Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants

Effect of rotation on stellar pulsations

Rhita-Maria Ouazzani¹

¹Post-doc at Institut d'astrophysique et de géophysique, Université de Liège, Belgium

July, 19th 2012

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
lssues					
Accur >	racy on stellar pa 50% on the age	rameters : $\sim 10\%$ c	on M, $\sim 6\%$	on R,	
\rightarrow	Sources of ur	ncertainties :	stellar interiors	description	
Ro	$\begin{array}{l} {\sf Stellar \ Ph} \\ {\sf station} \rightarrow {\sf dynam} \\ {\sf Angular \ momentum} \end{array}$	iy <mark>sics</mark> ical processe um transport	es :	LS x H ^a mb	109 (4) (4) (3)

 \Rightarrow Chemical elements transport, stellar winds, ...

Need for a new generation of stellar models

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
000000000				0000000	000000000
N 4	A	1			

Mean : Asteroseismology

Study of the eigenmodes of a resonant cavity (the star) Asteroseismic approach :

The sun' spectrum

(SOHO-Golf)

 \Rightarrow Mean sound speed :

$$\Delta \nu = \left[2 \int_0^R \frac{dr}{c} \right]^{-1}$$

 $\mathsf{regularities} \Rightarrow \mathsf{seismic\ diagnostics}$

 \Rightarrow constraints on the internal structure

000000000		00	000	0000000	000000000
Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants

Mean : Asteroseismology

Study of the eigenmodes of a resonant cavity (the star) What about rotating stars?

The sun' spectrum

a δ Scuti spectrum

► < Ξ ►</p>

< ∃⇒

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
000000000					

1 Introduction

- 2 The perturbative approach
- 3 Differential rotation in Solar-like stars $\epsilon, \mu \ll 1$
- The 2D non perturbative approach : ACOR
- 5 Pulsation models of rapidly rotating stars $-\epsilon \sim 1$
- 6 Rotational splitting in Red giants $\mu \sim 1$

Introduction ••••••	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Stellar p	oulsations wit	hout rotat	tion		

Formally : hydrodynamics equations perturbed + boundary conditions

 \Rightarrow pulsations eigenmodes $\xi_{\rm r}$ and eigenfrequencies σ

Separability in *r* and $(\theta, \varphi) \Rightarrow \xi_r = \tilde{\xi}_{r,n}(r) Y_{\ell}^m(\theta, \varphi) e^{i\sigma t}$

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
•00000000				00000000	000000000
	1		. •		

Stellar pulsations without rotation

Formally : hydrodynamics equations perturbed + boundary conditions

 \Rightarrow pulsations eigenmodes $\xi_{\rm r}$ and eigenfrequencies σ

Separability in *r* and $(\theta, \varphi) \Rightarrow \xi_r = \tilde{\xi}_{r,n}(r) Y_{\ell}^m(\theta, \varphi) e^{i\sigma t}$

Angular distribution

3 quantum numbers : n, ℓ et m

- m: azimutal order $\in [-\ell : +\ell]$ | m | nodal meridians
- ℓ : angular degree $\ell \mid m \mid$ nodal parallels

frequencies $\sigma_{n,\ell}$ are $(2\ell + 1)$ times **degenerate**

$$\ell = 4, m = 3$$

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
00000000				00000000	000000000
Ctallar .	بالبيد محمد المحمانين	بمعمير عبرهما	hi a la		

Stellar pulsations without rotation

Radial distribution

• Brunt-Vaissala frequency :

$$\mathsf{N}^{2} = g \left(\Gamma_{1} \frac{d \ln P}{d \ln r} - \frac{d \ln \rho}{d \ln r} \right)$$

• Lamb frequency :

$$S_{\ell}^2 = \frac{\ell \left(\ell + 1\right) c_s^2}{r^2}$$

A ■

Stellar pulsations without rotation

Radial distribution

• Brunt-Vaissala frequency :

$$N^{2} = g \left(\Gamma_{1} \frac{d \ln P}{d \ln r} - \frac{d \ln \rho}{d \ln r} \right)$$

• Lamb frequency :

$$S_{\ell}^2 = \frac{\ell \left(\ell + 1\right) c_s^2}{r^2}$$

Radial distribution

R-M. Ouazzani

Radial distribution

Brunt-Vaissala frequency :

$$N^{2} = g \left(\Gamma_{1} \frac{d \ln P}{d \ln r} - \frac{d \ln \rho}{d \ln r} \right)$$

