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Abstract

Recent observations have revealed that we lack a fundamental understanding of the large
scale (with spherical harmonic degrees l ≲ 60) flows in the Sun. Flows at these large
scales are strongly influenced by rotation. In this thesis, we report both observational
detection and identification of a number of different types of inertial modes where the
restoring force is the Coriolis force. We then use numerical techniques to investigate the
modes, first in the linear regime where we investigate the effect of viscosity, superadi-
abaticity and latitudinal entropy gradients on the modes. We further proceed by iden-
tifying some of modes in fully non-linear 3D stratified convection simulations, and in
mean-field simulations. The knowledge obtained in this thesis will help us to establish
a novel method of using the inertial modes to probe the interior of the Sun, i.e., inertial
mode helioseismology.

In particular, in Chapter 2, we report a comprehensive observational detection of the
inertial modes on the Sun. With the help of linear-eigenmode calculations (described in
Chapter 3), we successfully identify three classes of solar inertial modes: the equatorial
Rossby modes, critical-latitude modes, and high-latitude modes. Since these modes are
sensitive to properties of the deep convection zone, they give us a new diagnostic potential
to learn about the deep interior of the Sun.

In Chapter 3, we develop a 2.5D numerical code to study the linear eigenmodes of ro-
tating compressible fluid with the solar-like stratification. We take into account the effects
of turbulent diffusion, entropy gradients, and helioseismically-constrained differential ro-
tation in the Sun. We focus on the vorticity modes of oscillation in the inertial frequency
range at low azimuthal orders, and show that the equatorial Rossby modes with one ra-
dial node (n = 1) are essentially mixed with the north-south anti-symmetric columnar
convective modes. We also find that when the we include turbulent viscosity at a level
of about 1012 cm2 s−1 the radial eigenfunction of the n = 0 Rossby modes very different
from the theoretically-expected rm dependence and become confined near the base of the
convection zone.

In Chapter 4, we carry out a numerical simulation of rotating turbulent convection in
a stratified spherical shell to examine if the linear modes persist in this highly nonlinear
regime. The code has been newly developed for this purpose and uses the reduced-speed
of sound technique and a Yin-Yang grid. Various types of vorticity modes are extracted
from the simulation data by performing a singular-value decomposition. The simulated
power spectra and the extracted eigenfunctions are compared with the results of the linear
analysis. We successfully identify both columnar convective modes and the equatorial
Rossby modes in our simulation. North-south symmetric columnar convective modes
contain the dominant velocity power and contribute substantially to the convective energy
and angular momentum transport. Furthermore, we confirm the existence of the "mixed"
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Abstract

modes between the n = 1 Rossby modes and the north-south anti-symmetric columnar
convective modes near the surface where convection is most vigorous. These results are
in a qualitative agreement with our linear calculations.

In Chapter 5, we give a physical explanation for the high amplitudes of the observed
high-latitude inertial modes on the Sun. We propose that they are driven by a baroclinic
instability due to the latitudinal entropy gradient in the solar convection zone.

Chapter 6 is finally devoted to a development of the first three-dimensional magne-
tohydrodynamic(MHD) Babcock-Leighton-type solar dynamo code. In this framework,
large-scale mean flows are maintained by the parameterized convective angular momen-
tum transport (Λ-effect) without explicitly solving the thermal convection. We include
a time-dependent random contribution in the Λ-effect which mimics the stochastic tur-
bulent convective motions and can excite large-scale inertial modes. We successfully
demonstrate that several inertial modes discussed above exist in this type of simulation.
Therefore, our model can be potentially used to further study the effect of torsional oscil-
lations, subsurface magnetic fields, and active region inflows on the Rossby and baroclinic
modes.
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1 Introduction

The Sun is a dynamic star. The thermal energy generated by nuclear fusion at the core of
the Sun is continuously transported upward by radiation in the inner 70% (radiation zone)
and by convection in the outer 30% of the interior (convection zone) (§1.1). Without
a doubt, convection is what exactly makes the solar physics challenging and interesting.
When convection occurs, many dynamical processes are caused by convection: It does not
only transport the thermal energy in the Sun. Influenced by solar rotation, convection also
transports the angular momentum and drives the large-scale mean flows such as differen-
tial rotation and meridional circulation (§1.3). These large-scale mean flows are believed
to play critical roles in generating strong magnetic fields in the Sun and maintaining its
magnetic activity with 11-yr periodicity (§1.4).

However, it has been widely recognized that our understanding on large-scale con-
vection in the Sun is far from complete, as commonly known as "convective conundrum"
(§1.6). Recently, equatorial Rossby waves have been unambiguously observed on the
Sun. Interestingly, it is found that the Rossby waves contribute a significant fraction of
the large-scale velocity power and thus can have a substantial impact on the convection
zone dynamics. In this thesis, we study the theoretical aspects of the Rossby waves in the
Sun in the linear and nonlinear regimes (with and without magnetic fields), and discuss
their implications in the context of the convective conundrum. In the following, we briefly
review the relevant topics from both observational and theoretical perspectives.

1.1 Internal structure of the Sun

Standard solar model S

The internal structure of the Sun is described by the "solar standard model" (Model S)
(Christensen-Dalsgaard et al. 1996a), which is obtained by solving the equations of mass
conservation, hydrostatic equilibrium, and thermal equilibrium (energy balance) under
the boundary conditions at the core and at the surface of the Sun. It will be instructive
to give readers some important observational solar parameters such as the solar radius
R⊙ = 6.96 × 1010 cm,mass M⊙ = 1.99 × 1033 g, and luminosity L⊙ = 3.84 × 1033 erg s−1.
In order to close the equations, the energy flux in the Sun needs to be determined. In
general, energy is transported by radiation when the background temperature gradient is
moderate compared to the adiabatic gradient and by convection when the temperature
gradient is sufficiently steep. Since the deep interior of the Sun is optically-thick, the
radiative energy flux can be easily estimated using the diffusion approximation. On the

11



1 Introduction

Figure 1.1: Profiles of (a) temperature, (b) pressure, (c) density, (d) sound speed, (e)
convective speed, and (f) superadiabaticity as function of radius obtained by the solar
standard model (Model S) (Christensen-Dalsgaard et al. 1996a). The typical convective
speed vr is estimated by local-mixing length model. The figure is reproduced using the
data provided at https://users-phys.au.dk/jcd/solar_models/ and by Stix (2002).

other hand, the convective energy transport is much more difficult to model owing to the
turbulent nature of the solar convection.

Convective energy transport (local mixing-length model)

Practically, this can be done using the mixing length theory (Vitense 1953, Böhm-
Vitense 1958), which is based on the assumption that a convective fluid parcel will dis-
solve into its surroundings after moving a typical mixing-length distance lMLT and deposit
its energy there. The mixing length lMLT is conventionally assumed to be comparable to
the pressure scale height Hp = −(d ln p/dz)−1 as lMLT = αMLTHp, where αMLT is a mixing-
length parameter. Then, the enthalpy flux Fe can be estimated as

Fe = ⟨ρcpvr∆T ⟩ =
αMLT

2
ρcpvrTδ, (1.1)

where δ = ∇−∇ad is the superadiabaticity and ∇ = d ln T/d ln p is the double-logarithmic
temperature gradient. Positive (negative) δ represents the convectively unstable (stable)
background for Schwarzschild criterion. Considering the buoyancy acceleration, the typ-
ical convective speed (radial component) vr can be estimated as

vr ≈ lMLT

√
gδ

8Hp

(
∂ ln ρ
∂ ln T

)
p
. (1.2)

The coefficient (∂ ln ρ/∂ ln T )p can be obtained from the equation of state. Thus, the only
remaining free parameter in the equations describing the solar internal structure is the

12
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1.2 High-frequency oscillations in the Sun

mixing-length parameter αMLT. In practice, αMLT is adjusted so as to make the solutions
fit with the observations. The typical value of αMLT is ≈ 1.8, which leads to the depth
of the convection zone rbase = 0.71. Figure 1.1 shows the internal stratification obtained
by the standard model (Model S) of Christensen-Dalsgaard et al. (1996a). The validity of
this solar standard model is well confirmed by global helioseismology.

A typical value of the superadiabaticity within the solar convection zone is very small
O(10−6). Therefore, the stratification within the solar convection zone is often approxi-
mated as adiabatic. The convective velocity obtained in the solar standard model is typi-
cally about 50− 100 m s−1 inside the convection zone, but increases significantly towards
the photosphere up to 1000 − 2000 m s−1, which is just one order of magnitude smaller
than the local sound speed.

As we will discuss in §1.6, the validity of the local mixing-length model recently
comes into question. We note here that the effects of rotation (§1.3) and magnetic fields
(§1.4) are not considered in this model.

1.2 High-frequency oscillations in the Sun

Power spectrum

The Sun is oscillating at various spatial and temporal scales. The greatest manifestation
is the so-called 5 minutes oscillations of the Sun which has been observed in the fluctu-
ations of the Doppler velocity at the solar surface (Leighton et al. 1962). This 5 minutes
oscillations are later interpreted as standing acoustic waves that are trapped in a resonant
cavity in the Sun (Ulrich 1970, Leibacher and Stein 1971, Deubner 1975, Rhodes et al.
1977). Ridges in the power spectrum, corresponding to the global eigenmodes of acous-
tic waves traveling through the entire Sun, were identified by Claverie et al. (1979), Grec
et al. (1980) and Duvall and Harvey (1983). Their studies opened up a new branch of solar
physics research, i.e., helioseismology, in which the solar eigenmodes of oscillation are
used to probe properties of the Sun’s interior. For more details, see Christensen-Dalsgaard
(2002) and Basu (2016).

Figure 1.2a shows the observed power spectrum of the Sun obtained from SOHO/MDI,
where a brighter part represents high wave power originating from the superposition of
acoustic oscillations in the Sun. Each ridge represents the acoustic modes (p-modes)
with different radial order n (e.g., Chou et al. 1995, Rhodes et al. 1997). The lowest-
frequency ridge with faint power is the so-called f -modes (surface gravity waves) where
n = 0. Internal gravity waves (g-modes) are expected to exist on frequencies below 0.5
mHz. When integrated over the solar disk (Sun-as-a-star observation), the power peaks
at around νmax ≈ 3 mHz, corresponding to a period of 5 minutes, as shown in Fig. 1.2b
(e.g., Elsworth et al. 1995). In the integrated light, signals associated with the modes
for l ≤ 3 are strongly cancelled, and therefore, the spectrum is dominated by modes of
l = 0, 1, 2, and 3. The inset of Fig. 1.2b provides an expanded view around the frequency
range of 3 mHz, where the four prominent peaks can be labelled by their spherical har-
monic degree l. The associated so-called Echelle diagram (Grec et al. 1983) of the Sun is
presented in Fig. 1.2c, where almost vertical power ridges can be identified for l = 0, 2 on
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1 Introduction

Figure 1.2: (a) Power spectrum of the oscillations on the Sun, obtained by SOHO/MDI
over a time span of 10 days (1-10, December 2019). Shown is the power of Doppler
velocity as a function of spherical harmonic degree l and frequency ν, averaged over all
azimuthal orders m. Red regions indicate areas of high wave power formed by acoustic
modes. (b) Spectrum of solar oscillations integrated over the full solar disk (sun-as-a-
star observation), obtained from SOHO/GOLF instrument over a time span of 22 years
(Appourchaux et al. 2018). The power is normalized. The inset shows a zoom-in focusing
on the frequency range of about 3 mHz. (c) Echelle diagram of the Sun; the same power
spectrum as panel (b) but plotted against the frequency modulo with the large separation
of ∆ν = 135.3 µHz. The four vertical stripes of high power correspond to l = 0, 2, and
l = 1, 3 from left to right. The power spectra data was provided by courtesy of Zhi-Chao
Liang.

the left and for l = 1, 3 on the right with the large separation of ∆ν = 135 µHz. The small
separation between l = 0 and l = 2 modes can be estimated as δν = 9 µHz for the Sun
(Christensen-Dalsgaard 2002). In fact, stellar radius, mass, and evolutionary stage can be
asteroseismocally-determined by measuring the peak frequency νmax, large separation ∆ν,
and small separation δν obtained from the stellar (point-source) observations (e.g., Aerts
et al. 2010).

Propagation diagram
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1.2 High-frequency oscillations in the Sun

Let us consider the linear non-radial oscillations in the Sun under the following ap-
proximations:

• A fluid motion is adiabatic, i.e., when a fluid parcel is perturbed (displacement is
small), there is no heat exchange between the surroundings and the timescale of this
displacement is slow compared to the thermal diffusive timescale.

• Rotational effects are ignored. Therefore, low-frequency inertial modes are omitted.

• Stratification is spherically symmetric.

• The change in a gravitational potential due to the density perturbation is neglected.
This is called Cowling approximation (Cowling 1941).

• The perturbations can be expressed by spherical harmonics Ym
l (where l is the spher-

ical degree and m is the azimuthal order) and have the time dependence in a form
of exp (−iωt) (where ω is the angular frequency).

The (locally-defined) radial wavenumber kr of the perturbation must satisfy

k2
r =

ω2

Cs2

(
N2

ω2 − 1
) (

S 2
l

ω2 − 1
)
, (1.3)

where the the Brunt-Väisälä frequency N and the Lamb frequency S l are defined by

N2 = g

[
1
γ

d ln p0

dr
−

d ln ρ0

dr

]
, (1.4)

S 2
l = l(l + 1)

Cs2

r2 . (1.5)

Figure 1.3 shows the radial profiles of N and S l computed for the standard solar model
S, which is often called as a propagation diagram. For a wave to propagate (oscillatory
solution), k2

r > 0 is demanded, leading to the following two conditions.

(I) ω2 > N2 and ω2 > S 2
l (1.6)

(II) ω2 < N2 and ω2 < S 2
l (1.7)

The modes are thought to be damped in the evanescent region where, for example, S 2
l=1 <

ω2 < N2 in the middle convection zone.

p-modes (acoustic waves)

The first condition (I) corresponds to p-modes (acoustic modes) whose main restoring
force is the pressure gradient force. In fact, in the limit of ω → ∞, Equation (1.5) can be
reduced to the dispersion relation of sound waves ω2 = C2

s (k2
r + k2

h) where k2
h = l(l+ 1)/r2.

p-modes can propagate as oscillatory waves in the outer layer of the Sun denoted by
orange-shades in Figure 1.3. The depth that a p-mode with frequency ν can propagate
into the Sun depends on l: The turning point (depth) can be roughly given by r that
satisfies C2

s (r)/r2 = ω2/l(l + 1), i.e., the depth where the horizontal phase speed equals
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Figure 1.3: The propagation diagram for a standard solar model S (Christensen-
Dalsgaard et al. 1996b). The blue and red lines show the Brunt-Väisälä frequency N and
the Lamb frequency S l (for l = 1, 10, 100), respectively. The cyan- and orange-sheded
regions denote the regions where g-modes and p-modes can propagate.

to the local sound speed. Therefore, the modes are more and more localized near the
surface as l increases. A more detail analysis using the ray theory can be found in Gough
(1984). For p-modes with frequencies of about 3 mHz (corresponding to the period of 5
minutes oscillation), the turning depths of the modes l = 1, 40, and 100 are calculated as
r/R⊙ = 0.05, 0.71, and 0.9. Therefore, for l ≥ 40, the modes are trapped in the convection
zone.

Excitation and damping mechanism of the p-modes are still controversial. Particu-
larly, it is still difficult to identify the exact places and timings of the excitation sources.
A widely accepted idea is that they are stochastically excited by turbulent convection near
the surface such as granulation (e.g., Goldreich and Keeley 1977). Whenever the pressure
is perturbed due to the random turbulent motions, p-modes arise. Since convection can
produce noises with a wide range of frequencies, some of them become resonant with the
eigenmodes of acoustic oscillations.

g-modes (internal gravity waves)

The second condition (II) in Eq. (1.7) corresponds to g-modes (gravity modes or in-
ternal gravity waves) whose main restoring force is the buoyancy (gravity) force in a
stably-stratified medium. g-modes can propagate as oscillatory waves in the inner part of
the Sun denoted by cyan-shades in Figure 1.3. The lower and upper turning depths of the
g-modes are given by ω = N. Here, it is instructive to note that the Brunt-Väisälä fre-
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1.3 Large-scale mean flows

quency N2 is proportional to the radial gradient of the background specific entropy ds0/dr
and to the superadiabaticity δ,

N2 =
g

cp

ds
dr
= −

g

Hp
δ = −

1
γ

C2
s

H2
p
δ. (1.8)

The upper limit of g-mode frequency is determined by the maximum Brunt-Väisälä fre-
quency Nmax. From Eq. (1.5), it also follows that the g-modes with lower frequency (small
ω) have more radial nodes (large kr).

Similarly to the p-modes, the solar g-modes are considered to be excited by turbulent
convection some of which penetrates into a stably-stratified radiation zone (overshoot
layer) at the base of the convection zone. However, in contrast to the p-modes, the solar
g-modes are extremely difficult to detect at the solar surface because the modes become
evanescent owing to N2 < 0 (very close to adiabatic) in the convection zone (e.g., Ap-
pourchaux et al. 2010).

1.3 Large-scale mean flows

Since the Coriolis force introduces a proffered direction Ω0, rotationally-constrained tur-
bulent convection in the Sun becomes anisotropic, transports the (angular) momentum
inside the convection zone, and drives the mean flows such as differential rotation and
meridional circulation.

1.3.1 Helioseismic observations
Helioseismology uses the solar oscillations (p-modes in most cases) to probe the solar
interior. It has revealed the structure of the mean flows in the Sun, imposing observational
constraints on the theories of rotating turbulent convection and the dynamo models.

Differential rotation

The internal angular velocity distribution of the Sun Ω(r, θ) = ⟨vϕ⟩/r sin θ is obtained
by global helioseismology (Duvall et al. 1984, Thompson et al. 1996, Schou et al. 1998).
The Sun is filled with acoustic waves excited by stochastic turbulent convection. The
interferences or resonances of these acoustic waves lead to the global standing modes,
whose eigenfrequencies can be used to probe the internal structure in global helioseismol-
ogy: If the Sun rotates rigidly, the frequencies of the resonant oscillations should depend
only on the spherical harmonic degree l, the radial order n, and the sound speed. How-
ever, helioseismic measurements show small frequency splittings (rotational splittings)
depending on the azimuthal order m owing to the waves traveling in different directions
(eastward or westward). Linear inversions are used to infer the internal rotation profile
from the frequency splittings.

Figure 1.4 shows the observationally-inferred profile of the solar differential rotation
(Larson and Schou 2018). It is clearly seen that the equator rotates faster than the poles,
requiring that angular momentum is transported equatorward by convection in the Sun.
There are other interesting features of the solar differential rotation. For example, a strong
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Figure 1.4: Observed differential rotation in the Sun. Left: contours of the rotation rate
in a meridional plane. Right: Radial structure of the solar differential rotation at different
latitudes. Shaded areas indicate the locations of strong radial shears near the base and top
of the convection zone. The figure is reproduced using the data obtained by 2D regularized
least-squares global helioseismology inversions from MDI and HMI (Larson and Schou
2018, Goddard et al. 2020). Courtesy of Chris. R. Goddard.

angular velocity shear is concentrated on a very thin layer at the base of the convection
zone, located around r = 0.71R⊙. This strong shear layer is called the tachocline and was
thought to be the main place where the generation of the toroidal magnetic field by Ω-
effect occurs (§1.4). The angular velocity also changes strongly in radius near the surface,
consisting another shear layer called the near surface shear layer. Lastly, the contour lines
of the angular velocity are not cylindrical as was expected before helioseismology, but are
conical having an inclination of about 25◦ with respect to the rotational axis. This means
that the solar convection does not follow the Taylor-Proudman’s theorem, implying that
the thermal wind plays a critical role inside the solar convection zone.

Meridional circulation

The axisymmetric flow in a meridional plane, ⟨vr⟩ and ⟨vθ⟩, is known as the merid-
ional circulation. The meridional circulation is much weaker than the rotation (about 100
times smaller in amplitude) and therefore extremely difficult to measure. Many attempts
have been conducted using a variety of techniques including direct Doppler measurements
(e.g., Duvall 1979, Hathaway 1996, Ulrich 2010), magnetic feature tracking (e.g., Hath-
away and Rightmire 2010, Hathaway and Upton 2014), and local helioseismology (e.g.,
Braun and Fan 1998, Basu and Antia 2010). At the solar photosphere, a poleward flow of
about 10−20 m s−1 that peaks at latitudes of about 40◦ have been robustly detected (Giles
et al. 1997).

Although it is believed that the equatorward return flow exists inside the convection
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1.3 Large-scale mean flows

Figure 1.5: Observationally-inferred meridional circulation in the Sun for the last two so-
lar cycles. (a) StreamfunctionΨ for the cycle 23 and 24, defined by ρu = ∇×(Ψeϕ/r sin θ).
Red and blue represents clockwise and counter-clockwise circulation, respectively. (b)
The latitudinal dependence of the latitudinal flow at the surface. (c) The same as panel
(b) but at the base of the convection zone. The figure is taken from Gizon et al. (2020a)
with small modifications, reprinted with permission©AAAS.

zone to meet the mass conservation, the exact structure of the deeper meridional flow is
still controversial because of the lack of inversion accuracy in the local helioseismology
(e.g., Duvall et al. 1993, Gizon and Birch 2005). One of the most striking results was
reported by Zhao et al. (2013) who analyzed the HMI data and detected the equatorward
flow in the middle convection zone between 0.82R⊙ − 0.91R⊙, and poleward flow again
below 0.82R⊙. Their results suggest a double-cell structure of the solar meridional circu-
lation with the counter-clockwise circulation cell in the upper convection zone (poleward
near the surface) and the clockwise circulation cell in the lower layer (poleward near
the base). Kholikov and Hill (2014) used the other helioseismic measurements and also
detected evidence that the latitudinal flow changes its direction at several depths of the
convection zone, supporting the findings of Zhao et al. (2013). More recently, Jackiewicz
et al. (2015) and Böning et al. (2017) further argued that the shallow equatorward re-
turn flow at around 0.9R⊙ can be confirmed on GONG ground-based data which is in
good agreement with HMI analysis of Zhao et al. (2013), although some discrepancies
exist in the deeper convection zone. On the other hand, Rajaguru and Antia (2015) and
Mandal et al. (2018) recently found the equatorward return flow beneath the depth of
0.77 − 0.78R⊙, clearly suggesting the single-cell meridional circulation per each hemi-
sphere. Most recently, using the two data sets covering the last two solar cycles, Gizon
et al. (2020a) have unambiguously shown that the meridional circulation structure in the
convection zone is single-cell in each hemisphere, as shown in Fig.1.5. It should be noted
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that their result is consistent with the flux transport dynamo model that attributes the equa-
torward migration of sunspot groups to the equatorward advection of deep-seated toroidal
fields by the meridional flow near the base of the convection zone. For a comprehensive
review on the observational and theoretical aspects of the solar meridional circulation, see
Choudhuri (2021).

Recently, Stejko et al. (2021) have computed the travel-time differences using the
deep-focusing method for the model convection zone with single- and double-cell merid-
ional flow patterns. They found that the computed travel time differences fall within a
standard deviation error of both single-cell and double-cell cases, implying the current
local-helioseismology techniques can hardly distinguish the meridional flow profiles in
the deep interior.

1.3.2 Theories and numerical simulations

Turbulent angular momentum transport

To see how this happens theoretically, let us examine the mean equation of motion. In
the following discussion, the bracket ⟨ ⟩ is regarded as zonal averaging (not necessarily
in general) that satisfies the Reynolds’ averaging rules. By decomposing the velocity is
decomposed into the mean and fluctuation parts, u = ⟨u⟩ + u, and substituting it into the
equation of motion, we have

ρ0
∂⟨vi⟩

∂t
= −∇ · (ρ0⟨vi⟩⟨v j⟩) − ∇ · (ρ0⟨v

′
iv
′
j⟩) + [ . . . ]. (1.9)

It is seen that the correlation of (small-scale) turbulence ⟨v′iv
′
j⟩ acts as an effective stress

tensor for the mean velocity. Now, we define the Reynolds stress as Rik = ρ0⟨v
′
iv
′
k⟩. If u′ is

isotropic, the Reynolds stress mostly acts as an enhanced turbulent diffusion, which can be
approximated as R ∝ ∇⟨u⟩. Only the non-diffusive part acts as additional forcing term and
transports the mean momentum to drive the large-scale mean flows. Conventionally, the
non-diffusive part assumed to be proportional to the rotation rate Ω0, i.e., as the rotational
influence increases, turbulence becomes more anisotropic and the associated Reynolds
stresses have more non-diffusive contribution. This is called the Λ-effect (e.g., Rüdiger
1989, Kitchatinov and Rüdiger 1993).

In the following, we focus on the angular momentum transport by non-diffusive com-
ponents of the Reynolds stress. For simplicity, we assume that the azimuthal (ϕ) compo-
nent of the equation of motion has no external forcing terms, such as Lorentz force and
viscous force. The conservation of the angular momentum density can be expressed as

∂

∂t
(ρ0r2 sin2 θΩ) = −∇ ·

[
ρ0r2 sin2 θ⟨um⟩Ω + ρ0r sin θ⟨u′mv

′
ϕ⟩

]
, (1.10)

where um = (vr, vθ) is the meridional velocity and ⟨vϕ⟩ = r sin θΩ is used. Here, the
first term on the right hand side describes the advection of the angular momentum by
the meridional circulation and the second term describes the sum of angular momentum
diffusion and transport via the Reynolds stresses. We can readily see that if ⟨v′rv

′
ϕ⟩ is posi-

tive (negative), anisotropic convection transports the angular momentum radially outward
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1.3 Large-scale mean flows

Figure 1.6: (a) Schematic illustration of the radially-inclined convective columns, taken
from Busse (2002) with small modifications. The image reproduced with permission of
AIP publishing. (b) Snapshot of the radial velocity vr in a rotating convection simulation.
The figure is taken from Miesch et al. (2006) with small modifications, ©AAS. Repro-
duced with permission.

(inward). Similarly, if ⟨v′θv
′
ϕ⟩ is positive (negative), the angular momentum transport is

transported equatorward (poleward).
Since the equatorial region rotates faster in our Sun as discussed in §1.3.1, it is gener-

ally believed that ⟨v′rv
′
ϕ⟩ is positive near the equator and ⟨v′θv

′
ϕ⟩ is positive (negative) in the

northern (southern) hemisphere in the Sun. Possible mechanisms to generate these veloc-
ity correlations are explained as follows (e.g., Miesch 2005). First, the positive ⟨v′rv

′
ϕ⟩ can

be explained by convective columns outside the tangential cylinder that are inclined in a
prograde direction towards the surface, as shown in Fig. 1.6a. These columnar structures
of convection are often called as "Busse columns" or "Taylor columns" in the geophysical
context, and as "Banana cells" in the solar and stellar context (Miesch et al. 2000). As we
will unambiguously show in §3.3.2, both of these convective structures are interpreted in
terms of the "thermal Rossby waves", originating from the conservation law of potential
vorticity (Miesch et al. 2008). Next, the positive ⟨v′θv

′
ϕ⟩ in the northern hemisphere can also

be attributed to the existence of the banana cells. Banana cells can be observed as a coher-
ent north-south alignment of downflow lanes at low latitudes. Coherent azimuthal inflows
into these downflow lanes provide a dominant source for the velocity correlation ⟨v′θv

′
ϕ⟩

as illustrated in Fig.1.6b: In the northern hemisphere, the positive (negative) v′ϕ is bent by
the Coriolis force equatorward (poleward) so that positive (negative) latitudinal velocity
v′ϕ is produced. Therefore, the correlation ⟨v′θv

′
ϕ⟩ becomes positive at low latitudes. The

same argument can be applied to the southern hemisphere to produce a negative ⟨v′θv
′
ϕ⟩.

Gyroscopic Pumping

Meridional circulation is mainly driven by the Coriolis forces acting on the differen-
tial rotation, rather than driven directly by the meridional turbulent momentum transport
associated with ⟨v′rv

′
θ⟩. Now, let us consider the angular momentum balance in a statisti-

cally stationary state to see how the structure of the meridional circulation is determined
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in the Sun. Using an anelastic approximation ∇ · (ρ0⟨um⟩) = 0, the Eq.(1.10) reduces to
the so-called the equation of "gyroscopic pumping"

ρ0⟨um⟩ · ∇⟨L⟩ = −∇ · (r sin θρ0⟨u
′
mv
′
ϕ⟩), (1.11)

where ⟨L⟩ ≡ r2 sin2 θΩ denotes the mean angular momentum density per unit mass. The
left and right hand sides of the equation represent the advection of the angular momentum
by meridional circulation and the turbulent angular momentum transport by the Reynolds
stresses, respectively. The profile of the meridional circulation is determined so as to
balance with the Reynolds stresses. This equation can be used to impose constraints on
the turbulent Reynolds stress for given large-scale mean flows ⟨um⟩ and ⟨L⟩. Refer Miesch
and Hindman (2011), Miesch et al. (2012), Bekki and Yokoyama (2017) for example.

Thermal Wind Balance

As pointed out in §1.3.1, the solar differential rotation deviates from the Taylor-
Proudman’s theorem. This is explained by the thermal wind balance in the solar con-
vection zone (Kitchatinov and Ruediger 1995, Durney 1999, Brun and Toomre 2002,
Thompson et al. 2003, Rempel 2005, Miesch et al. 2006).

By taking a curl of this meridional motion equation, we have a ϕ component of the
vorticity equation in the following form;

∂ωϕ

∂t
= [ . . .] + r sin θ

∂Ω2

∂z
−

g

cpr
∂s1

∂θ
, (1.12)

where s1 is the entropy perturbation and z denotes the coordinate parallel to the rota-
tional axis. In the case where the baroclinic term can be ignored (∂s1/∂θ = 0), we
have ∂Ω2/∂z = 0 in the stationary state, which is what exactly results from the Taylor-
Proudman’s theorem. Since ∂Ω2/∂z is negative in the northern hemisphere in the solar
convection zone, a negative latitudinal entropy gradient is required, i.e., ∂s1/∂θ < 0 in the
northern hemisphere. In other words, the polar regions should be warmer than the equato-
rial region from the theoretical point of view. Several studies indicate that the temperature
difference of 10 K is necessary to break the Taylor-Proudman’s constraint and obtain the
observed conical profile of the differential rotation (e.g., Kitchatinov and Ruediger 1995,
Rempel 2005, Miesch et al. 2006). The observational detection of this temperature (or
entropy) perturbation is a very challenging task because the temperature fluctuation of 10
K is almost negligible compared with the high background temperature of ≈ 106 K.

