure 3.5 shows the power spectrum of the HD 52265 lightcurve in the low-frequency
range. There are two distinct peaks at Ω/2π = 0.91 µHz and at Ω/2π = 1.07 µHz. This
corresponds to a rotation period of Prot = 12.7 days and Prot = 10.8 days respectively
(2.1 ≤ Ω/Ω� ≤ 2.5). There are also first and second harmonics of these peaks at
ν ≈ 2 µHz and ν ≈ 3 µHz. In fact, the HD 52265 lightcurve shows a modulation with
a period of T ∼ 10 days. The continuity of this modulation is confirmed by a wavelet
analysis (Mathur et al. 2010, Ballot et al. 2011). The existence of two distinct peaks in
the low-frequency power spectrum and the asymmetric shape of the peak at 1.07 µHz may
well indicate differential rotation effects. However, I did not investigate this possibility
any further. For now, I point out that there is clear evidence of surface rotation of approx-
imately Ω/2π ∼ 1 µHz or T ∼ 11 days. This constraint provides a useful reference point
for the measurement of the stellar rotation by means of the asteroseismic analysis.

Finally, the strong peak between 0.1 µHz < ν < 0.6 µHz is attributed to the long-term
trend in the raw-lightcurve of HD 52265 (see Section 3.2). Such a trend was measured in
many stars of the CoRoT LRa2 and is thus interpreted as an instrumental effect.
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3.4 Determination of the stellar background noise

Figure 3.6: Fit to the power spectrum of the 117 day CoRoT observation of HD 52265.
The observed power is shown in grey, the green spectrum is smoothed with a 20 µHz-
boxcar. The solid red line is the fit to the smoothed power spectrum according to Equa-
tions (2.3), (2.5), (2.6), and (3.1). The dashed blue line represents the noise background
composed of two Harvey models (dashed yellow lines) and a flat photon noise compo-
nent (dashed purple line). The prominent peak at ν ∼ 220 µHz corresponds to the first
harmonic of the satellite orbit (see Section 3.3).

3.4 Determination of the stellar background noise

For the analysis of the HD 52265 data I adopt the same strategy that was used for the
analysis of the VIRGO data of the Sun in the previous chapter. Accordingly, the first step
includes a least-square fit of the smoothed power spectrum to determine the background
noise. For the determination of the p-mode parameters (second step), the functional form
of the background noise is fixed (see Section 2.2.1).

According to Equation (2.3), the smoothed power spectrum is modeled by a term
which describes the power excess caused by the p modes, Posc(ν), and term N(ν) which
describes the background noise: Psmooth(ν) = Posc(ν) + N(ν). For the first term, I adopt
Equations (2.5) and (2.6). The background noise, N(ν), is slightly modified and is given
by
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3 Asteroseismic analysis of the solar-like star HD 52265

N(ν) =

2∑
i=1

Ai

1 + (τiν)2 + PWN, (3.1)

where PWN is the photon noise and the first two terms are standard Harvey models (Harvey
1985) to describe the stellar background caused by convection. For HD 52265, it turned
out that a standard Harvey model with an exponent of two works better than a model with
exponent four which was used for the analysis of the solar data.

Figure 3.6 shows the least-square fit to the smoothed power spectrum of HD 52265.
The results of the fit for the individual parameters are listed in Table 3.3. The frequency
range for the fit is chosen between 0.01 mHz ≤ ν ≤ 15 mHz. The lower frequency bound-
ary is chosen to exclude long-period instrumental effects, the upper frequency limit is set
by the Nyquist frequency.

Overall, the model fits the smoothed power spectrum reasonably well. One has to be
careful with the interpretation of the first Harvey model parameterized by (A1, τ1). Due to
the steep increase of the background at frequencies ν < 100 µHz, the fitted amplitude A1

and its time scale τ1 depend significantly on the choice of the lower frequency boundary.
The second convection term which is parameterized by (A2, τ2) is rather independent on
the frequency range of the fit and may be interpreted as stellar convection. Thus, the time
scale of convection for HD 52265 is τ2 ∼ 30 min, i.e. about six times longer than the
granulation time scale of the Sun (see Section 2.2.1).

According to the fit of the smoothed power spectrum, the maximum power of the
p modes is at ν ∼ 2300 µHz corresponding to a period of T ∼ 7 min. The distribution of
the power seems to be more asymmetric than for the Sun as indicated by the significantly
different values for σ1 and σ2. However, this hypothesis has to be confirmed by the
detailed analysis of the p-mode spectrum.

3.5 Modifications to the parameterization of the oscilla-
tion power spectrum

In Section 2.2, I gave a detailed description of the parameterization of the expectation
value of the solar oscillation power spectrum. In general, I adopt this model for the
analysis of the HD 52265 data with some minor modifications which I describe below.

Mode frequencies: In the solar echelle spectrum (Figure 2.3), the ridges for modes with
` ≤ 2 at frequencies 2200 µHz ≤ ν ≤ 4100 µHz have a C-shape. This shape motivates the
parameterization by a 2nd-order polynomial [Equation (2.8)]. The ridges in the echelle
spectrum of HD 52265 rather have an S-shape which indicates that the frequency depen-
dence of the large separation is not monotone. Therefore, I parameterize the ` = 0 and
` = 1 mode frequencies of HD 52265 by a 3rd order polynomial:

νn` =

3∑
i=0

c(`)
i (n − n0)i ` = 0, 1. (3.2)

Here, n0 is defined as in Section 2.2.2. In this analysis, I use n0 = 21 for ` = 0 and
n0 = 20 for ` = 1. The central frequencies of the ` = 2 modes are modeled as described in

58



3.6 Extraction of p-mode parameters and estimation of errors

Section 2.2.2, i.e. the small separation, δ02, is parameterized by a linear function [cf. Equa-
tions (2.9) and (2.10)].

I assume the rotational splitting of the non-radial modes to be constant in the frequency
range of the global fit, i.e. δν(rot)

n`m = mΩ/2π [cf. Equation (2.11)].

Mode linewidths: For the parameterization of the mode linewidth as a function of n or
ν, I applied two different models. Since there is no a-priori information about the mode
linewidths of HD 52265 I started with a simple power law according to

Γ(ν) = Γ2100

(
ν

2100 µHz

)γ
. (3.3)

There are two free parameters, Γ2100 and γ. The first one, Γ2100 (measured in µHz), can be
interpreted as the mode linewidth at a frequency of ν = 2100 µHz, the second one, γ, is
the slope of the power law. The scaling of the power law to ν = 2100 µHz corresponds
to the center of the frequency region of the global fit and has only practical reasons. It
was shown that a power law is appropriate to describe the solar p-mode linewidth in
particular frequency intervals (e.g. Chaplin et al. 1997). I will use this model to describe
the linewidth in the frequency range of the global fit. I refer to this parameterization of
the mode linewidth as Fit A.

For the Sun, the mode linewidths are well known such that I could justify to model
them by a 3rd order polynomial of the radial order n (see Section 2.2.3). Even though there
is no information on the frequency dependence of the mode linewidths of HD 52265, I
also perform a global fit using this more complex model according to Equations (2.12)
and (2.13). I refer to this parameterization as Fit B.

Mode amplitudes: The model of the mode amplitudes remains unchanged as described
in Section 2.2.4.

3.6 Extraction of p-mode parameters and estimation of
errors

I derive maximum likelihood estimates (MLE, see Section 1.5) for the parameters of the
expectation value of the oscillation power spectrum (Section 2.2 and 3.5). I perform a
global fit for 500 uniformly distributed initial guesses. The high number of initial guesses
improves the chances of finding the global minimum of the log-likelihood function and
allows one the investigation of the reliability of the fit by comparing the distribution of
the initial guesses and the corresponding fits.

Estimates on the uncertainty of the individual oscillation parameters are determined
from Monte Carlo simulations. For that purpose, I generated 200 realizations of 117 day
long Fourier spectra with an expectation value of the power equal to the expectation value
of the best fit, Pbestfit:

y(ν) =

√
Pbestfit(ν) · η(ν). (3.4)
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3 Asteroseismic analysis of the solar-like star HD 52265

Here, y(ν) is the complex Fourier amplitude at frequency ν, and η is a centered com-
plex Gaussian random variable with unit variance and independent real and imaginary
parts. The square of the magnitude of y is the power spectrum of a particular realiza-
tion, i.e. P(ν) = |y(ν)|2. MLEs using the global oscillation model are derived for all 200
realizations using 50 random initial guesses for each realization. The estimates on the
uncertainty of the individual oscillation parameters is then deduced from the distribution
of the individual parameters.

3.7 Global fit of the p-mode oscillation spectrum
In this section, I present the results of the global fit of the oscillation power spectrum of
HD 52265. The fit spans the frequency range between 1600 µHz ≤ ν ≤ 2600 µHz. Thus,
the global fit includes 9 consecutive radial orders for modes with ` = 0 and ` = 2, and
10 consecutive radial orders for modes with ` = 1. In this analysis, I only include modes
which are visible by eye in the power spectrum (Figure 3.3 and 3.4), i.e. modes which
are clearly above the noise level. Note that some other groups of the DAT chose more
extended frequency ranges for their respective analyses.

Figure 3.7 illustrates the result of the global fit. The figure shows the observed power
spectrum of HD 52265 and the expectation value of the power computed from the fit
results. By eye, the fit describes the observed power reasonably well over the full fre-
quency range. This first impression is confirmed by a more detailed representation of the
fit results in Figure 3.8. The figure shows 20 µHz-wide sections of the observed power
spectrum and the corresponding fit. The individual sections are centered around the fitted
mode frequency, νn`0. The modes are ordered by the angular degree, `, for 9 consecutive
radial orders, n. A quantitative discussion on the results of the mode parameter, i.e. mode
frequencies, linewidths, and amplitudes, will follow below. Figure 3.8 also shows the line
profile averaged over all 9 radial orders for modes with ` ≤ 2 together with an averaged
expectation value of the power. A first look at the averaged line profiles reveals that the
azimuthal components of the non-radial modes (` = 1, 2) are not resolved. This situation
is comparable with the Sun (see Section 2.3 and Section 2.3.4). This is a first indication
that the p-mode linewidths in HD 52265 are at least of the order of the rotational split-
ting, i.e. 2πΓ/Ω & 1. However, a closer look shows that the averaged line profile of the
non-radial modes is slightly broader than the averaged line profile of the radial ` = 0
modes. This suggests that even though the azimuthal components are not resolved, the
rotational splitting is still apparent in the power spectrum and the rotation of HD 52265
may still be constrained by the asteroseismic analysis. I will discuss this issue in detail in
Section 3.7.4.

3.7.1 Mode frequencies

For the global fit, the mode frequencies of HD 52265 are parameterized by a 3rd-order
polynomial (Section 2.2 and 3.5). Figure 3.9 and 3.10 present the distributions of the
500 initial guesses and the corresponding fits for the 10 free parameters describing the
mode frequencies, νn`0. The distributions presented here correspond to the global fit using
Fit A. I note that the distributions for Fit B look very similar. Evidently, the parameter
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3.7 Global fit of the p-mode oscillation spectrum

distributions of the fit results are symmetric and show a well pronounced peak compared
to the uniformly distributed initial guesses. For all individual parameters, c(`)

i , the best fit
is located near the maximum of the corresponding distribution. Thus, I conclude that the
fit of the mode frequency lead to reliable results: the fit is stable and not biased.

The mode frequencies, νn`0, can be determined by applying the best fit parameters for
c(`)

i to Equations (3.2), (2.9), and (2.10). Table 3.4 and Table 3.5 list the mode frequencies
for all modes included in the global fit for Fit A and Fit B respectively. The error bars
given in both tables correspond to the 1σ uncertainty derived from Monte Carlo simula-
tions (Section 3.6). Comparing the results of the two models, it is evident that the mode
frequencies match very well. All mode frequencies of Fit B fall within the error bars of
the frequencies of Fit A and vice versa. Thus, I conclude that the choice of the param-
eterization of the mode linewidths does not affect the fit of the mode frequencies in the
two cases studied here. As indicated by the symbols in the two frequency tables, there is
an overall good agreement between the results obtained in this work and the results of the
other 10 teams of the DAT (Ballot et al. 2010). For 13 of the 28 modes/multiplets (46%)
which are included in my fit, all teams find a result that falls within the 1σ error bar of
this work. For 23 of the 28 multiplets (82%) at least 8 of 10 teams determined frequencies
which match the results of this work. Finally, for only 5 of 28 multiplets (17%) included
in this work, five or more teams determined frequencies which do not match the corre-
sponding results of this work (within 1σ). The mismatch of the fit for some modes may
be attributed to the simplified parameterization of the mode frequencies in this work. The
3rd-order polynomial allows us to consider smooth deviations from a regular frequency
pattern, e.g. the overall trend of ∆ν. However, oscillations in the frequency pattern cannot
be recovered. I discussed a similar situation in the case of the analysis of the solar data in
Section 2.3.1.

Figure 3.11 visualizes the estimates on the mode frequencies determined from the
global fit. It shows the central mode frequencies, νn`, obtained with Fit A (Table 3.4) in
an echelle format. Note that an equivalent figure with frequencies from Fit B (Table 3.5)
looks almost identical. The error bars correspond to 3σ errors. The frequency ridges
determined in this work follow the general trend of the observed echelle spectrum quite
well. This qualitatively supports the good performance of the global fit.

The estimates on the frequency uncertainty given in Table 3.4 and 3.5 are determined
from Monte Carlo simulations. According to Libbrecht (1992) the frequency uncertainty,
σν, of solar-like p modes depend on the length T of the observation, the mode linewidth,
Γ, and the signal-to-noise ratio, H(νn`)/B(ν), i.e. the ratio of the mode height and the local
background noise [cf. Equation (2.19)]. In Figure 3.12, I compare the frequency uncer-
tainty of the radial modes determined in this work with the expected uncertainties ac-
cording to the Libbrecht formula. To compute the frequency uncertainty with Libbrecht’s
formula, I used the estimates for the mode linewidths and the signal-to-noise ratios from
Table 3.6 and Table 3.7, i.e. the results of this analysis. The total length of the observation
is T = 117 days. In both cases of Fit A and Fit B, the measured frequency uncertainties
follow the trend expected by the Libbrecht formula. The frequency uncertainties deter-
mined in this work are slightly smaller than the expected values according to the Libbrecht
formula. This may be attributed to the fact that I perform a global fit, i.e. the individual
mode frequencies are mutually dependent on each other. On the other hand, the Libbrecht
formula gives the expected uncertainty of one isolated mode of oscillation. Thus, it is
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3 Asteroseismic analysis of the solar-like star HD 52265

Figure 3.7: Top panel: Global fit of the oscillation power spectrum of HD 52265.
The black line shows the observed power spectrum of the 117 day observation with
CoRoT. The red line represents the expectation value of the power obtained with the
global fit described in this chapter. The global fit is performed in the frequency range
1600 µHz ≤ ν ≤ 2600 µHz. The panels (i)-(iii) show zooms in three different frequency
regions as indicated in the top panel. The panels (i)-(iii) show ∆̃ν-wide intervals with one
mode of degree ` = 2, ` = 0, and ` = 1 each (folding frequency ∆̃ν = 98.6 µHz).
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3.7 Global fit of the p-mode oscillation spectrum

Figure 3.8: Global fit of the solar-like p modes of HD 52265. The observed power spec-
trum of the 117 day observation with CoRoT is shown in black, the green line is the
expectation value of the power determined by the global fit. The figure shows small sec-
tions of the power spectrum centered around their respective mode frequencies obtained
by the global fit. The small sections of the power spectrum are sorted by the angular
degree `. For each `, nine consecutive radial orders are shown (n increasing from top to
bottom). The red line at the bottom of each column represents an average of the sections
above. Here, the green line shows an average of the fits above.
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3 Asteroseismic analysis of the solar-like star HD 52265

Figure 3.9: Distribution of the frequency parameters for the global fit of the 117 day
CoRoT observation of HD 52265. The distribution of the 500 initial guesses is shown in
grey, the fit results in black. The vertical dashed line marks the best fit for each parameter.
The top four panels show the four parameters ci (i = 0, 1, 2, 3) for modes with ` = 0
[cf. Equation(3.2)]. The bottom four panels show the respective parameters for modes
with ` = 1. The single peaked distributions of the fit results compared to the uniformly
distributed initial guesses indicate a successful fit of the mode frequencies.
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3.7 Global fit of the p-mode oscillation spectrum

Figure 3.10: Distribution of the frequency parameters for the global fit of the 117 day
CoRoT observation of HD 52265. Other than Figure 3.9 the two parameters ci (i = 0, 1)
for modes with ` = 2 are shown here [cf. Equation (2.9)]. The distribution of the 500
initial guesses is shown in grey, the fit results in black. The vertical dashed line marks the
best fit for each parameter.

difficult to compare the two estimates directly. In any case, the frequency uncertainties
measured in this work are of the same order of magnitude as the values according to the
Libbrecht formula. Therefore, I conclude that the Monte Carlo simulations lead to overall
realistic estimates on the uncertainty of the p-mode frequencies.

The large frequency separation, ∆ν, is a parameter of particular interest. It is pro-
portional to the square root of the mean stellar density and thus directly related to the
fundamental stellar parameters, mass and radius (see Section 1.3 and 1.4). Based on
the mode frequencies determined in this work, I calculate the mean large separation of
HD 52265 according to

〈∆ν〉 = 〈νn+1 ` − νn`〉n` with 21 ≤ n ≤ 23, ` ≤ 2. (3.5)

Here, 〈∆ν〉 is a weighted average over the three radial orders with the highest signal-to-
noise ratio (see Table 3.6 and 3.7) and modes with ` ≤ 2. This approach takes into account
that the large separation is not necessarily constant over many radial orders. Thus, I obtain
the following large separation for HD 52265:

Fit A: 〈∆ν〉 = 98.84 ± 0.12 µHz,
Fit B: 〈∆ν〉 = 98.36 ± 0.07 µHz.

An alternative estimate of the mean large separation of solar-like oscillations can be
derived from the autocorrelation of the time series. Roxburgh and Vorontsov (2006) pro-
posed to calculate the autocorrelation as the Fourier Transform of the windowed power
spectrum. The first peak of the envelope autocorrelation function (EACF), i.e. the square
module of the autocorrelation, can be interpreted as half of the large separation, 〈∆ν〉/2.
Mosser and Appourchaux (2009) optimized this method and determined its reliability.
The autocorrelation method is particularly useful for the asteroseismic analysis of noisy
data since it allows one to measure the mean large separation even if the mode parameters
of individual modes cannot be measured. For HD 52265, I determined the EACF using
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3 Asteroseismic analysis of the solar-like star HD 52265

Table 3.4: Mode frequencies of solar-like p modes in HD 52265. The frequencies are
determined with a global fit of the power spectrum of HD 52265 using Fit A, i.e. a power
law to describe the mode linewidths as a function of frequency (see Section 3.5). The
listed frequencies are the central frequencies of the m = 0 components of the correspond-
ing multiplet, νn`0. The 1σ error bars are determined from Monte Carlo simulations. The
frequencies of Fit A are in agreement with the frequencies determined by Fit B (see Ta-
ble 3.5). Symbols mark modes for which one or more of the 11 groups of the DAT fitted
frequencies that do not match the result of this work. Modes marked with (†) indicate that
one or two groups from the DAT find different results. Modes marked with (4) indicate
that five or more groups find a different result.

Fit A: Mode frequencies νn`0 [µHz]

n ` = 0 ` = 1 ` = 2

16 1653.01 ± 0.38 1696.89 ± 0.64†

17 1704.71 ± 0.36 1749.05 ± 0.204 1793.13 ± 0.46†

18 1801.01 ± 0.18 1846.07 ± 0.19 1890.37 ± 0.37†

19 1898.32 ± 0.18† 1943.86 ± 0.18† 1988.37 ± 0.29
20 1996.39 ± 0.16 2042.23 ± 0.174 2086.88 ± 0.26
21 2094.96 ± 0.16† 2140.97 ± 0.18† 2185.64 ± 0.284

22 2193.79 ± 0.19 2239.87 ± 0.194 2284.41 ± 0.33
23 2292.62 ± 0.20 2338.72 ± 0.194 2382.93 ± 0.40†

24 2391.21 ± 0.24† 2437.32 ± 0.28 2480.96 ± 0.64
25 2489.30 ± 0.51 2535.46 ± 0.62†

a cosine filter with FWHM=500 µHz centered at ν = 2000 µHz. Thus, the filtered power
spectrum covers the frequency region of the global fit performed in this work. In that
way I determine a mean large separation of 〈∆ν〉 = 98.40 ± 0.06 µHz. The agreement
of the large separations determined from the global fit and the EACF is acceptable, but
particularly close to Fit B.