• Lamb frequency :

$$S_{\ell}^2 = \frac{\ell \left(\ell + 1\right) c_s^2}{r^2}$$

F: Pressure force

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Impact	of rotation				

Altair i=63.9

\rightarrow Centrifugal force distorts the resonant cavity

 \Rightarrow Bi-dimensional structure

Altair i=63.9

ω=0.9

-2

 \Rightarrow Expansion on spherical harmonics serie

$$\xi_r = \sum_{\ell \ge |m|} \tilde{\xi}_{r,n,\ell}(r) \, Y_{\ell}^m(\theta,\varphi) \, e^{i\sigma t}$$

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Impact	of rotation				

• Lift of degeneracy

 \Rightarrow Observable : $S_{n,\ell,m}$ splitting

回 と く ヨ と く ヨ と

æ

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Impact	of rotation				

- Lift of degeneracy
 - \Rightarrow Observable : $S_{n,\ell,m}$ splitting

n, ℓ=1

Coupling of spherical harmonics

● ▶ < ミ ▶

-≣->

 \Rightarrow Problem of mode identification

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
0000000000				00000000	00000000
Slow ro	tation / Rani	d rotation			

• Structural effects (centrifugal force) :

$$\epsilon = rac{\Omega}{\Omega_k}$$
 where $\Omega_k = \sqrt{rac{\mathrm{GM}}{\mathrm{R}^3}}$

• Dynamical effects (Coriolis force) :

$$\mu \,=\, \frac{{\rm P}_{\rm osc}}{{\rm P}_{\rm rot}} \,=\, \frac{\Omega}{\omega}$$

Introduction Perturbative approach Solar-like stars of Direct 2D approach concerned appro

Slow rotation / Rapid rotation

• Structural effects (centrifugal force) :

$$\epsilon = rac{\Omega}{\Omega_k}$$
 where $\Omega_k = \sqrt{rac{GM}{R^3}}$

$$ightarrow \epsilon, \, \mu \ll 1$$
 p modes in **Solar-like stars**

- (同) - (三)

-≣->

• Dynamical effects (Coriolis force) :

$$\mu \,=\, \frac{\mathbf{P}_{\mathrm{osc}}}{\mathbf{P}_{\mathrm{rot}}} \,=\, \frac{\Omega}{\omega}$$

Introduction Perturbative approach Solar-like stars Oirect 2D approach coordinate appr

Slow rotation / Rapid rotation

• Structural effects (centrifugal force) :

$$\epsilon = rac{\Omega}{\Omega_k}$$
 where $\Omega_k = \sqrt{rac{GM}{R^3}}$

 $ightarrow \epsilon, \, \mu \ll 1$ p modes in **Solar-like stars**

<ロ> <同> <同> < 同> < 同> < 同><<

 $ightarrow \ \epsilon \lesssim 1$ p modes in $\delta {
m Scuti \ stars}$

• Dynamical effects (Coriolis force) :

$$\mu \,=\, \frac{\mathbf{P}_{\mathrm{osc}}}{\mathbf{P}_{\mathrm{rot}}} \,=\, \frac{\Omega}{\omega}$$

Slow rotation / Rapid rotation

• Structural effects (centrifugal force) :

$$\epsilon = rac{\Omega}{\Omega_k}$$
 where $\Omega_k = \sqrt{rac{GM}{R^3}}$

• Dynamical effects (Coriolis force) :

$$\mu \,=\, \frac{\mathbf{P}_{\mathrm{osc}}}{\mathbf{P}_{\mathrm{rot}}} \,=\, \frac{\Omega}{\omega}$$

 $ightarrow \epsilon, \, \mu \ll 1$ p modes in **Solar-like stars**

 $ightarrow \ \epsilon \lesssim 1$ p modes in $\delta {
m Scuti \ stars}$

 $ightarrow \ \mu \lesssim 1$ g modes in **red giants**

<ロ> <同> <同> < 同> < 同> < 同><<

The perturbative approach

- Stellar model : Spherical
- Pulsations :

$$\omega_{n,\ell,m} = \omega_{n,\ell}^{\Omega=0} + (\delta\omega)_{n,\ell,m}, \text{ with } (\delta\omega) \ll \omega$$

The direct approach

- Stellar model : 2D distorted
- Pulsations : direct integration of the eigensystem

