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Exercise for Solar Physics (2008) - Part 1

Chapter 1: Introduction

How is the Sun related to (1) other fields of science and (2) other stars?
How does the Sun affect planets?

Chapter 2: Core and interior

2.1 Solar model

(A) Calculate the Sun’s gravitational energy: the total work required to disperse the solar matter
over distances r ≫ r⊙ (G = 6.67 ·10−11 m3kg−1s−2, use the following solar model). Compare this
to the total solar irradiance (1366Wm−2 at 1 AU) or to the energy in a solar flare (up to 6·1025 J).

m/m⊙ r/r⊙ T [K]

0.000 0.000 1.5 × 107

0.125 0.124 1.2 × 107

0.250 0.170 1.0 × 107

0.375 0.210 8.9 × 106

0.500 0.254 7.7 × 106

0.625 0.306 6.6 × 106

0.750 0.367 5.4 × 106

0.875 0.470 4.2 × 106

1.000 1.000 5.8 × 103

(B) Assuming the Sun to be a perfect monatomic gas (pressure P = ρRT/µ, R/µ = 2CV /3,
gas constant R = 8.31 J/(◦Kmol), µ is the mean molecular weight) in hydrostatic equilibrium,
calculate the internal energy. (Hint: derive the virial theorem using integration by parts.) Find
the mean mass-weighted temperature for such a gas and compare to that from the tabulated
model.

2.2 Nuclear reactions

How does the nuclear energy content of the Sun compare to its gravitational and internal ener-
gies? (Assume all protons are converted to α−particles via ppI. 1 eV = 1.602·10−19 J, Avogadro’s
Number NA = 6.0 · 1023)
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Solutions to Exercise Solar Physics (2008)

Chap.1 Introduction

(1) To other fields of science: astrophysics (stellar evolution, cosmic rays); plasma physics (dy-
namo, turbulence, waves, fusion); particle physics (atoms, molecules, neutrinos, standard model
of elementary particles); gravitation (general relativity); Sun-Earth or -planets relation (space
weather, climate).

(2) To other stars: The Sun is a main sequence star (age about 4.5× 109 yr), evolving into a red
giant, planetary nebula, and then a white dwarf.

(3) Relations to planets The Sun provides heat and light at various wavelengths (causing expan-
sion of the atmosphere through heating); The interaction with the Sun involves also the solar
wind. For magnetized planets (Earth, Jupiter, Saturn, Uranus, Neptune) the interaction with
the Sun or the solar wind causes formation of magnetosphere and various magnetospheric or
ionospheric activities such as aurora, radiation belt, storms and substorms. For non-magnetized
planets (Venus and Mars) the interaction with the Sun and the solar wind ends up with loss
(or escape) of the planetary atmosphere into space (called the ion pickup process). For non-
atmospheric planets like Mercury or Earth Moon, the solar wind hits directly on the surface and
kicks out surface materials (sputtering). The solar wind is a supersonic (and super-Alfvénic)
flow and a standing shock wave (bow shock) forms in front of the planets. Comet tails (ion tails)
are also caused by the interaction with the solar wind.

Chap.2 Core and interior

2.1 Solar model

(A) Work for shell mass dm and radius r against attraction of the rest mass m

dE = −

∫
∞

r

Gmdm

r′2
dr′ (1)

= −
Gmdm

r
(2)

Integrate over m

EG = −

∫ m⊙

0

Gmdm

r
(3)

= −
Gm⊙

2

r⊙

∫ m⊙

0

r⊙
r

m

m⊙

dm

m⊙

(4)
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Approximate by
∫

f(x)dx ≃
∑

f(x)∆x,

EG ≃ −
Gm⊙

2

r⊙
× 0.125 × [0 + 1.008 + · · · + 1] (5)

≃ −6.3 × 1041[J], (6)

where we used the values G = 6.67 × 10−11 [m3/kg s2], m⊙ = 1.99 × 1030 [kg], and r⊙ = 6.96 ×
108 m. Hence the Sun’s gravitational energy is |EG| = 6.3 × 1041 [J].

The solar irradiance is S = 1.336 × 103 [W/m2] at 1 AU. Noting that 1 [W] = 1 [J/s] and 1 [AU]
= 1.496 × 1011 [m], the total irradiance (integrated over the surface 4πr2) is ĖR = S × 4πr2 =
3.8 × 1026 [J/s]. This is the amount of energy that the Sun provides through radiation per
second. With the gravitational energy only, the Sun can provide energy for the period EG/ĖR =
6.3 × 1041/3.8 × 1026 [s] = 1.7 × 1015 [s] = 5.4 × 107 [yr]. In reality, the Sun’s age is about
4.5 × 109 [yr]. So one needs to find an alternative energy source (which is nuclear reaction).

