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Abstract. The variation of rotation with latitude is poorly known on stars other than the Sun. Several
indirect techniques, photometric and spectroscopic, have been used to search for departure from
rigid rotation for sufficiently fast rotators. Here we investigate the possibility of measuring stellar
differential rotation for solar-type stars through asteroseismology. Rotationally split frequencies of
global oscillation provide information about rotation at different latitudes depending on the azimuthal
order, m, of the mode of pulsation. We present a method to estimate differential rotation based on the
realization that the m = ±1 and m = ±2 components of quadrupole oscillations can be observed
simultaneously in asteroseismology. Rotational frequency splittings can be inverted to provide an
estimate of the difference in stellar angular velocity between the equator and 45◦ latitude. The
precision of the method, assessed through Monte Carlo simulations, depends on the value of the
mean rotation and on the inclination angle between the rotation axis and the line of sight.

1. Introduction

The variation of rotation with latitude, often called ‘differential rotation’, is an
important dynamical property of cool stars like the Sun, which possess an outer
convection zone. Differential rotation, as well as cyclonic turbulent convection, are
believed to be essential ingredients for the generation and maintenance of magnetic
fields in these stars. On the solar surface, the equatorial rotation period is 35%
shorter than at the poles. The Sun’s internal rotation, revealed by helioseismology,
is known to vary with radius and heliographic latitude (e.g. Thompson et al., 2003).
The latitudinal variation is mostly independent of radius in the convection zone,
while the Sun rotates rigidly in the radiative interior. Although the physical pro-
cesses that give rise to differential rotation are not fully understood yet (Miesch
et al., 2000), Kitchatinov and Rüdiger (1999) have developed stellar differential
rotation models that suggest that the difference in angular velocity between the
equator and the poles, �� = �pole − �eq, should depend weakly on the equatorial
rate, but predict a variation with spectral type. Earlier-type main-sequence stars
with shallower convection zones are expected to have greater ��.

Rotation laws are poorly known on stars other than the Sun. Several indirect
techniques are available to estimate surface differential rotation for sufficiently
fast rotators. The first technique proposes to measure the variations of the rota-
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tional periods deduced from long-term photometry. Small cyclic variations are
attributed to the latitudinal migration of starspots on a differentially rotating star
(e.g. Hall, 1991). This technique is limited because the latitudinal distribution of
starspots as a function of the phase of the activity cycle is unknown. In partic-
ular, it is not possible to determine the sign of ��. Photometric studies reach
the conclusion that |��| is largely independent of � (Hall, 1991; Henry et al.,
1995; Messina and Guinan, 2003). More sophisticated spectroscopic techniques
are available to estimate differential rotation. Doppler images of the surface of a
star can be obtained by inverting the distortions introduced by transiting starspots
in rotationally-broadened line profiles (e.g. Rice, 2002). Differential rotation is
then measured by cross-correlating Doppler images at constant latitude (Donati and
Collier Cameron, 1997; Donati et al., 1999). This method can be applied to stars
with rotation periods less than a few days (Petit, Donati, and Collier Cameron,
2002). Collier Cameron, Donati, and Semel (2002) have recently detected the
signature of individual starspots on AB Doradus (fast rotator) without inversion.
Overall, differential rotation measurements derived from Doppler imaging seem
to show a relatively weak dependence of �� on rotation period, despite a large
scatter among individual stars (Collier Cameron, 2002). We note that both photo-
metric and Doppler imaging methods employ large starspots as tracers of rotation.
However, very long lived starspots may be rooted deep inside the stars (perhaps in
a convective overshoot layer) and their motion may not necessarily reflect differ-
ential rotation in the bulk of the convection zone. A promising technique consists
of detecting surface differential rotation directly in stellar absorption line profiles
(Reiners and Schmitt, 2002). This method does not require long observations, nor
does it uses starspots as tracers. Reiners and Schmitt (2003) have observed values
of ��/� greater than 0.2 for several F-stars with v sin i > 10 km/s.