It still remains controversial how this latitudinal entropy gradient is maintained in the
Sun. Kitchatinov and Ruediger (1995) suggested that the anisotropic turbulent convec-
tion also transports the thermal energy poleward sufficiently enough to break the Taylor-
Proudman’s constraint. On the other hand, Rempel (2005) argued that the the latitudinal
entropy gradient can be produced via the interaction of the radial meridional flow pene-
trating into the weakly subadiabatic tachocline, which spreads into the convection zone
due to the turbulent thermal diffusion. It is shown that, if δ ≈ −2 × 10−5 near the base
of the convection zone, the solar-like differential rotation can be reproduced. It should
be pointed out that the lower half of the convection zone can be weakly subadiabatic if
the convective energy transport is highly nonlocal (e.g., Skaley and Stix 1991, Branden-
burg 2016). Furthermore, Masada (2011) proposed the turbulent heating originating from
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the magneto-rotational instability in the tachocline as a possible source for the latitudinal
entropy gradient.

In three-dimensional rotating convection simulations of the Sun, a fixed-entropy bound-
ary condition is sometimes used to artificially force the thermal wind balance and to
achieve the solar-like rotational profile (Miesch et al. 2006, 2008, Fan and Fang 2014).
On the other hand, Brun et al. (2011) have carried out a simulation that covers both the
subadiuabatic radiative interior and the superadiabatic convection zone, and have shown
that the differential rotation becomes conical owing to the dynamical coupling with the
radiative zone. More recently, Hotta (2018), Hotta and Kusano (2021) has discussed
a possibility that an efficient small-scale dynamo action can substantially enhance the
anisotropic convective heat transport via the small-scale Lorentz force feedback and pro-
duce a negative entropy gradient.

1.4 Magnetic activity of the Sun

The Sun has self-excited magnetic fields as clearly manifested by sunspots at the surface.
The magnetic fields of the Sun can drive energetic eruption events like flares and coronal
mass ejection that can affect our lives.

Observational constraints

It is well known that the solar magnetic activity exhibits a11-year periodicity, as shown
in Fig. 1.7. There are several other striking features in the solar magnetic fields, such as
periodic reversals of the polar fields, the emergence of sunspots in the middle latitudes,
and the equatorward propagation of the sunspot emergence latitude in each cycle (see,
Charbonneau 2020, for a comprehensive review). These features can be seen in the time-
latitude plot of the longitudinally-averaged radial field at the photosphere, i.e., so-called
magnetic butterfly diagram, as shown in Fig. 1.8. There are also well-known observational
facts called Hale’s polarity law on the hemispheric regularities and Joy’s law on the tilts
between the leading and following sunspots (Hale et al. 1919).

Dynamo theory

The magnetic fields in the Sun is generally believed to be generated via the so-called
dynamo processes, by which kinetic energy of the plasma flow is converted to magnetic
energy (e.g., Parker 1955, 1975). However, how exactly the dynamo operates inside the
convection zone is still largely uncertain. The evolution of magnetic fields in the MHD
system (as in the Sun) is described by the induction equation

∂B
∂t
= ∇ × (u × B)

= (B · ∇)u − B(∇ · u) − (u · ∇)B, (1.13)

where the ohmic diffusion term is omitted because the molecular diffusivity (≈ 103 cm2

s−1) is so small in the Sun that the corresponding magnetic Reynolds number is estimated
as Rm ≈ 108 − 1010 (Ossendrijver 2003). Three terms of the right-hand side represent the
effects of shearing, compression, and advection of magnetic fields, respectively.
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Figure 1.7: Sunspot cycles observed on the Sun. (Top) Sunspot number as a function
of time, covering the cycles 12-24. Grey and black lines show the daily and monthly-
averaged sunspot numbers, respectively. (Bottom) Sunspot area averaged over individual
solar rotation as a function of time and latitude. This figure is produced using the data
provided at http://solarcyclescience.com/activeregions.html.

Figure 1.8: Magnetic butterfly diagram observed on the Sun showing the longitudinally-
averaged radial field at the photosphere as a function of time and sine of latitude. The
synoptic magnetogram data is obtained from NSO/KPVT, SOHO/MDI, and SDO/HMI.

Although the surface observations show a variety of complicated magnetic structures,
we are primarily interested in the large-scale spatio-temporal evolution. Thus, let us de-
compose B and u into the mean components (⟨B⟩ and ⟨u⟩) and the small-scale fluctuations
(b′ and u′) to see how the mean fields equations are described. For simplicity, let us as-
sume the mean as an azimuthal average. Using the Reynolds averaging rules, the mean
induction equation can be written as

∂⟨B⟩
∂t

= ∇ × (⟨u⟩ × ⟨B⟩ + E), (1.14)

E = ⟨u′ × b′⟩, (1.15)

where E is the turbulent electro-motive-force that serves as an additional source for the
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1.4 Magnetic activity of the Sun

mean magnetic field generation. The importance of E can be recognized when the mean
induction equation is decomposed into the toroidal and poloidal components: Although
the toroidal fields can be generated by shearing of the poloidal fields (Ω-effect), there is no
term associated with the poloidal field generation from the toroidal fields if E = 0. Hence,
in order to be a self-excited dynamo (in which mutual generation between toroidal and
poloidal fields is required), the non-axisymmetric contribution from the electro-motive-
force E is necessary (Cowing’s anti-dynamo theorem) (Cowling 1933). In order to close
the mean-field equations, E needs to be described in terms of ⟨B⟩. Under the assumption
that the fluctuating fields b′ is primarily generated by turbulent flows u′ acting on the mean
magnetic fields ⟨B⟩, i.e.,

∂b′

∂t
= ∇ × (u′ × ⟨B⟩) + [. . . ] , (1.16)

a useful formula of E is conventionally obtained as

E = α⟨B⟩ + γ × ⟨B⟩ − β∇ × ⟨B⟩. (1.17)

Here, the coefficients α, β, and γ are given as

α = −
τc

3
⟨u′ · ∇ × u′⟩, (1.18)

β =
τc

3
⟨u′2⟩, (1.19)

γ = −
τc

3
∇⟨u′2⟩, (1.20)

where τc is the correlation time which is assumed to be smaller than the eddy turnover
time scale of the turbulence. The first term in the Eq.(1.17) is called the "turbulent" α-
effect and represents the dynamo action by helical turbulence. The pseudoflow γ is known
as turbulent pumping and acts as an additional transporter of magnetic fluxes. The last
term represents the turbulent diffusion, which is much more dominant than the molecular
diffusion in the Sun.

In the turbulent dynamo where the α-effect and Ω-effect work simultaneously, dy-
namo waves propagate in a direction given by α∇Ω × eϕ (Parker 1955, Yoshimura 1975,
Stix 1976). In the Sun, since α tends to be positive (negative) in the bulk of the north-
ern (southern) hemisphere and ∇Ω ≈ dΩ/dr > 0, the dynamo waves are expected to
propagate poleward, which disagrees with the observed equatorward sunspot migration.

Babcock-Leighton flux transport model

A Babcock-Leighton flux-transport dynamo model is a widely-accepted dynamo model
at present in which the meridional circulation and the sunspot tilts play critical roles. In
this model, the equatorward migration of the activity belts is attributed to an eqautorward
transport of toroidal fields generated by the Ω-effect near the base of the convection zone
(e.g., Wang et al. 1991, Choudhuri et al. 1995). Moreover, the main source of the surface
poloidal fields is the east-west tilts of the sunspots (Joy’s law): The dipolar field can be
produced by the combined effects of the diffusive cancellation of the leading sunspots
across the equator and by the poleward advection of the following sunspots. This process
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are commonly called the Babcock-Leighton mechanism or the Babcock-Leighton α-effect
(Babcock 1961, Leighton 1964). The east-west tilt of sunspot pairs is thought to be origi-
nating from the effects of Coriolis force acting on the plasma flows inside a spot-forming
flux tube during its rise though the convection zone (e.g., Fan et al. 1993, D’Silva and
Choudhuri 1993, Caligari et al. 1995).

Numerical studies on the Babcock-Leighton flux-transport dynamo model have been
carried out mostly in two-dimensional (2D) kinematic models where the large-scale mean
flows are given by hand (Dikpati and Charbonneau 1999, Chatterjee et al. 2004, Hazra
et al. 2014, Karak and Cameron 2016), although several studies have been made in the
MHD regime (Rempel 2006, Ichimura and Yokoyama 2017, Inceoglu et al. 2017). Al-
though these studies generally reproduce many observed features of the solar dynamo
such as the 11-yr periodicity and the equatorward migration of activity belts, it should be
noted that, in these 2D models, the Babcock-Leighton α-effect is crudely given as a source
term for the poloidal potential. Recently, there are several studies that aim to realize the
three dimensionality of the Babcock-Leighton process in the full-spherical simulations. A
first model in this line has been presented in Yeates and Muñoz-Jaramillo (2013) in which
the upward velocity perturbation associated with the magnetic buoyant flux tubes is ex-
plicitly prescribed in the kinematic regime so as to produce the tilted sunspot pairs at the
surface. The same method has also been employed in Kumar et al. (2019) and Whitbread
et al. (2019). On the other hand, Miesch and Dikpati (2014), Miesch and Teweldebirhan
(2016) have developed a model of the Babcock-Leighton dynamo in which the sunspots
are instantaneously placed at the surface in response to the toroidal field at the base under
the constraint of Joy’s law. This model has been used to study the long-term cycle variabil-
ity (Karak and Miesch 2017). However, both of these models are kinematic. Therefore,
the future models of the Babcock-Leighton flux-transport dynamo are expected to operate
in both three-dimensional and MHD regimes.

Reduced 1D model of Babcock-Leighton dynamo

Leighton (1969) presented a 1D model of the Babcock-Leighton type solar dynamo
which takes into account the Babcock (1961)’s original idea that the emergence of dipo-
lar magnetic regions is the source of the surface radial field. The model consists of two
partial differential equations (of time and latitude) for the azimuthally averaged radial
field at the surface and the toroidal field in the subsurface layer. Such a simplifying treat-
ment to reduce the complicated model into a 1D model has often been made: Cameron
and Schüssler (2015) has applied Stokes’theorem to derive a 1D equation that describes
the evolution of the net toroidal flux in the solar convection zone as a function only of
the observables at the solar surface (e.g., radial field and differential rotation). They have
demonstrated that the net toroidal flux in each hemisphere generated by the latitudinal dif-
ferential rotation is determined by the emerged poloidal flux at the surface, strongly sup-
porting the validity of the Babcock-Leighton scenario in the solar dynamo. Cameron and
Schüssler (2017) have further extended the Leighton (1969)’s 1D model by considering
the evolution of the radially integrated toroidal field in the convection zone. Updates have
also been made by incorporating the effects of the turbulent diffusion, turbulent pumping,
meridional flow, and the near surface shear layer to show that the model can capture many
essential features of the solar dynamo behavior. Careful validation regarding the assump-

26



1.5 Measuring solar flows

tions used in this 1D model using self-consistent convective dynamo simulations will be
required in the future.

1.5 Measuring solar flows

Granulation tracking

Solar granulation has a typical size of ≈ 0.5 − 2 Mm, lifetime of ≈ 5 − 10 min, and flow
velocity ≈ 0.5−1.5 km s−1 (Nordlund et al. 2009, Rieutord and Rincon 2010). Granulation
tracking is a technique that uses the solar granules at the photosphere as tracers to measure
the horizontal component of the underlying larger-scale flows (e.g., November and Simon
1988, Roudier et al. 2012, Löptien et al. 2017). The essential idea is that the granules are
advected passively by the larger scale flows over time lags of ≈ 1 min. The validity
of this technique has been confirmed in realistic numerical simulations of solar surface
convection (Matloch et al. 2010).

Supergranulation tracking

Solar supergranulation has a typical size of ≈ 30 Mm, lifetime of ≈ 1 − 2 days, and
horizontal velocity ≈ 300 m s−1 (Rieutord and Rincon 2010). Similarly to granulation
tracking, the motions of supergranules seen in the surface Doppler-velocity measurements
have been be tracked to infer the underlying larger-scale flow motions (Hathaway et al.
2013). The issue here is that supergranulation does not behave like a passive scalar as in
the case of granulation over time lags scale of a few hours (see, Figure. 63 in Gizon and
Birch 2005): In fact, supergranulation has wave-like properties with periods of ≈ 6 days
(Gizon et al. 2003).

Time-distance method (local helioseismology)

In time-distance helioseismology (Duvall et al. 1993), the cross-covariance of the sig-
nal (e.g. Doppler velocity) at two locations on the solar surface (A and B) is computed.
This cross-covariance is filtered in Fourier space, e.g. with a phase speed filter. The fil-
tered cross-covariance is then fitted by a reference model with a few degrees of freedom
(a Gabor wavelet) or with a single degree of freedom, phase travel time (Gizon and Birch
2002). The phase travel times contain information about the subsurface flows of the Sun,
and the difference between the travel time from A to B and B to A contains information
about the background flows (Duvall et al. 1997, Gizon and Birch 2005). To make a 3D
map of the flows, many different sets of points (A and B) need to be considered and an
inversion is required (e.g., Švanda 2012).

Ring-diagram analysis (local helioseismology)

Ring diagram analysis considers the 3D power spectra of solar oscillations over local
areas (called patches or tiles) at the surface (Hill 1988), and thus, can be regarded as a local
application of the global helioseismology techniques. The local power spectrum contains
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the information of acoustic waves traveling through the subsurface layer of each patch,
and the power ridges of these waves form rings when seen at fixed frequency (Gizon et al.
2010, Kosovichev 2012). The distortions of these ring shapes are caused by the Doppler
frequency shifts due to the background subsurface flows (otherwise the rings become
concentric circles). Therefore, by fitting the distortions in the power spectrum, we can
obtain the subsurface flow velocity for each patch (Basu et al. 1999, Haber et al. 2000,
Bogart et al. 2011a,b). For a more comprehensive review on local helioseismology, see
Gizon and Birch (2005).

1.6 Convective conundrum

As discussed so far, it is crucial to understand the complicated interactions among tur-
bulent convection, rotation, and magnetism. This is essentially nonlinear problem and
thus numerical simulations are regarded as the most powerful tool to study the convection
zone dynamics (e.g., Glatzmaier 1984, Miesch et al. 2000, Brun et al. 2004). However,
it has been recently recognized that numerical simulations of solar rotating convection
and dynamo produce the wrong results on large scales (l ≲ 120) in the deep convec-
tion zone (typically beneath 20 Mm from the photosphere) for some unknown reason.
This is a common issue shared by all the existing numerical codes and does not seem to
largely depend on the details of the numerical schemes. This problem is often termed as
the "convective conundrum" (e.g., Hanasoge et al. 2012, Gizon and Birch 2012, O’Mara
et al. 2016, Brandenburg 2016, Bekki et al. 2017, Karak et al. 2018, Nelson et al. 2018).
In the following, we will show four evidence which all suggest the inherent problem in
the global simulations.

1.6.1 Inconsistent horizontal velocity spectra

Local helioseismology

Using the deep-focusing time-distance helioseismology, Hanasoge et al. (2012) analyzed
HMI observational data and measured the east-west travel times to infer the upper limit of
longitudinal subsurface velocity amplitudes at r = 0.92R⊙, 0.96R⊙, as shown in Fig. 1.9.
On large scales with the spherical harmonic degree l < 60, the observational upper limit
was found to be orders of magnitudes smaller than what is typically predicted in global
simulations (Miesch et al. 2008) and by local mixing-length model (Stix 2002). Although
the results have been recently revised and the corrected power spectrum of the longitudinal
velocity rises up at higher spherical orders (Birch et al. 2022., in prep), there is still a huge
discrepancy from the global simulations to be resolved.

Greer et al. (2015) have carried out a three-dimensional ring-diagram inversion and
found that subsurface flow amplitudes at r = 0.96R⊙. The result broadly agrees with the
results of global simulations of Miesch et al. (2008), which means that there is a drastic
difference in the inferred flow amplitudes between the two different local-helioseismology
techniques (time-distance and ring-diagram methods). Nagashima et al. (2020) have re-
cently revised Greer et al. (2015)’s analysis and reported that the corrected results become
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Figure 1.9: Comparison of the horizontal velocity power spectra near the solar surface.
(Cyan): A global simulation of rotating convection using ASH code Miesch et al. (2008)
at r = 0.98R⊙. (Darkblue): A local box simulation of the stagger code (Stein and Nord-
lund 2006) at r = 0.98R⊙. (Grey dashed area): An upper limit inferred by time-distance
helioseismic measurements at r = 0.96R⊙ (Hanasoge et al. 2012). (Grey lines): Ring-
diagram analysis by Greer et al. (2015) at r = 0.96R⊙. (Red): Local-correlation-tracking
(LCT) and supergranulation tracking at the surface (Hathaway et al. 2013). (Purple): A
theoretical lower limit based on the angular momentum balance in the Sun (Miesch et al.
2012). The figure is taken from Hanasoge et al. (2016). The image reproduced with
permission of Annual Reviews, Inc.; permission conveyed through Copyright Clearance
Center, Inc.

slightly reduced (less than one order of magnitude). Nonetheless, this modification was
not sufficient enough to explain the difference from the time-distance results.

Global simulations and theoretical models
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In global convection simulation of Miesch et al. (2008), the large-scale velocity ampli-
tudes are about 2 orders of magnitudes larger than the observational upper limit obtained
by Hanasoge et al. (2012). In fact, the overstimation of convective speed is a general trend
seen in other simulations. A high-resolution simulation of Hotta et al. (2014a), which
solves the fully-compressible convection unlike the anelastic models, also show a very
similar power spectrum at large scales, although the inertial range of turbulent extends
further down to l ≈ 1000 and smoothly connects to the spectrum of local box near-surface
convection simulation of Stein and Nordlund (2006) in their calculation (see, Figure 6.1.
in Lord 2014).

The theoretical lower limits of the convective speed in the Sun was estimated by
Miesch et al. (2012): They calculated the amplitudes of the Reynolds stresses required
to maintain the observed differential rotation by examining the equation of "gyroscopic
pumping". The estimated lower limits are 8 m s−1 in the deeper convection zone (r ≈
0.75R⊙) and 30 m s−1 near the surface (r ≈ 0.95R⊙). These values are roughly located in
between the global simulation and the revised time-distance results as shown in Fig. 1.9.

In short, except for the ring-diagram analysis of Greer et al. (2015), the observations
are inconsistent with numerical and theoretical models, casting doubt on our conven-
tional understanding of solar convection (Gizon and Birch 2012, Hanasoge et al. 2016).
Particularly, it is strongly implied that, in the Sun, thermal energy is likely transported
non-locally by enhanced thermal plumes that penetrate deeper into the convection zone
(Rieutord and Zahn 1995, Brandenburg 2016, Bekki et al. 2017, Anders et al. 2019).

1.6.2 Rossby numbers in global convection simulations
Numerical simulations have an inherent problem so that even heliosesimic constraints are
need to conclude that the simulations are incorrect. Global simulations with the solar
parameters such as the rotation rate Ω⊙ and the luminosity L⊙ tend to produce the so-
called anti-solar differential rotation with faster equator and slower poles (e.g., Gastine
et al. 2013, Käpylä et al. 2014, Fan and Fang 2014, Hotta et al. 2015c, Karak et al. 2015).
As we decrease the viscous diffusivity ν, differential rotation changes from solar-like to to
the anti-solar profile (Nelson et al. 2016). In short, the simulation results tend to deviate
from the solar observations as we aim to a more realistic turbulent regime of the Sun.

The transition from solar to anti-solar rotational regime is owing to the change in the
(convective) Rossby number Ro = vrms/Ω0l, which is an inverse measure of the rotational
effect with respect to convection. Figure.1.10a shows the equatorial rotation rate as a
function of Ro, which clearly shows that the transition occurs at Ro ≈ 1. Since simula-
tions tend to overpower the convective speed, Ro is over-estimated as well, leading to an
anti-solar differential rotation (Featherstone and Miesch 2015).

It should be noted that, in most of the "solar-like" rotating convection simulations,
several "tricks" are employed to artificially reduce the effective Ro and to circumvent this
problem. In Brown et al. (2008, 2010), Nelson et al. (2013), Augustson et al. (2015),
Käpylä et al. (2017), the rotation rate is increased typically by a factor of 3 − 5. Another
way is to use stronger viscous or thermal diffusivities to simply damp the convective
motions or to relax the constraint of thermal energy transport of convection (Miesch et al.
2000, Fan and Fang 2014, Hotta et al. 2016). Moreover, it is also possible to lower the
Rossby number by decreasing the luminosity by a factor of 10−20 to artificially suppress
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Figure 1.10: Top: (a) Differential rotation regime in terms of the equatorial rotation rate
at the surface dΩ(ro, 0)/Ω0 as a function of the local Rossby number u′rms/Ω0l where u′rms
and l are the typical velocity and length scale of convection. Different colors represent the
results for different Ekman number E. The figure is taken from Gastine et al. (2014) with
small modifications. The image reproduced with permission of Oxford University Press,
conveyed through Copyright Clearance Center, Inc. Bottom: Differential rotation profiles
of the recent high-resolution simulations using the solar rotation rate Ω⊙ and luminosity
L⊙. Panels (b) and (c) are the results from hydrodynamic (non-magnetic) and magnetohy-
drodynamic calculations with the same grid resolution, respectively. The figure is taken
from Hotta and Kusano (2021) with small modifications, ©Springer Nature. Reprinted
with permission.

the convective driving (Guerrero et al. 2013, Käpylä et al. 2014, Fan and Fang 2014, Hotta
et al. 2015c).

It has been proposed that the problem is likely due to the lack of spatial resolution
in the simulation. The Reynolds number achieved even in the highest-resolution simula-
tion at present (≈ 103) is still far too small compared to the solar value (≈ 1013). Hotta
et al. (2015b) have suggested that, in a more turbulent regime, small-scale dynamo be-
comes increasingly efficient. As a consequence, there exists a strong small-scale Lorentz-
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force feedback to the turbulent convection that acts just like an effective viscosity, which
leads to a reduction in the convective speed and thus the effective Rossby number in the
simulation. In fact, Hotta and Kusano (2021) have recently demonstrated that that the
solar-like differential rotation can be reproduced with the solar parameters (Ω⊙, L⊙) in a
high-resolution simulation only when the magnetic field is taken into account as shown in
Fig.1.10b and c. They also implied that the solar-like differential rotation can be achieved
even in the high-Ro regime as long as small-scale dynamo is efficiently excited and the
resulting Maxwell stress transports the angular momentum radially upward near the equa-
tor.

1.6.3 Search for equatorial giant cell convection
As explained in §1.3.2, the equatorward angular momentum transport in the Sun is at-
tributed to an existence of the columnar convective modes (thermal Rossby waves) (e.g.,
Busse 2002) or banana cells (e.g., Miesch et al. 2008). They originate from the effect of
density stratification (compressional β-effect) (Ingersoll and Pollard 1982, Evonuk 2008,
Glatzmaier et al. 2009, Evonuk and Samuel 2012, Verhoeven and Stellmach 2014) and
propagate in a prograde direction. These prograde-propagating convective modes have
been first seen in linear models of rotating convection of Boussinesq (Gilman 1975) and
compressible fluids (Gilman and Glatzmaier 1981). In numerical simulations of convec-
tion in a strongly rotationally-constrained regime, equatorial columnar modes are found as
the most dominant convective modes (Miesch et al. 2008, Bessolaz and Brun 2011, Matil-
sky et al. 2020). Near the surface, they appear as a north-south alignment of downflow
lanes with azimuthal converging flows across the equator (Miesch et al. 2000, Miesch
2005). Therefore, it is expected that these large-scale convective modes can be readily
seen in the surface power spectra of the north-south symmetric component of radial ve-
locity, longitudinal velocity, or horizontal divergence.

However, they have never been successfully detected on and near the solar surface
for some yet-unknown reason. It still remains open whether this is because of the near-
surface convection concealing the signal or because the signal is absent. If the latter
is the case, the theory of solar convection and angular momentum transport need to be
reconsidered. As reported in Chapter 2, the columnar convective modes remain illusive
in surface observations of solar flows.

1.6.4 Theories on the origin of supergranulation
The physical origin of supergranulation remains one of the open questions in the solar
physics (e.g., Rieutord and Rincon 2010) and could be related to the convective conun-
drum. The question to be answered is whether the supergranulation is convective in nature
or the outcome of strong rotational influence. It has been repeatedly proposed that the so-
lar convection is driven essentially by surface cooling rather than internal heating from
below (e.g., Stein and Nordlund 1989, Spruit 1997). In this picture, low-entropy fluid
parcels generated by the photospheric radiation can sustain a substantial amount of ther-
mal contents during their descent into deeper convection zone, significantly contributing
to the non-local heat transport in the Sun. Based on this picture, Cossette and Rast (2016)
have demonstrated using the non-rotating convection model that the supergranulation-like
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Figure 1.11: Top: Schematic of expected convective structures in (a) high-Ro regime
and (b) low-Ro regime. The figure is taken from Featherstone and Hindman (2016b) with
small modifications, with permission ©AAS. Bottom (c): Estimates of the convective
length-scale as a function of radii based on the geostrophycal balance of the convective
vortices. The solid red and black dashed lines denote for the results from the high-Ro case
and the low-Ro case, respectively. The figure is taken from Vasil et al. (2021) with small
modifications.

peak can be obtained if the stratification is very close to adiabatic (or slightly subadiabatic)
below 20 − 30 Mm in depth. It is therefore implied that, if such small-scale low-entropy
downdrafts are not properly captured in numerical simulations due to the lack of spatial
resolution, this might be compensated by a strong excitation of large-scale convection.
Brandenburg (2016) proposed that the effects of these non-local energy transport can be
incorporated into the mixing-length model as an additional contribution called "Deardorff
term" (Deardorff 1972), owing to which the enthalpy can be transported upward even in
a weakly subadiabatic background. This has been confirmed in several numerical experi-
ments (Käpylä et al. 2017, Bekki et al. 2017, Karak et al. 2018, Nelson et al. 2018, Käpylä
et al. 2019)

In fact, Lord et al. (2014) have extended the numerical domain of near-surface non-
rotating convection simulation of MURaM code, which can successfully reproduce the
observed properties of granules, both horizontally and vertically sufficiently enough to
capture the supergranules. However, they found that the simulations tend to overesti-
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mate the low wavenumber power on scales larger than supergranulation, and thus failed
to reproduce the supergranulation peak at l ≈ 120. This is because the deep convection
drives the large-scale flows on scales comparable to the four local density scale heights,
which imprints the surface horizontal velocity spectrum. Lord et al. (2014) have shown
that, the observed photospheric power spectrum can be reproduced if the convective flow
amplitude is selectively suppressed below a depth of 10 Mm by a factor of 2.5. There-
fore, it is also suggested by the surface convection simulation as well as global ones that
simulations cannot properly solve the deep convection on the Sun.

The work of Lord et al. (2014) implies that the supergranulation peak is a consequence
of the suppression of power on large scales, and not that they are thermally-driven convec-
tion on that spatial scale. One possible cause of a reduction in the large-scale power is due
to strong rotation. Featherstone and Hindman (2016b) have carried out a set of rotating
convection simulations and argued that the power peak shifts to higher wavenumber as
the deep convection is more and more rotationally-constrained. The associated transition
of convective pattern from high-Ro to low-Ro is schematically illustrated in Figure 1.11
(a) and (b). Indeed, a theoretical model of rotationally-constrained convection predicts a
dynamical scale of convection at 30 Mm (which corresponds to the scale of supergranu-
lation) throughout below the near-surface layer of the Sun (Vasil et al. 2021), as shown in
Figure 1.11 (c).

1.7 Low-frequency oscillations in the Sun

In addition to the high-frequency modes of oscillation such as p-modes and g-modes,
inertial modes are expected to exist at much lower frequency range. They are restored by
Coriolis force and hence have periods comparable to the solar rotation period of 28 days.
Long-term continuous observations over 10 years by SDO/MDI have enabled us to detect
the inertial modes in the large-scale power spectrum of the Sun (see Chapter 2). In the
following sections we adopt the language and classification of inertial modes discussed
by Rieutord and Valdettaro (1997). In this section, we first review inertial modes and then
focus on the special class of inertial modes, Rossby modes.

1.7.1 Inertial oscillations

Poincaré equation

Inertial waves are defined as travelling waves in a rotating fluid whose restoring force
is the Coriolis force (e.g., Greenspan et al. 1968). To review some of their fundamental
properties, let us consider the Navier-Stokes equation of incompressible, inviscid fluid in
a rigidly-rotating system (with angular velocity Ω0 = Ω0ez). For simplicity, the effects of
gravity and magnetic fields are omitted. Using the equation of continuity to eliminate the
velocity, we have the equation for pressure perturbation,

∂2

∂t2∇
2 p1 + (2Ω0 · ∇)2 p1 = 0. (1.21)
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Figure 1.12: Example ray attractors of the inertial modes in a spherical shell with
rmin/rmax = 0.715 (solar convection zone). Panels (a), (b), and (c) show the attractors
for different frequencies ω/2Ω0 = 0.345, 0.636 (0.626 for the second attractor denoted
by dashed line) and , 0.771 (0.778 for the second attractor denoted by dashed line). The
corresponding angles from the rotational axis ϑ = sin−1 (ω/2Ω0) are also shown.

This equation is known as the Poincaré equation after Cartan (1922). Assuming that
the perturbations are proportional to exp [i(k · x − ωt)], the dispersion relation of inertial
waves is given by

ω = ±2Ω0 ·
k
|k|

(1.22)

from which we see that the frequencies of inertial waves are limited to a range of −2Ω0 ≤

ω ≤ 2Ω0, depending on the angle between the rotational axis and the wavenumber vector:
The frequency becomes maximum (|ω| = 2Ω0) when the wavenumber is parallel to the
rotational axis (k ∥ Ω0), and vanishes (non-oscillating, |ω| = 0) when it is perpendicular
to the rotational axis (k ⊥ Ω0). Note that the associated fluid motions are always perpen-
dicular to their wavenumber vectors, i.e., the inertial waves transverse. Also note that the
group velocity is perpendicular to the phase propagation direction.