The large separation is a function of frequency, ∆ν(ν). As already expected from the
S-shape of the frequency ridges in the echelle spectrum (Figure 3.4), the large separation
increases at low frequencies ν . 2100 µHz and decreases again for ν & 2100 µHz as il-
lustrated in Figure 3.13. The figure shows the large separation, νn+1,` − νn`, for modes
with degree ` = 0 and ` = 1 based on the frequencies from Table 3.4. For compari-
son, I also display the large separation as a function of frequency determined from the
autocorrelation. For this purpose the autocorrelation power was calculated using a nar-
row filter as described in Roxburgh (2009) and Mosser and Appourchaux (2009). In this
case, I applied a cosine filter with a FWHM = 200 µHz, i.e. a filter width of ∼ 2∆ν, cen-
tered at frequencies between 1550 µHz ≤ ν ≤ 2650 µHz in steps of 50 µHz. Overall, the
frequency dependency of the large separation determined with these two methods match
reasonably well. However, the large separation determined from the autocorrelation has
two dips around ν ≈ 1900 µHz and ν ≈ 2350 µHz. These dips are not present in the
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3.7 Global fit of the p-mode oscillation spectrum

Table 3.5: Mode frequencies of solar-like p modes in HD 52265. The frequencies are
determined with a global fit of the power spectrum of HD 52265 using the Fit B, i.e. a
3rd-order polynomial to describe the dependence of the mode linewidths on the radial
order n (see Section 3.5). The listed frequencies are the central frequencies of the m = 0
components of the corresponding multiplet, νn`0. The 1σ error bars are determined from
Monte Carlo simulations. Symbols mark modes for which one or more of the 11 groups of
the DAT fitted frequencies that do not match the result of this work. Modes marked with
(†) indicate that one or two groups from the DAT find different results. Modes marked
with (4) indicate that five or more groups find a differing result.

Fit B: Mode frequencies νn`0 [µHz]

n ` = 0 ` = 1 ` = 2

16 1653.01 ± 0.44 1697.10 ± 0.62†

17 1704.76 ± 0.40 1749.01 ± 0.244 1793.19 ± 0.46†

18 1800.94 ± 0.23 1846.03 ± 0.21 1890.41 ± 0.39†

19 1898.23 ± 0.23† 1943.85 ± 0.18† 1988.44 ± 0.31
20 1996.33 ± 0.19 2042.25 ± 0.144 2086.99 ± 0.24
21 2094.96 ± 0.14† 2141.01 ± 0.14† 2185.76 ± 0.234

22 2193.81 ± 0.14 2239.91 ± 0.164 2284.46 ± 0.27
23 2292.58 ± 0.17 2338.74 ± 0.204 2382.78 ± 0.40†

24 2390.98 ± 0.29† 2437.29 ± 0.40 2480.42 ± 0.73
25 2488.70 ± 0.65 2535.32 ± 0.86†

large separation determined from the global fit. This is again due to the very simplified
parameterization of the mode frequencies. For future studies, it may be interesting to in-
vestigate rapid variations of the large separation in more detail since they are related to
sharp features in the sound speed profile as discussed in Section 1.4.

I also determine a mean small separation, 〈δν〉, between adjacent modes with ` = 0
and ` = 2 according to [see also Equation (1.6)]

〈δν〉 = 〈νn0 − νn−1,2〉n with 21 ≤ n ≤ 23. (3.6)

Using the same arguments as for the large separation, I calculate a weighted average
using the modes of the three radial orders with the highest signal-to-noise ratio according
to Table 3.6 and 3.7.
Thus, I obtain:

Fit A: 〈δν〉 = 8.14 ± 0.20 µHz,
Fit B: 〈δν〉 = 7.99 ± 0.13 µHz.

Finally, I investigate the potential evidence of p modes with angular degree ` = 3 in
the power spectrum of HD 52265. For this purpose, I calculate the ratio of the observed
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3 Asteroseismic analysis of the solar-like star HD 52265

Figure 3.11: Mode frequencies determined with a global fit of the 117 day CoRoT obser-
vation of HD 52265. The mode frequencies are shown in an echelle format with a folding
frequency of ∆̃ν = 98.57 µHz. The three solid red lines represent the ridges of the mode
frequencies, νn`, for modes with ` ≤ 2. The dashed red lines show the corresponding
3σ error bars derived from Monte Carlo simulations. The grey-scaled background shows
the echelle spectrum of the 117 day CoRoT observation of HD 52265 (cf. Figure 3.4).
For accentuation of the observed frequency ridges, the ∆ν-wide intervals in the observed
echelle spectrum are rebinned by a factor of 5. Furthermore, only frequency bins with a
power value of P ≥ 0.8 Pmax are shown, where Pmax is the maximum power in the shown
frequency range.

power spectrum (cf. Figure 3.7, black line) divided by the expectation value of the power
determined with the global fit (red line). Figure 3.14 presents this ratio in echelle format
and as a collapsed spectrum (see Section 3.3.1). First, I would like to emphasize that
there is no significant excess of power remaining at the former position of the ridges of
modes with ` ≤ 2. The ratio of the observed power and the expectation value in the
collapsed power spectrum is well centered around one. This is a further confirmation that
the performance of the global fit good. The echelle spectrum and the collapsed spectrum
do not show any significant excess that may be interpreted as being due to modes with
` = 3. Thus, I conclude that based on my analysis there is no evidence for solar-like p
modes with ` = 3.
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3.7 Global fit of the p-mode oscillation spectrum

Figure 3.12: Uncertainties, σν, of the mode frequencies, νn0, of the radial modes. The
two panels compare the frequency uncertainty measured in this work (red symbols) with
the expected frequency uncertainty according to Libbrecht (1992, solid black line). The
top panel shows the frequency uncertainties determined for Fit A (cf. Table 3.4), and
the bottom panel shows the frequency uncertainties obtained using Fit B (cf. Table 3.5).
The expected frequency uncertainties are calculated using Equation (2.19). The mode
linewidths and the signal-to-noise ratios are listed in Table 3.6 and Table 3.7. The total
length of the observation is T = 117 days.
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Figure 3.13: Large separation, ∆ν, of HD 52265 as a function of frequency. The symbols
represent the large separation, ∆νn` = νn` − νn−1 `, derived from the results of the global fit
(Fit A, Table 3.4). The red crosses show the large separation of modes with ` = 0, the blue
diamonds show the large separation of modes with ` = 1. For comparison, the solid grey
line shows the large separation determined from the frequency-windowed autocorrelation
of the HD 52265 time series (Roxburgh and Vorontsov 2006, Roxburgh 2009). The 1σ
error bar (dashed grey line) is computed according to Mosser and Appourchaux (2009).

3.7.2 Mode linewidths

The frequency dependence of the mode linewidths of HD 52265 is parameterized using
a simple power law [Fit A, Equation (3.3)] and a 3rd-order polynomial of radial order n
[Fit B, Equation (2.12), (2.13)]. Thus, the mode linewidths ranging over 10 radial or-
ders are parameterized by two and four free parameters respectively. Figure 3.15 and
Figure 3.16 show the distributions of the linewidth parameters for the two fits. The dis-
tributions of the 500 initial guesses and the corresponding fits are compared. For both
models, the distributions of the fits show a single, well defined peak in contrast to the
uniformly distributed guesses. Furthermore, the best fit for any parameter is located near
the maximum of the corresponding distribution. Thus, I conclude that the global fit of the
mode linewidths is stable and returns reliable results for both fits.

According to Equations (3.3) and (2.12) the mode linewidths, Γn`, can be determined
from the best-fit estimates for Γ2100 and γ for Fit A, and from the best-fit estimates for
gi (i = 1, 2, 3, 4) for Fit B. The mode linewidths of the radial modes, Γn0, are listed in
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3.7 Global fit of the p-mode oscillation spectrum

Figure 3.14: Investigation of the potential evidence of ` = 3 modes. The top panel shows
a residual power spectrum of HD 52265 in echelle format. For that purpose, the observed
CoRoT power spectrum of HD 52265 is divided by the expectation value of the power
determined with a global fit in this work. The folding frequency is ∆̃ν = 98.57 µHz
(cf. Figure 3.4). For clarity, the power in the ∆̃ν-wide intervals is rebinned by a factor of
three. The bottom panel shows a collapsed power spectrum, i.e. an average of the ∆̃ν-wide
sections between n? = 17 − 24. Compared to the original echelle spectrum in Figure 3.4,
I note that the power in the ridges corresponding to modes with ` ≤ 2 is well fitted. There
is no significant power left in the residual power spectrum. There is also no evidence for
residual power that may be interpreted as p modes with ` = 3.
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Figure 3.15: Distribution of the linewidth parameters (Fit A) for the global fit of the
117 day CoRoT observation of HD 52265. In Fit A, the mode linewidth is described
in terms of a power law with two free parameters according to Equation (3.3), i.e. the
linewidth Γ2100 at ν = 2100 µHz (left panel) and the slope of the power law, γ (right
panel). In both panels, the distribution of the 500 initial guesses (grey) and the results
of the global fit (black) are compared. The vertical dashed lines represent the respective
values of the best-fit.

Figure 3.16: Distribution of the linewidth parameter (Fit B) for the global fit of the 117 day
CoRoT observation of HD 52265. In Fit B, the mode linewidth is described as a 3rd-order
polynomial with four free parameters, gi (i = 0, 1, 2, 3), according to Equation (2.12).
In all four panels, the distribution of the 500 initial guesses (grey) and the results of the
global fit (black) are compared. The vertical dashed line in each panel represents the
value of the best-fit.
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Figure 3.17: Mode linewidth, Γn0, of the radial modes of HD 52265 as a function of the
mode frequency, νn0. The results for the two fits are shown in different colors. The solid
black line represents the linewidth determined with Fit A, i.e. a power law according
to Equation (3.3). The solid red line shows the linewidth determined with Fit B, i.e. a
3rd-order polynomial of the radial order according to Equation (2.12). The dashed lines
represent 1σ error bars which are derived from Monte Carlo simulations. The mode
linewidths and the corresponding mode frequencies are listed in Table 3.6 and Table 3.7.

Table 3.6 for Fit A and in Table 3.7 for Fit B. The 1σ error bars are deduced from Monte
Carlo simulations (see Section 3.6). They are defined such that 68% of the fits fall within
the given bounds (34% of the fits above the best fit estimate and 34% below). This defi-
nition takes into account that the parameter distributions of the Monte Carlo simulations
are not necessarily symmetric and it is robust with respect to outliers.

Figure 3.17 shows the linewidth as a function of the mode frequency for both fits.
In Fit A, the mode linewidths follow a power law with a slope of γ = 1.84+0.50

−0.03 . The
linewidths are determined to be 1.4 µHz < Γ < 3 µHz in the frequency range between
1700 µHz < ν < 2500 µHz. The slope of the power law is slightly steeper than for the
Sun. By fitting a power law in the frequency range 2200 µHz ≤ ν ≤ 3500 µHz to the solar
mode linewidths given by Chaplin et al. (1998), I obtain a slope of γ ∼ 1.6. This frequency
range corresponds to the low-degree p modes with the highest signal-to-noise ratio. Note
that for the Sun the frequency dependence of the mode linewidth is significantly steeper
at lower and higher frequencies (e.g. Chaplin et al. 1997).

The 3rd-order polynomial of Fit B leads to mode linewidths which are of the order of
Γ ∼ 2 µHz in the frequency range 1400 µHz . ν . 2300 µHz. At higher frequencies they
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Table 3.6: Mode parameters of the radial p modes (` = 0) of HD 52265. The parameters
are determined from a global fit of the 117 day CoRoT power spectrum of HD 52265. The
parameters listed in this table correspond to the results of Fit A, i.e. the mode linewidths
are parameterized as a power law according to Equation (3.3). The global fit ranges over
9 consecutive radial orders n (column 1). The mode frequencies in column 2 are taken
from Table 3.4. Column 3 lists the mode linewidths, Γn0. The amplitudes (in ppm) of
the radial modes, An0 =

√
πΓn0Hn0, where Hn0 is the peak height (in ppm2/µHz), are

shown in column 4. Finally, column 5 gives an estimate on the signal-to-noise ratio,
i.e. the ratio of the peak height of a particular mode and the stellar background noise,
B(νn0), at frequency νn0 (see Section 3.5). The error bars are determined from Monte
Carlo simulation (200 realizations). For the mode frequencies, νn0, they correspond to
the 1σ standard deviation. For the linewidths, amplitudes, and signal-to-noise ratios, they
are defined such that 68% of all fits of the Monte Carlo simulation fall within the range
denoted by the exponents/subscripts.

Fit A: p-mode parameters of the radial modes of HD 52265

n νn0 [µHz] Γn0 [µHz] An0 [ppm] Hn0/B(νn0)

17 1704.71 ± 0.36 1.44+0.23
−0.33 2.69+0.20

−0.21 2.1+0.6
−0.5

18 1801.01 ± 0.18 1.59+0.21
−0.32 3.09+0.19

−0.19 2.6+0.6
−0.5

19 1898.32 ± 0.18 1.76+0.20
−0.30 3.53+0.17

−0.17 3.2+0.6
−0.5

20 1996.39 ± 0.16 1.93+0.19
−0.26 3.97+0.19

−0.17 3.8+0.7
−0.4

21 2094.96 ± 0.16 2.10+0.18
−0.25 4.38+0.21

−0.18 4.3+0.6
−0.5

22 2193.79 ± 0.19 2.29+0.20
−0.24 4.67+0.22

−0.20 4.6+0.5
−0.6

23 2292.62 ± 0.20 2.48+0.25
−0.26 4.78+0.18

−0.26 4.5+0.5
−0.6

24 2391.21 ± 0.24 2.68+0.35
−0.26 4.16+0.19

−0.28 3.2+0.6
−0.5

25 2489.30 ± 0.51 2.89+0.50
−0.32 2.88+0.26

−0.23 1.5+0.3
−0.3
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Table 3.7: Mode parameters of the radial p modes (` = 0) of HD 52265. The parameters
are determined from a global fit of the 117 day CoRoT power spectrum of HD 52265. The
parameters listed in this table correspond to the result of Fit B, i.e. the mode linewidths
are parameterized as a 3rd-order polynomial according to Equation (2.12). The global fit
ranges over 9 consecutive radial orders n (column 1). The mode frequencies in column 2
are taken from Table 3.5. Column 3 lists the mode linewidths, Γn0. The amplitudes (in
ppm) of the radial modes, An0 =

√
πΓn0Hn0, where Hn0 is the peak height (in ppm2/µHz),

are shown in column 4. Finally, column 5 gives an estimate on the signal-to-noise ratio,
i.e. the ratio of the peak height of a particular mode and the stellar background noise,
B(νn0), at frequency νn0 (see Section 3.5). The error bars are determined from Monte
Carlo simulation (200 realizations). For the mode frequencies, νn0, they correspond to
the 1σ standard deviation. For the linewidths, amplitudes, and signal-to-noise ratios, they
are defined such that 68% of all fits of the Monte Carlo simulation fall within the range
denoted by the exponents/subscripts.

Fit B: p-mode parameters of the radial modes of HD 52265

n νn0 [µHz] Γn0 [µHz] An0 [ppm] Hn0/B(νn0)

17 1704.76 ± 0.40 1.82+0.58
−1.03 2.72+0.17

−0.22 1.7+1.8
−0.6

18 1800.94 ± 0.23 2.47+0.33
−0.59 3.14+0.16

−0.18 1.8+0.4
−0.3

19 1898.23 ± 0.26 2.47+0.33
−0.36 3.60+0.18

−0.17 2.4+0.5
−0.3

20 1996.33 ± 0.19 2.13+0.32
−0.27 4.06+0.20

−0.14 3.6+0.7
−0.5

21 2094.96 ± 0.14 1.73+0.25
−0.18 4.45+0.23

−0.16 5.4+1.1
−0.9

22 2193.81 ± 0.14 1.57+0.26
−0.21 4.71+0.21

−0.23 6.9+1.4
−1.3

23 2292.58 ± 0.17 1.96+0.26
−0.27 4.77+0.14

−0.31 5.7+1.1
−0.8

24 2390.98 ± 0.29 3.18+0.35
−0.33 4.20+0.17

−0.24 2.8+0.4
−0.3

25 2488.70 ± 0.65 5.54+0.87
−0.77 3.27+0.31

−0.14 1.0+0.2
−0.2
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3 Asteroseismic analysis of the solar-like star HD 52265

Table 3.8: Parameters of the amplitude envelope determined with a global fit to the
117 day power spectrum of HD 52265. The amplitude envelope according to Equa-
tion (2.14) is applied. The results of the global fit using Fit A and Fit B are listed in
the second and third column respectively. For details on Fit A and B, see Section 3.5. The
error bars are derived from Monte Carlo simulation (200 realizations) and are defined
such that 68% of all fits fall within the bounds denoted by the exponents/subscripts.

Amplitude parameters Fit A Fit B

ν0 [µHz] 2302+41
−33 2273+46

−44

σ̃1 [µHz] 677+90
−73 654+96

−86

σ̃2 [µHz] 231+59
−65 317+109

−78

A0 [ppm] 4.79+0.23
−0.20 4.78+0.20

−0.24

A1 [ppm] 5.81+0.24
−0.24 5.91+0.23

−0.24

A2 [ppm] 3.72+0.20
−0.23 3.64+0.18

−0.17

increase steeply up to Γ ∼ 5 µHz at ν ∼ 2500 µHz. At ν ∼ 2200 µHz there is a distinct
dip of the mode linewidths. Qualitatively, the overall trend of the linewidths of HD 52265
is comparable to the Sun (see Section 2.3.2). Fit B also matches the results of the other
groups of the DAT quite well (Ballot et al. 2010). The more simplified parameterization of
Fit A seems to describe the overall trend of the linewidths of Fit B quite well. However,
Fit A does not match the "fine structure" of Fit B, i.e. the dip of the linewidth and the
following steep increase.

At maximum signal-to-noise, i.e. at ν ∼ 2200 µHz, the linewidths of the p modes in
HD 52265 are about Γ ∼ 2.3 µHz for Fit A and Γ ∼ 1.6 µHz for Fit B. This corresponds to
a mode lifetime, τ = 1/πΓ, of τ ∼ 1.6 days (Fit A) and τ ∼ 2.3 days (Fit B) respectively.
Hence, the lifetime of the p modes in HD 52265 is only about half as long as the p-mode
lifetime in the Sun (τ ∼ 4 days for Γ ∼ 1 µHz).

3.7.3 Oscillation amplitudes
For the global fit, the mode amplitudes and mode heights of the p modes in HD 52265
are parameterized by an envelope according to Equation (2.14). The amplitude envelope
contains six free parameters: the center of the envelope, ν0, the width, σ̃i (i = 1, 2), for
frequencies ν ≤ ν0 and ν > ν0 respectively, and the envelope maxima, A`, for modes
with degree ` ≤ 2. An additional free parameter, the inclination angle, i, of the rota-
tion axis, gives the height ratio of the azimuthal components of the non-radial modes
[cf. Equation (2.15)]. The measurement of i is discussed in Section 3.7.4. Figure 3.18
shows the distributions of the parameters of the amplitude envelope for HD 52265. The
distributions of the 500 initial guesses and the fit results are compared. The distributions
of the fits show overall a single peak even though it may not be very pronounced for all
parameters (e.g. σ̃2). In general, I conclude that the global fit works. However, the best
fit estimates for ν0 and σ̃i (i = 1, 2) seem to be slightly biased. The fit of the maxima of
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3 Asteroseismic analysis of the solar-like star HD 52265

Figure 3.19: Amplitudes (top panel) and mode heights (bottom panel) of the radial modes
(` = 0) determined with a global fit of the 117 day CoRoT observation of HD 52265. The
mode amplitudes, An0, and mode heights, Hn0, are related by Equation (2.16). The result
of the global fit obtained with Fit A is shown as the solid black line. The result obtained
using Fit B is shown as the solid red line (see Section 3.5 for details on Fit A and Fit B).
The dashed lines correspond to the 1σ error bars derived from Monte Carlo simulation.
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3.7 Global fit of the p-mode oscillation spectrum

the amplitude envelopes, A` (` ≤ 2), is reliable; the best fit is close to the maximum of
the distribution for each `.