In this paper we explore the possibility of measuring stellar differential ro-
tation through asteroseismology. High-precision asteroseismology is expected to
become a reality within a few years with space missions such as COROT of CNES
(Baglin et al., 2001) and Eddington of ESA (Favata, Roxburgh, and Christensen-
Dalsgaard, 2000). Here we only consider stars that have solar-like acoustic oscilla-
tions. Rotationally-split frequencies of global oscillation provide information about
rotation at different latitudes depending on the azimuthal order, m, of the mode of
pulsation. We present a method to estimate differential rotation based on the fact
that the m = ±1 and m = ±2 components of quadrupole oscillations can be
observed simultaneously for appropriate values of the inclination angle, i, between
the rotation axis and the line of sight.

2. Rotational Splittings

Solar-like oscillations are due to sound waves, excited by convection, that are
trapped within a star. Asteroseismology is the study of pulsations on stars in which
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many oscillation modes can be observed at once. A spherically symmetric star
would give rise to a discrete spectrum of degenerate modes (l, n), where n is the ra-
dial order and l is the spherical harmonic degree. Observations of solar-like pulsa-
tions on distant stars are restricted to high-n acoustic modes with l ≤ 2. Rotation
as well as other aspherical perturbations completely lift the azimuthal degeneracy.
When rotation is slow, it can be treated as a small perturbation. A multiplet (l, n)
is composed of 2l + 1 independently excited modes, m, with frequencies

νnlm = νnl + δνnlm, (1)

where the central frequency νnl includes all spherically symmetric distortions, and
the rotation-induced m-dependent frequency perturbation is denoted by δνnlm. In
an inertial frame with polar axis coincident with the axis of rotation, we denote
by �(r, θ) the star’s angular velocity, where r is the radial coordinate and θ is the
colatitude.

To a first order of approximation, the frequency perturbation introduced by
rotation is linear in �, as is the case for the Sun, and scalar eigenfunctions are pro-
portional to a spherical harmonic function Y m

l (θ, φ), where φ is the longitude. To
the next order of approximation, centrifugal forces distort the equilibrium structure
of the star (Dziembowski and Goode, 1992). This results in an additional frequency
perturbation that scales like the ratio of the centrifugal to the gravitational forces at
the stellar surface, η = �2

eqR
3/(GM), where R is the stellar radius, M is the stellar

mass, and G is the universal constant of gravity. For moderate rotation rates, the
frequency perturbation due to rotation can be approximated by

δνnlm = m

2π

R∫
0

rdr

π∫
0

Kn
lm(r, θ)�(r, θ) dθ + ηQlmνnl. (2)

The kernels Kn
lm depend only on m2 and can be calculated from the eigenfunctions

of the non-rotating model (Christensen-Dalsgaard, 2003).
The second term in Equation (2) describes the P2-distortion of the stellar surface

due to centrifugal forces, with Qlm given by (Kjeldsen et al., 1998)

Qlm � 2/3
∫ 1

−1 P 0
2 (x)[P |m|

l (x)]2dx∫ 1
−1[P |m|

l (x)]2 dx
, (3)

where the P m
l are associated Legendre polynomials. Other perturbations, such as

a large scale magnetic field, may introduce further corrections to the pulsation
frequencies, but would only depend on |m|. Thus, the frequency splitting,

Snlm = 1

2m
(νnlm − νnl−m), (4)

is linear in � and is fully specified by the product Kn
lm�. If rotation was constant

on spheres then Snlm would be independent of m.
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Figure 1. Contour plots of rotational kernels Klm(r, θ) at fixed radial order, n = 20, computed for a
solar model. The kernels K22 and K11 are similar with maximum values at the equator, while K21
peaks around 45◦ latitude. Also shown is the kernel difference Kll − K21 for l = 2 and l = 1 (black
is positive, white is negative).