Inertial modes in a spherical shell

Inertial waves trapped in a spherical shell (like the stellar convection zones) have been
extensively studied by, e.g., Rieutord and Valdettaro (1997), Rieutord et al. (2001). Since
the propagation direction of inertial waves is fixed by their frequencies, they undergo
reflections such that the angle between Ω0 and k remains constant. Consequently, the
waves can no longer have a continuous spectrum of frequencies and the resonant modes
(standing waves) are setup as global modes of oscillation. They are known as inertial
modes (Thomson 1880, Greenspan et al. 1968). In fact, this reflects the fact that the
Poincaré equation is hyperbolic and thus is ill-posed when the boundary condition is
taken into account (e.g., Stewartson and Rickard 1969).

Due to the ill-poseness of the problem, one would expect singularities in solutions.
When viscosity is included, these singularities can be regularized and converted to the
so-called internal shear layers in eigenfunctions (e.g., Bondi and Lyttleton 1953, Rieu-
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tord et al. 2001, Tilgner 1999). Nonetheless, the singularities still have a dominant effect
in determining the shape (concentration of power) of inertial modes in a rotating spher-
ical shell especially at small viscosity limit. Therefore, it is convenient to consider the
characteristics of the Poincaré equation along which the wave energy propagates. The
characteristic surfaces (or cones) are characterized by the angle with respect to the rota-
tional axis ϑ = sin−1 (ω/2Ω0). Note that ϑ is also the critical latitude where the charac-
teristic surfaces are tangent to the inner and upper spherical shells. It is known that the
characteristics tend to converge towards the so-called attractor which is, in most cases,
a closed periodic orbit or a wedge made by spherical boundaries in a meridional plane
(Maas and Lam 1995, Rieutord and Valdettaro 1997, Rieutord et al. 2001, Rieutord and
Valdettaro 2018, Sibgatullin and Ermanyuk 2019). Figure 1.12 shows example attractors
in the spherical shell (resemble to the solar convection zone) for selected frequencies.
Laboratory experiments as well as numerical studies have repeatedly confirmed that the
some inertial modes are strongly localized onto the attractors that are determined by to-
pography of the spherical shell and the mode frequencies (e.g., Manders and Maas 2003,
Grisouard et al. 2008).

Models of inertial modes in the Sun and stars

In the Sun and stars, inertial waves can propagate in the convection zones where the
stratification is close to adiabatic and therefore the main restoring force is the Coriolis
force. In rapidly-rotating high or intermediate-mass stars, inertial modes propagating in
the convective cores can have a dense frequency spectrum (due to the absence of the inner
spherical boundary) (Bryan 1889), and thus can resonantly couple with the rotationally-
influenced (sub-inertial) g-modes in the radiative envelopes (e.g., Lee and Saio 1987,
Saio and Lee 1991, Ogilvie and Lin 2004). In fact, such resonances have been recently
detected in γ Doradus stars (Ouazzani et al. 2020). In low-mass stars with radiative cores
and convective envelopes, such a resonance can hardly occur due to the sparsely-spaced
frequencies of the inertial modes trapped inside a spherical shell. In these stars, the main
focus has long been the tidal excitation of inertial modes in two celestial bodies (such as
binary stars or extrasolar planetary systems), since their dissipation can have a substan-
tial impact on their long-term orbital evolution by redistributing the energy and angular
momentum of the system (e.g., Ogilvie 2014).

From the theoretical perspectives, Baruteau and Rieutord (2013) and Guenel et al.
(2016) have studied the effects of differential rotation and found that properties of iner-
tial modes are significantly affected by differential rotation which introduces the critical
layers and limits the size of their resonant cavity. However, simplifying assumptions
were made in their studies such as the fluid being incompressible fluid and the back-
ground homogeneous. A background density variation was considered in some literature
(Dintrans and Ouyed 2001, Wu 2005) but there only uniform rotation was considered.
As far as the author recognize, there is no study that takes into account both the realis-
tic (helioseismocally-determined) differential rotation and the solar internal stratification
(model S).
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1.7.2 Equatorial Rossby modes
Rossby waves (Rossby 1939, 1940) are a type of inertial wave. They are global-scale
radial vorticity waves arising from the conservation law of potential vorticity (e.g., Ertel
1942, Platzman 1968, Müller 1995). They are the class of inertial waves for which the
wave motions are quasi-toroidal, i.e., the radial flows are very small compared to horizon-
tal flows (e.g., Rieutord et al. 2001). The readers may refer to Zaqarashvili et al. (2021)
for a comprehensive review on Rossby waves.

The classical Rossby waves originate from the radial component of the absolute vor-
ticity conservation with the so-called "planetary" β-effect representing the latitudinal vari-
ation of the Coriolis forces as a source (e.g., Vallis 2006). In the solar and stellar context,
they are also known as r modes (e.g., Papaloizou and Pringle 1978, Smeyers et al. 1981,
Saio 1982, Wolff and Blizard 1986).

To better understand the nature of the Rossby modes, let us consider a simplified form
of the absolute vorticity conservation,

D
Dt

(ζr + 2Ω0) = 0, (1.23)

where ζr denotes the radial vorticity and Ω0 is the rotation rate of the star. Assuming that
the motion is toroidal, i.e., the radial velocity is substantially weak, the above equation
can be reduced to

∂ζr

∂t
−

2Ω0

r
sin θ ≈ 0. (1.24)

Using the constraint of the equation of continuity (∇·u = 0) and assuming that the velocity
is proportional to exp

[
i(mϕ − ωt)

]
dependence, we have

∂

∂θ

{
sin θ

∂

∂θ
(sin θvθ)

}
− m2vθ −

2mΩ0

ω
sin2 θvθ = 0. (1.25)

The non-trivial solution of the Eq.(1.25) is given by

vθ ∝ Pm
l (cos θ) sin−1 θ, (1.26)

when the frequency ω satisfies

ω = −
2mΩ0

l(l + 1)
. (1.27)

Here, Pm
l (cos θ) represents the associated Legendre function with azimuthal order m and

spherical degree l. Therefore, it is shown that, under the assumption of toroidal motion,
the eigenfunction of the r modes is given by the spherical harmonics and their dispersion
relation is given by the Eq.(1.27). The minus sign manifests that they propagate in a
retrograde (opposite to rotation) direction. It can also be shown that the r modes have a
radial dependence of vθ ∝ rm due to the radial force balance between the Coriolis force
and the pressure gradient force.

Although the existence of r modes in the Sun and other stars has been predicted since
1970s (e.g., Papaloizou and Pringle 1978), it was only recently that they have been un-
ambiguously detected on the solar surface. Figure 1.13a shows the observed power spec-
trum of radial vorticity at the photosphere (Löptien et al. 2018). It is clearly shown that
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Figure 1.13: Observations of the equatorial Rossby modes on the Sun. (a) Power spec-
trum of radial vorticity calculated from local granulation tracking at the photosphere.
Overplotted in the black solid line denotes the sectoral Rossby mode dispersion relation.
(b) Measured latitudinal eigenfunctions at different azimuthal orders m. Solid lines de-
note the spherical harmonics with l = m. The figure is taken from Löptien et al. (2018)
with slight modifications,©Springer Nature. Reprinted with permission.

the vorticity power dominantly lies along the dispersion relation of the sectoral (l = m)
Rossby modes, ω = −2Ω/(m + 1) with Ω/2π = 453.1 nHz for a range of azimuthal order
3 ≤ m ≤ 15. Figure 1.13b shows the measured latitudinal eigenfunctions of the r-modes
at different azimuthal orders. Although the dispersion relation of the solar Rossby modes
is clearly characterized by that of the sectoral component, the eigenfunctions turn out to
be substantially deviating from the expected spherical harmonics. These results have then
been robustly confirmed using different measurements and helioseismic methods (Liang
et al. 2019, Hanasoge and Mandal 2019, Proxauf et al. 2020, Mandal and Hanasoge 2020,
Hanson et al. 2020, Gizon et al. 2021).

Even though the velocity amplitudes of the solar Rossby modes are small (≈ 1 − 3 m
s−1), it is still striking that, on large scales, modes are by far dominant over convection
in the Sun at low latitudes. It is sometimes speculated that turbulent convection might be
confined on scales smaller than the rhines scale (Rhines 1975)

lr ≈

√
R⊙vrms

Ω⊙
≈ 40 Mm, (1.28)

where vrms is the root-mean-square turbulent convective speed. On scales larger than lr,
Rossby modes dominate over turbulence. So far, there has been no such a study to evaluate
the impact of turbulent convection on the Rossby modes in a realistic solar convection
zone setup.

Another interesting question about the solar Rossby modes is whether they contribute
a driving mechanism to the differential rotation in the Sun. Although Rossby modes are
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considered to play a critical role in driving the atmospheric zonal jets on gas planets (e.g.,
Liu and Schneider 2010, Liu and Schneider 01 Nov. 2011, Read and Lebonnois 2018) and
in exoplanets (e.g., Showman and Polvani 2011), the impact of the solar Rossby modes on
the differential rotation is elusive. Using a one-dimensional β-plane model, Gizon et al.
(2020b) recently argued that, under latitudinal differential rotation, the eigenfunctions of
the Rossby waves are modified and the resulting amplitudes of the Reynolds stress ⟨v′θv

′
ϕ⟩

can be substantial in the vicinity of the viscous critical layers where the phase speed of
the Rossby modes become equal to the local differential rotation speed. It is necessary
to extend their study to a more realistic three-dimensional regime to assess the transport
properties of the Rossby modes in the Sun.

Observational and theoretical studies of the inertial modes including Rossby modes in
the Sun can have a profound implications not only to internal dynamics in the Sun but also
to the mode physics in general because they can potentially be used to probe the interior
as a possible application. For instance, there is a recent study that aims to account for
the temporal variations in the Rossby mode frequencies during the solar magnetic cycles
(Goddard et al. 2020).

1.8 High-latitude flows

Hathaway et al. (2013) used supergranulation tracking to estimate horizontal flows on
scales larger than the supergranulation, and found that the high-latitude flows are charac-
terized by strong longitudinal flows at m = 1 that are largely north-south anti-symmetric.
These flows exist at latitudes above ±45◦ with velocity amplitudes up to 30 m s−1 and
display a spiral structure, as shown in Fig.1.14. A similar high-latitude flow pattern has
also been observed in the ring-diagram measurements (Bogart et al. 2015).

Hathaway et al. (2013) claim that the flows are due to giant cell convection and are
associated with a Reynolds stress ⟨vθvϕ⟩ at high latitudes which is positive (negative) in
the northern (southern) hemisphere, implying equatorward angular momentum transport.

In the paper Gizon et al. (2021) and in this thesis, we propose that these high-latitude
flow features are not giant cell convection in nature but are instead global modes of inertial
oscillation. This is based on an analysis of SDO/HMI observations. This invalidates
the interpretation by Hathaway and Upton (2021) that the spiral feature is the result of
advection by the meridional flow at the base of the convection zone. We also give a
theoretical interpretation for the origin of the high-latitude mode in terms of the baroclinic
instability and compute the Reynolds stresses associated with mode (Chapter 5).

1.9 Overview of the thesis

1.9.1 Motivation

As discussed in §1.6, recent observations disagree with the theoretical models in many
aspect, which calls our current understanding on large-scale convection in the Sun into
question. Recent observations suggest that the large-scale velocity power on the Sun
is dominated by low-frequency modes of oscillation such as Rossby modes. Therefore,
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Figure 1.14: Snapshots of the non-axisymmetric component of longitudinal velocity
at the solar surface obtained by supergranulation tracking (Hathaway and Upton 2021).
Top, middle, and bottom panels show the flows at (a) 2010 July 1, (b) 2018 December
30, and (c) 2019 June 27, respectively, all at 00:00:00 UT. Left panels show the surface
longitudinal flow in a Mercator projection. Center and right panels show the same flow
but seen from north and south poles, respectively. This figure is produced using the data
provided at http://solarcyclescience.com/giantcells.html, with permission.

as a first step to crack the solar convective conundrum, we will make use of them as
fundamental observational clues.

The convective conundrum can in fact be reinterpreted in terms of the low-frequency
global modes of oscillation as follows: Numerical models typically attribute the origin
of solar equatorial acceleration to strong columnar convective modes (thermal Rossby
waves) that have never been successfully detected on the Sun. On the other hand, what
we robustly observe on the Sun are the equatorial Rossby modes (r modes) that are essen-
tially incompressible and non-convective modes. Now, solar surface observational data
from SDO/HMI for more than 10 years enables us to search for other kinds of inertial
modes propagating in the convection zone. These observations might potentially be used
to infer important unknown parameters in Sun’s interior such as superadiabaticity, tur-
bulent diffusivities, and convective velocity amplitudes. To this end, in this thesis, we
study various types of low-frequency modes of oscillation in the Sun including equatorial
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Rossby modes, columnar convective modes, and high-latitude modes in both linear and
nonlinear regimes.

1.9.2 Structure
The remaining parts of the thesis are organized as follows. In Chapter 2, we first report
observational detection of the solar inertial modes. In Chapter 3, we aim to systemat-
ically characterize the observed global-scale low-frequency vorticity modes inside the
solar convection zone in the linear regime. The dispersion relations and the eigenfunc-
tions are derived for each modes and compared with the observations. We also investigate
how the (non-convective) equatorial Rossby modes interact with the convective modes. In
order to further evaluate how much these linear modes persist in the turbulent convection
zone or to see which modes acquire the velocity amplitudes sufficient enough to have an
impact on the angular momentum transport, nonlinear simulations are indeed required.
Here, we present two distinct ways to do this.

In Chapter 4, we work on fully nonlinear simulations of rotating compressible convec-
tion in the solar convection zone. The rotationally-influenced convection transports the
angular momentum so that the large-scale mean flows are self-consistently driven. In this
framework, we compute the velocity power spectra, extract the Rossby and convective
modes from the nonlinear simulation, and characterize their mode properties in detail.
Amplitudes of the extracted modes are compared with the solar observations. Note that
this approach is regarded as the most fundamental because we try to keep the number
of assumptions as less as possible. As a consequence, however, the outcome is almost
uncontrollable and the simulation cannot exactly reproduce the Sun (mostly from a view-
point of differential rotation and meridional circulation).

In Chapter 5, we present another type of nonlinear simulations: mean-field simula-
tions of the large-scale flows in the Sun with parameterized Λ-effect in a sphere. In this
framework, small-scale turbulent convection is not explicitly solved but the convective
Reynolds stress (Λ-effect) is parameterized so that the solar-like differential rotation and
meridional circulation can readily be obtained. We then study the nonlinear behaviour of
the inertial modes in the solar convection zone, particularly the modes at high latitudes.
We find that the various observational properties of the high-latitude flow features (polar
spiral) can be explained in terms of the baroclinically-unstable modes.

In Chapter 6, we extend a mean-field model discussed in 5 into magnetohydrodynamic
(MHD) regime, in which the solar-like magnetic cycles are simulated. This enables us to
study not only the cycle dependence of the solar inertial modes but also the torsional
oscillations and the active region flows.

In Chapter 7, we summarize our findings and discuss the implications of our study.
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2 Solar inertial modes: Observations,
identification, and diagnostic
promise

Abstract

The oscillations of a slowly rotating star have long been classified into spheroidal and
toroidal modes. The spheroidal modes include the well-known 5-min acoustic modes used
in helioseismology. Here we report observations of the Sun’s toroidal modes, for which
the restoring force is the Coriolis force and whose periods are on the order of the solar
rotation period. By comparing the observations with the normal modes of a differentially
rotating spherical shell, we are able to identify many of the observed modes. These are
the high-latitude inertial modes, the critical-latitude inertial modes, and the equatorial
Rossby modes. In the model, the high-latitude and critical-latitude modes have maximum
kinetic energy density at the base of the convection zone, and the high-latitude modes
are baroclinically unstable due to the latitudinal entropy gradient. As a first application
of inertial-mode helioseismology, we constrain the superadiabaticity and the turbulent
viscosity in the deep convection zone.

2.1 Introduction

The free oscillations of a nonrotating spherical star have zero radial vorticity and are called
spheroidal modes: they are the pressure (p), surface-gravity (f), and gravity (g) modes.
The p and f modes, discovered on the Sun by Leighton et al. (1962), are used to infer
the structure and dynamics of the solar interior (Christensen-Dalsgaard 2002). The solar
g modes would also have important diagnostic potential regarding the radiative interior of
the Sun; however, they evanesce in the convection zone and their amplitudes at the surface
are exceedingly small (García et al. 2007, Alvan et al. 2015).

When slow uniform rotation is included in the model, additional modes of oscilla-
tion become possible. In particular, quasi-toroidal modes that resemble classical Rossby

This chapter reproduces the article Solar inertial modes: Observations, identification, and diagnostic
promise by L. Gizon, R.H. Cameron, Y. Bekki, A.C. Birch, R.S. Bogart, A.S. Brun, C. Damiani, D. Fournier,
L. Hyest, K. Jain, B. Lekshmi, Z.-C. Liang, and B. Proxauf, published in Astronomy and Astrophysics 652,
L6 (2021). DOI: https://doi.org/10.1051/0004-6361/202141462. Contribution: Y. Bekki solved the 2D
eigenvalue problem. All authors contributed to the final manuscript.
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modes, known as r modes, are predicted (Papaloizou and Pringle 1978). They owe their
existence to the Coriolis force, have frequencies on the order of the rotation frequency, and
propagate in the retrograde direction. Adding the Sun’s differential rotation introduces
critical latitudes where the phase speed of a mode is equal to the local rotation velocity.
In the inviscid case, the eigenvalue problem is singular at the critical latitudes (Watson
1981, Charbonneau et al. 1999). Adding viscosity changes the eigenvalue problem from
second order to fourth order (e.g., Baruteau and Rieutord 2013). The singularity disap-
pears and new quasi-toroidal modes appear, which are analogous to those of the plane
Poiseuille viscous flow in classical hydrodynamics (Gizon et al. 2020b, and references
therein). In the following, we loosely refer to the modes with frequencies on the order of
the rotational frequency as inertial modes.

Inertial modes were detected on some rapidly rotating stars (see the review by Aerts
2021). The search for the Sun’s inertial modes requires observations over many times
the 27-day solar rotation period due to their low frequencies and amplitudes. Equatorial
Rossby modes modified by the solar differential rotation have already been reported (Löp-
tien et al. 2018). Here we report observations of a rich spectrum of inertial modes of the
Sun over a wide range of latitudes, and we show they can be used to directly probe the su-
peradiabaticity and turbulent viscosity in the deep convection zone. The degree to which
the lower half of the convection zone is superadiabatic (or subadiabatic) is important in
the context of storing the toroidal magnetic field so that it can build up over the course
of the 11-year solar cycle (Hotta 2017). The turbulent viscosity is one of the important
turbulent transport processes that acts in combination with the observed meridional flow
(Gizon et al. 2020a) to explain the equatorward drift of the latitudes at which sunspots
emerge (Cameron and Schüssler 2016).

By definition, a normal mode is separable in time and space; it is characterized by a
single eigenfrequency that is independent of position and by a displacement eigenfunc-
tion that is independent of time. Working in the frequency–latitude domain is key to the
observational discovery and the identification of the quasi-toroidal normal modes of the
Sun.

2.2 Observations

We use helioseismic maps of horizontal flows near the solar surface provided by the Stan-
ford ring-diagram pipeline (Bogart et al. 2011a,b) applied to continuous high-resolution
observations from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dy-
namics Observatory (SDO) for the period from 1 May 2010 to 6 September 2020. The
two horizontal flow components are standard data products: uθ(θ, ϕ, t) in the colatitudi-
nal direction and uϕ(θ, ϕ, t) in the longitudinal direction (θ and ϕ increase southward and
prograde, respectively; see Proxauf et al. 2020). The flows are measured either with a
cadence of dt = 27.28 hr and an effective spatial resolution of 15◦ in both coordinates, or
with a more rapid cadence of dt/3 and a finer spatial resolution of 5◦; the spatial sampling
is half the resolution such that there is a 50% overlap between neighboring measurements.
The highest latitude is 67.5◦ for the low-resolution maps and 80.0◦ for the high-resolution
maps. The longitude, ϕ, is defined in the Carrington frame of reference, which rotates at
the frequency ΩCarr/2π = 456.0 nHz with respect to an inertial frame (close to the equato-
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Figure 2.1: Power spectra showing selected modes of oscillation in the Carrington frame.
Each column corresponds to a particular m and velocity component, as indicated at the
top. Each row shows a different representation of the power spectrum. In the top row,
the power spectral density is plotted as a function of frequency and latitude. The two
blue curves show m(Ω − ΩCarr)/2π at the surface and at r = 0.95R⊙, where Ω(r, θ) is the
solar angular velocity in the inertial frame. The purple contour delineates the region in
frequency–latitude space affected by inflows into active regions, m(ΩAR − ΩCarr)/2π (see
Fig. 2.9). In the second row, the power at each latitude is normalized by its average value
over the frequency range between the red bars; this shows that each mode has excess
power over a large range of latitudes. The red arrows point to the critical latitudes of
±38◦ at the surface for the mode with frequency −73 nHz. In the third row, the power
is averaged over the selected latitude bands specified on the plots, and the frequency
resolution is reduced to 12.24 nHz. The red dots point to modes that are not activity-
related (see text) and they are listed in Table 2.1.

rial rotation rate at the surface). The zero and yearly frequencies were removed from the
data.

The structure of the Sun and its differential rotation is nearly symmetric with respect
to the solar equator. Consequently, modes with a toroidal component can be called either
symmetric or antisymmetric depending on the north–south symmetry of the surface ra-
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Figure 2.2: Same as Fig. 2.1, but using GONG data. The red dots mark the HMI fre-
quencies for comparison.

dial vorticity. This terminology has been used before in the literature (Charbonneau et al.
1999). A symmetric mode has a symmetric uθ and antisymmetric uϕ, while an antisym-
metric mode has an antisymmetric uθ and symmetric uϕ. After symmetrizing (superscript
"+") or anti-symmetrizing ("−") the data with respect to the equator, we computed the
Fourier transform of the two velocity components in longitude and in time,

û±j (θ,m, ω) =
∑
ϕ,t

u±j (θ, ϕ, t) e−i(mϕ−ωt), (2.1)

where j is either θ or ϕ, ω is the angular frequency, m is the integer longitudinal wavenum-
ber, and the sums were taken over all longitudes and all times. We considered frequencies
in the range |ω/2π| ≤ 400 nHz and m in the range from 1 to 10 to focus on the large-scale
motions. For each choice of velocity component j, symmetry s, and wavenumber m, the
power spectral density PS D = |ûs

j(θ,m, ω)|2 is a function of colatitude and frequency.
For illustration purposes, we show the detection of three global modes of oscillation

in the inertial frequency range in Fig. 2.1 (15◦ resolution). For each mode, there is clear
excess power at the same frequency over a range of latitudes. Several types of modes
can be seen. The symmetric m = 1 mode at a frequency near −86 nHz is visible at all
latitudes in the power spectrum; it has most of its power at latitudes of 50◦ and above
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Table 2.1: Solar inertial modes detected in HMI ring-diagram flow maps for 2010–2020.
Frequencies are defined in the Carrington frame.

m ( j, s) mode frequency a significance b critical latitude c latitude at max(us
j) max(uθ) max(uϕ) linewidth excess power range

[nHz] at r = R⊙ [multiples of 7.5◦] [m s−1] [m s−1] [nHz] (not activity related)
Equatorial Rossby modes:
3 (θ,+) −269 d > 8 σL 59◦ 0◦ 1.5 1.2 < 24 [−280,−200] nHz
4 (θ,+) −208 d 7.5 σL 45◦ 0◦ 1.6 1.1 < 37 [−250,−190] nHz
5 (θ,+) −171 d > 8 σL 37◦ 0◦ 1.0 — < 12 [−210,−150] nHz
6 (θ,+) −147 d 5.7 σL 31◦ 0◦ 1.3 — < 24 [−170,−125] nHz
7 (θ,+) −130.7 ± 2.8 d,e > 8 σL 25◦ 7.5◦ 1.5 — 9.9 ± 2.4 [−175,−110] nHz
8 (θ,+) −110.9 ± 2.4 d,e > 8 σL 22◦ 0◦ 2.0 — 10.6 ± 1.0 [−135,−65] nHz
9 (θ,+) −122 d > 8 σL 22◦ 0◦ 1.1 — < 12 [−135,−55] nHz

10 (θ,+) −110 d > 8 σL 19◦ 0◦ 1.4 — < 24 [−145,−70] nHz
High-latitude inertial modes:
1 (ϕ,+) −86 > 8 σH 58◦ ≥ 67.5◦ — 2.5 < 12 [−110,−50] nHz
1 (ϕ,−) −86.3 ± 1.6 e,f > 8 σH 58◦ ≥ 67.5◦ 3.0 9.8 7.8 ± 0.2 [−150,−10] nHz
2 (ϕ,+) −171 f > 8 σH 58◦ 60◦ — 2.3 < 12 [−195,−100] nHz
2 (ϕ,−) −151.1 ± 4.3 e,f > 8 σH 56◦ ≥ 67.5◦ 2.5 3.4 30.6 ± 3.3 [−185,−90] nHz
3 (ϕ,+) −224.7 ± 2.5 e,f > 8 σH 53◦ 60◦ 1.6 1.8 9.7 ± 1.7 [−265,−180] nHz
4 (θ,+) −294 3.9 σH 53◦ ≥ 67.5◦ 1.0 0.8 < 12

}
[−310,−240] nHz4 (θ,+) −245 5.3 σH 49◦ 60◦ 1.1 1.1 < 24

5 (θ,−) −343 5.3 σH 52◦ 60◦ 0.7 — < 12
}

[−355,−275] nHz5 (ϕ,+) −282 2.6 σH 47◦ 52.5◦ 0.8 0.8 < 24
Critical-latitude inertial modes:
1 (ϕ,+) −37 > 8 σM 38◦ 37.5◦ — 1.3 < 24 g

1 (ϕ,−) −37 7.1 σM 38◦ 37.5◦ 0.5 0.9 < 12 g

1 (ϕ,−) −12 > 8 σL 20◦ 30◦ — 1.2 < 24
2 (ϕ,+) −61 6.8 σM 34◦ 52.5◦ — 1.1 < 24

}
[−65, 0] nHz2 (ϕ,+) −12 > 8 σL 10◦ 22.5◦ 0.9 1.1 < 12

2 (ϕ,−) −73 > 8 σH 38◦ 45◦ 0.8 1.3 < 12
 [−90, 30] nHz2 (ϕ,−) −24 > 8 σM 20◦ 22.5◦ 0.9 1.4 < 24

2 (ϕ,−) 0 7.2 σL n/a 7.5◦ — 1.0 < 12 g

3 (ϕ,+) −147 4.0 σH 44◦ 45◦ — 0.9 < 12
3 (θ,−) −61 3.6 σM 28◦ 37.5◦ 0.7 0.8 < 24
3 (ϕ,+) −24 > 8 σM 15◦ 15◦ — 1.0 < 12 [−50, 10] nHz
3 (ϕ,−) −73 h 3.0 σM 31◦ 30◦ — 0.7 < 12
3 (ϕ,−) −37 6.6 σL 20◦ 22.5◦ — 1.0 < 24

}
[−50, 30] nHz3 (ϕ,−) 0 6.6 σL n/a 15◦ — 1.0 < 24 g

4 (ϕ,+) −220 4.3 σH 46◦ 45◦ — 0.5 < 12
4 (ϕ,+) −110 4.4 σM 33◦ 37.5◦ — 0.6 < 12

 [−120, 35] nHz4 (ϕ,+) −12 4.3 σL n/a 15◦ 0.6 1.0 < 12 g

4 (ϕ,+) 24 5.5 σL n/a 0◦ — 1.4 < 24
4 (ϕ,−) −171 3.4 σH 41◦ 45◦ — 0.6 < 12
4 (ϕ,−) −24 > 8 σL 10◦ 22.5◦ — 1.0 < 24

}
[−50, 30] nHz4 (ϕ,−) 24 5.9 σL n/a 7.5◦ — 1.0 < 24

5 (ϕ,+) −135 h 3.7 σM 32◦ 37.5◦ — 0.8 < 24
5 (ϕ,+) −24 3.5 σL 5◦ 15◦ — 1.0 < 24 g

5 (θ,−) 37 4.3 σL n/a 15◦ 0.7 — < 24
5 (θ,+) −330 2.3 σH 51◦ 60◦ 0.7 — < 24

 [−330,−190] nHz5 (ϕ,−) −294 2.1 σH 48◦ 52.5◦ — 0.7 < 24
5 (ϕ,−) −245 5.7 σH 44◦ 45◦ — 0.8 < 12
5 (θ,+) −86 4.0 σM 25◦ 37.5◦ 0.7 — < 12
6 (θ,−) −343 h 2.1 σH 47◦ 60◦ 0.5 — < 12
6 (ϕ,+) −306 3.3 σH 45◦ 60◦ — 0.4 < 12
6 (θ,−) −61 2.0 σM 18◦ 30◦ 0.6 — < 12
6 (ϕ,+) −24 4.5 σM n/a 15◦ — 1.1 < 12
6 (ϕ,−) −245 h 2.7 σH 40◦ 45◦ — 0.5 < 12
6 (ϕ,−) 37 2.5 σL n/a 7.5◦ — 0.7 < 12 g

7 (θ,−) −196 2.4 σH 33◦ 45◦ 0.7 — < 24 g

7 (ϕ,+) −86 3.6 σL 20◦ 22.5◦ — 0.6 < 12
7 (θ,+) −73 3.0 σM 18◦ 0◦ 0.5 — < 12
7 (ϕ,−) 0 3.6 σL n/a 22.5◦ — 0.7 < 24
9 (ϕ,+) 0 5.3 σL n/a 15◦ 0.7 0.6 < 12
9 (θ,+) −269 2.5 σH 34◦ 45◦ 0.5 — < 12

10 (θ,−) −49 3.3 σM 6◦ 22.5◦ 0.5 — < 12
10 (θ,+) −282 2.9 σH 33◦ 45◦ 0.3 — < 12

a The search range was limited to 1 ≤ m ≤ 10 and |ω/2π| ≤ 400 nHz.
b The statistical significance of each peak is given in terms of the standard deviation computed for the
most significant of the latitudinal averages shown in Figs. 2.10–2.19 (σL for low latitudes, σM for
mid latitudes, and σH for high latitudes).
c "n/a" means not applicable (no critical latitude at the surface, only deeper).
d Mode reported by Löptien et al. (2018).
e Mode parameters measured with a Lorentzian fit.
f Frequency near that reported by Hathaway and Upton (2021).
g Measured during the quiet Sun period 2018–2020.
h Outside the activity frequency range, however not significant during the quiet Sun period 2018–
2020.
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(the 5◦ observations show that the power keeps increasing with latitude up to at least 80◦).
It corresponds to the high-latitude velocity features previously reported (Hathaway et al.
2013, Bogart et al. 2015, Hathaway and Upton 2021), although it was not recognized as a
normal mode of the whole convection zone. The second example is the symmetric m = 2
mode of oscillation at −73 nHz. This mode is also seen over the entire latitude range of
the observations, but it has most of its power concentrated near the critical latitude of 38◦

(see Fig. 2.1). The power is strong above the critical latitude, but decreases toward the
poles. The third example is the m = 3 equatorial Rossby modes (Löptien et al. 2018)
at a frequency of −269 nHz, for which the power is mostly confined to lie between the
critical latitudes (±59◦ for this mode’s frequency) where the mode is trapped (Gizon et al.
2020b).

