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Stellar Atmospheres: Literature

* Dimitri Mihalas

— Stellar Atmospheres, W.H. Freeman, San Francisco
* Albrecht Unsold

— Physik der Sternatmospharen, Springer Verlag (in German)
* Rob Rutten

— Lecture Notes Radiative Transfer in Stellar Atmospheres
http://www.fys.ruu.nl/~rutten/node20.html

Stellar Atmospheres: Motivation

Why physics of stellar atmospheres?
Physics Astronomy

Stellar atmospheres as € Spectral analysis of stars
laboratories

Plasma-, atomic-, and molecular Structure and evolution of stars
physics, hydrodynamics,
thermodynamics

Basic research .
Galaxy evolution

Technical application Evolution of the Universe
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Magnetic fields in white dwarfs and neutron stars
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Chemical evolution of the
Galaxy

Carretta et al.
2002, AJ 124, 481
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SN movie

Stellar Atmospheres: Motivation
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Stellar atmosphere — definition

« From outside visible, observable layers of the star

+ Layers from which radiation can escape into space
— Dimension

* Not stellar interior (optically thick)
* No nebula, ISM, IGM, etc. (optically thin)

« But: chromospheres, coronae, stellar winds, accretion
disks and planetary atmospheres are closely related topics




Stellar
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Fraunhofer lines
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Spectrum - schematically
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Spectrum formation
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Formation of absorption lines
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Line formation / stellar spectral types

a0 spectral line . temperature
structure
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Stellar atmosphere — definition
» From outside visible, observable layers of the star

» Layers from which radiation can escape into space
— Dimension

* Not stellar interior (optically thick)
* No nebula, ISM, IGM, etc. (optically thin)

« But: chromospheres, coronae, stellar winds, accretion
disks and planetary atmospheres are closely related topics

23
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Optical telescopes

Calar Alto (Spain)
3.5m telescope

12
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Optical telescopes

ESO/VLT

25
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UV / EUV observations
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UV/optical
telescopes

HST

Stellar Atmospheres: Motivation
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Gamma-ray telescopes

INTEGRAL

29
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Infrared observatories

ISO

15
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Sub-mm telescopes

Artist’s Impression of ALMA
(Atacama Large Millimetre Array)

ESO PR Photo 244/99 (8 June 1999) @ European Southern Observatory BERE

31
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Radio telescopes

100m dish at Effelsberg

16
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Stellar atmosphere — definition

From outside visible, observable layers of the star

+ Layers from which radiation can escape into space
— Dimension

* Not stellar interior (optically thick)
* No nebula, ISM, IGM, etc. (optically thin)

« But: chromospheres, coronae, stellar winds, accretion
disks and planetary atmospheres are closely related topics

33

Planetary Nebula NGC 6751

iRk,

Institute - NASA and The Hubble Heritage Te RA)
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Planetary nebula spectrum
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[a—

relative flux

PG 2131+066 HST-GHRS Cycle 5 data (smoothed 0.5A)

1 T 1 | 1 T 1T l 1 T 1 [ | I L | 1 T 1T l I | T

Ts/K =95000
log (gfems?) = 7.5
+ISM =

I — { ‘“Illllllll

1200 1250 1300 1350 1400 1450
wavelength / A

36

18



Stellar Atmospheres: Motivation

Quasar + IGM spectrum
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Stellar atmosphere — definition
« From outside visible, observable layers of the star

+ Layers from which radiation can escape into space
— Dimension

* Not stellar interior (optically thick)
* No nebula, ISM, IGM, etc. (optically thin)

« But: chromospheres, coronae, stellar winds, accretion
disks and planetary atmospheres are closely related topics

38
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Eta Carinae HST - WFPC2

PRC96-23a - ST Scl OPO - June 10, 1996
J. Morse (U. CO), K. Davidson, (U. MN), NASA
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Stellar wind spectrum
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Formation of wind spectrum (P Cygni line profiles)

)
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Stellar winds — P Cyg profiles
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Accretion disks

Stellar Atmospheres: Motivation

AM CVn disk spectrum

AM CVn, Vergleich Beobachtung vs. Modell
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Temperature structure of an accretion disk
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Planetary atmospheres
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additional sodium dy Ty YWy
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Quantitative spectral analyses — what can we learn?

Shape of line profile: Temporal variation:
Temperature Companion
Density Surface structure
Abundance Spots
Rotation Pulsation
Turbulence
Magnetic field

Line position:
Chemical composition
Velocities
Redshift

47
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Zeeman effect

48
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optical spectrum

spéctrum of a white dwarf
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Magnetic fields

optical spectrum
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Velocity (m/s)

Motivation

Extrasolar planets

51 Pegasi Marey & Butler
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Non-radial pulsation modes

53
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2000

Motivation

Time resolved spectroscopy

54
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Time
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Summary - stellar atmospheres theory

The atmosphere of a star contains less than one billionth of its total mass, so, why
do we care at all?

» The atmosphere of a star is that what we can see, measure, and analyze.

» The stellar atmosphere is therefore the source of information in order to put a
star from the color-magnitude diagram (e.g. B-V,m,) of the observer into the
HRD (L, T4) of the theoretician and, hence, to drive the theory of stellar
evolution.

» Atmosphere analyses reveal element abundances and show us results of
cosmo-chemistry, starting from the earliest moments of the formation of the
Universe.

* Hence, working with stellar atmospheres enables a test for big-bang theory.

+ Stars are the building blocks of galaxies. Our understanding of the most
distant (hence most early emerged) galaxies, which cannot be resolved in
single stars, is not possible without knowledge of processes in atmospheres of
single stars.

*  Work on stellar atmospheres is a big challenge. The atmosphere is that region,
where the transition between the thermodynamic equilibrium of the stellar
interior into the empty blackness of space occurs. It is a region of extreme
non-equilibrium states.

57
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Summary - stellar atmospheres theory

Important source of information for many disciplines in
astrophysics
— research for pure knowledge, contribution to our culture
— ambivalent applications (e.g. nuclear weapons)

Application of diverse disciplines
— physics
— numerical methods

Still a very active field of research, many unsolved problems
— e.g. dynamical processes

58
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Stellar Atmospheres: The Radiation Field

The Radiation Field

Stellar Atmospheres: The Radiation Field

Description of the radiation field

Macroscopic description:

Specific intensity Iv (V, n,r, f)

as function of frequency, direction, location, and time; energy
of radiation field (no polarization)

«in frequency interval (v,v+dv)

*in time interval (t,t+dt)

+in solid angle dw around n

sthrough area element do at locationr L n

4
[, (v,n,r,t)= d’k

dv dt dw do:




Stellar Atmospheres: The Radiation Field

The radiation field

Stellar Atmospheres: The Radiation Field

Relation 1,1,

Energy in frequency interval (v,v+Av) —1,
Energy in wavelength interval (A, A+AL) — 1,

ie. d'E=1,dAcosddtdldw

thus I, |dvI=1,|dA|

) dv c c c
with Vﬂ:C:>7:—72 IV:72[/1 1/1:72[1/
. 1 v A
Iv I)»
Dimension - cnerey - - cnerey -
area time freq. solid angle area time wavelength solid angle
Unit g g

——c .
cm” s Hz sterad cm® s A sterad




Stellar Atmospheres: The Radiation Field

Invariance of specific intensity

Irradiated energy:
dE=1,(v,dvcosttdAddw

dA’ as seen from dA subtends solid angle d@
dw=cos¥dA' | d*

cos®? dA cos ¥ dA’
d2

—dE=1(v,$dv

now, dA as seen from dA’
cos¥dA cost¥ dA’

d2

dE'=I'(v,®)dv

if no sources or sinks along d:
dE=dE' I =1,

The specific intensity is distance independent if no
sources or sinks are present.

Stellar Atmospheres: The Radiation Field

Irradiance of two area elements




Stellar Atmospheres: The Radiation Field

Specific Intensity

Specific intensity can only be measured from extended
objects, e.g. Sun, nebulae, planets

Detector measures energy per time and frequency interval

dE=1,cosddw A
e.g. A is the detector area

dw~ (1")* is the seeing disk

Stellar Atmospheres: The Radiation Field

Special symmetries

« Time dependence unimportant for most problems

* In most cases the stellar atmosphere can be described in
plane-parallel geometry

atmosphere ~ 200km 1 <l
radius 700000 km 3500

Sun:

U=costt I =1,(V,U,z)

/




Stellar Atmospheres: The Radiation Field

« For extended objects, e.g. giant stars (expanding
atmospheres) spherical symmetry can be assumed

spherical coordinates: ~ Cartesian coordinates:
I,(v,u,r) I,(v,p,z)

r=R outer boundary

Stellar Atmospheres: The Radiation Field

Integrals over angle, moments of intensity

* The 0-th moment, mean intensity

1 . : :
J, =— [ﬁ I,(n)dw  with spherical coordinates
4z ;

L [ sindddde  with g=cos

_E . I_m , Sin ¢ with g :=cos
1 2z 1

= [ dudg

* In case of plane-parallel or spherical geometry

11
JV=5_jlzvdy

energy erg

area time frequency cm’ ¢ Mz




Stellar Atmospheres: The Radiation Field

J, is related to the energy density u,

radiated energy through area element dA4 during time d¢ :

dE=1 dv dt dwdA
I=cdt=dV=I1dA=cdtdA

hence, the energy contained in volume element dV" per frequency interval ig

udv dv=[f| I, dodv =4nJ, dv

energy erg

volume frequency cm’ Hz

total radiation energy in volume element:

w=[u, dv=sz] @) UL g
0 0

3
volume cm

ﬁ
dA

S~

Ddé
_

Stellar Atmospheres: The Radiation Field

The 1st moment: radiation flux

- A

F = [jl 1,(7i) 7i dw ¢
propagation vector in
spherical coordinates:

sin ¢¥cos @

n=| sindsin¢@

cos ¢}
= F,. = [[1(8%,¢)sin ¥cos gsin & a9 dgp

in plane-parallel or spherical geometry:

1
F, =F, =0,F, =F =2x[ I(uu di

>t v,z

energy erg

area time frequency cm’ § Mz




Stellar Atmospheres: The Radiation Field

Meaning of flux:

Radiation flux = netto energy going through area L z-axis
Decomposition into two half-spaces:

1
F=2x[ I(updy
1 0
=2z[ Hypdu+2x [ 1(uudy
1 1
= 27| I(p)udpu—2x[ I(-u)udu
=F"—F"

netto = outwards - inwards
Special case: isotropic radiation field: F =0

E, astrophysical flux
Other definitions: H , Eddington flux

F,=7nF,=4rH,

Stellar Atmospheres: The Radiation Field

Idea behind definition of Eddington flux

In 1-dimensional geometry the n-th moments of intensity are

1 ¢t

0-th moment: J, :ELI('U) du
1 ¢t

Ist moment: H, :5.[—11(’“) uau

2nd moment: K, :%j_lll(,u) wdu

1! n
n-th moment: :ELI('U) ndu




Stellar Atmospheres: The Radiation Field

Idea behind definition of astrophysical flux

Intensity averaged over stellar disk = astrophysical flux

n .
p=Rsin?
g 2 _ R2(1— 12
p=Rsin?} ‘ 5 (=4
U 2 =2
du
pdp=—R'udu

Stellar Atmospheres: The Radiation Field

Idea behind definition of astrophysical flux

Intensity averaged over stellar disk = astrophysical flux

- 1 R dp
1 1
= ], L 027k pd

=F'/n=F

FE, =0 noinward flux at stellar surface

;v :FV




Stellar Atmospheres: The Radiation Field

Flux at location of observer

E = []1 1,(77) 7i do

Flux at distant observer's detector normal to the line of sight:
2 2

R F R:

fo=ldo=1xR/d*=aF,—5=F —

Stellar Atmospheres: The Radiation Field

Total energy radiated away by the star, luminosity
Integral over frequency at outer boundary:
F=J.0 dev=L F,dv

Multiplied by stellar surface area yields the luminosity

L=47R*F =47’ R’F=167"R*H

energy  erg
time S




Stellar Atmospheres: The Radiation Field

The photon gas pressure

Photon momentum: P, =E,/c

Force: F=dpiu=l@coszﬁl
dt c dt

Pressure: P _F _1dE, cos?
" dA cdt dA

:1IV cos’ ddw dv
c

Ty

1
P)=1 {1, cos’ vdor= @jlvﬂzdy =
Cir ¢ ¢

Isotropic radiation field: Lw=I =],

I
Pvy=Th oy Ty P(v)%uv 1, =3K,
C

c 3

Stellar Atmospheres: The Radiation Field

Special case: black body radiation (Hohlraumstrahlung)

Radiation field in I,(v,n,F,t)=1,(v)
Thermodynamic I,=B,(v,T)bzw.I,=B,(v.T)
Equilibrium with matter

in cavity: F = =I,=8
of temperature T i cavity 0J,=1,=5

2hv? hv -
Visible B ,T — - _1
3 v T) == {eXp(ij }
-1
2hc he
B (AT) =—— — -1
AT =7 {CXP(MJ }

Tmensiny

2he? h -
B,(4,T) = ,15 {exp(ﬂkc})—l}

2hv° hv -
B,(v,T) = = {exp(k—Tj—l}

20
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Stellar Atmospheres: The Radiation Field
Asymptotic behaviour
* In the ,red” Rayleigh- hv hv hv
J . —<<1 exp =l+—
eans domain kT kT kT
2kv:T
B,(v.T)= e
2¢kT
Bv(ﬂ’ﬁT)z 24
hv hv hv
. “«\\/i i AN | 1=
In the ,blue” Wien domain T >> exp(ij exp(ij
2hv? hv
B,(v,T)= —
)= 2 e 27
2he he
B,(A,T)=""exp| ———
an="Fes- 0 )|

11



Stellar Atmospheres: The Radiation Field

Wien's law
d d | 2m? wY T
EBV(V’T) :E{ PP {exp(k—Tj—l} ] x:=hv/kT

v e —-1lv
d

—B, =0-3-x,, e™/(e*~1)=0
dv

—>Xx —3(1—6”““‘**):0

max

numerical solution: x_ =2.821= hZ—; A T=05100cm deg
g, =05 x, —5(1-e7)=0

di

numerical solution:[x_ =4.965= 7 thT A..T=02897cm deg

23

Stellar Atmospheres: The Radiation Field

Integration over frequencies

B(T) = TBV (T)dv = T 22’;’3 {exp (%) - 1} dv

0

2k LT X 2 7'k*
= 2h3T4I x_ldle_ 2 3T4
c X 5c¢ch
='/15
514
=ET4 with aziﬁz—l::5.669-10’serg cm” s deg™
V4 15 c*h

Stefan-Boltzmann law

Energy density of blackbody radiation:

u =47’ij(v)dv _ ¥ pry= 49 e
C 0 C

c

24
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Stellar Atmospheres: The Radiation Field

Stars as black bodies — effective temperature

Surface as ,open” cavity (... physically nonsense)

[}=B,,I;=0
7= B, for >0
" lo foru<o
with F, =B, and F=B()=2T* -
V4
luminosity: L=47’RF=40nR:T" -

hence, eff. temperature:| 7., = (4o7) " LR

Attention: definition dependent on stellar radius!

25
Stellar Atmospheres: The Radiation Field
Stars as black bodies — effective temperature
Visible
light
—
= Sun's curve
E Blackbody curve at 5800 K
g
| | |
0 0.5 1 2 3
26

Wavelength (mm) ——=
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Stellar Atmospheres: The Radiation Field

Examples and applications
« Solar constant, effective temperature of the Sun
va(v)dv =f=136kW/m’=136ergs” cm”
0

2

F=f ‘;3 with d=1.5-10"cm R, =6.69-10"cm -
T

F, =2.01-10" erg s cm™ flux at solar surface

eff = eff

T =ZF= T2 =5780K
o
* Sun's center T =1410" K
— Planck maximumat A, =3.4A (B,)
or A, =21A (B))
with 1A[112.4keV maximum =4 keV

27
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Examples and applications
* Main sequence star, spectral type O
R.=10R, , T,; = 60000 K
.\ 2
o)) =

Auy =882A (B,)) or A4, =501A (B))

* [Interstellar dust

T=20K , A

max

=0.3mm (B,)

« 3K background radiation
r=27K ,A4, =1.9mm(B,)

max

28
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Radiation temperature

... is the temperature, at which the corresponding blackbody
would have equal intensity

-1 -1
2hc he he 2hc
I, (A)="AF -1 T  =—|ln ——+1
V( ) 23 |:exp(ik7-;ad J j| = rad kl|: n[ﬂ}[ Jj|

14

Comfortable quantity with Kelvin as unit

Often used in radio astronomy

29
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The Radiation Field

- Summary -

30
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Summary: Definition of specific intensity

7]

4
Lvify=—395 &
dv dt do do

31
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Summary: Moments of radiation field

In 1-dim geometry (plane-parallel or spherically symmetric):

1

0-th moment: J, :ELI('U) du Mean intensity
1 ¢t

Ist moment: H, = [ 1) pdu Eddington flux

1 ¢t
2nd moment: K, :ELI(M Hdy K-integral

F, =astrophysical flux H =Eddington flux F, =flux F, =7zF =47H,
energy density u = J-: u, dv= 47”_[: J, dv
total flux at stellar surface F = J‘: Fldv= J:E, dv

stellar luminosity L=47zR’F=4n’R:F=167"R:H

32
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Summary: Moments of radiation field

4n

pressure of photon gas P(v) =—K,
c
3 -1
blackbody radiation B, (v,T) = ﬂ {exp (h_l/j - 1}
c
Wien's law A, T = constant
Stefan-Boltzmann law  B(T) = .[BV (T)dv = 9 ps
T
0
. _y 46 4

energy density of blackbody radiation u=—T

C

effective temperature L =47 R’F=471"R}B=407R T},

33
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Radiation Transfer

Stellar Atmospheres: Radiation Transfer

Interaction radiation — matter

Energy can be removed from, or delivered to, the radiation field
Classification by physical processes:

True absorption:  photon is destroyed, energy is transferred
into kinetic energy of gas; photon is
thermalized

True emission: photon is generated, extracts kinetic energy
from the gas

Scattering: photon interacts with scatterer

— direction changed, energy slightly
changed

— no energy exchange with gas
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Examples: true absorption and emission

* photoionization (bound-free) excess energy is transferred
into kinetic energy of the released electron — effect on
local temperature

* photoexcitation (bound-bound) followed by electron
collisional de-excitation; excitation energy is transferred to
the electron — effect on local temperature

* photoexcitation (bound-bound) followed by collisional
ionization

* reverse processes are examples for true emission

Stellar Atmospheres: Radiation Transfer

Examples: scattering processes

- 2-level atom absorbs photon ry b
with frequency v, re-emits photon Vv, Vs
with frequency v,; frequencies not Y .

exactly equal, because
— levels a and b have non-vanishing energy width
— Doppler effect because atom moves

« Scattering of photons by free electrons: Compton- or
Thomson scattering, (anelastic or elastic) collision of a
photon with a free electron
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Fluorescence

Neither scattering nor true absorption process

c

a

c-b: collisional de-excitation
b-a: radiative

Stellar Atmospheres: Radiation Transfer

Change of intensity along path element

generally:

plane-parallel geometry:

spherical geometry:

dl,
ds

dal, =— al, with df =—uds
ds

drzdscosﬂ:ﬂzﬂ
dl, dl, @+E)IV du ds
ds or ds ou ds sin(ﬂ+d1§9zsinﬂ:_rdﬂ
S
di, dl ol, 1-u’
==V Y du _dudo __ . ol
ds o wu - :ds 12 ds s1n19r( sin ¢
=(1-u*)/r
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Plane-parallel geometry

dI d,

i M

outer boundary

with dt = —uds

/

~/

dt

| 4

geometrical depth t

Stellar Atmospheres: Radiation Transfer

Spherical geometry

//d:
/

dl, _al, dr I, du
ds or ds OJu ds
di, dl ol, 1-u’
1+
ds  or ou r

sin(#+dd) =sin¥=

du _du dv

ds do ds

dr=dscosz9:§=,u

s
—rd?
s

=—sin J(—sin 191)
-

=(1-p*)/r
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Change of intensity along path element

enerally: a,
g y: ds
plane-parallel geometry: cjilv ——u aZtV with dt = —uds
S

spherical geometry: J
dr=dscosﬂ:>—r=,u

dl, _ol, dr 9, du ds

v

ds Or ds ou ds sin (9+d®) = sin ¥ =

2
jd[V:aIV +E)IV 1—,[[ diﬂ_diﬂdiﬂ_

ds __or ou__r | |7 ds av ds

—rd ¥
ds

=(1-u*)/r

— _sin &L (=sin &
r

Stellar Atmospheres: Radiation Transfer

Right-hand side of transfer equation

* No absorption (vacuum)
dl,
ds

=0= 1, =const. invariance of intensity -

« Absorption only, no emission

= =

I, ds 1, +dl,
energy removed from ray: dE=—dl ,dvdtdwdo
is proportional to energy content in ray: I,dvdtdowdo

and to the path element: ds
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Absorption coefficient

« thus:dl, =—«l, ds
Kk absorption coefficient, opacity -
« dimension: 1/length  unit: cm™’

* but also often used: mass absorption coefficient, e.g., per
gram matter

Kk in general complicated function of physical quantities T, P,
and frequency, direction, time...
x=x(7,7,v.t)

+ often there is a coordinate system in which «x isotropic, e.g.
co-moving frame in moving atmospheres

xk=x(7,v)

+ counter-example: magnetic fields (Zeeman effect)

Stellar Atmospheres: Radiation Transfer

only absorption, plane-parallel geometry

_geometrical depth ¢

outer boundary /'
J/
3 .
dt | /%
| 4
dl,(u,t) dl

=KV, (1) =~ (1) = KV, D)1, (U, 1)

ds dt

with optical depth d7 = kdt — 7(v,t) = j kW,t)df with 7=0att=0
t=0
I
a1

—1,(u,t
7 ﬂv(ﬂ)

. _ / . . .
= 1,(u,7)=c-e"*| c integration constant, fixed by boundary values 12
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Schuster boundary-value problem

Y

7=0 outer boundary

=7, inner boundary
SN
[V
pH<0:1;(u,r=0)=c-e"" =c
I (u,7)=1; (1,7 =0)e " .
‘Ll > O : I:(ﬂ,f: Tmax) = C.ermax/ﬂ
L (U0) = 1 (T = Ty ) 0 -

Stellar Atmospheres: Radiation Transfer

Example: homogeneous medium

e.g. glass filter

Kt, )=k —>7=Kt—7,, =kd d=thickness of filter

Lur=0)  =L(#7=1,) """

—x d/lul

1;(#7T=Tmax)zl;(#7z-=0)' e




Stellar Atmospheres: Radiation Transfer

Half-width thickness

. —K Sy,
Si,: € =1/2

Material S,, | meter
River water 0.033

Window glass 0.066

City air 330

Glas fiber 6600

Solar atmosphere 200000

Stellar Atmospheres: Radiation Transfer

Physical interpretation of optical depth

Wha£ is the mean penetration depth of photons into medium?

<T> = j T dT (mathematically: expectation value of probability function p(7) )
0

p(7) dr:= probability for absorption in interval [7,7+d7]

= -—dt note normalization: Ip(r)dr = Ie’”" daz _ - =1
—_— 0
I ()1 (=0) 0 0 M

N 1 r.