(B) Hydrostatic equilibrium is a force balance between pressure gradient and gravity

−∇P + ρ~g = 0 (7)

where gravity (or gravitational acceleration) is

~g = −
Gm

r2
~er. (8)

In the radial direction the hydrostatic balance reads

dP

dr
= −

Gmρ2

r2
(9)

Using mass-radius relation dm = 4πr2ρdr, the hydrostatic balance equation gives us the
pressure-mass relation

dP = −
Gm

4πr4
dm. (10)

Multiply the both sides by sphere volume V = 4π
3

r3,

(lhs) = V dP = d(PV ) − PdV (11)

(rhs) = −
Gm

4πr4

4πr3

3
dm = −

Gm

3r
dm. (12)

Integrate from the Sun center to the surface∫ sur

cen
(lhs) =

∫ s

c
d(PV ) −

∫ s

c
PdV (13)

Note that the first term on the right hand side vanishes because P = 0 at solar surface and
V = 0 at center. Use the ideal gas pressure P = ρRT

µ
= ρ2CV

3
T ,

∫ s

c
(lhs) = −

∫ s

c
PdV (14)

= −
2

3

∫ s

c
ρCV TdV (15)

= −
2

3

∫ m⊙

0

CV Tdm (16)

= −
2

3
U, (17)
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here the last integral gives us the internal energy U .

The right hand side of the pressure-mass relation yields one third of the gravitational energy
when integrated over m

∫ s

c
(rhs) = −

∫ s

c

Gm

3r
dm (18)

=
1

3
EG. (19)

Hence we have
U + 2EG = 0, (20)

and this is called the virial theorem.

The mass-weighted mean temperature is

〈T 〉 =
1

m⊙

∫ m⊙

0

Tdm (21)

For constant CV , the virial theorem yields

2CV

∫ m⊙

0

Tdm = −EG. (22)

The left hand side can also be written with the mean temperature as

2CV

∫ m⊙

0

Tdm = 2CV m⊙〈T 〉. (23)

Hence the virial theorem gives us the mean temperature as

〈T 〉 = −
EG

2CV m⊙

(24)

= −
EG

m⊙

µ

3R
, (25)

where CV is replaced by the gas constant R = 8.31 [J/K mol]. If we take the mean molecular
weight µ = 0.5 [g/mol], the mean temperature (estimated from the virial equilibrium) is

〈T 〉 =
|EG| × µ

m⊙ × 3R
(26)

=
6.25 × 1041 [J] × 0.5 × 10−3 [kg/mol]

3 × 8.31 [J/Kmol] × 1.99 × 1030 [kg]
(27)

= 6.30 × 106 [K]. (28)

On the other hand, the tabulated solar model gives us the mean temperature

〈T 〉tab =

∫ m⊙

0

T
dm

m⊙

≃ 7.83 × 106 [K], (29)

which is close to the virial temperature. The Sun is therefore (roughly speaking) in a hydrostatic
and virial equilibrium.
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2.2 Nuclear reactions

The ppI reaction releases the energy about 26.732 [MeV] from 4 protons,

4 (protons) → 1 (α−particle) + 26.732 [MeV]. (30)

In other words, the energy release is ∆Enuc = 26.732/4 [MeV] = 6.683 [MeV] = 6.683 × 106 ×
1.602×10−19 [J] = 1.071×10−12 [J] per proton. The number of protons can be simply estimated
as N = m⊙/mp = 1.99× 1030 [kg]/1.67× 10−27 [kg] = 1.192× 1057 [particles] on the assumption
that the Sun entirely consists of protons. The total energy release from the nuclear reaction is
Enuc = N∆Enuc = 1.3 × 1045 [J]. This is about 2000 times larger than the gravitational energy.
When compared to the solar irradiance, the nuclear reaction provides the energy for the period
Enuc/ĖR = 1.3 × 1045 [J]/3.8 × 1026 [J/s] = 3.4 × 1018 [s] = 1.1 × 1011 [yr], which can account
for the energy source problem of the Sun. (cf. the Sun’s age is 4.5 × 109 [yr]) Compared to the
internal energy, Enuc/U = Enuc/(1/2EG) ∼ 4000.
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Exercise for Solar Physics (2008) - Part 2

Chapter 3: Oscillations

The f-mode corresponds closely to (deep) ocean waves. In these two questions we will try to get
some insight into their behaviour. The first part shows you the mathematics behind this type of
solution. It is worth doing, and the answer is at the bottom in case you get stuck. The second
part asks you to think about the mathematical solution and the actual Sun.

