Observing and Photographing the Night Sky – First Steps L. Teriaca

Coordinate Systems

٠

Independent from observer's location

- Intuitive
- Depends on the observer's location

Coordinate Systems

Alt-Azimuthal

- Intuitive
- Depends on the observer's location

Equatorial

- Independent from observer's location
- It slowly changes over time due to precession

Mount types

Alt-Azimuthal

- Simple and fast to set up
- Good for visual and Skyscapes
- OK for Planetary High Res.
 - Good when goto.

Equatorial (German Eq. Mount or GEM shown. There are others!)

- Complex to set up (requires polar alignment)
- Necessary (generally) for long exposure astrophotography

Main telescope types

Reflectors (Newtonians)

- Use only mirrors
- Newtonians (simplest) can be very cost effective
- Can be awkward for visual on a GEM
- Become quickly very large and heavy
- Require a coma corrector when fast

Refractors

- Use only lenses
- Quite versatile
- Large diameters (>5") prohibitive
- Excellent for astrophotography (higher quality models)
- Require diagonal for visual
- Require flattener for imaging

Catadrioptic

Maksutov-Cassegrain

Secondary "spot"

Schmidt-Cassegrain

- Generally not good for wide field
- Very compact and easier to mount (by equal diameter)
- Excellent for planetary imaging
- Require diagonal for visual

A few useful formulas and expressions (1/2)

Telescopes (and camera objectives, where you, practically, can change D)

- D = diameter of the objective
- F = focal length of the telescope
- F/D = "speed" of the telescope. Also indicated as F/# (e.g., D=100 mm, F=500 mm is F/D=5 or F/5)
 - The smaller, the brighter the image, the most demanding the manufacturing
- Diffraction limited angular resolution θ = 1.22 λ / D

Binoculars

- Characterized by magnification x diameter of lenses (MxD). E.g., 8x42 has 42 mm lenses and provides 8x magnification
- D/M = exit pupil.
 - Human pupil at night is 7 mm max (in kids).
 - Older people get smaller pupils at night (≈5).
 - Exit pupils between 4 and 6 are good.
- Be aware of diameter fever! Things get heavy real fast!
- Other things are important too. Ask if interested!

20x70 (3.5)

A few useful formulas and expressions (2/2)

Telescopes – visual use

- Eyepieces are characterized by their focal length f in mm (always on barrel) and by the apparent FOV (AFOV) in degrees
- M=F/f is the magnification. A 9 mm eyepiece on a telescope with F=900 mm magnifies 100 times.
 - Maximum magnification usually useable is M = D (in mm)
 - Occasionally (good seeing) and with quality optics M can go up to 2D or more
- The True FOV (TFOV) can be estimated as TFOV = AFOV / M (however, real TFOV can be smaller)
 - You want at least one eyepiece with a large TFOV (large AFOV to start, low M = large f)
- Exit pupil = D / M. Good values for weak extended objects between 3 and 5
- Other things are important too. Ask if interested!

Telescope - imaging

- Signal from resolved objects N (phot s⁻¹) \approx L (phot m⁻² s⁻¹ sr⁻¹) D² p² / F², where p is the pixel size
 - For a given object, if p is fixed, N (phot s⁻¹) \approx (D / F)²
 - For a given object, if you can reach diffraction limit (p = 1.22 λ F / D) as in space, N = const.
 - For a given object, in Earth's atmosphere (typical seeing s between 1" and 2"), p = s F and N \approx D²
 - Of course, extended objects do not have uniform radiance, resolution (hence contrast) increases with D until seeing kicks in

Cost and Complexity

Complexity

Visual Wide Field

- Definitively the less demanding naked eye observing is for free!
- Using (small) binocular can be done without a tripod
 - An 8x42 or a 10x42 are very good
- Short F refractors on an Alt-Az mount can also be a (more expensive option)

- Sky on September 4th at 22:00.
- What you can see with naked eyes?: Milky way, Saturn, Summer triangle, constellations, (Andromeda, Mizar-Alcor)
- What with a binocular? Milky Way star fields, Andromeda, M13, Mizar-Alcor

Visual Mid-High Res.

