

Bow shock upstream and downstream waves Yasuhito Narita

IGEP, TU Braunschweig with K.-H. Glassmeier

Bow shock in the Orion nebula (M42, image taken by the Hubble Space Telescope).

Abstract

Wave vector determination from multi-point measurements leads to a number of powerful wave analysis methods. We present wave modes and their propagation patterns upstream and downstream of the Earth's bow shock.

[1] Motivation

Determining wave vectors in space is not easy. But using fourpoint measurements made by Cluster s/c, it is at last possible to determine wave vectors, and hence wave modes and their propagation patterns.

Wave power in the k- domain

[3] Statistics

Phase velocities, propagation directions investigated for 100 upstream waves and 400 downstream waves.

[Results] - Up: fast modes toward upstream.

- Down: mirror modes toward the magnetopause.

[2] Dispersion curves

- Upstream: ion beam instability, parallel to the magnetic field
- Downstream: mirror instability, perpendicular direction.

And ...

Turbulence spectra can also be determined!

[4] Conclusion

Ion reflection and temperature anisotropy are the source of the waves. Their propagation is divergent at the shock.