3.1 Local helioseismology & the f-mode (1)

We begin with the momentum equation

ρ0

∂2ξ

∂t2
= −∇P ′ − ρ′gẑ (1)

where ξ is the displacement caused by the waves, and P ′ and ρ′ are the pressure and density
pertubations associated with the waves. The continuity equation is

ρ′ = −∇ · (ρ0ξ) (2)

and the equation of state and energy equation (here adiababitc) can be combined to give

P ′ = c2

0(ρ
′ + ξ · ∇ρ0) − ξ · ∇P0 (3)

The subscript 0 denotes the background solar stratification which we will assume varies only in
the z direction.

To keep life simple we will only consider a small patch of the solar surface (so we can use a
cartesian coordinate system x, y, z). To not lose contact with waves on the surface of the ocean
we look for solutions which work for both the Sun and the ocean. We keep the full equations, but
look for solutions which additionally do not compress the gas, i.e., ∇· ξ = 0. Note carefully that
we are using the full equations and only looking for solutions obeying this additional constraint.
Such solutions need not exist, and hence we need to remember to check the solutions at the end
for consistency.

Using equation 2, show ∇ · ξ = 0 implies ρ′ + ξ · ∇ρ0 = 0.

Then assume that the atmosphere is hydrostatic (∇P0 = −ρ0gẑ) to obtain (from equation 3)
P ′ = ξzρ0g.
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This and ρ′ = −ξ · ∇ρ0 can be used to eliminate P ′ and ρ′ from the momentum equation.

Remembering that the background atmosphere ρ0 varies only in the z direction, expand what
remains until you have an equation for ∂2ξ/∂t2 where none of P ′, ρ′, ρ0, P0 and c0 appear.

Write down the z-component of this equation. Write down the x-component of this equation.

At this stage you should have something like

∂2ξz

∂t2
= −g

∂ξz

∂z
∂2ξx

∂t2
= −g

∂ξz

∂x

Pretty.

Find some solutions with ξz = e−iωt × eikxx × ekzz, ξx = ie−iωt × eikxx × ekzz. You will also need
to use ∇ · ξ = 0 (which means for our solutions ikxξx = −kzξz). [At home check the solution
satisfies all the equations.]

Find the dispersion relationship ω = f(kx).

Bonus question: What are the group and phase speeds (both for the ocean and the Sun)?

[Answer: kx = kz, and ω =
√

gkx, i.e.,

ξz = e±iωt × eikxx × ekxz,

ξx = ie±iωt × eikxx × ekxz]

————————–

3.2 Local helioseismology & the f-mode (2)

[Starting from the answer to question 1 and noting that the velocity associated with the wave
is just iωξ.]

Draw some of these solutions as a function of z. Where is most of the kinetic energy? [hint: draw
a rough sketch of the density and of the behaviour of the veloicty as a function of height. What
are the different possibilities depending on kx?]

Why are the solutions for the deep ocean only? (What does “deep” mean here?)

How bad are the approximations we used to get these results (when are we safe with our
assumptions)?

How do you think convection affects the waves? [Hint: Ocean waves can propagate a long way
on a smooth sea.] What about the chromosphere? Roughly sketch how you expect the lifetimes
of the modes to depend upon kz. [Hint: The chromosphere is a very violent place for the modes
we are discussing.]
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Chapter 4: Rotation

In many models the 11 year solar cycle is thought to be bound up with the solar differential
rotation, converting “poloidal” flux to “toroidal” flux.

1) Draw a cut through the sun showing the core, the radiative zone and the convection zone.

2) Draw a magnetic field line passing from the just to the right of the north pole to just to the
right of the south pole. Note that the field line doesn’t have time to penetrate the radiative core
and hence makes a detour.

3) What is the rotation rate at the pole? How many times does the field-line rotate about the
axis per year? (Assume the field line is “frozen” into the plasma.)

4) What is the rotation rate at the equator? How many times does it get wound up here?

5) If there was no differential rotation what would the answer to 3 and 4 be?

6) If there was no differential rotation how would the fieldline look after a year?

7) How does it look with the solar differential rotation?

8) What if a star had more differential rotation?