Figure 2. Averages of solar rotational kernels with n = 20. (a) Plots of the radial averages
Klm(θ) = ∫ R

0 rdrKlm(r, θ) versus colatitude. The thick, thin, and dashed lines refer to K22,K11,
and K21, respectively. (b) Plots of Kll − K21 for l = 2 (thick) and l = 1 (thin). It is evid-
ent that the differences in frequency splittings Sn22 − Sn21 and Sn22 − Sn21 are sensitive to
the differential rotation measured between the equator and 45◦ latitude. (c) Cumulative kernel
〈Kl〉(r) = ∫ r

0 r ′dr ′ ∫ π
0 dθKlm(r ′, θ) versus fractional radius for l = 2 (thick) and l = 1 (thin).

For n = 20, rotation in the solar convective zone contributes ∼ 65% of the total rotational splittings.
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Example solar rotational kernels are shown in Figure 1 for dipole and quad-
rupole modes at fixed radial order, n = 20. The sectoral kernels Kn

11 and Kn
22

are similar and confined to equatorial latitudes, while Kn
21 is maximum around

45◦ latitude (Figure 2). Hence the frequency splitting differences Sn22 − Sn21 and
Sn11 − Sn21 are sensitive to latitudinal differential rotation. To quantify the effect
of differential rotation, we now consider the following simplified solar rotation
profile:

��(r, θ) ≡ 1

2π

{
A + B cos2 θ + C cos4 θ rc < r < R

D r < rc,
(5)

where A = 454 nHz, B = −55 nHz, C = −76 nHz, D = 435 nHz, and
rc = 0.7R is the location of the base of the convection zone. In this model the
angular velocity in the convection zone is consistent with the surface Doppler
measurement of Snodgrass, Howard, and Webster (1984). Figure 3(a) shows the
resulting frequency splittings Snlm versus radial order n. The splittings Sn22 and
Sn11 have a similar value at fixed n, which is consistent with the claim Kn

22 ∼ Kn
11

that we made earlier. The smaller value of Sn21 reflects the fact that Kn
21 peaks at

mid latitudes where the surface angular velocity is ∼ 15% less than at the equator.
Figure 3(b) shows the frequency perturbations δν20,2,m calculated for faster

rotating stars with angular velocities, �(r, θ), proportional to ��(r, θ). For �

larger than a few times the solar value, the frequency perturbations arising from
the centrifugal distortion are not negligible compared to Snlm. We note that the
calculation of the mode frequencies given by Equation (2) is oversimplified as it
ignores higher-order effects of rotation and rotational mode couplings.

3. Simulated Spectra

We wish to simulate oscillation power spectra of photometric data. In principle, we
need to estimate not only the mode frequencies but also the mode eigenfunctions
and amplitudes, which, in general, is not an easy task. Since solar-like oscilla-
tions are stochastically excited and damped by turbulent convection, the mode
amplitudes have to be derived from model calculations of convection (Houdek
et al., 1999). In addition, the perturbations to the eigenfunctions caused by rotation
should be taken into account (see Daszyńska-Daszkiewicz et al., 2002, for effects
due to rotational mode coupling), and a correct relationship between mode dis-
placement and light-flux perturbation must be computed (Toutain and Gouttebroze,
1993).

Here, however, we adopt a simplified parametric model (see Gizon and Solanki,
2003). We make the assumption that the brightness variations due to the mode
of oscillation (n, l,m) are proportional to the spherical harmonics Y m

l (θ, φ), and
that there is energy equipartition between the azimuthal components of a multiplet
(l, n). These conditions are satisfied in the solar case, i.e., when rotation is slow.
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Figure 3. (a) Plot of the solar rotational splittings Snlm versus radial order. The prescribed angular
velocity is ��(r, θ) given by Equation (5). (b) Frequency perturbations δνnlm from Equation (2)
as a function of �/��, for the quadrupole multiplet (n, l) = (20, 2). The thick lines correspond to
different values of m. The proportionality constant between �(r, θ) and the solar reference, ��(r, θ),
is the only parameter that is varied. The dashed lines correspond to the first-order linear effect of
rotation, when the centrifugal distortion of the star is ignored. Note the unequal rotational frequency
splittings for different m values.