- MPS Newton 114/900 on GEM (but generally valid for any scope on a GEM)
- Align finder to main scope (easier in daylight)
- Level tripod (put bubble level on tray)
 - doesn't need to be very precise, just not too bad
- Set local latitude using elevation knobs
- Polar align: it is the most important step
 - Point R.A. axis towards Polaris (use the azimuth knobs)
 - If you now point scope to Polaris, Dec should read +90°
- Point a bright star not too far from the target
 - Unlock the AR circle (lower numbers for north hemisphere) and set it to the star AR. Dec should be roughly right. Lock the AR circle.
- Now move the scope to your target by matching AR & Dec values

Visual Mid-High Res.

• MPS Newton 114/900 on GEM - Eyepieces

Telescope D = 114 mm, F = 900 mm			
f	М	Pupil	TFOV
25	36	3.16	1.1
12.5	72	1.58	0.55
9	100	1.14	0.4
4	223	0.51	0.18

- I do not know the AFOV of these eyepieces.
 - These are orthoscopic ones, so it is about 40° (not much)
- Use the finder first, then the 25mm eyepiece (see figure)
- Orthos have little eye relief. It may be a problem for people with glasses...

Globular clusters

Visual Mid-High Res.

Cluster	AR	Dec
M2	21 ^h 33 ^m 27.02 ^s	-00° 49′ 23.7″
M13	16 ^h 41 ^m 41.24 ^s	+36° 27′ 35.5″
M15	21 ^h 29 ^m 58.33 ^s	+12° 10′ 01.2″
M92	17 ^h 17 ^m 07.39 ^s	+43° 08' 09.4"

Use first the 25mm to find the clusters, then try the 12.5 or the 9mm (see insert)

Cluster	AR	Dec
Altair	19 ^h 50 ^m 47.00 ^s	+08° 52′ 05.96″
Vega	18 ^h 36 ^m 56.34 ^s	+38° 47′ 01.28″
Deneb	20 ^h 41 ^m 25.9 ^s	+45° 16′ 49″

Visual Mid-High Res.

Galaxy	AR	Dec
M31	00 ^h 42 ^m 44.3 ^s	+41° 16′ 09″
M33	01 ^h 33 ^m 50.02 ^s	+30° 39′ 36.7″
M51	13 ^h 29 ^m 52.7 ^s	+47° 11′ 43″
M81	09 ^h 55 ^m 33.2 ^s	+69° 03′ 55″
M101	14 ^h 03 ^m 12.6 ^s	+54° 20′ 57″

Just use the 25mm

Cluster	AR	Dec
α UMa	11 ^h 03 ^m 43.67 ^s	+61° 45′ 03.72″
η UMa	13 ^h 47 ^m 32.44 ^s	+49° 18′ 47.76″
α Cas	00 ^h 40 ^m 30.44 ^s	+56° 32′ 14.39″

Planetary Nebulae

Visual Mid-High Res.

Galaxy	AR	Dec
M27	19 ^h 59 ^m 36.34 ^s	+22° 43′ 16.09″
M57	18 ^h 53 ^m 35.08 ^s	+33° 01′ 45.03″

Use first the 25mm to find them. M27 is already good in the 25 mm. M57 will need the 9mm (can also try the 4 mm).

Cluster	AR	Dec
Altair	19 ^h 50 ^m 47.00 ^s	+08° 52′ 05.96″
Vega	18 ^h 36 ^m 56.34 ^s	+38° 47′ 01.28″
Deneb	20 ^h 41 ^m 25.9 ^s	+45° 16′ 49″

Double Stars & Double Open Cluster

Visual Mid-High Res.

Galaxy	AR	Dec
h&χ	2 ^h 20 ^m	57° 08′
61 Cyg		

h&χ Persei and Mizar-Alcor require the 25mm. Go up to 9mm and 4mm (see insert)on 61 Cyg to see if you manage to split it...