(T)zjr e —dr =ije’*dx=y~1 0
M

0 0 / \

<T> = 4 mean penetration depth / \

1 1
—-+ =1~ mean free path
H K K
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The right-hand side of the transfer equation

+ transfer equation including emission

= =

I, ds 1,+dl,
Energy added to the ray: dE =+dl,dvdtdwdo
is proportional to path element: ds

dl, =n,ds

emission coefficient n,

« dimension: intensity / length  unit: erg cm3 sterad -

Stellar Atmospheres: Radiation Transfer

The right-hand side of the transfer equation

+ Transfer equation including emission

n in general a complicated function of physical quantities
T,P,..., and frequency 1 =n(#,i,v,t)

n is not isotropic even in static atmospheres, but is usually
assumed to isotropic (complete redistribution)

if constant with time: 7 =7(7,v)
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The complete transfer equation

dl
2 = 771/ - K(V)[v
ds
Definition of source function:  §, = My
K(V)
dl,

= k(V)(S, -1,)
S

* Plane-parallel geometry

d
_ﬂw = K(V’t)(Sv(Vnuat)_IV(th’t))

» Spherical geometry

2
ﬂalv(v,,u,r) Ll-u of, (v, i,r) _ K, )S, (v, i1, r)— 1, (v, 11, 7))
or r a,tl 19
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Solution with given source function:
Formal solution

* Plane-parallel case

dl, :l([ -S)) or: di+LIV=LSV
dr U v v drt

ut
linear 1st-order differential equation of form '+ f(x)y = g(x)

has the integrating factor M(x)= eXP[J.f(x)de

*o

und thus the solution  y(x) =MEX)( | g(x)M(x)dxw] C=y(x,)
(proof by insertion) "
in our case: x— 7,

f(x)—>-1/u

gx)—>-1/us,(z,)

y(x) = 1,(7,) %

10
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Formal solution for I

Reference point x,: for I* (x> 0) outgoing radiation

max

M(7)= exp[ JT. /11 dr’] = exp[r‘“a;l_rj

Tmax

I (7) = exp[— Fax _T] [-Ls.@) exp[rm jdr + 1} (T -
H o M
L@=[s,@ exp[ ”j‘”u (rmax>exp[ e ‘T]
g uo) u u
weighted mean over exponentially absorbed ingoing radiation
source function from inner boundary
[T pin point . .
Hence, as rough approximation:
s L@®=S,(+u)
T TtAr=r+u T 21
Stellar Atmospheres: Radiation Transfer
Formal solution for I~
Reference pointx,: =0 for/~ (u<0)ingoing radiation
¢l
M(r)zexp[.[-dr]—exp[ j
0 U 4
I;(7) —exp[ ¥ j{j Y (T)exp[ jdt +1; (0)} -
I,(0)=[5,(7) exp[— Tr j‘” [ )
) u )l 4
weighted mean over source exponentially absorbed ingoing radiation
function from outer boundary
22
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Emergent intensity

ro-=J Sv(f)eXp[—T] ar +1:(Tmax)exp{—rmax]
0 H)H U

for semi-infinite atmospheres: 7, —>oo:

5o=| Sv<r'>exp[—fjdf
g H) u

hence, approximately: 17 (0)=S, (7= u)

Eddington-Barbier-Relation

Relation is exactly valid if source function is linear in 7:

ie with S (1)=S,, +S,, -t and x=7"/u we have:

;0) =S, [ dx+S, [ 4 xe ™ dx =S, +S,, - u=S$, )
0

0

23
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The source function
In thermodynamic equilibrium (TE): for any volume element it
is:
absorbed energy = emitted energy

per second per second
kI, dsdodawdv =1, dsdodwdv

kB, =1, Kirchhoff's law

s, =M -p
K
The local thermodynamic equilibrium (LTE): we assume that
S,(v,F)= B,(v,T(F)) zB.I;(0)= | B,(T(?) exp[_fjdr
i 0 u) u

Local temperature, unfortunately unknown at the outset

14

In stellar atmospheres TE is not fulfilled, because
— System is open for radiation

— T(r) #const (temperature gradient) 24

12
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Source function with scattering
Example: thermal absorption + continuum scattering
(Thomson scattering of free electrons)

KWV)=y(V)+o(v) n,=xB,+ Umd—wIR(v’, wsv,n)l, (Vi) dv’
+ Iy 47 34
true absorption redistribution function

|
scattering  jsotropic, coherent:R (V',7';v,7i) =& (V',v)

n,=xB +oJ,
szmzp,]v+(l—p)8‘/ with p=0c/(c+))
xX+to

Inserting into formal solution:

O
0 H) M u) u

[ﬁd—wlv (z,u) integral equation for 7,

iy

25
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The Schwarzschild-Milne equations
Expressions for moments of radiation field obtained by
integration of formal solution over angles u
0-th moment

1 1
@)= j 1,(z, )yt

1 1 o0 T/_T dT/ 0 T T_T, d'z"
J (D)= du SV(T')eXp[— ]+ du Sv(r’)exp[—]}
2{5 / u Sl i J1d

(written for semi-infinite atmosphere without irradiation from outside)
1 dw 1 dw

exchange integrals (S,7 independent of ) w=7—,—=F— >du=%—
W du

J, (1) =;F dr's, (') j exp(-w(7'-7)) w[—j::j +j dT'SV(T')T exp(-w(z-7)) w(

w

J, (1) = % U ar’s, (r’)T exp(—-w(7' - r))[“&”j +j dr’s, (r’)Texp (-W(T_T'))[dwﬂ
T 1 0 1 26

w

13
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The Schwarzschild-Milne equations

0-th moment

J(T)—Udr'S(T')Iexp w(7 - r[ ]+Idr’S(1")Iexp w(r—- z’))[ H
w

J,(7)= USV (TE (7 -7) dr'+f S, (TE, (t-7) dr’}

with E (x):= J.t 'e™dt exponential integral of Ist order

Jv(r):EJ.Sv(r')EI(\r’—r\)dr’ -

Karl Schwarzschild (1914)

27
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The Lambda operator

Definition A[f()]= jf(t)E (Je—7])ar

:>JV(T)—A( S,)

In analogy, we obtain the Milne equations for the
1st moment

H,(7) =%TSV(z)E2 (z—r)alz—%JT'Sv(z)E2 (r—t)dt =%<D(Sv)

2nd moment
15 1
K,(7) =5!SV(z)E3 (|t —)ar =ZX(SV)

o —xt

with E,(x)= jetn dt
1

L
L

28
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LTE

Strict LTE J,(1)=AB, (T (1))

Including scattering s, = pJ, +(1-p)B, (T(7))
J, (1) =ApJ, +A(1-p)B,(T(7))

Integral equation for J,(7)
Solve J,(7)—S,(7) > 1,(7)

— H,(1)=1/4®S,(7)
— K, (1)=1/4XS,(7)

29
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Excursion: exponential integral function e
see Chandrasekhar: Radiative Transfer 111.18

» For classical LTE atmosphere models, >50% of
computation time is needed to calculate E_(x)

* In non-LTE models, E (x) is needed to calculate electron
collisional rates

* Recursion formula
integration by parts E, (x) = J‘ et
1

—J-——l . 7D (=x)e M dt

17 h—

with product rule E, (x) = —%t‘(”‘”e‘”
e

1—(*1—1)

.=
=0+ et ——— xj t " Ve dt
n-1

n—1 1

1
E (x)= P [e"‘ -xE, (x)] forn>1

E(x)>E, (x) 30

15
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Excursion: exponential integral function
 differentiation

d = . .
— E(x)=|1"—(e™)dt=| 1" (—t)e"dt =— [ " Ve dt
o B0 =[ o=l e == e

4 g ()=-E )| n>l
dx

d T -1 d —xt T -1 —xt 1 —xt e_x
— E(x)=|t" — (e dt=|t" (-t)e "dt=— =—
- 1<x)! @ !()e P
d e’

— E(x)=-

- B ==

31
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Excursion: exponential integral function
 integrals Ix’En(x)dx repeated integration by parts
0
s lE " xl+l P S xl+l E e
!x (=7 ”(x)o_llﬂ [
xl+l S xl+l o d e
=l+1En(x)0+.([mEn_l(x)dx etc. until . E(x)=- .
Sl+l Sl+2 xl+n
=~ _E()+———E E
O iy BT s e 2O
+ 1 jxl+n—le—xdx
(+1)([+2)---(I+n)
for s >
Tx’E (o= 1 Tx’*"'le'-*dx— (+n=D!  (+n-D'_ 11
ST (I +2)- (L4 n) g C(+DI+2)-(+n)  (+n) l+n
32
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Excursion: exponential integral function

« asymptotic behaviour

x—>oo:E1(x)=Te"”1dt:e:+Ie:ttlzdt:...:e; [1_i+;_;+..}
x—=0: E(x) i!i xtidt:;fe—uazl:i!ie_ua:_i_'[ —u%
T odu g du f
— [ B _[(]— )% 1
'!e u '!( ) u +;[ -([(
Ex)= -y —lnx+j(1—e‘“)ﬂ
0 u

¥=0.5772156--- Euler’s constant

series expansion for the integral:

nlx

E(x):—y—lnx—i-Z( 1)

1

Values atx=0: E, (0) =i[e-° -0-E,,(0)]=
n—1 -1

n>1 EZ(O):LES(O):%3

Stellar Atmospheres: Radiation Transfer

Example: linear source function
S(t)=a+bt

J(t)=AS :%T(a+b1:’)El (|v'—1)dr

Lo
EER “H)e

J(t)=a+bt+— [bE (t)—aE (1:)] -

H(T)=%b+%[aE3(T)—bE4(T)] ... one can show this

Conclusions: 7>>1:E,=e™*/x—>0J, >a+br=S5,

The mean intensity approaches the local source function
H,—>b/3

The flux only depends on the gradient of the source function

34
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Moments of transfer equation

* Plane-parallel geometry

dl
Hgg =15
« 0-th moment %f“'d/‘
d 1}1( \iid, —1j1( )d —1de 71
dz| 2 Vv womdu | =5 [ 1, Gndu = | S, d
;;H":J"_S" )
* 1st moment %f“'/‘d/‘
G o | = 1 o= 5.4
az| 2 1w | = |1 od = | S,
Lk, =m,|an -
dt 35
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Moments of transfer equation

» Spherical geometry
ﬂalv(Vaﬂ,r)+1—ﬂ2 o, (v, i,7)
or r ou
* 0-th moment L

J1; 1 1= ol 1 ¢, 1 o
Oy % =L s, [au-Lx[ 1,4
arz_flvﬂdﬂ 2_[ =, V_Ilﬂ 2_Ilvﬂ

= K'(V,I”)(SV(V,,U,I”)—IV(V,,U,I”))

27

Iy =y —1[2“1de=z(sv—zdv
or 2| r L 2%

@Hv +O+2Hv =x(S,-J,)

or r

19

(2H,)=x(S,-J,) ()

36

72 or

18
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Moments of transfer equation

* 1st moment 5J~-~ydy
ol¢, -, 1peu—p’ol 1 1
G Pdu+— [FmEEr qu=— k8 —— k1
aﬂ_flvﬂ u 2_[ =) V_Ilﬂdﬂ , _[V#dﬂ
3 1 Ly a2
Ig L= —1j1 S| du=0-xt,
or r L 20
é V+O_1(JV_3KV)=_KHV
or r
9. 3K, J

v _v — T

K, + Jlan

or ' r r

37
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Solution of moment equations

Problem: n-th momentum equation contains (n+1)-st moment
— always one more unknowns than differential equations
—to close the system, another equation has to be found

Closure by introduction of variable Eddington factors

KV :fV'JV

J/, Eddington factor, is found by iteration
starting estimate for f, — (/)+ (), solve = K,
- N =K,/J,

38
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Solution of moment equations

H
a : :JV_SV

() =
2 differential egs. for J,,H,

14

any 1)y

Start: approximation for f, , assumption: anisotropy small, i.e.
substitute 7, by J,, (Eddington approximation)

1 1 11 .7
K ()=- L u*du=J —|u*d :J'[3} =J
() 2£vﬂ 1 VZ:[,U w=Jiyl5# | =
—>KV:1JV

3

1
- e

/y 3

1
3

39
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Is exact, if /7, linear in
(one can show by Taylor expansion of S in terms of B that this linear
relation is very good at large optical depths)

Iv (L"’) = IOv +“IIV

1!
L=5£LWMM=h
1! 1 M31 1
v 2:[1 v(“’)“’“’ 2|:1v 3i| 3 v
3

1 1 0 1
v 2:[1 v(“’)“’ L"’ 2|: ov 3 :|1 3 Oov

=K, =1JV
3

Eddington approximation L

40
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Summary: Radiation Transfer

41
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Transfer equation CZV =n,-xkW)I,
s

Emission and absorption coefficients 7, , x(V)

Definitions: source function S, =7, /x(V)
optical depth dt=xKx-ds

Formal solution of transfer equation

Lo= | Sv(r')exp(—’;’]d;+1;(r,m)exp(—’m;"]

Eddington-Barbier relation 1, (0) =S, (7 = u)

LTE Local Thermodynamic Equilibrium
S, (v,F)=B,,T(F)) T(7) local temperature

Including scattering: S, =pJ, +(1-p)B, with p=c/(c+y)
42
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Schwarzschild-Milne equations
Moment equations of formal solution

1
J,(1)=A(S,) H,(1)= Z(D (S,) A, ® integral operators
H K
Moments of transfer equation (plane-parallel) % =J,-S, d(d W) _ H,
T T
Differential equation system (for J,H,K),
closed by variable Eddington factor f, =K, 1J,
43

Summary: How to calculate | and the moments J,H,K
(with given source function S)?

1

. dl (no irradiation from outside, semi-infinite
Solve transfer equation ; = ; (I - S) atmosphere, drop frequency index)

(u>0), I analogous

. U T—7\dr
Formal solution: 1 (T)=IS(T)GXP[— )

How to calculate the higher moments? Two possibilities:

1. Insert formal solution into definitions of J,H,K: %J:I,u“d/z

—J(@)=A(S) H(@)= ifb(S) K(1)= iX (S)  schwarzschild-Milne equations

2. Angular integration of transfer equation, i.e. 0-th & 1st moment %J:ll...,u“d/z
dH ¢ 4K

- —=J- =H 2 moment equations for 3 quantities J,H,K

dt dt
Eliminate K by Eddington factor f: K =/"-J
— ilﬂzJ—S %zH solve: J,H,K 5 new f (=K/J) | iteration
T T

44
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Emission and Absorption

Stellar Atmospheres: Emission and Absorption

Chemical composition

Stellar atmosphere = mixture, composed of many chemical
elements, present as atoms, ions, or molecules

Abundances, e.g., given as mass fractions 3,

» Solar abundances B, =0.71
B, =0.28
B =0.004
By =0.001

S, =0.009

Br. =0.001

>

Universal abundance
for Population | stars
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Chemical composition

* Population Il stars

ﬁH = ﬁl(;)
ﬁHe = ﬁl(;)e
B, =0.1---0.00001 37
* Chemically peculiar stars, * Chemically peculiar stars,
e.g., helium stars e.g., PG1159 stars
B, <0.002<< 37  <0.05<< B°

B, =0.964 >> 2 B =025>> B2
B =0.029>> B° B.=0.55>> 2
By =0.003= A7 B, <0.02

Po =0.002< 57 B, =0.15>> p°

Stellar Atmospheres: Emission and Absorption

Other definitions

* Particle number density N, = number of atoms/ions of
element & per unit volume

relation to mass density:
Bi.p=A4,myN,

with 4, = mean mass of element & in atomic mass units (AMU)
my, = mass of hydrogen atom

» Particle number fraction Nk
> N,
« logarithmic g, =log(N,/N,)+12.00

« Number of atoms per 106 Si atoms (meteorites)
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The model atom

The population numbers (=occupation numbers)
= number density of atoms/ions of an element, which are in
the level i

ion 5
> 2 bound states,
> 2 «
o) Jlevels
c
L
1
E, =energy levels, quantized

E, =E(ground state) =0
E.., = ionization energy

Stellar Atmospheres: Emission and Absorption

Photon absorption cross-sections

Transitions in atoms/ions

//////// 4 1. bound-bound transitions = lines

2. bound-free transitions = ionization and
recombination processes
3. free-free transitions = Bremsstrahlung

Elon

A

Energie 3

We look for a relation between macroscopic quantities «(v),7, (v)
and microscopic (quantum mechanical) quantities, which
describe the state transitions within an atom
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Photon absorption cross-sections

Line transitions: AE,, = i(Eup -E,,)
Bound-free transitions: thermal average of electron velocities v
(Maxwell distribution, i.e., electrons in thermodynamic equilibrium)

unbound state = ion + free electron (1/2 m_v*)
‘AEbf‘ > Eth = Eion - Elow @

Free-free transition: free electron in Coulomb field of
an ion, Bremsstrahlung, classically: jump into other
hyperbolic orbit, AE,; arbitrary

Fotr) all processes holds: AE can only be supplied or removed
y:

— Inelastic collisions with other particles (mostly electrons), collisional
processes
— By absorption/emission of a photon, radiative processes

— In addition: scattering processes = (in)elastic collisions of photons with
electrons or atoms

- scattering off free electrons: Thomson or Compton scattering
- scattering off bound electrons: Rayleigh scattering

Stellar Atmospheres: Emission and Absorption

The line absorption cross-section

Classical description (H.A. Lorentz)
Harmonic oscillator in electromagnetic field
» Damped oscillations (1-dim), eigen-frequency o,
Damping constant vy
* Periodic excitation with frequency w by E-field
Equation of motion:
mi + ynx + ma; x = eE e’
inertia + damping + restoring force = excitation
Usual Ansatz for solution: x(¢) = x,e'

. ek, ;
@ +ioy+a})x=""0 e
m
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The line absorption cross-section
(-& +iwy+a}) x(t)ze—E(’e’“”
m
1

E
=g — L
m (@ - & +iwy)

(@ - —iwy)

expand x(t by R T
p ()= (wg — )+ Y
@, - &’ ® .
real part Re(x(t)) =— |:(a)a))+27/2 CcoS wt +(a)2_a)z/w Sin ¢
0

ElectrodynamiCS' radiated power

pm—f—«m
CE)|  woy-0' e
0= L P A P

S (—*)sin wt}

2 (0 —a? 6
() = ¢k MCOS ot +———— ( ) cos wt sin wt + ro sin® wt
m N?

NZ
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The line absorption coss-section

average over one period

cos’wt =sin*wr=1/2, coswtsinwr=0

1 [ean)2 jz (a)(f —a)z)z +7e

v (e —wz)zwzaf)2

2
= (eE j o'
2\ m (a)(f—a)z)zﬂfza)2

power, averaged over one period

m

a)z)2 +7w’

; = e 03 @(v)/C C=normalization constant (Vv =a&/2r)
m-c
4
pv)= ZV ¢ profile function
(vi-v?) +(y/2m)V?
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The line absorption cross-section

since AV =v-v, <<V, V. V=V,
V2 =V = (v +V)(Vy V) = 4V (v, —V)?

v.C _C Ve
4v,-v)Y +(y/2xy 4 (v,-v) +(y/4n)

now: calculating the normalization constant

p(v) =

Votoo

j o(v)dv =1

Vo—oo
oL 4

substitution: x:=—V,—V)
Y

Voteo +oo 22
j (o(v)alv=£v§4—7r izzcv‘)—”:C=%
. 4 "y Ll+x 4 Vo T

Vo~

=7
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The line absorption cross-section

p(v) t
Profile function, Lorentz profile
/4rx?

= —v7;2 +(y/4m)?
properties:
* Symmetry: |

PV, —V) =p(=(v, —V)) V'O
» Asymptotically:

o) =1/ (v, —v)* =1/Av?
* FWHM:

2 y/4n’ 2y ¥

—= = AV =1t
Y AV /2) +(y/47)? WM A o
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The damping constant

Radiation damping, classically (other damping mechanisms later)
Damping force (“friction®) F = ymx(t)
power=force -velocity  p(t) = ym(i(t))’
i 268,
electrodynamics p(t) = o5 (1))

Hence, Ansatz for frictional force is not correct

Help: define y such, that the power is correct, when time-

averaged over one period: | 5,2 | :
yma” = 5—3(() (where we used x(¢) = x,e"")
C

208°w;
W =0y = 7/:5 mc30 classical radiation damping constant
-
13
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Half-width
Insert into expression for FWHM:
Ay _ 7y _4mév;
WMo 3me®
Av A Are’
ATV AV RNY WL S L (R RTIR |
1% A 1% 3mc
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The absorption cross-section

Definition absorption coefficient dl, =-x(v)I ds
with n,,, = number density of absorbers: x(v)=o(V)n,,,
o (V) absorption cross-section (definition), dimension: area
Separating off frequency dependence:  O(V) = 0,0(V)
Dimension 0,,: area - frequency

Now: calculate absorption cross-section of classical harmonic
oscillator for plane electromagnetic wave:

_ iwt
E =FEe

1,0/ =  ES6(v=v)8(u=1)

Stellar Atmospheres: Emission and Absorption

Power, averaged over one period, extracted from the
radiation field:

—  e'E; ©v; 2w;
= v) with y= ==—=2
p 3m2C3 7 ¢( ) 7 7/class. 3 mc} -.
—  €'E; n'vi3mc’ eE;
= V) = v
P 3m’c’ 28’ 4n’v;] o) &m o)

On the other hand: p= G(V)HI(V'a/‘)dV'd/‘ ZG(V)éE‘)z

vy

. ’E2
Equating: a(v)éEo2 = egm° %)
e
o(v)= (V)= 0,=0.026537 cm’ Hz

mc
Classically: independent of particular transition

Quantum mechanically: correction factor, oscillator strength

_ e’ . e’ index “lu” stands for
On = me Su  KWV)=n, me Sup(V) transition lower—upper level 16
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Oscillator strengths
Oscillator strengths /,, are obtained by:
Laboratory measurements
Solar spectrum
Quantum mechanical computations (Opacity Project etc.)

MA Line S Zlow &up
1215.7 Ly o 0.41 2 8
1025.7 |Lyp 0.07 2 18

9725 |Lyvy 0.03 2 32
6562.8 Ho 0.64 8 18
4861.3 Hp 0.12 8 32
43405 |Hy 004 |8 50

Allowed lines: f,~1,
Forbidden: <<1 e.g. He 1 1s2'S—»1s2s 38 f, =210

17
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Opacity status report

Connecting the (macroscopic) opacity with (microscopic) atomic
physics Classical
crossection

2

T
R S )

Tlowup

Profile function
QM correction factor

Population number
of lower level

View atoms as harmonic oscillator
— Eigenfrequency: transition energy
— Profile function: reaction of an oscillator to extrenal driving (EM wave)
— Classical crossection: radiated power = damping
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Extension to emission coefficient

Alternative formulation by defining Einstein coefficients:

hv o
K(V) = 1,llow —L Blu(p(v)
4r
2
ie. hv, B, = e fl,
4r mc

Similar definition for emission processes:

i h
nll/nducec‘ = nup A Bullv I/I(V)
4r

nspontaneous — nup hl; Aull//(V)

w(v) profile function, complete redistribution: @) =w(v)

Stellar Atmospheres: Emission and Absorption

Relations between Einstein coefficients

Derivation in TE; since they are atomic constants, these
relations are valid independent of thermodynamic state

In TE, each process is in equilibrium with its inverse, i.e.,
within one line there is no netto destruction or creation of
photons (detailed balance)

emitted intensity = absorbed intensity
,y

ul

Moy, —p Mor, TR =B (T)

up ~ Tlu A v low

Ivnup +

(Bule(T)+Aul)nLlp =B B (T)nlow

v

B,(T) (nlowBlu - nupBul ) =Ny, A,

-1
B,(T)= ;J“l('s"wgm - 1J

ul up—ul

20

10



Stellar Atmospheres: Emission and Absorption

Relations between Einstein coefficients

-1
B . . nu u —hV,
B,(T)= Ay | Mo, By —1| with Boltzmann equation: —>= Buwotwiir
Bul nupBul nlow glow
-1
B . . _
B(T)= Ay | 8By ™/ _1|  comparison with Planck blackbody radiation:
Bul gupBul
3 —
B 1= 22 1)
Ay _2hv,
B, ¢
B
= glOW = 1 = glowBlu = gupBul
gupBul
21
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Relation to oscillator strength
2,2
Blu :4e—ﬂ- lu
mchy,
2 -2
Bul:gLlp Blu:gLlp 4eﬂ- lu
glow glow mChVO
2m7 8. 8eMV:r? g, . ) .
Ay =SB, =m0 =3y, =" f, dimension A, 1/time
c glow mc glow
Interpretation of 1/4, as lifetime of the excited state
order of magnitude: 4, =7,
at 5000 A: 10°%s™
lifetime: 10~°s
22

11
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Comparison induced/spontaneous emission

When is spontaneous or induced emission stronger?
with I =B,

nspontaneous
vV

Ayhvan,, w(v)/4n Ay L 2wl &

induced

m
=1= "/ =2 = hv./kT" =In2
e.g. T"=10000K : A =20000 A

T" =50000K : A = 4160 A

At wavelengths shorter than A, spontaneous emission is
dominant

_ . Ay == . (ehv*/kT* _1)
B,(T")B,hv.n, y(v)/4r B, B(T") ¢ 2hv.