Figure 4. Power spectrum for dipole and quadrupole multiplets versus inclination angle, i, between
the stellar rotation axis and the observer’s line of sight. The angular velocity is � = 6�� and the
FWHM of each Lorentzian line profile is γ = 1 µHz. The modes l = 2, m = ±1 have significant
power when 20◦ < i < 70◦ and the sectoral modes m = ± l when i > 30◦. This implies that the
splitting differences Sll − Sn21 can only be measured for inclinations angles 30◦ < i < 70◦.
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The dependence of the visible mode power, Enlm, on inclination angle, i, and
azimuthal order, m, is then given by (Dziembowski, 1977):

Enlm(i) = Snl

(l − |m|)!
(l + |m|)!

[
P

|m|
l (cos i)

]2
, (6)

where Snl = ∑
m Enlm(i) is the total power in the multiplet (n, l). Spectral line

shapes are assumed to be given by a Lorentzian function,

Lnl(ν) = [
1 + (2ν/γnl)

2
]−1

, (7)

which describes exponentially damped harmonic oscillators (Anderson, Duvall,
and Jefferies, 1990). The parameter γnl is the full width at half maximum of Lnl(ν).
The expectation value of the power spectrum, P (ν), can then be written as

P (ν) = N +
∑

modes

Enlm(i)Lnl(ν − νnlm), (8)

where N denotes the variance of the noise (stellar and instrumental), assumed to
be constant over a limited frequency range. The signal-to-noise ratio is controlled
by Snl/N .

We compute the expectation of the power spectrum, P (ν), in a frequency range
that includes the modes (l = 2, n), (l = 1, n), and (l = 0, n+1). We use the n = 20
solar rotational kernels to compute the frequency perturbations δνnlm, according to
Equation (2). The stellar angular velocity, �(r, θ), is chosen to be proportional
to ��(r, θ) given by Equation (5), where the constant of proportionality is in the
range 2 < �/�� < 10. This implies that [�(R, π/4) − �eq]/�eq = constant
where �eq is the equatorial angular velocity in the convection zone. The inclination
angle spans the range 0 < i < π/2. All other parameters are fixed: the observation
time is T = 4 months, all line widths are equal to γnl = 1 µHz, and the signal-
to-noise ratios are fixed at Snl/N = 100. These values for γ and S/N are typical
of solar irradiance data near 3 mHz, although the measured values vary signific-
antly with l and n. Our purpose is simply to assess the feasibility of measuring
differential rotation for this particular set of parameters.

For given values of i and �/��, a realization of the power spectrum at fre-
quency νj = j/T , denoted by Pj , is a random sample drawn from an exponen-
tial distribution with mean P (νj ) and variance P 2(νj ) (Anderson, Duvall, and
Jefferies, 1990). In practice, it is given by

Pj = − ln(Uj)P (νj ), (9)

where Uj is drawn from a uniform distribution on [0, 1] (Gizon and Solanki, 2003).
The assumption of stationarity implies that frequency bins are uncorrelated (Uj and
Uk are independent for j 
= k).

Figure 4 shows the expectation value of the power spectrum, P (ν), as a function
of the inclination angle when � = 6��. Only in the range 30◦ < i < 70◦,
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Figure 5. One realization of the power spectrum showing l = 2, l = 1, and l = 0 at fixed inclination
angle i = 50◦. The simulated data correspond to 4 months of uninterrupted observations (thin line).
The stellar angular velocity is � = 6�� and the signal-to-noise ratio is Snl/N = 100. The thick
gray line shows the expectation value of the power spectrum, P (ν), while the thick black line shows
the maximum likelihood fit (l = 0, 1, 2 are fitted simultaneously).
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where the modes (l = 2,m = ±1) and (l,m = ±l) have significant power, will
it be possible to attempt a measurement of the differential rotation. A particular
realization of the power spectrum, {Pj }, is shown in Figure 5 for � = 6�� and
i = 50◦. The expectation P (ν) is overplotted for comparison.