Table 3.8 summarizes the results for the parameters of the amplitude envelope for
HD 52265. The 1σ error bars are derived from Monte Carlo simulation and are defined
such that 68% of the fits fall within the bounds set by the exponents and subscripts. The
results obtained for Fit A and B are consistent within their respective error estimates.
The center of the amplitude envelope, i.e. the maximum mode amplitude, is found at ν ∼
2300 µHz. As already supposed in Section 3.4, the distribution of the mode amplitudes is
asymmetric as indicated by the width of the envelope, σ̃i (i = 1, 2). The maximum mode
amplitude of the radial modes is A ∼ 4.8 ppm. Hence, the amplitudes of HD 52265 are of
the same order of magnitude as the amplitudes in the Sun.

The parameters of the amplitude envelope listed in Table 3.8 may be used to cal-
culate the amplitudes and the heights of the p modes of HD 52265 according to Equa-
tions (2.14) and (2.16). Figure 3.19 shows the mode amplitudes, An0, and the mode
heights, Hn0, of the radial modes obtained for Fit A and Fit B as a function of their
respective mode frequency, νn0. The mode amplitudes of both fits are fully consistent.
The amplitudes obtained for both fits are listed in Table 3.6 and 3.7. Since both fits return
slightly different mode linewidths (see Section 3.7.2), the mode heights are also slightly
different according to Equation (2.16). The amplitudes obtained in this analysis are con-
sistent with the results of the other groups of the DAT (Ballot et al. 2010).

Table 3.6 and 3.7 also list the signal-to-noise ratio of the radial modes, Hn0/B(νn0),
which I define as the ratio of the mode height and the stellar background noise at the
frequency of the corresponding mode, νn0. The maximum signal-to-noise at ν ∼ 2200 µHz
is of the order of H/B ∼ 5 for Fit A and H/B ∼ 7 for Fit B, i.e. roughly ten times smaller
than the signal-to-noise ratio of the VIRGO data analyzed in Chapter 2.

3.7.4 Stellar rotation and the inclination of the rotation axis
For the global fit of the HD 52265 power spectrum, the rotational splitting of the m com-
ponents of the non-radial modes is considered by one free parameter, Ω/2π. Here, I
assumed slow and uniform rotation with angular velocity Ω = const. (see Section 1.3 and
2.2.2). The inclination angle of the rotation axis, i, is determined from the mode height
ratio of the m components according to Equation (2.15).

In Figure 3.20 and Figure 3.21, I show averaged line profiles for modes with ` ≤ 2.
These line profiles are obtained by averaging sections of the power spectrum of HD 52265
which are centered around the mode frequencies, νn`, over nine consecutive radial orders.
The individual m components of the non-radial modes are not resolved since the mode
linewidth is bigger than the rotational splitting, i.e. 2πΓ/Ω ∼ 2. Here, I assumed a mode
linewidth of Γ ∼ 2 µHz (Section 3.7.2) and a rotational splitting according to the stel-
lar surface rotation, Ω/2π ∼ 1 µHz (Section 3.3.2). Note that the ratio of 2πΓ/Ω for
HD 52265 is very close to the solar value discussed in Section 2.3.4. Even though the
individual m components are not resolved, it is obvious that the averaged line profiles
of the non-radial modes (` ≥ 1) are broader than the averaged line profile of the radial
modes. I interpret this broadening as the signature of stellar rotation. Quantitatively, the
rotational splitting and the inclination angle of the rotation axis are here determined to
Ω/2π = 0.98 µHz and i = 36◦ (Fit A) and Ω/2π = 0.53 µHz and i = 60◦ (Fit B). Even

79



3 Asteroseismic analysis of the solar-like star HD 52265

Table 3.9: Seismic constraints on the rotation and the inclination angle of the rotation axis
of HD 52265, derived from a global fit of the 117 day CoRoT observation. The results
obtained for Fit A and Fit B are presented in the second and third column respectively.
The 1σ error bars are derived from Monte Carlo simulation. They are defined such that
68% of all results fall within the bounds given by the exponents and subscripts. Note
that the rotational splitting, Ω/2π, and the inclination i were free parameters of the global
fit. The other parameters, Ω/Ω�, Prot, Ω/2π sin i, are derived from those two parameters
(Ω�/2π = 0.4243 µHz, corresponding to the Carrington solar rotation rate).

Seismic constraints for HD 52265 Fit A Fit B

Rotational splitting Ω/2π [µHz] 0.98+0.40
−0.44 0.53+0.54

−0.05

Rotation Ω/Ω� 2.31+0.94
−1.04 1.25+1.27

0.12

Rotation period Prot [days] 11.8+9.4
−3.3 22.0 +2.3

−11.2

Inclination i [deg] 36+39
−7 60 +8

−38

sin i 0.59+0.37
−0.10 0.86+0.06

−0.49

Ω/2π sin i [µHz] 0.58+0.14
−0.13 0.47+0.13

−0.16

though the results for Ω/2π and i are different for both fits, the averaged line profiles are
nearly the same. I note that the product of Ω/2π and sin i is very similar for both fits,
i.e. Ω/2π sin i = 0.58 µHz (Fit A) and Ω/2π sin i = 0.47 µHz for (Fit B).

Figure 3.22 and Figure 3.23 show the distributions of the 500 initial guesses and the
corresponding fits for Ω/2π and i obtained for Fit A and Fit B. It is noteworthy that for the
rotational splitting the distributions of both fits show a distinct peak at Ω/2π ∼ 0.5 µHz.
Only for Fit B the best-fit estimate on Ω/2π is close to the maximum of the distribution
while the best-fit of Fit A is biased. For the inclination the situation is vice versa. The
distributions of both fits show a barely pronounced peak around i ∼ 40◦. I note that
the distribution of the inclination is spread over the full range between 0◦ ≤ i ≤ 90◦.
However, the result of Fit A is near the maximum of the distribution while the inclination
for Fit B is biased. The distribution of the product of both parameters, Ω/2π sin i, shows
a well pronounced peak at Ω/2π sin i ∼ 0.5 µHz, and the best-fit estimates for Fit A and
Fit B are both near the maximum of the respective distribution. This confirms the studies
of Gizon and Solanki (2003) and Ballot et al. (2006, 2008) and is similar to the result
of the the analysis of the solar data in Chapter 2 (Section 2.3.4) of this thesis: it is very
difficult to measure both the rotational splitting and the inclination angle of the rotation
axis independently and without bias for a slowly rotating star. However, it is possible to
measure the product, Ω sin i, precisely.

The seismic constraints on the rotation and the inclination angle of the rotation axis
are summarized in Table 3.9. The 1σ error bars are derived from Monte Carlo simulation.
Note that the estimates on Ω/2π and i for Fit A and Fit B are in agreement with respect
to their error bars. The rotational splitting matches the estimate of the surface rotation
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3.7 Global fit of the p-mode oscillation spectrum

rate from Section 3.3.2 reasonably well. This is particularly true for Fit A. The estimates
on Ω sin i agree well for both fits. Furthermore, the error on Ω sin i is quite symmetric in
contrast to the error bars on Ω/2π and i. Note that the estimates on Ω sin i determined
in this work are consistent with an alternative measurement derived from the relation
Ω sin i ' v sin i/R. With a recent spectroscopic measurement of v sin i = 3.6+0.3

−1.0 km/s
and a seismic radius estimate of R = 1.34 ± 0.02 R� (Ballot et al. 2010), one obtains
Ω/2π sin i = 0.61+0.06

−0.18 µHz. This value is in agreement with both estimates obtained for
Fit A and Fit B in this analysis. I note that other measurements for v sin i can be found
in the literature, for example v sin i = 4.7 ± 0.5 km/s (Valenti and Fischer 2005). This
measurement would be less consistent with the analysis presented here. However, Valenti
and Fischer (2005) also point out that their estimates on v sin i may be overestimated for
metal-rich stars with temperatures larger than 5800 K.

The fit result for the stellar rotational splitting and the inclination angle of the rotation
axis are illustrated in Figure 3.24 and Figure 3.25. The figures show the shape of the
joint PDF in the Ω/2π-sin i plane. This was obtained by performing global fits with
fixed values for Ω/2π ∈ [0.05µHz, 2.5µHz] in steps of 0.05µHz and sin i ∈ [0.02, 1]
in steps of 0.02. "Good fits" of the parameters Ω/2π and i are aligned along constant
Ω sin i. The shape of the joint PDF in the Ω/2π-sin i plane allows us to constrain Ω/2π
and i solely based on the asteroseismic analysis (as indicated by the 1σ contour line): for
Fit A, the rotational splitting is constrained between 0.45 µHz < Ω/2π < 1.30 µHz. The
lower limit of the inclination is i > 25◦. Rotational splitting and the inclination angle
are correlated and further constrained by Ω/2π sin i = 0.58+0.14

−0.13 µHz. For Fit B, I obtain
0.25 µHz < Ω/2π < 1.15 µHz and i > 22◦. Both parameters are further constrained by
Ω/2π sin i = 0.47+0.13

−0.16 µHz.
To further constrain the estimates on the inclination angle of the rotation axis, the

precise asteroseismic measurement of Ω sin i may be combined with the estimate on the
stellar surface rotation from Section 3.3.2. For this purpose, the low-frequency peaks
at Ω/2π = 0.91 µHz and Ω/2π = 1.07 µHz (Figure 3.5) are shown in Figure 3.24 and
Figure 3.25. The intersection of the surface rotation features and the 1σ-contour line (or
the estimate on Ω sin i directly) allows us to constrain the inclination angle of the rotation
axis of HD 52265:

Fit A: 0.45 ≤ sin i ≤ 0.82, 27◦ ≤ i ≤ 55◦,
Fit B: 0.38 ≤ sin i ≤ 0.72, 22◦ ≤ i ≤ 46◦.

The constraints on the inclination, i, are consistent for Fit A and Fit B. However, I
note that only the best fit of Fit A (Ω/2π = 0.98 µHz, i = 36◦) falls within the intersection
of the low-frequency features and the constraint on Ω sin i. The best-fit estimate for Fit
B is obviously biased but it is still in agreement with the estimate on the surface rotation
within its error bars.
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3 Asteroseismic analysis of the solar-like star HD 52265

Figure 3.20: Average power spectrum of the solar-like p modes observed in HD 52265.
Small sections of the power spectrum centered around the mode frequency, νn`, are av-
eraged over nine consecutive radial orders for modes with ` ≤ 2 (cf. bottom row of Fig-
ure 3.8). For clarity, the resolution is reduced by a factor of three by rebinning. The black
line is the observed power, the red line is the averaged expectation value of the power
(Fit A). The green and blue lines at the bottom of each panel represent the individual
azimuthal components with even and odd m respectively. The rotational splitting of the
azimuthal components is indicated by the vertical tick marks. Even though the m com-
ponents are not resolved, the averaged line profiles of the non-radial modes (` = 1, 2)
are broader than the profile of the radial modes (` = 0). In this case, rotation and the
inclination angle of the rotation axis are determined to be Ω/2π = 0.98 µHz and i = 36◦.
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3.7 Global fit of the p-mode oscillation spectrum

Figure 3.21: Average power spectrum of the solar-like p modes observed in HD 52265.
Small sections of the power spectrum centered around the mode frequency, νn`, are av-
eraged over nine consecutive radial orders for modes with ` ≤ 2 (cf. bottom row of Fig-
ure 3.8). For clarity, the resolution is reduced by a factor of three by rebinning. The black
line is the observed power, the red line is the averaged expectation value of the power
(Fit B). The green and blue lines at the bottom of each panel represent the individual
azimuthal components with even and odd m respectively. The rotational splitting of the
azimuthal components is indicated by the vertical tick marks. Even though the m com-
ponents are not resolved, the averaged line profiles of the non-radial modes (` = 1, 2)
are broader than the profile of the radial modes (` = 0). In this case, rotation and the
inclination angle of the rotation axis are determined to be Ω/2π = 0.54 µHz and i = 59◦.
Despite different rotational splitting and inclination angle compared to Figure 3.20, the
averaged line profiles are nearly the same.
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3 Asteroseismic analysis of the solar-like star HD 52265

Figure 3.22: Distribution of the rotational splitting, Ω/2π (top panel), and the inclination
angle of the rotation axis, i (middle panel), determined with a global fit of the 117 day
CoRoT observation of HD 52265 (Fit A). The grey line represents the distribution of 500
initial guesses, the black line shows the distribution of the fit results. The vertical dashed
line marks the result of the best fit. The bottom panel shows the distribution of Ω/2π sin i
which is composed of the parameters in the two panels above.
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3.7 Global fit of the p-mode oscillation spectrum

Figure 3.23: Distribution of the rotational splitting, Ω/2π (top panel), and the inclination
angle of the rotation axis, i (middle panel), determined with a global fit of the 117 day
CoRoT observation of HD 52265 (Fit B). The grey line represents the distribution of 500
initial guesses, the black line shows the distribution of the fit results. The vertical dashed
line marks the result of the best fit. The bottom panel shows the distribution of Ω/2π sin i
which is composed of the parameters in the two panels above.
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Figure 3.24: Constraints on the rotational splitting, Ω/2π, and the inclination angle
of the rotation axis, i, determined with a global fit of the 117 day CoRoT obser-
vation of HD 52265 (Fit A). The (+) symbol represents the result of the global fit,
i.e. Ω/2π = 0.98 µHz and sin i = 0.59 (i = 36◦). The color map in the background illus-
trates the shape of the joint PDF (or the log-likelihood function) in the Ω/2π-sin i plane.
For various sets of fixed parameters, [Ω/2π, sin i], a global fit was performed. The colors
represent the value of the log-likelihood function given the maximum likelihood estimates
for a particular pair of [Ω/2π, sin i]. The three dashed lines represent the fit result for
Ω/2π sin i = 0.58+0.14

−0.13 µHz. The error estimates are derived from Monte Carlo simulation
(200 realizations). The 1σ-contour line contains 68% of the fits of [Ω/2π, sin i] from the
Monte Carlo simulation. The horizontal dotted lines at ν = 0.91 µHz and ν = 1.07 µHz
represent the two peaks in the low-frequency power spectrum which are attributed to the
stellar surface rotation of HD 52265 (cf. Section 3.3.2).
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Figure 3.25: Constraints on the rotational splitting, Ω/2π, and the inclination angle
of the rotation axis, i, determined with a global fit of the 117 day CoRoT obser-
vation of HD 52265 (Fit B). The (+) symbol represents the result of the global fit,
i.e. Ω/2π = 0.53 µHz and sin i = 0.86 (i = 60◦). The color map in the background illus-
trates the shape of the joint PDF (or the log-likelihood function) in the Ω/2π-sin i plane.
For various sets of fixed parameters, [Ω/2π, sin i], a global fit was performed. The colors
represent the value of the log-likelihood function given the maximum likelihood estimates
for a particular pair of [Ω/2π, sin i]. The three dashed lines represent the fit result for
Ω/2π sin i = 0.47+0.13

−0.16 µHz. The error estimates are derived from Monte Carlo simulation
(200 realizations). The 1σ-contour line contains 68% of the fits of [Ω/2π, sin i] from the
Monte Carlo simulation. The horizontal dotted lines at ν = 0.91 µHz and ν = 1.07 µHz
represent the two peaks in the low-frequency power spectrum which are attributed to the
stellar surface rotation of HD 52265 (cf. Section 3.3.2).
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3.7.5 Fit A or Fit B: Which fit is better?
For the global fit, I applied two different parameterizations of the mode linewidth:
a power law according to Equation (3.3) for Fit A, and a 3rd-order polynomial of the
radial order n according to Equation (2.12) for Fit B. Comparing the results obtained with
both fits, I point out that the mode frequencies and amplitudes are almost the same. The
estimates on the rotational splitting and the inclination angle of the rotation axis are in
agreement within their respective error bars. Thus, the parameterizations of the mode
linewidth which are used here do not affect the fit of those parameters significantly. The
linewidth estimates are slightly different for both fits which may be attributed to the sim-
pler parameterization of Fit A compared to Fit B (see Section 3.7.2). Fit A seems to
be a more cautious approach with less assumptions on the frequency dependence of the
mode linewidth than Fit B. However, comparing the values of the joint PDF for Fit A and
Fit B calculated for their respective maximum likelihood estimates, I find that Fit B has
a slightly higher likelihood than Fit A. Finally, I note that Fit A was the initial result of
my analysis and the basis for discussion of the results of the different groups of the DAT.
Fit B is a further development of the analysis of the HD 52265 data.
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4 Fourier analysis of
gapped time series:
maximum likelihood estimation

So far, the data analyzed in this thesis were continuous or the fraction of gaps in the time
series was so small that the missing data could be interpolated. This allows to apply the
standard maximum likelihood estimation method as described in Section 1.5. However,
such uninterrupted data are only available for the Sun and a limited number of stars ob-
served in intensity from space. There exists a large number of asteroseismic data with
gaps. In this chapter, I present the implementation of maximum likelihood estimates for
gapped time series. The work presented in this chapter is largely based on the paper
of Stahn and Gizon (2008). The paper focuses on the effect of the duty cycle on the
accuracy of the estimators of the oscillation parameters. Here, additional sections will
also investigate the effect of the signal-to-noise ratio (Section 4.7.4), the mode lifetimes
(Section 4.7.5), and the initial guess (Section 4.7.6) on the estimation of the oscillation
parameters.

4.1 Introduction
Solar and stellar oscillations are a powerful tool to probe the interior of stars. In this paper
we classify stellar oscillations into solar-like or deterministic. Solar-like oscillations are
stochastically excited by turbulent convection and are present in the Sun and other main-
sequence, subgiant, and giant stars (see e.g. Bedding and Kjeldsen, 2007 and references
therein). Deterministic oscillations are seen in classical pulsators and have mode lifetimes
much longer than any typical observational run; one of the best studied objects in this
class is the pre-white dwarf PG1159−035 also known as GW Vir Winget et al. (1991). In
practice, observations of solar-like or deterministic pulsations always have an additional
stochastic component due to instrumental, atmospheric, stellar, or photon noise.

An important aspect of helioseismology and asteroseismology is the determination of
the parameters of the global modes of oscillation, especially the mode frequencies. In the
case of the Sun, it is known (Woodard 1984) that the measurement precision is limited by
the stochastic nature of the oscillations (realization noise). Libbrecht (1992), and Toutain
and Appourchaux (1994) have shown that realization noise is expected to scale like 1/

√
T ,

where T is the total duration of the observation. A common practice is to extract the solar
mode parameters from the power spectrum using maximum likelihood estimation (MLE,
see e.g. Anderson et al. 1990, Schou 1992, Toutain and Appourchaux 1994, Appourchaux

89



4 Fourier analysis of gapped time series: maximum likelihood estimation

et al. 1998, 2000). In its current form, however, this method of analysis is only valid
for uninterrupted time-series. This is a significant limitation because gaps in the data
are not uncommon (because of the day-night cycle, bad weather, or technical problems).
The gaps complicate the analysis in Fourier space: The convolution of the data with the
observation window leads to correlations between the different Fourier components. The
goal of this paper is to extend the Fourier analysis of solar and stellar oscillations to
time series with gaps, by using appropriate maximum likelihood estimators based on the
correct statistics of the data.

Section 4.2 poses the problem of the analysis of gapped time series in Fourier space.
In Section 4.3 we derive an expression for the joint probability density function (PDF) of
the observations, taking into account the frequency correlations. Our answer is consistent
with an earlier (independent) derivation by Gabriel (1994). Based on this PDF, we derive
maximum likelihood estimators in Section 4.4. In Section 4.5 we recall the “old method”
of maximum likelihood estimation based on the unjustified assumption that frequency
bins are statistically independent. Section 4.6 explains the setup of the Monte Carlo sim-
ulations used to test the fitting methods on artificial data sets. In Section 4.7 we present
the results of the Monte Carlo simulations and compare the new and old fitting methods.
For the sake of simplicity, we consider only one mode of oscillation at a time (solar-like
or sinusoidal). We present several cases for which our new fitting method leads to a sig-
nificant improvement in the determination of oscillation parameters, and in particular the
mode frequency.