 $\epsilon, \mu \ll 1$

 $\epsilon,\,\mu\sim 1$

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants

1 Introduction

- 2 The perturbative approach
- 3 Differential rotation in Solar-like stars $\epsilon, \mu \ll 1$
- The 2D non perturbative approach : ACOR
- 5 Pulsation models of rapidly rotating stars $\epsilon \sim 1$
- 6 Rotational splitting in Red giants $\mu \sim 1$

Introduction	Perturbative approach ●	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Formalis	sm				

 $\left(\mathcal{L}\,+\,\delta\mathcal{L}^{\textit{rot}}\right)\,\xi\,=\,\omega^2\,\xi$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Perturbative approach ●	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Formalis	sm				

$$\left(\mathcal{L} + \delta \mathcal{L}^{\textit{rot}}\right) \xi = \omega^2 \xi$$

 \mathcal{L} : Pulsation operator without rotation : \mathcal{L} $\xi_{\Omega=0} = \omega_0^2 \xi_{\Omega=0}$

Introduction	Perturbative approach ●	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Formalis	sm				

$$\left(\mathcal{L} + \delta \mathcal{L}^{rot}\right) \xi = \omega^2 \xi$$

 \mathcal{L} : Pulsation operator without rotation : \mathcal{L} $\xi_{\Omega=0} = \omega_0^2 \xi_{\Omega=0}$ $\delta \mathcal{L}^{rot}$ due to rotation, $\delta \mathcal{L}^{rot} \ll \mathcal{L}$: Coriolis force, ...

Introduction	Perturbative approach ●	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Formalis	sm				

$$\left(\mathcal{L} + \delta \mathcal{L}^{\text{rot}}\right) \xi = \omega^2 \xi$$

 \mathcal{L} : Pulsation operator without rotation : \mathcal{L} $\xi_{\Omega=0} = \omega_0^2 \xi_{\Omega=0}$ $\delta \mathcal{L}^{rot}$ due to rotation, $\delta \mathcal{L}^{rot} \ll \mathcal{L}$: Coriolis force, ...

$$\xi_n = \xi_{0,n} + \sum_{\mathbf{i},\mathbf{i}\neq\mathbf{n}} c_{n,\mathbf{i}}\xi_{0,\mathbf{i}} \quad \omega_{n,\ell,m} = \omega_{0,n,\ell} + \sum_{k=1,3} \mathrm{T}_{\mathbf{k}}\,\Omega^{\mathbf{k}}$$

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants

Introduction

2 The perturbative approach

3 Differential rotation in Solar-like stars $\epsilon, \mu \ll 1$

- The 2D non perturbative approach : ACOR
- $\fbox{5}$ Pulsation models of rapidly rotating stars $e \sim 1$
- 6 Rotational splitting in Red giants $\mu \sim 1$

伺 ト イヨト イヨ

Differential rotation in solarlike stars

HD 181420

 $(\frac{10^{5}}{10^{4}})^{10^{4}}$ Spots' rotation $\rightarrow \Omega_{T}$ 10^{4} p modes $\rightarrow \overline{\Omega}_{s}$ 10^{1} 10^{2} p modes $\rightarrow \overline{\Omega}_{s}$ 10^{1} 10^{2}

for some CoRoT targets

 $\begin{array}{ll} \rightarrow \mbox{ Spots'signature } & \Rightarrow \Omega_{T} \\ \not= \\ \rightarrow \mbox{ Splitting } & \Rightarrow \Bar{\Omega}_{S} \end{array}$

・ロト ・回ト ・ヨト

(Barban et al. 2009, Garcia et al. 2009)

Is the disagreement due to differential rotation in latitude?

Differential rotation in solarlike stars

HD 181420, Solar like , slow rotator ($v \sin i \sim 18 {
m km.s^{-1}}$)

Only a rotation profile differential in depth and in latitude is compatible with the CoRoT data

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants

Introduction

- 2 The perturbative approach
- 3 Differential rotation in Solar-like stars $\epsilon, \, \mu \ll 1$
- The 2D non perturbative approach : ACOR
- 5 Pulsation models of rapidly rotating stars $-\epsilon \sim 1$
- 6 Rotational splitting in Red giants $\mu \sim 1$

Direct computations of linear adiabatic non-radial pulsations

Aims

- Rapid rotation
- for non-barotropic models $\Omega(\mathbf{r}, \theta)$
- at evolved stages
- adapted for massive computations

Requirements \Rightarrow

- 2D, non-perturbative
- no hypothese on Ω
- adapted radial treatment
- numerically optimized

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach ○●○	Rapid rotators	Red giants

Adapted coordinate system

Multi-domain approach new pseudo-radial coordinate : ζ

- $\zeta \rightarrow r$ at the center,
- ζ matches an isobar at the edge of the convective core,
- ζ matches the surface at $\zeta = 1$,
- additional domain V₂ : where $\zeta \rightarrow r$ at $\zeta = 2$.