We have detected many tens of normal modes of oscillation at low frequencies, as
shown in Figs. 2.10 – 2.19 and reported in Table 2.1. These modes are associated with
significant (above 95% confidence level) excess power in at least one of three latitude
bands (low latitudes below 30◦, mid latitudes from 15◦ to 45◦, and high latitudes from
37.5◦ to 67.5◦). While the most striking features in the power spectra are narrow peaks, a
closer inspection reveals ranges in frequency and latitude of additional excess power. For
example, the m = 8 power spectrum for u+θ (Fig. 2.20) has excess power at low latitudes
at frequencies between −135 nHz and −65 nHz, which can be attributed to the presence
of a dense spectrum of modes adjacent to the equatorial Rossby mode.

To avoid misidentifying active-region inflows (Gizon et al. 2001) as modes of oscil-
lation in the power spectra, we defined a region in frequency–latitude space based on the
active-region rotation rates and latitudes (Kutsenko 2021), as shown in Fig. 2.9. A peak
in the power spectrum for the entire observation period is not reported in Table 2.1 if it
is in the activity area and does not have significant power during the quiet-Sun period
(February 2018 to September 2020), see Figs. 2.10 – 2.19. We also checked that the re-
ported modes were not misidentified due to leakage from the window function (Liang
et al. 2019), and that they are also seen in the Global Oscillation Network Group (GONG)
data (Fig. 2.2).

For each mode, we extracted the two velocity components of a mode eigenfunction in
a narrow frequency range around the mode frequency within one linewidth (Proxauf et al.
2020). Examples of the surface eigenfunctions are shown in the left column of Fig. 2.3.

2.3 Eigenmodes of the differentially rotating Sun

2.3.1 2D linear model

To identify the observed modes of oscillation, we computed the eigenmodes of a spherical
shell with 0.710 ≤ r/R⊙ ≤ 0.985 that rotates like the Sun. In the Carrington frame, the
linearized equations for the conservation of momentum, mass, and energy, together with
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the equation of state, are as follows:

ρDtu′ = −∇p′ + ρ′g − 2ρΩ × u′ − ρr sin θ (u′ · ∇)Ω + ∇ ·D, (2.2)
Dtρ

′ = −∇ ·
(
ρu′

)
, (2.3)

Dts′ =
cp δ

Hp
u′r −

u′θ
r
∂s
∂θ
+

1
ρT
∇ ·

(
κρT∇s′

)
, (2.4)

p′

p
=
γρ′

ρ
+

s′

cv
, (2.5)

where

Dt = ∂/∂t + (Ω −ΩCarr)∂/∂ϕ (2.6)

is the material derivative and Ω(r, θ) is a differential rotation model close to the helio-
seismic measurements averaged over 2010 – 2020 (Larson and Schou 2018). Linear per-
turbations are denoted with primes. The background model is based on a standard solar
model (Christensen-Dalsgaard et al. 1996a), except for the superadiabaticity δ = ∇−∇ad,
which is a constant parameter in the convection zone (the radiative zone is very stable
below with δ ≈ −0.1). In the above equation, Hp is the pressure scale height, and cv and
cp are the heat capacities per unit mass at constant volume and constant pressure. The
viscous stress tensor Di j = ρνt[∂iu′j + ∂ ju′i −

2
3 (∂ku′k)δi j] accounts for wave attenuation,

where δi j is the Kronecker delta. The energy equation includes advection and thermal
diffusion. In our model, the viscous and thermal diffusivities are those resulting from
the turbulence and, therefore, were considered to be equal. For the sake of simplicity,
we chose the model to have very few free parameters: a constant fluid viscosity νt and a
constant superadiabaticity δ, which gives the degree of convective instability.

The latitudinal entropy gradient is obtained by assuming that the differential rotation
is the result of a thermal wind balance (Miesch et al. 2006):

g

cp

∂s
∂θ
= r2 sin θ

∂(Ω2)
∂z

, (2.7)

where z = r cos θ is the coordinate along the rotation axis.
Boundary conditions need to be applied at θ = 0 and π. Since we only considered

modes with m , 0, we imposed u′ = 0 and ρ′ = p′ = s′ = 0. The numerical domain is
bounded above by the photosphere and below by the radiative interior, both of which are
strongly stably stratified and where radial flows are difficult to drive because of the strong,
restoring buoyancy force. Therefore, we used an impenetrable and stress-free boundary
condition at both radial boundaries.

We looked for solutions to the above problem where each physical quantity is propor-
tional to exp(imϕ − iσt), where σ is the complex mode angular frequency and m is the
integer longitudinal wavenumber. We discretized the spatial derivatives with second-order
central differences with 16 radial and 72 latitudinal grid points. The above equations were
combined in matrix form into a complex eigenvalue problem, which was solved using the
LAPACK routine. We focused on the low-frequency solutions. We refer to the modes of
oscillation obtained in this problem as the "modes of the 2D model".
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2.3.2 1D linear model
In order to highlight the main physics, we also considered fluid motions that are purely
toroidal (horizontal), restricted to a spherical surface of radius r = R⊙. Keeping the
density constant, the linearized momentum equations in a frame rotating at Ωcarr are as
follows:

Dtu′θ = −
1
r
∂

∂θ

(
p′

ρ

)
+ 2Ω cos θ u′ϕ + νt ∆u′θ, (2.8)

Dtu′ϕ = −
1

r sin θ
∂

∂ϕ

(
p′

ρ

)
− 2Ω cos θ u′θ − sin θ u′θ

∂Ω

∂θ
+ νt ∆u′ϕ, (2.9)

where the material derivative Dt is given above by Eq. (2.6), and ∆ is the horizontal part
of the Laplacian. For purely toroidal modes, we introduced the stream function Ψ(θ, ϕ, t)
such that

u′ = ∇ ×
[
Ψ(θ, ϕ, t) r̂

]
=

1
r sin θ

∂Ψ

∂ϕ
θ̂ −

1
r
∂Ψ

∂θ
ϕ̂. (2.10)

The two above equations can be combined to obtain

Dt∆Ψ −
1

r2 sin θ
∂

∂θ

(
1

sin θ
∂

∂θ
(Ω sin2 θ)

)
∂Ψ

∂ϕ
= νt ∆

2Ψ. (2.11)

We looked for solutions of the form

Ψ(θ, ϕ, t) = Re
[
ψ(θ) exp(imϕ − iσt)

]
, (2.12)

where m is the longitudinal wavenumber and σ is the (complex) angular frequency. The
equation for ψ is of fourth-order and requires four boundary conditions. The condition
that the flow vanishes at the poles implies

ψ =
dψ
dθ
= 0 at θ = 0 and π. (2.13)

In order to discretize the problem, we projected ψ onto a basis of associated Legendre
polynomials. For the numerical value of the eddy viscosity at the surface, we used the
value νt = 500 km2 s−1 (Gizon et al. 2020b), unless otherwise specified. The resulting
eigenvalue problem was solved for each m using the eigenvalue solver scipy.linalg.eig.
We refer to the modes of oscillation obtained in this problem as the "modes of the 1D
model".

2.4 Mode identification

We then sought a match with the observed modes. We did not tune the parameters of
the 2D model to match the observations exactly; we performed a sensitivity study using
δ = −10−6, −2 × 10−7, 0, 2 × 10−7, 10−6 (Fig. 2.7) and νt = 50, 100, 250, 500 km2 s−1

(Fig. 2.8). We found that δ = 0 and νt = 100 km2 s−1 provide a good match (Fig. 2.3) for
the surface eigenfunctions and eigenfrequencies of the three modes of Fig. 2.1. As part of
the identification, we sought modes of the models that have long lifetimes or are growing
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2.4 Mode identification

Figure 2.3: Observed and model eigenfunctions for the modes shown in Fig. 2.1. The left
column shows the observed velocity (u−ϕ for the m = 1 and m = 2 modes, u+θ for the m = 3
mode). The middle columns show the corresponding eigenfunctions of the 2D model for
νt = 100 km2 s−1 and δ = 0, at the surface and through the central meridian, together
with the kinetic energy density. The thick black curves show the critical latitudes. The
rightmost column shows the eigenfunctions of the 1D model at the surface. The other
velocity components are shown in Fig. 2.4 and the radial vorticity is shown in Fig. 2.5.

(Fig. 2.21). The identified modes are representatives of three main families of modes: the
high-latitude inertial modes (Fig. 2.3a), the critical-latitude inertial modes (Fig. 2.3b), and
the equatorial Rossby modes (Fig. 2.3c). This classification is supported by the dispersion
relations at small m (Fig. 2.6).

2.4.1 High-latitude inertial modes
The high-latitude inertial modes are analogous to the "wall modes" in plane Poiseuille
flows (Gizon et al. 2020b). They are seen in both the 1D and 2D eigenvalue problems
for m ≤ 5. In the 2D model, the eigenfunctions are dominantly toroidal and extend to
the bottom of the convection zone, with their highest kinetic energy density near the base
of the convection zone (Fig. 2.3a). This is unlike the kinetic energy density of the p
modes, which always peaks near the surface. The correct tilt of the spiral structure is
only obtained in the 2D model (Fig. 2.3a). In this model, the high-latitude modes become
baroclinically unstable (Fig. 2.21) due to the latitudinal entropy gradient resulting from
the thermal wind balance (Knobloch and Spruit 1982; Bekki et al., in prep.). 1 In the 1D

1The formation of a spiral at high latitudes by baroclinic instability has also been discussed in the context
of Venus’ atmosphere (Kashimura et al. 2019).
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Figure 2.4: Same as Fig. 2.3, but for the complementary velocity components.

Figure 2.5: Observed and model radial vorticity for the selected modes of Fig. 2.3.
The first, second, and rightmost columns show the radial vorticity ζr = (∇ × u)r for the
observations, the 2D model, and the 1D model, respectively. The remaining columns in
the middle show meridional cuts of ζr, radial velocity ur, and the kinetic helicity hk =

⟨u · ζ⟩ for the 2D model.
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Figure 2.6: Mode frequencies in the Carrington frame for the observations and the 2D
model (Re σ). The symbols show the observed modes (diamonds for symmetric modes
and squares for antisymmetric modes). The red symbols show the high-latitude modes,
the orange symbols the critical-latitude modes, and the black symbols the equatorial
Rossby modes. The rose- and gray-shaded areas show the observed frequency ranges
of excess power (last column of Table 2.1). For reference, the blue-shaded area gives the
range of rotation rates at the equator between the surface and 0.95R⊙. The curves give the
dispersion relations for the modes of the 2D model with νt = 100 km2 s−1 and δ = 0. The
red curve is the dispersion relation for the high-latitude modes. The solid and dashed-
black curves are for the fundamental (n = 0) and first overtone (n = 1) equatorial Rossby
modes.

model, only the m = 1 high-latitude modes are self-excited (Fig. 2.21) as a result of a
shear instability at high latitudes; however, the tilt of the spiral is not consistent with the
observations.

2.4.2 Critical-latitude modes

Critical-latitude inertial modes are found for both the 1D and 2D models. Their ampli-
tudes are maximum near their critical latitudes; they are known as "center modes" in 1D
hydrodynamics (Gizon et al. 2020b). The kinetic energy density of the m = 2 mode of the
2D model at −92 nHz (−73 nHz observed) is concentrated near the base of the convection
zone near 45◦ latitude (Fig. 2.3b). This is a very important place in the Sun, as it is where
the toroidal magnetic field generation should be strongest (Spruit 2011).

53
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Figure 2.7: Parameter study (2D model) for different values of the superadiabaticity δ, at
fixed νt = 100 km2 s−1. The modes are those shown in Fig. 2.1. The spiral patterns in
uϕ of the m = 1 high-latitude and m = 2 critical-latitude modes are sensitive to a small
change in δ. To obtain a pattern consistent with the observations, δ < 2 × 10−7 is implied.
The case δ = 10−6 is excluded by both the eigenfunctions and the eigenfrequencies. The
m = 3 equatorial Rossby mode is almost independent of δ because it is nearly purely
horizontal (quasi-toroidal).

2.4.3 Equatorial Rossby modes
Equatorial Rossby modes are the easiest to identify: their frequencies are close to the
classical dispersion relation for uniform rotation, σ = −2Ω/(m + 1). The 2D model sup-
ports modes with a different number of nodes in the radial direction, n. The frequencies
of the observed equatorial Rossby modes span the range between the n = 0 and the n = 1
branches of the dispersion relation (Fig. 2.6). For example, the m = 3 mode is identified
as a fundamental mode (n = 0).

2.5 Discussion and conclusion

We observed and identified three families of global-scale inertial modes in the solar con-
vection zone, within the search range |ω/2π| ≤ 400 nHz and 1 ≤ m ≤ 10. Some of
these modes are self-excited in the models. We also found extended regions in frequency
space where closely packed modes exist. The modes we have identified are sensitive
to the physical conditions deep in the convection zone (see plots of the kinetic energy
density in Fig. 2.3). The eigenfrequencies and surface eigenfunctions of the high- and
critical-latitude inertial modes have diagnostic potential for the latitudinal entropy gra-
dient, the superadiabaticity (Fig. 2.7), and the turbulent viscosity (Fig. 2.8), which are
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Figure 2.8: Parameter study (2D model) for different values of the turbulent viscosity νt,
for a convection zone that is adiabatically stratified (δ = 0). The modes are those shown in
Fig. 2.1. The frequencies of the m = 1 high-latitude mode and the m = 2 critical-latitude
modes are sensitive to the choice of νt. The smaller values of νt (≤ 100 km2 s−1) give a
better agreement with the observed frequencies (respectively −86.3 nHz and −73.4 nHz).
The m = 3 equatorial Rossby modes is essentially insensitive to νt.

largely unconstrained by traditional p-mode helioseismology. We find that the observed
inertial modes are compatible with δ < 2 × 10−7 and νt ≤ 100 km2 s−1 at the bottom
of the convection zone. These observational upper limits are substantially below the ex-
pectation from mixing length theory — by approximately one order of magnitude each
(Christensen-Dalsgaard et al. 1996a, Muñoz-Jaramillo et al. 2011) — and they imply that
the convective motions in the lower half of the convection zone are weak. This might
correspond to the slightly subadiabatic conditions seen below 0.8 R⊙ in recent numeri-
cal simulations of solar convection (see e.g. Hotta 2017, Käpylä et al. 2017, Bekki et al.
2017). While our upper limit on the turbulent velocities (≈

√
3νt/τ ≤ 11 m s−1 for a

correlation time τ = 1 month) is well below the mixing length value, it is just above the
lower limit required to drive solar differential rotation (8 m s−1 according to (Miesch et al.
2012)). A lower convection zone that is only marginally unstable (or even stable) would
allow a flux transport dynamo to wind up and transport the magnetic field in this region.
We expect that the characteristics of the observed inertial modes, including amplitudes
and lifetimes, will allow us to infer δ(r) and νt(r) and understand in which regime of
rotating convection the Sun operates (Hindman et al. 2020).
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2.6 Appendix

2.6.1 Supplementary figures
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Figure 2.9: Rotational frequencies of solar active regions versus latitude, measured in the
Carrington frame (from May 2010 to December 2016, Kutsenko 2021). The data (black
dots) have been symmetrized in latitude. The cyan ellipses contain 90% of the active
regions. The ellipses are extended to higher latitudes by 10◦ and down to the equator to
include flows around active regions. The resulting region in frequency–latitude space is
given by the purple contour, which we denote via the equation ω = ΩAR(θ) − ΩCarr. We
note that the HMI data used in the main text cover a longer observation period (from May
2010 to September 2020); however, the purple contour is not significantly affected by the
very few active regions from the nearly quiet period 2017–2020 (about 5% of all cycle 24
active regions).

57



2 Solar inertial modes: Observations, identification, and diagnostic promise

400 200 0 200 400
Frequency (nHz)

60°

30°

0°

30°

60°

La
ti

tu
d
e

= 1, +

400 200 0 200 400
Frequency (nHz)

0.000

0.005

0.010

0.015

Lo
w

-l
a
ti

tu
d
e
 p

o
w

e
r

400 200 0 200 400
Frequency (nHz)

0.000

0.005

0.010

0.015

M
id

-l
a
ti

tu
d
e
 p

o
w

e
r

400 200 0 200 400
Frequency (nHz)

0.000

0.005

0.010

0.015

H
ig

h
-l

a
ti

tu
d
e
 p

o
w

e
r

high-latitude{ excess power

critical-latitude{ excess power

activity range

leaks from +1

leaks from 1

95% confidence level
background
2010/05 to 2020/09 (cycle 24, full-res)
2010/05 to 2020/09 (cycle 24, low-res)
2018/02 to 2020/09 (quiet period)

400 200 0 200 400
Frequency (nHz)

60°

30°

0°

30°

60°

= 1, 

400 200 0 200 400
Frequency (nHz)

0.00

0.01

0.02

0.03

1
2

8
6

400 200 0 200 400
Frequency (nHz)

0.00

0.01

0.02

0.03

1
2

3
7

8
6

400 200 0 200 400
Frequency (nHz)

0.00

0.01

0.02

0.03

8
6

200 0
0

1

400 200 0 200 400
Frequency (nHz)

60°

30°

0°

30°

60°

= 1, 

400 200 0 200 400
Frequency (nHz)

0.000

0.005

0.010

400 200 0 200 400
Frequency (nHz)

0.000

0.005

0.010

400 200 0 200 400
Frequency (nHz)

0.000

0.005

0.010

400 200 0 200 400
Frequency (nHz)

60°

30°

0°

30°

60°

= 1, +

0.000

0.005

0.010

0.015

0.020

0.025

P
o
w

e
r 

(m
2
s

2
n
H

z
1
)

400 200 0 200 400
Frequency (nHz)

0.00

0.02

0.04

0.06

0.08

0.10

8
6

400 200 0 200 400
Frequency (nHz)

0.00

0.02

0.04

0.06

0.08

0.10

3
7

8
6

400 200 0 200 400
Frequency (nHz)

0.00

0.02

0.04

0.06

0.08

0.10
3

7

8
6

Figure 2.10: Power spectra for m = 1. (Top row) Power for the four components u+θ , u−ϕ ,
u−θ , and u+ϕ . The purple contours delineate the regions where inflows into active regions
produce excess power (see Fig. 2.9). The two blue curves show m(Ω − ΩCarr)/2π at the
surface and at r = 0.95R⊙. (Second row) Power spectral density averaged over 0◦ –
30◦. The gray curves show the power spectra at full resolution (3.06 nHz), and the black
curves show them at a quarter of the resolution. The 95% confidence levels are shown by
the red horizontal lines. The cyan curves are for the quiet-Sun period only (2.6 years from
4 February 2018 to 6 September 2020). (Third row) Power spectral density averaged
over 15◦ – 45◦. (Fourth row) Power spectral density averaged over 37.5◦ – 67.5◦. In the
three lower rows, the dots and the shaded areas (see legend) indicate the significant peaks
and the excess power ranges not related to magnetic activity, given in Table 2.1.
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Figure 2.11: Same as Fig. 2.10, but for m = 2.
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Figure 2.12: Same as Fig. 2.10, but for m = 3.
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Figure 2.13: Same as Fig. 2.10, but for m = 4.
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Figure 2.14: Same as Fig. 2.10, but for m = 5.
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Figure 2.15: Same as Fig. 2.10, but for m = 6.
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Figure 2.16: Same as Fig. 2.10, but for m = 7.
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Figure 2.17: Same as Fig. 2.10, but for m = 8.
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Figure 2.18: Same as Fig. 2.10, but for m = 9.
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Figure 2.19: Same as Fig. 2.10, but for m = 10.
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Figure 2.20: Same as Fig. 2.1, but for the m = 8 equatorial Rossby mode. In the top
plot, it is important to notice the range of excess power at low latitudes, below the critical
latitudes at the surface.
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Figure 2.21: Eigenfrequencies in the complex plane for m = 1 from the 2D solver (δ = 0,
νt = 250 km2 s−1) and the 1D solver (νt = 250 km2 s−1). Modes with positive imag-
inary frequencies are self-excited (unstable). The red vertical line shows the observed
frequency of the high-latitude symmetric mode at −86.3 nHz. The red symbols indicate
the modes from the models, which have frequencies and surface eigenfunctions close to
those observed.
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3 Linear analysis of low-frequency
modes in the convection zone

Abstract

On the one hand, several types of global-scale inertial modes of oscillation have been
observed on the Sun. They include the equatorial Rossby modes, critical-latitude modes,
and high-latitude modes. On the other hand, the columnar convective modes (predicted
by simulations; also known as banana cells or thermal Rossby waves) remain elusive.
We aim to investigate the influence of turbulent diffusivities, non-adiabatic stratification,
differential rotation, and a latitudinal entropy gradient on the linear global modes of the
rotating solar convection zone. We solve numerically for the eigenmodes of a rotating
compressible fluid inside a spherical shell. The model takes into account the solar strati-
fication, turbulent diffusivities, differential rotation (determined by helioseismology), and
the latitudinal entropy gradient. As a starting point, we restrict ourselves to a superadi-
abaticity and turbulent diffusivities that are uniform in space. We identify modes in the
inertial frequency range including the columnar convective modes, as well as modes of
mixed character. The corresponding mode dispersion relations and eigenfunctions are
computed for azimuthal orders m ≤ 16. The three main results are as follows. Firstly, we
find that, for m ≳ 5, the radial dependence of the equatorial Rossby modes with no radial
node (n = 0) is radically changed from the traditional expectation (rm) for turbulent diffu-
sivities ≳ 1012 cm2 s−1. Secondly, we find mixed modes, i.e. modes that share properties
of the equatorial Rossby modes with one radial node (n = 1) and the columnar convec-
tive modes, which are not substantially affected by turbulent diffusion. Thirdly, we show
that the m = 1 high-latitude mode in the model is consistent with the solar observations
when the latitudinal entropy gradient corresponding to a thermal wind balance is included
(baroclinally unstable mode). To our knowledge, this work is the first realistic eigenvalue
calculation of the global modes of the rotating solar convection zone. This calculation
reveals a rich spectrum of modes in the inertial frequency range, which can be directly
compared to the observations. In turn, the observed modes can inform us about the solar
convection zone.

This chapter reproduces the article Theory of solar oscillations in the inertial frequency range: Linear
modes of the convection zone by Y. Bekki, R.H. Cameron, and L. Gizon, published in Astronomy and As-
trophysics 662, A16 (2022). DOI: https://doi.org/10.1051/0004-6361/202243164. Contribution: Y. Bekki
did most of the work.
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3 Linear analysis of low-frequency modes in the convection zone

3.1 Introduction

Using 10 years of observations from the Helioseismic and Magnetic Imager (HMI) on-
board the Solar Dynamics Observatory (SDO), Gizon et al. (2021) discovered that the
Sun supports a large number of global modes of inertial oscillations. The restoring force
for these inertial modes is the Coriolis force, and thus the modes have periods comparable
to the solar rotation period (∼ 27 days). The inertial modes can potentially be used as a
tool to probe the interior of the Sun, because they are sensitive to properties of the deep
convection zone that the p modes are insensitive to. In order to achieve this goal, we need
a better understanding of the mode physics.

3.1.1 Solar inertial modes
The low frequency modes of solar oscillation have been described in a rotating frame
(angular velocity Ωref). Because the Sun is essentially symmetric about its rotation axis,
the velocity of each mode in the rotating frame has the form u(r, θ) exp [i(mϕ − ωt)], where
r is the radius, θ is the colatitude, ϕ is the longitude, m is the azimuthal order, and ω is
the mode eigenfrequency. Gizon et al. (2021) provide all observed eigenfrequencies ω for
each m, and the eigenfunctions (vθ and vϕ at the surface) for a few selected modes.

The first family of inertial modes observed on the Sun consists of the quasi-toroidal
equatorial Rossby modes (Löptien et al. 2018). They are analogous to the sectoral r modes
described by, e.g., Papaloizou and Pringle (1978), Smeyers et al. (1981), and Saio (1982).
On the Sun these modes have 3 ≤ m ≤ 15 with a well-defined dispersion relation close
to ω = −2Ωref/(m + 1), where ω is the mode angular frequency and Ωref/2π = 453.1
nHz is the equatorial rotation rate at the surface. For positive m, a negative ω indicates
retrograde propagation. There have been several follow-up studies that confirm these
observations (e.g., Liang et al. 2019, Hanasoge and Mandal 2019, Proxauf et al. 2020,
Mandal and Hanasoge 2020, Hanson et al. 2020, Mandal et al. 2021, Gizon et al. 2021).
Using a one-dimensional β-plane model with a parabolic shear flow and viscosity, Gizon
et al. (2020b) show that these modes, among others, are affected by differential rotation
and are trapped between the critical latitudes where the phase speed of a mode is equal
to the local rotational velocity. Fournier et al. (2022) extended this model to a spherical
geometry using a realistic differential rotation model and found that some Rossby modes
can be unstable for m ≤ 3.

Gizon et al. (2021) also report a family of modes at mid-latitudes that are localized
near their critical latitudes. Several tens of critical-latitude modes have been identified in
the range m ≤ 10. Another family of inertial modes introduced by the Sun’s differential
rotation are the high-latitude modes (Gizon et al. 2021). The highest amplitude mode
(∼ 10 - 20 m s−1 above 50◦ latitude) is the m = 1 mode with north-south antisymmetric
longitudinal velocity vϕ with respect to the equator. This m = 1 mode was identified
by Gizon et al. (2021) using linear calculations in two-dimensional model, which are
further discussed in this chapter and Fournier et al. (2022). It corresponds to the spiral-
like velocity feature reported at high latitudes by Hathaway et al. (2013), although it was
there reported as giant-cell convection.

The equatorial-Rossby and high-latitude modes involve mostly toroidal motions with
a radial velocity which is small compared to the horizontal velocity components. Non-
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3.1 Introduction

toroidal inertial modes have also been theoretically studied, mainly for incompressible
fluids. These modes tend to be localized onto so-called attractors, closed periodic orbits
of rays reflecting off the spherical boundaries (Maas and Lam 1995, Rieutord and Valdet-
taro 1997, Rieutord et al. 2001, Rieutord and Valdettaro 2018, Sibgatullin and Ermanyuk
2019). They are also strongly affected by critical latitudes when differential rotation is
included (e.g., Baruteau and Rieutord 2013, Guenel et al. 2016).

3.1.2 Columnar convective modes
In numerical simulations of solar-like rotating convection, equatorial convective columns
aligned with the rotation axis are prominent (e.g., Miesch et al. 2008, Bessolaz and Brun
2011, Matilsky et al. 2020). They are known as “Busse columns” (after Busse 1970),
or “thermal Rossby waves”, or “banana cells” in the literature. We call them “columnar
convective modes” in the rest of this paper. These convective columns propagate in the
prograde direction owing either to the “topographic β-effect” originating from the geo-
metrical curvature (e.g., Busse 2002) or to the “compressional β-effect” originating from
the strong density stratification (Ingersoll and Pollard 1982, Evonuk 2008, Glatzmaier
et al. 2009, Evonuk and Samuel 2012, Verhoeven and Stellmach 2014). Glatzmaier and
Gilman (1981) numerically derived the dispersion relation and the radial eigenfunctions
of these convective modes using a one-dimensional cylinder model. They showed that
the fundamental (n = 0) mode is the fastest of these prograde propagating modes with
an eigenfunction that is localized near the surface, where the compressional β-effect is
strongest.

In the parameter regime of the various numerical simulations, the columnar convec-
tive modes are the structures that are the most efficient to transport thermal energy upward
under the rotational constraint (e.g., Gilman 1986, Miesch et al. 2000, Brun et al. 2004,
Miesch et al. 2008, Käpylä et al. 2011, Gastine et al. 2013, Hotta et al. 2015b, Feather-
stone and Hindman 2016a, Matilsky et al. 2020, Hindman et al. 2020). Furthermore, it
is often argued that these convective modes play a critical role in transporting the angu-
lar momentum equatorward to maintain the differential rotation of the Sun (e.g., Gilman
1986, Miesch et al. 2000, Balbus et al. 2009). The dominant columnar convective modes
seen in simulations have not been detected in the velocity field at the surface of the Sun.
However, we will show in this paper that some retrograde inertial modes have a mixed
character and share some properties with columnar convection.

3.1.3 Focus of this study
In this paper, we study the properties of the equatorial Rossby modes, the high-latitude
inertial modes, and the columnar convective modes in the linear regime. We are mainly
interested in the effects of turbulent diffusion, solar differential rotation, and non-adiabatic
stratification on these modes. Note that the critical-latitude modes, which are discussed
by Fournier et al. (2022), will not be dealt with in depth in this paper.

Firstly, we will show that, when the turbulent viscosity is above approximately 1012 cm2

s−1, the equatorial Rossby modes with no radial node (n = 0) strongly depart from the ex-
pected rm dependence and the radial vorticity at the surface is no longer maximum at the
equator at azimuthal wavenumbers m ≳ 5. Secondly, we report a new class of modes
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3 Linear analysis of low-frequency modes in the convection zone

with frequencies close to that of the classical Rossby modes. They share properties of
both equatorial Rossby modes and convective modes. Thirdly, we provide a physical ex-
planation for the properties of the m = 1 high latitude modes in terms of the baroclinic
instability due to the latitudinal entropy gradient in the convection zone.

The organization of the paper is as follows. In §3.2 we specify the linearized equations
and solve the eigenvalue problem. The low-frequency modes are discussed in §3.3 for
the inviscid, adiabatically stratified, and uniformly-rotating case. Then, the effects of
turbulent diffusion and a non-adiabatically stratified background are discussed in §3.4
and §3.5. We discuss how the solar differential rotation and the associated baroclinicity
affect the mode properties in §3.6. The results are summarized in §3.7.