23
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Induced emission as negative absorption
Radiation transfer equation:
/4 chontancous induc
d v — 77V _ K.IV Wlth 77V — n;pomdneous +77‘1/ndu(,ed
/4 chontancous induc
L — n;pomdneous + 77‘1/ndu(,ed _ K.IV
ds
transition low—up &, =B, %nlow¢(V), ﬂf:duwd =B, %nu N3]
4z ar *
Useful definition: k corrected for induced emission:
dl “hontancous v So we get (formulated with
— =g + (Bulnup —By,n, )70 @)1,  oscillator strength instead
ds 4r of Einstein coefficients):
2
e Siow
K.lu = Iu [nlow —= nupJ¢(V)
mc &
spontaneous 2hV3 71‘-62 gow
7715) ) = 2 S u : nup¢(V)
¢ mc p
24
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The line source function

General source function: S, =7,/

Special case: emission and absorption by one line transition:

hv
u Agn,, —2
Slu 77\1; _ ulnup Y4 ¢(V) _ 2hV3 nup
v lu hV 2
K (Blunlow _Bulnup) ° ¢(V) ¢ gup Ny ~ 1
A g ow up
low
lu _ 2hv3 g“P nlow h
Sv =5 — 1
c glow nup

* Not dependent on frequency
+ Only a function of population numbers

* InLTE:
3

25
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Line broadening: Radiation damping

Every energy level has a finite lifetime t against radiative
decay (except ground level) T=1/ZA1

I<u
Heisenberg uncertainty principle: AE-7=h
Energy level not infinitely sharp
g.m. = profile function = Lorentz profile
I 1
7=Z+Z=2Auk +ZAlj

k<u i<l

Simple case: resonance lines (transitions to ground state)

example Lyo: (transition 2—1): y=A, =3y, g,/g,f, =37,2/8-0.41=0.31y,

example Ho (3—2):

y=3y, [gl £ o+82p +g1f13J =3y, (§0.41+ 8 0.64+1280.07) =1.18y,

18

2 3 3

26
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Line broadening: Pressure broadening

Reason: collision of radiating atom with other particles
—=Phase changes, disturbed oscillation

v

—— EO~ T
— N— N—

>

>

t, = time between two collisions

<
<

27
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Line broadening: Pressure broadening

Reason: collision of radiating atom with other particles
—=Phase changes, disturbed oscillation

v

—— EO~e" —— T
—— — —

>

<«

t, = time between two collisions

Intensity spectrum (=power spectrum) of the cut wave train:

. 2
I, ~ ‘Fourler transform‘

10/2 2 sin
j eiwoteiwtdt

—ty/2

2
0- o, tj

a 0-,
2

Il(w)N

28
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Line broadening: Pressure broadening
Probability distribution for t,

W (t,)dt, =e"'*(dt,/T) 7 =average time between two collisions

Averaging over all t, gives

oo 2
I, (@) = const- J{sin[w;w‘) t)/w_zwo} e'dt, It
0

Performing integration and normalization gives profile function
of intensity spectrum: () = |/ 7z
(@-a,)" +(/z)

i.e. profile function for collisional broadening is a Lorentz profile
with y=2/t, T~N"' N = particle density of colliders
y=N-y 7" approximately constant

(to calculate y": calculation of Tt necessary; for that: assumption about phase ”

shift needed, e.g., given by semi-classical theory)

Stellar Atmospheres: Emission and Absorption

Line broadening: Pressure broadening
+ Semi-classical theory (Weisskopf, Lindholm), ,Impact Theory®

Phase shifts Aw:
Ansatz: Aw= Cp / r’, p=2,3,4,6, r(t) =distance to colliding particle

find constants C, by laboratory measurements, or calculate

p= name dominant at

2 linear Stark effect hydrogen-like ions

3 resonance broadening neutral atoms with each other, H+H
4 quadratic Stark effect ions

6 van der Waals broadening metals + H

* Good results for p=2 (H, He Il): ,Unified Theory*
— H  Vidal, Cooper, Smith 1973
— He Il Schéning, Butler 1989
« For p=4 (He I) Film logg
— Barnard, Cooper, Shamey; Barnard, Cooper, Smith; Beauchamp et al. 0

15
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Thermal broadening
Thermal motion of atoms (Doppler effect)
Velocities distributed according to Maxwell, i.e.
w(v,)~e
for one spatial direction x (line-of-sight)
Thermal (most probable) velocity v, :
v, =\2kT/m, =12.85(T/10°A)"" knvs

example: T =6000K, A =56 (iron): v, =1.33 km/s

ie. w(v,)= C-e with ij (v,)dv, =1 we obtain:
0

)

< 2 2 2 1
C. e-vx/vthdv =C-v,|e" dX=1:>C\/;Vt =l=>C=—7—
o e h Vv,

0

1 22
w(v,)= NS e
th

—1/2m,v? kT

31
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Line profile

Doppler effect: L=, 2o Yo
oppler effect: -= . = F=7

profile function:

Vpteo

c

C,
w(v,)=el)= m

Vo—o°

2 he V)4
o) =l P
Ay,

Line profile = Gauss curve

Yo pav'iavi  with j @(v)dv=1 we obtain:

— Symmetric about v,

— Maximum: 1/Av N7
— Half width: AVigin = 24/In2Av, =1.67Av,,
— Temperature dependency: Av, ~~T

32
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Examples

At A,=5000A:

T=6000K, A=56 (Fe): A 1,=0.02A

T=50000K, A=1 (H): A XA,=0.5A

Compare with radiation damping: A Apyp=1.18 104A

But: decline of Gauss profile in wings is much steeper than

for Lorentz profile: )
Gauss (10AL,) e =10

Lorentz (1000AA,,) : 1/1000% =107

In the line wings the Lorentz profile is dominant

33
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Line broadening: Microturbulence

Reason: chaotic motion (turbulent flows) with length scales
smaller than photon mean free path

Phenomenological description:

1

22
e‘Vx Vmicro

Velocity distribution: ~ w,(v,)= Vv
i.e., in analogy to thermal broadening
Voo IS @ free parameter, to be determined empirically

Solar photosphere: v_. =1.3 km/s

micro

34

17



Stellar Atmospheres: Emission and Absorption

Joint effect of different broadening mechanisms

A A A

y X y X

profile A + profile B = joint effect

Mathematically: convolution  (f,* f3)(x) = IfA(y)fB(x—y)dy
commutative: St Sy =T fa

multiplication of areas: T(fA 5 1) (x)dx = TA(WX' ng(x)dx

~~/

: PR ™~ 7 i.e. in Fourier space the
Fourier transformation: Fuxfa=7 fi fs  comvolutionis ap
35

multiplication

Stellar Atmospheres: Emission and Absorption
Application to profile functions
Convolution of two Gauss profiles (thermal broadening + microturbulence)
G,(0)=1/MNx " G,(x)=1/BJr ¥
G.(x)=G,(x)*G,(x)=1/CNr /¢ with CP=A+B’
Result: Gauss profile with quadratic summation of half-widths;

proof by Fourier transformation, multiplication, and back-
transformation

Convolution of two Lorentz profiles (radiation + collisional damping)

Alrw Bl/x
L= BT
Clrm

L.(x)=L,(x)*L,(x)=——— with C=4+B
c(X)=L,(x)* Ly(x) Z1C

Result: Lorentz profile with sum of half-widths; proof as above .

18
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Application to profile functions
Convolving Gauss and Lorentz profile (thermal broadening + damping)

2
e*(V*Va)“/AVD“ L(V)Z 7/ 4z

G(v)=
©) Av N v-v,) +(y/4n)’

V=G#L dependson V,Av,y,dv,: V(v)= J'G(V’)L(v—v’)dv’

Transformation: v:=(v—v,)/4v, a=y/(4nxtv,) y=(V'-Vv, )/ v,

1 2 alAv,x 1 aft e
Gy)=—Fm=¢" L= b= V= — dy
AVD\/; yz+a2 AVD\/; ft';[o(v—y)2+a2
af__e”

Def: V = H(a,v) with |H(a,v)= dy

T (V—y)2 +4d?

1
AVD\/;

Voigt function, no analytical representation possible.

(approximate formulae or numerical evaluation)

Normalization: J- H(a,v)dv=r1 37

Stellar Atmospheres: Emission and Absorption

Voigt profile, line wings

o 203\"\(“.\)\0

38
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Treatment of very large number of lines
Example: bound-bound opacity for 50A interval in the UV:

: e
e
¢ TS epe
Moller
LLLLL 2 Diploma thesis

Kiel University 1990

ol G (62 :

" | |
g o i LLLM¢|,A“)i,w.wﬂL%WWU"Nw’*h;@:wh,&ﬂ,h@‘g
L [ o el

o cl¥

. : =355 a5
530 a3 N /B 4560

Abbildung 31: ODF des Intervalles von 1520 X bis 1570 A bei solaren Haufigkeiten. Hervorstechend
sind die Kohlenstofflinien 1548 A und 1550 A .

Direct computation would require very much frequency points
* Opacity Sampling
+ Opacity Distribution Functions ODF (Kurucz 1979)

39
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Bound-free absorption and emission
Einstein-Milne relations, Milne 1924: Generalization of
Einstein relations to continuum processes: photoionization
and recombination
Recombination spontaneous + induced
Transition probabilities:
P, : probability for photoionization in [v,V +dV]
F(v): spontaneous recapture probability of electron in [v,v+dv]
G(v): corresponding induced probability — v=electron velocity
I) number of photoionizations #,,, B dvdt -
II) number of recombinations  n_n (V)[F(v)+G(V)I,lvdvdt
Photon energy hv=E,_ +1/2mv’ —dv=m/hvdv
In TE, detailed balancing: I) = 1l)
40
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Einstein-Milne relations
o, B 1,dvdt =nn. (V) [F(v)+G(v)I,|h/m dvdt with I, =B,
nlowR/Bv = nupne (V) [F(V)+G(V)Bv]h/m

-1
5 _F(v){ P P 1} 2 gy

" G(V)| nyn (VAG(v) =
3
_ F() _2h
Gv)
— nlovam _ kT
n,, 1, (VIhG(V)

3/2
. 2(2 T w -E
* n,,/n,, from Saha equation: Biow =( ”sz j Bw bt g
n n Slow

up e

3/2
e n_(v): Maxwell distribution: n_ (v)dv=n, (j ™I 472 gy

2rkT
41
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Einstein-Milne relations
P h .,
v _ hv/kT I ne(V)
G(v) m .
/ \3/2 3/2
:ﬁehv/kTi[ 2/TI]€/\T ] g“l‘ (,*/fw kT . m efm\rz//2k7' 47Z_V2
m n\  h° Ziow 2wkT
h m 3/2 ;
:_2[_2 Eup m> 2 4v?
m h glow
P 87rm* 8w v
G(V) h3 glow
Einstein-Milne relations, continuum analogs to 4;, B;, B;
»
42
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Absorption and emission coefficients

. . . definition. of
absorption coefficient (opacity)  x(v)=n LAV =m0, oss section o

emission coefficient (emissivity) 7, (v)=n, n . (WIF@)+GW)L, h*v/m

And again: induced emission as negative absorption
n (V)G / m

up'e

n n
= nlowljvhv |:1—"p n, (V)G(V)h:| =..= O-v {nlow _nup [“PJ e—hv/kT‘|
nlow I)v m nlow

and 2hv {”p) ,-wir (using Einstein-Milne relations)
v up

K(V) = nlowljvhv —-n

n,W)=..=—0o,n
C

LTE: K'(V) = nlOWthvll—efhv/kTJ
17,00 =n,n (VIF(N)AV? /m

43

17,(v) = x(v)B,

Stellar Atmospheres: Emission and Absorption

Continuum absorption cross-sections

H-like ions: semi-classical Kramers formula
3
o(v) =1 (v,/v) for v>v,
0 else
8n’ n n
v, = threshold frequency, 6, =—————=7.906-10"%cm’ —
o a > O 332 miee Z* zZ?
n principal quantum number, Z nuclear charge
Quantum mechanical calculations yield correction factors
ov)=0, (Vth / V)3 g (mv) , g.,(mv) Gaunt factor
Adding up of bound-free absorptions from all atomic levels:
example hydrogen

nmax
K 1:(;‘ )= Z oy (V)n,
n=1

44




7 \ | T=2S o000 K
—20 s y
E -21 H 1T e o -

—2 L= A

al: -22r »

: - . . .
.o L‘)“‘" 9424 Optical continuum dominated
& 4 Kete by Paschen continuum

—~ -24f 4
~<

S~
N -25

S 1643 A

H 1 p«sc(ie“-

e 0 L Wante 2205K
25 3.0 S 35 4.0

Fig. 7.3. The hydrogen absorption coefficient «, per hydrogen atom is shown as a
function of wavelength for two temperatures ® = 5040/T = 0.2 and for

© =5040/T = 1.0. Higher temperatures lead to higher values of K, in the visual ( &'; L...‘-l/; k-‘u_ ) 45
spectral region.
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The solar continuum spectrum and the H ion

H ion has one bound state, ionization energy 0.75 eV
Absorption edge near 17000A,
hence, can potentially contribute to opacity in optical band

n . n.__
Sun: 7= 6000K, logn, =13.6 Saha equation: -~ =107*,—~=10""
n , n ,
H almost exclusively neutral, but in the optical Paschenf[continuum, ie.
population of H(n=3) decisive:

My (1=3) _8& nievnr :§6723.4 —6.107°
n,(n=1) g
n,. n, n,n=1)_ 3.10"

- =2 =500
n,(n=3) n,(n=n,(n=3) 610

Bound-free cross-sections for H and HC are of similar order

H™ bound-free opacity therefore dominates the visual continuum
spectrum of the Sun "

23
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~240
o_0s 1=S60o U \
F logPe = 1.0
A 04 he = 13.1
i Bodndities ity lonized metals deliver
log x, free electrons to build H

almer discontinuity

H(n=2)

L free-free
i
4yooo A 500 fr000A Bohn - Vikense
~5y b 0 L !

log A

Fig. 7.5. The continuous absorption coefficient per particle is shown for ® =0.9,

which means T'= 5600, and log P, = 1.0. The contributions from the bound-free

and free-free continua of H™ are dominant. The small contribution from the

Balmer continuum of hydrogen is visible at log 4 = 3.562. kg is the Rosseland

mean absorption coefficient; see section 8.4. 47

A =5010 A

spectrum and the H ion

5000} N
7, (5010) 7, (3737) | S
L
0 l "1
tx =1 4 J.//
T T
|
E i " (’/
e
\
\ //
5000 70000 % 75000 20000 A
Fig. 6.4. The wavelength dependence of the continuous absorption coefficient x;
in the solar photosphere as determined by Chalonge and Kourganoff in 1946.
(From Unsdld, 1955, p. 116.)




Stellar A ‘ H Whkingagoerschnit

Th

nd the H ion

YALE ASTROPHYSICIST
Rupert Wildt, a leading authority on

Rupere Wildt (1905-76).

at ingen
observatories before coming to the United _States in 1935. During the next years he

held appointments at the Princeton Insti-
156 Sky AnD TELESCOPE, March, 1976 ed St
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Stellar Atmospheres: Emission and Absorption
Scattering processes
Thomson scattering at free electrons
Absorption coefficient x =n.,0, follows from power of
harmonic oscillator ( 0. Thomson cross-section)
(<5 v
- 2.3 2
3me )l (vi=v?) +(y/2m) v
free electrons: no resonance frequency, no friction: v, =0; =0
4 -2
i e E i
p=——2% , ontheotherhand wehad p=o, LE;
3m’c 8
87 e’ _
0, =——5=6.65-10" cm’
3 m'c
Thomson cross-section is wavelength-independent
50
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Scattering processes

Rayleigh scattering of photons on electrons bound in atoms
or molecules

p_( 4E§J V4
3m*c? (vg —V2)2 +(7//27£)2 V2

semi-classical: v <<y, =v,,

42 4
— €eE;, v — c
—p=—>% — ontheotherhand wehad p=0,—E,
3mc’ v, 87
4 4 4
o, = 8z _e Vv f=0.f v (here we have included the oscillator strength
R 2 4 4 Jlu el lu 4 . .
3 mc" v, Vi as the quantum mechanical correction)

4
14
- KR (V) = ano-efiu v 4
1

lu

Rayleigh scattering on Lyo important for stellar spectral types

G and K 51
Stellar Atmospheres: Emission and Absorption
Raman scattering
Discovered in symbiotic nova RR Tel
Raman scattering of O VI resonance line (Schmid 1987)
virtual
n=3 1 YL level
n=2""7 Raman-scattered line 6825/7082A
1215A 1026A | 1032/38A 1 _ 1 1
/1 /IOVI /lLy(x

n=1
% &' “'ﬂ ‘ ‘| : . {T“‘DE NIt nfw L:‘f"" ?;‘ b
c | || schmid1989, - Bt
% oalE— 0 —— — _;J g -11 rm ‘ Hell {qg“V][]“ .
T i ,“,‘ | Espeyetal. & ‘L» \“T e H\H oo I
o 5f il T WJ 1

o ,T*,”,",‘",’,,',‘"',‘“,‘”,'“,”ff‘i’*ﬁ",*f‘ﬁ“m“‘““ g 1995 g- 2l rJ“” | i | I |1 ”

@800 6900 7000 7100 1000 1100 1200 i 1300
Wavelenath (&) Wavelength (&)

e A AL

1400
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Two-photon processes

Beader Coronents

Publications
Other Citations
= Honors
Homepage

Additional Information

Maria Goeppert Mayer
1906-1972

Some Important Contributions:
NUCLEAR SHELL MODEL:

Discovery of the magic numbers and their explanation in terms of a nuclear shell model with sirong spin-othit coupling, For this she won
the 1963 Nohel Prize in Physics, with 1 H D Jensen who hadl independsntly proposed the stiong spin orbit soupling

She was the first person to investigate the theoretical basis of nuclear paiving, which plays an important rols in the shell model of the atomiz mmcleus.
OTHER IMPORTANT CONTRIBUTIONS:

Ilaria Goeppert Wayer was an accoraplished physivist frora the heginning of her caveer until the end and she rmade nuraerous contributions to the
fisld of physics. She was the first person to fvestigate the phenomenom of dothle quantum emission and, a fev years later, donible heta decay
Ilayer and Herzefeld were the first to study the effect of magnetic susceptibility on the refractive index of'a gas. Ilagyer and Sachs pioneered the
application of the new idea of a Tulkawa potential between neutrom and proton ta the nuclear two-bhody system IMayer was the first person to work
out the atorals propertiss of transuranic elements as well. Mayer's last contribution, with Lavwson, was the use of the center of ruass and relatfre
coordinates for the calewlation of shell model interaction energies.

Some Important Fublications: 53
Stellar Atmospheres: Emission and Absorption
Free-free absorption and emission

Assumption (also valid in non-LTE case):
Electron velocity distribution in TE, i.e. Maxwell distribution
S =nW/x" (v)=B,T)
Free-free processes always in TE
Similar to bound-free process we get:

K" (V) =0, (V)n.n, (1 —e )

lon*  Z%° 11

Gy;(V) 33 he@nm)? v ﬁgff (n,v,T)
generalized Kramers formula, with Gauntfaktor from q.m.
» Free-free opacity important at higher energies, because

less and less bound-free processes present

» Free-free opacity important at high temperatures

o, ~T"?, but o, ~T7? (Saha), therefore: i/« T 54
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Stellar Atmospheres: Emission and Absorption

Computation of population numbers

General case, non-LTE: n,=n(p,T,1))
In LTE, just n,=n,(p,T)

In LTE completely given by:

+ Boltzmann equation (excitation within an ion)
+ Saha equation (ionization)

55

Stellar Atmospheres: Emission and Absorption

Boltzmann equation

Derivation in textbooks

& (E-E )T g, statistical weight
1l = e iTEj

n, g E, excitation energy

Other formulations:
+ Related to ground state (E,=0)
n _ &e—E,/kT
n g
* Related to total number density N of respective ion
n, n 1 g

_mm _n =
—E,;/kT
om0 ”lzﬂ myge”
n

n.n g . .. .
—+4=—+_—2—_ with partition function U(T):= e
N2 U0 p (T)=)g,

~E, /KT

28
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Ievels IS Tinite.

Very highly excited levels cannot exist because of interaction
with neighbouring particles, radius H atom:  r(n) = a,n’

At density 10 atoms/cm3® — mean distance about 10-°cm
r(n,,) = 10°cm —n ~43

Levels are “dissolved”; description by concept of occupation
probabilities p; (Mihalas, Hummer, Dappen 1991)

g —gp with p —0 when i—e 57

Stellar Atmospheres: Emission and Absorption

1.0

Hummer-Mihalas occupation probabilities

0.5

k3
occupation probability

0.0

log column mass /g cm”

Fig. 2. Occupation probabilities of atomic He 11 levels (left) and H 1 levels (right) as a function of depth in the DO model atmosphere with

Tur=100000K, log g =7.5, and H/He=0.1%

rel

Fop
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Stellar Atmospheres: Emission and Absorption

Saha equation -

Derivation with Boltzmann formula, but upper state is now a
2-particle state (ion plus free electron)

Energy: E=E, 6+ p2 / 2m, p=electron momentum)

Statistical Welght: g=8uw" G(p) weight of ion * weight of free electron
Insert into Boltzmann formula

1y (P) _& wG(P) o it [2me=E )T

nlow glow
. ) n g _ _
Surpmanzg over all final states N up _ (E El,“)/kTJ‘G(p)e p*/2m, dep
By integration over p . glow

Statistical Weight of free electron =number of available states in interval
[p,p+dp] (Pauli principle):
hase space volume
Gp)dp =2L28) 5 gpingP1 P

phase space cell

d€)(p) = dxdydz -dp dp dp. =dV - Az p’dp =1/n,-4zp’dp — G(p) = 87rp2/h3ne5g

Stellar Atmospheres: Emission and Absorption

Saha equation

Insertion into Boltzmann formula gives:

ple’ /Z'Mdp with x=p/\2m kT

My _ Bup (B AT J’

3
nlow glow h
_ 8w o Fn~Eun /KT 87[ J’ - iy
g]ow h e 0
8w (B, -En)kr ST 32N
=2 o) (2mkT)" =
glow ne
3/2
n, 2 [27Z'mekT j 8 o B AT
- 3
nlow ne h glow

Saha equation for two levels in adjacent ionization stages

g o Eo B KT 5 07 10716 K32 om?

