Sunspot penumbrae: observations and numerical modeling

Nazaret Bello González Institut für Astrophysik- Göttingen

IMPRS Evalution, 11.11.2005

ASTROPHYSIC

Overview

- Introduction
- Observations:
 - Spectropolarimetry in two dimensions with high spatial resolution
 Results
- Numerical Modeling
 Geometry of the model
 - Synthetic profiles
- Summary

Penumbra: Evershed effect

Evershed (1909): displacements in wavelength and asymmetries in spectral line profiles in the penumbra

Blueshifted spectral lines in centre side penumbra Redshifted spectral lines in limb side penumbra \rightarrow Radial outflow of the material

Evershed effect: models

Image reconstruction

Speckle reconstruction: Weigelt (1977), von der Lühe (1984)

Broad-band data (~150 frames, short exp. time)

Observational results III. Analysis of LOS velocities: Fe I 6301.5Å

Summary

- 2D spectropolarimetry + high spatial resolution provide much information about the fine structure of the sunspot penumbra:
 - On small scales (<0".4), the structure varies substantially with height, filaments loose identity between 0 and 300 km
 - The Evershed flow is carried by bright filaments in the centreside penumbra and by the dark filaments in the limb-side penumbra
 - The uncombed structure of the magnetic field is confirmed
 - Results compatible with the picture of low lying flow channels, emerging and diving down into the sub-photospheric layers (sea serpent)

Summary

Synthesis of Stokes profiles is needed to understand the observed asymmetries:

 First synthesis from forward modeling of a two-component penumbral model can reproduce observed profiles in given structures