3
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Solutions to Exercise Solar Physics (2008)

Chap.3 Oscillations

Part 1. Continuity equation:

∂tρ + ∇ · (ρ~v) = 0. (1)

Replace the time derivative by δρ/δt, multiply the equation by δt,

δρ + ∇ · (ρ~vδt) = 0. (2)

Use displacement ~ξ = δ~x = ~vδt, and we obtain Eq. (2) in the sheet:

δρ = −∇ · (ρ0
~ξ). (3)

Pressure variation is derived from the definition of the sound speed:

c2
s =

P

ρ
, (4)

where we set the polytropic index (or ratio of specific heat) γ = 1. The fluctuation of the pressure
is

δP = c2
sδρ (adiabatic), (5)

and we replace δρ → δρ + ~ξ · ∇ρ0, where the first term denotes the fluctuation (oscillation or
wave field) of density and the second term the change of the background. We also replace the
pressure as δP → δP + ~ξ · ∇P0, and here again the first term is the fluctuation of the pressure
and the second term the change of the background. The pressure variation is written in the form

δP + ~ξ · ∇P0 = c2
s(δρ + ~ξ · ∇ρ0), (6)

which gives Eq. (3) in the sheet:

δP = c2
s(δρ + ~ξ · ∇ρ0) − ~ξ · ∇P0. (7)

Incompressibility means ∇ · ~v = 0. Multiply by δt and we obtain ∇ · ~ξ = 0. The continuity
equation becomes

δρ + ~ξ · ∇ρ0 = 0. (8)

Hydrostatic equilibrium in the z (vertical) direction is

−∇P0 − ρ0g~ez = 0. (9)
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In the pressure variation equation the first term with the bracket vanishes because of the conti-
nuity equation under incompressibility δρ + ~ξ · ∇ρ0 = 0. The pressure variation is hence

δP = −~ξ · ∇P0 (10)

= ξzρg, (11)

where the ∇-part is replaced by the density fluctuation using the hydrostatic balance.

Now we use the pressure variation
δP = ξzρ0g (12)

and the density variation
δρ = −~ξ · ∇ρ0 (13)

in the momentum equation (for waves),

ρ0∂
2
t
~ξ = −∇(δP ) − δρg~ez (14)

= −∇(ξzρ0(z)g) + ~ξ · ∇ρ0(z)g (15)

= −∇(ξzρ0(z)g) + ξz∂zρ0(z)g. (16)

In the z component the right hand side of the momentum equation is written as

(rhs) = −∂z(ξzρ0(z)g) + ξz∂z(ρ0(z)g) (17)

= −ρ0g∂zξz. (18)

Here we take g = const. The density ρ0 in the momentum equation is canceled out and we
obtain the momentum equation in the form

∂2
t ξz = −g∂zξz. (19)

For the x component,

(rhs) = −(∂xξz)ρ0(z)g (20)

(lhs) = ρ0(z)∂2
t ξx, (21)

hence
∂2

t ξx = −g∂xξz. (22)

Pretty.

We use the ansatz

ξz = exp[−i(ωt − kxx) + kzz] (23)

ξx = i exp[−i(ωt − kxx) + kzz]. (24)

(25)

This means that we have a plane wave propagation in the x direction with the amplitude unity
at base (z = 0). In the z direction the wave amplitude grows exponentially. The displacement
in the x direction (ξx) has a phase shift by π/2 from that of ξz, such that the oscillation of fluid
element forms a circular motion in the xz plane.
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When we use the ansatz, we obtain the dispersion relation as a solution of the equations, and
that is

ω2 = gkx = gkz. (26)

The wave propagates solely in the x direction, and the phase speed is

vph =
ωkx

|k2|
=

ω

kx
=

g

ω
. (27)

The group speed is

vgr =
ω

kx
=

g

2ω
=

1

2
vph. (28)

Part 2. Hydrostatic equilibrium is given as

−∇P0 − ρ0~g = 0. (29)

We use the ideal gas for the pressure,

P0 = n0kT = ρ0
kT

m
, (30)

where m is the mean molecular weight. Combining the two equations, we obtain

∇ρ0 = −
m~g

kT
ρ0, (31)

where we assumed an isothermal gas (T = const). The gravity is in the z direction only, and

dρ0

dz
= −

mg

kT
ρ0, (32)

which can easily be solved and the solution is an exponential decay of the density:

ρ0(z) = ρ0(0)e−z/H , (33)

where H is called the scale height

H =
mg

kT
. (34)

The velocity of the medium associated with the wave oscillation is

~v = iω~ξ. (35)

We use the dispersion relation

ω2 = gkx, (36)

which gives the squared velocity

|~v|2 = ω2|~ξ|2 (37)

= gkx(|ξx|
2 + |ξz|

2) (38)

= 2gkxe2kzz. (39)
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The kinetic energy of the oscillation is hence

1

2
ρ0v

2 =
1

2
(ρ0(0)e−z/H)(2gkxe2kzz) (40)

= ρ0(0)e(−1/H+2kz)z. (41)

If (−1/H + 2kz) > 0, the kinetic energy grows in the z direction. If (−1/H + 2kz) < 0, the
energy decays in the z direction. (See discussion in Airy wave theory in fluid dynamics.)