) nn, T
Alternative: ——=f(T)=—
C glow

low

60
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Stellar Atmospheres: Emission and Absorption

Example: hydrogen

Model atom with only one bound state:

n,, =n, =n(HIground state) g, =2

n,, =ny =n(HIl) g =1
ny T 1 saewr
R ) — T
n | C 2 F(T)
pure hydrogen: n, =n;, , N=n,+n,
ionization degree:  x= LT
N N

:>xz—N=f(T):>x2+@x—@=0
1-x N

N
D), \/(f(T) j LS
2N 2N N
=x=x(T,N)

61
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Hydrogen ionization

| N=10"cm’

lonization degree x
o
s

|

0.0 Ll

Temperature / 1000 K

62
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Stellar Atmospheres: Emission and Absorption

More complex model atoms

j=1,...,J ionization stages
i=1,...,1(j) levels per ionization stage j
Saha equation for ground states of ionization stages j and j+1:

3 3/2
1 A 8ii Bl kT
“202mmiT) g,

ny; =n;,n

With Boltzmann formula we get occupation number of i-th level:

&ij _3/2 (Ej_—Eh/kT
N =2 ZZU NynCT e
- -

i j+l

+1 -3/2 E]_/kT —E} kT +1 -3/2 E}_/kT
=—"n C\T 7 e E ge = n T e U,

i j+l

j+l

U ;
N o n CT72e"" = n @ (T)
j+l j+l

n.. g. _ B g
no=lip, =8 Eg/krnl_ n.CT 32 8N BT
j j 1t
ny; & 841
_ & C T2 o En=EDIT
= n; = .Gy e
1j+1
63
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More complex model atoms
Related to total number of particles in ionization stage j+1
M _ M st . Thjn -1 811 _ & N -
Ny ma U, N, U, Tyt
i M Yia i+l j+1 j+
& 8ij+1 - I _p) & _ g
=y =N CT 2 B ol = S5 N C T e P B
g1j+1 Uj+1 Uj+1

64
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Stellar Atmospheres: Emission and Absorption
lonization fraction
ﬂ: NJ ,Nj+1, NJI
NJ Nj+1 Nj+2 NJ
! LN, N, N,, N N N,
N=) N,=N Y =N, |1+ p .24 ... L
=1 =AYy NJ NJ NJI NJ Nz
Nj . Nj+1 . .NJI
N NN NaNa TN
N N_] N 1+NJ-1+NJ-1.NJ-2+ +NJ-1 ﬁ
NJ NJ NJ-I NJ 2
J-1
ne(bk(T)
N
N J Il
1+ [[n@.(T)
m=1 k=m 65
Stellar Atmospheres: Emission and Absorption
lonization fractions
-=— Surface temperature (K)
20,000  25.000 10,000 8000 6000 5000 4000 3000
| | [ | [ | |
T i Call
£ [Hell Hel e
(=i
=
T iy
5 BO AD FO Go KO MO M7
Spectral type
66
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Stellar Atmospheres: Emission and Absorption

Summary: Emission and Absorption

.

Stellar Atmospheres: Emission and Absorption
e Line absorption and emission coefficients (bound-bound)
2nv; et . g
0 !
Iu o nup¢(v)

up

2
C

re’
K.lu (V) = % fiu (nlow - glow nup J ¢(V) 771u (V) =

up

2

1 T e’ dy
Av T L (v=y) +d’

¢(v) = profile function, e.g., Voigtprofile ¥V (a,v)=

e Continuum (bound-free)

*

n, 2hv n -
— p —hv/kT _ v _up hv /kT
K(V) =0, |0, — Ilup — | € n, (V) - 3 csvnup ( ) €

n,. C Dy,

e Continuum (free-free), always in LTE

K" (V) =0, (V)n.n, (1-e™"") n"(v)=x"(v)n_n,B,(v,T)

e Scattering (Compton, on free electrons) x =n,0, 1, (v)=n,0.J,

€ €

Total opacity and emissivity add up all contributions, then source function S, =m /x(v

68
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Excitation and ionization in LTE

nlow — glow e_(Elow_Eup)/kT

nup 8 up

Boltzmann

32
n, 2(2zmkT 8 o B KT Saha

3
n low n h g low

69
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Stellar Atmospheres: Hydrostatic Equilibrium

Hydrostatic Equilibrium

Particle conservation

Stellar Atmospheres: Hydrostatic Equilibrium

Ideal gas

P = pressure

P=Lp-T p =mass density
Amy,

A = atomic weight

forces acting on volume element:
dV =dAdr dm= pdV
3 GMgdm :_GMz,p dAdr

r r

dF, =

g

buoyancy:
dFP =—dPdA (pressure difference * area)




Stellar Atmospheres: Hydrostatic Equilibrium

Ideal gas

In stellar atmospheres:

M, =M, mass of atmosphere negligible
r=R, thickness of atmosphere << stellar radius

—>ng =—

with g = e surface gravity

Type log g
usually written as  log(g/cm s?)
) ) Main sequence star (4.0 .... 4.5

log g is besides T, the 2nd Sun 4.44
fundamental parameter of Supergiants 0.1
static stellar atmospheres White dwarfs ~8

Neutron stars ~15

Earth 3.0

Stellar Atmospheres: Hydrostatic Equilibrium

Hydrostatic equilibrium, ideal gas
buoyancy = gravitational force:

dF,+dF, =0
—dPdA— gpdAdr =0
dP
o gp(r)
eliminate p(r) with ideal gas equation: dap = —ng(r)
dr kT (r)
example: : o o
T(ry=T=const , A(r)=A=const (i.e., no ionization or dissociation)
dp Amy, 1 dP Am
Y MM py= A
o PO e T
solution:

P(r) — P(ro)e—(r—ro)gAmH/kT

P(r) = P(r,)e """

= ressure scale height
gAmy, P ¢ 4
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Atmospheric pressure scale heights

A=28(N,)
T =300K
logg =3
A=1(H)

T = 6000 K

logg =4.44

Earth:

Sun:

A=05H"+n,)
T=15000K
logg =8

White dwarf:

Neutron star: A=05H"+n,)
T=10°K

logg =15

H=9km

kT
gAmy

H:

H =180km

H =0.25km

H=1.6mm !

Stellar Atmospheres: Hydrostatic Equilibrium

Effect of radiation pressure

2nd moment of intensity P, (v)

_4n
C

1st moment of transfer equation (plane-parallel case)

dK,
dt(v) Y
df, _4r H, with dz(v)=x(v)dr
dt(v) ¢
dr ¢ '
integration over frequencies:
4k = 4—”] x(v)H dv
dr 0
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Effect of radiation pressure
Extended hydrostatic equation

dP dP,

o8P -k gp(r)——jzc(v)H dv
= g (r)p(r)

definition: effective gravity

e (1) —g—‘mz) Kk(V)H, dv=g—g., (depth dependent!)

In the outer layers of many stars:

. dr 1
g <0 le. g = —ﬂ-— Kk(V)H dv>g

Py

Atmosphere is no longer static, hydrodynamical equation
Expanding stellar atmospheres, radiation-driven winds

Stellar Atmospheres: Hydrostatic Equilibrium

The Eddington limit
Estimate radiative acceleration
Consider only (Thomson) electron scattering as opacity

o(v)=o, (Thomson cross-section)
g= number of free electrons per atomic mass unit

Pure hydrogen atmosphere, completely ionized

g=1
Pure helium atmosphere, completely ionized
q=2/4=05
4 1 4 % 4z qo
goy = nd Ganv——ﬁijdeHvdv— %90 g
c ngmylqy c my 3 c my
Flux conservation: H——T“
[ 8w _4740. 0 M _lgo, 1 47oR°T;
g ¢ mydrm T cmy 472G M

e

r = q0. £_104.51 L/L@
¢ 4dzem,G M M/M,
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The Eddington limit

Consequence: for given stellar mass there exists a maximum
luminosity. No stable stars exist above this luminosity limit.

Loo/Lo=10"""1/g-M/M,

‘max

Sun: T, <<l
Main sequence stars (central H-burning)
Mass luminosity relation: L/Ly=~(M/My) —M,, =180M,

Gives a mass limit for main sequence stars
Eddington limit written with effective temperature
and gravity T, =10""¢T}/g=1

—15.12+logqg +4logT.,; —logg =0

Straight line in (log 7,log g)-diagram

error box can be seen in the upper left comer of the figure

9
The Eddington limit
Positions of analyzed
central stars of planetary nebulae
and
theoretical stellar evolutionary tracks
(mass labeled in solar masses)
I I
5.0
log Tes
Fig. 3. Thelop g-log T,y diagram. The two lines labeled EL are Eddington limits
for photaspheric He abundances of 30% and 9%, We have plotted 6 theoretical
post-AGH evalutionary tracks, which are fabeled with the comresponding vatue
of the stellar mass, in solar masses. Plus signs and open squares indicate CSPN
that show, respectively, Hen 24686 in emission and in absorption. A typical 10
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Computation of electron density

At a given temperature, the hydrostatic equation gives the
gas pressure at any depth, or the total particle density N:

P, = NkT
N =Ngm + Ny + 1, =Ny +n, N massive particle density

The Saha equation yields for given (n, T) the ion- and atomic
densities N,.

The Boltzmann equation then yields for given (N, 7) the
population densities of all atomic levels: n..

Now, how to get n,?
We have k different species with abundances ¢,
Particle density of species k:

K
N, = Ny=e,(N-n,) ,anditis D N, =N,
k=l "

Stellar Atmospheres: Hydrostatic Equilibrium

Charge conservation
Stellar atmosphere is electrically neutral
Charge conservation electron density=ion density * charge
K jk
n, = ZZ J'N, , N, =density of j-th ionization stage of species k

Jk-1

Combine with Saha equation (LTE) Iy Hneq5,k(T)
by the use of ionization fractions: [, = N]k /k =
C [[n®u(®
We write the charge conservation as =t =
Kk

c=2 2,0 NS (n,T)= Z%(N n )ZJ Ju(ne,T)

k=1 j=1

n, =(N—ne)Zaij-fjk(ne,T)zF(ne)
. k=l gl . . .
Non-linear equation, iterative solution, i.e., determine zeros of

F(n,)—n,=0| use Newton-Raphson, converges after 2-4 iterations;

yields n, and f;, and with Boltzmann all level populations 12
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Summary: Hydrostatic Equilibrium

Stellar Atmospheres: Hydrostatic Equilibrium

Summary: Hydrostatic Equilibrium

Hydrostatic equation including radiation pressure

dP dP 4r
— = gp(r) ==~ = gp(r)—— [ k(v)H,dv
dr dr c 3

Photon pressure: Eddington Limit

Hydrostatic equation - N
Combined charge equation + ionization fraction — n,

— Population numbers nr,;, (LTE) with Saha and Boltzmann
equations
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Stellar Atmospheres: Radiative Equilibrium

Radiative Equilibrium

Energy conservation

Stellar Atmospheres: Radiative Equilibrium

Radiative Equilibrium

Assumption:

Energy conservation, i.e., no nuclear energy sources
Counter-example: radioactive decay of Ni% —Co0% —Fe5% in
supernova atmospheres

Energy transfer predominantly by radiation

Other possibilities:

Convection e.g., H convection zone in outer solar layer
Heat conduction e.g., solar corona or interior of white dwarfs

Radiative equilibrium means, that we have at each location:

Radiation energy absorbed / sec integrated over all

frequencies and
= angles

Radiation energy emitted / sec




Stellar Atmospheres: Radiative Equilibrium

Radiative Equilibrium

Absorption per cm? and second: § dwj' dvk(v)I,
Ar 0

Emission per cm? and second: ifd“’j dvn(v)
4 0

Assumption: isotropic opacities and emissivities
Integration over dw then yields

TdVK(v)JV = Tdvn(v) = TK’(V)(JV -3, )dv =0

Constraint equation in addition to the radiative transfer
equation; fixes temperature stratification 7(r)

Stellar Atmospheres: Radiative Equilibrium

Conservation of flux
Alternative formulation of energy equation
In plane-parallel geometry: 0-th moment of transfer equation

dH,
dt

=x(J,-S,) -

Integration over frequency, exchange integration and
differentiation:

%J.H dv= j k(J,-S,)dv=0  because of radiative equilibrium
0

0

=H= IH ,dv = const = %Te‘;f for all depths. Alternatively writteng,
0

R T dK
I H dv= < T = I—‘ dv (1st moment of transfer equation)
0 4w o At

oo

L AUL) gy @

e (definiton of Eddington factor)
o dr 4r
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Which formulation is good or better?

I Radiative equilibrium: local, integral form of energy
equation

Il Conservation of flux: non-local (gradient), differential form
of radiative equilibrium

I/ Il numerically better behaviour in small / large depths

Very useful is a linear combination of both formulations:

A-FK(JV —Sv)dv}+8-ﬁd(£;]”)dv—H}:0

0

A,B are coefficients, providing a smooth transition between
formulations | and II.

Stellar Atmospheres: Radiative Equilibrium

Flux conservation in spherically symmetric geometry

0-th moment of transfer equation:

L2 )= k(5,7
o or

o

=N %[ﬁ!HVdVJ = [ (S, = J,)dv=0

0

r2ijdv — const=— ~L because L=167"R*H
0 lorx
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Another alternative, if T de-couples from radiation field
Thermal balance of electrons

0"-0°=0
Oy = 4ﬂneZNjJ.aff,j(VaT)JvdV
J 0
T 27
in =4r neZNjJ.aff’j(V’ T)[JV +02Je WIKT g,
J 0
Qg =4ar Z n, J. ot i (V)JV[I —V”‘Jdv
Lk o v
= [ Vik 2h° kT
Oy —471'an.|.0{bﬂ/k(v)Jv -2 J +=—le dv
Lk 0 % c
0! =n.Y 1,4, (T)hv,
1,m

QCC =n, Z ndq, (T)hvlm 7
1,m

Stellar Atmospheres: Radiative Equilibrium

The gray atmosphere
Simple but insightful problem to solve the transfer equation
together with the constraint equation for radiative equilibrium
Gray atmosphere: g, =x
Moments of transfer equation
(1) dA, =J,-S, () dK, =H, with 7=xdt
T T
Integration over frequency
dH dK _

(1) “-=J=5 (1) -

Radiative equilibrium [ x(J, =S, )dv =« (J,=S,)dv=J -5 =0
=(I) J=5

H

. dH
and because of conservation of flux —=0
T

=(I) d K =0=K=c¢t+c, from (II) follows c, =d—K=H, ¢, see below
dr dr

— =

8
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The gray atmosphere

Relations (/) und (/) represent two equations for three
quantities S,J,K with pre-chosen H (resp. T )

Closure equation: Eddington approximation -
K=1/3] »S=J=3K=3Ht+3c, ()
Source functionis linearin 1
Temperature stratification?
In LTE:
S(r)=B(T () =21*
T

insert into (/I7): Iriz 3H7+3c,
z

o

pye Ty we get:

with H =

A (7) N oT,7+3¢c, (IV) ¢, is now determined from boundary condition (7=0)
z z

Stellar Atmospheres: Radiative Equilibrium

Gray atmosphere: Outer boundary condition

Emergent flux:

H(O):%J.S(T')EZ(T')dT' with S from (111) -
0
- % [GHT +3¢,)E,(7)d7
0
= ;{H [ E,@)dt'+c, [ E, (r')dr’}
0 0
'thmtlE £t =—"— and t—i[” tE t]
wi j (Ot = and E,(0) = ——[e” ~1E, (1) -

311 1 2
HO)==|-H+—¢,|>c,=—H
(0) 2{3 2czi| ) 3

4

2 2
from (IV):  ={T* :3T;;f(r+3), S:3H(1+3J (from 111)

10
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Avoiding Eddington approximation

Ansatz:  J(r)=3H(t+q(r)) generalization of (III)
q(7) = Hopf function

J(0) =%§T;;(r+q<r)>

Insert into Schwarzschild equation: -

J(7)=AS =AJ integral equation forJ

=7+ (,](T) = % J. (T,-f- q(T'))El QT,— T‘)d’l', (*) integral equation for g, see below
0

Approximate solution for J by iteration (“Lambda iteration®)

J(l) — 3H(T+ 2/3) i.e., start with Eddington approximation

JP =AJV = ABH(1+2/3))= 3H(r+§—;E2(7) +%E3 (r))-

(was result for linear S) 1

Stellar Atmospheres: Radiative Equilibrium

At the surface r=0,E2(0)=1,E3(0)=%

J? :3H(1+2—1+1): 3H (7 +0.583)
3 3 4 exact: §(0)=0.577....
Atinner boundary z=c, £ (c0)=0,E,(e0)=0

J? =3H[7+§)

Basic problem of Lambda lteration: Good in outer layers, but
does not work at large optical depths, because exponential
integral function approaches zero exponentially.

Exact solution of (*) for Hopf function, e.g., by Laplace
transformation (Kourganoff, Basic Methods in Transfer Problems)

Analytical approximation (Unsdld, Sternatmospharen, p. 138)

q(7) = 0.6940-0.1 167719727
12
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Gray atmosphere: Interpretation of results

Temperature gradient

iT4 4T3 == ar éT;}f
dr dr 4

dr ., The higher the effective temperature, the steeper the
dr ¢ temperature gradient.

dr _ 4T The larger the opacity, the steeper the (geometric) temperature
dt dr gradient.

Flux of gray atmosphere | 1g. 5 _ 5 (7(5)
H,,(T)=%IBV(T(T))E2(1—T)df—%:[Bv(T(T))Ez(T_[)dt

with &= hv/kTy , T/T, =[3/4(c+q(@)]" = p(r) = hv/kT = ap(z)
H,dor=H,dv and H=9/ T}

S oy Ay AT Ky ATK (” E(t-17) _I E,(t—1) j
Hda oly h " higia \;explap(n)- 1 o exp(ap())—1
121 4z k &' 13

2 2 o iy
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Gray atmosphere: Interpretation of results
Limb darkening of total radiation

=00 =S =j) =BT )= T =10 =215, 2 3

1(0,1) _u+2/3 2(1+ c0s0)
1(0,1)  1+2/3 2

i.e., intensity at limb of stellar disk smaller than at center by
40%, good agreement with solar observations

Empirical determination of temperature stratification -
measure [(7=0,u) > ST=1)—>S@)=B(T (7)) >T
Observations at different wavelengths yield different T-

structures, hence, the opacity must be a function of
wavelength

14
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The Rosseland opacity

Gray approximation (kx=const) very coarse, ist there a good
mean value x ? What choice to make for a mean value?

gray non-gray
transfer equation #ﬂ =x(S—1) ﬂﬂ =k ()(S, ~1,)
dz dz
0-th moment aH _ Kk(S-J)=0 dH, _ Kk(W)(S, —=J,)
dz 4
Ist moment K _ K, _ -k(vV)H
dz dz Y

For each of these 3 equations one can find a mean &, with
which the equations for the gray case are equal to the
frequency-integrated non-gray equations.

Because we demand flux conservation, the 1st moment
equation is decisive for our choice:

— Rosseland mean of opacity

15
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The Rosseland opacity

T 1 dK, 1 dK
i oL 4K
k(v) dz Ky dz

IHvdv =const =
0 0
jL oK
1 x(v) dz

dK

dz
T 1 dB, .
1 5k(v) dz .. dB, dB dT
—=+————— with =—r—
Ky dB dz dT dz

dz

[ L

1 yx()dT
T
V3

Definition of Rosseland mean of opacity

Ky

and

dz  dz\rn .4

T3

dB_d(GT“j:‘lo-yﬂdT

—=2 - with Eddington approximation K =1/3J and LTE J = B:

dz

16
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The Rosseland opacity

The Rosseland mean Ki is a weighted mean

R

of opacity 1 with weight function 9B.
K(v) dT

Particularly, strong weight is given to those frequencies,
where the radiation flux is large.
The corresponding optical depth is called Rosseland depth

T (2) = [ K0 ()’
0
For z,,, >>1 the gray approximation with . is very good,

. 3
l. e . T4 (TRO.YS ) = Z Iwe‘;f (TRO.YS + q (TRO.YS ))

17
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Convection

Compute model atmosphere assuming

+ Radiative equilibrium (Sect. VI) — temperature stratification

» Hydrostatic equilibrium — pressure stratification

Is this structure stable against convection, i.e. small
perturbations?

* Thought experiment

Displace a blob of gas by Ar upwards, fast enough that no heat
exchange with surrounding occurs (i.e., adiabatic), but slow

enough that pressure balance with surrounding is retained (i.e.
<< sound velocity)

18
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Inside of blob outside

T+AT, =T, (r+Ar)
po+Ap,, = p,,(r+Ar)

T+AT,, =T,,(r+Ar)

PHAP = P (T +AF)

7). p(r)

P.a(r+Ar) < p_,(r+ Ar) — further buoyancy, unstable
Pa(r+ Ar) > p,.4(r +Ar) — gas blob falls back,

dp.) dp,,| |unstable
dr dr
with ideal gas equation p=
dT,, |<| dT,, |unstable
dr dr
Stratification becomes unstable, if temperature gradient d7,,/dr
. " 19
rises above critical value

- pT and pressure balance p,,7,,=p,..]..q
H

Stellar Atmospheres: Radiative Equilibrium

Alternative notation

Pressure as independent depth variable:

hydrostatic equation: dp =—pg . dr = ’ZH %dr (ideal gas)
—>dr=—dp ki
Amngffp
dar AmH dT/T __Am,  d(nT)
ok Sap k S"d(np)
d(InT,) [<| d(InT,,) |unstable
d(In p) d(In p)

Schwarzschild criterion

Abbreviated notation
d(hl ) d(ln N Trad/ )

d(np)’ Vi = d(In p)

ad

20
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The adiabatic gradient

dQ =0 (no heat exchange)
dQ =dE + pdV (1st law of thermodynamics)
dE =c,dT internal energy = c,dT + pdV =0 (*)

Internal energy of a one-atomic gas excluding effects of

ionisation and excitation
E:ENkT—wV =3 Nk
2 2

But if energy can be absorbed by ionization:

3
cy >>5Nk
Specific heat at constant pressure
00 dE  dV d(NKT/ p) Nk
= — =—4+ p— = +p—= +p—
“Tor ar " Var TP Tk

p=const p=const

—c¢,—cy =Nk

21
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The adiabatic gradient

Ideal gas: pV’ = NkT = Vdp+ pdV = NkdT =(c, —c, )dT
_ Vdp + pdV

¢, —¢y
/pV
. Vip+p
from(*) with (**) —c,——————+pdV'=0 |c,—¢cy
¢, —Cy —_—
CV
p VoV
dp v &,
p Ve
c
—Ld(InV)=-d(In p)
CV
& d(nV) 1

definition: y:= =
¢y d(lnp) 4

22
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The adiabatic gradient

d(InT)

d(In p)| ,

T =pV/Nk
In7T=Inp+InV —In(Nk)
d(InT) :1+d(an)
d(In p) d(In p)
d(InT) :1_127_—1
d(In p) Yo7

needed:

Schwarzschild criterion

23
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The adiabatic gradient

 1-atomic gas ¢, =3/2 Nk ¢, =cy+ Nk =5/2 Nk
y=5/3 V,=2/5=04
« with ionization y—1 V, —0 convection starts y—effect
* Most important example: Hydrogen (Unsdld p.228)
v - 2+(x—x7)(5/2+E,, /kT)
Y54 (=) (5/2+ Ep KT’

S, [f(r>j2+f(r>
2N 2N N

with ionization degree x =—

24
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The adiaba |

_2+4(x=x°)(5/2+ B, /KT)
5+ (x=22)(5/24 By, AT

WIOR (f(T)j2+f(T)
2N

ad 05 | N=10"cm?