3.2 Eigenvalue problem

In order to investigate the properties of various inertial modes in the Sun, a new numerical
code has been developed. We consider the linearized fully-compressible hydrodynamic
equations in a spherical coordinate (r, θ, ϕ).

3.2.1 Linearized equations

The linearized equations of motion, continuity, and energy conservation are:

∂u

∂t
= −
∇p1

ρ0
−
ρ1

ρ0
ger − (Ω −Ω0)

∂u

∂ϕ
− 2Ωez × u − r sin θ u · ∇Ω +

1
ρ0
∇ ·D, (3.1)

∂ρ1

∂t
= −∇ · (ρ0u) − (Ω −Ω0)

∂ρ1

∂ϕ
, (3.2)

∂s1

∂t
= cpδ

vr

Hp
−
vθ
r
∂s0

∂θ
− (Ω −Ω0)

∂s1

∂ϕ
+

1
ρ0T0
∇ · (κρ0T0∇s1), (3.3)

where, u = (vr, vθ, vϕ) is the 1st-order velocity perturbation. In this paper, we only consider
the differential rotation for the mean flow and ignore meridional circulation. Thus, the
background velocity is U = r sin θ(Ω − Ω0)eϕ. Here, Ω is a function of r and θ and
denotes the rotation rate in the Sun’s convection zone, and Ω0 is the rotation rate of the
observer’s frame. Note that, in this paper, we start our by analysing the case without
differential rotation for simplicity and study the linear modes in the uniformly-rotating
Sun. In this case, Ω0 represents the rotation rate of the unperturbed background state. For
the case with the solar differential rotation, we choose to use the Carrington rotation rate
Ω0/2π = 456.0 nHz.

The unperturbed model is given by p0, ρ0, T0, g, and Hp which are the pressure, den-
sity, temperature, gravitational acceleration, and pressure scale height of the background
state. The background is assumed to be spherically symmetric and in an adiabatically-
stratified hydrostatic balance. All of these variables are functions of r alone. We use the
same analytical model as Rempel (2005) and Bekki and Yokoyama (2017) for the back-
ground stratification which nicely mimics the solar model S (Christensen-Dalsgaard et al.
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1996b):

g(r) = gbc

(
r

rmin

)−2

, (3.4)

ρ0(r) = ρbc

[
1 +

γ − 1
γ

rmin

Hbc

(rmin

r
− 1

)]1/γ−1

, (3.5)

p0(r) = pbc

[
1 +

γ − 1
γ

rmin

Hbc

(rmin

r
− 1

)]γ/γ−1

, (3.6)

T0(r) = Tbc

[
1 +

γ − 1
γ

rmin

Hbc

(rmin

r
− 1

)]
, (3.7)

where ρbc, pbc, Tbc, gbc and Hbc = pbc/(ρbcgbc) are the values of density, pressure, temper-
ature, and pressure scale height at the base of the convection zone. We use the solar values
ρbc = 0.2 g cm−3, pbc = 6×1013 dyn cm−2, Tbc = 1.82×106 K, gbc = 5.2×104 cm s−2, and
Hbc = 0.0826R⊙. The variables with subscript 1, p1, ρ1, and s1, represent the 1st-order
perturbations of pressure, density, and entropy that are associated with velocity perturba-
tion u. Here, to close the equations, the linearized equation of state is used

p1

p0
= γ

ρ1

ρ0
+

s1

cv
, (3.8)

where cp ≈ 4.2 × 108 erg g−1 K−1 and cv ≈ 2.5 × 108 erg g−1 K−1 denote the specific heats
at constant pressure and volume in the Sun’s convection zone, respectively. The specific
heat ratio is given as γ (= cp/cv) = 5/3.

Although the background is approximated to be adiabatic, we can still introduce a
small deviation from the adiabatic stratification in terms of the superadiabaticity δ =
∇ − ∇ad, where ∇ = d ln T/d ln p is the double-logarithmic temperature gradient. In
the solar convection zone, superadiabaticity is estimated as δ ≈ 10−6 (e.g., Ossendrijver
2003). Also, when the solar differential rotation is included, we may add a latitudinal en-
tropy variation ∂s0/∂θ that is associated with the thermal wind balance of the differential
rotation (e.g., Rempel 2005, Miesch et al. 2006, Brun et al. 2011).

We assume that the viscous stress tensor,D, is given by

Di j = ρ0ν

[
Si j −

2
3

(∇ · u)δi j

]
, (3.9)

where δi j is the Kronecker-delta and Si j denotes the deformation tensor given in the spher-
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ical coordinate as

Srr = 2
∂vr

∂r
, (3.10)

Sθθ =
2
r

(
∂vθ
∂θ
+ vr

)
, (3.11)

Sϕϕ =
2

r sin θ

(
∂vϕ

∂ϕ
+ vr sin θ + vθ cos θ

)
, (3.12)

Srθ = Sθr =
1
r
∂vϕ

∂θ
+
∂vθ
∂r
−
vθ
r
, (3.13)

Srϕ = Sϕr =
1

r sin θ
∂vr

∂ϕ
+
∂vϕ

∂r
−
vϕ

r
, (3.14)

Sθϕ = Sϕθ =
1
r

{
1

sin θ
∂vθ
∂ϕ
+

(
∂vϕ

∂θ
− vϕ

cos θ
sin θ

)}
. (3.15)

ν and κ are the viscous and thermal diffusivities, respectively.

3.2.2 Eigenvalue problem
We assume that the ϕ and t dependence of all the perturbations u, ρ1, p1, and s1 is given
by the waveform exp [i(mϕ − ωt)], where m is the azimuthal order (an integer) and ω is
the complex angular frequency. With this representation, Eqs. (3.1)–(3.3) give

ωvr = −i
∂

∂r

[
C2

s

(
ρ1

ρ0
+

s1

cp

)]
+ i

g

cp
s1 + 2iΩ sin θvϕ

+m(Ω −Ω0)vr +
i
ρ0

(∇ · D)r, (3.16)

ωvθ = −
i
r
∂

∂θ

[
C2

s

(
ρ1

ρ0
+

s1

cp

)]
+ 2iΩ cos θ vϕ + m(Ω −Ω0)vθ +

i
ρ0

(∇ · D)θ, (3.17)

ωvϕ = −
mC2

s

r sin θ

(
ρ1

ρ0
+

s1

cp

)
− 2iΩ(vr sin θ + vθ cos θ) + m(Ω −Ω0)vϕ

−ir sin θ
(
vr
∂Ω

∂r
+
vθ
r
∂Ω

∂θ

)
+

i
ρ0

(∇ · D)ϕ, (3.18)

ωρ1 = −iρ0∇ · u + i
ρ0

Hρ

vr + m(Ω −Ω0)ρ1, (3.19)

ωs1 = i
cpδ

Hp
vr −

i
r
∂s0

∂θ
vθ + m(Ω −Ω0)s1 −

i
ρ0T0
∇ · (κρ0T0∇s1) , (3.20)

where Cs = (γp0/ρ0)1/2 is the sound speed and cp = γcv is the constant specific heat at
constant pressure. Here, the longitudinal velocity vϕ, density perturbation ρ1, and entropy
perturbation s1 are out of phase with the meridional components of velocity (vr and vθ) in
the inviscid limit (ν = κ = 0).

Equations (3.16)–(3.20) can be combined into an eigenvalue problem

ωV = MV, (3.21)
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where

V =


vr

vθ
vϕ
ρ1

s1

 (3.22)

and M is the linear differential operator represented by the right-hand side of the Eqs. (3.16)–
(3.20). The operator M depends on azimuthal order m and the model parameters such as
differential rotation Ω(r, θ), superadiabaticity δ, and diffusivities ν and κ.

3.2.3 Boundary conditions
In this study, we confine our numerical domain from rmin = 0.71R⊙ to rmax = 0.985R⊙
in the radial direction to avoid the strong density stratification near the solar surface and
gravity modes in the radiative interior. Because of viscosity, in this problem we have
four second-order (in both the radial and latitudinal directions) PDEs and one first-order
PDE. Equation (3.19) does not increase the order of the system as ρ1 can be eliminated
from the system without increasing the order of the other equations. Thus eight boundary
conditions are required in the radial direction (four at the top, four at the bottom). At the
top and bottom, we use impenetrable horizontal stress-free conditions for the velocity and
assume there is no entropy flux (∝ κ∂s1/∂r) across the boundary:

vr = 0,
∂

∂r

(
vθ
r

)
=
∂

∂r

(vϕ
r

)
= 0,

∂s1

∂r
= 0. (3.23)

All latitudes are covered in the numerical scheme, from the north pole (θ = 0) to the
south pole (θ = π). We need another eight boundary conditions in the θ direction. For
non-axisymmetric cases (m , 0), at the poles we impose

vr = vθ = vϕ = 0, s1 = 0, (3.24)

to make the quantities single valued. For the axisymmetric case (m = 0), at both poles we
assume instead

∂vr

∂θ
= vθ = 0,

∂

∂θ

( vϕ

sin θ

)
= 0,

∂s1

∂θ
= 0. (3.25)

3.2.4 Numerical scheme
We numerically solve the above eigenvalue problem using a finite differencing method in
the meridional plane. We use a spatially-uniform grids. The grids for vϕ, ρ1, and s1 are
staggered grids by half a grid point in radius for vr and half a grid point in colatitude for
vθ (following Gilman 1975), as is illustrated in Fig. 3.1. Spatial derivatives are evaluated
with a centered second-order accurate scheme. By converting the two dimensional grid
(Nr,Nθ) into one dimensional array with the size NrNθ for all variables, V is defined as a
one dimensional vector with size ∼ 5NrNθ. Once the boundary conditions are properly set,
M can be constructed as a two-dimensional complex matrix with the size approximately
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3 Linear analysis of low-frequency modes in the convection zone

Figure 3.1: Layout of the staggered grid used to solve the eigenvalue equation. The
grid locations where vϕ, ρ1, and s1 are defined are denoted by red circles. The blue and
green circles represent the grid locations of vr and vθ, respectively. The grid resolution is
reduced for a visualization purpose.

(5NrNθ × 5NrNθ). This method is similar to that of Guenther and Gilman (1985). In prac-
tice, each element of M can be computed by substituting a corresponding unit vector V
into the right-hand side of the Eqs. (3.16)–(3.20). In most of the calculations, we use the
grid resolution of (Nr,Nθ) = (16, 72). We have also carried out higher-resolution calcula-
tions with (Nr,Nθ) = (24, 180) for a uniform rotation case to check the grid convergence
of the results. When the grid resolution is increased, the total number of eigenmodes
increases accordingly. The additional modes have higher radial and latitudinal wavenum-
bers and are more finely structured. For the interpretation of the large-scale modes which
have been observed on the Sun, the results are converged with (Nr,Nθ) = (16, 72).

We use the LAPACK routines (Anderson et al. 1999) to numerically compute the
eigenvalues and eigenvectors of M(m, ν, κ, δ,Ω), corresponding to the mode frequencies
ω and the eigenfunctions (vr, vθ, vϕ, ρ1, s1) of linear modes in the Sun. In this study, we
limit the range of azimuthal orders to m ≥ 0 and allow the real frequency to take a
negative value. This means thatℜ[ω] < 0 corresponds to retrograde-propagating modes
and ℑ[ω] > 0 corresponds to exponentially growing modes.

3.2.5 Example spectrum for uniform rotation

For each m, there are 5NrNθ eigensolutions with frequencies ω and eigenfunctions V. As
an example, we show the typical distribution of the output eigenfrequencies in a complex
plane for the case with m = 1, δ = 10−6 (weakly superadiabatic), and ν = κ = 2 × 1012

cm2 s−1 in Fig. 3.2. Note that the differential rotation is not included here for simplicity;
the uniform rotation rate Ω is equal to the Carrington rotation rate Ω0.

The modes belong to one of several regions in the complex eigenfrequency spectrum.
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The modes seen in Fig. 3.2a are acoustic modes (p modes) slightly damped due to the
viscous and thermal diffusion. On this plot, the effect of rotation is not visible to the eye.
In the rest of this paper, we focus on the low-frequency modes in the inertial frequency
range. Inertial oscillations are confined within the range |ℜ[ω]| < 2Ω0 (e.g., Greenspan
et al. 1968). Figure 3.2b shows the spectrum of inertial modes in the complex plane.
The sectoral Rossby mode with no radial node (n = 0) is easy to identify by comparison
with the analytical frequency ω = −2Ω0/(m + 1). Owing to the slightly superadiabatic
background (δ > 0), we can see that some modes have positive imaginary frequencies
(ℑ[ω] > 0) at very low frequencies and thus are unstable. These convective modes are
shown in Fig. 3.2c.

When the background is weakly subadiabatic (e.g., δ = −10−6), all the modes become
stable (ℑ[ω] < 0) and some inertial modes are partially mixed with gravity modes (g
modes). When Ω0 = 0, the modes are either purely convective modes or purely g modes
depending on the sign of δ as shown in Fig. 3.3. The frequency of the g modes depends
on δ and, depending on Ω0, can lie in the inertial range.
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3.3 Reference case: no diffusion, adiabatic stratification, uniform rotation

Figure 3.3: Eigenfrequency spectrum in the complex plane at m = 8 for (a) δ = 10−6,
Ω = Ω0, (b) δ = −10−6, Ω = Ω0, (c) δ = 10−6, Ω = 0, and (d) δ = −10−6, Ω = 0,
respectively. Here, Ω0 is the Carrington rotation rate. Only inertial frequency range is
shown. Upper and lower panels show the cases with and without uniform rotation. Left
and right panels show the cases with superadiabatic and subadiabatic background. Panel
(a) is the same as Fig. 3.2b.

3.3 Reference case: no diffusion, adiabatic stratification,
uniform rotation

In this section, we report the results of an ideal case where turbulent viscous and thermal
diffusivities are set to zero (ν = κ = 0), the background is convectively neutral (δ = 0),
and no differential rotation is included (Ω(r, θ) = Ω0 and ∂s0/∂θ = 0). We present the
dispersion relations and eigenfunctions of various types of global-scale vorticity modes
that might be relevant to the Sun. We will use the results of this ideal setup as references
and the effects of turbulent diffusion, non-adiabatic stratification, and differential rotation
will later be compared to these reference results.
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3 Linear analysis of low-frequency modes in the convection zone

In the inviscid case with uniform rotation, M is self adjoint, thus the physically-
meaningful solutions must have real eigenfrequencies. We find about 10% of the eigen-
frequencies to have a nonzero imaginary part; these correspond to numerical artifacts due
to truncation errors, and the corresponding eigenfunctions have most of their power at
high spatial frequencies. For the solutions with purely real eigenfrequencies, the eigen-
functions of vr and vθ have the same complex phase on each meridional plane, and those
of vϕ, ρ1 are 90◦ out of phase with respect to vr and vθ. In presenting the results in this
section, we choose a meridional plane where vr and vθ are real.

In the following sections, we conduct a mode-by-mode analysis for the equatorial
Rossby modes with no radial nodes (n = 0) and one radial node (n = 1), columnar
convective modes (thermal Rossby waves) with both north-south symmetries, and the
high-latitude modes with both north-south symmetries. Fundamental properties of these
modes are summarized in Table 3.1. Their dispersion relations are presented in Table 3.2.
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3 Linear analysis of low-frequency modes in the convection zone

Table 3.2: Dispersion relations of the modes studied in this paper in the corotating frame
for the case of uniform rotation (Ω = Ω0), with ν = κ = 0 and δ = 0.

m
ℜ[ω]/Ω0

Equatorial Rossby modes Columnar convective modes High-latitude modes
n = 0 n = 1 vϕ sym. vϕ asym. vϕ sym. vϕ asym.

0 – −0.629 – 0.629 – –
1 −0.999 −0.527 0.151 0.694 −0.303 −0.173
2 −0.666 −0.447 0.290 0.758 −0.293 −0.172
3 −0.499 −0.380 0.410 0.824 −0.258 −0.166
4 −0.399 −0.328 0.518 0.883 −0.216 −0.157
5 −0.333 −0.286 0.612 0.938 −0.181 −0.149
6 −0.285 −0.253 0.682 0.990 −0.161 −0.141
7 −0.249 −0.226 0.743 1.029 −0.144 −0.133
8 −0.222 −0.204 0.792 1.053 −0.131 −0.126
9 −0.199 −0.185 0.822 1.061 −0.121 −0.120
10 −0.181 −0.170 0.846 1.056 −0.111 −0.114
11 −0.166 −0.156 0.863 1.049 −0.103 −0.109
12 −0.153 −0.145 0.873 1.041 −0.096 −0.104
13 −0.142 −0.135 0.881 1.033 −0.092 −0.099
14 −0.133 −0.126 0.887 1.024 −0.089 −0.095
15 −0.124 −0.119 0.889 1.015 −0.085 −0.091
16 −0.117 −0.112 0.889 1.006 −0.083 −0.087

Note: For the equatorial Rossby modes, n denotes the number of radial nodes for vθ at the equator.
For the other two types modes, at fixed m, there are both modes with north-south symmetric and
and antisymmetric vϕ. These different dispersion relations and their connections are plotted in
Fig. 3.10.

3.3.1 Equatorial Rossby modes
In this section, we discuss the equatorial Rossby modes (r modes). The modes with no
radial nodes (n = 0) and one radial node (n = 1) are reported.

3.3.1.1 n = 0 modes

In order to extract the n = 0 equatorial Rossby mode at each m, we apply the following
procedure to the computed eigenfunctions V. The latitudinal and longitudinal velocities
at the surface are projected onto a basis of associated Legendre polynomials:

vθ(rmax, θ) =
lmax∑
l=0

al−mPm
l (cos θ), (3.26)

vϕ(rmax, θ) =
lmax∑
l=0

bl−mPm
l (cos θ), (3.27)

where lmax = 2Nθ/3− 1 = 47. We also compute the number of radial nodes, n, of vθ at the
equator. We select the modes that satisfy all of the following three criteria:
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3.3 Reference case: no diffusion, adiabatic stratification, uniform rotation

Figure 3.4: Dispersion relation and eigenfunctions of the equatorial Rossby modes with-
out radial nodes in the case of uniform rotation, no viscosity, and adiabatic stratifica-
tion. (a) Dispersion relation from the calculated modes (red). Overplotted black dashed
line represents the theoretical dispersion relation of the sectoral (l = m) Rossby modes
ω = 2Ω0/(m + 1). (b) Schematic illustration of flow structure of the mode with m=6.
The red and blue volume rendering shows the structure of ℜ[ζr(r, θ) exp (imϕ − iωt)].
The black solid curve shows the meridional plane at ϕ = 0 and at t = 0 where vr and
vθ are purely real and vϕ, p1 and ζr are purely imaginary. The black dashed line de-
notes the meridional plane at ϕ = −π/2m where vϕ, p1 and ζr are real. (c) Meridional
cuts of the m = 2 eigenfunctions for the velocity u(r, θ) exp [i(mϕ − ωt)], the pressure
p1(r, θ) exp [i(mϕ − ωt)], and the radial vorticity ζr(r, θ) exp [i(mϕ − ωt)]. The solutions
are shown in the meridional plane at ϕ = 0 and t = 0. The units of the color bars are
m s−1 for the three velocity components, 105 dyn cm−2 for the pressure, and 10−8 s−1 for
the vorticity. The eigenfunctions are normalized such that the maximum of |vθ| is 2 m s−1.
(d) The same as panel (c) but for m = 8.

• The l = m component of vθ is dominant (|a0| > |a j| for all j > 0),

• the l = m + 1 component of vϕ is dominant (|b1| > |b j| for all j , 1),

• and the number of radial nodes of vθ is zero at the equator, n = 0.

Figure 3.4a shows the dispersion relation of the selected n = 0 equatorial Rossby
modes for this ideal setup for m = 1 − 16. It should be noted that these modes are
the only type of inertial modes where a simple analytical solution can be found in the
inviscid, uniformly-rotating limit (e.g., Saio 1982). Therefore, we use this analytical
solution to verify our code. The red points and black dashed lines represent the com-
puted eigenfrequencies in our model and the theoretically-expected dispersion relation,
ω = −2Ω0/(m + 1), respectively. We find that the differences in the normalized frequen-
cies are less than 10−2 at all m.
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3 Linear analysis of low-frequency modes in the convection zone

Figure 3.5: (a) Radial structure of the eigenfunction of vθ at the equator for the n = 0
equatorial Rossby modes in the inviscid, uniformly rotating, and adiabatically stratified
case. Overplotted dashed lines represent theoretically-predicted radial dependence vθ ∝
rm. The eigenfunctions are normalized to unity at the surface r = rmax. (b) Latitudinal
structure of the eigenfunction of vθ at the surface. Dashed lines are the theoretical solution
in the form of legendre-polynomials vθ ∝ sinm−1 θ. All the eigenfunctions are normalized
at the equator.

The typical flow structure of this mode is schematically illustrated in Fig. 3.4b where
the volume rendering of the radial vorticity ζr is shown by red and blue. Figures 3.4c
and d show the real eigenfunctions for m = 2 and 8, respectively. The eigenfunctions
are normalized such that the maximum of vθ is 2 m s−1 at the surface. The amplitude
of radial velocity vr is about 103 times smaller than those of horizontal velocities vθ and
vϕ, implying that the fluid motion is essentially toroidal. We find that using a higher
resolution leads to even smaller vr. The pressure perturbation p1 is positive (negative)
where the radial vorticity ζr is negative (positive) in the northern (southern) hemisphere,
which is consistent with the modes being in geostrophic balance. As m increases, the n =
0 equatorial Rossby modes are shifted to the surface and to the equator. The horizontal
eigenfunction of ζr becomes more elongated in latitude, which means that vθ becomes
much stronger than vϕ to keep the mass conservation horizontally.

Figure 3.5a shows the radial structure of the eigenfunctions of vθ at the equator for
selected azimuthal orders m. Solid and dashed lines compare our results with the analyt-
ical solution vθ ∝ rm. It is seen that computed eigenfunctions exhibit the rm dependence
that agree with the analytical solutions. We also confirm the same rm dependence for the
eigenfunctions of vθ in the middle latitudes (not shown). For higher m, the radial eigen-
function shows a slight deviation (within a few percent error) from the analytical solution.
This is possibly due to the stress-free boundary condition, ∂(vθ/r)/∂r = 0, at the top and
bottom boundaries, which conflicts with the rm dependence. Figure 3.5b shows the lati-
tudinal eigenfunctions of vθ at the surface. Again, an agreement can be seen between our
results and the analytical solutions vθ ∝ sinm−1 θ.
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3.3 Reference case: no diffusion, adiabatic stratification, uniform rotation

Figure 3.6: Dispersion relation and eigenfunctions of the equatorial Rossby modes with
one radial node (n = 1) in the inviscid, uniformly rotating, adiabatically stratified case.
The same notation as Fig. 3.4 is used.

Figure 3.7: (a) Radial structure of the eigenfunction of vθ at the equator of the n = 1
equatorial Rossby modes in the inviscid, uniformly rotating, adiabatically stratified case.
The eigenfunctions are normalized to unity at the surface r = rmax. (b) Latitudinal struc-
ture of the eigenfunction of vθ at the surface normalized at the equator.

3.3.1.2 n = 1 modes

The equatorial Rossby modes with one radial node (n = 1) can be selected by applying
the following filters for latitudinal and longitudinal velocity eigenfunctions:

• The l = m component of vθ is dominant at the surface,

• the l = m + 1 component of vϕ is dominant at the surface,

• and the number of radial nodes of vθ is one at the equator.
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3 Linear analysis of low-frequency modes in the convection zone

Figure 3.6a shows the dispersion relation of the selected n = 1 equatorial Rossby
modes for 0 ≤ m ≤ 16. It should be noted that we successfully identify the axisymmetric
mode (m = 0) atℜ[ω] = −0.63Ω0. This m = 0 mode is an equatorially-trapped axisym-
metric inertial mode. It will be shown later in §3.3.2.2 that this mode is connected to a
prograde-propagating columnar convective mode. The n = 1 Rossby modes propagate in
a retrograde direction with slower phase speed than that of n = 0 Rossby modes at low m.
However, for m ≥ 8, the mode frequencies become so close to those of n = 0 modes that
they are almost indistinguishable.

Figure 3.6b shows a schematic sketch of typical flow motion of the n = 1 equatorial
Rossby mode. Figures 3.6c and d further shows the obtained eigenfunctions of n = 1
equatorial Rossby modes plotted in the same way as in Fig. 3.4. It is clearly shown that
vθ has a nodal plane in the middle convection zone at the equator which extends in the
direction of the rotation axis. One of the most striking consequences of the existence of
the radial node is that substantial vr is involved owing to the radial shear of vθ. Therefore,
unlike the n = 0 modes, the associated fluid motions are no longer purely toroidal and
become essentially three-dimensional.

Figure 3.7a shows the radial structure of the eigenfunctions of vθ at the equator for
selected m. It is clearly seen that the location of the radial node shifts towards the surface
as m increases. Figure 3.7b shows the latitudinal structure of the eigenfunctions of vθ at
the surface. The eigenfunctions peak at the equator and change their sign in the middle
latitudes (25◦ − 50◦) and decay at higher latitudes.

3.3.2 Columnar convective modes

In this section, we carry out a similar mode-by-mode analysis for the columnar convective
modes (thermal Rossby waves) with both hemispheric symmetries. Here, we define the
north-south symmetry based on the eigenfunction of z-vorticity ζz. The “banana cel”
convection pattern can be essentially regarded as the north-south symmetric part of these
convective modes. We will also show that the north-south ζz-antisymmetric modes are
essentially mixed with the n = 1 equatorial modes.

3.3.2.1 North-south ζz-symmetric modes

North-south ζz-symmetric columnar convective modes can be selected by applying the
following filters on the velocity eigenfunctions:

• The l = m component of vϕ is dominant at the surface,

• the l = m + 1 component of vθ is dominant at the surface.

• the number of radial nodes of vr is zero at the equator,

• and the number of radial nodes of vϕ is one at the equator.

Figure 3.8a shows the dispersion relation of the selected north-south ζz-symmetric
columnar convective modes. For comparison, we overplot in black dashed line the disper-
sion relation derived from the one-dimensional cylinder model of Glatzmaier and Gilman
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3.3 Reference case: no diffusion, adiabatic stratification, uniform rotation

Figure 3.8: Dispersion relation and eigenfunctions of the north-south ζz-symmetric
columnar convective modes in the case of uniform rotation, no viscosity, and adiabatic
stratification. (a) Dispersion relation of the north-south ζz-symmetric columnar convec-
tive modes in red points. For comparison, dispersion relation analytically derived using
one-dimensional cylinder model by Glatzmaier and Gilman (1981) is overplotted in black
dashed line. (b) Schematic illustration of flow structure of the mode. Red and blue vol-
ume rendering shows the structure of ℜ[ζz(r, θ) exp (imϕ − iωt)] for m = 6 at t = 0. (c)
Meridional cuts of the m = 2 eigenfunctions for the velocity u(r, θ) exp [i(mϕ − ωt)] , the
pressure p1(r, θ) exp [i(mϕ − ωt)], and the z-vorticity ζr(r, θ) exp [i(mϕ − ωt)]. The solu-
tions are shown in the meridional plane at ϕ = 0 and t = 0 where vr and vθ are purely real
and vϕ, p1 and ζz are purely imaginary. The units of velocity, pressure, and vorticity are
m s−1, 105 dyn cm−2, and 10−8 s−1, respectively. The eigenfunctions are normalized such
that maximum of |vϕ| is 2 m s−1. (d) The same as panel (c) but for m = 8.

(1981) (their figure 2). Qualitatively, they both show similar features: Columnar con-
vective modes propagate in a prograde direction at all m. The modes are almost non-
dispersive at low m (≤ 7), but at higher m, the mode frequencies become almost constant
at ℜ[ω] ≈ 0.85Ω0. Quantitatively, our model produces the mode frequencies slightly
higher (less than 10%) than that of the one-dimensional cylinder model. This difference
likely comes from the spherical geometry of our model: Our model takes into account
both compressional and topographic β-effects that both lead to a prograde phase propaga-
tion, whereas only compressional β-effect is included in the cylinder model of Glatzmaier
and Gilman (1981).

Figures 3.8c and d show example eigenfunctions of the north-south ζz-symmetric
columnar convective modes. The flow structure is dominantly characterized by the lon-
gitudinal velocity shear outside the tangential cylinder, leading to a strong z-vorticity
(where z is a coordinate in the direction of the rotation axis). Substantial radial motions
are involved where vϕ converges or diverges in longitudes, as schematically illustrated in
Fig. 3.8b. Owing to the spherical curvature of the top boundary, equatorward (poleward)
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3 Linear analysis of low-frequency modes in the convection zone

Figure 3.9: Dispersion relation and eigenfunctions of the north-south ζz-antisymmetric
columnar convective modes in the inviscid, uniformly rotating, adiabatically stratified
case. The same notation as Fig. 3.8 is used. In panel (a), the dispersion relation of the
north-south ζz-symmetric columnar convective modes is shown in black dashed line for
comparison.

latitudinal flows are involved where radial flows are outward (inward). The z-vortex tubes
outside the tangential cylinder are often called as Taylor columns or Busse columns in the
geophysical context (Busse 1970, 2002) or Banana cells in the solar context (Miesch et al.
2000). The pressure perturbation p1 is generally positive (negative) where z-vorticity ζz is
negative (positive), as the modes are in geostrophic balance. As m increases, the modes
are more concentrated towards the surface and towards the equator.

3.3.2.2 North-south ζz-antisymmetric modes

North-south ζz-antisymmetric columnar convective modes can be selected by filtering out
the eigenfunctions that satisfy the followings:

• The l = m component of vθ is dominant at the surface,

• the l = m + 1 component of vϕ is dominant at the surface,

• and the number of radial nodes of vθ is one at the equator.

The dispersion relation of the ζz-antisymmetric columnar convective modes is shown
in Fig. 3.9a. For comparison, we also show the dispersion relation of the ζz-symmetric
modes in black dashed line. The modes propagate in a prograde direction with faster
phase speed than that of the ζz-symmetric modes. At high m, the dispersion relation
asymptotically approaches that of the ζz-symmetric modes.