4.2 Statement of the problem

4.2.1 The observed signal in Fourier space
Let us denote by ỹ = {ỹi} the time series that we wish to analyze. It is sampled at times
ti = i∆t, where i is an integer in the range 0 ≤ i ≤ N − 1, and ∆t = 1 min is the sampling
time. All quantities with a tilde are defined in the time domain. The total duration of the
time series is T = (N − 1)∆t. By choice, all of the missing data points were assigned the
value zero: This enables us to work on a regularly sampled time grid. Formally, we write

ỹi = w̃i x̃i, i = 0, 1, . . . ,N − 1, (4.1)

where x̃ is the uninterrupted time series that we would have observed if there had been
no gaps and w̃ is the window function defined by w̃i = 1 if an observation is recorded at
time ti and w̃i = 0 otherwise. The x̃ is drawn from a random process, whose statistical
properties will be discussed later.

We define the discrete Fourier transform ŷ of ỹ by

ŷ j =
1
N

N−1∑
i=0

ỹi e−i2πν jti for j ∈ N, (4.2)

where ν j = j/(N∆t) is the frequency and the frequency resolution is 1/(N∆t). Note that
ŷ j = ŷ∗N− j and ŷ j = ŷ∗− j, where (∗) denotes the complex conjugate. The Fourier transform
has periodicity 1/∆t or twice the Nyquist frequency.
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4.2 Statement of the problem

Our intention is to fit not the complete Fourier spectrum, but a rather small interval
that contains one (or a few) modes of stellar oscillation. Thus, we extract a section of the
data of length M starting from a particular frequency νq, as shown in Figure 4.1(c). This
subset of the data is represented by the vector y = [y0, y1, · · · , yM−1]T with components

yi = ŷq+i, i = 0, 1, . . . ,M − 1. (4.3)

By using this definition of the Fourier transform [Equation (4.2)], the vector y is given by
the convolution of x̂ with the window ŵ:

yi =

M+p−1∑
j=−p

ŵi− j x̂q+ j. (4.4)

The integer p in Equation (4.4) refers to the cutoff frequency νp beyond which the ob-
servation window has no significant power. Truncating the window function at frequency
νp is a simplification of the general problem. Our main goal, however, is, given a known
window function, to study its effects on the determination of the parameters of stellar os-
cillations. Figure 4.1 is a schematic representation in Fourier space of the convolution of
a single mode of oscillation by the window function. The observed signal is spread over
some frequency range and, as we shall see later, its statistical properties are affected.

We note that, in practice, one can never completely isolate one single mode of oscil-
lation in the power spectrum. In particular, other modes with frequencies outside of the
fitting range can leak into it after convolution by the temporal window function. Hence,
fitting one mode of oscillation is a simplification. But our first objective is to try to study
the effects of gaps, independently from the complications associated with a badly speci-
fied model.

Equation (4.4) can be rewritten in matrix form as

y = Wx, (4.5)

where the vector x = [x0, x1, . . . , xM+2p−1]T of length M + 2p is defined by

xi = x̂q−p+i, i = 0, 1, . . . ,M + 2p − 1, (4.6)

and W = [Wi j] is the M×(M+2p) rectangular window matrix with elements Wi j = ŵi− j+p,
where i = 0, 1, . . . ,M − 1 and j = 0, 1, . . . ,M + 2p − 1:

W =



ŵp . . . ŵ0 . . . ŵ−p
. . .

. . .
. . . 0

ŵp . . . ŵ0 . . . ŵ−p

0 . . .
. . .

. . .

ŵp . . . ŵ0 . . . ŵ−p


. (4.7)

Note that ŵi = ŵ∗−i and that W is of rank M.
Equation (4.5) is the master equation. Our goal is to extract the stellar oscillation

parameters (contained in x), given the incomplete information y.
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4 Fourier analysis of gapped time series: maximum likelihood estimation

Figure 4.1: Schematic representation in Fourier space of the convolution of the signal x̂
with the window function ŵ. For the sake of simplicity, only the power spectra of the
different quantities are shown here. Panel (a) shows the window function ŵ and its cutoff

frequency νp, panel (b) shows the unconvolved signal x̂, and panel (c) shows the observed
signal ŷ. Note that the selected section of the observed signal, starting at frequency νp, is
of length M, whereas the unconvolved signal is of length (M + 2p).

4.2.2 Statistics of the unconvolved signal
Here we describe the basic assumptions that we make about the statistics of the data in
the Fourier domain. The unconvolved signal [x] consists of a deterministic component
[d] and a zero-mean stochastic component [e] such that

x = d + e. (4.8)

The deterministic component d may include deterministic stellar oscillations that are long-
lived compared to the total length of the observation. The stochastic component e may
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include various sources of noise (e.g. stellar convection, photon noise, atmospheric noise,
etc.) and stochastically excited pulsations as observed on the Sun.

We assume that the ei are M+2p independent random variables in the Fourier domain.
This is equivalent to saying that the stochastic component of the signal in the time domain
is stationary. We further assume that e is a Gaussian random vector with independent real
and imaginary parts and covariance matrix

E[e∗i e j] = σ2
i δi j, i, j = 0, 1, . . . ,M + 2p − 1, (4.9)

where E denotes the expectation value and σi is the standard deviation of ei at frequency
νi. One may invoke the central limit theorem to justify the choice of Gaussian distribu-
tions. The quantity σ2

i is the expected power spectrum at frequency νi, which may include
background noise and peaks corresponding to the modes of oscillations (Duvall and Har-
vey 1986, Appourchaux et al. 1998). In terms of a complex Gaussian random vector g
with unit covariance matrix, E[g∗gT ] = IM+2p, we can rewrite e as

e = S g, (4.10)

where S is the (M + 2p) × (M + 2p) diagonal matrix

S = diag(σ0, σ1, . . . , σM+2p−1). (4.11)

We emphasize that, although the ei are uncorrelated random variables, the yi are correlated
because of the multiplication of x by the window matrix [Equation (4.5)].

4.3 Joint PDF of the complex Fourier spectrum
In this section we derive an expression for the joint probability density function of the
observed signal y. This problem had already been solved by Gabriel (1994). We reach the
same conclusion, independently and with more compact notations. We start by rewriting
the master equation, Equation (4.5), given by

y = Wd + Cg, (4.12)

where
C = WS (4.13)

is an M × (M + 2p) matrix with rank M and singular value decomposition (Horn and
Johnson 1985, chapter 7.3)

C = UΣVH. (4.14)

Here the superscript H denotes the Hermitian conjugate and U and V are unitary matrices
of dimensions M × M and (M + 2p) × (M + 2p), respectively (i.e., UHU = IM and
VHV = IM+2p). The M × (M + 2p) matrix Σ can be written as

Σ = [Λ pp 0], Λ = diag(λ0, λ1, . . . , λM−1), (4.15)

where λ0, λ1, . . . , λM−1 are the M (positive) singular values of the matrix C. Thus, there
exists a vector ξ = VHg such that

y = Wd + U[Λ pp 0]ξ. (4.16)
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Since g has unit covariance matrix and V is unitary, the vector ξ is a complex Gaussian
random vector of size M + 2p with unit covariance matrix. It is obvious from Equa-
tion (4.16) that there exists a lower rank complex Gaussian random vector of length M,
η = [ξ0, ξ1, . . . , ξM−1]T , such that

y = Wd + UΛη. (4.17)

The variables ξM, ξM+1, . . . , ξM+2p−1 are dummy variables, which do not enter in the de-
scription of y. Equation (4.17) is an important step, as the vector y of length M is now
expressed in terms of M independent complex Gaussian variables. This enables us to
write the PDF of y as

py(y) =
1
J

pη
(
(UΛ)−1(y −Wd)

)
, (4.18)

where pη(η) denotes the PDF of η and J is the Jacobian of the linear transformation η→ y.
Since η is a complex Gaussian random vector with unit covariance, i.e. E[η∗ηT ] = IM, we
have

pη(η) =
exp(−‖η‖2)

πM , (4.19)

where we used the notation ‖η‖2 = ηHη. Since U is unitary and Λ is diagonal and real, the
Jacobian of the transformation is given by

J = | det(UΛ)|2 = (det Λ)2 =

M−1∏
i=0

λ2
i . (4.20)

Combining Equations (4.18), (4.19), and (4.20), we get the joint PDF of the observed
vector y:

py(y) =
exp(−‖Λ−1UH(y −Wd)‖2)

πM(det Λ)2 . (4.21)

This expression is, perhaps, more elegantly written as

py(y) =
exp(−‖C†(y −Wd)‖2)

πM(det Λ)2 (4.22)

in terms of C†, the (M + 2p) × M Moore–Penrose generalized inverse of C (Horn and
Johnson 1985, chapter 7.3),

C† = VΣ†UH = CH(CCH)−1, (4.23)

where Σ† is the transpose of Σ in which the singular values are replaced by their inverse.
One may ask, after the fact, if the quantity (UΛ)−1 in Equation (4.18) is always defined.
The answer would appear to be yes since the Moore-Penrose generalized inverse of C is
perfectly well defined. It is not excluded, however, that some singular values λi could
be infinitesimally small. We have not encountered any such difficulty with the test cases
given in Section 4.7. Should C be ill-conditioned in other cases, a simple truncated SVD
would help avoiding in a numerical problem.

Before discussing the implementation of the method in Section 4.4, we should like to
draw attention to a parallel between fitting data with temporal gaps and fitting data with
spatial gaps. To understand this analogy, we refer the reader to the work of (Appourchaux
et al. 1998, Section 3.3.4), who discuss how to interpret the spatial leaks of non-radial
oscillations that arise from the fact that only half of the solar disk can be observed from
Earth. Their approach is similar to the one developed in this paper.
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4.4 Maximum likelihood estimation of stellar oscillation parameters

4.4 Maximum likelihood estimation of stellar oscillation
parameters

Let us assume that the stellar oscillation model that we are trying to fit to the data depends
on a set of k parameters µ = (µ0, µ1, . . . , µk−1). These parameters may be the amplitude, the
phase, the frequency, the line asymmetry, the noise level, etc. The basic idea of maximum
likelihood estimation is to pick the estimate µ? that maximizes the likelihood function.
The likelihood function is another name for the joint PDF [Equation (4.22)] evaluated for
the sample data. In practice, one minimizes

L(µ) = − ln py = ‖C†(y −Wd)‖2 + 2
M−1∑
i=0

ln λi + constant, (4.24)

rather than maximizing the likelihood function itself. In this expression, the quantities C†

and λi all depend implicitly on the model parameters µ through the covariance matrix S .
The vector d also depends on the model parameters in the case of deterministic oscilla-
tions. The probability of observing the sample data is greatest if the unknown parameters
are equal to their maximum likelihood estimates µ?:

µ? = arg min
µ
L(µ). (4.25)

The method of maximum likelihood has many good properties (Brandt 1970). In partic-
ular, in the limit of a large sample size (M large), the maximum likelihood estimator is
unbiased and has minimum variance.

What is particularly new about our work is the minimization of the likelihood function
given by Equation (4.24). We use the direction set method, or Powell’s algorithm, to solve
the minimization problem with a computer. In practice, the result of the fit depends on
the initial guess and the fractional tolerance of the minimization procedure (the relative
decrease of L in one iteration). The fitted parameters depend on the initial guess because
the functionLmay have local minima in addition to the global minimum. We will address
this issue in more detail in Section 4.7.

4.4.1 Solar-like oscillations

In the case of solar-like oscillations, there is no deterministic component and the log-
likelihood becomes

L(µ) = ‖C†y‖2 + 2
M−1∑
i=0

ln λi + constant. (4.26)

4.4.2 Deterministic oscillations plus white noise

If background white noise is the only stochastic component then

σi = σ0 = constant, i = 0, 1, . . . ,M + 2p − 1. (4.27)
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The log-likelihood function becomes

L(µ) =
1
σ2

0

‖W†(y −Wd)‖2 + M lnσ2
0 + constant. (4.28)

Splitting the unknowns µ = (µ̌, σ0) into the parameters describing the oscillations, µ̌ =

(µ0, µ1, . . . , µk−2), and the noise level σ0, reduces the minimization problem to finding the
most likely estimates

µ̌? = arg min
µ̌
‖W†(y −Wd)‖2, (4.29)

where d = d(µ̌). The noise level is explicitly given by

σ0? = M−1/2‖W†[y −Wd(µ̌?)]‖. (4.30)

4.5 The old way: fitting the power spectrum and ignoring
the correlations

Maximum likelihood estimation has been used in the past to infer solar and stellar oscil-
lation parameters, even in the case of gapped time series. The joint PDF of the observa-
tions was assumed to be the product of the PDFs of the individual yi, as if the frequency
bins were uncorrelated. For comparison purposes, we briefly review this (unjustified)
approach.

According to Equation (4.12), the PDF of yi is a normal distribution

pyi(yi) =
exp(−|yi − yi|2/vi)

πvi
(4.31)

with mean

yi =

M+2p−1∑
j=0

Wi jd j (4.32)

and variance

vi =

M+2p−1∑
j=0

|Wi j|2σ2
j . (4.33)

Under the (wrong) assumption that the yi are independent random variables, the joint PDF
of y becomes

pnc
y (y) =

M−1∏
i=0

pyi(yi), (4.34)

where the superscript “nc” stands for “no correlation". This joint PDF uses the correct
mean (yi) and variance (vi) of the data, but it ignores all the nonvanishing cross-terms
E[y∗i y j]. In other words, the spread of power implied by the convolution with the window
is taken care of, but not the proper statistics.

Under the same simplifying “no-correlation” assumption, the log-likelihood function
is

Lnc(µ) =

M−1∑
i=0

|yi − yi|2
vi

+

M−1∑
i=0

ln vi + constant, (4.35)

where the yi and vi are implicit functions of the model parameters µ.
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4.5.1 Solar-like oscillations

If the signal has no deterministic component (d = 0), then the power spectrum [Pi(µ) =

|yi|2] has the expectation value Pi = E[Pi] = vi. Thus, in the case of purely solar-like
oscillations, we recover the standard expression (Toutain and Appourchaux 1994):

Lnc(µ) =

M−1∑
i=0

(
Pi

Pi

+ ln Pi

)
+ constant when d = 0. (4.36)

Although this expression is perfectly valid for uninterrupted data, it is not justified when
gaps are present. The parameters µnc

? that minimize Lnc(µ) are not optimal, as will be
shown later by using Monte Carlo simulations.

4.5.2 Deterministic oscillations plus white noise

When σi = σ0 = constant, the “no-correlation” log-likelihood function simplifies to

Lnc(µ) =
1
σ2

0

‖y −Wd‖2∑p
j=−p |ŵ j|2 + M lnσ2

0 + constant. (4.37)

The minimization problem becomes

µ̌nc
? = arg min

µ̌
‖y −Wd‖2, (4.38)

where d(µ̌) depends on the oscillation parameters µ̌ = (µ0, µ1, . . . , µk−2). The noise level
is explicitly given by

σnc
0? =

M
p∑

j=−p

|ŵ j|2

−1/2

‖y −Wd(µ̌nc
? )‖. (4.39)

4.6 Simulation of artificial time series
So far we have considered a general signal, which includes a deterministic component
and a stochastic component. The parametrization of each component depends on prior
knowledge about the physics of the stellar oscillations. Solar-like pulsations are stochastic
in nature and no deterministic component is needed in this case. However, long-lived
stellar pulsations are treated as deterministic. Some stars may support both deterministic
and stochastic oscillations. In this section, we model the two cases separately.

We want to test the fitting method [Equations (4.24) and (4.25)] by applying it to sim-
ulated time series with gaps. For comparison, we also want to apply the old fitting method
(Section 4.5) to the same time series. We need to generate many realizations of the same
random process to test the estimators for bias and precision: This is called Monte Carlo
simulation. In Section 4.6.1 we discuss the generation of the synthetic window functions.
We then discuss the parametrization of the solar-like oscillations (Section 4.6.2) and the
deterministic oscillations (Section 4.6.3) used to simulate the unconvolved signal.
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4 Fourier analysis of gapped time series: maximum likelihood estimation

Figure 4.2: Square root of the power spectra of the synthetic window functions [ŵ] used
in this paper for duty cycles of (a) 100%, (b) 66%, (c) 30%, and (d) 15%. The main
periodicity of the window is 24 hours for cases (b) and (c) and 48 hours for window (d).
All windows are truncated at frequency νp = 34.3 µHz.

4.6.1 Synthetic Window Functions

We generate three different observation windows, corresponding to different duty cycles.
The observation windows are first constructed in the time domain. By definition, w̃i is set
to one if an observation is available and zero otherwise. The total length of all time series
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is fixed at T = 16.5 days (frequency resolution ∆ν = 0.7 µHz). A window function is
characterized by two main properties: the duty cycle (fraction of ones) and the average
periodicity. A typical window function for a single ground-based site has a 24-hour pe-
riodicity. To deviate slightly from purely periodic window functions we introduce some
randomness for the end time of each observation block.

Figure 4.2(b) –4.2 (d) shows the power spectra of the three window functions. The
first and second window functions have a main periodicity of 24 hours and duty cycles
of 66% and 30%, respectively. Two side lobes occur at frequencies of 11.6 µHz and
23.1 µHz. The nonvanishing power between the side lobes is due to the deviation from
a purely periodic window. The third window function has a main periodicity of 48 hours
and a duty cycle of only 15%. All of these window functions are not unrealistic.

We apply a sharp low-pass filter at frequency νp = 34.3 µHz (p = 49) to all window
functions. The power at higher frequencies corresponds to about 5% of the total power in
the windows. This truncation is needed to apply the fitting algorithm, which assumes that
there exists a frequency νp beyond which the power in the window vanishes (i.e., that the
window function is band limited).

4.6.2 Solar-like oscillations

We generate the realizations of the unconvolved solar-like oscillation signal directly in
the Fourier domain. We consider a purely stochastic signal (d = 0) and a single mode
of oscillation. Since we assumed stationarity in the time domain, the Fourier spectrum of
the unconvolved signal for one single mode can be written as

xi = ei = [SL(νi) +N]1/2 ηi, i = 0, 1, . . . ,M + 2p − 1, (4.40)

where L describes the line profile of the mode in the power spectrum, S is the mode’s
maximum power,N is the variance of the background noise, and ηi is a centered complex
Gaussian random variable with unit variance and independent real and imaginary parts.
Solar-like oscillations are stochastically excited and intrinsically damped by turbulent
convection (Goldreich and Keeley 1977, Stein et al. 2004). The expectation value of the
power spectrum is nearly Lorentzian, except for some line asymmetry (e.g. Duvall et al.
1993). Here we use a simple asymmetric line profile:

L(ν) =
(1 + bX)2 + b2

1 + X2 with X =
ν − ν0

Γ/2
, (4.41)

where ν0 is the resonant frequency, b is the asymmetry parameter of the line profile
(|b| � 1), and Γ is a measure of the width of the line profile. We refer to S/N as the
signal-to-noise ratio in the power spectrum. As b tends to zero, Γ becomes the full width
at half maximum (FWHM) of the power spectrum and 1/(πΓ) the mode lifetime. There
are five model parameters, µ = (ν0,Γ, b,S,N).

Once the unconvolved signal x has been generated in the Fourier domain, the observed
signal y is obtained by multiplication with the window matrix W, as previously explained.
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4.6.3 Deterministic sinusoidal oscillations plus white noise
In the time domain, we consider a purely sinusoidal function on top of white background
noise:

x̃i = A sin (2πν0 ti + ϕ) + σt ηi i = 0, 1, . . . ,N − 1. (4.42)

The first term describes the deterministic component of the signal, where A is the ampli-
tude, ν0 the mode frequency, and ϕ the phase of the mode. The second term is stochastic
noise with standard deviation σt. The ηi are N normally distributed independent real
random variables with zero mean and unit variance. The observed signal is obtained
by multiplying x̃i by the window w̃i in the time domain. The model parameters are
µ = (ν0, ϕ, A, σt).