The wave mode is called “deep” because the scale height H is large enough for wave energy to
grow vertically, (−1/H + 2kz) > 0.

In deriving the deep ocean wave mode we assumed that the gravitational acceleration is constant,
but in reality the gravity should be a function of the radius, g = const → g = −Gm/r2. Also
we have linearized the equations, neglected all the nonlinear terms (for example the advection
term in the momentum equation). This is valid when the wave amplitude is small compared to
the background field. We also used the adiabatic change of gas (eq. of state), but in reality we
have convection which violates the adiabatic change.

The waves interact with convection motion when the wavelength is close to the convection cell
size. If the wavelength is smaller than the cell size the wave can no longer propagate, but becomes
distorted, convected, or broken by the cells.

lifetime?

Chap.4 Rotation

See winding of magnetic field (Ω-effect, on the next page). The winding develops until turbulence
or convection starts to twist the toroidal magnetic field into the poloidal field (α-effect). The
combination of these two effects makes the Sun’s magnetic field oscillatory at 11 year cycle.
Theoretically the magnetic field may grow until all the kinetic energy is converted to the magnetic
field energy (magnetic braking).

4
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Figure 1: Before winding of magnetic field.
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Figure 2: Magnetic field one year later.
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Exercise for Solar Physics (2008) - Part 3

Chapter 5: Radiation and spectrum

5.1 Optical depth

Give a physical interpretation of optical depth.

5.2 Limb darkening

(A) What is limb darkening?

(B) The limb darkening can be approximated by I(θ) ∼ cos θ to the first order. Here I(θ) denotes
the intensity at the angle to the local vertical direction θ (for the optical depth τ = 0).

1. Derive the surface intensity at τ = 0 in the form

I(0, θ) =

∫
∞

0

S(τ)e−udu

from the radiative transfer equation

cos θ
dI(τ, θ)

dτ
= I(τ, θ) − S(τ)

by multiplying by an integrating factor exp(−τ/ cos θ) = exp(−u). S(τ) is called the source
function.

2. Assume a linear dependence for the source function

S(τ) = a + bτ

and obtain the cosine dependence for the surface intensity

I(0, θ) = a + b cos θ,

where a and b are constants.

1



Chapter 6: Convection

6.1 Onset of convection

The onset of the convection can be derived from the argument of entropy. A fluid element
is convectively unstable if its entropy decreases in a certain direction (outward in the radial
direction in the solar physics context), viz.,

ds < 0 (radially outward),

where the entropy is defined as

s =
P

ργ
.

Here P and ρ denote the pressure and the mass density of the fluid element, respectively, and γ
the polytropic index (the ratio of specific heat). Note that we do not give the equation of state
yet.

1. Derive the condition for convection in the form

d(log P )

dr
− γ

d(log ρ)

dr
< 0 (radially outward),

where dr denotes the line element in the radial direction.

2. Derive the condition for convection, on the assumption of the equation of state for ideal gas,
in the form

d(log T )

d(log P )
<

γ − 1

γ
(radially outward),

where T denotes the temperature. In the solar physics the left hand side represents the temper-
ature gradient given by radiative energy transport (∇rad), and the right hand side the adiabatic
gradient (∇ad). In the radially inward direction (often used in the solar physics) the condition
reads as ∇rad > ∇ad.

6.2 Granulation model

Consider a mass flow ρ~v that horizontally varies like sin kx, and has a vertical scale height H.
Show that the ratio of horizontal to vertical velocity components scales as

vh

vr

≃
1

kH
.

For given H, therefore, the ratio vh/vr increases with increasing cell size.
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Chapter 7: Atmosphere

7.1 Corona temperature

In place of the strong Calcium (Ca+) H and K lines (wavelengths λ ≃ 400 nm) rather shallow
and broad dips (width ∆λ ≃ 20 nm) can be noticed in the spectrum of K corona. Assume that
the dips are in fact the Doppler broadening of the line spectrum and derive a temperature
of particles. Note that Thomson scattering (photon-electron scattering) is one of the major
processes in the K corona. In this way Grotrian (1931) first concluded that the corona might be
hot.