Figures 3.9c and d show the example eigenfunctions of the north-south ζz-antisymmetric
columnar convective modes. The flow structure is dominantly characterized by z-vortex
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3.3 Reference case: no diffusion, adiabatic stratification, uniform rotation

Figure 3.10: Dispersion relation of the “mixed modes” between the n = 1 equatorial
Rossby modes (red) and the north-south ζz-antisymmetric columnar convective modes
(blue) in the inviscid, uniformly rotating, adiabatically stratified case. The black points
denote the axisymmetric mode at m = 0. Black solid dashed and dot-dashed lines rep-
resent the dispersion relation of the n = 0 equatorial Rossby modes and north-south
ζz-symmetric columnar convective modes.

tubes that are antisymmetric across the equator. It should be noted that strong latitudinal
motions are involved at the equator at the surface.

We find that the eigenfunctions of the m = 0 mode are the complex conjugate of
the n = 1 equatorial Rossby mode, which means that these two modes are identical at
m = 0 (note the phase speed does no longer matter for the non-propagating axisymmetric
mode). To better illustrate this point, we show in Fig. 3.10 the dispersion relations of
these two modes in the full (m,ℜ[ω]) domain extended to negative azimuthal orders. It
is seen that the dispersion relations of these two modes connects across m = 0 and form
a single continuous curve. This implies that these two modes are essentially mixed with
each other: The n = 1 equatorial Rossby modes and the north-south ζz-antisymmetric
columnar convective modes should be regarded as retrograde and prograde branches of the
“mixed” (Rossby) modes. It is instructive to note that this mode mixing can be understood
as analogous to the so-called Yanai waves which are mixed modes between retrograde-
propagating Rossby modes and prograde-propagating inertial-gravity modes (Matsuno
1966, Vallis 2006).

The flow structure itself of the ζz-antisymmetric columnar convective mode has been
recognized to be convectively-unstable in the previous literature (Lorenzani and Tilgner
2001, Tilgner 2007). However, its relation to the n = 1 equatorial Rossby modes has
never been reported.
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3 Linear analysis of low-frequency modes in the convection zone

Figure 3.11: Dispersion relation and eigenfunctions of the high-latitude modes (topo-
graphic Rossby waves) with north-south symmetric ζz in the inviscid, uniformly rotating,
adiabatically stratified case. The same notation as Fig. 3.8 is used. In panel (a), the dis-
persion relation of the l = m + 1 Rossby modes is shown in black dashed line.

Figure 3.12: Dispersion relation and eigenfunctions of north-south ζz-antisymmetric
high-latitude modes in the inviscid, uniformly rotating, adiabatically stratified case. The
same notation as Fig. 3.11 is used. In panel (a), the dispersion relation of the l = m + 2
Rossby mode is shown in black dashed line.
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3.3 Reference case: no diffusion, adiabatic stratification, uniform rotation

3.3.3 High latitude modes
In this subsection, we present the eigenmodes of the high-latitude inertial modes with both
hemispheric symmetries. In the absence of solar differential rotation and the latitudinal
entropy gradient, the modes exist as pure topographic Rossby waves originating from
the topographic β-effect of the lower spherical boundary (See Appendix 3.8 for more
detail). Note that, here the north-south symmetry is defined based on the eigenfunction of
z-vorticity ζz.

3.3.3.1 North-south ζz-symmetric modes

To discuss these modes, it is useful to introduce a cylindrical coordinate system (ϖ, ϕ, z).
In this coordinate system, the tangent cylinder is located at ϖ = rmin, i.e., it is the cylinder
aligned with the rotation axis which touches the radiative interior at the equator. North-
south ζz-symmetric high-latitude modes can be selected by applying the following criteria:

• The kinetic energy is predominantly inside the tangential cylinder, i.e., Ein/ECZ >
0.5 where Ein and ECZ are the volume-integrated kinetic energies inside the tangent
cylinder and in the entire convection zone, respectively.

• The l = m + 1 component of vθ is dominant at the bottom of the convection zone.

• The number of z-nodes of vθ is zero at ϖ = 0.5R⊙.

Figure 3.11a shows the dispersion relation of the north-south ζz-symmetric high-
latitude modes. Although the high-latitude modes have many similar properties to the
columnar convective modes, it is found that the high-latitude modes are much more dis-
persive than the columnar convective modes at low m. The dispersion relation is found
to be roughly approximated by the non-sectoral Rossby modes’ dispersion relation with
one latitudinal node (l = m + 1), as shown in the black dashed line in Fig. 3.11a. This is
because the horizontal flows at the bottom boundary behave like the l = m + 1 (classical)
Rossby modes. Note, however, that this is not regarded as the mode mixing as discussed
in §3.3.2.2:

Figures 3.11c and d show example eigenfunctions of the ζz-symmetric high-latitude
modes. The fluid motion is predominantly characterized by z-vortices inside the tangential
cylinder in both hemispheres, as schematically illustrated in the Fig. 3.11b. The power
of ζz peaks at the tangential cylinder ϖ = rmin where the topographic β-effect is the most
significant. Note that the longitudinal velocity vϕ extends slightly outside the cylinder.
Again, ℑ[p1]ℑ[ζz] < 0 follows from the mode being in geostrophic balance.

3.3.3.2 North-south ζz-antisymmetric modes

North-south ζz-antisymmetric high-latitude modes are selected using the following filters:

• The kinetic energy is predominantly inside the tangential cylinder.

• the l − m = 1 (or 3) component of vϕ is dominant at the bottom of the convection
zone,

• and the number of z-nodes is zero for vθ at ϖ = 0.5R⊙.
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3 Linear analysis of low-frequency modes in the convection zone

The example modes are presented in Fig. 3.12. The eigenfunctions show very similar
properties of the high-latitude modes discussed in Fig. 3.11 except for the north-south
symmetry. It should be pointed out that there exists a latitudinal flow along the tangential
cylinder and across the equator. The dispersion relation of the ζz-antisymmetric high-
latitude modes are found to be similar to that of l = m + 2 Rossby modes, as shown in
Fig. 3.12a.

3.4 Effect of turbulent diffusion

So far, we have discussed the results for an inviscid case. In this section, we examine
the effects of viscous and thermal diffusion arising from turbulent mixing of momentum
and entropy in the Sun (e.g., Rüdiger 1989). Let us start our discussion by estimating the
impact of the turbulent diffusion on (classical) Rossby modes. The oscillation period of
the equatorial Rossby mode at the azimuthal order m is given by

PRo =

∣∣∣∣∣ 2π
ωRo

∣∣∣∣∣ , where ωRo = −
2Ω0

m + 1
. (3.28)

On the other hand, typical diffusive time scale can be estimated as

τdiff =
l2
m

ν
, with lm =

R⊙
m
, (3.29)

where lm denotes the typical length scale of the Rossby mode. Figure 3.13 compares PRo

and τdiff as functions of m. Two representative values of turbulent diffusitivies in the solar
convection zone ν = 1012 and 1013 cm2 s−1 are shown (e.g., Ossendrijver 2003). When
PRo ≪ τdiff , viscous diffusion is almost negligible. However, if PRo ≳ τdiff , diffusion
can have a dominant effect on the Rossby modes. For a given turbulent diffusivity ν, the
critical azimuthal order mcrit can be defined as

mcrit =

(
R⊙Ω0

πν

)1/3

. (3.30)

The Rossby modes are dominated by diffusive effects for m > mcrit. Figure 3.13 implies
that the Rossby modes in the Sun are substantially affected by the turbulent diffusion
especially for m ≥ 5 − 6.
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3.4 Effect of turbulent diffusion

Figure 3.13: Comparison between the oscillation periods of Rossby modes PRo and the
diffusive time scale τdiff for two representative values of turbulent diffusivities ν = 1012

and 1013 cm2 s−1. The horizontal black dashed line represents the length of the SDO/HMI
observational record Tobs ≈ 12 years.

Figure 3.14: Eigenfrequency spectra of the low-frequency vorticity modes in a complex
plane with different values of diffusivities for (a) m = 2 and (b) m = 16. Different
colors represent different classes of inertial modes. Different symbols represent different
values of the viscous and thermal diffusivities. In all cases, rotation is uniform and the
stratification is adiabatic.
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3 Linear analysis of low-frequency modes in the convection zone

Figure 3.15: e-folding lifetimes of various low-frequency modes for a viscous diffusivity
(a) ν = 1011 cm2 s−1 and (b) ν = 1012 cm2 s−1. Note that all the modes selected here
are stable modes (ℑ[ω] < 0). Different colors represent different types of inertial modes.
The horizontal black dashed line shows the length of the SDO/HMI observational record
(Tobs ≈ 12 yr as of today). In both cases, rotation is uniform and the stratification is adia-
batic. The lifetimes of the convective modes and high-latitude modes are very sensitive to
the radial and latitudinal entropy gradients, a point which is discussed in § 3.5 and § 3.6.2.
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3 Linear analysis of low-frequency modes in the convection zone

In this paper, we carry out a set of calculations of uniformly-rotating adiabatic fluid
with varying diffusivities; ν = 109, 1010, 1011, 1012, and 1013 cm2 s−1. For simplicity,
we fix the Prandtl number to unity so that κ = ν. Now, both the eigenfrequencies and
eigenfunctions are complex. Figure 3.14 shows the eigenfrequencies of the six types of
Rossby modes discussed in § 3.3 for different viscous diffusivities in a complex plane.
Figures 3.14a-c show the cases for m = 2, 8, and 16, respectively. In general, the modes
are damped by diffusion so that the imaginary frequencies are shifted towards more nega-
tive values. At small m (e.g. m = 2), diffusion tends to act predominantly on the columnar
convective modes with both symmetries and n = 1 equatorial Rossby modes, whereas the
n = 0 Rossby modes and the high-latitude modes remain almost unaffected. At large
m (e.g. m = 16), however, all the modes are damped to a similar degree. Note that a
strong diffusion modifies not only the imaginary part but also the real part of the mode
frequencies.

Now, let us focus on the n = 0 equatorial Rossby modes to see how eigenfunctions
are affected by the viscous diffusion. Figure 3.16a shows the real (top row) and imaginary
(bottom row) eigenfunctions of radial vorticity ζr at m = 16 for different values of viscous
diffusivities ν. As ν increases, the n = 0 equatorial Rossby modes are shifted towards the
base of the convection zone. This is clearly illustrated in Fig. 3.16b where the absolute
amplitudes of radial vorticity at the equator are shown as functions of radius. When ν
becomes sufficiently large, the radial eigenfunction substantially deviates from the well-
known rm dependence. This can be explained as follows: With the moderate diffusion
included, the radial force balance between Coriolis force and pressure gradient force is
no longer maintained. Consequently, radial flows are driven and the diffusive momentum
flux becomes directed radially inward. In fact, the confinement of the n = 0 equatorial
Rossby modes near the base is also seen in rotating convection simulations where the
diffusion can be significantly enhanced by turbulent convection (see § 4.5.2).

3.5 Effect of non-adiabatic stratification
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3.5 Effect of non-adiabatic stratification

Figure 3.17: (a) Dispersion relations of the north-south ζz-symmetric columnar convective
modes with different background superadiabaticity values δ. Different colors represent
different values of superadiabaticity. Circles and diamonds denote the stable (ℑ[ω] < 0)
and unstable (ℑ[ω] > 0) modes, respectively. (b) Eigenfrequencies plotted on a complex
plane. Each circle (diamond) represent a mode with azimuthal order m, which is labelled
with small integers from m = 1 to 16. In all cases, rotation is uniform and the diffusivities
are set ν = κ = 1012 cm2 s−1.
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3 Linear analysis of low-frequency modes in the convection zone
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3.5 Effect of non-adiabatic stratification

Figure 3.19: Transport properties of thermal energy and angular momentum by the north-
south ζz-symmetric columnar convective modes for m = 16. (a) Correlation between
radial velocity velocity and temperature perturbation ⟨vrT1⟩, (b) Reynolds stress between
radial and longitudinal velocities ⟨vrvϕ⟩, and (c) Reynolds stress between latitudinal and
longitudinal velocities ⟨vθvϕ⟩. The background is weakly superadiabatic (δ = 2 × 1016),
rotation is uniform, and moderate diffusivities are used (ν = κ = 1012 cm2 s−1). The
eigenfunctions are normalized such that the maximum radial velocity is 10 m s−1 at the
equator.

In this section, the effects of non-adiabatic stratification are investigated. While theo-
retical model of the Sun conventionally assume a slightly positive superadiabaticity value
0 < δ ≲ 10−6 (e.g., Ossendrijver 2003), recent numerical simulations of solar convection
imply that the lower half of the convection zone might be slightly subadiabatic (Hotta
2017, Käpylä et al. 2017, Bekki et al. 2017, Karak et al. 2018, Käpylä et al. 2019). To this
end, we vary the superadiabaticity from weakly subadiabatic to weakly superadiabatic,
δ = −2× 10−6,−10−6, 0, 10−6, 2× 10−6, while keeping the diffusivities fixed (ν = κ = 1012

cm2 s−1). The solar differential rotation and latitudinal entropy gradient are not included.
Since the entropy perturbation is generated by the radial flow, in this section, we focus on
the (north-south ζz-symmetric) columnar convective modes where strong radial motions
are involved.

Figure 3.17a shows the dispersion relations of the ζz-symmetric columnar convective
modes for different δ. As the background becomes more subadiabatic (superadiabatic),
the mode frequencies become higher (lower), i.e., the modes propagate in a prograde di-
rection with faster (slower) phase speed. When δ is sufficiently large, the imaginary mode
frequencies become positive, i.e., the modes become convectively unstable. This is clearly
manifested in Fig. 3.17b where the mode frequencies are plotted in a complex plane. Each
points denote each mode with the associated azimuthal order labelled nearby. The stable
and unstable modes are distinguished by circles and diamonds, respectively. For δ > 0
(blue and purple), a sudden transitions occurs from stable to unstable branches (at m = 5
and 4). The critical azimuthal order for this transition depends on the superadiabaticity δ
via the Rayleigh number criterion for the convective instability.

The changes in the dispersion relation can be understood by considering whether the
buoyancy force acts as a restoring force or the opposite. Figures 3.18a and b present
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3 Linear analysis of low-frequency modes in the convection zone

the snapshots of vr and s1 in an equatorial plane seen from the north pole for weakly
subadiabatic background (δ = −2 × 10−6) for m = 3 and 8, respectively. It is seen that the
phase with positive s1 is always ahead of the phase with positive vr in longitude, leading
to a negative correlation between ℜ[vr] and ℑ[s1]. This physically means that, in this
case, the buoyancy force acts as an additional restoring force for prograde-propagating
columnar convective modes. In other words, these modes share a property of prograde-
propagating g modes. Consequently, the mode frequencies become higher for δ < 0.
The opposite situation happens for δ > 0. Figures 3.18c and d show the same equatorial
cuts of vr and s1 for weakly superadiabatic background. When m is not large enough
for the convective instability to occur, it is seen that the phase with positive s1 is behind
the phase with positive vr in longitude, leading to a positive correlation between ℜ[vr]
and ℑ[s1]. Therefore, the buoyancy force acts against the original restoring force of the
compressional β-effect, which weakens the prograde propagation of columnar convective
modes. As a consequence, the mode frequencies become lower for δ > 0. Figure 3.18d
shows the case where m is sufficiently large and the mode becomes convectively unstable.
It is obviously seen that the phases of vr and s1 now coincide and they both have the same
sign at each phase, leading to ⟨vr s1⟩ > 0.

Figure 3.19 further shows the transport properties of thermal energy and angular mo-
mentum by convectively-unstable columnar convective modes. Shown is the case with
δ = 2× 10−6 and for m = 16. Positive ⟨vrT1⟩ in Fig. 3.19a manifests that the enthalpy flux
is transported upward. The Reynolds stress components ⟨vrvϕ⟩ and ⟨vθvϕ⟩ are representa-
tives of the radial and latitudinal angular momentum fluxes, respectively. It is shown that
the columnar convective modes can transport the angular momentum radially upward in
the bulk of the convection zone and eqautorward near the surface. This agrees with the
results found in the rotating convection simulation (see § 4.5.1).

3.6 Effect of solar differential rotation
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3.6 Effect of solar differential rotation

Figure 3.20: Solar differential rotation profile used in this study. (a) Differential rota-
tion Ω(r, θ) in a meridional plane, deduced from the global helioseismology (Larson and
Schou 2018). (b) Latitudinal profiles of differential rotation at different depths. Horizon-
tal dashed lines indicate the theoretically-expected phase speed of the sectoral (l = m)
classical Rossby modes for selected azimuthal orders m = 2, 3, 4, 8, 16. The observing
frame is chosen to be the Carrington frame rotating at Ω0/2π = 456.0 nHz.
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3.6 Effect of solar differential rotation

Figure 3.22: (a) Dispersion relations of the equatorial Rossby modes for the cases with
solar differential rotation. Red and blue curves represent the modes with no radial nodes
(n = 0) and one radial node (n = 1), respectively. Solid and dashed lines denote the cases
with weak diffusion (ν = 1011 cm2 s−1) and strong diffusion (ν = 1012 cm2 s−1), respec-
tively. For comparison, the observed Rossby mode frequencies reported in Löptien et al.
(2018), Liang et al. (2019), and Proxauf et al. (2020) are plotted by white hexagons and
squares. All the presented frequencies are measured in the Carrington frame rotating at
Ω0 = 456.0 nHz. (b) Eigenfrequencies plotted on a complex plane similarly to Fig. 3.17b.
Each point represents a mode with azimuthal order m, which is labelled with small inte-
gers from m = 1 to 16.

Finally, in this section, we take into account the effects of solar differential rotation.
For prescribing Ω(r, θ), we use the data obtained from global helioseismology inversions
from MDI and HMI (Larson and Schou 2018) as shown in Fig. 3.20a. Note that the
observational data is truncated at r = rmin and rmax, and therefore, the effects of strong
radial shear layers such as tachocline and the near surface shear layer of the Sun are not
included. The observing frame is chosen to be Carrington frame with the rotation rate
Ω0 = 456.0 nHz. Figure 3.20b shows the latitudinal profiles of the differential rotation
at different depths. Horizontal dashed lines indicate the estimated phase speed of the
n = 0 equatorial Rossby modes, −2Ω0/ [m(m + 1)], for selected m values. For m > 2,
there emerge critical latitudes where the phase speed of the Rossby mode matches with
the differential rotation speed. As discussed in Gizon et al. (2020b), turbulent viscous
diffusion is required to get rid of the singularities at the critical latitudes, leading to a
formation of viscous critical layers with the typical thickness δcrit given by

δcrit

R⊙
≈

(
ν

mΩ0R2
⊙

)1/3

. (3.31)

Figure 3.21 shows the distribution of eigenfrequencies of the global-scale inertial
modes in a complex plane for selected m. Shown in shaded area represent the range of
mode frequencies where differential rotation can have a strong impact by producing the
critical layers. As higher m, the number of eigenmodes that are affected by differential
rotation increases: In fact, most of the retrograde-propagating inertial modes are affected
by critical latitudes at higher m (see Fig. 3.21c).

105



3 Linear analysis of low-frequency modes in the convection zone

Figure 3.23: Eigenfunctions of the equatorial Rossby modes with no radial nodes (n = 0).
(a) Real (upper) and imaginary (lower) eigenfunctions of three components of velocity
shown in a meridional plane for m = 5. The eigenfunctions are normalized such that the
maximum latitudinal velocity is 2 m s−1 at the surface. The solid black line indicates the
location of the critical latitudes where the phase speed of a Rossby modematches to the
differential rotation sped. (b) Horizontal eigenfunctions of latitudinal velocity vθ (upper)
and radial vorticity ζr (lower) at the surface r = 0.985R⊙ for m = 5. The horizontal black
dashed lines indicate the location of the critical latitudes at the surface. (c) and (d) are the
counterparts of the panels (a) and (b) for m = 12.
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3.6 Effect of solar differential rotation

Figure 3.24: The same as Fig. 3.23 but for the equatorial Rossby modes with one radial
node (n = 1).

3.6.1 Rossby modes with viscous critical layers

In this section, we carry out a set of calculations for ν = 1011 and 1012 cm2 s−1 with the
differential rotation included to study how the equatorial Rossby modes are affected by
the viscous critical layers. For the sake of simplicity, the background is set to be perfectly
adiabatic and the latitudinal entropy variation ∂s0/∂θ is switched off.

Figure 3.22a shows the dispersion relation of the equatorial Rossby modes with n = 0
(red) and n = 1 (blue) for weak (dashed) and strong (solid) viscous diffusivities, respec-
tively. Shown in white circles, squares, and diamonds are the frequencies of the Rossby
modes observed on the Sun (Löptien et al. 2018, Liang et al. 2019, Proxauf et al. 2020).
The viscous diffusivity value is found to have a rather small effect on the real part of their
eigenfrequencies. At m = 3, the observed frequency agrees almost perfectly with the
n = 0 equatorial Rossby mode’s frequency. However, for m > 3, the observed frequen-
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3 Linear analysis of low-frequency modes in the convection zone

Figure 3.25: Radial vorticity ζr eigenfunctions at the surface (r = 0.985R⊙) for m = 8.
Left and right panels show the cases for the equatorial Rossby modes with no radial nodes
(n = 0) and with one radial node (n = 1). Upper and lower panels show the cases with
weak diffusion (ν = 1011 cm2 s−1) and strong diffusion (ν = 1012 cm2 s−1). Black solid
and dashed lines represent real and imaginary eigenfunctions, respectively. The real part
of the eigenfunctions are defined to be zero at the equator. The vertical red lines denote
the location of critical latitudes where the phase speed of a Rossby mode is equal to the
differential rotation velocity.

cies lie in between the frequencies of n = 0 and n = 1 modes. Figure 3.22b shows the
computed eigenfrequencies in a complex plane. Unlike the n = 1 modes, the n = 0 modes
are substantially damped only for m ≥ 4, which is likely owing to the emergence of the
critical latitudes that significantly modify the n = 0 modes’ eigenfunctions.

Figure 3.23 shows the velocity eigenfunctions of the n = 0 modes for the case with
ν = 1012 cm2 s−1. Figures 3.23a and c show meridional cuts through the eigenfunctions
for m = 5 and 12, respectively. As already discussed in § 3.4, the latitudinal velocity is
confined close to the base of the convection zone. With differential rotation included, they
are further trapped in the equatorial region bounded by the viscous critical layers. Unlike
the uniformly-rotating case, strong radial and longitudinal flows are driven around the
critical latitudes, which leads to strong concentrations of z-vorticity there. Figures 3.23b
and d show the latitudinal velocity vθ (top rows) and radial vorticity ζr (bottom rows) at the
top of the domain. They both have a similar chevron-like inclination towards the equator.
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3.6 Effect of solar differential rotation

Figure 3.26: Reynolds stress components (a)(d) ρ0⟨vrvϕ⟩ and (b)(e) ρ0⟨vθvϕ⟩ associated
with the equatorial Rossby modes for m = 8. The units are g cm−1 s−2. Black solid lines
denote the location of critical latitudes at each height. The eigenfunctions are normalized
such that the maximum horizontal velocity at the top boundary is 2 m s−1. Panels (c) and
(f) show the horizontal Reynolds stress averaged over radius ρ0⟨vθvϕ⟩ where the overbar
denotes the radial average. Different colors represent different azimuthal orders. Upper
and lower panels show the cases for n = 0 modes and n = 1 Rossby modes, respectively.

However, ζr has prominent power peaks around the critical layers.
Figure 3.24 is the same figure as Fig. 3.23 but for the n = 1 equatorial Rossby modes.

Unlike the n = 0 modes, the eigenfunctions of vθ (and ζr) peak at the surface and at the
equator. Although the critical layers exist similarly to the n = 0 modes, they are found to
have a rather limited impact on the n = 1 Rossby modes.

To see the diffusivity dependence, we show ζr at the surface for weak (top rows)
and strong viscous diffusivities (bottom rows) in Fig. 3.25. The left and right panels are
for the n = 0 and n = 1 equatorial Rossby modes, respectively. The solid and dashed
lines denote the real and imaginary parts, and the vertical red line indicates the location
of the critical latitudes. The phase is defined such that ℜ[ζr] = 0 at the equator and the
maximum amplitudes are normalized to unity. Substantial structure is observed associated
with the viscous critical layers. In general, this structure becomes broader and weaker as
the viscosity ν is increased. It is also seen that amplitudes of the imaginary parts of the
eigenfunctions are larger for n = 0 modes than for n = 1 modes.

Next, let us examine the impact of the net angular momentum transport by the equa-
torial Rossby modes under the influences of solar differential rotation. Figures 3.26a
and b show the Reynolds stress components ⟨vrvθ⟩ and ⟨vθvθ⟩ for n = 0 modes at m = 8.
The Reynolds stresses become substantially non-zero near the viscous critical layers. It
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3 Linear analysis of low-frequency modes in the convection zone

Figure 3.27: Radially averaged latitudinal angular momentum fluxes. Solid, dot-dashed,
and dashed lines represent the angular momentum fluxes associated with the Reynolds
stress of the equatorial Rossby modes FRS,θ, advection by meridional circulation FMC,θ,
and diffusion by turbulent viscosity FVD,θ, defined by the Eqs. (3.33)–(3.35). Red and
blue lines represent the equatorial Rossby modes with no radial nodes (n = 0) and with
one radial node (n = 1), respectively. Here, eigenfunctions are normalized such that the
maximum horizontal velocity amplitude at the surface is 2 m s−1.

is striking that even n = 0 mode, which in the case of uniform rotation is toroidal and
non-convective, can transport the angular momentum radially upward around the viscous
critical layers. Latitudinally, the angular momentum is transported equatorward in both
hemispheres. Figure 3.26c shows the ⟨vθvθ⟩ at the surface for all m. It is seen that the
correlations become small as m increases because the n = 0 modes are more and more
confined closer to the base of the convection zone. The counterparts for n = 1 modes are
shown in Fig. 3.26d–f. It is clear that the n = 1 modes also transport angular momentum
radially upward and equatorward at higher m. However, unlike the n = 0 modes, the
Reynolds stress ⟨vθvθ⟩ peaks slightly below the surface. Therefore, the correlation at the
surface becomes more prominant as m increases, as shown in Fig. 3.26f.

It is instructive to examine how significant the angular momentum transport by these
equatorial Rossby modes can be in the Sun. To this end, we consider the so-called gyro-
scopic pumping equation (e.g., Elliott et al. 2000, Miesch and Hindman 2011)

∇ · (FRS + FMC + FVD) = 0, (3.32)

where FRS, FMC, and FVD are the angular momentum fluxes transported by the Reynolds
stress, meridional circulation, and turbulent viscous diffusion, respectively. They are de-
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3.6 Effect of solar differential rotation

fined by

FRS = ρ0r sin θ ⟨vϕum⟩, (3.33)
FMC = ρ0(r sin θ)2Ω um, (3.34)
FVD = −ρ0ν(r sin θ)2 ∇Ω, (3.35)

where um is the meridional flow. Figure 3.27 shows the each term of the latitudinal com-
ponent of the Eq. (3.32) averaged over radius. The eigenfunctions are normalized such
that the maximum horizontal velocity amplitude at the surface is 2 m s−1, as inferred
from observations (Löptien et al. 2018). To estimate FMC,θ (black dot-dashed line), we
use the observational meridional circulation data obtained by Gizon et al. (2020a). For
FVD,θ (black dashed line), we assume the spatially-uniform viscosity of ν = 1012 cm2 s−1.
It is shown that the equatorward angular momentum transport by the Reynolds stress is
balanced by the poleward transport by meridional flow and by turbulent diffusion. The
amplitude of FRS,θ associated with n = 1 modes are found to be almost negligible, whereas
that of n = 0 modes is substantial and accounts for about 30 − 40 % of the other two con-
tributions FMC,θ + FVD,θ. The difference between the n = 0 and n = 1 modes comes from
that fact that the velocity eigenfunctions of the n = 1 modes peak at the surface, whereas
those of the n = 0 modes peak near the base. Therefore, when the eigenfunctions are
normalized by the surface velocity speed, only n = 0 modes become important for the
convection zone dynamics. Some caution must be given here as the eigenfunctions can
also be highly sensitive to various model parameters (such as ν and δ), and thus, a differ-
ent set of parameters might lead to a different angular momentum balance. Furthermore,
the model assumes that the diffusivities are uniform and isotropic, which will also affect
the eigenfunctions. Nonetheless, it is suggested that the equatorial Rossby modes might
potentially play a role in transporting the angular momentum equatorward in the Sun.

3.6.2 Effect of baroclinicity on high-latitude inertial modes
We assume the solar differential rotation is in thermal wind balance; where the deviation
from the Taylor-Proudman’s state is balanced by the latitudinal entropy variation (e.g.,
Rempel 2005, Miesch et al. 2006, Brun et al. 2011). In other words, the solar convection
zone is essentially baroclinic. Since the high-latitude modes (topographic Rossby waves)
are located at high latitudes, they are subject to the imposed baroclinicity in the convection
zone and potentially become unstable (Knobloch and Spruit 1982, Spruit and Knobloch
1984, Kitchatinov 2013, Gilman and Dikpati 2014).

In this section, we study the effect of baroclinicity in the convection zone on the high-
latitude inertial modes by varying the amplitude of the imposed latitudinal entropy gradi-
ent. Of particular interest is this effect on the m = 1 mode with north-south antisymmetric
ζz. Here, we assume the latitudinal dependence of the background entropy profile is

∂s0

∂θ
= −|∆θs| sin 2θ, (3.36)

where ∆θs = s0,eq − s0,pole(< 0) represents the entropy difference between the cooler equa-
tor and the hotter poles. For simplicity, the radial dependence is ignored (s0 is uniform in
radius and thus convectively neutral). We use moderately viscous and thermal diffusivities
ν = κ = 1012 cm2 s−1.
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3 Linear analysis of low-frequency modes in the convection zone

Figure 3.28: (a) Eigenfrequencies of north-south ζz-antisymmetric high-latitude mode
(topographic Rossby mode) at m = 1 for different amplitudes of the latitudinal entropy
variation ∆θs. The red star is for the case with a realistic latitudinal entropy gradient
that depends on position, estimated by the Eq. (3.37). The solar differential rotation is
included. The background stratification is adiabatic (δ = 0) and the diffusivities are set to
ν = κ = 1012 cm2 s−1. (b)-(f) Eigenfunctions of the longitudinal velocity vϕ at the surface
(r = 0.985R⊙) and at the central meridian for some selected ∆sθ. The eigenfunctions are
normalized so that the maximum flow amplitudes at the surface is vϕ = 10 m s−1.