4. Measurements of Parameters: Fits to Synthetic Spectra

We now want to retrieve an estimate of the differential rotation from a partic-
ular realization of a power spectrum. To do so we use a maximum likelihood
technique, commonly used in helioseismology (Toutain and Appourchaux, 1994;
Appourchaux, Gizon, and Rabello-Soares, 1998).

First, we specify a model power spectrum that depends on a minimal set of
relevant parameters. It is customary to express the mode frequencies within a
multiplet (l, n) in terms of a set of 2l + 1 so-called a coefficients:

νnlm = νln +
2l+1∑
j=1

aj (n, l)P (l)
j (m). (10)

The P (l)
j (m) are polynomials of degree j that are uniquely determined by the or-

thogonality condition
∑

m P (l)
j (m)P (l)

k (m) = 0 for j 
= k, and the normalization
P (l)

j (l) = l (Schou, Christensen-Dalsgaard, and Thompson, 1994). The frequency
perturbations due to the linear effect of rotation are encoded in the odd coefficients,
a2s+1. The frequency perturbations due to the centrifugal distortion of the star
correspond to the even a coefficients. In terms of a coefficients, the l = 1 and
l = 2 frequency splittings are given by

Sn11 = a1(1, n), (11)

Sn2m = a1(2, n) + 1

3
(5m2 − 17)a3(2, n). (12)

The parameter a3(2, n) contains the information about differential rotation. To
reduce the number of parameters in the fit, we further assume that Sn11 ≡ Sn22.
We have seen that it is a good assumption, at least in the solar case (Figure 3). This
simplification improves the convergence of the fit at the expense of a slightly mis-
specified model. Thus the two independent parameters that we wish to determine
are

a1 ≡ a1(2, n), a3 ≡ a3(2, n). (13)

Using the assumption Sn11 = Sn22 together with the relation Sn22 = a1 + a3 (see
Equation (12)), we can parametrize the model frequency spectrum in the form

νn2m = ν2 + ma1 + ηQ2mν2 + 1

3
(5m3 − 17m)a3, (14)
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Figure 6. Distributions of the maximum likelihood estimates i
, η
, a

1, and a


3 versus input inclina-
tion angle, i. The white lines show the true values of the parameters. Two multiplets, l = 1 and 2, and
one mode l = 0 are fitted simultaneously (see Figure 5). The distributions are constructed from 2000
realizations at each i value. The input rotation is � = 6��, and the observation time is 4 months.

νn1m ≡ ν1 + m(a1 + a3) + ηQ1mν1, (15)

where ν1 and ν2 are the central frequencies, and η is the asphericity parameter.
Mode amplitudes and line shapes are presumed to be given by the functional
forms (6) and (7). Although the l = 0 mode does not contain any information
about rotation, we include it in the fit together with l = 1 and l = 2 to increase
the precision on the measurement of the common line width of the Lorentzian
profiles. In short, the model power spectrum has 12 parameters λ = {ν0, ν1, ν2,
a1, a3, η, i, γ , S0, S1, S2, N } that correspond to three central frequencies, two odd
a coefficients, the asphericity parameter, the inclination angle, one common line
width, three independent amplitudes, and the background noise.

The method of maximum likelihood involves specifying the joint probability
density function of the model evaluated at the sample data {Pj }, also called the
likelihood function (see Gizon and Solanki, 2003). The maximum likelihood es-
timates, denoted by λ
, maximize the likelihood function. The optimization method
we implemented uses a downhill simplex algorithm. An example of a fit is shown
in Figure 5. We note that maximum likelihood estimators are minimum variance
estimators, but there is no guaranty that λ� will be unbiased.
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For each choice of the input parameters i and �/��, we fit 2000 realizations
of the l = 0,1,2 spectrum in order to construct the probability distributions of the
estimated parameters. This enables us to determine the bias and the dispersion of
the measurements. Figure 6 shows the results of the fits as a function of i when
� = 6��. For i < 25◦, the fits fail to return the values of η, a1, and a3 with
sufficient precision or without bias (only modes m = 0 are visible). However, the
input differential rotation is detected (a


3 positive) when 30◦ < i < 70◦. There is
no particular bias on i
 introduced by the fitting beyond those already discussed
by Gizon and Solanki (2003). We mention that, despite the large scatter in a∗

1 for
i > 70◦, the sectoral splitting Sn22 = a1 + a3 can be retrieved with good precision
for all i > 30◦.