3
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Solutions to Exercise Solar Physics (2008)

Chap.5 Radiation

Optical depth

The optical depth τ is defined in a differential form as

dτν = −κνdz, (1)

where κ is the absorption coefficient in units of [m−1] and z is the length in the line-of-sight
direction in units of [m]. The minus sign on the rhs means that we look in the direction toward
the cloud. The absorption coefficient is a measure of the inverse mean free path of photons in
the cloud, so the optical depth compares the mean free path with the length dz at frequency ν
or wavelength λ. The optical depth is dimensionless and can be interpreted as the number of
mean free paths through the length dz in the cloud.

We can also argue with the radiative transfer equation. Assuming no emission in the cloud and
fixing the direction θ = 180◦, the equation has a simple form

−
dI

dτ
= I, (2)

which can be easily solved to
I = I0e

−τ . (3)

Therefore at τ = 1 the intensity I (or the number of photons) is diminished by 1/e (about 37%).

Limb darkening

(A) Around the disk center one sees the atmosphere almost vertically. The atmospheric layer
becomes hotter as one goes deep into the atmosphere, and therefore at the layer τ = 1 one sees
a bright surface (Stefan-Boltzmann). Near the limb, on the other hand, one sees the atmosphere
almost in the horizontal direction and the layer of τ = 1 is higher than that of the disk center.
At higher layers the temperature is lower, therefore the surface looks darker. The decrease of
intensity from the disk center to the limb scales with cos θ, where θ is the angle from the vertical
(or radial) direction (see Figure).

(B) Radiative transfer equation is

cos θ
dI

dτ
= I − S. (4)

Multiply the equation by factor exp[−τ/ cos θ] = exp[−u] (where u = τ/ cos θ and θ = const),
[

dI

du
− I

]

e−u = −Se−u (5)

1
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Figure 1: Limb darkening.

The left hand side can become simpler:

d

du

(

Ie−u
)

= −Se−u. (6)

Integrate from u = 0 to ∞,

(lhs) =
[

Ie−u
]

∞

0
= −Iτ=0 = −I0 (7)

(rhs) = −

∫

∞

0

Se−udu, (8)

here I0 is the intensity at τ = 0.

Hence we have

I0 =

∫

∞

0

Se−udu. (9)

Now assume that the source function is linear to the optical depth

S = a + bτ, (10)

which means that the source function decreases linearly to the height z,

S = a − bκz. (11)

The intensity can be obtained by integration

I0 =

∫

∞

0

ae−udu +

∫

∞

0

bτe−udu (12)
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The first and the second term yields, respectively,

(1st) = a

∫

∞

0

e−udu = a (13)

(2nd) = b cos θ

∫

∞

0

ue−udu = b cos θ, (14)

here we used the formula
∫

∞

0

une−udu = n!. (15)

The intensity therefore scales to the cosine function,

I0 = a + b cos θ. (16)

Chap.6 Convection

Onset of convection

We define the entropy as

s =
P

ργ
. (17)

Entropy actually measures the logarithm of this quantity, log(P/ργ), but we do not use the
log-function in the following calculation for simplicity. The derivative of s with respect to the
radial distance r is

ds

dr
=

dP

dr

1

ργ
+ P (−γ)

1

ργ+1

dρ

dr
(18)

=
1

ργ

(

dP

dr
−

γP

ρ

dρ

dr

)

(19)

=
P

ργ

(

1

P

dP

dr
− γ

1

ρ

dρ

dr

)

(20)

=
P

ργ

(

d(log P )

dr
− γ

d(log ρ)

dr

)

. (21)

Hence the condition ds < 0 means

d(log P )

dr
− γ

d(log ρ)

dr
< 0 (radially outward). (22)

Now use the ideal gas pressure

P = nkT (23)

= ρ
kT

µ
, (24)

where µ is the mean molecular mass. The mass density is therefore

ρ =
µP

kT
. (25)
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The log-derivative is

d

dr
(log ρ) =

d

dr

[

log

(

µP

kT

)]

(26)

=
d

dr
(log P − log T ). (27)

Substitution into the convection condition:

d

dr
(log P ) − γ

d

dr
(log ρ) < 0. (28)

The left hand side can be written as

(lhs) =
d

dr
(log P ) − γ

d

dr
(log P − log T ) (29)

= (1 − γ)
d(log P )

dr
+ γ

d(log T )

dr
. (30)

Drop dr, and we obtain
(1 − γ)d(log P ) + γd(log T ) < 0. (31)

or after an arrangement
d(log T )

d(log P )
<

γ − 1

γ
(radially outward). (32)