Figure 3.28a shows the eigenfrequencies of the m = 1 north-south ζz-antisymmetric
high-latitude modes in a complex plane with varying |∆θs| from 0 to 2000 erg g−1 K−1. It
is shown that, as the baroclinicity is increased, the modes become unstable (ℑ[ω] > 0).
In this sense, these modes can also be called baroclinic (Rossby) modes. Figures 3.28b–f
show the eigenfunctions of vϕ both at the surface and at the central meridian for different
values of ∆θs. It is clearly seen that, as |∆θs| increases and the high-latitude mode becomes
more and more baroclinically unstable, it begins to exhibit a spiralling flow structure
around the poles. The spatial extent and the tilt of this spiral agree strikingly well with
the observations, see Hathaway and Upton (2021) and Gizon et al. (2021).

In order to assess if the baroclinicity in the Sun is large enough for the baroclinic in-
stability to occur, we estimate the latitudinal entropy variation using the helioseismically-
constrained differential rotation profile using,

g

cp

∂s0

∂θ
= r2 sin θ

d(Ω2)
dz

. (3.37)

With this realistic baroclinicity included in our model (Eq. 3.20), we find that the m =
1 high-latitude mode is self-excited: The growth rate is ℑ[ω]/2π = 14.1 nHz, which
translates into the growing time scale of 4.3 months. This may explain why the high-
latitude flow feature on the Sun has a much larger flow amplitude than the equatorial
Rossby modes. Its mode frequency isℜ[ω]/2π = −90.9 nHz (measured in the Carrington
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Figure 3.29: Eigenfunctions of vr, vθ, vϕ, and s1 of the m = 1 north-south ζz-antisymmetric
high-latitude inertial mode with the solar differential rotation and the corresponding lat-
itudinal entropy gradient (Eq. 3.37) included. The background stratification is adiabatic
(δ = 0) and the diffusivities are set to ν = κ = 1012 cm2 s−1. The eigenfunctions are
normalized such that the maximum vϕ is 10 m s −1 at the surface.

frame), which is close to the observed propagation frequency of the high-latitude flow
feature of −86.3 nHz (Gizon et al. 2021). The eigenfunctions of this m = 1 mode are
shown in Fig. 3.29. The mode is characterized by its dominant z-vortical motion and is
quasi-toroidal (the vertical flow is about 10 times weaker than the horizontal ones). It is
clearly seen that, unlike the case without baroclinicity, a strong entropy perturbation is
associated with this mode.

3.7 Summary

In this paper, we have presented a linear modal analysis of the oscillations of the solar
convection zone at low frequencies. Our main findings are summarized as follows.

One effect of turbulent diffusion is to radically change the radial force balance of
the n = 0 equatorial Rossby modes. The modes are confined closer to the base of the
convection zone and their eigenfunctions deviate strongly from the well-known rm radial
dependence. When the solar differential rotation is taken into account, viscous critical lay-
ers are formed in latitudes where the phase speed of the equatorial Rossby mode is equal
to the differential rotation speed. Strong radial and longitudinal flows are present in the
viscous critical layers and the eigenfunctions are complex, implying non-zero Reynolds
stresses.

We find “mixed Rossby modes” which share properties of the n = 1 equatorial Rossby
modes and the north-south ζz-antisymmetric columnar convective modes. Unlike the n =
0 equatorial Rossby modes, these “mixed modes” are almost unaffected by the presence of
solar differential rotation and strong viscous diffusivity. The retrograde frequencies of the
observed Rossby modes of the Sun have values in between the model eigenfrequencies of
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the n = 0 and n = 1 modes for m ≥ 5 (see Fig. 3.22a).
We have further demonstrated that the m = 1 high-latitude mode can be explained in

terms of a topographic Rossby mode modified by differential rotation and a latitudinal
entropy gradient. When these are taken into account, the mode is baroclinically unstable
and the eigenfunction at the surface matches the observations with the correct geometry,
including the correct sense for the spiral seen in vϕ.

Several simplifying assumptions were made in this study. For instance, the viscous
and thermal diffusivities, ν and κ, and the superadiabaticity δ were all assumed to be
spatially uniform, which is not realistic. Moreover, we set the bottom and top boundaries
at (rmin, rmax) = (0.71R⊙, 0.985R⊙) and thus both the tachocline and the near-surface shear
layer of the Sun were excluded from our model. Future work will be to include the
radiative interior and the photosphere and to allow for a radial dependence of ν, κ and δ.
In addition, it will be important to compare the present results to modes extracted from
three-dimensional numerical simulations of rotating convection in the strongly non-linear
regime. The aim is to have a physical understanding of all the modes in the low-frequency
spectrum and thus a reliable identification of the observed modes, including the critical-
latitude modes.
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3.8 Appendix

3.8.1 Potential vorticity conservation and β-effects
Rossby waves are inertial waves in a rotating fluid that are rooted in the conservation
law of potential vorticity (Ertel 1942, Green 1970, Müller 1995). In this appendix, we
explain the physical picture of Rossby wave propagation in a uniformly-rotating shell on
the basis of potential vorticity conservation, which might be unfamiliar to solar physics
community. The potential vorticity Π is defined as (Müller 1995, Miesch 2005),

Π =
(ζ + 2Ω0) · ∇s

ρ
, (3.38)

where ζ = ∇ × u is the vorticity, Ω0 is the uniform angular velocity, and s is the specific
entropy. Thus, Π denotes the component of absolute vorticity (sum of fluid and planetary
vorticities) perpendicular to an isentropic surface per unit density. It can be shown that Π
is materially conserved,

DΠ
Dt
= 0, (3.39)

in the idealized case where dissipation, the Lorentz force, and internal radiative heating
can all be ignored. Several types of Rossby waves can be derived from this conservation
law, each based on a particular “β effect”.

Planetary β-effect

First, let us consider ideal situations. For instance, if the entropy is constant over a
spherical surface then

D
Dt

(ζr + 2Ω0 sin θ) = 0, (3.40)

holds for fluid motions on this spherical surface (toroidal). The main terms of the lin-
earized equation are then

∂ζr

∂t
≈ βvθ, (3.41)

where

β =
2Ω0 sin θ

r
, (3.42)

is the so-called planetary β-effect of the classical Rossby wave and encapsulates the lati-
tudinal dependence of the tangential component of the Coriolis force (e.g., Vallis 2006).
The wave propagation mechanism may be explained as follows. Consider a vortex with
ζr > 0. In the retrograde (prograde) side of the edge of the vortex, we have southward
flow, i.e., vθ > 0 (northward flow, vθ < 0). Thus, the vortex shrinks (broadens) on the
retrograde (prograde) side of the vortex according to Eq. (3.41) because β > 0 at all lat-
itudes. Owing to the change in the vortex size (Rossby radius) associated with vθ, the
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(c) Topographic Rossby waves (!!"#" > 0)

(b) Thermal Rossby waves (!$"%# < 0)

(a) Classical Rossby waves (! > 0)

Figure 3.30: Schematic illustration explaining the propagation mechanism of Rossby
waves. The planes in panels (a), (b) and (c) are the planes inside the sphere shown in
Fig. 3.31. (a) Classical Rossby waves are radial vorticity waves such that ∂ζr/∂t ≈ βvθ
with β > 0. The propagation direction (retrograde, −eϕ) is denoted by the thick black
arrow. (b) Thermal Rossby waves are z-vorticity waves such that ∂ζz/∂t ≈ βcompvϖ with
βcomp < 0 outside the tangent cylinder, propagating in a prograde direction. (c) Topo-
graphic Rossby waves are z-vorticity waves such that ∂ζz/∂t ≈ βtopovϖ with βtopo > 0
inside the tangent cylinder, propagating in a retrograde direction.
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Figure 3.31: Sketch illustrating a z-vortex tube inside the tangential cylinder. The red,
blue, and green planes show the locations of classical Rossby waves, thermal Rossby
waves, and topographic Rossby waves discussed in Fig. 3.30.

vortex propagates in a retrograde (opposite to rotation) direction. The same discussion
applies to the negative vortex ζr < 0 as well. This is also schematically illustrated in
Fig. 3.30a.

Compressional β-effect

Next, we discuss the propagation mechanism of z-vorticity waves. We adopt a cylin-
drical coordinate system (ϖ = r sin θ, ϕ, z) and consider a vortex tube in the z-direction
inside the convection zone as illustrated in Fig. 3.31. Assuming that the specific entropy
is uniform over the equatorial plane (ϖϕ-plane), z-component (parallel to the rotational
axis) of the potential vorticity becomes a conserved quantity,

D
Dt

(
ζz + 2Ω0

ρ

)
= 0. (3.43)

Now, for the sake of simplicity, let us also assume that the density is dominantly stratified
in the ϖ-direction outside the tangential cylinder. We can then linearize Eq. (3.43) to
obtain

∂ζr

∂t
≈ βcompvϖ, (3.44)

where

βcomp = 2Ω0
d ln ρ
dϖ

, (3.45)
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3 Linear analysis of low-frequency modes in the convection zone

Figure 3.32: (Red) Compressional β-effect coefficients βcomp defined by the Eq. (3.45)
outside the tangential cylinder at the equator, and (Blue) topographic β-effect coefficients
defined by the Eq. (3.49) inside the tangential cylinder. Vertical dotted line denotes the
location of the base of the convection zone.

is called “compressional” β-effect. This effect originates from the background density
stratification (Glatzmaier et al. 2009, Verhoeven and Stellmach 2014): when the back-
ground density changes, the fluid vorticity ζz is forced to change in order to conserve lo-
cal angular momentum. The type of wave originating from the compressional β-effect is
sometimes called the “compressional Rossby wave” (Ong and Roundy 2020). However,
it is more often referred to as a “thermal Rossby wave” in the solar literature (Miesch
2005, Miesch et al. 2008, Verhoeven and Stellmach 2014, Matilsky et al. 2020) since
it is in many cases thermally driven. Given that βcomp is negative outside the tangential
cylinder, these waves propagate in a prograde direction near the equator, as schematically
illustrated in Fig. 3.30b.

Topographic β-effect

Last, we consider the z-vorticity waves inside the tangential cylinder. Since their fluid
motions can be approximated to be toroidal, we restrict our discussion to incompressible
fluids in this section. The Eq.(3.43) is now reduced to

D
Dt

(ζz + 2Ω0) = 0. (3.46)

The vertical height hz of the cylinder inside the convection zone can be expressed as a
function of ϖ

hz =

√
r2

max −ϖ
2 −

√
r2

min −ϖ
2, (3.47)
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where rmin and rmax are the radii of the lower and upper spherical boundaries, respectively.
We now integrate the Eq.(3.46) over z-direction in the convection zone assuming that
velocity is independent of z (thus the Taylor-Proudman’s constraint is satisfied inside the
tangential cylinder), obtaining

∂ζz

∂t
≈ βtopovϖ, (3.48)

where

βtopo = 2Ω0
d ln hz

dϖ
, (3.49)

is called “topographic” β-effect. This effect comes from the curvature of the lower and
upper spherical shells. Owing to the impenetrable boundary condition at the top and
bottom, z-vortex tubes are forced to stretch or shorten when displaced cylindrically in-
wards or outwards in ϖ direction, which brings perturbations in the z-vorticity ζz. The
type of Rossby wave originating from the topographic β-effect is called a “topographic
Rossby wave” (e.g., Vallis 2006). Inside the tangential cylinder, βt is positive as shown
in Fig. 3.32. Therefore, topographic Rossby waves propagate in a retrograde direction as
illustrated in Fig. 3.30c.
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4 Amplitudes of equatorial vorticity
modes from a nonlinear rotating
convection simulation

Abstract

Several types of inertial modes have been detected on the Sun. Properties of these iner-
tial modes have been studied in the linear regime but have not been studied in nonlinear
simulations of solar rotating convection. Comparing the nonlinear simulations, the lin-
ear theory, and the solar observations is important to better understand the differences
between the models and the real Sun. We wish to detect and characterize the modes
present in a nonlinear numerical simulation of solar convection, in particular to under-
stand the amplitudes and lifetimes of the modes. We developed a code with a Yin-Yang
grid to carry out fully-nonlinear numerical simulations of rotating convection in a spher-
ical shell. The stratification is solar-like up to the top of the computational domain at
0.96 R⊙. The simulations cover a duration of about 15 solar years, which is more than
the observational length of the Solar Dynamics Observatory (SDO). Various large-scale
modes at low frequencies (comparable to the solar rotation frequency) are extracted from
the simulation. Their characteristics are compared to those from the linear model and to
the observations. Among other modes, both the equatorial Rossby modes and the colum-
nar convective modes are seen in the simulation. The columnar convective modes, with
north-south symmetric longitudinal velocity vϕ, contain most of the large-scale velocity
power outside the tangential cylinder and substantially contribute to the heat and angu-
lar momentum transport near the equator. Equatorial Rossby modes with no radial node
(n = 0) are also found: They have the same spatial structures as the linear eigenfunctions.
They are stochastically excited by convection and have the amplitudes of a few m s−1

and mode linewidths of about 20–30 nHz, which are comparable to those observed on
the Sun. We also confirm the existence of the “mixed Rossby modes” between the equa-
torial Rossby modes with one radial node (n = 1) and the columnar convective modes
with north-south antisymmetric vϕ in our nonlinear simulation, as predicted by the linear
eigenmode analysis. We also see the high-latitude mode with m = 1 in our nonlinear
simulation but its amplitude is much weaker than that observed on the Sun.

This chapter reproduces the article Theory of solar oscillations in the inertial frequency range: Am-
plitudes of equatorial modes from a nonlinear rotating convection simulation by Y. Bekki, R.H. Cameron,
and L. Gizon, published in Astronomy and Astrophysics 666, A135 (2022). DOI: https://doi.org/10.1051/
0004-6361/202244150. Contribution: Y. Bekki did most of the work.
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4 Amplitudes of equatorial vorticity modes from a nonlinear simulation

4.1 Introduction

Large-scale convection in the Sun is still poorly understood (e.g., Hanasoge et al. 2012,
Gizon and Birch 2012). Numerical simulations are unable to explain how thermal energy
and angular momentum are transported inside the Sun’s convection zone in a way that is
consistent with the observations (e.g., Karak et al. 2018, Nelson et al. 2018). This problem
is often called the “convective conundrum” and is regarded as one of the most important
open questions in solar physics (e.g., O’Mara et al. 2016, Brandenburg 2016, Hanasoge
et al. 2020, Vasil et al. 2021).

Recent observations indicate that a significant component of the large-scale non-
axisymmetric solar flows are due to inertial modes of oscillation (Löptien et al. 2018,
Gizon et al. 2021). The restoring force for these global-scale low-frequency modes of
oscillation is the Coriolis force, and thus their oscillation periods are comparable to the
solar rotation period (≈ 27 days). In addition to the high-frequency acoustic modes, these
inertial modes are expected to be useful as a tool to probe the interior of the Sun (Gizon
et al. 2021, Bekki et al. 2022b).

The inertial modes observed and identified on the Sun include the equatorial Rossby
modes, the high-latitude modes, and the critical-latitude modes (Löptien et al. 2018, Gi-
zon et al. 2021, Bekki et al. 2022b, Fournier et al. 2022). The high-frequency retrograde
modes recently reported by Hanson et al. (2022) are also likely inertial modes. Simpli-
fied theoretical studies have been carried out in the linear regime under the assumption of
uniform rotation (Provost et al. 1981, Saio 1982, Wolff and Blizard 1986, Damiani et al.
2020) and in the case of differential rotation (Baruteau and Rieutord 2013, Gizon et al.
2020b, Bekki et al. 2022b, Fournier et al. 2022). However, there has been no study in
the fully-nonlinear regime where turbulent convection strongly interacts with these iner-
tial modes. Nonlinear simulations are also required in order to understand the excitation
mechanism and the amplitudes of these modes.

Another interesting type of large-scale vorticity modes that might be relevant to the
Sun are columnar convective modes (or “thermal Rossby waves”). They have been re-
peatedly predicted in numerical models of solar rotating convection (e.g., Gilman and
Glatzmaier 1981, Glatzmaier 1984, Miesch et al. 2000, 2008) but they have not been ob-
served on the Sun. A recent linear eigenmode analysis has revealed that the equatorial
Rossby modes with one radial node (n = 1) share properties with the columnar convec-
tive modes with north-south antisymmetric z-vorticity (Bekki et al. 2022b), where z is the
coordinate along the rotational axis. These so-called “mixed Rossby modes” have not yet
been studied using nonlinear rotating convection simulations.

In this paper, we identify and characterize properties of these low-frequency modes of
oscillation in a numerical simulation of solar-like rotating convection and study how they
are affected by turbulent convection. We extract these modes from a fully nonlinear simu-
lation and compare their mode properties such as dispersion relations and eigenfunctions
with those of the linear eigenmodes reported by Bekki et al. (2022b). In addition, we look
at mode amplitudes which cannot be discussed in the linear regime.

The organization of the paper is as follows. In §4.2, we shortly review previous studies
on the various types of solar inertial modes. In §4.3, our numerical model is explained
in detail. We also describe the analysis method for extracting the global-scale modes of
oscillation from a temporal series of simulation data. We report the extracted columnar
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convective modes in §4.5.1, and the equatorial Rossby modes in §4.5.2. The newly-
discovered mixed Rossby mode is presented in §4.5.3. In all cases, the extracted modes
are compared with the results of linear eigenmode analysis. The transport properties
by these modes are discussed in §4.6. Finally, possible implications are discussed with
concluding remarks in §4.7.

4.2 Inertial modes on the Sun

In this paper we will primarily focus on the equatorial Rossby modes (§ 4.2.1), the colum-
nar convective modes (§ 4.2.2), and the “mixed Rossby modes” (§ 4.2.3). The other
inertial modes discussed in § 4.2.4 are beyond the scope of the current paper.

4.2.1 Equatorial Rossby modes
The classical Rossby modes (Rossby 1939, 1940) are modes of radial vorticity originat-
ing from the planetary β-effect. In the case of a uniformly-rotating sphere, these modes
propagate in the retrograde direction (opposite to rotation) in a co-rotating frame. They
are essentially incompressible modes and the associated motion is quasi-toroidal. In the
solar and stellar context, they are also commonly known as r modes (e.g., Papaloizou and
Pringle 1978, Saio 1982).

The existence of these Rossby modes on the Sun is well established (Löptien et al.
2018, Hanasoge and Mandal 2019, Liang et al. 2019, Proxauf et al. 2020, Mandal and
Hanasoge 2020, Hanson et al. 2020, Hathaway and Upton 2021, Gizon et al. 2021, Mandal
et al. 2021). They are observed for azimuthal orders in the range 3 ≤ m ≤ 15 and follow
the dispersion relation of the classical sectoral (l = m) Rossby modes, where m is the
azimuthal order and l is the spherical degree. It is found that these equatorial Rossby
modes contribute a significant fraction of the large-scale horizontal velocity power at low
latitudes.

4.2.2 Columnar convective modes
Another type of modes with large-scale vorticity, which might be relevant to the Sun,
are the columnar convective modes. These modes are prograde-propagating convective
columns that are strongly rotationally-constrained and are thus aligned parallel to the
rotation axis (e.g., Unno et al. 1989). They are also known as “thermal Rossby waves”
particularly among the geophysical fluid dynamics community because they are thermally
(convectively) driven and they result from the conservation of potential vorticity (Busse
1970, 2002). When the term “thermal Rossby waves” was first introduced by Busse and
Or (1986), an incompressible fluid was considered and thus the propagation frequency
of these convective modes is purely set by the “topographic β effect” originating from
the curvature of the spherical boundaries. However, when it comes to highly-stratified
compressible fluids such as the interiors of the Sun and stars, there is an additional
β effect, namely, the “compressional β effect” originating from the strong background
density stratification (Glatzmaier and Gilman 1981, Ingersoll and Pollard 1982, Evonuk
2008, Glatzmaier et al. 2009, Evonuk and Samuel 2012, Verhoeven and Stellmach 2014,
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Ong and Roundy 2020). In the solar and stellar physics community, the term “thermal
Rossby waves” has been sometimes used to describe the prograde-propagating convec-
tive columns whose propagation frequencies are in fact affected by both the topographic
and compressional β effects (Miesch et al. 2008). In order to avoid this ambiguity, we will
follow the convention of Bekki et al. (2022b) and will primarily use the term “columnar
convective modes” in this paper.

In numerical simulations of solar-like rotating convection simulations, the columnar
convective modes can be seen as north-south aligned downflow lanes across the equator
at the surface (e.g., Miesch et al. 2008, Bessolaz and Brun 2011, Matilsky et al. 2020).
They are often called “banana cells” and are regarded as the most efficient convective
structure in terms of the thermal energy transport under the rotational constraint (e.g.,
Miesch et al. 2000, Brun et al. 2004, Miesch et al. 2008, Käpylä et al. 2011, Gastine
et al. 2013, Hotta et al. 2015a, Featherstone and Hindman 2016a, Hindman et al. 2020).
Furthermore, they are also believed to play a significant role in transporting the angular
momentum equatorward to maintain the differential rotation (e.g., Gilman 1986, Miesch
et al. 2000, Balbus et al. 2009, Matilsky et al. 2020). However, despite their significance,
the columnar convective modes have never been successfully detected on the Sun. It still
remains unclear whether they really exist in the deep convection zone and are not visible
at the surface for some reason, or if they are simply absent in the Sun.

The dispersion relation and eigenfunctions of the columnar convective modes were
first derived by Glatzmaier and Gilman (1981) using a one-dimensional cylinder model,
and recently, by Bekki et al. (2022b) using a more realistic two-dimensional model of
the solar convection zone. A local analysis of these modes has also been carried out by
Hindman and Jain (2022) in the context of low-mass stars. As far as the authors recog-
nize, however, there is no such a study that compares the linear dispersion relation and
eigenfunctions of the columnar convective modes with those found in a fully-nonlinear
simulation of rotating convection of the Sun.

4.2.3 Mixed Rossby modes

Using the linear model of solar inertial oscillations, Bekki et al. (2022b) have recently
found that the equatorial Rossby modes with one radial node (n = 1) and the columnar
convective modes with north-south antisymmetric z-vorticity ζz are mixed with each other.
This newly-discovered “mixed Rossby mode” has a dispersion that asymptotically (at
large azimuthal wavenumbers m) approaches to that of the equatorial Rossby mode with
no radial node (n = 0) for the retrograde-propagating part (ω < 0) and to that of the north-
south ζz-symmetric columnar convective modes for the prograde-propagating part (ω >
0). Here, ω is the frequency measured in the rotating frame. Due to this mode mixing, the
n = 1 equatorial Rossby modes (retrograde-propagating “mixed Rossby modes”) become
partially convective and have substantial radial motions. This is in contrast to the n = 0
modes where fluid motions are quasi-toroidal. Therefore, it is expected that the “mixed
Rossby modes” might play a role in transporting thermal energy and angular momentum
in the Sun’s convection zone.
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4.2.4 Other inertial modes
At higher latitudes (above 60◦), modes with 1 ≤ m ≤ 4 were also detected, which were
shown to be global modes of inertial oscillation of the full convection zone. In particular,
the m = 1 high-latitude mode can be observed at all latitudes (with much smaller ampli-
tude) with the exact same frequency. This m = 1 mode has the largest amplitude and is
associated with a spiralling flow pattern in the longitudinal velocity around the poles. It is
the explanation for the observations reported by Hathaway et al. (2013) and Bogart et al.
(2015). The dispersion relation and the eigenfunctions of the high-latitude modes can be
well reproduced by a linear analysis of inertial oscillations in a realistic solar convection
zone model (Bekki et al. 2022b).

At middle latitudes, additional retrograde inertial modes with m ≤ 10 have been ob-
served near their critical latitudes, where the mode angular frequencies are equal to the
differential rotation rate (Gizon et al. 2021). Some of these mid-latitude modes have been
identified in the linear model of Bekki et al. (2022b), see e.g. the m = 2 mode reported by
Gizon et al. (2021). A one-dimensional linear analysis of modes on differentially rotating
spheres by Fournier et al. (2022) also predicts such critical-latitude modes to be present.

Furthermore, Hanson et al. (2022) have recently reported additional low-amplitude
modes of north-south antisymmetric vorticity near the equator that propagate in a retro-
grade direction with 8 ≤ m ≤ 14. These modes are also likely inertial modes, according
to the simplified linear analysis by Triana et al. (2022). Whether these modes are also
present in the more realistic solar models remains to be studied.

4.3 Methods

4.3.1 Numerical model of rotating convection
We have developed a code to solve three-dimensional fully-compressible hydrodynamic
equations in a rotating spherical shell. With the reduced-speed of sound approximation,
the hydrodynamic equations are expressed in a spherical coordinate (r, θ, ϕ) as (e.g., Hotta
et al. 2014b):

∂ρ1

∂t
= −

1
ξ2∇ · (ρ0u), (4.1)

∂u

∂t
= −u · ∇u −

∇p1

ρ0
−
ρ1

ρ0
ger + 2u ×Ω0 +

1
ρ0
∇ ·D, (4.2)

∂s1

∂t
= −u · ∇s1 +

1
ρ0T0
∇ · (ρ0T0κ∇s1)

+
1

ρ0T0
(D · ∇) · u +

1
ρ0T0

(Qheat + Qcool), (4.3)

p1

p0
= γ

ρ1

ρ0
+

s1

cv
. (4.4)

Here, ξ = 100 denotes a factor by which the background sound speed is reduced to relax
the severe CFL condition (Rempel 2005, Hotta et al. 2014b). The quantities with sub-
script 0, p0, ρ0, T0, and g0, represent the pressure, density, temperature, and gravitational
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acceleration of the time-independent background which is in an adiabatically-stratified
hydrostatic equilibrium. Also, Ω0 denotes the rotation rate of the rigidly-rotating radia-
tive core and we use the solar value of Ω0/2π = 431.3 nHz. We use the same solar-like
background stratification model as Rempel (2005) and Bekki and Yokoyama (2017) from
rmin = 0.71R⊙ to rmax = 0.96R⊙ where R⊙ is the solar radius. The variables v, ρ1, p1, and
s1 represent perturbations from the background reference state. The equations are fully
nonlinear, however the Eq. (4.4) assumes that these perturbations are not too large to pre-
vent us from linearizing the equation of state. As is usual, cv denotes the specific heat at
constant volume and the ratio of specific heats is given by γ = 5/3.

The viscous stress tensor,D, is given by

Di j = ρ0ν

[
Si j −

2
3

(∇ · u)δi j

]
, (4.5)

where S is the deformation tensor. See Fan and Fang (2014) for the expression of this
tensor in spherical coordinates. The coefficients ν and κ are respectively the eddy viscos-
ity and the eddy thermal diffusivity, which model the unresolved subgrid-scale turbulent
motions. In this study, we use the spatially-uniform turbulent viscosity ν = 1012 cm2 s−1

and omit thermal diffusivity κ = 0. This enhances the effective Prandtl number and thus
mimics the highly-magnetized convection (Hotta et al. 2015b, Bekki et al. 2017).

The internal heating and cooling terms, Qheat and Qcool, are specified similarly to Karak
et al. (2018): The radiative heating is assumed to be proportional to the difference of the
background pressure from its surface value,

Qheat = α
[
p0(r) − p0(rmax)

]
, (4.6)

where the normalization factor α is determined so that

L∗ = 4π
∫ rmax

rmin

r2Qheat(r)dr, (4.7)

where L∗ is the luminosity. The functional form of Qheat gives a good approximation of
the radiative flux computed from the solar temperature and opacity values of Model S
(Featherstone and Hindman 2016a). The radiative cooling at the surface is assumed to
have a thickness comparable to the local pressure scale height Hp, and thus is given by

Qcool = −
1
r2

∂

∂r
(r2Fsf), (4.8)

where the surface cooling flux Fsf is specified as

Fsf =
L∗

4πr2 exp
− (

r − rmax

Hp(rmax)

)2. (4.9)

In this study, we reduce the luminosity from the solar value L⊙ = 3.84 × 1033 erg s−1 by
a factor of 20, i.e., L∗ = L⊙/20. By doing so, we reduce the convective Rossby number
Ro (∝ L1/3

∗ ), which helps to produce a solar-like differential rotation (with a faster equator
and slower poles) in a rotating convection simulation (Gastine et al. 2013, Fan and Fang
2014, Hotta et al. 2015a, Käpylä et al. 2014).
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Figure 4.1: Yin-Yang grid used in our simulation. (a) Three-dimensional view of the
Yin and Yang grids. Blue and red lines show Yin and Yang coordinates, respectively. (b)
Mollweide projection of the Yin-Yang grid. The black thick curve denotes the location
where the horizontal boundary condition is set in our code.

We solve the Eqs. (4.1)–(4.3) using a fourth-order centered-differencing method for
spatial derivatives and a four-step Runge-Kutta scheme for the time integration (e.g., Vö-
gler et al. 2005). To minimize numerical artifacts while allowing us to operate at as low
a thermal diffusivity as possible, we use the slope-limited artificial diffusion presented in
Rempel (2014) for entropy s1. In order to compute in a full-spherical shell while avoiding
the coordinate singularity at the poles, a Yin-Yang grid is adopted (Kageyama and Sato
2004). The Yin and Yang grids are defined so that they cover a full spherical surface in
a way shown in Fig. 4.1. The grids extend in latitudes (π/4 < θ < 3π/4) and longitudes
(−3π/4 < ϕ < 3π/4), respectively. However, unlike the method proposed in Kageyama
and Sato (2004), we set the boundary condition on the curve C,

C : −π < ϕ < π, θ = π/4, 3π/4, (4.10)
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4 Amplitudes of equatorial vorticity modes from a nonlinear simulation

Figure 4.2: Temporal evolution of the volume-integrated kinetic energies; (red) Kinetic
energy of the differential rotation KEDR, (blue) kinetic energy of the meridional circula-
tion KEMC, and (black) kinetic energy of the non-axisymmetric flows KECV. The results
from the total 6 runs starting with different initial conditions are shown. The grey shaded
are denotes the duration which we use for our spectral analysis.

and on the curve C′,

C′ :
{
θ′ = cos−1 [

sin θ sin ϕ
]

ϕ′ = tan−1 [
− cos θ/(sin θ cos ϕ)

] (4.11)

where (θ, ϕ) ∈ C. By doing so, the overlapping regions are excluded from our numerical
domain. The location where the boundary condition is set on a spherical surface is shown
in a thick black curve in Fig. 4.1b. Both the upper and lower radial boundaries are assumed
to be impenetrable and stress-free, and the radial gradient of entropy is assumed to vanish
there. The grid resolution is 72(Nr)×96(Nθ)×288(Nϕ)×2(Yin and Yang). The simulation is
initiated from a small random fluctuation in s1. To check whether the results are sensitive
to the initial perturbations, we carry out 6 different simulation runs with different random
initial fluctuations. Each simulation run corresponds to about 25 solar years, and we
analyze the 15 years of data after the differential rotation becomes statistically stationary,
as shwon in Fig. 4.2. The data is saved at a time cadence of about 4.7 days. Most results
shown in the following sections are averages over 6 realizations (of 15 years each) to
improve the signal-to-noise ratio.