Tonisationsgrad >

Tonisationsgrad

00 = . .
5 10 15
Temperatur / 1000 K
= T—T—T—1— T
W = adiabatischer Temperaturgradient 3]
v,
od N=10"cm™
204 |
S
=
]
g
02 =
00 AN A ) I

5 10
Temperatur / 1000 K

Stellar Atmospheres: _Radiative Equilibrium
Example: Grey approximation
r'@=Y1(+%)
4InT =In(3, 75 )+In(7+24)
d(in(7+24 ))

4dt
hydrostatic equation: Z:— =£ Ansatz: k= Ap”  (x here a mass absorption coefficient)
T K
L integrate — L pt= £, 5 —gh o= _
dr A b+1 A Ap™  (b+Dr
dinp) _l1dp 1 g _ g _ 1
dr pdr pdp’ A" (b+Dr
_ (b+Dr

Via = dinp/dt - 4(¢+%)

V.. becomes large, if opacity strongly increases with depth (i.e. exponent b large).
The absolute value of x is not essential but the change of x with depth (gradient)
V. . large (>V ,): convection starts, x-Effekt

26
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Hydrogen convection zone in the Sun

k-effect and y-effect act together

Going from the surface into the interior: At T~6000K ionization of
hydrogen begins

V4 decreases and « increases, because a) more and more
electrons are available to form H™ and b) the excitation of H is
responsible for increased bound-free opacity

In the Sun: layers of atmosphere
inner layers of atmosphere convective
In F stars: large parts of atmosphere convective

In O,B stars: Hydrogen completely ionized, atmosphere
He | and He Il ionization zones, but energy transport by
convection inefficient

27
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Transport of energy by convection

Consistent hydrodynamical simulations very costly;
Ad hoc theory: mixing length theory (Vitense 1953)

Model: gas blobs rise and fall along distance / (mixing length).
After moving by distance / they dissolve and the surrounding
gas absorbs their energy.

| =aH(r) H=pressure scale height
o mixing length parameter
a=0.5 -2

Gas blobs move without friction, only accelerated by buoyancy;
detailed presentation in Mihalas’ textbook (p. 187-190)

28

14



Stellar Atmospheres: Radiative Equilibrium

Transport of energy by convection
Again, for details see Mihalas (p. 187-190)

For a given temperature structure

— compute F,  (7)

— flux conservation including convective flux
F _O iterate
rad (l”) - ; eff — £ conv (V)

— new temperature stratification 7'(r)
with V, , <V <V

rad

29
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Summary: Radiative Equilibrium

30
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Radiative Equilibrium:

dt

0 0

Schwarzschildt Criterion:

d(InT,) |<| d(InT,,) [unstable
d(In p) |>] d(Inp) |stable

Temperature of a gray Atmosphere

T =§T;;f(r+3)
4 3

A-ﬁK(JV—Sv)dv}+B-ﬁd(fVJv)dv—H}:O

31

3 hours
Stellar
Atmospheres...
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The non-LTE Rate Equations

Statistical equations

Stellar Atmospheres: Non-LTE Rate Equations

Population numbers
LTE: population numbers follow from Saha-Boltzmann
equations, i.e. purely local problem
n; =n;(T,n,)
Non-LTE: population numbers also depend on radiation field.

This, in turn, is depending on the population numbers in all
depths, i.e. non-local problem.

n, =n,(T,n,,J)
The Saha-Boltzmann equations are replaced by a detailed

consideration of atomic processes which are responsible for
the population and de-population of atomic energy levels:

Excitation and de-excitation
by radiation or collisions
lonization and recombination




Stellar Atmospheres: Non-LTE Rate Equations

Statistical Equilibrium

Change of population number of a level with time: %n,
= Sum of all population processes into this level =Y n,P,

- Sum of all de-population processes out from this level Y

;itni :Zn.j})ﬁ _nizf)?j

J#i J#i

J#

One such equation for each level

The transition rate £; comprises radiative rates R,
and collision rates  C,

In stellar atmospheres we often have the stationary case:

din,. =0 hence anPﬁ = nIZRJ for all levels i

t J#i Jj#i

These equations determine the population numbers.

Stellar Atmospheres: Non-LTE Rate Equations

Radiative rates: bound-bound transitions

Two alternative formulations:
a) Einstein coefficients B, B, A4
b) Line absorption coefficients o, (V)

advantage a): useful for analytical expressions with simplified
model atoms

advantage b): similar expressions in case of bound-free
transitions: good for efficient programming

Number of transitions i—j induced by intensity I, in frequency
interval dv und solid angle dw
nB,p,l,dvdw/4x  (absorbed Energy / hv) -
Integration over frequencies and angles yields
nR; = n[B[/.I(pVJvdv
0

Or alternatively

. RG]
with 0, (v)=B,p(hv/4zx | nR; =n, 4EIT
0

J‘,dv 4
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Radiative rates: bound-bound transitions

In analogy, number of stimulated emissions:
’ gt
nR; =n, J,J-(pvJvdv—n B, g I(pJ

nR —n47r I ”Jdv

g o hv
Number of spontaneous em|SS|ons
n,R = IAﬂ(A o,dv
n.R; =n4r g’j ,,2hv dv

g0 hv ¢
Total downwards rate:

J

R &%
nR,=n, (R, +R)=n4r /!h[

0,
nR, :n/[n’] R,=n, [ ] [471- J' ,[Zhv ] T g,
n, ) v
j j 0

Stellar Atmospheres: Non-LTE Rate Equations

Radiative rates: bound-free transitions

Also possible: ionization into excited states of parent ion

Example C Il

Ground state 2s21S

Photoionisation produces C |V in ground state 2s 28
C lllin first excited state 2s2p 3p°

Two possibilities:

lonization of 2p electron — C IV in ground state 2s 2S

lonization of 2s electron — C IV in first excited state  2p 2P
C lll two excited electrons, e.g. 2p? 3P
Photoionization only into excited C IV ion 2p 2P
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Radiative rates: bound-free transitions

Number of photoionizations = absorbed energy in dv, divided by
photon energy, integrated over frequencies and solid angle

Hn[pvzvdwdv—mk _n4j y )Jd - >
0

Number of spontaneous recombinations:

]imnjng(v)F(V)dwvdV%an =n, 4zrjn (v) G( ) dv -

oo 3 *
nR; =namw I n, (V)@ p e [i] Ly
g c

h n, | n,(v)m

; o.\Vv
nR;, =n, [ij 47[! i) 287 e dy

n, o hv c*

Stellar Atmospheres: Non-LTE Rate Equations

Radiative rates: bound-free transitions

Number of induced recombinations_
j fnn, (NG, davdy — n R, =n, 4zrj n,(VG(V)J, —dv

T n; T h
n,R,=n4r|n, (V)pv e M dv
JoJ J '('; j n (V)

*

. Lo,
n R L= nj(n’] 4”Iﬁ Jvefhv/dev
h

J
I’lj 0 v

Total recombination rate

By
n;
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Radiative rates

Upward rates: nR, with

o

.[ (V)

0

Downward rates: ”/[n_J R; with
J

R_4j

(V) (2}1;/ +JVJth/dev
C

n;

Remark: in TEwe have J, =B, =R, =R, = ' = (nJ

Stellar Atmospheres: Non-LTE Rate Equations

Collisional rates

Stellar atmosphere: Plasma, with atoms, ions, electrons
Particle collisions induce excitation and ionization

Cool stars: matter mostly neutral = frequent collisions with
neutral hydrogen atoms

Hot stars: matter mostly ionized = collisions with ions
become important; but much more important become
electron collisions

. 1/2 A 1/2
Venon :[ jon mass j ZEmH j ~ 434

\Y electron mass m

e

ion

Therefore, in the following, we only consider collisions of
atoms and ions with electrons.
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Electron collisional rates

Transition i—y (j: bound or free), 6, (v) = electron collision
cross-section, v = electron speed

Total number of transitions i—;:

n,C, =nn, jgy V) f(v)vdv=nn,Q,(T)
v, minimum velocity necessary for excitation (threshold)
f(v)dv velocity distribution (Maxwell)
In TE we have therefore
n;C, =nC,

Total number of transitions j—i:

.
ni

njCﬁ = HJ(J Cij
n;

Stellar Atmospheres: Non-LTE Rate Equations

Electron collisional rates

We look for: collisional cross-sections 6 (v)

* experiments

« quantum mechanical calculations

Usually: Bohr radius na,” as unit for cross-section o (v)

G (v) =nay O ii

Q ; usually tabulated as function of energy of colliding electron

o 1/2
Q,(0)=[o,Wf(vdv with Y2mv*=E and f()dv=|——| ™/ azyidy
Y " Y 27kT

o 12
. k _
= Cox/TJ. Q,(ukT)ue“du with w:=E/kT and C,=7a, {,j,,} =5.456-10""

e

Q,(T)=CNTe™T,(T)| with rl.j(T)=TQl.j(EO+ka)(x+u0)e-*dx, x:=(E/kT -E, /kT)

12
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Electron collisional rates

Q,(T)=CyNTe ™ T, (T) nC, =nn.Q,(T)

itle=ey;

Advantage of this choice of notation:

Main temperature dependence is described by «/Te_E‘)/kT
I, (T) only weakly varying function of T

Hence, simple polynomial fit possible

= Important for numerical application

Now: examples how to compute the C;

Stellar Atmospheres: Non-LTE Rate Equations

Computation of collisional rates: Excitation

Van Regemorter (1962): Very useful approximate formula for
allowed dipole transitions

2
C, =Cn NT14.5 f,(?’} uoe " T'(uy)
0

E,, hydrogenionization energy

Jf;; oscillator strength of radiative transition
Ey=hv, u,=E,/kT T(u,)=max[g,0.276¢" E(u,)]

_ {0.7 for transitions between levels with equal principal quantum number
g =
0.2 else

There exist many formulae, made for particular ions and transitions, e.g.,

(optically) forbidden transitions between n=2 levels in He | (Mihalas & Stone 1968)

C, = Con NTe ™ T(T)

with logF =c,+¢ logT +c, (logT)d coefficients ¢ tabulated for each transition
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Computation of collisional rates: lonization

The Seaton formula is in analogy to the van-Regemorter formula
in case of excitation. Here, the photon absorption cross-section
for ionization is utilized:

—utg

n e
\/? uo

o, = threshold photon cross -section for ionization

C,=1.55-10"0,g

0.1 forions with charge Z =1
g=1:0.2 forions with charge Z =2
0.3 forions with charge Z > 2

Alternative: semi-empirical formula by Lotz (1968):

2
C,= Cone\/?Z.Sa(iffj uy|E, (uy) ~ beu, E, (1) /1, ]

0

u, =u,+c ab,c empirical quantities, adjusted to individual atoms

For H und He specific fit formulae are used, mostly from Mihalas
(1967) and Mihalas & Stone (1968) 18
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Autoionization and dielectronic recombination

negative| jonl, e.g. 4 ionll, e.g.
He | He Il
0 _________________ >_ c

ionization energy

positive

Energy v

b bound state, d doubly excited state, autoionization level
c ground state of next lon

d — c: Autoionization. d decays into ground state of next
ionization stage plus free electron

¢ — d — b: Dielectronic recombination. Recombination via a
doubly excited state of next lower ionization stage. d auto-
ionizes again with high probability: A, ,,=10"3...10"%/sec!
But sometimes a stabilizing transition d — b occurs, by
which the excited level decays radiatively.
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Computation of rates
Number of dielectronic recombinations from c to b:
n.R,=n,A A =probability for spontaneous stabilizing transition

In the limit of weak radiation fields the reverse process can be
neglected. Then we obtain (Bates 1962):

n, = n;Aa /(A,+A) with n; = ncneClT_meEﬂ’“/kT =nnd_,(T)

A, = transition probability for autoionization

So, the number of dielectronic recombinations from c to b is:

ncRcb = ncneq)cd (T)AsAa /(Aa + Av)

Stellar Atmospheres: Non-LTE Rate Equations

Computation of rates

There are two different regimes:
a) high temperature dielectronic recombination HTDR
b) low temperature dielectronic recombination LTDR

for the cases that the autoionizing levels are close to the
ionization limit (b) or far above it (a)

a) Most important recombination process He Il — He | in the
solar corona (T~2-10°K)

b) Very important for specific ions in photospheres (T< 10°K)
e.g. N Il A4634-40A emission complex in Of stars

Reason: upper level is overpopulated, because a stabilizing
transition is going into it.

Becauseincase b) 4, >> A4 —n, =n,
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LTDR

The radiation field in photospheres is not weak;, i.e., the
reverse process b — d is induced

Recombination rate:

c2
nR,=nn® (T)A |1+ J
¢ ch c'Ce cd( ) S( 2hv3

J mean intensity in stabilizing transition, i.e.,
given by continuum value (line very broad, because short lifetime)

Reverse process:

— c2 g —

nR =nB J=nA ed g
b be bPbd b4 2hv3 g,
These rates are formally added to the usual ionization and

recombination rates and do not show up explicitly in the rate

equations. 19
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Complete rate equations

For each atomic level i of each ion, of each chemical element

we have:
”:ZP[/ _anfit =0
J#i J#i
In detail: " [Z(R’f +C,./.) T excitation and ionization
i ’
rates out of i
[ j R +C ) l de-excitation and recombination
J<i
—Zn n—j R +C, ) de-excitation and recombination
i n
” rates into i
_Zn (Rﬂ ) oL o
j<i excitation and ionization
= O 20
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Closure equation

One equation for each chemical element is redundant, e.g.,
the equation for the highest level of the highest ionization
stage; to see this, add up all equations except for the final
one: these rate equations only yield population ratios.

We therefore need a closure equation for each chemical
species:

Abundance definition equation of species %, written for
example as number abundance y, relative to hydrogen:

3 Zpopulation numbers of species k

£ z population numbers of hydrogen

21
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Abundance definition equation

Notation:
Population number of level i in ionization stage /: n,;

_] LTE levels do not appear explicitly in
] the rate equations;
populations depend on
ground level of next
ionization stage:

*
n,;= ”e”1+1,1q)1,i (T)

NLTE levels

22
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Abundance definition equation
Notation:
NION number of ionization stages of chemical element &
NL() number of NLTE levels of ion [
LTE(l) number of LTE levels of ion /

NION | NL(1) LTE(I) NL(H) LTE(H)
Z Z nl,i + Z nl,i = yk Z ni + Z ni + nprotons =
i=1

I=1 i=1 i=1 i=1

LTE(H)

NION | NL(I) LTE(I) NL(H)
3 {z zq>,,.<r>}:yk z(l qumJ
i=1 i=1

=1 i=1 i=1

Also, one of the abundance definition equations is redundant,
since abundances are given relative to hydrogen (other
definitions don‘t help) = charge conservation

23
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Charge conservation equation

Notation:
Population number of level i, ion /, element k: n,,

NELEM number of chemical elements
q() charge of ion /

Z Z q() anli+ zn;ﬁ
=1 i=1 i=1

k=1
NELEM NION NL(l,k) LTE(l)
= ne

Z Z q(l) anli+nk,l+l,lne zq)kli(T)
=1 im1 im1

=1 =

NELEM NION NL(1,k) LTE(1,k)
=n,=

24
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Complete rate equations: Matrix notation

Vector of population numbers
n=(n,ny, - ,my,,) NLALL= total number of NLTE levels

An=Db rate equation in matrix notation

One such system of equations per depth point
Example: 3 chemical elements

Element 1: NLTE-levels: ion1: 6, ion2: 4, ion3: 1
Element 2: NLTE-levels: ion1: 3, ion2: 5, ion3: 1
Element 3: NLTE-levels: ion1: 5, ion2: 1, hydrogen

Number of levels: NLALL=26, i.e. 26 x 26 matrix

25
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x 0D OO0 xix
] ]
ion 1 0 0
0 0 —
0 0 ——— lonization into excited states
x 0000 xix /
x O 0 x ix /
ion 2 0 0
] ]
x O 0 x ix
abundancedef. 1 1 1 1 1 1 = 1 1 1= v / —y, 000 -y iz
o v x 0 x ix | 4 f
fon 1 // 0 0 x
LTE contribgtions =
\ x 0 x ix |
x [ [0 0 x iy :abundapces
] ]
ion 2 0 0
] ]
x 0 00 x ix
abundance def. \ I 1 1 iz 1 11 1 izi=y, O0ODU-=y iz
x 000 x ix
] ]
H ] ]
] ]
x 000 x ix
26
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Elements of rate matrix

For each ion / with NL(l) NLTE levels one obtains a sub-
matrix with the following elements:

—(le.+Cﬁ) Jj<i lower left

n, . .
4;= —(n—J (R,-,-“‘C,-j) j >1 upper right
J

5

Z( J R, +C,) +Z (R, +C,,) j=i diagonal
ni

m<i m>1

=1...NL(l) j=1...NL(l)...k k highest level in parent ion,

into which ion / can ionize; does not have to be = NL(/)+1!

27
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Elements corresponding to abundance definition eq.

Are located in final row of the respective element:

NION

i=Y NL()
I=1
NION
1 j=1... Z NL(I) except of ground state of excited ions
I=1
A; = |1+n, Z D, Jj = ground state of excited ions
m=LTE(I-1)
-, j=[NLALL - NL(H)]...[NLALL—1]

—yk(l+ne > dDWJj:NLALL

m=LTE(H)

28
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Elements corresponding to charge conservation eq.

Are located in the very final row of rate matrix, i.e., in

i=NLALL
q(l) j=1...NLALL, exceptof

= ground state of excited ions
: g)+q(l-1) >, @, else

m=LTE(~1)

Note: the inhomogeneity vector b (right-hand side of statistical equations)
contains zeros except for the very last element (i=NLALL):
electron density n, (from charge conservation equation)

29
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Solution by linearization

The equation system An=>0 is alinear system for n and
can be solved if, n,,T,J, are known. But: these quantities are
in general unknown. Usually, only approximate solutions within
an iterative process are known.

Let all these variables change by 07,,0T,0J, e.g. in order to
fulfill energy conservation or hydrostatic equilibrium.

Response of populations dn on such changes:
Let An=>b with actual quantities

And (4+64)(n+6n)=(b+6b) with new quantities n,,T,J,

Neglecting 2nd order terms, we have:
An—-b=-0n-néA+35b

30
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Linearization of rate equations

Needed: expressions for: 04,0b

Jv discretized in NF frequency points

04

One possibility: | & =———5T+———5n-+§: —-5J

= JT

NFaA

k= 1

If in addition to n the variables n,,T,J,

are introduced as

unknowns, then we have the
— Method of Complete Linearization

Other possibility: eliminates .J, from the equation system by
expressing J, through the other variables n,,7 :

Jk :f(EDTang)
As an approximation one uses
(and iterates for exact solution)

J! ~S8!(n,T,n,)

31
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Linearization of rate equations

oA ¥ 94
PR N °L5s,
£ Ton ;

A as, NLALL BS
0S, =—~6T+—+n,
LooT on, Z an

—*0n,

Method of approximate A-operators (Accelerated Lambda lteration)

analogous, 0b:
ob ob § ob

5b=2257+22 50+ 22 55 =(0,---,0,5
b= o7 * g, Ot 2 95 =(0,0.0m.)

32
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Linearized equation for response dn as answer on changes

on,

Expressions kle as, on, Show the complex coupling of all
variables. A change i in the radiation field and, hence, the
source function at any frequency causes a change of
populations of all levels, even if a particular level cannot absorb

Linearization of rate equations

04 &5 9498,
An—b=-6n4 oT|-——
= 2T { Tt GT}
04 ¥ 04 9S
o =5 ="k
’ ”{ 9n 25 o }
NLALL NF aA
+)), on, |- Q—=aSk
Jj=1 k=1 aSk an]

,0T,0J,

NF aAaS

or emit a photon at that very frequency!

33
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In order to solve the linearized rate equations we need to

Linearization of rate equations

compute these derivatives:

9 d d 9
ane’aT’anj’aSk

with respectto  A,b,S,

All derivatives can be computed analytically!

Increases accuracy and stability of numerical solution. More

details later.

34
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LTE or NLTE?

When do departures from LTE become important?

LTE is a good approximation, if:
1) Collisional rates dominate for all transitions
R, <<C, > F, =R, +C; =C,

because —=| —-
Ci

solution of rate equations — LTE

*

2) J,=B, isagood approximation at all frequencies

solution of rate equations — LTE

35
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LTE or NLTE?

When do departures from LTE become important?

LTE is a bad approximation, if:

1) Collisional rates are small ¢, ~n, /T 7T = ¢,

2) Radiative rates arelarge  R,~7" e>1 7T = RT

3) Mean free path of photons is larger than that of electrons
Example: pure hydrogen plasma

Az ~1/n, (density of neutral H)
3/2

—3/2 AE/kT
Saha: nHNnein e - Az~——

nn,

—AE/kT
e

nd,TT = AT
Departures from LTE occur, if temperatures are high and
densities are low

36
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LTE or NLTE?

01

log g

S
=
\

\

L I

470

4B5 450
log Tett

NiHel/ NIH]=01 NiHel/N{H]=10

&0

Tapp #1073

el

o N L
6 5 4 -3 -2 -fegmd -5 -4 -3 2 Tlgm

Fig. 4. Temperature stratification in NLTE and LTE for T,u=
45000 K, logg=5 and two different helium abundances (N(He)/
N(H)=0.1 and 1.0)

Fig. 8. “Non-LTE wvectors” [Displacement due to non-LTE effects
in the (logg, log T,;)-diagram] for N(He)/N({H)=0.1 37

relutive flux
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LTE or NLTE?

L2

T=T0 000 K

T =55 000 K

T, =50 000 K

1 — Ll T
dashed: LTE  full: NLTE

Fig. 3. NLTE effects on synthetic DO line
profiles (convoluted by a 2 A Guuss prolile)
at various effective temperatures. The two
hotter models are caleulated at log g=7.5,
the cooler ones at log g=8.0. Significant de-
viations between LTE (dashed) and NLTE
l spectra oceur down to TLg=50000K. Al

. 1 1

Tea=40000 K the NLTE effects disappear

1 | i 1 A

4500 4600
wavelengh £ A

4700 4800 4000 completely, justifying LTE analyses for DB
white dwarfs
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LTE or NLTE?