In solar physics (and stellar physics, too) the direction is often taken as radially inward, so
replacing as r → −r, and we obtain

d(log T )

d(log P )
>

γ − 1

γ
(radially inward). (33)

The left hand side represents the temperature gradient associated with radiative energy trans-
port, ∇rad, whereas the right hand side is the adiabatic gradient, ∇ad. Hence the condition for
onset of convection is

∇rad > ∇ad (radially inward). (34)

Granulation model

Continuity equation under stationary condition is

∇ · (ρ~v) = 0. (35)

The horizontal flow is periodic, vh ∼ sin(kx), and the left hand side of the continuity equation
is for the horizontal scale

|∇ · (ρ~v)| ∼ kρvh. (36)

For the vertical scale we have
|∇ · (ρ~v)| ∼

ρvr

H
. (37)

Balancing the two mass flux scales gives

ρvr

H
∼ kρvh, (38)

which results in
vh

vr

∼
1

kH
. (39)
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Chap.7 Atmosphere

Doppler shift relation
∆λ

λ
=

v

c
(40)

and thermal speed

v2
th =

2kT

m
(41)

give the relation
(

∆λ

λ

)2

=
2kT

mc2
, (42)

which can be arranged to

kT =
1

2

(

∆λ

λ

)2

mc2. (43)

Use the electron mass mc2 = 511 [keV], line width ∆λ = 20 [nm], and wavelength λ = 400 [nm].
We obtain kT = 6.39 [eV] = 7.4 × 106 [K].
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Exercise for Solar Physics (2008) - Part 4

Chapter 8: Magnetic fields and atmospheric dynamics

8.1 Magnetic pressure

Where does the expression for magnetic pressure come from? Can you see why it called magnetic
pressure? Another term results from this as well, what is its function?

You will need here the MHD momentum equation (ρdv
dt = −∇p + j × B + ρg), Ampère’s law

(j = 1

µ0
∇ × B) and a certain triple vector identity (A × (∇ × A) = (∇A) · A − (A · ∇)A =

1

2
∇(A · A) − (A · ∇)A).

8.2 Flux tubes and the canopy

In an isothermal system the external pressure, pe, and the pressure inside a small flux tube,
pi, vary vertically with the same scale height, H: pe = pe0e

−z/H and ditto for pi. If we assume
a pressure balance exists between the tube and its surroundings (ptot,e = ptot,i), how does the
magnetic field strength vary with height? How about the radius of the tube (note that the
magnetic flux in the tube must be conserved)?

If we have a collection of these tubes with a density of n tubes per surface area, at what height
will the tubes merge, i.e., above which height is the entire volume filled with magnetic field?
How does it depend on B0 and the spatial average magnetic field strength on the surface?

On the next page you can find a figure of a semi-empirical plane-parallel solar atmospheric model
which mimics the quiet Sun (VALC, Vernezza et al., Astrophys. J. Suppl., 45, 635, 1981). From
this you can get a rough estimate for what the scale height is. Now compute the merging height
if B0 is 1.5 KG assuming that the average magnetic field is 4G (quiet areas) or 200 G (plage).

8.3 Plasma-β

Plasma-β measures the ratio of the gas and magnetic pressures. Where in the VALC model is
the plasma-β equal unity if the magnetic field has a constant strength of a) 1000 G, b)100G,
c)10 G? How do you think the β = 1 layer looks like in the real Sun?
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Figure 1: VALC atmospheric model (Vernazza et al., 1981).

8.4 Dynamical time scales

Making realistic simulations of the solar atmosphere is computationally very expensive, especially
in the chromosphere, so simplifications and short cuts are needed. One such short cut is assuming
statistical equilibrium for the level populations, i.e,. the populations adjust immediately to
changing conditions. Is this a valid approximation? (Think in terms of dynamic timescales, e.g.,
timescale for hydrogen ionization/recombination increases from 1 s in the photosphere to 105 s
in the mid-chromosphere where it starts to decrease again becoming 102 s at the base of the
transition region.) Why is hydrogen sometimes referred to as a thermostat?
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Max Planck Institute for Solar System Research
Prof. S. Solanki with assistants R. Cameron, J. Graham, Y. Narita, and A. Pietarila

Solutions to Exercise Solar Physics (2008)

Chap.8 Magnetic fields and atmospheric duynamics

Magnetic pressure

The Lorenz force ~j × ~B gives two terms when coupled to the Ampère’s law (neglecting the
displacement current)

~j × ~B =
1

µ0

(∇× ~B) × ~B (1)

=
1

µ0

( ~B · ∇) ~B −∇
(

B2

2µ0

)

. (2)

Here the first term is called the magnetic tension (the force acting at curved magnetic field, trying
to straighten the field), and the second term is called the magnetic pressure as it resembles the
form of the pressure gradient.

