European Solar Physics Online Seminar

Following an initiative by the University of Oslo the MPS will participate in the "European Solar Physics Online Seminar" series (ESPOS). Details can be found here: https://folk.uio.no/tiago/espos/
The aim of this video conference series is to promote ideas more widely with a specialized audience, and give some exposure to cutting-edge research for students and other young researchers that do not regularly travel to conferences. The ESPOS series is planned to take place every second Thursday at 11am.

Room: Auditorium Location: Max Planck Institute for Solar System Research (live)

ESP Online Seminar: What can numerical simulations tell us about the mechanism of solar and stellar activity? (J. Warnecke)

ESPOS
The magnetic field in the Sun undergoes a cyclic modulation with a reversal typically every 11 years due to a dynamo operating under the surface. Also, other solar-like stars exhibit magnetic activity, most of them with much higher levels compared to the Sun. Some of these stars show cyclic modulation of their activity similar to the Sun. The rotational dependence of activity and cycle length suggests a common underlying dynamo mechanism.Here we present results of 3D MHD convective dynamo simulations of slowly and rapidly rotating solar-type stars, where the interplay between convection and rotation self-consistently drives a large-scale magnetic field. With the help of the test-field method, we are able to measure the turbulent transport coefficients in these simulations and therefore get insights about the dynamo mechanism operating in these simulations. It allows us to derive a scaling of the cycle period with the relevant effects of the dynamo.We discuss how magnetic helicity is a key quantity connecting the stellar convection zone with the stellar surface and stellar coronae. Magnetic helicity is produced in the convection zone of stars via a dynamo in the presence of convection and rotation. At the surface, it plays an important role in the formation process of active regions. In the corona, it is believed to be essential for the release of energy leading to the eruption of plasma via coronal mass ejections and is thought to play an important role in the heating process of the coronal plasma. Numerical simulations of stellar convection zones and the solar corona allow us to investigate this process. [more]
The Wilson depression is the difference in geometric height of the layer of unit continuum optical depth between the sunspot umbra and the quiet Sun. Measuring the Wilson depression is important for understanding the geometry of sunspots. Current methods suffer from systematic effects or need to make assumptions on the geometry of the magnetic field. This leads to large systematic uncertainties of the derived Wilson depressions. Here we present a method for deriving the Wilson depression that only requires the information about the magnetic field that are accessible by spectropolarimetry and that does not rely on assumptions on the geometry of sunspots or on its magnetic field. Our method is based on minimizing the divergence of the magnetic field vector derived from spectropolarimetric observations. We focus on large spatial scales only in order to reduce the number of free parameters. We test the performance of our method using synthetic Hinode data derived from two sunspot simulations. We find that the maximum and the umbral averaged Wilson depression for both spots determined with our method typically lies within 100 km of the true value obtained from the simulations. In addition, we apply the method to spots from the Hinode sunspot database at MPS. The derived Wilson depressions (500-700 km) are consistent with results typically obtained from the Wilson effect. In our sample, larger spots with a stronger magnetic field exhibit a higher Wilson depression than smaller spots. [more]

ESP Online Seminar: Solar irradiance variability and surface magnetism (Kok Leng Yeo)

ESPOS
The variation in solar irradiance is commonly assumed to be driven by its surface magnetism. Until recently, this assumption could not be verified conclusively as models of solar irradiance variability based on solar surface magnetism have to be calibrated to solar irradiance measurements. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art full-disk magnetograms from SDO, we developed a model of total solar irradiance (TSI) that does not require any such calibration. The modelled TSI variability is therefore, unlike preceding models, independent of TSI measurements. The model replicates over 95% of the observed variability over the lifetime of SDO, confirming the relationship to solar surface magnetism and leaving limited scope for alternative drivers of solar irradiance variability (at least over the time scales examined, that is, days to years). [more]
Go to Editor View