Ha NLTE

DA white dwarf, T 4= 60000K, log g= 7.5

AAsh

L B e L e L L R
r Balmer lines 7
—
Helll T T mae T
E - N
T o
e \\
B % Hell 3
= F ]
B3 L _
= E S E
i E E
1o b7 P Hel |
g ; . ]
E h B
L / ]
1078 = /! =
[ — ng/ng =0 F L ]
<t D Ay = 1078 6 vl vl el il i il vl vl vl
[~ ng/ng = 10~* 1078 1077 10°% 10-® 10~* 107® 0.01 0.1 1 10 107
-2
P T A A R B mass / g cm
—60 —40 —20 0 20 40 80 39
Ax/E
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Summary: non-LTE Rate Equations

41
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we have: ny P=>nP =0
J#i J#
In detail:
n; [Z(Rz/ +Cf/)
J>i

j>i n;

_Z n (R, +C,)
J<i

=0

Complete rate equations

For each atomic level i of each ion, of each chemical element

!

n.
+Z(—’j (R, +Cﬂ)} l de-excitation and recombination

l de-excitation and recombination

T

excitation and ionization

rates out of i

rates into i
excitation and ionization

42
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Solution Strategies

Stellar Atmospheres: Solution Strategies

All equations

Radiation Transport 1(z),J(z), H(z), K (z)
Energy Balance 1(z)
Hydrostatic Equilibrium n,(z)

Saha-Boltzmann / Statistical Equilibrium »,,(z)
Huge system with coupling over depth (RT) and frequency (SE)

Complete Linearisation (Auer Mihalas 1969)
Separate in sub-problems
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RT: Short characteristic method

Olson & Kunasz, 1987, JQSRT 38, 325

I+(T,,u,v)=I+(Tmax,ﬂ,v)exp(—rmax_Tj+ I S (r’)exp(—r _TJd—T
u . )z

U
I (z,u,v)=1"(0,1,v) exp[—ﬁd +IS (T’)exp{—ﬁﬁ%|
0

Solution on a discrete depth grid 7, i =1, ND with boundary conditions:
I (u,v)=1(0,u,v)
I;D(ﬂﬁv) = I+(Tmax’ﬂ’v)

Solution along rays passing through whole plane-parallel slab

Stellar Atmospheres: Solution Strategies

Short characteristic method

Rewrite with previous depth point as boundary condition for
the next interval:

(7, p,v) = 1 (7,,,, 1, v) exp (=AT,) + AL (S, 4, v)

I (2, 1) = (7, fov)exp(=AT, )+ AL (S, 1,)

with

_(m-7.)

14

using a linear interpolation for the spatial variation of S

the intergrals Al can be evaluated as

AIF =o' S, + S, +7'S..,
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Short characteristic method

Out-going rays:

Al (S, u,v)= I Sexp [—%]% = exp[%] J Sexp[—%]az

x—f ,gx)=exp(-x),a=7, ,b=17, ,A= AT
H H
1 et -1
+ __ _ alu —alu —b/ 1 —alu _
=>p =w =" e +t—e" —e =1+
pi=. ( A( )j A

1 e -1
/ —b/ —b/ —a/ —A
:>7/,.+—wb—e"”(—e ”——(e ”—e"”) =—e -

Stellar Atmospheres: Solution Strategies

Short characteristic method

In-going rays:
dt 7

AI S N = S —_ S

(S,u,v)= ,,.Jil exp[ | J|,U| exp[ |,LI|JJ [Lu'] |Iu|
x:L , g(x)=exp(x),a=1_,b=1, A:%

Z P
Sa =w, = e-b/\/t\ (_ea//‘ +l(eb/"“ _ea/\,,\ )) oty l—e®

A A

A

e | SV R ST B A N Sl
=0 =w,=e (e A<e e )j—l A
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Short characteristic method

Also possible: Parabolic instead of linear interpolation
1
Problem: Scattering «,=n,0, , n,=x,J =k, %Il('“)d'“
-1

Requires iteration

Stellar Atmospheres: Solution Strategies

Solution as boundary-value problem
Feautrier scheme

Radiation transfer equation along a ray:
dr, (z) _

t——==1(1)-5,(7)
dt
pp: d7 = K’ﬁ
du
sp: dt=—kdZ

Two differential equations for inbound and outbound rays

Definitions by Feautrier (1964):

u= %(1 T+ ) symmetric, intensity-like

V= %(1 -1 ) antisymmetric, flux-like
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Feautrier scheme

Addition and subtraction of both DEQs:

DD _ )-8, (1)
dr

du(7) _

2D @) @

N dz”;(f) =u(7)~S,(7)

One DEQ of second order instead of two DEQ of first order

Stellar Atmospheres: Solution Strategies

Feautrier scheme

Boundary conditions (pp-case)

Outer boundary ... with irradiation
I't=0)=0>u(z=0)=v(r=0) [ (t=0)=1, su—-v=1I"
(2) :M =u(7=0) :M =u(t=0)-1,

7=0 =0

Inner boundary
I+ (T = Tmax) = I:max % u(TmaX) + v(Tmax) = I;x—nax
du(7)

=I" —u(r
dT Tinax ( max)

T=Tnax

2 =

Schuster boundary-value problem

10
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Finite differences

Approximation of the derivatives by finite differences:

d*u . .
u— = =S discretization on a 7 —scale
T

first derivative at intermediate points:

1
Ti+l/2 _E(Tm +Ti)
du@|  _wa-w o du@| o —uy
dr |, 7,-7, dr |, 7-7,

second derivative:

du(t)|  du(?)|
d ( du(z) dr | dr |
%[ dr j‘f;
Upg —U; U — U

Tivif2 Tiyf2
13

(@) _1,-7, 1,-1,,
a | L o)

Ti+l/2 - Ti—l/2

2

7.

i+

1"

Stellar Atmospheres: Solution Strategies

Finite differences

Approximation of the derivatives by finite differences:

d’u . .
u———->=3§ discretisation on a 7 —scale
dt
Upg —U; U — U
T.,.—T T.—7T. .
jui_ l+11 i i i—1 :Si R ZZZND—I
(7. -7
2( i+l i l)
= —Au,_ +Bu,—Cu,, =S, , i=2---ND-1

4, =B(f,- ~7,)(7 —f,-l)}l
G =B(fm -7,) (7. —f,-l)}l

B =1+ 4,+C,

12
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Linear system of equations

B, G U, Wi
-4, B, -C, 0 u, W,
0 0
0O o
000D | B B
00
0 O 0 =Cap || Unpa Wip-i
L Ay By |t | | Ww |

Linear system for u;
Use Gauss-Jordan elimination for solution

13
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Upper diagonal matrix

1st step:
B _6‘1 o . - I/f/l -

1 -G, 0 u, 7,

U
o0 H _

0 éND—l Uyp- ~ND—1
L L] 4w L Wap
i=1 C,=B7'C, 7, =B'W,

14
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Back-substitution

2nd step:
i=ND wyy =Wp
i=ND-1---1 u,=W.+Cu

i+

Solution fulfils differential equation as well as both boundary
conditions

Remark: for later generalization the matrix elements are
treated as matrices (non-commutative)

15
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Complete Linearization

Auer & Mihalas 1969

Newton-Raphson method in EN
Solution according to Feautrier scheme
Unknown variables:

_ T . . - =
l//i:|:_.:| , i=1---ND ‘//:[‘//n"%‘//n""'//ND]T

i

Equations:
—A S ip By = Coud iy — S, (1) =0 NF transfer equations
P(J))ii,—b, =0 NL equations for SE

System of the form:
fiaW)=0, a=1---NF+NL

16




Stellar Atmospheres: Solution Strategies

Complete Linearization

Start approximation: fl a(z)yo) #0
Now looking for a correction so that

fiaW'+6Y)=0 Vi«
Taylor series:
0=f, W)= f.(¥" +5)

RPSVINE 35 PP P
=1

purgll i) ik = ani,l

W

Linear system of equations for ND(NF+NL) unknowns dJ,, , dn,,
Converges towards correct solution

Many coefficients vanish
17
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Complete Linearization - structure

Only neighbouring depth points (2" order transfer equation
with tri-diagonal depth structure and diagonal statistical

equations): f,,(W) = [, (V... ¥ Vi)
Results in tri-diagonal block scheme (like Feautrier)
_Aiﬁlyi—l + Big'ﬁi - CﬁWm = Zi

0 ) .0
Ai,k 0 5‘] 1 Bi,k
+

||

o O s B |
1

%)

~!

[— |

s s Y B |

O o ogoogoog
s R
r

%)

= 3

J R o O o [ )

)
=~
]

O 0o OO0 OO O
s@
N

18
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Complete Linearization - structure

Transfer equations: coupling of J,;, , J;, , and J,,, , at the
same frequency point:

— Upper left quadrants of 4, B, C; describe 2" derivative
Source function is local:

— Upper right quadrants of 4, C, vanish

Statistical equations are local

— Lower right and lower left quadrants of 4, C; vanish

2

dt?

19
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Complete Linearization - structure

Matrix B,.
1 NF 1 NL
0 : =
B aS’i,k
ik ani’l,
0
B = .
NL 0 (Pi)l,m (P)
a] nz m i/l
m=l1 ik
: z

20
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Complete Linearization

Alternative (recommended by Mihalas): solve SE first and
linearize afterwards: P(J,)ii, ~b, =0 —ii, = P(J,)"'b,

Newton-Raphson method:
+ Converges towards correct solution
+ Limited convergence radius

* In principle quadratic convergence, however, not achieved
because variable Eddington factors and t-scale are fixed
during iteration step

« CPU~ND (NF+NL)3 — simple model atoms only

— Rybicki scheme is no relief since statistical equilibrium not as
simple as scattering integral

21
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Energy Balance

— Including radiative equilibrium into solution of radiative
transfer — Complete Linearization for model atmospheres

— Separate solution via temperature correction
+ Quite simple implementation

+ Application within an iteration scheme allows completely linear
system — next chapter

— No direct coupling
— Moderate convergence properties

22
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Temperature correction — basic scheme

0. start approximation for 7'(7) < T,(7)

1. formal solution J,=AS (T)

2. correction T(t)<T(7)+AT(7)
3. convergence?

Several possibilities for step 2 based on radiative equilibrium
or flux conservation

Generalization to non-LTE not straightforward

With additional equations towards full model atmospheres:
» Hydrostatic equilibrium
» Statistical equilibrium

23
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LTE

Strict LTE S (7)= B (T(1))
Scattering  S,(7)= (1~ £,)B,(T(2)) + £.J,(7)

Simple correction from radiative equilibrium:
[ K@) (J,(2.9) = B(T(2),v))dv =0

v=0

T T Kk(7,v)(J,(z,v)= B,[T(t)+ AT(7)])dv =0

= [« J,~B,-ar% Jdv:o
J T T=T(7)
- [ .08,

12
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LTE
Problem:
r T OB
AT = | x(J, —Bv)dv/ K—— dv
VIO V‘!.O aT T=T(7)

J,——z— B, independent of the temperature = AT — 0

Gray opacity (k independent of frequency):

[ x)(J,~B,)dv— k(J-B)
;K(J—B—AB):O

- x(J-B)=KkAB

dH _

0.Moment equation d t -

deviation from constant flux provides temperature correction

25

Stellar Atmospheres: Solution Strategies

Unsold-Lucy correction

Unsold (1955) for gray LTE atmospheres, generalized by
Lucy (1964) for non-gray LTE atmospheres

0-th moment: % =x,(J,-B,)
t

J.mdv%d—H:ﬁJ—B , K;B= J. KkBdv , x,J= I kJdv , dr=kK,dt

dT KB v=0 v=0

dK
Ist moment: 7‘ =KH,
t

J.o--dv%d—KzﬁH L Ky H = [ K H,dv
dt K, 2o

now new quantities J’, H’, K’ fulfilling radiative equilibrium (local) and

flux conservation (non local)

’

radiative equilibrium: e '-B’'=0

. dK
flux conservation: =—

26
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Unsold-Lucy correction

Now corrections to obtain new quantities:

AX =X'—X
IAK _Ki Al integrate —> AK = AK(0)+ [ S arar
drt Ky /=0 Ky

K= ]:dev = T fJdv=fJ , H(0)= T H (0)dv= jfthv(O)dv =hJ(0)

_ Ak = LOAH©) j[ Ki AHAT = £AT

h =0 KB
LU VvV +ﬁ(w+i j &Wj
dr Ky Ky fh fr’:O Ky
3 T

gt K [f(O)AH(O)+ 1 &Nm]
KB fh fr’:O KB

AT =" L5 JOARO L [ 22 Amar

40T KB .ﬂl fr':O KB

27

Stellar Atmospheres: Solution Strategies

Unsold-Lucy correction

AT=-2 {&J—B+ﬂ[—f(o)w(o)+i j &AHdr’H
407" | K, Ky Sh S o Ky

H_}\ ~ _/

,Radiative equilibrium® part good at small optical depths but
poor at large optical depths J — B
.Flux conservation® part good at large optical depths but poor
at small optical depths dH
E -0

Unsold-Lucy scheme typically requires damping

Still problems with strong resonance lines, i.e. radiative
equilibrium term is dominated by few optically thick
frequencies

28
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NLTE Model Atmospheres

Radiation Transport and Sattistical Equilibrium are very
closely coupled

Simple separation (Lamda Iteration) does not work

Complete Linearization

Accelerated Lambda Iteration

29
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Lambda Iteration

Split RT and SE+RE:

-

J" " = AS™ (n,T) RT formal solution

!

A(J,T)n"" =b SE

jzc(v,n,T)(Jv ~S,(v,n,T))dv=0  RE
0

I

* Good: SE is linear (if a separate T-correction scheme is used)
+ Bad: SE contain old values of n,T (in rate matrix A)
Disadvantage: not converging, this is a Lambda iteration!

30
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Accelerated Lambda Iteration (ALI)

Again: split RT and SE+RE but now use ALI

R

Jnew — ASold (nold , Told) + A*SneW(nneW, TneW) _ A*S(Jld (nold , Told) RT

l SE

A(Jnew,TneW)EWW :é
J'K(v,n"ew,T”@W)(Jf@W -S, (v, n”@W,T”@W)) dv=0 RE
I
* Good: SE contains new quantities n, T
« Bad: Non-Linear equations — linearization (but without RT)
Basic advantage over Lambda lteration: ALI converges!
31
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Example: ALI working on Thomson scattering problem
S= (1 - B, ) B+ [ J  source function with scattering, problem: J unknown—iterate
= J"" = (A -A ) SM + AS
=(A=A")S™+ A ((1-B.)B"" +BJ")  J":=formal solution on S’
=J5 A ((1 —-B)B" +BJ" —(1-5,)B"” —,BgJ"“w) B =B
=J® =N (BJ" - BI") solve for J""

= J"" = [1 -AN'B, T (J¥=A"BJ")  subtractJ”’ on both sides

—y Jrev _ jold _ []‘_A*ﬂe T‘ (JFS _JUM)

/

amplification factor

Interpretation: iteration is driven by difference (J7S-Jo) but: this difference
is amplified, hence, iteration is accelerated.

Example: 3.=0.99; at large optical depth A* almost 1 — strong amplifactions2

16
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What is a good A*?

The choice of A* is in principle irrelevant but in practice it
decides about the success/failure of the iteration scheme.

First (useful) A* (Werner & Husfeld 1985):

. >

AZ(T,T‘)SV(T‘):{SV(T) T 7/

0 TSy
A few other, more elaborate suggestions until Olson &
Kunasz (1987): Best A* is the diagonal of the A-matrix
(A\-matrix is the numerical representation of the integral operator A)
We therefore need an efficient method to calculate the
elements of the A-matrix (are essentially functions of t,, ).

Could compute directly elements representing the A-integral operator, but
too expensive (E, functions). Instead: use solution method for transfer

equation in differential (not integral) form: short characteristics method

Stellar Atmospheres: Solution Strategies

Towards a linear scheme

A* acts on S, which makes the equations non-linear in the
occupation numbers

* Idea of Rybicki & Hummer (1992): use J=AJ+¥*n"e" instead
* Modify the rate equations slightly:

R.n, = 471']:%111.Jvdv = 47[?% n, (‘I’*ﬂ( )+AJ) dv
0 0

| Fo. 3
R.n, =4r & I—”n JV+2h: dv
n n, )4 hv / c
. *”0'.. . 3
=4z 2| [Ln | Wi )+A]+2hzv dv
n, o hv c
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Stellar Atmospheres
This was the contents of our lecture:

Radiation field

Radiation transfer

Emission and absorption

Energy balance and Radiative equilibrium
Hydrostatic equilibrium

Solution Strategies for Stellar atmosphere models

35
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Stellar Atmospheres
This was the contents of our lecture:

Radiation field

Radiation transfer
Emission and absorption
Radiative equilibrium
Hydrostatic equilibrium
Stellar atmosphere models

The End
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Stellar Atmospheres
This was the contents of our lecture:

Radiation field

Radiation transfer
Emission and absorption
Radiative equilibrium
Hydrostatic equilibrium
Stellar atmosphere models

The End

Thank you for
listening !

19
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Stellar Atmospheres in Non-LTE

Stellar Atmospheres: Non-LTE Stellar Atmospheres

Stellar Atmospheres in Non-LTE

radiation transfer I,orJ,
radiative equilibrium solve consistently () T
hydrostatic equation N

Parameters: T, log g, v,

[

LTE: S, =8B, strict LTE
S, =pJ, +(1-p)B, including scattering
Population numbers by Saha-Boltzmann equations

dn,
NLTE: 7; =0—>An=>b rate equations




Stellar Atmospheres: Non-LTE Stellar Atmospheres

Solution Methods

(*) is a non-linear system of equations, we look for the
solution vector: d=depth index

d

d
v :(”1»"'»”NL>N>T>”89JVI»"' J )

with M (y)y" =<' ()
Solution principle: Newton-Raphson iteration
Solution methods:
1. Complete Linearization (Auer & Mihalas 1969)
2. Multi-frequency/multi-gray  (Anderson 1985)
3. ALI method (Werner, Husfeld 1985, 1986)
All methods have in common: linearization and iteration

For that, it is necessary to invert matrices (Jacobi matrix) with
rank = number of equations

Numerical limit: matrix inversion limits rank to the order of
~ 100

Stellar Atmospheres: Non-LTE Stellar Atmospheres

Complete Linearization

Linearizes all equations

Enabled break-through for first calculation of NLTE models,
quite robust method

Depth coupling by radiation transfer

= Feautrier scheme

Disadvantage: Capacity limit quickly reached
e.g. model atom with hydrogen and helium:
20 NLTE levels

80 frequency points
(5 for each spectral line, 2 for each bound-free edge)
Only rather rudimentary representation of plasma

= Number of equations must be reduced

100 equations
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Anderson‘s method

Does not linearize the transfer equation with respect to all
frequency points. First: grouping of frequency points in
energy blocks. Then: linearization of these quantities.

Number of blocks determines the dimension of the system of
equations.

In some sense related to multi-grid methods.

Very clever method, BUT: requires physical motivation for
grouping of frequencies. Must be done manually, quite
cumbersome, much experience and physical insight by
user necessary. Was essentially used by inventor himself,
is not used any more.

Stellar Atmospheres: Non-LTE Stellar Atmospheres

ALl method

Accelerated Lambda Iteration

Eliminates the explicit inclusion of the transfer equation into
the linearization scheme by using instead an implicit
approximate solution for J :

Lambda iteration:

i=iteration counter

J(yi) — ASUD (E(l—l))
A(Jéi))ﬁ(l) ZQ @

ALl Jsi) _ ASv(i—l) ( )+A*Sv(i) (E(i) ) —A*S‘E[—l) ( )

Jsi) _ A*Sv(i) (E([))‘FAJV(H)
€ s )
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ALl method

Advantage: number of frequency points no longer appears in
dimension of equation system to be linearized (but
calculation of derivatives of n,,x, w.r.t. source function)

No explicit depth coupling, i.e. local linearized equations for
every depth point

Starting solution v’ =(n,.ny N, T,n,)"
Calculate correction oy’ =(6n,,++,0ny, ,6N,0T, sn,)’
from linearized equation M “ Sy =¢*
sy’ =(m') ¢
i 4

Improved solution v oy sy
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Radiation Transport as Boundary-Value
Problem of Differential Equations

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Solution with given source function

« Formal Solution, applications:
— Strict LTE, S, =B,(T)
— Step within iterative method
* Numerical integration, short characteristics method

+ Algebraic equation, Feautrier method
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Solution by numerical integration

Emergent intensity, plane-parallel geometry

Depth grid, ND depth points
» Geometrical depth ¢,,L=1---ND "
+ Optical depth 7,,L=1-ND,7,(v) = [ x(v,t)dt

t'=0

I (t=0,u), p=cos?

z 4 A 4=0
/ 1
—~/
29) ;
(7 L
/
A
/ ty, =t
/ ND max

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Emergent intensity

Tmax T, d T,

(=00 [ s,€)cn{ - JoE i yeon{ -5

7'=0

ND
Numerical integration: [7(7=0,u)= ZSLWL

L=1

Trapezoidal rule,
naive approach:

I = (Sae_“ +S,e” ) b-a

Not very smart, systematic
summation of approximation

errors

v
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Proper integration weights

b
Problem: 1= I f(x)g(x)dx
Interval: (a, b)
Integrand: f(x)
Weight function: g(x)

Including weight function in integration weights is smart if:

f(x) is less curved than f(x)lg(x)
g(x) and xljg(x) have handy antiderivatives

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Determination of proper weights

A=b—-a
S -0 L m:(b;a)
/ A
X=m+r—
/ 2
P . A
N A dxz;dr
a m b;x f(x):f(b)+f(a)+rf(b)—f(a) . even and odd

2 2
1= f@gdv =5 [ (@@ r(F)@))e(mer )

like wise:

glx) =g (r+g°(r)

&)= (g(mer85)+a(n-rd3))
g()(,):%(g(mw%)—g(m—r%))
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Determination of proper weights

Integration over symmetric interval leaves only even
integrands:

[:%{(f(bﬂf(a)) [ &0+ (70)-1@) | ”g"(”)d”}

r=—1 r=—1

=§&ﬂm+fwnjgmyw+ (ﬂm—ﬂ@)j@%mw}

S G+ F@)G + (fB)-1(@) H]=w, /(@) +w,/®)
A

=W, ZE(G—H)

=>w, :%(G+H)

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Examples
g(1)=x g()=x’
A , A A
= = — G: +_,H: -
G=mH p m 2 m3
A A Al , A
w,=—| m—— w,=— +—-m—
) 6 ) 12 3
A A A’
j— +— _= 2, = =
" 2(m 6) " 2[ +12+m3J
gx)=e” glx)=e
1 —a b _l _a b
G:Z( —e ) G_A( e +e)
H —l(—e“ —e’+ (e —e")) H :_(ea +e+(ef _eb))
w,=e——(e—e”) w, =—e' ——(e' —¢")
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Short characteristic method

Olson & Kunasz, 1987, JQSRT 38, 325

I+(T,/U,V)=I+(Tmax,ﬂ,v)exp(_ T‘““_Tj+ | s (r’)exp[—f ‘TJ‘Z—’
1" a i) u

r;r']d_f
)14
Solution on a discrete depth grid 7, i =1, ND with boundary conditions:
Iy (u,v) =1 (0,4,v)

Lap(,9) = T (T J1,V)

I (T, u,v)y=1 (0,u,v) exp[—ﬁd +jS (r’)exp[—

Solution along rays passing through whole plane-parallel slab

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Short characteristic method

Rewrite with previous depth point as boundary condition for
the next interval:
I7(z, V) = 17 (T,., 4, v) exp (=AT, ) + AL (S, 1,v)
(7, p,v) =1 (7, ), 4,v)exp (—AT,, )+ AL (S, 4, V)
with
T.-T

AT;I — ( i 1—1)

4
using a linear interpolation for the spatial variation of S
the intergrals Al can be evaluated as

Alii = CszlSifl + ﬂiiSi + %’iSm
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Short characteristic method

Out-going rays:

AIT (S, i, v) = I Sexp [_%]d_r = exp[%] J Sexp[—ij dz

u 7 H) H
x=Z ,g(x)=exp(-x),a=7 ,b=1,,A= AL
“ u
1 et -1
= .+: — a/,u( —a/,ct+_ —-b/u _ —alu j 1+
Bi=w =e""e A(e e ) A