Cluster	AR	Dec
Altair	19 ^h 50 ^m 47.00 ^s	+08° 52' 05.96"
α Cas	00 ^h 40 ^m 30.44 ^s	+56° 32′ 14.39″
Deneb	20 ^h 41 ^m 25.9 ^s	+45° 16′ 49″

Hours long exposure on a fixed tripod (from the Web)

- The Earth rotates so the sky apparently rotates at ω = 15° / h = 15″ / s at the celestial equator.
- So, on a sensor, you get a track of L = $\omega \times$ F. If F = 50 mm, L = 3.6 μ m / s!
 - Comparable to the typical pixel size of digital cameras.
 - It will have to move a few pixels before the elongation is noticeable.
 - An empirical rule for star fields is Texp (s) \leq 300 / F

- For hand held photography Texp (s) \leq 1 / F
 - VR can gain you a factor of 8-10
 - Still, only OK for the moon and the Sun at sunset
 - Even the Moon is small (31' diameter)
 - On the focal plane this is \approx F / 110 (F in mm)
 - At least F = 300 mm is requires to see details
- It is practically impossible to go much above 1-2 s hand held, even with a wide lens (say 20 mm) and VR
- To start to obtain something you need:
 - a decent tripod and a photo head (e.g., ball head)
 - A wide fast lens ($F \le 24 \text{ mm}, F/\# \le 4$)
 - A camera with good noise performance
 - Some post-processing skills and some decent software
 - For starscapes, a good dark sky
 - For the comet picture Texp=13s (300/24 = 12.5).

Single, hand held, shoot of the moon while entering into eclipse. Nikon Z6 with AF-P 70-300 @ 300mm f/5.6 ISO1000 1/50 s.

Single image from Pixhaier Teich, Harz, Germany Nikon Z 6 @ ISO 6400. 13s with 24-70 f/4 @24mm @f/4

- For non-tracking skyscapes you need:
 - a decent tripod and a photo head (ball heads are good)!
 - A wide fast lens ($F \le 24 \text{ mm}, F/\# \le 4$)
 - A camera with good noise performance
 - Some post-processing skills and some decent software

Composite of the Total Solar Eclipse of July 2nd 2019. Sigma 17-50 at f/5 (19mm) on Nikon D7100 The pictures during the partial phase are taken with a Baader astrofoil filter and 1/1000 s. The frame during totality was obtained with a exposure time of 1/3 s (and no filter).

- Without tracking, you cannot increase the exposure time but you can improve the signal to noise ratio by registering and averaging several images
 - For this picture Texp=4s (300/70 = 4.3)

Comet Neowise between light clouds combination of 25 frames of 4s taken at ISO6400 with a Nikon Z6 and a 24-70 f/4 @70mm @f/4

Tracking, then guiding

- Adding a tracking mount hugely expands possibility, depending on mount's quality
- However, cost and complexity adds up extremely fast

NGC 7000. 113 frames exposed 90 s. No guiding. Nikon 200 f/4 AI front stopped to F/5.4. Nikon D5100 with true dark hack.

Tracking, then guiding

- Guiding is the next step
 - Requires a guide camera and a guide scope
 - More complexity and cost
 - However, you can increase F and Texp
- Using a dedicated camera for astrophotography (cooled) increases a lot final quality, in particular a monochromatic camera with filters
 - Even more complexity and costs

M31. 80/400 Apo with ASI 183MM (-15 C°) on AVX L filter: 30×180"(1h 30') B filter: 36×90"(54') G filter: 32×90"(48') R filter: 36×90"(54') Total integration 4h 20 min Calibration frames: 40 darks, 25 flats, 25 dark flats (per filter)

Tracking, then guiding

- Guiding is the next step
 - Requires a guide camera and a guide scope
 - More complexity and cost
 - However, you can increase F and Texp
- Using a dedicated camera for astrophotography (cooled) increases a lot final quality, in particular a monochromatic camera with filters
 - Even more complexity and costs

NGC 7000. Nikon 200 F/4 AI front stopped at F/5.4 with ASI 183MM (-15 C°) on AVX Ha filter: 49×600"(8h 10') Calibration frames: 40 darks, 25 flats, 25 dark flats