We have defined the signal and the noise in the time domain, but a definition of signal-
to-noise ratio in the Fourier domain is desirable. On the one hand, the variance of the noise
in the Fourier domain is

σ2
n = σ2

0

p∑
i=−p

|ŵi|2 =
σ2

t

N

p∑
i=−p

|ŵi|2, (4.43)

where
∑

i |ŵi|2 is the total power in the window. On the other hand, the maximum power
of the signal in Fourier space is Pmax = A2|ŵ0|2/4, where |ŵ0|2 is the power of the window
at zero frequency. Thus, by analogy with the solar-like case, it makes sense to define the
signal-to-noise ratio in the Fourier domain as

S/N =

(
N|ŵ0|2

4
∑

i |ŵi|2
)

A2

σ2
t
. (4.44)

In practice we fix A and S/N and deduce the corresponding noise level σt.

4.7 Testing and comparing the fitting methods for solar-
like oscillations

Several hundreds of realizations are needed to assess the quality of a fitting method. We
do not intend to test all possible combinations of mode parameters but we want to show a
few cases for which the new fitting method provides a significant improvement compared
to the old fitting method.

4.7.1 Window function with a 30% duty cycle
Figure 4.3 shows one realization of a simulated mode of solar-like oscillation with input
parameters ν0 = 3000 µHz, Γ = 3.2 µHz, S = 0.9, N = 0.15, and b = 0.1. The signal-to-
noise ratio is S/N = 6 and the window function is 30% full (see Figure 4.2c). The mode
lifetime is 1/(πΓ) = 27.6 hours. Figure 4.3(a) displays the real and imaginary parts of the
Fourier transform y, together with the standard deviation of the data (nc fit in blue, new fit
in red, and expectation value in green). Figure 4.3(b) shows the power spectrum and the
fits. Notice the side lobes introduced by the convolution of the signal with the window
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Figure 4.3: Example of a realization of one mode of a solar-like oscillation (black line)
with input frequency ν0 = 3000 µHz, line width Γ = 3.2 µHz, and S/N = 6. The window
function is 30% full. Panel (a) shows the real and imaginary parts of the Fourier spectrum.
Panel (b) shows the power spectrum. The vertical dashed lines represent the width of the
window function. Also shown are the new fit (red), the old fit (blue), and the expectation
value (green).
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functions. The “no-correlation” fit is done on the power spectrum [Equation (4.36)],
whereas the new fit is performed in complex Fourier space [Equation (4.24)].

Each fit shown in Figure 4.3 corresponds in fact to the best fit out of five fits with differ-
ent initial guesses. For each realization, we use the frequency guesses
3000 + (0,±5.5,±11.9) µHz for ν0. The last two frequency guesses correspond to the
frequencies of the two main side lobes of the window function (Figure 4.2c). For the
other parameters, we choose random guesses within ±20% of the input values. The rea-
son for using several guesses is to ensure that the fit converges to the global maximum of
the likelihood, not to a nearby local maximum, i.e. that the estimates returned by the code
are the MLE estimates defined by Equation (4.25). In some cases, the global maximum
coincides with a side lobe at ±11.9 µHz from the main peak. We note that the new fitting
method requires a much longer computing time than the old “nc” method: typically, three
hours on a single CPU core for a single realization (five guesses and five fits).

For the particular realization of Figure 4.3, the new fit is closer to the expectation
value (i.e., is closer to the answer) than the old “nc” fit. No conclusions should be drawn,
however, from looking at a single realization.

To test the reliability of each fitting method, we computed a total of 750 realizations
with the same input parameters as in Figure 4.3 and the same window function (30% full).
The quality (bias and precision) of the estimators can be studied from the distributions
of the inferred parameters. As shown by the distributions of Figure 4.4 the new fitting
method is superior to the old nc method. This is true for all the parameters, in particular
the mode frequency ν0. The distributions for the mode frequency (Figure 4.4a) are quite
symmetric and Gaussian-like, although the old fitting method leads to a significant excess
of values beyond the 2σ mark. We note that, in general, the old fitting method is more
sensitive to the initial frequency guess. Also the estimates of the line width Γ and the
mode power S are significantly more biased with the old fitting method than with the
new one (Figures 4.4b and 4.4c). It is worth noting that the fits return a number of small
Γ/large S estimates away from the main peaks of the distributions, but less so for the new
fits. These values correspond to instances when the signal barely comes out of the noise
background. The new fit returns the noise level [N] with a higher precision and a lower
number of underestimated outliers than the old method (where the outliers are represented
by the vertical bars in Figure 4.4d). Although the estimation of the asymmetry parameter
is unbiased with the new fitting method (Figure 4.4e), the uncertainty on b is so large that
it probably could have been ignored in the model.

Quantitative estimates of the mean and the dispersion of the estimators are provided
in Table 1. Because the distributions of the estimated parameters are not always Gaussian
and may contain several outliers, we compute the median (instead of the mean) and the
lower and upper bounds corresponding to ±34% of the points on each side of the median
(instead of the one-σ dispersion). This definition has the advantage of being robust with
respect to the outliers. The notation 3000.0+b

−a µHz in the first row of Table 4.1 means that
the median mode frequency is 3000.0 µHz and that 68% of the fits belong to the interval
[3000.0 − a, 3000.0 + b] µHz. We emphasize that the subscript −a and the superscript +b
do not refer to an uncertainty in the determination of the median: The median is known to
a much higher precision because of the large number of realizations. Later we relax the
language and refer to the “one-σ uncertainty” to mean the average σ = (a + b)/2.
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Figure 4.4: Distributions of the inferred oscillation parameters from fits to 750 realizations
of a single mode of solar-like oscillations. The input parameters are given in Table 4.1 and
the window function is 30% full. The five panels show the distributions of the inferred
(a) mode frequency ν0, (b) line width Γ, (c) mode power S, (d) noise level N , and (e)
asymmetry parameter b. The red lines show the results obtained with the new fitting
method and the black lines show the old “no-correlation” fits. The vertical green dashed
line in each plot indicates the input value. The horizontal lines in panel (a) are intervals
containing 68% of the fits for the new (black line) and the old (gray line) fitting methods.
The thick red and black vertical bars give the numbers of outliers with estimates beyond
the plot boundaries
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Table 4.1: Medians and scatters of the distributions of the estimated parameters of solar-
like oscillations (see Figure 4.4). The window function is 30% full, the input line width is
3.2 µHz, and the input signal-to-noise ratio is S/N = 6. The new and old MLE estimates
are given in the last two columns. By definition, 68% of the fits fall within the bounds set
by the subscripts and superscripts (with the notation explained in detail in the text).

Mode parameter Input value New fitting Old fitting

ν0 [µHz] 3000.0 3000.0+1.4
−1.4 3000.0+2.8

−2.8

ln(Γ/1µHz) 1.2 0.8+0.8
−1.0 0.2+1.1

−3.7

lnS −0.1 0.2+0.9
−0.9 0.9+4.3

−1.2

lnN −1.9 −2.1+0.2
−0.9 −2.4+0.4

−6.8

b 0.1 0.1+0.2
−0.1 0.0+0.2

−0.1

Table 4.2: Medians and scatters of the mode frequency estimates (solar-like oscilla-
tions) for the window functions defined in Section 4.6.1. The input mode frequency is
ν0 = 3000 µHz, the input line width is Γ = 3.2 µHz, and the signal-to-noise ratio is fixed
at S/N = 6. The mode lifetime is 27.6 hours.

Window function Frequency estimate [µHz]
Duty cycle Main period Average gap New fitting Old fitting

100% – – 3000.0+1.1
−1.2 3000.0+1.1

−1.2

66% 24 hours 7.4 hours 3000.0+1.1
−1.3 3000.1+1.5

−1.4

30% 24 hours 16.4 hours 3000.0+1.4
−1.4 3000.0+2.8

−2.8

15% 48 hours 40.7 hours 3000.0+1.7
−1.3 3000.0+8.3

−6.5

The numbers from the last two columns in Table 1 confirm the analysis of Figure 4.4.
The mode frequency can be measured with a precision of 1.4 µHz, and so the precision
of the new fitting method is exactly twice that of the old one. This gain in precision
is very significant and potentially important. Since measurement uncertainty scales like
T−1/2 (Libbrecht 1992), one may equate the gain in using the proper fitting procedure to
an effective increase in the total length of the time series by a factor of four. As seen in
Table 1, the line width, the mode power, the background noise, and the line asymmetry
parameter are all less biased and more precise with the new fitting method than the old
one. Notice that the larger dispersions in the old-fit case are due in part to non-Gaussian
distributions with extended tails.
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Figure 5 Distributions of the mode frequency and the line width for 750 realizations of solar-like oscilla-
tions, using the old fitting method (panels (a) and (b)) and the new fitting method (panels (c) and (d)). The
observation windows have duty cycles of 15%, 30%, 66%, and 100%. The vertical dashed lines represent the
input values. The input line width is Γ = 3.2 µHz.

1/α. This leads however to a dependence of σν0 on α, which, in our particular case, is closer
to α−1/2 than α−1. We suspect that the Libbrecht formula underestimates the dispersion
because it ignores the frequency correlations.

The new fitting method returns a ν0 uncertainty that is much less sensitive to the duty
cycle, with a variation as ∼ α−0.15 (red curve, left panel of Figure 6). This is quite remark-
able. That the frequency uncertainty could remain nearly constant for α > 30% is not really
surprising since the average gap (see numbers in Table 2) is less than the mode lifetime
τ = 1/(πΓ ) = 27.6 hours. This regime was studied by Fossat et al. (1999) using a gap-
filling method: As long as the signal-to-noise ratio is large enough, the signal can be recon-

Figure 4.5: Distributions of the mode frequency and the line width for 750 realizations
of solar-like oscillations, using the old fitting method (panels a and b) and the new fitting
method (panels c and d). The observation windows have duty cycles of 15%, 30%, 66%,
and 100%. The vertical dashed lines represent the input values. The input line width is
Γ = 3.2 µHz

4.7.2 Different window functions

Here we study how bias and precision change as the window function changes, in par-
ticular as the duty cycle changes. We consider the four window functions defined in
Section 4.6.1 with duty cycles [α] equal to 15%, 30%, 66%, and 100%. First we consider
input parameters of solar-like oscillations that are exactly the same as in the previous sec-
tion: ν0 = 3000 µHz, Γ = 3.2 µHz, S = 0.9, S/N = 6, and b = 0.1. Figure 4.5 shows the
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Figure 6 Uncertainty of estimates of the mode frequency [ν0] as a function of the window duty cycle
[α]. The window functions are as defined in Section 6.1. The red curve shows the 1-σ Monte Carlo MLE
uncertainties for the new fitting method. The black curve shows the 1-σ Monte Carlo MLE uncertainties for
the old no-correlation fitting method. The blue curves show the mean Cramér – Rao lower bounds (formal
error bars). The square symbol with a cross at α = 30% in the left panel is a rough estimate (see text). In the
left panel, the input line width is Γ = 3.2 µHz (see also numbers in Table 1). In the right panel, the input line
width is Γ = 10 µHz, with all of the other parameters being the same as in the left panel. In both panels the
signal-to-noise ratio is S/N = 6. For reference, the dashed lines have slope α−1/2.

Figure 7 Distributions of formal
errors of the mode frequency
obtained by inverting the
Hessian. The left panel is for the
simulation with Γ = 3.2 µHz
(see Figure 5(c)) and the right
panel is for Γ = 10 µHz. The
different curves correspond to
different window functions, as
indicated in the legend. The
means of these distributions
(Cramér – Rao lower bounds)
give the blue curves plotted in
Figure 6.

where Kii is the ith element on the diagonal of the inverse (K = H−1) of the Hessian matrix
with elements

Hij = ∂2L
∂µi∂µj

for i, j = 0,1, . . . , k − 1. (46)

Figure 4.6: Uncertainty on estimates of the mode frequency [ν0] as a function of the
window duty cycle [α]. The window functions are as defined in Section 4.6.1. The red
curve shows the 1-σ Monte Carlo MLE uncertainties for the new fitting method. The
black curve shows the 1-σ Monte Carlo MLE uncertainties for the old no-correlation
fitting method. The blue curves show the mean Cramér–Rao lower bounds (formal error
bars). The square symbol with a cross at α = 30% in the left panel is a rough estimate
(see text). In the left panel, the input line width is Γ = 3.2 µHz (see also numbers in Table
1). In the right panel, the input line width is Γ = 10 µHz, with all of the other parameters
being the same as in the left panel. In both panels the signal-to-noise ratio is S/N = 6.
For reference, the dashed lines have slope α−1/2.

distributions of the inferred mode frequencies and line widths, using the old (Figures 4.5a
and 4.5b) and the new (Figures 4.5c and 4.5d) fitting methods. Each fit is the best fit from
five different ν0 guesses (see Section 4.7.1). The distributions for the 100% window are
identical for the two fitting methods; this is expected since the old and new fitting methods
are equivalent in the absence of gaps.

The precision on ν0 using the old “no-correlation” MLE drops fast as the duty cycle
decreases (Figure 4.5a). This drop is much faster than in the case of the fits that take
the frequency correlations into account (Figure 4.5c). When the duty cycle is 15%, the
frequency estimate is five times better with the new method than with the old one. The
difference is perhaps even more obvious for the line width. For the 15% window, it is
almost impossible to retrieve Γ with the old fitting method (Figure 4.5b), whereas the new
method gives estimates that are almost as precise as in the no-gap case (Figure 4.5d). The
estimates of Γ are significantly less biased with the new method. Figure 4.5 confirms the
importance of using the correct expression for the likelihood function.
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Table 4.2 gives the medians and half-widths of the ν0 distributions. The one-σ dis-
persions are plotted as a function of the duty cycle α in the left panel of Figure 4.6. The
improvement in the fits is quite spectacular. For example, when α = 15% the dispersion
on ν0 is reduced by nearly 80% with the new fitting method (1.5 µHz vs. 7.4 µHz).

With the old method, the uncertainty on ν0 increases much faster than α−1/2 as the
duty cycle α drops (∼α−1 between the 30% and 15% windows). This steep dependence
on α is worse than “predicted” by Libbrecht (1992). In his paper, Libbrecht suggested
using the uncertainty σν0 =

√
f Γ/(4πT ), where f (β) = (1 + β)1/2[(1 + β)1/2 + β1/2]3

and β is an “effective” noise-to-signal ratio. He suggested that the main effect of the
gaps is to increase the noise-to-signal ratio N/S, presumably by a factor

∑
i |ŵi|2/|ŵ0|2,

itself proportional to 1/α. This leads however to a dependence of σν0 on α, which, in
our particular case, is closer to α−1/2 than α−1. We suspect that the Libbrecht formula
underestimates the dispersion because it ignores the frequency correlations.

The new fitting method returns a ν0 uncertainty that is much less sensitive to the duty
cycle, with a variation like ∼α−0.15 (red curve, left panel of Figure 4.6). This is quite
remarkable. That the frequency uncertainty could remain nearly constant for α > 30%
is not really surprising since the average gap (see numbers in Table 2) is less than the
mode lifetime τ = 1/(πΓ) = 27.6 hours. This regime was studied by Fossat et al. (1999)
using a gap-filling method: As long as the signal-to-noise ratio is large enough, the signal
can be reconstructed. Why the new fit is doing such a good job for duty cycles α ≤ 30%
is, however, puzzling (at first sight), since the average gap (40.7 hours) is larger than the
mode lifetime. This can be understood as follows. For small duty cycles, the time series is
effectively a collection of nearly independent blocks of data, which, for the 30% window
function, are eight-hours long on average. Since MLE simulations tell us that the uncer-
tainty on the mode frequency for an uninterrupted series of eight hours is about 5.5 µHz,
we would expect for the gapped time series (T = 16.5 days, with 24-hour periodicity) to
be able to reach the uncertainty 5.5/

√
16 = 1.375 µHz. This value, represented by the

box with a cross in Figure 4.6, is found to be very close to the MLE estimate from the
new fits. Hence, what matters at very low duty cycle is the number of independent blocks
of continuous data. The new fitting method captures this very well, which is satisfying.
By comparison, the old no-correlation fitting method does poorly (black line).

To further investigate this last point, we ran another set of simulations using a mode
line width (Γ = 10 µHz) corresponding to a mode lifetime τ = 8.8 hours, which is signif-
icantly smaller than the average gap lengths of the 30% and the 15% windows. The other
input parameters remained the same as before. We computed and fitted 1350 realizations.
The results are shown in the right panel of Figure 4.6. For the new fitting method, the
dependence of the frequency uncertainty on the duty cycle is about α−0.12, which is com-
parable to the previous simulations with Γ = 3.2 µHz. We conclude that it is really worth
solving for the correct minimization problem and that fitting for the phase information
in complex Fourier space is important to get a good match between the model and the
data. Of course, this can only be done properly when we have perfect knowledge of the
model, which is the case with these numerical simulations but is rarely the case with real
observations.
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Figure 4.7: Distributions of formal errors on the mode frequency obtained by inverting
the Hessian. The left panel is for the simulation with Γ = 3.2 µHz (see Figure 5c) and
the right panel is for Γ = 10 µHz. The different curves correspond to different window
functions, as indicated in the legend. The means of these distributions (Cramér–Rao lower
bounds) give the blue curves plotted in Figure 4.6.

4.7.3 Cramér–Rao lower bounds
Monte Carlo simulations are very useful for assessing the variance and the bias of a par-
ticular estimator. When fitting real observations, however, the variance of the estimator
cannot be computed directly by Monte Carlo simulation since the input parameters are,
by definition, not known. Hopefully, the fit can return a formal error from the shape of
the likelihood function in the neighborhood of the global maximum.

The Cramér–Rao lower bound (Kendall and Stuart 1967) achieves minimum variance
among unbiased estimators. It is obtained by expandingL about its minimum. The formal
error σµi on the parameter µi is given by

σµi =
√

Kii, (4.45)

where Kii is the i-th element on the diagonal of the inverse (K = H−1) of the Hessian
matrix with elements

Hi j =
∂2L

∂µi ∂µ j
for i, j = 0, 1, . . . , k − 1. (4.46)

The Cramér–Rao formal errors have been used in helioseismology by, for example, Toutain
and Appourchaux (1994), Appourchaux et al. (1998), Gizon and Solanki (2003).

We have computed the formal error on the mode frequency for many realizations
and for all window functions. The resulting distributions are shown in Figure 4.7. The
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Table 4.3: Medians and scatters of the distributions of the estimated parameters of one
mode of solar-like oscillation (see Figure 4.10). The window function is 30% full, the
input linewidth is Γ = 3.2 µHz, and the input signal-to-noise ratio is S/N = 20. The new
and the old MLE estimates are given in the last two columns. By definition, 68% of the
fits fall within the bounds set by the subscripts/exponents (with the notation explained in
the text).

Mode parameter Input value New fitting Old fitting

ν0 [µHz] 3000.0 3000.0+0.8
−0.8 3000.0+1.3

−1.3

ln(Γ/1µHz) 1.2 1.1+0.5
−0.5 1.0+0.7

−0.8

lnS −0.1 −0.1+0.6
−0.6 0.1+0.9

−0.8

lnN −3.1 −3.2+0.2
−0.3 −3.3+0.3

−2.2

b 0.1 0.1+0.1
−0.1 0.1+0.1

−0.1

mean formal error from each distribution is plotted in Figure 4.6. Overall the Cramér–
Rao lower bound is remarkably close to the Monte Carlo MLE uncertainty using the new
fitting method; they are even undistinguishable when Γ = 10 µHz.

This is useful information as it means that, on average, the Hessian method provides
reasonable error estimates. It should be clear, however, that the distributions shown in
Figure 4.7 shows a significant amount of scatter: The formal error from the Hessian may
be misleading for particular realizations.

4.7.4 Different signal-to-noise ratios
In this section I present the results of Monte Carlo simulations of one mode of solar-like
oscillation with various signal-to-noise ratios. We use the same mode parameters as in
Section 4.7.1, i.e. ν0 = 3000 µHz, Γ = 3.2 µHz, S = 0.9. The window duty cycle is 30%
(see Figure 4.2c). For each realization we used again five different guesses for the mode
frequency (ν0, ν0 ± 5.5 µHz, ν0 ± 11.9 µHz) and random guesses for the other parameters
(see Section 4.7.1).