1 e -1
/ —b/ —b/ —a/ —A
:>7/,.+—wb—e"”(—e ”——(e ”—e"”) =—e -

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Short characteristic method

In-going rays:
dt 7

AI S N = S —_ S

(S,u,v)= ,,.Jil exp[ | J|,U| exp[ |,LI|JJ [Lu'] |Iu|
x:L , g(x)=exp(x),a=1_,b=1, A:%

Z P
Sa =w, = e-b/\/t\ (_ea//‘ +l(eb/"“ _ea/\,,\ )) oty l—e®

A A

A

e | SV R ST B A N Sl
=0 =w,=e (e A<e e )j—l A
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Short characteristic method

Also possible: Parabolic instead of linear interpolation
1
Problem: Scattering «,=n,0, , n,=x,J =k, %Il('“)d'“
-1

Requires iteration

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Determination of mean intensity and flux

Discrete angular points
ﬂj)j:l...NA ///II
// |
, // |
Solution along each ray / /]
yAVARN |

ND
I7=YS,w, weights depend on 4,
L=l

Angular integration
1 NA 1 NA
J_Egljwj , H_Eéljujwj
Gauss integration with 3 points sufficient for pp-RT

Alternative: numerical integration of moment equation
Problem: numerical approximation of E,(7)
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Spherical geometry
Impact parameters Z, points
Py, j=1--NP, NP=ND+NC Z =+ =P}, i=1---ND intersecting the core
B, =0,---, P, intersecting the core — .
Py =1,Pp =R, Z =4\ - P, I=1---NP+1-j,i=I
Z == =P}, [=1---NP+1-j,i=2(NP+1- j)

Ap

Radii Observer

~
[/ [ S L~

i

L
\

|

/

v

—

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Spherical geometry

Numerical integration on this grid, e.g.:
Optical depth
Z;

5= [x(r=\z; + P} )az

Z
Emergent intensity

i
Timax N -1 V2 O
[ =" s@)ede = > 1 Sw,

Emergent flux
L pRe 1&E
H ‘ELO I (P)PdP—E;ijj
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Solution as boundary-value problem
Feautrier scheme

Radiation transfer equation along a ray:

dI T
d() I5(2)-5,(2)
T
pp:a’rzlrﬁ
du
sp: dt=—kdZ

Two differential equations for inbound and outbound rays
Definitions by Feautrier (1964):

u= %(1 T+ I ) symmetric, intensity-like

V= %(1 -1 ) antisymmetric, flux-like

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Feautrier scheme

Addition and subtraction of both DEQs:
dv(r)

=u(r)-S,(r) ()
wm_
7;=Wﬂ 2)
:dM”_u)S@

One DEQ of second order instead of two DEQ of first order
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Feautrier scheme

Boundary conditions (pp-case)

Outer boundary ... with irradiation
I't=0)=0>u(z=0)=v(r=0) [ (t=0)=1, >u-v
2 = du() =u(t=0) :M =u(r=0)

dr |, dr |,

Inner boundary
I+ (T = Tmax) = I:max % u(TmaX) + v(Tmax) = I;r—nax
du(7)
dt

=1 —u(Ty,)

T=Tmax

2 =

Schuster boundary-value problem

=]

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Feautrier scheme

/—T:Tax

Boundary conditions (spherical)
Core rays:
Like pp-case

Non-core rays:

Restrict to one quadrant (symmetry) inner boundary at Z=0:

I+(T:Tmax):I_(T:Tmax) %v(TmaX)ZO
_du@
drt

T=Tmax

20

10
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Finite differences

Approximation of the derivatives by finite differences:

d’u . .
u———->=23§ discretization on a 7 —scale
dt
first derivative at intermediate points:
1
Ti+l/2 _E(Tm +Ti)
du@|  _wa-w o du@| o —uy
s - o
dr o2 T~ T dr Ty T, -7,

second derivative:

du(t)|  du(?)|
d ( du(z) dr | dr |
%[ dr j‘f;
Upg —U; U — U

Tisif2 Ti-y2
(@) _1,-7, 1,-1,,

i

Ti+l/2 - Ti—l/2

dr’ 1
|T" E(Tm _Ti—l) 21
Stellar Atmospheres: Radiation Transport as Boundary-Value Problem
Finite differences
Approximation of the derivatives by finite differences:
2
u-— d th =S discretisation on a 7—scale
dt
Upg —U; U — U
= -t BT o5 =2 ND-1
E (Ti+l -7, )
= —Au,_ +Bu,—Cu,, =S, , i=2---ND-1
1 -1
4= [5(% ~7,)(7 —T,-l)}
1 -1
C = [5(% -7,) (7. —T,-l)}
B =1+ 4 +C,
22
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Discrete boundary conditions

Outer boundary: first order

du u, —u,
— =u, — =y,
dz|, 7,—7T,
U, —u
—u——=—==0
LT

= Bu,—Cu, =0
G :[Tz_Tl]_l , B =1+C

23
Stellar Atmospheres: Radiation Transport as Boundary-Value Problem
Discrete boundary conditions
Numerically better is a second-order condition:
Taylor expansion of u(t) around t,:
u 2d’u
u, =u, +(7, _Tl)d_r r, +E(r2 -7,) a7,
boundary condition DEQ
1 2
u, =u, +(7,—7,)u, +E(2'2 -7,) (u,—S,)
w+2——42- "% —g = By —Cu, =5,
T,— 7T, (1'2 —z'l)
G = 2[72 _Tl]_z , B = 1+2[Tz _Tl]_l +2[Tz _Tl]_2
24
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Discrete boundary conditions

Inner boundary: first order

du(7) _ I" —u,, pp or core rays U Tty _ I —uy,
ar |, |0 non-core rays Twpa —Thp |0
u Uy, —U I"
N ND } + ND ND-1 — {
0 Tvp — Tapo 0

= —Aypliyp + Byplty, =Sy

4 1+ 4 . I’
AND:[TN _TND—I] > BND:{ w S _{

AND > ND — 0

25
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Discrete boundary conditions
Outer boundary: second order

_ du 1 2 d’u
Unpy =Uyp T (TND—I —Twp )d_T ) 5 (TND—I —Tuap ) =
ND Tap
boundary condition DEQ
I" —u,, core
Unpy =Uyp — (TN ~Tapa )
0 non-core
1 2
+5(TN ~Tapa ) (uND =S )
I" - Unp Unp —Unp * *
Uyp —2 +2 > = Sap = Baptiap — Axptinp = Sap
Tap ~ Tp- (TN ~Tapi

Ay = 2[TN ~—Tap ]_2 , By =1+ 2[TND —Typa ]_l + 2[TND ~Tap-i ]_2

4
It 2

S:/D =Sy +2[TND _TND—I]

13
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Linear system of equations

B -C
-4, B, -G, 0
0 g o
o0
ogoo
00 0
0 0 0
L _AND

Linear system for u,

U
U,
[
—Cypoi | | Unps
By || o

4 s,
W, s,
WND—] SND—I
L WND n L SND n

Use Gauss-Jordan elimination for solution

27
Stellar Atmospheres: Radiation Transport as Boundary-Value Problem
Upper diagonal matrix
1st step:
_1_61 __ul__Wl_
1 -G, 0 u, 7,
o 0
oo | _
0 _CND—I Unp- ~ND—
L L |l uwm L Wap |
i=1 élzBl_lcl V,=B"W,
~ ~ o\l ~ ~ o\l ~
i=2---ND Ciz(Bi_Ai 1—1) ¢ VKZ(BI_AiCi—l) (Wl+Ain—1)
28
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Back-substitution

2nd step:
i=ND wyy =Wp
i=ND-1---1 u,=W.+Cu

i+

Solution fulfils differential equation as well as both boundary
conditions

Remark: for later generalization the matrix elements are
treated as matrices (non-commutative)

29
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Solution with linear dependent source function

Coherent scattering:
General form (complete redistribution)
1

1 1
S,=ad, 4B, Jo=o [ Ladu= [ uwdy
H==1 #=0
Thomson scattering
K, =no, , n,=KJ
:>St()t:77+77e: K Q_'_ Ke ne:K+Ke_KeS+ Ke J
K+K, K+k,K K+K,K, K+K, K+K,
S =(1-B)S+BJ . B.=—=
K+ K,

Results in coupling of equations for all directions

u(z, 1) =B, | u(f,ﬂ)dﬂ—%%l—ﬂg(ﬂh

30
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Discretization

Generalization of Feautrier scheme to a block-matrix scheme:

1 NA

Angular discretization: [ u(z.4)du=u,w,

u=0 Jj=1

Depth discretization as previously:

—Au,_+Bu, —Cu,,, =W,

1

equations for vector u,

31
Stellar Atmospheres: Radiation Transport as Boundary-Value Problem
Discretization \dentical lines
1 2 -
u(z,1)- (1) J u(r,y)dy—wz [1-B8.(D)]S i?:lper?tailgsl in all
40 dr depths
- —Au,_ +Bu —-Cu, =W,
equations for vector u, /
[, ] A C
0 0 0 [
u,=\u; |,4= A, , C = C
0 0 0 0
Uy, | A / C
B w00 0 wy, [(1-8.(1)S, ]
0 0 0 0 [
B = B, -B.@| 0 0w =|(1=-80)S,
0 0 0 0 [
B, w00 0 wy, (I=8.(D)S, |32

16
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Block matrix

By U By -G

0o o ] ]
Bivar U By -G

-4, By, U Byl |-G

] 0o o ]
4 Bovar U Bayawa -G

Wy_/:(lfﬂu([))S, ,i=1---ND-1
Wi,y = (1= B.AND)) Sy +2(Fup =) I

]

Uyina 2N

i ] = ]

Buwaar U Buawa | |~Conas Uyp Wyp-ia
] ] ] ] 0 0
Byoinar U B ~Coot Unp-iva Wap-ina
4y Byar U Bupaw Wy

0 ] 0 0 0
| Buws O Buw) | | P

33
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Feautrier scheme

Thermal source function
— Decoupled equation for each direction
— Separate Feautrier scheme for each ray

— ND-+5 multiplications
Thermal source function + coherent scattering (e.g. Thomson)

— Coupled equations for all directions
— Feautrier scheme in block matrix form
— ND-<NA3 multiplications (matrix inversions)
Spherical geometry
— Radius dependent angular integration /1/_,=[1—%2J% ,j= 1o JMAX (1) | JMAX(1)= NP+1-
— Block matrix size depends on radius
— ~ND* multiplications

34
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Solution with line scattering

Two-level atom, complete redistribution

Photon conservation within a spectral line
Approximately realized for resonance lines 1st excited state
k(W) =x,0(v) , nv)=n,0() +
photon conservation:

j nv)dv = j K(v)J,(v)dv

Line Line

n, =K J. J, (We,dv

Line
S, = I J,(V@.dv | (generalized) scattering intergral §, = al, L+ B

Line

v ground state

The frequency independent line source function (-® )is a
weighted mean of the mean intensity

35
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Solution with line scattering
(non-coherent scattering)

Transfer equation:

dl,(v,u,7) 3
dT(V) _Iv(v9lll9 T) SL(r)

+1

%ﬂv(w,w—%i 000 [ 1o

Each one equation for each angular and frequency point

Each equation contains intensities from all other points

=coupling of all transfer equations to an integro-differential-
equation

This system is linear with respect to the intensity

=solution with Gauss-Jordan elimination

36
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Solution with line scattering

Discretization:

u(V,,U,T)—O{(T)I o(v) J' w(v, 1, 7)d v — d Z(v(,u),r) A7)

Line u=-1
Analogous solution as with coherent scattering

Scattering integral:

_ vo+Av NF
J, = jA J)p(v)dv — ;ka,;

With appropriate weights including the line profile function

(e.g. Gauss function)
NA NF

jL - Z:Z:ujkij,'C

Jj=1 k=1

37
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Linear system of equations

[ B -G U, Wi
-4, B, -G 0 u, w,
O O
0o
00O | -
00
0 b —Cpr | | Unpa Wno
L Ay By |t | | Ww ]

Linear system for u,
Use Gauss-Jordan elimination for solution

38
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Block matrix

Uiy —UY; _ u;

Uiy

NA NF

T.,—T. T —T.
ui _alz Z ujk W/W; _ l+11 i i i-1 — IB[
o E ( T — Ty )

no longer identical, depend
on k but not on j

ijk Ciie

B = B, —a()|| D

s s [ B o
-
]

i s [ s o

’
WiWnr | [WvaMi

B, =1+4,+C,

i ijk
Identical lines

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Solution with line scattering

The modified Feautrier scheme is not very efficient

pp: inversion of matrices of rank NA*NF ~ 3 <5
ND<NA3 «NF3 multiplications

sp: inversion of matrices of rank NA*NF ~ 70«5 »
ND<ND?3 «NF3 multiplications

Repeated calculation of identical scattering integrals at each
frequency point

40
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Rybicki scheme
Rybicki (1971)
Coherent scattering, e.g. Thomson scattering S\ =(1-4,)S, + 5./,
Again: Feautrier transfer equation:

u(z,p)

d
u(z, 1)=f.(0)J(7)- 17 =[1-B.]s(®)

Discretization:
—A B =Cou, B, =[1-57]S,
j=1---NA (pp) , j=1---JMAX (sp)
i=(1),2---ND—1,(ND)
A4.,B,,C, like in usual Feautrier scheme ~®
But now: additional variable J;
With additional equations S =D,
Use alternative grouping J

41
Stellar Atmospheres: Radiation Transport as Boundary-Value Problem _ ~ _
L g (1-4)s,
Rybicki scheme :
. 1 s v Wy .
Tl : U] ul K] u L= (l—ﬁt)S
: — J i i
d 0 ! 0 0 W a " 0
T 5 U, i A IZ/ o (1 B )S
0 f 0 : [\ 01D L D
___________________Zth__i ______ {J_A_Jf_: _____ thyy IZNA Wi
P -1 0 J 0 0 0
Wo O W, w0 S W,
0 - Jw!| | 0] 0 .
Bl,j Cl/ =B Whp.,j
/ 0 0 \ 0 0
T At J iJ Ct/ Uj = _ﬂ;
0 d 0 U
_AND,j BND,j _ﬁ;/u
d’ - . _ - =
T, represents u _T;° U ,J describes — f,J for therayj — Tii, +U J=K,
NA -
Scattering integral is represented by last block line ZWjﬁ —J=0 42

=

21
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Rybicki scheme

1st step: diagonal elements to unit matrixes

1 ; UI i, 121

O 0 | O O 0

1 L0 i | | K,

0 0 | 0 0| | o

1 E UNA ﬁNA %

"""""""""""" FITTOY || Ko”

W, 0w, 0 W, 0 0 :
L0 -1

U =TU, K, =Tk,

J J

Corresponds to the solution of NA tri-diagonal systems of
equations of rank ND — cpu-time ~ NA*ND?2

43
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Rybicki scheme

2nd step: W, to zero

=)
~zEz oS o s
N

Q) ;V“ o \?Qzl o R

J

NA
W=-1-WwU, , 0=->W,

Corresponds to cpu-time ~ NA*ND?

44

22



Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Rybicki scheme

3rd step: solve for J
Wi=0—J=w"0

Corresponds to cpu-time ~ ND?3

Finished if only Jis required

4th step: solve for Feautrier variables u:

s > -7 7
i,=1"'K,~T'0.J

J J

45
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Comparison Rybicki vs. Feautrier

Thomson scattering

Feautrier Rybicki
Plane-parallel C NA3ND C, NA ND?+ C ,ND?
Spherical C ND* C, NP ND?+ C ,ND?

Few angular points: take Feautrier
Many angular points: take Rybicki

46
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Solution with line scattering
(non-coherent scattering)

Two-level atom or Compton scattering s, =aJ, + 3
Each one block line 7,ii, +U ,J=K,

describes transfer equation for each ray j,k
(direction and frequency dependent!)

— Huge system of equations

d 0 0 0 d
T,k Ujk ﬁ/k K Jjk
0 0 0 0| | o
Toine Uyanr T} K NANF
-1 ol v 0
w0 Vij U Wyae 0 0 0
0 -UlJdw ] | 0 ]
47
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Solution with line scattering i
(non-coherent scattering)
L o ujk = u[.j
T U L K, / 0 B
0 0 0 0 0 :
R 2 R Unp, ; d
T U, U K g
Ky=| 5
0 a a a _ / -
Tone Uyanr Uy e K NANF B
-1 0l v 0 v
N\
w, o ij U Wawr 0 0 b —%
\ 0 -1 f T N 0 | 0 0
Ujk = _at
Bl,jk _Cl,jk 0 0
a 0
-
Tjk = 4, Jjk Bi,jk G Jk i ND
0 0 Wi Wk
_AND,jk BND,jk \4/ . ’ 0
i = w, jWk
0 d
J, = [ J,(@)p()dv Wy, W, J48
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Comparison Rybicki vs. Feautrier

Line scattering or non-coherent scattering, e.g. Compton
scattering

Feautrier Rybicki
Plane-parallel C NA3NF3ND |C, NA NF ND?+ C ,ND?
Spherical C NF3 ND# C, NP NF ND?+ C ,ND3

Few frequency points: take Feautrier or Rybicki
Many frequency points: take Rybicki
Spherical symmetry:  take Rybicki

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Variable Eddington factors

1 +1 1

0-th moment JZE f I(ﬂ)dﬂ=.[ u()du
u=-1 #=0
1 +1 1

Ist moment H = [ 1wpdu= [ vuyudu
u==1 #=0

1

+1
2nd moment Kzé j I(,u),u2d,u=I u(u)p’du
p=-1 -

#=0

Eddington factor: /f=K/J -

dH (v,7T)
dz(v)

dK,(v,7) _
dr(v)

0-th moment of RT (pp) =J,(v,7)=8,(v,7)

1st moment of RT (pp) H,(v,7)




Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Variable Eddington factors

d’K,(v,7)
2

Plane-parallel =J,(v,7)=S,(v,7)

d? [f(v, 7)J, (v, T)]
dt’ (v)

With variable Eddington factor =J,(v,7)=S,(v,7)

With given f'and S 2nd-order DEQ for J

Outer boundary:  h(r=0)=H(r=0)/J(t=0)
I'(7=0)>u(t=0)=v(r=0)

1

= h(r=0)= [ u(u)udu / | wdy

U=

d[f(v,T)JV(VaT)” =h(r=0)J (v,7=0)

dr(v) | 51

7=0

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Variable Eddington factors

Inner boundary:
W=t )=H(r=7,)/J(T=1,)

max

Wr=",)= [ u(uudu / [ u(udu

1 1 1
t=1,,: H= [ vwudu= [ I'(wudu- | u(uyudp=H"~hJ

1=0 u=0 u=0

A ) Y UL P
dz(v)

T=Tmax

2nd-order boundary conditions from Taylor series -

52
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Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Solution
Discretization — algebraic equation
2
J,(v,7)~ S0 0] S,(v,7)

dr? )
——AJ_ +BJ. —CJ,

i i+l

s,

Tri-diagonal system, solution analogous to Feautrier scheme “®
Thomson scattering:

§"=(1=-5)S+p.J

CLfe0l00]
e —=As.0D

- _Ai‘]i—l + (Bi _ﬁie)‘]i _qu+1 = (l_ﬂie)Si

= (1=, (v, 7)-

Possible without extra costs © 5

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Variable Eddington factors

But the Eddington factors are unknown — iteration
1. Formal solution u with S=B

Start value Jf;=1/3

Solution of the moment equation for J—S ©*
Formal solution u with given § — K

New Eddington factors f

NA NA

7

/= Z u; ;W; Z u; ;\W;
j=1 j=1

. 2 V4 .
w; contains 4~ , w; contains /
6. Converged?

Al

54
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Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Variable Eddington factors

1 +1 1 5
0-th moment J:E f I(ﬂ)dﬂ=_[ u(ydu , J=r>J
u=-1 #=0
+1 1
1st moment H:% j I(,u),ud,u:j v(uudy , H=r*H
u=1 #=0
1

[ uwdy , K=rk

#=0

+1
2nd moment K=% J' I(Wpdu =
u=-1

0-th moment of RT (sp) -
M: K(Var) va(var)_jv(var)J
dr —
=25
1st moment of RT (sp) -
dK;I(V,l”)+l[3KV(V,r)_JV(V,r)]:—K(v,r)Hv(v,r) 55
r r

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Variable Eddington factors

1st moment of RT (sp)

RO L3k 1) =0, (v, ] = =K, H, (v,7)
dr r
Eddington factor
d(J) +i[3f_1] =—xH
dr r

Introduction of the sphericality factor (Auer 1971),

N %7/ G T U I () BN VA (O
rq(r)—exp(! r'f(r') dr} , rn =rq(r) )

which corresponds to the integrating factor for the DEQ

V+(x)y=gx) , M(x)= GXP(jf(x)dx)

56
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Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Variable Eddington factors

d(FZQ(r)K)_d(rzq(r))K+ ? ()d_K
dr a dr mar dr

= rzq(r)r’];f_l I+ d(d]:])} = rzq(r)(—K‘H)

1st moment equation:

d(r2q(r)K) - d(qu) 7

r2q(r)a’r gxdr
dx=—qxdr

dH 1/~ =

a =)
d(qu)_l:[ dx’ _q( )
dx

57

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Solution

Iteration of Eddington factors like in pp case
Additional integration of sphericality factor

G3f, -1 . .
q.=r" exp(z% WIJ , w, include weights for dr
I=i i r

f=1/3 is a bad starting point, f—1 for r —co
Computational demand much smaller than for formal solution

58
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Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Non-coherent scattering and moment equation

Two-level atom or Compton scattering S, =aJ+p3
For each frequency point one moment equation of 2" order
for mean intensity and Eddington factor J,(v,) . /,(7,,v,)

Coupled by frequency integral 7 _ IJVq,(V)dV Ny f:Jka

d2 s J s
pp J(Tv) - (f(;;)(v;(f V))‘“LJV(P(V)dWﬂ(T)
- &> (qr,) f(r, () .
o D =ary) 0 ~af J.p(vav

= B(r)

59

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Non-coherent scattering and moment equation

Feautrier: J=[Jdpdye] s i=1---ND

cpu-time~ND-NF?3 %
d2 NF

- T
Rybicki: Jo =[N T D] s

= NF =
LJ +UJ =K, , Y WJ,—J =0
k=1

cpu-time~NF<ND2+ND3

60
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Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Multi-level atom

Atmospheric structure assumed to be given
(or accounted for by iteration)

Two sets of equations:
Radiative transfer equation for mean intensity
d? T,v)J (T,v
5L EDLED) g
dt”(v)
S,(r,v)=>"7n" /> k"(v) sum over all bb-, bf-, and ff-transitions
Iu

Iu

Statistical equilibrium
P(J n =b , @i =[n1---nNL]T

Both equations are coupled via radiative rates in matrix P

61

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Multi-level atom
Coupling of J twofold:

* Over frequency via SE
* Over depth via RT

— Simultaneous solution
— non-linearin J

Lambda lteration:

0. start approximation for n

1. formal solution with given S

2. solution of statistical equilibrium with given J
3. converged?