 $2 \,\, {
m M}_{\odot}$ star $\Omega \, \simeq \, 80\% \, \Omega_k$

A (1) < 3</p>

\Rightarrow Simplifies the boundary conditions

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach ○○●	Rapid rotators	Red giants
Numerio	cal method				

Radial discretization

Finite differencies of the $5^{\rm th}$ order over two consecutive layers (Scuflaire 2008)

• Accurate to the $5^{\rm th}$ order

• Numerically very stable

Inverse iteration method

$$\mathcal{A}\mathcal{Y} = \delta\sigma\mathcal{B}\mathcal{Y}$$

- Resolution of the eigenvalue problem by the inverse iteration algorithm (Dupret 2003)
- Iteration $\sigma_0 = \sigma_0 + \delta \sigma$ until convergence

The code has been validated for polytropic models by comparison with Reese et al. 2006

 \rightarrow Ouazzani, Dupret & Reese A&A+2012b => (=) = 9900

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants

Introduction

- 2 The perturbative approach
- 3 Differential rotation in Solar-like stars $\epsilon, \mu \ll 1$
- The 2D non perturbative approach : ACOR
- 5 Pulsation models of rapidly rotating stars $\epsilon \sim 1$
- 6 Rotational splitting in Red giants $\mu \sim 1$

Distorsion of a spherical model (Roxburgh 2006)

・ロト ・日本 ・モート ・モート

イロン イヨン イヨン イヨン

Distorsion of a spherical model (Roxburgh 2006)

\Rightarrow 2D acoustic structure

R-M. Ouazzani

27/53

Gottingen July 19th

- $\bullet\,$ Computed from a spherical model of 2 M_{\odot} et 2.4 R_{\odot} ,
- Initial composition : X = 0.72 et Z = 0.02,
- evolved until $X_c = 0.35$
- $\Omega_{center}/\Omega_{surface} = 3$ assumed

STAROX (OPAL) Roxburgh (2008)

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Island m	nodes				

kinetic energy in a meridional plane

- Counterparts of low degree acoustic modes in the rapidly rotating case
- Caracterised by 2 quantic numbers \tilde{n} and $\tilde{\ell}$
- Good visibility factor
- Show regularities

Explanation for regularities observed in δ Scuti stars?

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Island n	nodes				

kinetic energy in a meridional plane

- Counterparts of low degree acoustic modes in the rapidly rotating case
- Probe outer layers
- Caracterised by 2 quantic numbers \tilde{n} and $\tilde{\ell}$
- Good visibility factor
- Show regularities

Explanation for regularities observed in δ Scuti stars?

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators ○○○○○●○	Red giants
Mixed r	nodes				

kinetic energy in a meridional plane

Propagation diagram

- Probe both the core and the envelop !
- Good visibility factor

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators ○○○○○○●	Red giants
Island m	nodes regulari	ty			

$$\Delta_{\tilde{n}} = \omega_{\tilde{n},\tilde{\ell},m} - \omega_{\tilde{n}-1,\tilde{\ell},m}$$

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants

Introduction

- 2 The perturbative approach
- 3 Differential rotation in Solar-like stars $\epsilon, \mu \ll 1$
- The 2D non perturbative approach : ACOR
- $\fbox{5}$ Pulsation models of rapidly rotating stars $e \sim 1$
- 6 Rotational splitting in Red giants $\mu \sim 1$

Test for angular momentum distribution along evolution \rightarrow mixed dipolar modes

Which treatment for rotational effects on red giants pulsations?