Figure 4.8 shows an example of one realization of one mode of solar-like oscillation
with a signal-to-noise ratio of S/N = 20. The real and the imaginary parts of this par-
ticular realization together with the standard deviation of the data (red: new fit, blue: old
fit, green: expectation value) are shown in Figure 4.8a, the power spectrum is shown in
Figure 4.8b. For this particular realization, both fitting method return similar results.

We computed a total of 1100 realisations with the same input parameters as in Figure
4.8 and a window function with a duty cycle of 30%. The distributions of the fitted pa-
rameters are shown in Figure 4.10. The differences between both fitting methods are less
pronounced than for a signal-to-noise ratio of S/N = 6 (see Section 4.7.1, Figure 4.4).
However, the new fitting method is still superior to the old fitting method. The distribu-
tions of the frequency (Figure 4.4a) are for both fitting methods again quite symmetric
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Figure 4.8: Example of a realization of one mode of a solar-like oscillation (black line)
with input frequency ν0 = 3000 µHz, linewidth Γ = 3.2 µHz, and S/N =20. The duty
cycle of the window function is 30%. Panel (a) shows the real and imaginary parts of
the Fourier spectrum. Panel (b) shows the power spectrum. The vertical dashed lines
represent the width of the window function. Also shown are the new fit (red), the old fit
(blue), and the expectation value (green). The small arrows in panel (b) indicate the five
different frequency guesses used to fit this realization.
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Figure 4.9: The same as in Figure 4.8 but showing a realization and the corresponding fits
with an input signal-to-noise-ratio of S/N = 1000.
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Figure 4.10: Distributions of the inferred oscillation parameters from fits to 1100 real-
izations of a single mode of solar-like oscillation with S/N= 20. The input parameters
are given in Table 4.3 and the window function is 30% full. The five panels show the
distributions of the inferred (a) mode frequency ν0, (b) linewidth Γ, (c) mode power S, (d)
noise level N , and (e) asymmetry parameter b. The red lines show the results obtained
with the new fitting method and the black lines show the old “no-correlation” fits. The
vertical green dashed line in each plot indicates the input value. The horizontal lines in
panel (a) are intervals containing 68% of the fits for the new (red) and the old (black)
fitting methods. The thick red and black vertical bars in panels (a), (d), and (e) give the
number of outliers with estimates beyond the plot boundaries.
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Figure 4.11: The same as in Figure 4.10 but for 400 realizations with a signal-to-noise
ratio of S/N= 1000. (Input parameters are given in Table 4.4.)
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Table 4.4: Medians and scatters of the distributions of the estimated parameters of one
mode of solar-like oscillation (see Figure 4.11). The window function is 30% full, the
input linewidth is Γ = 3.2 µHz, and the input signal-to-noise ratio is S/N = 1000. The
new and the old MLE estimates are given in the last two columns. By definition, 68% of
the fits fall within the bounds set by the subscripts/exponents (with the notation explained
in the text).

Mode parameter Input value New fitting Old fitting

ν0 [µHz] 3000.0 3000.0+0.5
−0.5 3000.1+0.7

−0.6

ln(Γ/1µHz) 1.2 1.2+0.3
−0.3 1.2+0.5

−0.4

lnS −0.1 −0.2+0.5
−0.6 −0.2+0.6

−0.7

lnN −7.0 −7.2 +0.8
−25.8 −7.3 +1.5

−30.6

b 0.1 0.1+0.03
−0.03 0.1+0.04

−0.03

and Gaussian-like but the precision of the frequency estimator is still better with the new
fitting method. For the old fitting method the number of fits beyond the 2-sigma mark is
decreased significantly compared to the case with S/N = 6. With respect to the distri-
butions of the linewidth Γ (Figure 4.10b) and the mode power S (Figure 4.10c), note that
the strong bias of the old fitting method decreased noticeably, but the estimates obtained
with the new fitting method are still significantly more accurate and less biased. The fit
of the noise level, N , is still a problem with the old fitting method. The corresponding
distribution (Figure 4.10d) is still significantly biased and ∼ 20% of all fits return ex-
tremely underestimated values for N . The estimator of the noise level N obtained with
the new fitting method is significantly less biased. Compared to the case with S/N = 6
the asymmetry parameter b (Figure 4.10e) can be determined with higher precision and is
almost unbiased for both fitting methods but its uncertainty is still quite big. Quantitative
estimates of the median and the dispersion of the individual estimators are summarized in
Table 4.3. We use the same definition for the dispersion of each estimator as described in
detail in Section 4.7.1, i.e. the upper and lower bounds in Table 4.10 cover 34% of the fits
on each side of the median. The new fitting method is still superior to the old method. For
example, the mode frequency can be determined with an uncertainty of ∼ 0.8 µHz and is
therefore by a factor of 1.6 more accurate than the estimator obtained with the old fitting
method. This is still significant but not as much as in the case of S/N = 6 discussed in
Section 4.7.1. The results of the new method for the other parameters Γ, S, and N are
less biased and in parts significantly more precise (e.g. the noise level N).

We also computed a total of 400 realizations of one mode of solar-like oscillation
with an even higher signal-to-noise ratio of S/N = 1000, i.e. realizations with almost
no noise. The mode parameters are kept as above, i.e. ν0 = 3000 µHz, Γ = 3.2 µHz,
S = 0.9, and b = 0.1. Figure 4.9 shows an example of one of these realizations together
with the fits obtained with the new and the old fitting method as well as the expectation
value of the power. Apparently a reasonable fit close to the expectation value is obtained
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Figure 4.12: Median (cross) and scatter (vertical bar) of the mode frequency ν0 (top), the
mode linewidth Γ (middle), and the mode power S (bottom) for one mode of a solar-
like oscillation as a function of the signal-to-noise ratio, S/N . The distributions of the
individual parameters are shown in Figure 4.4, 4.10, and 4.11. The duty cycle of the
observation window is 30%. The scatter is defined such that 34% of all fits on each side
of the median are covered. The results obtained with the new and the old fitting methods
are shown in red and black respectively. For clarity, the estimators for the old method
are shifted slightly to lower S/N . Arrows indicate that the error bar of the corresponding
estimate exceeds the plot boundary. The dashed horizontal lines indicate the respective
input values for ν0, Γ, and S.
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Table 4.5: Medians and scatters of the distributions of the estimated parameters of one
mode of solar-like oscillation (see Figure 4.13). The window function is 30% full, the
input linewidth is Γ = 1 µHz, and the input signal-to-noise ratio is S/N = 6. The new
and old MLE estimates are given in the last two columns. By definition, 68% of the fits
fall within the bounds set by the subscripts/exponents (with the notation explained in the
text).

Mode parameter Input value New fitting Old fitting

ν0 [µHz] 3000.0 3000.1+2.0
−1.3 3000.3+5.7

−3.7

ln(Γ/1µHz) 0.0 −1.3+2.0
−2.6 −1.9+2.6

−2.7

lnS −0.1 1.0+4.5
−1.8 1.5+4.7

−1.8

lnN −3.1 −2.9+0.9
−8.3 −5.1 +3.0

−10.0

b 0.1 0.0+0.3
−0.1 0.0+0.3

−0.1

with both methods for this particular realization. The distributions of the parameters of all
400 realizations are shown in Figure 4.11. The distributions for the mode frequency, ν0,
the linewidth, Γ, the mode power, S, and the asymmetry parameter, b, are quite similar
for both fitting methods. Furthermore, they are nearly unbiased even for the old fitting
method. However, this is not true for the estimator of the noise level, N . Both dis-
tributions show a long tail of underestimated noise fits. An unbiased estimation of the
background noise seems to be impossible for either of the two fitting methods. This is
confirmed by the formal error which is summarized together with the median of all fit
parameters in Table 4.4. The formal error is defined as above such that it covers 68%
of all fits. Note that the noise distribution obtained with the old fitting method seems
to have a reasonable median. However, the distribution is composed of a peak of over-
estimated values and a long tail of strongly underestimated fits such that the median of
all fits seems to be acceptable. For all other fit parameters except the background noise,
the corresponding estimator is almost unbiased and its precision does nearly not depend
on the fitting method. It is noteworthy that for a very high signal-to-noise ratio even the
line asymmetry can be determined quite well. The median and the scatter of the mode
frequency, ν0, the linewidth, Γ, and the mode power, S, are shown as a function of the
input signal-to-noise ratio in Figure 4.12. This figure confirms again that the new fitting
method is superior to the old fitting method, in particular when the signal-to-noise ratio
is low; the estimators obtained with the new fitting method are then more accurate and
less biased. For an increasing signal-to-noise ratio, the differences between both fitting
methods become smaller.

4.7.5 Different mode lifetimes
The power spectrum of solar-like oscillations is spread over several frequency bins due
to the finite lifetime of the modes, i.e. τ = 1/πΓ. The exact number of frequency bins
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Table 4.6: The same as in Table 4.5 but for a mode linewidth of Γ = 10 µHz. The corre-
sponding distributions of the parameters are shown in Figure 4.14.

Mode parameter Input value New fitting Old fitting

ν0 [µHz] 3000.0 3000.1+2.2
−2.3 3000.1+4.8

−4.8

ln(Γ/1µHz) 2.3 2.2+0.5
−0.5 1.5+0.7

−0.9

lnS −0.1 0.0+0.4
−0.5 0.6+0.8

−0.8

lnN −1.9 −2.0+0.1
−0.2 −2.1+0.3

−0.7

b 0.1 0.1+0.1
−0.1 0.1+0.1

−0.1

over which the power of a mode is spread depend on the length T of the observation
(here, T = 16.5 days). So far, we used Γ = 3.2 µHz so that the mode is spread over
roughly five frequency bins given the bin size of 1/T = 0.7 µHz. In this section, we
compare the new and the old fitting method for one mode of solar-like oscillation with
various mode linewidths. In addition to the case with Γ = 3.2 µHz (see Section 4.7.1) we
computed many realizations of one mode of solar-like oscillation with mode linewidths of
Γ = 1 µHz and Γ = 10 µHz, i.e. modes which are spread over roughly 1 and 14 frequency
bins respectively. The other input parameters were kept as in Section 4.7.1, i.e. the mode
frequency is ν0 = 3000 µHz, the signal-to-noise ratio is S/N = 6, and the line asymmetry
is b = 0.1. We used the window function with a duty cycle of 30% (see Figure 4.2). We
computed 1650 realizations for a mode linewidth of Γ = 1 µHz and 1350 realizations
with Γ = 10 µHz.

Note that it may be misleading to compare the three simulations with different mode
linewidths directly due to the definition of the signal-to-noise ratio. In this work, the
signal-to-noise, S/N , is defined as the ratio of the maximum peak height, S, and the
noise level,N [see Equation (4.40)]. With respect to this definition there is actually more
integrated power in a mode with a linewidth of Γ = 10 µHz than in a mode with Γ = 1 µHz
when S/N =const.

The distributions of the parameters inferred from the Monte Carlo simulations with
mode linewidth Γ = 1 µHz and Γ = 10 µHz are shown in Figure 4.13 and Figure 4.14
respectively. The median and the uncertainty of the individual estimates derived from
those distributions are summarized in Table 4.5 and Table 4.6. Again, the uncertainty is
defined such that 68% of all fits fall within the given error estimate. For a mode linewidth
of Γ = 1 µHz the frequency distribution shows a distinct peak for both fitting methods
and long tails on both sides of the distribution. The tails are more pronounced for the old
fitting method. These tails lead to rather big formal error estimates of σν = 1.7 µHz for
the new fitting method and σν = 4.7 µHz for the old method. The central peak of the fre-
quency distribution for the new fitting method has a FWHM of ∼ 0.7 µHz. The relatively
high number of biased frequency estimates can be explained as follows: for Γ = 1 µHz
the expectation value of the power of the mode is spread over not much more than one
frequency bin. When we generate a realization of a Fourier line, the square root of the
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Figure 4.13: Distributions of the inferred oscillation parameters from fits of 1650 real-
izations of a single mode of solar-like oscillation with a mode linewidth of Γ = 1 µHz,
and S/N= 6. The input parameters are given in Table 4.5. The duty cycle of the window
function is 30%. The five panels show the distributions of the inferred (a) mode frequency
ν0, (b) linewidth Γ, (c) mode power S, (d) noise level N , and (e) asymmetry parameter
b. The red lines show the results obtained with the new fitting method and the black lines
show the old “no-correlation” fits. The vertical green dashed line in each plot indicates
the input value. The horizontal lines in panel (a) are intervals containing 68% of the fits
for the new (red) and the old (black) fitting methods. The thick black and red vertical bars
give the number of outliers with estimates beyond the plot boundaries. In panel (d) these
bars even exceed the 25%-plot boundary in y-direction. The height of these bars is 34%
for the new fitting method (red) and 50% for the old fitting method (black).
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Figure 4.14: The same as Figure 4.13 but for 1350 realizations with a mode linewidth of
Γ = 10 µHz. (Input parameters are given in Table 4.6.)
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Figure 4.15: Power spectra of two realizations of one mode of solar-like oscillation with
input frequency ν0 = 3000µHz, mode linewidth Γ = 1µHz, signal-to-noise ratioS/N = 6,
and mode asymmetry b = 0.1. The realizations are shown in black, the colored lines
represent the fits with the new (red) and the old fitting methods (blue) as well as the
expectation value of the power (green). The vertical dashed lines represent the width of
the window function, the small arrows indicate the five different frequency guesses used
to fit each realization. Even though the expectation value of the power is identical in both
realizations, the example on the right does not show any significant signal above the noise
level.

expectation value is multiplied with a centered complex gaussian random vector with unit
variance and independent real and imaginary parts [cf. Equation(4.40)]. This may lead
to realizations which show hardly any significant signal in the power spectrum around
the resonant frequency ν0. This is illustrated in Figure 4.15. It shows two realizations
with identical input parameters (ν0 = 3000 µHz, Γ = 1 µHz, S/N = 6, b = 0.1). It is
obvious that the realization on the left hand side exhibits a significant signal peak around
ν = 3000 µHz leading to a reasonable fit of the frequency for both fitting methods. How-
ever, the realization on the right hand side shows hardly any signal around ν = 3000 µHz.
Here, both methods fit some random peak in the noise with large offsets of the frequency
estimates. The distributions for the other parameters reveal a significant bias for both
fitting methods. The noise estimates tend to be largely underestimated, a fit for the line
asymmetry is impossible.

In the case of a mode linewidth of Γ = 10 µHz (Figure 4.14 and Table 4.6) the new
fitting method provides nearly unbiased estimates for all inferred parameters. In addition
the estimators are more accurate than the results obtained with the old fitting method. For
example, the uncertainty of the frequency estimator of the new fitting method is less than
half of the uncertainty obtained with the old method. Moreover, all estimators obtained
with the old fitting method are significantly biased (except the mode frequency).

Figure 4.16 shows the median and the uncertainty for the mode frequency, ν0, the
mode linewidth, Γ, and the mode power, S, as a function of the input mode linewidth
in units of frequency bins. The frequency estimator is nearly unbiased for both fitting
methods and all tested mode linewidths. The frequency uncertainty increases towards low
and high mode linewidth with a minimum in between. According to Libbrecht (1992) the
frequency uncertainty scales like σν ∝

√
Γ. This relation is only fulfilled at low Γ if the

long tails in the frequency distribution are neglected and the width of the central peak
is considered as the "true" uncertainty of the frequency estimator. However, this is only
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Figure 4.16: Median (cross) and scatter (vertical bar) of the mode frequency ν0 (top), the
mode linewidth Γ (middle), and the mode power S (bottom) of one mode of a solar-like
oscillation as a function of the input mode linewidth Γ. Here, the input mode linewidth
is given in units of frequency bins. One frequency bin is 1/T = 0.7 µHz. The duty
cycle of the observation window is 30%. The scatter is defined such that 34% of all fits
on each side of the median are covered. The results obtained with the new and the old
fitting methods are shown in red and black respectively. For clarity, the estimators for
the old method are shifted slightly to the left. Arrows indicate that the error bar of the
corresponding estimate exceeds the plot boundary. The dashed horizontal lines indicate
the respective input values for ν0, Γ and S.
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4 Fourier analysis of gapped time series: maximum likelihood estimation

a hypothesis. With respect to the other parameters it is absolutely necessary to apply
the new fitting method in order to obtain reliable estimators; by using the new fitting
method the estimates are more precise and less biased than for the old fitting method.
Furthermore, I note that the mode linewidth has to be spread at least over a few frequency
bins in order to estimate the mode parameters unbiased. This is particularly true for the
mode linewidth Γ and the mode power S which are strongly biased even with the new
fitting method for an input mode linewidth of Γ = 1 µHz.

4.7.6 Impact of the initial guess
For the fit of each single realization, we applied a loop of 5 different frequency guesses
around the input mode frequency. As initial guesses, we choose the input frequency ν0 =

3000 µHz as well as ν0 ± 5.5µHz and ν0 ± 11.9 µHz, corresponding to the position of the
sidelobes in the observation window with a duty cycle of 15% (Figure 4.2 d). The guesses
for the other parameters are uniformly distributed within ±20% of the input values. In
this section, we investigate the result of the fit with the two fitting methods depending on
the initial guess.

In the previous sections we only presented the best fit for each realization, i.e. the fit
which maximizes the joint PDF. Figure 4.17 shows the frequency distributions for 750
realizations obtained with the new fitting method and with the old fitting method respec-
tively. Each colored distribution corresponds to a particular initial guess for the mode
frequency. In this particular case we simulated one mode of solar-like oscillation with
input parameters ν0 = 3000 µHz, Γ = 3.2 µHz, S = 0.9, N = 0.15, and b = 0.1 and used
the window function with a duty cycle of 15%. It is obvious that the new fitting method
depends much less on the initial guess and leads to a more accurate estimate of the mode
frequency. The frequency distributions obtained with the old fitting method (Fig. 4.17b)
suggest that the old fitting method basically fits the oscillation peak and the sidelobes of
the window function depending on the initial guess. For the new fitting method the dis-
tributions corresponding to the guesses of ν = 2988.1 µHz and ν = 3011.9 µHz have a
bimodal distribution with a smaller second peak around the corresponding initial guess.
The smaller second peak contains about 20%–40% of all realisations. Nevertheless the
best-fit distribution does not suffer from these "bad fits" and shows a well centered, un-
biased distribution. In contrast, the best-fit distribution for the old fitting method shows
strong tails on both sides of the maximum.

The other fit parameters, i.e. mode linewidth, mode power, line asymmetry, and noise,
are less dependent on the initial guess. Figure 4.18 shows the distribution of the logarithm
of the mode linewidth for 750 realisations obtained with both fitting methods. The dis-
tribution for each guess is shown in a different color. Neither for the new fitting method
nor for the old method, we find a significant dependence of the fit result on the initial fre-
quency guess. The distributions of the fits for the individual frequency guesses compare
quite well with the best-fit distribution in both cases. The independence of the fit of the
linewidth on the initial guess that is demonstrated in Figure 4.18 is representative for the
other parameters, i.e. the mode power, the line asymmetry and the noise level.
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Figure 4.17: Distributions of the mode frequency, ν0, obtained with (a) the new fitting
method and (b) the old fitting method using an observation window with a duty cycle
of 15% (Figure 4.2 d). Each of the 750 realizations is fitted with five different guesses
of the mode frequency. Each color represents the distribution of the fits for a particular
frequency guess. The black line shows the distribution of the best fits. The vertical dashed
line indicates the input mode frequency, ν0.

Figure 4.18: Distributions of ln Γ obtained with (a) the new fitting method and (b) the
old fitting method using an observation window with a duty cycle of 15% (Figure 4.2 d).
Each of the 750 realizations is fitted with five different guesses of the mode frequency and
random guesses of the other parameters. Each color represents the distribution of the fits
of ln Γ for a particular frequency guess. The black line shows the distribution of the best
fits. The vertical dashed line indicates the input linewidth, ln Γ0.
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4 Fourier analysis of gapped time series: maximum likelihood estimation

Figure 4.19: Real and imaginary parts of the Fourier transform of a simulated gapped time
series containing a sinusoid on top of white background noise. The signal-to-noise ratio
is S/N = 100. The observation window has a duty cycle of 30%. The simulated data are
shown by the thick gray line. The thin black line shows the fit to the data using the new
fitting method. The fit with the old method is not shown since it is almost identical.