Not convergent for large optical depths > o

31



Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Complete Linearization

Auer & Mihalas 1969

Newton-Raphson method in EN
Solution according to Feautrier scheme
Unknown variables:

_ | . . - =
l//i:|:_.:| , i=1---ND l//:[l//n"‘a'//n""'//ND]T

n
Equations:
—A S ix By = Coad iy — S, (1) =0 NF transfer equations
P(J))ii,—b, =0 NL equations for SE

System of the form:

fiaW) =0, a=1---NF+NL
63

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Complete Linearization

Start approximation: fl a(z)yo) #0
Now looking for a correction so that

fiaW'+6Y)=0 Vi
Taylor series:
0=f, )= f.(¥" +5p)

e 8fE ey, 8, |

purgll i) ik =1 ani,l

W

Linear system of equations for ND(NF+NL) unknowns dJ,, , dn,,
Converges towards correct solution

Many coefficients vanish
64
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Stellar Atmospheres: Radiation Transport as Boundary-Value Problem
Complete Linearization - structure
Only neighbouring depth points (2" order transfer equation
with tri-diagonal depth structure and diagonal statistical
equations): f, (W)= f, (V... W W)
Results in tri-diagonal block scheme (like Feautrier)
~A Sy, +Bow,-Coy,, =L,

. 0 1. o0 00 o[
4, 0 o, ( B, 0o D} 5‘7}
0 g 0 000
- HEEEEREE:
0 0 i, tm 0 0i00 DJ §ﬁJ
| | \o @ 000
0 i 1T [ 0 7
C, 0 oJ.,, 0
Lo _ [ S
O
0 0 o, 0
O

65

Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Complete Linearization - structure

Transfer equations: coupling of J,,, , J;, , and J,,, , at the
same frequency point: ,

— Upper left quadrants of 4, B, C; describe 2" derivative

Source function is local:

— Upper right quadrants of 4, C, vanish

Statistical equations are local

— Lower right and lower left quadrants of 4, C; vanish

dt?

66
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Stellar Atmospheres: Radiation Transport as Boundary-Value Problem

Complete Linearization - structure

Matrix B;.
1 NF 1 NL
0 : -
as,
Bi k _ l,k
’ ani I
0 : z
B = e K
NL
a(Pi)l’m n (P)
i,m iy
. Z
<
67
Stellar Atmospheres: Radiation Transport as Boundary-Value Problem
Complete Linearization
Alternative (recommended by Mihalas): solve SE first and
linearize afterwards: P(J )i, —b, =0 —7i, = P(J,)"'b,
Newton-Raphson method:
+ Converges towards correct solution
+ Limited convergence radius
* In principle quadratic convergence, however, not achieved
because variable Eddington factors and t-scale are fixed
during iteration step
« CPU~ND (NF+NL)3 — simple model atoms only
— Rybicki scheme is no relief since statistical equilibrium not as
simple as scattering integral
68
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Stellar Atmospheres: Temperature Correction Schemes

Temperature Correction Schemes

Stellar Atmospheres: Temperature Correction Schemes

Motivation

Up to now: Radiation transfer in a given atmospheric
structure

No coupling between radiation field and temperature included

— Including radiative equilibrium into solution of radiative
transfer - Complete Linearization for model atmospheres
(next chapter)

— Separate solution via temperature correction
+ Quite simple implementation

Application within an iteration scheme allows completely linear
system — next chapter

No direct coupling
Moderate convergence properties

+




Stellar Atmospheres: Temperature Correction Schemes

Temperature correction — basic scheme

0. start approximation for 7'(7) < T,(7)

1. formal solution J,=AS (T)

2. correction T(t)<T(7)+AT(7)
3. convergence?

Several possibilities for step 2 based on radiative equilibrium
or flux conservation

Generalization to non-LTE not straightforward

With additional equations towards full model atmospheres:
» Hydrostatic equilibrium
» Statistical equilibrium

Stellar Atmospheres: Temperature Correction Schemes

LTE

Strict LTE S (7)= B (T(1))
Scattering  S,(7)= (1~ £,)B,(T(2)) + £.J,(7)

_Simple correction from radiative equilibrium:
[ K@) (J,(2.9) = B(T(2),v))dv =0

v=0

e T k(z,v)(J,(z,v) = B,[T(2)+ AT (7)])dv=0

95, dv=0
T T=T(7)

= AT = T K(JV—BV)dv/T Kaal;V
v=0 v=0

= T x| J,—B,—AT

v=0

dv= T K(JV—BV)dv/]i KAB dv
v=0 4

T=T(7r) v=0




Stellar Atmospheres: Temperature Correction Schemes

LTE

Strict LTE S (7)= B (T(7))
Scattering  S,(7)= (1~ £,)B,(T(2)) + B.J,(7)

Simple correction from radiative equilibrium:
[ K@) (J,(2.v) = B(T(2),v))dv =0

v=0

T T Kk(7,v)(J,(z,v)= B,[T(t)+ AT(7)])dv =0

= I K JV—BV—ATaBV Jdv=0
v=0 r T=T(7)
T ¢ OB
AT = J —B)d ! d
- VIOK( ’ V) V/VIOK.aT T=T (1) '

Stellar Atmospheres: Temperature Correction Schemes

LTE
Problem:
r T OB
AT= | x(J,-B)dv/ | k= dv
VIO V‘!.O aT T=T(7)

J,——z— B, independent of the temperature = AT — 0

Gray opacity (k independent of frequency):

[ x()(J,~B,)dv— x(J-B)
;K(J—B—AB):O

- x(J-B)=KkAB

9 _ B

0.Moment equation d t

deviation from constant flux provides temperature correction




Stellar Atmospheres: Temperature Correction Schemes

Unsold-Lucy correction

Unsold (1955) for gray LTE atmospheres, generalized by
Lucy (1964) for non-gray LTE atmospheres

0-th moment: % =x,(J,-B,)
t

J.mdv%d—H:ﬁJ—B , KyB= J. KBdv , x,J= I KJdv , dt=K,dt
dT KB v=0 v=0
Ist moment: &z KH,
dt
J.~~~dv%d—K=&H , KyH= I K, H dv
dt K, 2o

now new quantities J’, H’, K’ fulfilling radiative equilibrium (local) and

flux conservation (non local)

’

. e K
radiative equilibrium: =—LJ'-B'=0
dr &,
. dK' K K, O
flux conservation: =L ="t —T
dr K, K, 4w

Stellar Atmospheres: Temperature Correction Schemes

Unsold-Lucy correction

Now corrections to obtain new quantities:
AX =X'-X
dAK K

2 =TUAH integrate — AK = AK(0)+ [ K Arar
df KB 7'=0 KB

K= ]:dev = T fJdv=f] , H0)= T H,(0)dv = jfthv(O)dv =1J(0)

(O)AH(©0)

Sak =7 ; [ 22 AHdT = fA)

7'=0 KB

LU VvV +ﬁ{w+i j &Wj
dr Ky Ky fh fr’:O Ky

3 T
A=20T yp_ +Q[M+l &AHdr’]
7 KB fh f 7'=0 KB

AT =" { +ﬁ{—f(0)AH(O)+l j. &AHdr'ﬂ

K fh S 2o Ky

B




Stellar Atmospheres: Temperature Correction Schemes

Unsold-Lucy correction

AT =_F 3|:&J_B+ﬂ(w+i j‘ &AHdz"]:|
40T | K, Ky Sh J o2 Ky

H_}\ ~ _J

,Radiative equilibrium® part good at small optical depths but
poor at large optical depths J — B
.Flux conservation® part good at large optical depths but poor
at small optical depths dH
E -0

Unsold-Lucy scheme typically requires damping

Still problems with strong resonance lines, i.e. radiative
equilibrium term is dominated by few optically thick
frequencies

Stellar Atmospheres: Temperature Correction Schemes

Unsold-Lucy correction
Generalization for scattering

0-th moment: % =K, (Jv -§ ) =x,(J,-(-B)B,—-B.J,)

dH_ﬁ

— J-B
dr kK,

[-dv—

K,B=(1-B) [ kBdv , xJ=(1-B)[ KJdv , dr=x,dt
v=0 v=0

All the rest is the same
Difficulties for scattering dominated regions: weak coupling
between radiation field and temperature
K;AB—0
B —-1=x,AJ -0

dAH
dr

-0




Stellar Atmospheres: Temperature Correction Schemes

Unsold-Lucy correction
Generalization to non-LTE (Werner & Dreizler 1998, Dreizler 2003)

0-th moment: % =x,(J,-S,)=KJ,-K,B,-7,J,
1

i _Xy-B

dr kK,

[--dv—

KBBZ J. I%\VB‘,dV 5 KJJ: J‘ (K},—}/\,)J‘,dv , dz.zk,b‘dt
v=0 v=0
All the rest is the same

&, should contain only terms which couple directly to the
temperature, i.e. bf and ff transitions

Depth dependent damping (need to play with parameters c):

AT =" {Clen, f(ﬁj—3)+ﬁ[cz(l—e’" L QAHQ)  e(=e 7 ) jﬁAHdr’H
40T Ky Ky fh f 7'=0 Ky

K]

Stellar Atmospheres: Temperature Correction Schemes

Stellar Atmospheres
This was the contents of our lecture:

Radiation field

Radiation transfer
Emission and absorption
Radiative equilibrium
Hydrostatic equilibrium
Stellar atmosphere models




Stellar Atmospheres: Temperature Correction Schemes

Stellar Atmospheres
This was the contents of our lecture:

Radiation field

Radiation transfer
Emission and absorption
Radiative equilibrium
Hydrostatic equilibrium
Stellar atmosphere models

The End
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Stellar Atmospheres
This was the contents of our lecture:

Radiation field

Radiation transfer
Emission and absorption
Radiative equilibrium
Hydrostatic equilibrium
Stellar atmosphere models

The End

Thank you for
listening !




Stellar Atmospheres: Temperature Correction Schemes

Avrett-Krook method
In case that flux conservation and radiative equilibrium is not
fulfilled, Unsold-Lucy can only change the temperature
Change of other quantities, e.g. opacity, is not accounted for
— Avrett & Krook (1963)
strict LTE assumed, generalization straightforward

Current quantities:

0 0
,u% = %(13 -BX(T° (7" ))) with some kind of mean opacity x°
T K

=7

Does not fulfill flux conservation and radiative equilibrium

New quantities:
dl, _K

U y (I —-B,(T(7))) with mean opacity &
T

Stellar Atmospheres: Temperature Correction Schemes

Avrett-Krook method
Linear Taylor expansion of the new quantities from old ones:

drt dt' 0 1 0 1 0 1 4
=1+ s I'=T'+T" I, =1 +1 H:J‘(HV+Hv)dv:o'/47zTcff
dr’ dt

d
xv=xf+xi=xf+rl%

B
BV:BfH_?j=B§+TIL

0 0

Radiative transfer equation:

= 2.(1,~ BT (@)
dr’ dI‘
,ud ot 2'0 ( Y+ )(1)+1,-B)-B))
2108 ]z s )41 B -B)
2 (1-8 +;(v ](1°+1‘ -B'-B))
dr
,ud ( ) [Z +ng ](10 BVO) 16




Stellar Atmospheres: Temperature Correction Schemes

Avrett-Krook method
1st moment:
dr° o d

1 1
%%WSHH[;(H;:S%]HS=13Hl+[r‘ff&wvj Je=0

1 0
LAt o p 2L g [-+-av
dt dt g,

%d—ZJH°+T Jdl D=1 -1 | lincar DEQ of first order  —g»
dr’ ar’ »° 4"

0

R ol 1 dy, H,
=7 ——M(TO).!M(x){l G )}dx M(x)—exp[_[dyfdvlo 3 HO]

Stellar Atmospheres: Temperature Correction Schemes

Avrett-Krook method
Outer boundary:
HI(0)=hJ)(0) [-dv

Hl(o)zﬁzg‘f‘f _HO(O)=[4ﬂ%;ff(0)_1]1{°(0)=[4ﬂ%@ff(o)—1].[Hf(O)dv

T O-T?f 0 T
> || —=—-1|H (0O)dv=|hJ (0)d
![4”[{0(0) ] v( ) v _([ v v( ) v

%£@=[0% 4yﬂm
47 H"(0) h,
dK‘ ol . |H(0)
o vav(Z') const—vav() [4”1{0(0) 1] i

L) = ol 1 H)(0)
T 4 HO(0) fh




Stellar Atmospheres: Temperature Correction Schemes

Avrett-Krook method

0-th moment:

af1 (11 ) + o dT' (IO ) J’d
'udro X Z Zvd H

dH! dt
S8 a2t 5 -8

_)d—l{::/’{o[,]‘lj—]ﬂ dB‘(})j [ dl‘, ()dT ](J‘?—B‘?) .[dv

dr’ ' dT dr® 7" dr’

aVH1 dH dt' dH’

a7’ dr’

—f;(vad TI;(Vd —=dv +r_[ 7. (J0-B))dv+

=T —/J;( dT;dv

{Jnjomw{ m}ﬂ°[ﬂ§_ﬁﬁM@w}
d7" ) d7" "\ 4xH(0) )37 foh,

1

Stellar Atmospheres: Temperature Correction Schemes

Radiative equilibrium and Complete Linearization
(LTE)

Simultaneous solution of RT and RE  radiation transfer:

d*J (v,7)

dr(v)’

- f,(J,,T)=0 J, :(Jl’k’...’Ji’k’...’JND’k) T=(T, T, Ty)

JOT"  f,(J°,T") #0 = correction 6.J,,0T — f,(J' +6J,,T° +6T)=0

Taylor expansion: f, (J" +d8J,,T" +0T)

J,(v,7)- ~B (1 T(2))=0

0= [T+ gy + L gy e i, v g

Jiflk ath a’]t+lk i a
—T.6J,+U,0T =K,
T, : tri-diagonal with usual — 4, ,B, ,—C, -
B (v, T,
U, : diagonal (U, ). =—%

(Izk)l. z_fik(j/?afo)

20
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Stellar Atmospheres: Temperature Correction Schemes

Radiative equilibrium and Complete Linearization
(LTE)
Simultaneous solution of RT and RE  radiative equilibrium:
[ k. 7)(J,0,7) = B,(»,T))dv=0

v=0
NF

i, NF+1 (Ji,la'"’Ji,k""’Ji,NF’];) :Zwk (Jik _Bv(vk’Ti)) =0

k=1

%

Taylor expansion: f; .., (j,? +6J,,T" + 5T)k

=1,NF

Vi

70 450 . af; NF+1 F+1 <- 7 7 T
=0=fyn (IO, T+ Y 2 57, F 0T D W,8J,+DST =L
; k=1

o dJ, )

W, :diagonal (W) =w,
N an (vk' b4 T;)

D: diagonal (D) =-)> w
( )” k'Z:; k a]-;

(L) = S (I8 =B, T)

k=1

21

Stellar Atmospheres: Temperature Correction Schemes

Radiative equilibrium and Complete Linearization
(LTE)

Together: Rybicki scheme:

T LU\ 8T K,

0 0 0

T, LU 8 || K
0 0 Lo o 0

Tur Ui 5‘71\/17 _K_NF__

W, W, W,iD) | |1

RE takes the part of the scattering integral

Instead of J solve for temperature corrections
Non-linear — iteration

During the iteration: new opacities, Eddington factors

22
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Stellar Atmospheres: Temperature Correction Schemes

Radiative equilibrium and Complete Linearization
(NLTE)

Direct generalization at least problematic due to weak
coupling of NLTE source function to the temperature

Take into account the change of the population numbers

— Add RE to the Complete Linearization scheme
(Auer & Mihalas 1969) >

Rgdiative equilibrium in NLTE:
[ k0.7 (J,0,7)=S,(,7,)) dv=0

v=0
NF
- i, NF+NL+1 (Ji,l"”’Ji,NF’ni,l’”"ni,NL’T;’) = Zwk (K(Vk’z-i)‘]ik _nv(vk’z-i)) =0
k=1
" [ J Bm_am]
. . . . _ _ k| ik P P
Linearization Ivponp (5 +89) = / n, om,

NE Of NL Of of
Ozﬁ’NﬂNLH(l/?o)_'_z% Jik+z fz,NF+NL+1 5’1”_'_ fz,NF+NL+1 5]; »
k=1 ik =1

ony a7,

I

Stellar Atmospheres: Temperature Correction Schemes

Radiative equilibrium and Complete Linearization
(NLTE)
Together with RT and SE: -

oW +0y)= a=1-NF+NL

ND NF aﬁa NL aﬁa aﬁa
O:ﬂ,a(V/O)JFZ{ZJ—"SJi,k+Za_’5”i,l+ aT’ ) ,}

purall s ik =1 9N,

4,0y, + Boy, - Coy,, = Z,

k 0 éJ, i1 B,,A

0 0o ||, 5ii 0 0 | o,

e e O e e [ e O e
e e O e e [ e O e
o e O e e [ e e

|

1]

|

=~

)
OO og O oQ

<

S

NS

OO oo o
oo oo
oo oo L

0 0 )1 | 5T, 0 0 )1
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Stellar Atmospheres: Temperature Correction Schemes

Radiative equilibrium and Complete Linearization

(NLTE)
Matrix B,.
1 NF 1 ... NL T
' 0 :
B, _ gS,-,k 05,
n; oaT;
0 .
B = '
Tl e ()
1) l,m t/lm
LTy e (), b
m=1 ik i
af;NF+NL+1 a.fiNF+NL+1 a./;NF+NL+1
a‘]i,k’ a”i,/’ a7,

aN

IN

-
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Stellar Atmospheres: Accelerated Lambda lteration

Accelerated Lambda Iteration

Stellar Atmospheres: Accelerated Lambda lteration

Motivation

Complete Linearization provides a solution scheme, solving
the radiation transfer, the statistical equilibrium and the
radiative equilibrium simultaneously.

But, the system is coupled over all depths (via RT) and all
frequencies (via SE, RE) - HUGE! -»

Abbreviations used in this chapter:
RT = Radiation Transfer equations
SE = Statistical Equilibrium equations
RE = Radiative Equilibrium equation




Stellar Atmospheres: Accelerated Lambda lteration

Multi-frequency / multi-gray

Ways around:

Multi-frequency / multi-gray method by Anderson (1985,1989)

» Group all frequency points according to their opacity into
bins (typically 5) and solve the RT with mean opacities of
these bins. — Only 5 RT equations instead of thousands

+ Use a Complete Linearization with the reduced set of
equations

+ Solve RT alone in between to get all intensities, Eddington-
factors, etc.

* Main disadvantage: in principle depth dependent grouping

Stellar Atmospheres: Accelerated Lambda lteration

Lambda Iteration

Split RT and SE+RE:
-

J" " = AS™ (n,T) RT formal solution

!

A(J,T)n"" =b SE

jzc(v,n,T)(Jv ~S,(v,n,T))dv=0  RE
0

I

* Good: SE is linear (if a separate T-correction scheme is used)
+ Bad: SE contain old values of n,T (in rate matrix A)
Disadvantage: not converging, this is a Lambda iteration!




Stellar Atmospheres: Accelerated Lambda lteration

Accelerated Lambda Iteration (ALI)

Again: split RT and SE+RE but now use ALI

R

Jnew — ASold (nold , Told) + A*SneW(nneW, TneW) _ A*S(Jld (nold , Told) RT
A(Jnew,TneW)EWW :é SE

TK(V, 0" T (S0 =S, (v, 0™ T") ) dv = 0 RE

I
* Good: SE contains new quantities n, T
« Bad: Non-Linear equations — linearization (but without RT)

Basic advantage over Lambda lteration: ALI converges!
5
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Example: ALI working on Thomson scattering problem
S= (1 - B, ) B+ [ J  source function with scattering, problem: J unknown—iterate

= J"" = (A -A ) SM + AS
=(A=A")S™+ A ((1-B.)B"" +BJ")  J":=formal solution on S’
=J5 A ((1 —-B)B" +BJ" —(1-5,)B"” —,BgJ"“”’) B =B
=J® =N (BJ" - BI") solve for J""
= J"" = [1 -AN'B, T (J¥=A"BJ")  subtractJ”’ on both sides
== =[1-N BT (I =)
/

amplification factor

Interpretation: iteration is driven by difference (J7S-Jo) but: this difference

is amplified, hence, iteration is accelerated.
Example: 3.=0.99; at large optical depth A* almost 1 — strong amplifaction &
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What is a good A*?

The choice of A* is in principle irrelevant but in practice it
decides about the success/failure of the iteration scheme.

First (useful) A* (Werner & Husfeld 1985):

. S() 7>
A (rr)s, @)= T
0 TSy
A few other, more elaborate suggestions until Olson &
Kunasz (1987): Best A* is the diagonal of the A-matrix
(A\-matrix is the numerical representation of the integral operator A)

We therefore need an efficient method to calculate the
elements of the A-matrix (are essentially functions of t,, ).

Could compute directly elements representing the A-integral operator, but
too expensive (E, functions). Instead: use solution method for transfer

equation in differential (not integral) form: short characteristics method

Stellar Atmospheres: Accelerated Lambda lteration

In the final lecture tomorrow, we will learn two important methods to
obtain numerically the formal solution of the radiation transfer
equation.

1. Solution of the differential equation as a boundary-value problem
(Feautrier method). [can include scattering]

2. Solution employing Schwarzschild equation on local scale (short
characteristics method). [cannot include scattering, must ALl iterate]

The direct numerical evaluation of Schwarzschild equation is much too
cpu-time consuming, but in principle possible.
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Olson-Kunasz A*

Short characteristics with linear approximation of source
function

I+(T,,u,v)=I+(TmaX,,UaV)eXp(— Tonax _TJ+ I S (z’)exp[_f —TJd_T
1 : #

U
- - T [ -7 |d7
I (’Z',IU,V)ZI (O,IU,V) exXp _m +IS (T)GXp —W W

I' (T, u,v) =17 (7, ft,v) exp(—AT, )+ AL (S, 1, v)
Iﬁ(z-i’#’ V) = 17(Q—I’ﬂ9 V) eXp(_ATi—l)—FAI;(S’ﬂ’ V)
(Ti_TH)

7

using a linear interpolation for the spatial variation of S

with A7 =

the intergrals Al can be evaluated as

Nz’i = aiiSH + ﬁiiSi + ﬁsm
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Olson-Kunasz A*

Short characteristics with linear approximation of source
function

-A
a:-:o %_:_e_A+1_e
B —1+eiA_1 1-e™
i A ﬁi_:l_
g A
%T:—e’A—eA ¥ =0
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i

0 I exp(-Az)+AL 0
ii_ exp(_Ari )+ Aiijrl

Liivrnn
i
0
Y
0 Y exp(=AT,_ )+ B

(72, exp(-A7_)+ B )exp(-AT) +ar,

I exp(-At,.,)

Inward

B exp(-AT) + o,

ik_—l exp(-A7,_,)
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i

1;:0---;-2
IAT exp(_Ari—l)-'—Aiitl
0 I exp(-Ar)+Al; 0
AL*

i+l

0

i/:rl exp(-A7,_ )

([Zitrl exp(-A7)+ ) exp(-A7,_ )+ ¥,
0 & exp(-AT)+
a+

i+1

Outward

i/:rl exp(-A7;,)

B exp(-At )+,
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A-Matrix

1e . -
E .[ dul;, exp(-A7, )
0

1

%Jdﬂ(ﬂ;r eXp(—ATH)—'—%tl)
0
1

A= 0 %!dﬂ(ﬂfﬂ@) 0
1

> [du(p expi-sc)+ar)

0

1

~ldu(iz exvi-az, )

0
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Towards a linear scheme

A* acts on S, which makes the equations non-linear in the
occupation numbers

* Idea of Rybicki & Hummer (1992): use J=AJ+¥*n"e" instead
* Modify the rate equations slightly:

R.n, = 471']:%11[Jvdv = 47[?% n, (‘I’*ﬂ( )+AJ) dv
0 0

2
n w U7 ¢

) Fo, 3
R.n =4r| —L I—”n J +2hv jdv
0

, o. . 3
=an| 2o | [Tl | yay+ 2 jdv

2
C