Introduction Perturbative approach of the pulsation-rotation interaction

Solar-like stars on the MS : linear treatment (Ledoux 1951) :

$$S_{\rm m} = \frac{\sigma_{\rm n,\ell,-m} - \sigma_{\rm n,\ell,m}}{2} = \frac{\rm m}{2\pi} \int K_{\rm n,\ell,m}(\mathbf{r}) \,\Omega(\mathbf{r}) \,\rho_0 \,\mathbf{r}^2 \mathrm{d}\mathbf{r}$$

 \Rightarrow Symmetrical and linear splittings

Solar-like stars on the MS : linear treatment (Ledoux 1951) :

$$S_{m} = \frac{\sigma_{n,\ell,-m} - \sigma_{n,\ell,m}}{2} = \frac{m}{2\pi} \int K_{n,\ell,m}(r) \Omega(r) \rho_{0} r^{2} dr$$

 \Rightarrow Symmetrical and linear splittings

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
					000000000

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
					00000000

R-M. Ouazzani

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
					000000000

 $\Omega_{\rm c}/2\pi = 0 \rightarrow 180 \ \mu {\rm Hz}$

v(µHz)

æ

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
					000000000

 $\Omega_{\rm c}/2\pi$ = 0 \rightarrow 180 µHz

v(µHz)

Introduction	Perturbative approach	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
					0000000000

 $\Omega_{\rm c}/2\pi = 0 \rightarrow 180 \ \mu {\rm Hz}$

 \Rightarrow The concept of rotational splitting is not relevant

Misinterpretation of the pseudo-splitting?

 $\Omega_{\rm c}/2\pi = 20 \,\mu{\rm Hz}$

Misinterpretation of the pseudo-splitting?

 $\Omega_{\rm c}/2\pi = 180 \,\mu{\rm Hz}$

\Rightarrow Small pseudo-splittings compatible with rapid core rotation

Spectrum structure : 20 μ Hz

 $\Omega_c/2\pi = 0 \rightarrow 180 \ \mu \text{Hz}$ 400 20 µHz 360 v(µHz) 320 280 240 0 40 80 120 160 $\Omega_c/2\pi$ (µHz) イロト イヨト イヨト イヨト

Spectrum structure : 20 μ Hz

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
	an a wation 1 20				

45/53

< ≣⇒

< ∃⇒

æ

Large separation : 180 μ Hz

 \Rightarrow Large separation conserved at high rotation

Mode density : 180 μ Hz

Kinetic energy $\Omega = 180 \,\mu\text{Hz}$

Mode density : 180 μ Hz

$$\Omega_{\rm c}/2\pi = 0 \rightarrow 180 \ \mu {\rm Hz}$$

Period spacing $\Omega_c/2\pi = 20 \,\mu\text{Hz}$

 \Rightarrow Period spacings of \neq m as a seismic diagnostic of rotation

Introduction	Perturbative approach O	Solar-like stars	Direct 2D approach	Rapid rotators	Red giants
Conclus	ions				

Red giants

Linear splitting not valid for the inversion of Ω profile in RGs \star rotation not as slow as predicted (Beck et al 2012) \rightarrow new seismic diagnostics of rotation : period spacing of $\neq m$

Solar-like stars

UHP asteroseismic mission \Rightarrow accurate individual splittings

 \star constrain for differential rotation profile in solar-like stars

Rapid rotators Non-perturbative 2D computations \Rightarrow island modes regularities \star these regularities explain HD 174936? (Garcia-Hernandez 2009) \rightarrow statistical analysis of synthetic spectra

イロト イポト イラト イ

.⊒ .⊳

$1^{ m st}$ order	Ledoux 1951
$\omega = \omega_0 + m\Omega (1 - C_{n,\ell})$ Effect of Coriolis force mostly	m = +1 0 -1
→ multiplets componants equally spaced	l=1

æ

$1^{ m st}$ order	Ledoux 1951
$\omega = \omega_0 + m\Omega\left(1-{ m C}_{{ m n},\ell} ight)$	m = +1 0 -1
Effect of Coriolis force mostly	< <u> // // →</u> S _m
\rightarrow multiplets componants equally spaced	$\ell=1$

Validity of the perturbative approach?

Model of 1.3 M_{\odot} ZAMS distorted as P₂(cos θ), p modes pulsations

 $\begin{array}{c} \mbox{Comparison: perturbative 2^{nd} order calculations} \\ \mbox{non-perturbative calculations $CoRoT: short run} \\ \rightarrow \ 12 \ km.s^{-1} \ \ \mbox{long run} \rightarrow \ 5 \ km.s^{-1} \end{array}$