8.2 Flux tubes and the canopy

Total pressure is the gas and the magnetic pressure, Ptot = Pgas + Pmag. We treat the total
pressure constant at each height z. If we apply the constant total pressure inside and outside
the flux tube at base (z = 0), we have

B2
0

2µ0

+ Pi0 = Pe0, (3)

where the left hand side is the total pressure inside the tube and the right hand side outside the
tube. The gas pressure itself, on the other hand, is in a hydrostatic equilibrium (to the gravity)
and hence it decays exponentially to the scale height H. At height z the total pressure balance
reads

B2(z)

2µ0

+ Pi0e
−z/H = Pe0e

−z/H . (4)

Using the above two equations, we obtain

B(z)

B0

= e−z/2H . (5)

The magnetic field decreases also with height (but more slowly because the effective scale height
is doubled).
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Conservation of the magnetic field flux is

Φ = πr2B = const, (6)

where r denotes the radius of the tube. We compare the flux at different heights,

πr2
0B0 = πr2B, (7)

where the lhs is at base (z = 0) and the rhs is at height z. This gives a scaling of the tube radius
as a function of the height

r

r0

= e+z/4H , (8)

that is, the radius becomes larger with height.

The height of merging is estimated as follows. The average separation of the tubes (from center
to center) is about 1/

√
n, where n is the density of the tubes. They will merge (contact each

other) when the doubled radius (or diameter) reaches the separation distance,

r =
1

2
√

n
. (9)

If we use now the scaling of the tube radius, r/r0 = e+z/4H , we obtain

r0e
z/4H =

1

2
√

n
, (10)

or when squared,

r2
0e

z/2H =
1

4n
. (11)

Therefore the merging height is
z = −2H log(4nr2

0), (12)

or in terms of B,

z = −2H log

(

4〈B〉
πB2

0

)

, (13)

where we used the averaged magnetic field

〈B〉 = nπr2
0B0. (14)

If we read the scale height H from the plot of Ptot, H ≃ 100 [km]. Note that at z = H the
pressure decreases by 1/e ≃ 0.37 from the base. For B0 = 1500 [G] and 〈B〉 = 4 [G] (quiet areas)
we obtain z ≃ 1100 [km]. For 〈B〉 = 200 [G] we obtain z ≃ 350 [km]. In both cases the merging
height is larger than the scale height H.

8.3 Plasma Beta

The plasma parameter β measures the ratio of the gas to the magnetic pressure,

β =
Pgas

Pmag

. (15)
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At β = 1 the total pressure can be written only with the magnetic field strength,

Ptot = 2Pmag (16)

=
B2

µ0

(17)

=
B2

4π × 107
[Pa] (18)

=
B2

4π × 107
× 10 [dyn/cm2], (19)

where B is in units of T (Tesla). From the plot of Ptot we obtain the heights of β = 1 about
100 [km], 500 [km], and 1200 [km] for 1000 [G], 100 [G], and 10 [G], respectively.

While the surface with the constant total pressure may be smooth, the surface of “(gas pressure)
= (magnetic pressure)” is warped and distorted very much in the real Sun (e.g. flux tubes,
sunspots). The surface changes not only spatially but also temporally.

8.4 Dynamical time scale

Dynamical time scale in the chromosphere is typically 200-400 [s] (3-minute oscillations in inter-
network and 5-7 minutes in network), while the time scale of hydrogen ionization and recom-
bination is of the order 105 [s]. The system is therefore constantly evolving, trying to catch up
with the dynamics. This results in hydrogen fluctuations that are smaller than those derived
from the statistical equilibrium, i.e., the dynamics vary more than the populations. For hydro-
gen the ionization potential is high and relaxation time to an equilibrium is long. The concept
of thermostat applies to the temperature plateau, where energy is used up to ionize hydrogen,
which in turn leads to a high specific heat and also releases electrons that can through collisions
excite other elements and thus the energy is radiated away instead of a temperture rise. The
plateau ends when hydrogen is fully ionized and the transition region begins. On the other hand,
the effect during shocks has an opposite sense to the thermostat: because of the long ionization
time scales, hydrogen does not have enough time to be ionized during the shock compression
phase and energy is used to increase the temperature, i.e., the increase of temperature over shock
fronts is sharper when statistical equilibrium is not assumed.
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