Figure 7 shows the results for i = 50◦. It is confirmed that the biases in i
, a

1

and a

3 are small for 2 < �/�� < 10. The thick black error bars in Figure 7

represent the expected uncertainty of the measurements if, say, ∼ 10 n values can
be observed (the error bar for a single n is divided by 3). The uncertainty in all
quantities decreases as � increases. In particular, our simulations suggest that 4
months of observations would be sufficient to distinguish a


3 (when � ∼ ��) from
the solar value a3�, if � > 4�� and i = 50◦.

5. Inferred Differential Rotation

In a next step, we need to convert the measured coefficients a1 and a3 into an estim-
ate of the stellar angular velocity, in order to infer differential rotation. Rizwoller
and Lavely (1991) and Schou, Christensen-Dalsgaard, and Thompson (1994) have
shown that inversions of a coefficients (as defined above) are made easier by
parametrizing �(r, θ) as follows:

�(r, θ) = �0(r) +
∑
j=1

�j(r)Wj (θ), (16)

where Wj(θ) = | sin θ |−1P 1
2j+1(cos θ) and the �j(r) are radial functions to be

determined. In particular, the functions W1 and W2 are given by

W1(θ) = 3

2
(5 cos2 θ − 1), (17)

W2(θ) = 15

8
(21 cos4 θ − 14 cos2 θ + 1). (18)

The advantage of the expansion given by Equation (16) is that a particular function
�k(r) can be determined from the coefficients a2k+1(l, n) alone. In our case, we
have only two independent coefficients a1 and a3 for l = 2, at a given n. We choose
to invert for a rotation law, denoted by �̃(r, θ), that has only two independent
parameters. Assuming that we have an estimate of the depth of the convection
zone, rc, then the simplest model is
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Figure 7. Maximum likelihood estimates i
, a

1 − a1, and a


3 versus �/�� at fixed i = 50◦. The
circles show the medians from 2000 realizations (l = 0,1,2 combined, single n value). By definition
2/3 of the values returned by the fits lie within the gray error bars. The black error bars are the error
bars divided by a factor of 3, i.e. the expected error bars if the modes can be detected for about 10
different n values. The horizontal black lines correspond to the known input values, i, a1, and a3. The
horizontal dashed line in the bottom figure shows the solar value of a3 calculated from the rotation
model defined by Equation (5), and denoted by a3� in the text.
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Figure 8. Results of the inversion of the a coefficients (returned by the fits) at fixed i = 50◦
(left panel) and at fixed � = 6�� (right panel). The circles show (�mid − �eq)/�eq deduced
from the mean a


1 and a

3 according to Equations (23) and (19), with �mid = �̃(R, π/4) and

�eq = �̃(R, π/2). The dashed line is the value that would have been obtained for unbiased meas-
urements, while the solid line is the solar value. The dashed and solid lines differ because we cannot
expect to measure the W2(θ) component of the solar rotation profile with l ≤ 2. As in Figure 7 the
error bars for a single n are divided by a factor of three.

�̃(r, θ) =
{

�̃0 + �̃1W1(θ) rc < r < R

�̃0 r < rc,
(19)

where �̃0 and �̃1 are two unknown constants to be determined. There is a one-
to-one correspondence between a1 and �̃0 on the one hand, and a3 and �̃1 on the
other hand. Noting that (see Equation 12)

a1 = (4Sn22 + Sn21)/5, a3 = (Sn22 − Sn21)/5, (20)

we can immediately write

2πa1 = �̃0

R∫
0

rdr

π∫
0

dθK22 ≡ �̃0K0, (21)

2πa3 = �̃1

R∫
rc

rdr

π∫
0

dθW1(K22 − K21)/5 ≡ �̃1K1, (22)

which yields the trivial inversion:

�̃j = 2πa2j+1/Kj , j = 0, 1. (23)
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Of course, if the dependence of a2j+1 on n can be measured, then a depth inversion
becomes possible (see e.g. Kawaler, Sekii, and Gough, 1999). Here, however, we
have focused on differential rotation averaged over the depth of the convection
zone (and weighted according to the curves shown in Figure 2).