4.8 Testing and comparing the methods for sinusoidal de-
terministic oscillations plus white noise

Figure 4.19 shows the Fourier spectrum of a simulated time series containing a sinusoidal
mode of oscillation on top of a white noise background as described in Section 4.6.3.
In this particular case the observation window with a duty cycle of 30% is used (see
Figure 4.2c). The input parameters of the sinusoidal function are the mode frequency
ν0 = 3000 µHz, the amplitude A = 1.1, and the phase ϕ = 60◦. The signal-to-noise ratio
is S/N = 100. The fit shown in Figure 4.19 was obtained with the new fitting method.
Since we found no significant difference between the old and the new fitting methods in
this case, the old fitting method is not shown. Differences between the data and the fit are
essentially due to the noise.

We computed 500 realizations of sinusoidal oscillations with the same mode param-
eters (frequency, amplitude, and phase) as before, the same observation window (30%
full), but with a signal-to-noise ratio S/N = 46. The resulting distributions of the in-
ferred parameters obtained with the two fitting methods are shown in Figure 4.20. For
this simulation, the known input values were used as an initial guess to speed up the

124



4.8 Testing and comparing the methods for sinusoidal deterministic oscillations plus
white noise

Figure 4.20: Distributions of the inferred oscillation parameters for a set of 500 realiza-
tions of long-lived sinusoidal oscillations with S/N = 46. The window function with a
duty cycle of 30% is used. The black and the gray lines are for the new and old fitting
methods, respectively. The vertical dashed line in each plot indicates the input value. The
parameters shown are (a) the mode frequency [ν0], (b) the logarithm of the mode ampli-
tude [ln A], (c) the phase of the oscillation [φ], and (d) the logarithm of the noise level
[lnσ0] (see Section 6.3). Notice that the estimate of the noise is biased when frequency
correlations are ignored (old “nc” fit), although by a very small amount.

minimization; we checked on several realizations that it is acceptable to do so when the
signal-to-noise ratio is large. The distributions of the inferred parameters (Figure 4.20)
show that, for sinusoidal oscillations, the new fitting method does not provide any signif-
icant improvement compared to the old fitting method.

We emphasize that the fitting parameters can be determined with a very high preci-
sion when the noise level is small. In particular, we confirm that the uncertainty of the
frequency estimator can be much smaller than 1/T (see Figure 4.20a). Figure 4.21 shows
the median and the standard deviation of the mode frequency for different signal-to-noise
ratios. Each symbol and its error bar in Figure 4.21 is based on the computation of 500 re-
alizations of sinusoidal oscillations with the same mode parameters as before, the same
observation window (30% full), but various signal-to-noise ratios. Since we did not find
any significant difference between the two fitting methods, only the results obtained with
the new fitting method are shown. Figure 4.21 illustrates that even for a relatively low
signal-to-noise ratio of S/N = 10, the standard deviation of the inferred mode frequency
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4 Fourier analysis of gapped time series: maximum likelihood estimation

Figure 4.21: Median (cross) and standard deviation (vertical bar) of the inferred fre-
quency of sinusoidal oscillations [ν0] as a function of signal-to-noise ratio S/N . The
duty cycle is 30 %. Only the results obtained with the new fitting method are shown. The
horizontal gray line shows the input mode frequency. The dashed gray lines show the
theoretical value of frequency uncertainty, σν0 , given by Equation (4.47). The vertical
axis of the plot spans the interval ∆ν = 1/T = 0.7 µHz.

is smaller than 1/T by a factor of four. For higher signal-to-noise ratios the precision is
even more impressive: When S/N = 100, the standard deviation of the mode frequency
is about 1/20 that of 1/T .

The theoretical value of the standard deviation of the mode frequency obtained by
Cuypers (1987) can be extended to the case of gapped data (Cuypers, 2008, private com-
munication) as follows:

σν0 =

√
6 σt

πAT
√

n
, (4.47)

where A is the amplitude of the sinusoid in the time domain, σt is the rms value of the
noise, n = αN is the number of recorded data points, and T is the total observation
length. This theoretical uncertainty is overplotted in Figure 4.21. The match with our
Monte Carlo measurements is excellent. This confirms that, in this case, it is equivalent
to perform the fits in the temporal and in the Fourier domains. Note that Equation (4.47)
is only valid under the assumption that the noise is uncorrelated in the time domain, a
condition fulfilled by our simulations. The main reason why the measurement precision
is only limited by the noise-to-signal ratio is because perfect knowledge of the model is
assumed.
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4.9 Conclusion
In this paper we derived an expression for the joint PDF of solar or stellar oscillations in
complex Fourier space, in agreement with the work of Gabriel (1994). This joint PDF
explicitly takes into account frequency correlations introduced by the convolution with
the window function. We implemented a maximum likelihood estimation method to re-
trieve the parameters of stellar oscillations. Both stochastic solar-like oscillations and
deterministic sinusoidal oscillations were considered.

In the case of solar-like oscillations, we performed Monte Carlo simulations to show
that the improvement provided by our fitting method can be very significant in comparison
with a fitting method that ignores the frequency correlations. The results are summarized
in Figure 4.6. In one particular example, by using an observation window with a duty
cycle α = 30 % and a signal-to-noise ratio S/N = 6, the new fitting method increased
the precision of the mode frequency by a factor of two and the estimates of the line width
and mode power were less biased and more precise. For a window with a duty cycle
α = 15 %, the precision on the mode frequency estimate was increased by a factor of five.
We also found that the Cramér–Rao lower bounds (formal errors) can provide reasonable
estimates of the uncertainty on the MLE estimates of the oscillation parameters.

In the case of long-lived, purely sinusoidal oscillations, we did not find any significant
improvement in using this new fitting method. Yet, we confirm that the standard deviation
of the mode frequency can be measured in Fourier space with a precision much better than
1/T for large signal-to-noise ratios, in accordance with a previous time-domain calcula-
tion (Cuypers, 1987; Cuypers, 2008, private communication).

The analysis of time series containing many gaps can benefit from our work. Ap-
plications may include, for example, the reanalysis of solar oscillations from the early
days of the BiSON network (Miller et al. 2004) or the solar-like oscillations of α Centauri
observed from the ground with two telescopes (Butler et al. 2004).
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5 Efficient maximization of the
joint PDF: Cholesky decomposition

In the previous chapter, maximum likelihood estimators for gapped time series were im-
plemented. The method as it is described there is computationally quite expensive due to
the singular value decomposition (SVD) which is involved in the computation of the joint
PDF. In this chapter, I describe a more efficient way to maximize the joint PDF. Here, the
SVD is replaced by a Cholesky decomposition. I describe the Cholesky decomposition
and its application to our particular problem in Section 5.1. In Section 5.2, I demonstrate
that the application of the Cholesky decomposition is more efficient and show that both
algorithms give essentially the same results.

5.1 The Cholesky decomposition
Equation (4.22) is the correct joint PDF of the Fourier line of a gapped time series. This
equation can be used to derive maximum likelihood estimates by minimizing Equation
(4.24). The minimization of Equation (4.24) becomes very time-consuming when the
selected section of the data, i.e. its length M, is big and/or a high number of parameters
are fitted simultaneously. Thus, the computation time may become an issue when the
analyzed time series become long and/or when many modes are included in the fit.

The most time-consuming steps in the computation of Equation (4.24) are the inver-
sion of the matrix CCH to compute the Moore-Penrose generalized inverse of C [Equa-
tion (4.23)] and the computation of the Jacobian J [Equation (4.20)]. For example, in the
case discussed in Section 4.7.1 , ∼ 95% of the time to minimize Equation (4.26) is taken
by the inversion of CCH (∼ 12%) and the SVD (∼ 83%).

The inversion of CCH may be speed up by replacing the standard Gaussian elimination
by an LU-decomposition. The computation of the Jacobian J in Equation (4.20) requires
a SVD of the M × (M + 2p) matrix C. The computation of the SVD can be avoided by
rewriting Equation (4.20) as follows:

J = | det(UΛ)|2 = | det(UΛΛUH)| = | det(UΣVHVΣUH)| = | det(CCH)|. (5.1)

Note that the matrix V is unitary, i.e. VHV = IM+2p by definition of the singular value
decomposition of the Matrix C [Equation (4.14)]. The matrix CCH is a Hermitian and
positive semi-definite M × M matrix. Therefore, the matrix CCH may be decomposed as
(e.g. Higham 1990)

CCH = T HT, (5.2)
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Table 5.1: Computation time for a fit of one mode of solar-like oscillation using different
algorithms to maximize the joint PDF. The numbers correspond to the median and the
scatter from fits to 500 realizations (see Figure 5.1). The subscripts/exponents give the 1σ
error bar which covers 68% of all computation times (34% above and below the median).

Fitting Method Computation time [sec]

Old method 90+149
−46

New method:
SVD 1524+1702

−487

Cholesky decomposition 212+205
−70

where T is a M × M lower triangular matrix and T H is its conjugate transpose. This is a
Cholesky decomposition (e.g. Horn and Johnson 1985, chapter 7.2). Since the matrix T
is a lower triangular matrix with diagonal elements τii = τi, we can rewrite Equation (5.1)
as

J = | det(CCH)| = | det(T HT )| = (det T )2 =

M−1∏
i=0

τi

2

. (5.3)

By rewriting the Jacobian in this form, we can replace the SVD of the matrix C by a
Cholesky decomposition of C. Equation (4.24) then reads

L(µ) = ‖C†(y −Wd)‖2 + 2
M−1∑
i=0

ln τi + constant. (5.4)

In the equation above the singular values λi of C are replaced by the diagonal elements τi

of the matrix T .
The special case considering only solar-like oscillations [Section 4.4.1, Equation (4.26)]

then reads

L(µ) = ‖C†y‖2 + 2
M−1∑
i=0

ln τi + constant. (5.5)

5.2 Testing the Cholesky decomposition
We computed 500 realizations of one mode of solar-like oscillation with input parameters
ν0 = 3000 µHz, Γ = 3.2 µHz, S = 0.9, N = 0.15, and b = 0.1. The window function
has a duty cycle of 30% (cf. Section 4.7.1). In this example, the selected data set contains
M = 202 elements (or frequency bins) and the window function contains 2p + 1 = 99
elements. Each realization was fitted with the old fitting method [cf. Equation (4.36)]
and the new fitting method. For the new fitting method we used both the singular value
decomposition and the Cholesky decomposition [cf. Equations (4.26) and (5.5)]. In the
latter case we also applied a LU-decomposition to compute the inverse (CCH)−1. Only one
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Figure 5.1: Distributions of the computation times for fits of 500 realizations of one mode
of solar-like oscillation using different maximization algorithms. The black distribution
represents the fit with the old fitting method [Equation (4.36)], the red distribution cor-
responds to the fit with the new fitting method using the SVD [Equation (4.26)], and the
green distribution shows the fit with the new method using LU- and Cholesky decomposi-
tions [Equation (5.5)]. The vertical bars are the median of the corresponding distribution,
the horizontal bars show the corresponding scatter. The scatter is defined such that 68%
of the realizations fall within the error bars. Note that the x-axis (computation time) of
the plot is on logarithmic scale.

guess for each method and each realization is applied. The initial guesses are identical for
all three algorithms.

Figure 5.1 shows the distributions of the computation times for the fit of the 500 re-
alizations of one mode of solar-like oscillation using the three different algorithms. The
distribution for the old fitting method and the new fitting method using the Cholesky de-
composition are well peaked while the distribution for the new method using the SVD is
much more scattered. The median and the scatter of each distribution are summarized in
Table 5.1. The scatter is defined such that 68% of all realizations fall within the given
bounds (±34% on both sides of the median). As expected, the old fitting method is the
fastest algorithm. However, the new fitting method using the Cholesky decomposition is
slower by only a factor of ∼ 2. Even more important, the fit using the Cholesky decom-
position is by a factor of ∼ 7 faster than the new fitting method using the SVD. With the
new algorithm, the inversion of CCH and the Cholesky decomposition take only ∼ 50%
of the minimization of Equation (5.5). Here, ∼ 40% of the computation time is taken
by the inversion using an LU-decomposition and only ∼ 10% are taken by the Cholesky
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Table 5.2: Quantitative comparison of the fit results obtained with the new fitting method
using either a SVD or a Cholesky decomposition. The second column lists the dispersion
of xSVD − xChol for all fit parameters, x. The difference xSVD − xChol is deduced from fits
of 500 realizations of one mode of solar-like oscillation (Figure 5.2). The dispersion is
defined such that 68% of all fits fall within the given values. For comparison, the third
column shows the uncertainty of the individual estimators deduced from Monte Carlo
simulations in Section 4.7.1 (Table 4.1).

Mode parameter x Dispersion of the difference of Uncertainty from the MCS
the two algorithms: σ(xSVD−xChol) σx (cf. Section 4.7.1)

Frequency ν0 [µHz] 1.1 · 10−3 1.4

Linewidth ln(Γ/1µHz) 1.0 · 10−3 0.9

Mode power lnS 1.4 · 10−3 0.9

Noise lnN 1.4 · 10−3 0.6

Asymmetry parameter b 4.0 · 10−4 0.2

decomposition. This demonstrates impressively that the implementation of the Cholesky
decomposition allows us to maximize the joint PDF of a gapped time series much more
efficient than the algorithm using the SVD. We note again that the improvement in terms
of computation time may also depends on the length M of the selected data set and the
number of free parameters. For different setups, e.g. longer time series (bigger M) or more
parameters to fit, the new fitting method using the Cholesky decomposition may be sig-
nificantly slower than the old fitting method. But even then, the Cholesky decomposition
is expected to be still much faster than the SVD.

For a comparison of the results obtained with the new fitting method using either the
Cholesky decomposition or the SVD, we calculated the difference xSVD − xChol of the fit
results for all fit parameters, x. The distribution of this difference of all 500 realizations is
shown in Figure 5.2, For all parameters, the distributions of xSVD − xChol are well centered
around zero and only exhibit very small scatter. The dispersion of xSVD − xChol deduced
from these distributions is listed in the second column of Table 5.2. For comparison, the
table also shows the dispersion of the estimators that were deduced from Monte Carlo
simulations in Section 4.7.1 (Table 4.1). Note that overall the dispersion of xSVD − xChol

is by a factor of ∼ 1000 smaller than the uncertainty of the corresponding estimator de-
rived from the Monte Carlo simulations (note that for the mode power, ln S , the factor
is "only" ∼ 600). Thus, we conclude that the application of the Cholesky decomposition
provides an efficient and reliable algorithm to derive maximum likelihood estimates of
stellar oscillation parameters from gapped time series. The analysis of real observational
data should benefit significantly from the application of the this algorithm.
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Figure 5.2: Distributions of the difference xSVD − xChol of the fit parameters, x, obtained
with the new fitting method using either the SVD or the Cholesky decomposition. The
distributions are deduced from fits of 500 realizations of one mode of solar-like oscillation
using Equations (4.26) and (5.5) respectively. The input parameters are ν0 = 3000 µHz,
Γ = 3.2 µHz, S/N=6, b = 0.1, and the duty cycle of the window is 30% (cf. Sec-
tion 4.7.1).
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6 Discussion

6.1 HD 52265: A remarkable data set for
asteroseismology

The CoRoT observations of HD 52265 are very valuable for a number of reasons: i) The
power spectrum of the 4-month time series of HD 52265 is of similar quality as the power
spectra that were observed for the Sun at the beginning of the 1980s (Grec et al. 1980).
The modes with ` = 0 and ` = 2 are well resolved and lead to an unambiguous mode iden-
tification. ii) Compared to many other asteroseismic targets, HD 52265 is very solar-like
as illustrated by its position in the HRD. iii) The effect of stellar rotation on oscillations
can be measured without a doubt. iv) HD 52265 hosts a planet.

The signal-to-noise ratio is high enough that modes with ` ≤ 2 spanning 9 radial orders
can be observed (by eye). The high quality of the HD 52265 data allows us to measure the
mode frequency with a precision of ∼ 0.15 µHz which is expected for a 4-month obser-
vation with the given signal-to-noise. Table 6.1 lists the mean large and small separations
for HD 52265 determined in this work and compares it with measurements for other solar-
like stars observed with CoRoT, Kepler, and ground-based telescopes. The precision of
the estimates for the large and small frequency separation, ∆ν and δν, clearly ranks among
the best for all Sun-like stars observed so far. Below I will discuss the implications of my
work for constraining the fundamental parameters of HD 52265, constraining the mass of
the orbiting planet, and for future asteroseismic projects such as PLATO and SONG.

6.2 On the determination of global stellar parameters of
HD 52265

In Chapter 3, I presented the analysis of the CoRoT time series of the solar-like star
HD 52265. One of the central results of this analysis is the measurement of the large and
small frequency separations, ∆ν = 98.84±0.12 µHz and δν = 8.14±0.20 µHz (Fit A, Sec-
tion 3.7.1). As described in Section 1.3 the large separation is proportional to the square
root of the mean stellar density, ∆ν ∝ ρ1/2. For the large separation of the Sun, I obtained
∆ν� = 135.01 ± 0.05 µHz (see Section 2.3.1). Given the large separation of the Sun and
HD 52265, one can estimate the mean stellar density: ρ = (0.536 ± 0.002) ρ�. Hence the
mean stellar density is known to a precision of 0.4%. To assess the quality of this seismic
constraint, one can determine a non-seismic constraint on the mean density of HD 52265.
Using the non-seismic estimates (spectroscopic) from Table 3.1, M/M� = 1.05 ± 0.15 and
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Table 6.1: Estimated large and small separation for HD 52265 and other solar-like stars
observed with CoRoT, Kepler, and ground-based telescopes. The typical length of the
observations is 4-5 months for CoRoT, 6 weeks for Kepler, and 2 weeks for αCen A.
When no (unambiguous) measurement of the small separation is possible, no value is
given.

Object Large separation Small separation Reference
∆ν [µHz] δν [µHz]

CoRoT:

HD 52265 98.84 ± 0.12 8.14 ± 0.20 this work (21 ≤ n ≤ 23, ` ≤ 2)
HD 49933 85.9 ± 0.15 −− Appourchaux et al. (2008)
HD 181420 75.3 ± 0.1 −− Barban et al. (2009)
HD 181906 85.7 ± 2.3 −− García et al. (2009)
HD 49835 56.21 ± 0.191 4.04 ± 0.261 Deheuvels et al. (2010)
HD 181420 55.2 ± 0.8 −− Mathur et al. (2010)

Kepler:

KIC 6603624 110.2 ± 0.6 4.7 ± 0.2 Chaplin et al. (2010)
KIC 3656476 94.1 ± 0.6 4.4 ± 0.2 Chaplin et al. (2010)
KIC 3656476 50.8 ± 0.3 4.3 ± 0.5 Chaplin et al. (2010)

Ground-based spectroscopy:

αCen A 105.5 ± 0.1 5.6 ± 0.7 Bouchy and Carrier (2002)
1derived from individual frequency estimates given by Deheuvels et al. (2010)

R/R� = 1.255 ± 0.033, one obtains a mean stellar density of ρns = (0.531 ± 0.087) ρ�.
Asteroseismology improves the precision by a factor of about 40!

To illustrate the potential of the large and small frequency separations for the inference
of the mass and the age of a star, Figure 6.1 shows the measurements of ∆ν and δν for
the Sun and HD 52265 obtained in this work in an asteroseismic HR-diagram (cf. Sec-
tion 1.3, Figure 1.2). The diagram shows stellar evolution tracks for stars with solar
chemical abundance and various masses (solid lines), and lines of constant core hydrogen
abundance (dotted lines). In this diagram, the measurements of ∆ν and δν for HD 52265
are consistent with a mass and an age that are known to a precision of ∼ 3% and ∼ 11%
respectively. Since the chemical composition of HD 52265 is not the same as for the
Sun, the mass and age of HD 52265 which may be extracted from Figure 6.1 are biased.
Therefore, proper modeling is needed. However, similar error bars on mass and age are
expected.

The modeling of HD 52265 is beyond the scope of this thesis. There exist several
pipelines and codes to generate stellar models and compute their oscillation frequen-
cies. Codes which are commonly used to compute stellar models and their oscillation
frequencies are e.g. SEEK (Quirion et al. 2010), ASTEC (Christensen-Dalsgaard 2008a),
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1

Figure 6.1: Asteroseismic HR-diagram using solar metallicity (cf. Figure 1.2) including
constraints on the large and small separations for the Sun (blue symbol) and for HD 52265
(red symbol) determined in this work. The size of the symbols correspond to the mea-
surement errors on the large separation, ∆ν (30σ), and the small separation, δν (5σ). The
solid lines show stellar evolution tracks for stars with various masses and solar chemi-
cal composition. The dotted lines correspond to isopleths of constant central hydrogen
abundance. The fraction of hydrogen at the star’s center is indicated by the numbers at
the right end of each line. HD 52265 is a overmetallic star and the stellar mass and the
central hydrogen abundance cannot be inferred directly from the diagram without bias.
[Asteroseismic HR-diagram courtesy of J. Christensen-Dalsgaard.]

CESAM (Morel and Lebreton 2008), TGEC (Eggenberger et al. 2008), YREC (Demar-
que et al. 2008), ADIPLS (Christensen-Dalsgaard 2008b), POSC (Monteiro 2008), and
FILOU (Suárez and Goupil 2008). To infer fundamental stellar parameters like mass,
radius, and age for an observed star from a grid of stellar models one has to find the
best match of observation and model given a set of observed parameters. The set of ob-
servables includes non-seismic parameters like the effective temperature, Teff, the surface
gravity, log g, and the metallicity, [Fe/H]. If available, the list of observables also includes
seismic constraints, e.g. the large separation, ∆ν, and the small separation, δν.

The precision of seismic constraints on stellar fundamental parameters, e.g. mass, ra-
dius, and age, may be compared to the non-seismic constraints. Table 6.2 lists some
random errors on the mass, radius, and age of HD 52265. Theses values are obtained
from modeling by Quirion (private communication) and Creevey (private communica-
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tion). For comparison, the table also lists the errors of the non-seismic constraints derived
from the measurements in Table 3.1. With respect to the stellar age, Saffe et al. (2005)
compared several classical methods to estimate the stellar age. They found that the most
reliable and most precise methods, i.e. isochrones and chromospheric activity, achieve a
precision of 30-50%. As shown for HD 52265, seismic age constraints provide a signifi-
cant improvement by a factor of ∼ 4. Concerning the mass of a star, Valenti and Fischer
(2005) performed a spectroscopic analysis for 1040 F, G, and K dwarfs. They found that
the relative uncertainties of the spectroscopic mass estimates and mass estimates derived
from isochrones are typically of the order 10% < ∆M/M < 20% (even though they quote
an error of ∼ 4 % for HD 52265). In the particular case of HD 52265 the seismic mass
estimate provides an improvement of a factor of ∼ 5 compared to the spectroscopic mass
estimate. The improvement on the radius estimate is still significant (at least given the
result of Quirion), i.e. the relative error of the seismic constraints is reduced by a factor
of ∼ 2 compared to the spectroscopic estimate of Valenti and Fischer (2005). Precise and
model-independent radius estimates are also expected from interferometry of nearby stars
(e.g. Creevey et al. 2007) and in particular from GAIA astrometry (Perryman et al. 2001).
As pointed out by Lebreton (2008), the precision of the luminosity of GAIA target stars
at distances below 200 pc will be ∆L/L ≤ 5.5 %. Combined with temperatures derived
from high-resolution spectroscopy (∆Teff/Teff ∼ 1%), stellar radii may be estimated with
a precision of less than 2 %, i.e. comparable to the precision of the seismic constraint for
HD 52265. In summary, Table 6.2 demonstrates that the consideration of seismic con-
straints for stellar modeling provides very significant improvements for the inference of
stellar fundamental parameters.

The analysis of the CoRoT data of HD 52265 can be regarded as a case study demon-
strating the potential of asteroseismic investigations based on high-quality space photom-
etry. Recent studies of solar-like stars observed with CoRoT (e.g. Michel et al. 2008,
Appourchaux et al. 2008, Barban et al. 2009, García et al. 2009, Deheuvels et al. 2010,
Mathur et al. 2010) and first results from Kepler (Christensen-Dalsgaard et al. 2010, Chap-
lin et al. 2010) suggest that precise fundamental stellar parameters will be available for
an increasing number of stars in the near future. The variety of different stars at different
stages of their evolution will improve significantly the ability to generate realistic stellar
models.

The very high quality of the CoRoT data of HD 52265 will allow one to constrain
its inner structure beyond the determination of its mass, age, and radius. This may be
achieved by considering individual mode frequencies instead of "only" mean large and
small separations. As described in Section 1.4 sharp features in the sound-speed profile
cause oscillations of the mode frequencies which can be measured for instance by means
of the second difference ∆2νn` = νn−1,` − 2νn` + νn+1,`. Such oscillations of the frequencies
may allow one to measure the envelope helium abundance, the location of the helium
ionization zones, and the bottom of the convection zone.

The mode frequencies of the Sun are affected by magnetic activity as it was confirmed
in Section 2.3.1. Such frequency variations are non-negligible and are also expected in
other solar-like stars. To search for stellar cycle effects one has to investigate if HD 52265
has a periodic cycle and in which phase of the cycle it was observed by CoRoT. Therefore
it would be very useful to obtain at least one more CoRoT data set to correct the frequen-
cies for stellar-cycle surface effects. Alternatively ground-based follow-up observations
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Table 6.2: Random error on fundamental stellar parameters of HD 52265. Seismic con-
straints are obtained by Quirion (private communication) and Creevey (private commu-
nications). Both modelers use seismic (∆ν, δν) and non-seismic observables (e.g. Teff ,
[Fe/H]) to derive the stellar fundamental parameters. For comparison, non-seismic (spec-
troscopic) constraints from Table 3.1 are also listed. Note that the seismic constraints are
not published yet so that only relative error estimates can be given here.

HD 52265: random errors on fundamental stellar parameters
Parameter seismic constraints non-seismic constraints

This work Quirion? Creevey? from Table 3.1

Density: ∆ρ/ρ� [%] 0.4 – – 16

Mass: ∆M/M [%] – 2.4 4.0 14 (4.2)†

Radius: ∆R/R [%] – 1.5 2.7 2.6

Age: ∆τ [Myr] – 290 – 1100
? private communications; † from isochrone fits

of activity tracers like Ca II chromospheric emission could be used to determine the phase
of the activity cycle of HD 52265. Cincunegui et al. (2007) observed Ca II and Hα activity
proxies for 109 late type stars (including HD 52265) in a 7 year program at the CASLEO
Argentinean Observatory. At the time of writing I do not have information as to whether
this data is suited to examine HD 52265’s activity. HD 52265 was not included in the
Mt. Wilson survey on Ca II chromospheric emission by Henry et al. (1996).

A rough estimate on the expected period of the activity cycle of HD 52265 can be
deduced from the relation of the rotation period, Prot, and the period of the activity cycle,
Pcyc, according to Noyes et al. (1984b):

Pcyc

Pcyc,�
'

(
Prot

Prot,�

τc,�
τc

)1.25

. (6.1)

Here, τc denotes the convective turnover time over the convection zone. For HD 52265
the convective turnover time may be approximated by Equation (4) of Noyes et al. (1984a)
using (B − V) = 0.572 (Perryman et al. 1997). Thus, I obtain τc = 11.5 days. Us-
ing Prot = 11 days as estimated in this work and the solar values Prot,� = 25.4 days
and τc,� = 12.6 days according to Noyes et al. (1984b), the expected activity cycle of
HD 52265 becomes Pcyc ≈ 5 years. According to this estimate ground-based follow-up
observations of ∼ 10 years would be required to study the activity cycle of HD 52265.
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6.3 Asteroseismic constraint on the mass of the exoplanet
HD 52265b

The analysis of the time series of HD 52265 presented in Chapter 3 allows us to constrain
the absolute mass of its companion HD 52265b under certain assumptions. Figure 6.2
shows the asteroseismic constraints on the stellar angular velocity, Ω, versus the inclina-
tion angle, sin i, of the stellar rotation axis (see Section 3.7.4). The dark and light red
regions are deduced from the likelihood function. They contain 68% and 85% of the fits
from the Monte Carlo simulation.

The seismic constraints on Ω and sin i are arranged along constant Ω sin i and are in
very good agreement with the independent estimate from spectroscopy (see Section 3.7.4).
In addition, the seismic data analysis sets a limit on the angular velocity and the inclina-
tion of the rotation axis, i.e. 1.3 ≤ Ω/Ω� ≤ 3.2 and i > 25◦. Combining the results of this
work on Ω sin i = 0.58+0.14

−0.13 µHz and the surface rotation 0.91 µHz ≤ Ω/2π ≤ 1.07 µHz,
one obtains an estimate for the inclination angle of the rotation axis of 0.45 ≤ sin i ≤ 0.82
(result correspond to Fit A). Butler et al. (2006) determined a lower limit for the mass of
the companion from radial velocity measurements, i.e. Mp sin ip = 1.09 ± 0.11 MJup. As-
suming that the spin axis of the star and the normal of the planetary orbit are co-aligned,
i.e. i = ip, one obtains an estimate on the true mass of HD 52265b:

1.3 ≤ Mp/MJup ≤ 2.4 (6.2)

I note that an analogue calculation using the estimates on Ω sin i obtained for Fit B
(see Section 3.7.4) would lead to a mass of HD 52265b of 1.4 ≤ Mp/MJup ≤ 3.2, i.e. con-
sistent with the value given above. This mass constraint puts HD 52265b well below the
mass limit of brown dwarfs, i.e. M ≤ 13 MJup. A mass of M & 13 MJup is required to sus-
tain thermonuclear processes like deuterium burning. This mass limit is the lowest limit
to separate brown dwarfs and giant gas planets (see e.g. Burrows et al. 2001). Thus, the
analysis of the solar-like p modes of the star HD 52265 suggests that its companion is a
planet rather than a brown dwarf (see also Gizon et al. 2010a). This result contradicts the
work of Han et al. (2001), who derived an inclination of i ≈ 178.5◦ based on Hipparcos in-
termediate astrometry. Such an inclination would correspond to a mass of Mp ≈ 42 MJup.
However, Pourbaix (2001) already pointed out that a systematic bias on the inclination
angle towards small values of sin i (i.e. i ≈ 0◦ or i ≈ 180◦) is expected with Hipparcos
intermediate astrometry when the spectroscopically constrained semi-major axis of the
orbit, a sin i, is smaller than the astrometric precision.

6.4 Other implications for the characterization of exo-
planetary systems

Precise estimates of fundamental parameters of exoplanet host stars impact the characteri-
zation of the planet. From photometric planetary transits the ratio of the radii of the planet
and the star can be deduced, i.e. ∆F/F = (Rp/R)2, where ∆F/F is the transit depth in the
photometric signal. Here and below, the index (p) denotes the properties of the planet,
quantities without index correspond to the host star. When the inclination ip of the normal
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Figure 6.2: Asteroseismic constraint on the mass of the companion of HD 52265. The
filled circle represents the estimate on the stellar angular velocity, Ω, in units of the Car-
rington value (Ω�/2π = 0.424 µHz) and the inclination angle, sin i, of the rotation axis of
HD 52265 (Fit A). These values are derived from a global fit of the HD 52265 oscillation
power spectrum. The red area indicates the uncertainty on Ω and i deduced from the like-
lihood function and contains 68% (dark-red) and 85% (light-red) of all fits from the Monte
Carlo simulation. The diamonds represent the results for Ω and i obtained by the other
groups of the DAT. The horizontal green lines correspond to the low-frequency peaks
in the power spectrum which are attributed to stellar surface rotation (see Section 3.3.2,
Figure 3.5). The blue lines represent an alternative estimate on Ω sin i ' v sin i/R, where
v sin i is constrained by spectroscopy and R is derived from seismic modeling (see also
Section 3.7.4). A lower limit for the mass of the companion HD 52265b was determined
with radial velocity measurements, i.e. Mp sin ip = 1.09 ± 0.11 MJup (Butler et al. 2006).
Here ip is the inclination of the normal to the orbital plane of HD 52265b with respect
to the line of sight. The mass is given in units of the Jupiter mass MJup. Thus, the in-
clination angle of the rotation axis, i.e. the x-axis, may be interpreted as the mass, Mp

of the HD 52265b in units of MJup sin i/ sin ip. Assuming i = ip, the upper x-axis gives
the absolute mass of HD 52265b, suggesting that it is a planet and not a brown dwarf as
indicated by the grey shaded regions.
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to the orbital plane with respect to the line of sight is known from the transit measure-
ment, spectroscopic follow-up observations allow one to solve Kepler’s laws, such that
the mass function, (Mp/M)2/3, can be determined with a precision of a few percent. The
two relations demonstrate that the precision of the mass and radius of the planet crucially
depends on the precision of the mass and radius estimates of the host star. Furthermore,
the modeling of the evolution of exoplanetary systems require precise constraints on the
age of the system, i.e. the age of the host star. In Section 6.2, I showed that asteroseismol-
ogy provides improved estimates on these parameters compared to classical methods, in
particular considering the stellar mass and age.

The assumption of the spin-orbit alignment, i = ip, to determine the mass of
HD 52265b in the previous section is a very strong assumption which does not neces-
sarily has to apply in the case of HD 52265. In fact, the measurement of the spin-orbit
angle has become an important topic in the field of exoplanet research. According to the
current state of the evolution of exoplanetary systems, giant gas planets are believed to
form in the outer regions (∼ 5 AU) of the circumstellar disc of the central star and later
migrate towards it and become a "hot Jupiter". There are several scenarios describing the
migration process which try to model the actual distribution of of eccentricities and semi-
major axis of the orbits of hot Jupiters. The "classical" disc-migration scenario proposed
by Lin et al. (1996) results in planet orbits which are co-aligned with the stellar equator.
On the other hand scenarios like the Kozai cycles (Kozai 1962, Wu and Murray 2003) and
planet scattering (Rasio and Ford 1996) allow for a misalignment of the stellar spin axis
and the normal to the planetary orbit. The measurement of the spin-orbit angle may favor
one of these scenarios and may help to constrain the theoretical modeling of the evolution
of exoplanetary systems. The true spin-orbit angle, ψ, is given by (see e.g. Fabrycky and
Winn 2009, Winn et al. 2009b)

cosψ = cos i cos ip + sin i sin ip cos λ, (6.3)

where λ is the sky-projected spin-orbit angle. The measurement of the spin-orbit angle ψ
requires an estimate of the inclination angle of the rotation axis of the host star. It was
shown in this work, that the analysis of the time series of solar-like oscillations may in
principle provide such an estimate on i. The inclination, ip, of the normal to the planet’s
orbit and the sky-projected spin-orbit angle, λ, can be derived from planetary transits. The
parameter λ can be measured with the Rossiter-McLaughlin (RM) effect (Rossiter 1924,
McLaughlin 1924), i.e. the apparent shift of a spectral line while the planet transits its
host star. When the planet occults a part of the star that forms, for example, the blue wing
of the spectral line, this components is partially removed and the spectral line appears to
be red-shifted and vice versa. For a detailed description of the measurement of λ, see
for instance Gaudi and Winn (2007). In recent years, the sky-projected spin-orbit angle
was measured for several systems. The first successful measurement of λ for HD 20958
suggested a fairly co-aligned system (Queloz et al. 2000, Winn et al. 2005). Recent stud-
ies reported on several transit systems which show a significant spin-orbit misalignment,
e.g. HD 80606 (Moutou et al. 2009, Winn et al. 2009a), XO-3 (Hébrard et al. 2008, Winn
et al. 2009c), CoRoT-3b (Triaud et al. 2009), and WASP 14b (Johnson et al. 2009). Winn
et al. (2009b) even found that the planet HAT-P-7 is in a retrograde orbit around its host
star, i.e. the orbital motion of the planet is opposite to the stellar rotation. Based on mea-
surements of λ and reasonable assumptions on the distribution of the inclination angle of
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the star’s rotation axis, Fabrycky and Winn (2009) found that there may be two popula-
tions of planetary systems, one population where the planet orbit and the stellar equator is
coplanar, and one population with a significant spin-orbit misalignment. The most recent
study of Triaud et al. (2010) comprises all 26 known planetary systems where λ could
be measured so far. Assuming a uniform distribution for cos i, i.e. the inclination of the
stellar rotation axis, they conclude that ψ > 20◦ for 80% of the "hot Jupiters". I note again
that these results are based on assumptions on the distribution of the stellar spin axis. As
shown in this work, asteroseismology is in principle able to provide real measurements
of the inclination of the stellar rotation axis such that true measurements of the spin-orbit
angle, ψ, are feasible.

There is no transit measurement for HD 52265. Thus, a measurement of ψ for this
system is not possible. However, the analysis of the CoRoT time series of HD 52265
reveals the potential of asteroseismology to supplement the characterization of planetary
systems. The primary objective of the Kepler mission is the detection of planets with the
transit method (e.g. Borucki et al. 2010). At the same time, the data may be used for an
asteroseismic investigation of the observed stars (e.g. Christensen-Dalsgaard et al. 2008,
Gilliland et al. 2010). Combined with spectroscopic follow-up observations this will im-
prove constraints on the fundamental parameters of the observed planets, in particular
their mass and age. The first seismic studies of planet host stars among the Kepler tar-
gets presented by Christensen-Dalsgaard et al. (2010) look very promising. In particular,
the object HAT-P-7 provides both the planetary transit and a clear spectrum of solar-like
oscillations.

The possibility of combining planetary transit measurements with asteroseismic in-
vestigations of their host stars will be taken to the next level if PLATO (e.g. Catala 2009)
will be selected as an ESA M-class mission in late 2011 (the planned launch would be
around 2018). The objective of PLATO is the characterization of planetary systems and
the study of their evolution. For this purpose PLATO will observe 30000 cool dwarfs
with V ≤ 11 for which a detailed asteroseismic analysis will be feasible. Combining
the precise results on the stellar mass and age from seismology with the information ob-
tained from the transits and the follow-up observations (e.g. ground-based spectroscopy
and GAIA astrometry), mass and radius estimates of the planets with a precision of ∼ 2%
and an age within a few hundred million years will become feasible.

6.5 On ground-based observations for asteroseismology

Space telescopes like CoRoT and Kepler provide long and nearly uninterrupted time se-
ries. The gaps are so short that they may be interpolated efficiently, e.g. with the inpainting
method (e.g. Sato et al. 2010). However, for long-term observations from ground, gaps
in the time series can hardly be avoided. Ground-based spectroscopic observations will
remain irreplaceable for asteroseismology. The signal-to-noise ratio of radial velocity
measurement is significantly higher than for photometry and for the foreseeable future,
there will be no space-based spectrograph available. Thus, there will still be a request for
proper analysis methods of gapped time series as it was presented in Chapter 4 and 5.

Interruptions in observations are particularly a problem for single-site observations
where the duty cycle is typically of the order of . 50%. With respect to solar-like
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stars there are several examples of single- and two-site observations. Of particular in-
terest is αCen A which was observed several times with high resolution spectrographs
like CORALIE (Bouchy and Carrier 2002), VLT/UVES and AAT/UCLES (Butler et al.
2004, Bedding et al. 2004), and HARPS (Bazot et al. 2007), as well as in photometry with
the WIRE space telescope (Fletcher et al. 2006). These time series comprise observations
with a length ranging from 3− 5 days (VLT/UVES, AAT/UCLES) up to 50 days (WIRE)
and duty cycles ranging from 15% (WIRE) up to about 50% (HARPS).

Interruptions are also an issue for multi-site campaigns and global observation net-
works like BiSON and GONG. For instance, the solar-like star Procoyon was observed
in a multi-site spectroscopic campaign including 11 ground-based telescopes (Arentoft
et al. 2008, Bedding et al. 2010). Despite the high number of telescopes the three week
observation still contained gaps such that a sidelobe-optimized weighting of the data had
to be applied in order to extract the seismic information with the highest possible preci-
sion. Concerning observation networks, BiSON achieves a duty cycle of . 80% at best
in long-term on a yearly basis (Chaplin et al. 1996). This amount of gaps must not be ig-
nored in the data analysis. The soon to be launched SONG network (e.g. Grundahl et al.
2008) consists of eight telescope nodes installed at different longitudes. It is expected to
achieve a comparable performance regarding the duty cycle of the observations. SONG
will perform radial velocity measurements of selected targets over an extended period
of ∼ 4 months. The SONG data should benefit from the application of the Maximum
Likelihood Estimation of gapped time series presented in this work.
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