In Figure 8 we plot (�mid − �eq)/�eq, where �mid = �̃0 + �̃1W1(π/4) is
the inferred angular velocity at 45◦ latitude and �eq = �̃0 + �̃1W1(π/2) is the
inferred angular velocity at the equator. The circles are the median values returned
by inversion of the measurements a


1 and a

3, while the solid line is the true value

entering the synthetic spectra (based on Equation (5)). The dashed line shows
the values obtained from Equation (5) if the W2 term in �� is neglected; this is
the value we expect the inversions to ideally return, since Equation (19) which
underlies the inversions only contains terms up to W1. Both lines always lie within
the 1/3 error bars. However some bias is visible at small �/�� (underestimate of
the true differential rotation) and at inclination angles approaching either 0 or π/2.
The useful range of inclination angles, 30◦ < i < 70◦, follows from Figure 4 and
from the fact that the difference Snll − Sn21 is the important quantity that needs to
be measured. Only in this intermediate i range where the (l = 2, m = ±1) modes
have sufficient power is it possible to infer differential rotation. Finally, we note
that inversions for differential rotation are quite insensitive to a mis-identification
of the radial order n.

6. Discussion

The importance of differential rotation for the generation of solar and stellar mag-
netic fields and hence for all active phenomena caused by them is undoubted.
Although the phenomena caused by the magnetic field are easily visible, the mag-
netic field itself and the underlying differential rotation are far more difficult to
measure. Here we have investigated under what conditions and to what extent
the differential rotation of Sun-like stars can be determined using asteroseismic
techniques, whereby we have assumed that only modes with � ≤ 2 are detectable
with sufficient power to be employed for this purpose. This limits the differential
rotation that can be detected to a simple cos2 θ functional dependence.

The tests suggest that the technique can give useful results for � > 4�� and
30◦ < i < 70◦ (assuming that l ≤ 2 modes with about 10 different values of n

are seen in the power spectrum and that the star is observed continuously for 4
months). Within this parameter range it is possible to distinguish between the case
of ��/�eq = constant (the simulations) and �� = constant, where �� =
�(θ = π/4) − �eq. However, it is not possible to distinguish solar differential
rotation, i.e. �� = ���, from a completely rigidly rotating star with �� = 0.
Fundamental limitations are introduced by the finite lifetime of the modes, the
frequency resolution, and the signal-to-noise ratio.



MEASURING STELLAR DIFFERENTIAL ROTATION WITH ASTEROSEISMOLOGY 183

This raises the question whether asteroseismology is a viable tool for measuring
stellar differential rotation. It must be mentioned in this respect that the error in
the oscillation parameters (including a3) scales like T −1/2, where T is the length
of the time series. Hence, longer time series could allow more sensitive results.
Extrapolating from our results we estimate that a time series of T = 16 months
is the minimum required in order to detect �� = ��� even on a star with � =
10�� (at a 1−σ level). We predict, however, that the situation would improve
significantly if the l = 3 multiplets can be detected.

One advantage of the differential rotation determination from asteroseismology
is that it gives the differential rotation over the bulk of the stellar convection zone
and is thus complementary to the other techniques. A possible application of com-
bining the differential rotation deduced from asteroseismology or absorption line
profiles with rotation rates obtained from light-curves (starspots) is to determine
the latitudes at which the starspots are located. Changes in rotation periods from
the light curves can then be used to trace changes in latitude, so that the butterfly
diagram can be reconstructed for such stars. One assumption underlying this idea
is that the rotation rate is independent of activity level. Although this is reason-
able, Ribes and Nesmes-Ribes (1993) have argued that the solar rotation rate was
different during the Maunder minimum.
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