4.3.2 Extracting modes from simulations

We begin with the simulations where each physical variable is only given for discrete val-
ues of r, θ, ϕ, and t. We extract the eigenfunctions of the large-scale low-frequency modes
of oscillation from the simulation data using a singular-value decomposition (SVD) sim-
ilar to what was done by Proxauf et al. (2020). To sketch the method, we consider
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qα(r, θ, ϕ, t) to be any of the physical variables, vr, vθ, vϕ, s1, or p1. We Fourier trans-
form these variables to obtain

q̃α(r, θ,m, ω) =
∫

qα(r, θ, ϕ, t) ei(ωt−mϕ) dt dϕ, (4.12)

where m is the azimuthal order and ω is the angular frequency. With this definition, the
phase speed ω/m is positive in the direction of rotation (prograde) and it is negative in the
direction opposite to rotation (retrograde). In the following, we choose m to be positive
with no loss of generality. Each m is analyzed independently.

Among the set of variables {qα}, we choose a particular physical variable qβ to target
a particular mode. For example, we choose qβ = uϕ for the columnar convective modes
and qβ = uθ for the equatorial Rossby modes and the “mixed Rossby modes”. Since our
main focus is on the modes that peak near the equator, we consider the latitudinal average

q̃β,eq(r,m, ω) =
6
π

∫ π/2+π/12

π/2−π/12
q̃β(r, θ,m, ω) dθ (4.13)

over a narrow band of latitudes covering 15◦ on either side of the equator. Given the mode
frequency, ωmode, for which we want to extract the eigenfunctions, we limit the domain of
analysis to the frequency range [ω1, ω2] ∋ ωmode and to an appropriate radius range [r1, r2]
in which the mode has significant power, in order to reduce the contamination from the
neighboring modes. For each fixed m, the quantity q̃β,eq is then decomposed according to
the SVD as

q̃β,eq(r,m, ω) =
∑

k

σ
β
k(m)Uβ

k (r,m)Vβ,H
k (m, ω), (4.14)

where the σk are the singular values, Uk and Vk are the left and right singular vectors, and
H denotes the conjugate transpose. The vectors Vk are normalized such that VH

k Vk′ = δkk′ .
The decomposition is ordered such that the first singular value is dominant over the other
values. For each mode, we keep only the first of the right singular vectors, V0, from the
SVD. Using Vβ

0 derived from qβ, the spatial dependence of a mode is calculated for all the
other variables qα according to

qα,mode(r, θ,m) =
ω2∑

ω′=ω1

q̃α(r, θ,m, ω′)Vβ
0 (m, ω′). (4.15)

These spatial functions are approximations to a mode’s eigenfunctions, and can be com-
pared to the eigenfunctions from the linear analysis. The amplitude of a mode extracted
using the above equation is an estimate of the root-mean-square (rms) of this mode in the
frequency range ω1 ≤ ω ≤ ω2, according to the Parseval’s theorem.

4.3.3 Linear eigenvalue solver
The modes extracted from the nonlinear rotating convection simulation will be compared
to the linear eigenmodes of oscillation in the Sun. For solving the linearized prob-
lem, we use the code developed in Chapter 3. The differences from the Bekki et al.
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(2022b)’s setup are follows: The lower and upper boundaries are changed to (rmin, rmax) =
(0.71R⊙, 0.96R⊙) corresponding to those of the nonlinear simulation. We also impose the
differential rotation (the axisymmetric background mean flow) taken from the nonlinear
simulation (Fig. 4.3a). However, we do not take into account the meridional circulation
which has a much smaller impact on inertial modes than the differential rotation (Gizon
et al. 2020b, Fournier et al. 2022). For simplicity, the background is adiabatic (δ = 0) and
spatially-uniform viscosity of 1012 cm2 s−1 is included.

4.4 General results

4.4.1 Rossby number regime
Let us first evaluate the parameter regime of our nonlinear rotating convection simulation.
To do so, we compute the volume-averaged rms velocity in the simulation (fluctuations
with respect to the mean flows) defined by

v2
rms =

1
V

∫
V

[
(vr − ⟨vr⟩)2 + (vθ − ⟨vθ⟩)2 + (vϕ − ⟨vϕ⟩)2

]
dV, (4.16)

where ⟨⟩ denotes the azimuthal average and the integral is taken over the volume of the
whole convection zone, V . We obtain vrms = 37.1 m s−1, which is smaller than that of
previous simulations of solar global convection by a factor of about 3 (e.g., Miesch et al.
2008). This is due to the fact that the luminosity is reduced by a factor of 20 from the
solar value in our simulation.

The rotational influence on convection can be measured by the Rossby number

Ro =
vrms

2Ω0(rmax − rmin)
. (4.17)

We obtain Ro = 0.04, indicating that our simulation is operating in a strongly rotationally-
constrained regime. Thanks to this low Ro, we successfully obtain the solar-like differen-
tial rotation (with faster equator and slower poles); see Gastine et al. (2013). Whether the
Rossby number in our simulation takes a realistic value is an open question: The Rossby
number in the Sun’s convection zone is one of the most important unknown global pa-
rameters, which bears on the solar convective conundrum.

4.4.2 Axisymmetric mean flows
Figures 4.3a and b show the time-averaged profiles of the axisymmetric mean flows, i.e.,
differential rotation and meridional circulation, respectively. For the parameters we used,
the differential rotation is solar-like although its amplitude is much weaker than that of
the real Sun (e.g., Howe 2009). The reference rotation rate of Ω0/2π = 431.3 nHz
roughly corresponds to the middle-latitude rotation rate (≈ 40◦) at the surface. The merid-
ional flow tends to be multiple-cellular structure at low latitudes but is largely counter-
clockwise (clockwise) in the northern (southern) hemisphere at higher latitudes: The flow
at high latitudes is poleward (equatorward) at the surface (base of the convection zone)
(e.g., Featherstone and Miesch 2015).
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Figure 4.3: Temporally-averaged profile of (a) the differential rotation Ω(r, θ) = Ω0 +

⟨vϕ⟩/r sin θ, and (b) the streamlines of the meridional circulation um = (⟨vr⟩, ⟨vθ⟩). Here,
⟨⟩ denotes the longitudinal average. The meridional flow stream function Ψ is defined
by ρ0um = ∇ × (Ψeϕ). The Red (blue) indicates the circulation is clockwise (counter-
clockwise), i.e., the flow is poleward near the surface at high latitudes in both hemi-
spheres.

4.5 Low-frequency modes found in our simulation

4.5.1 Columnar convective modes

Figures 4.4a and b show temporal snapshots of the non-axisymmetric components of ra-
dial velocity vr and longitudinal velocity vϕ near the surface r = 0.95R⊙, respectively. The
convective structure at high latitudes can be characterized by granular cells consisting of
broad upflows and narrow downflows (e.g., Spruit et al. 1990). Near the equator, we can
clearly see the north-south aligned lanes of radial and longitudinal velocities. They are
often called “banana cells” and have been repeatedly reported in previous numerical sim-
ulations of rotating convection (Miesch et al. 2000, Käpylä et al. 2011, Gastine et al. 2013,
Guerrero et al. 2013, Hotta et al. 2015a, Featherstone and Hindman 2016a, Käpylä et al.
2019, Matilsky et al. 2019, 2020). We will show that these “banana-cell” features can be
identified as the columnar convective modes largely originating from the compressional
β-effect (Glatzmaier and Gilman 1981, Glatzmaier et al. 2009, Verhoeven and Stellmach
2014, Bekki et al. 2022b).

Figure 4.5a shows the equatorial power spectrum (m −ω diagram) of the longitudinal
velocity near the top boundary |ṽϕ,eq(0.95R⊙,m, ω)|2. The dispersion relationship for the
columnar convective modes from the linear eigenmode calculation are overplotted in red.
The frequencies are given for a frame rotating with Ω0. A clear power ridge can be
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Figure 4.4: Snapshots of the convective pattern in our simulation near the top boundary
r = 0.95R⊙. Panels (a) and (b) show the radial velocity vr and non-axisymmetric compo-
nent of the longitudinal velocity vϕ.
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Figure 4.5: (a) Power spectrum of longitudinal velocity vϕ near the top boundary r =
0.95R⊙, averaged over the equatorial band (±15 deg). The power is normalized at each m.
The spectrum is computed in a frame rotating at Ω0/2π = 431.3 nHz (the rotation rate of
the radiative interior). The blue line represents the advective speed by the local differential
rotation, m [Ω(r, π/2) −Ω0]. Overplotted in red represents the dispersion relation of the
columnar convective modes from the linear eigenmode calculation. Panel (b) shows the
same equatorial power spectrum at fixed azimuthal order m = 8 as a function of depth.
The blue line is again the local advection frequency and the red line is the eigenfrequency
from the linear analysis.

observed in Fig. 4.5a, matching that from the linear analysis for m ≲ 10. The frequency
of this power ridge is positive in the frame rotating with the local differential rotation
rate (denoted by blue solid line), implying that the convective modes are propagating in a
prograde direction (Miesch et al. 2008, Bessolaz and Brun 2011). Figure 4.5b shows the
same equatorial power spectrum at fixed azimuthal order |ṽϕ,eq(r,m = 8, ω)|2. The strong
longitudinal velocity power is localized near the surface where the compressional β-effect
(∝ H−1

ρ where Hρ is the density scale height) is the strongest (e.g., Glatzmaier and Gilman
1981). At m = 8, the mode has a linewidth of 30 nHz and a corresponding decaying
timescale of 122 days.

We used the method described in § 4.3.2 to extract the spatial structure of the columnar
convective modes for azimuthal orders 1 ≤ m ≤ 39 1. To extract the modes, we calculated
V0(ω) in Eq. (4.15) based on the equatorial spectrum of longitudinal velocity near surface.
Figure 4.6 shows the three-dimensional spatial patterns of the convective columnar modes
found in our simulation for selected m. For visualization purposes, the non-axisymmetric
components of pressure perturbation p1 are shown. We note that the positive (negative)
pressure perturbation p1 is associated with negative (positive) z-vorticity ζz of the modes
due to the strong constraint of geostrophic balance (e.g., Matilsky et al. 2020). It is clearly

1The maximum azimuthal order in our grid resolution is 192. However, we restrict our analysis to
large-scale modes in a range 0 ≤ m ≤ 39.
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Figure 4.6: (Left) A snapshot of the pressure perturbation (non-axisymmetric compo-
nent) from the nonlinear simulation shown as a 3D volume rendering. Red/yellow and
blue/cyan parts correspond to the regions with positive and negative pressure perturba-
tions, respectively. (Right) Eigenfunctions of pressure perturbation of the conlumnar con-
vective modes extracted from the simulation data using SVD. The cases with m = 2 and
m = 12 are shown.

seen that the columnar convective modes are characterized by the north-south aligned
columns across the equatorial plane.

Figure 4.7 shows the extracted eigenfunctions of the convective columnar modes for
m = 2, in comparison with the results of the linear analysis. The real eigenfunctions
of vr and vθ and the imaginary eigenfunctions of vϕ and p1 are shown in Fig. 4.7a. Fig-
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Figure 4.7: Plots of the spatial eigenfunctions qα,mode(r, θ,m) for the ζz-symmetric
columnar convective modes with m = 2. By definition, modes are of the form
qα,mode(r, θ,m) exp

[
i(mϕ − ωt)

]
where qα is either vr, vθ, vϕ, or p1. (a) Meridional cuts

of the radial velocity vr, latitudinal velocity vθ, longitudinal velocity vϕ, and pressure per-
turbation p1 extracted from the convection simulation (lower penals) and obtained from
our linear calculation (upper panels). (b) Radial dependence of the eigenfunction vϕ at the
equator. Black solid and red dashed lines represent that of simulation and linear calcula-
tion. (c) Latitudinal eigenfunction of vϕ at the surface normalized near the equator.

ures 4.7b and c further compare the radial and latitudinal structures of the extracted mode
at the equator and at the surface, respectively. Note that the eigenfunctions extracted from
the simulations are realizations of random processes, and therefore contain noise. The
noise is visible at small spatial scales, however particularly at large scales, a great agree-
ment can be seen between the eigenfunctions from the simulation and those of the linear
analysis. Therefore, the columnar convective modes are unambiguously identified in our
simulations. The modes can be clearly characterized by a dominant z-vorticity ζz that
is confined outside the tangential cylinder as described in detail in Bekki et al. (2022b).
As m increases, the eigenfunctions are more and more confined towards the surface and
towards the equator (not shown).

4.5.2 Equatorial Rossby modes
In this section, we present the same modal analysis for the equatorial Rossby modes
(r modes) where radial vorticity ζr is symmetric across the equator. In this study, we
use the latitudinal velocity vθ near the equator for our spectral analysis which is a good
representative of the equatorial Rossby modes. Figures 4.8a and b show the equatorial
power spectra (m − ω diagram) of latitudinal velocity near the base |ṽθ,eq(0.715R⊙,m, ω)|2
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Figure 4.8: Power spectra of latitudinal velocity vθ near the equator (averaged over ±15
deg). Panels (a) and (b) show the m − ω diagram near the base (r = 0.75R⊙) and near the
surface (r = 0.95R⊙), respectively. The power is normalized at each m. The spectra are
computed in a frame rotating at Ω0/2π = 431.3 nHz. Overplotted in red line in panel (a)
represents the dispersion relation of the equatorial Rossby mode with no radial node (n =
0) obtained from the linear calculation. The blue line represents the advection frequency
of the equatorial differential rotation, m [Ω(r, π/2) −Ω0], at each height. Panels (c) and
(d) show the power spectra at fixed azimuthal order m = 1, and m = 16, respectively.

and near the surface |ṽθ,eq(0.95R⊙,m, ω)|2, respectively. The dispersion relation of the
equatorial Rossby modes with no radial node (n = 0) obtained from our linear analysis
are shown in red points in Fig. 4.8a. A clear power ridge can be seen along the linear
dispersion relation near the base, whereas two distinct ridges are found in the surface
power spectrum (denoted as “mixed prograde” and “mixed retrograde” in Fig.4.8b).
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Figure 4.9: Eigenfunctions of the equatorial Rossby mode with no radial node (n = 0)
for m = 2. (a) Meridional eigenfunctions extracted from the simulation (lower panels)
and those obtained from the linear analysis (upper panels). The same notation is used as
in Fig. 4.7a. (b) Radial eigenfunction of vθ at the equator. Black solid and red dashed lines
represent the results from simulation and linear calculation, respectively. (c) Latitudinal
eigenfunction of vθ in the middle convection zone.

Figures 4.8c and d show the same equatorial power spectra of vθ at fixed azimuthal
orders |ṽθ,eq(r,m = 1, ω)|2 and |ṽθ,eq(r,m = 16, ω)|2, respectively. As shown in Fig. 4.8c,
three distinct modes exist at low-m regime;

• A retrograde-propagating mode that exists globally in radius at ω/2π ≈ −395 nHz.
Its mode frequency is close to the theoretical eigenfrequency of the n = 0 Rossby
mode predicted in linear analysis (denoted by red line) and is independent of height.
This mode is undoubtedly identified as the n = 0 equatorial Rossby mode and will
be discussed in §4.5.2.1.

• A retrograde-propagating mode localized near the surface at ω/2π ≈ −230 nHz is
also seen. This mode is identified as the equatorial Rossby mode with one radial
node (n = 1) and will be discussed in §4.5.3.

• A prograde-propagating mode localized near the surface at ω/2π ≈ 320 nHz is also
apparent. This mode is identified as the north-south ζz-antisymmetric columnar
convective mode and will also be discussed in §4.5.3.

At higher m, on the other hand, most of the power is concentrated near the bottom con-
vection zone at frequencies close to those of the n = 0 Rossby modes from the linear
analysis (denoted by red line) as shown in Fig. 4.8d. Properties of these high-m Rossby
modes will be discussed in §4.5.2.2.
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4.5.2.1 Rossby modes with n = 0 and m ≤ 4

At low m, equatorial Rossby modes can be unambiguously found in our simulation. Fig-
ure 4.9a shows the extracted eigenfunctions of m = 2 mode as an example. The associated
flow motion is mostly r-vortical and quasi-toroidal, i.e., vr ≈ 0. Geostrophical balance is
well established by positive (negative) p1 in a region where ζr is negative (positive) in the
northern (southern) hemisphere. The radial component of the Coriolis force is balanced
by the radial pressure gradient force. For m ≤ 4, almost all the power is in real part of the
eigenfunction of vθ (ℜ[vθ]) and the imaginary part for vϕ (ℑ[vϕ]): The other components of
the eigenfunctions (for example ℑ[vθ] orℜ[vϕ]) are small and consistent with noise. For
comparison, we also show the eigenfunctions of m = 2 equatorial Rossby mode with no
radial node (n = 0) obtained from our linear calculation in the uppper panel of Fig. 4.9a.
A very good agreement can be seen between the extracted eigenfunctions from the non-
linear simulation and those of the linear calculation. Figures 4.9b and c further compare
the radial and latitudinal structures of the eigenfunction of vθ. The radial eigenfunction
roughly shows a monotonic increase towards the surface as expected from the analytical
solution for the ideal case of inviscid and uniformly-rotating sphere, vθ ∝ rm (e.g., Saio
1982). Similarly, the latitudinal eigenfunction also roughly follows the analytical solution
for the ideal case, vθ ∝ sinm−1 θ.

It is noteworthy that the m = 1 equatorial Rossby mode shown in Fig. 4.8c has a flow
vorticity that is uniform in the frame of the mode and points in a direction perpendicular to
the solar rotation axis. This particular mode is often called the “spin-over inertial mode”
(e.g., Greenspan et al. 1968) and has been extensively studied in the context of planetary
cores (e.g., Triana et al. 2012, Rekier 2022).

We also note that these equatorial Rossby modes at low m are very long-lived. For
instance, the m = 4 mode has a linewidth of 7.5 nHz and the corresponding lifetime of
about 500 days. The modes with m < 4 have much longer lifetimes as their linewidths are
too small to be well resolved and to be fitted with Lorentzian.

4.5.2.2 Rossby modes with n = 0 and m > 4

As m increases, the eigenfunctions of the n = 0 equatorial Rossby modes significantly
deviate from the well-known analytical expression of, vθ ∝ rm sinm−1 θ. Figure 4.10 shows
the eigenfunctions at m = 24 that is extracted from the convection simulation along the
power ridge shown in Fig. 4.8a. We emphasize that the eigenfunctions become essentially
complex, with the complex phase for each variable being a function of r and θ. For large
azimuthal order m, the modes cease to be quasi-toroidal, i.e., the radial motions become
substantial and the modes are partially convectively driven. This can be confirmed by the
fact that, in Fig. 4.10, vr and s1 have the same sign at the same phase in both hemispheres.
The transport properties of thermal energy will later be discussed in detail in § 4.6.2.

It is also found that the n = 0 Rossby modes are more and more confined towards
the base of the convection zone as m increases. This is clearly illustrated in Fig. 4.12
where the normalized eigenfunctions ofℜ[vθ] at the equator are plotted against radius for
different m. For m ≥ 4, the radial eigenfunctions become decreasing functions in radius,
which clearly disagrees with the analytical solution of Rossby modes in the ideal case
(uniform rotation and no viscosity) (Saio 1982). In the ideal case, rm dependence is re-
quired in order to balance the radial component of the Coriolis force by the radial pressure
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Figure 4.10: Extracted eigenfunctions of the n = 0 equatorial Rossby modes at m = 24.
Eigenfunctions of radial velocity (imaginary) ℑ[vr], latitudinal velocity (both real and
imaginary) ℜ[vθ], ℑ[vθ], longitudinal velocity (real) ℜ[vϕ], pressure perturbation (real)
ℜ[p1], and entropy perturbation (imaginary) ℑ[s1] are shown from left to right. The real
and imaginary phases are determined in a way that ℜ[vθ] at the base takes its maximum
at the equator.

Figure 4.11: Radial profiles of the effective diffusivity due to small-scale convective mo-
tions νeff (black solid). For comparison, the explicit viscosity used in the simulation and
the turbulent diffusivity estimated based on the mixing-length model (Muñoz-Jaramillo
et al. 2011) are also shown by blue and red dashed lines.
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Figure 4.12: Radial structure of the real eigenfunctions of latitudinal velocity ℜ[vθ] at
the equator. The eigenfunctions are normalized to unity at the base. Different colors
represent different azimuthal orders m. Solid and dashed lines denote those extracted
from the nonlinear simulation and from the linear eigenmode calculation, respectively.

Figure 4.13: Schematic illustration of the flow structure of the n = 0 equatorial Rossby
modes at (a) low-m and (b) high-m regimes.
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gradient. We attribute this discrepancy to the strong viscous diffusion in our simulation:
When strong diffusivity is present, the radial force balance is drastically changed. This
has already been pointed out by Bekki et al. (2022b) who showed, in the linear regime,
that the eigenfunctions of n = 0 Rossby modes tend to be localized near the base of the
convection zone when the turbulent viscosity is above ≈ 1012 cm2 s−1. To confirm this,
we show in Fig. 4.12 the results from our linear calculations by dashed lines that can well
explain this trend. In fact, the effective diffusivity in our nonlinear simulation is substan-
tially enhanced by the turbulent (eddy) momentum mixing by the convective flows. In
Fig. 4.11, we estimate the turbulent diffusivity due to the small-scale convective motions
in the simulation to be ≈ 3× 1012 cm2 s−1 throughout the convection zone, which is larger
than the explicit viscosity value of 1012 cm2 s−1. Therefore, the effective viscosity is dom-
inated by the eddy diffusion due to the stochastic convective motions on resolved scales.
For more detailed discussions on the effect of turbulent diffusion on Rossby modes, see
§ 5 in Bekki et al. (2022b).

Figure 4.10 also reveals that, at high m, the flow motions are characterized by z-
vortices along with the tangential cylinder, as manifested by the eigenfunctions of ℑ[vr],
ℑ[vθ], andℜ[vϕ]. The essential difference from the columnar convective modes discussed
in §4.5.1 is here that ζz is north-south antisymmetric across the equator. This is schemati-
cally illustrated in Fig. 4.13. These modes should also be distinguished from the prograde-
propagating “mixed Rossby modes” (that we will discuss in § 4.5.3) where the power is
strongly localized near the surface and not at the tangential cylinder.

Note that these high-m equatorial Rossby modes have generally broader linewidths
(thus shorter lifetimes) than those with low m. For instance, the mode with m = 15 has a
linewidth of about 25 nHz. This is in fact comparable to those observed in the Sun (the
linewidth of the m = 15 mode observed on the Sun is reported to be ≈ 10–40 nHz, see
Löptien et al. 2018, Liang et al. 2019, Proxauf et al. 2020).

4.5.3 Mixed Rossby modes
Figure 4.14a shows the same equatorial power spectrum near the surface as Fig. 4.8b
except that we extend the spectrum to negative azimuthal orders (m < 0) consider-
ing the symmetry with respect to the origin; |ṽθ,eq(−m,−ω)|2 = |ṽθ,eq(m, ω)|2. We also
show the equatorial power spectrum of the north-south antisymmetric component of vϕ
in Fig. 4.14b. Note that both Fig. 4.14a and b have the same symmetry and thus rep-
resent the same modes. This enables us to better see the connection between the two
distinct power ridges that are each denoted by “mixed (retrograde)” and “mixed (pro-
grade)”: These two oppositely-propagating modes form a single continuous power ridge
across m = 0, implying that they are essentially mixed with each other. The axisymmetric
mode (m = 0) is considered to be an inertial mode trapped inside the spherical shell (e.g.,
Rieutord et al. 2001, Rieutord and Valdettaro 2018) and has an oscillation frequency of
about ω/2π ≈ ±280 nHz.

Figure 4.15a shows the extracted eigenfunctions of the retrograde-propagating mode
at m = 2. The retrograde-propagating mode can be classified as an equatorial Rossby
mode with one radial node n = 1 in the middle convection zone as depicted in Fig. 4.15b.
We note that the nodal plane is more cylindrical than radial outside the tangential cylinder.
The associated motion is dominantly r-vortical near the surface, but unlike the n = 0 equa-
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Figure 4.14: Power spectra of horizontal velocities near the surface extended to nega-
tive azimuthal orders (m < 0). (a) Equatorial power spectrum of north-south symmetric
component of vθ near the top boundary r = 0.95R⊙, which is the same as Fig. 4.8b. The
power is normalized at each m. Shown in red points are the frequencies of the “mixed
Rossby modes” obtained from our linear analysis. The blue line represents the advection
frequency of the equatorial differential rotation, m [Ω(0.95R⊙, π/2) −Ω0]. (b) Equatorial
power spectrum of north-south antisymmetric component of vϕ near the top boundary
r/R⊙ = 0.95.

torial Rossby modes, non-negligible radial velocities are involved. Similarly, the extracted
eigenfunctions of the prograde-propagating mode at m = 2 are shown in Figure 4.16a. The
prograde-propagating mode can be classified as a north-south ζz-antisymmetric columnar
convective mode as illustrated in Fig. 4.16b. Given that both of these modes follow the
same dispersion relationship, we call them “mixed Rossby modes” in this paper.

The existence of the “mixed Rossby modes” was first pointed out in Bekki et al.
(2022b). Their dispersion relation asymptotically approaches to that of n = 0 equatorial
Rossby mode for large m with negativeω (retrograde modes) and to that of the north-south
ζz-symmetric columnar convective mode for large m with positive ω (prograde modes).
The coupling between these two oppositely-propagating modes can be understood by
analogy to the well-known mixed Rossby-gravity waves (sometimes called Yanai waves)
in the geophysical context (e.g., Matsuno 1966, Vallis 2006) whose dispersion relation is
asymptotic to that of classical Rossby waves for large m with negative ω (retrograde) and
asymptotic to that of inertia-gravity waves for large m with positive ω (prograde).

To further support the identification of these mixed Rossby modes, we compute the
dispersion relation and the corresponding eigenfunctions using the linear eigenvalue solver.
The computed dispersion relation is shown by red points in Fig. 4.14 for m ≤ 5, which
nicely agrees with the power ridge in the simulated spectrum. We also show in Fig. 4.15a
and Fig. 4.16a the eigenfunctions of the n = 1 equatorial Rossby mode and the north-
south ζz-antisymmetric columnar convective mode at m = 2 obtained from the linear
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4.5 Low-frequency modes found in our simulation

Figure 4.15: (a) Eigenfunctions of the retrograde-propagating mixed Rossby mode (n = 1
equatorial Rossby mode) at m = 2. Lower and upper panels show the results extracted
from the simulation and those obtained from the linear analysis. (b) Schematic illustration
of this mode.

Figure 4.16: (a) Eigenfunctions of the prograde-propagating mixed Rossby mode (north-
south ζz-antisymmetric columnar convective mode) at m = 2. Lower and upper panels
show the results extracted from the simulation and those obtained from the linear analysis.
(b) Schematic illustration of this mode.
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4 Amplitudes of equatorial vorticity modes from a nonlinear simulation

calculation. The agreement between the simulation and linear theory is striking.

4.6 Transport properties of low-frequency modes

4.6.1 Mode amplitudes
So far, we have investigated the eigenfunctions and eigenfrequencies of the north-south
ζz-symmetric columnar convective modes, the n = 0 equatorial Rossby modes, and the
“mixed Rossby modes”. In this section, we discuss how significant these modes are for
transport processes in our nonlinear simulation.

Figure 4.17a shows the spectra of the maximum horizontal velocity vh =
√
v2
θ + v

2
ϕ of

the equatorial modes near the surface. It is clearly seen that the north-south ζz-symmetric
columnar convective modes are the most dominant in power: They account for about
10 − 30 % of the total velocity power of the simulation near the surface (black dashed
line). When observed at the surface, the n = 0 equatorial Rossby modes are much weaker
than the columnar convective modes and the “mixed Rossby modes”. Nonetheless, their
amplitudes are comparable to those observed on the Sun (Liang et al. 2019, Gizon et al.
2021) This may imply that these equatorial Rossby modes are both excited and damped
by the turbulent convective motions.

Figure 4.17b shows, on the other hand, the spectra of the volume-integrated kinetic
energies of these modes. It is shown that, despite the weak amplitudes in the surface spec-
trum, the total kinetic energy of the n = 0 equatorial Rossby modes become significant:
It is much larger than that of the mixed modes for m > 6, and become comparable to
that of the ζz-symmetric columnar convective modes for m ≥ 10. This reflects the fact
the n = 0 Rossby modes are concentrated near the base of the convection zone at high m
where the background density is substantial. As shown in the 2nd column of Table 4.1,
the ζz-symmetric columnar convective modes and the n = 0 Rossby modes have about 7%
and 6% of the total fluctuating (m , 0) kinetic energy of the simulation, respectively.
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Figure 4.17: (a) Maximum horizontal velocity vh of the equatorial modes near the top
boundary r = 0.95R⊙ at each azimuthal order m. Red, blue, and green points represent
the ζz-symmetric columnar convective modes, n = 0 equatorial Rossby modes, and the
mixed Rossby modes, respectively. Black dashed line represents the overall power of
the convection simulation (including modes at high latitudes and stochastic convective
motions). Cyan diamonds and squares denote the (rms) horizontal velocity amplitudes
of the observed Rossby modes near the solar surface obtained by Liang et al. (2019) and
Gizon et al. (2021), respectively. (b) Spectra of volume-integrated kinetic energy of the
equatorial modes.
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4.6 Transport properties of low-frequency modes

Figure 4.18: Enthalpy fluxes Fe associated with the extracted modes in our simula-
tions summed over m = 1 − 39. Panels (a), (b), and (c) show those of the ζz-symmetric
columnar convective modes, the n = 0 equatorial Rossby modes, and the mixed Rossby
modes, respectively. In panel (d), the total enthalpy flux (including other modes and
small-scale convection) is shown. The fluxes are normalized by the injected energy flux
F∗ = L∗/(4πr2).

4.6.2 Thermal energy transport

To examine the properties of the thermal energy transport, we compute the (radial) en-
thalpy flux Fe for each extracted mode as

Fe = ρ0cp⟨vrT1⟩, (4.18)

where ⟨⟩ denotes the longitudinal average and T1 is temperature perturbation

T1 =

[
γ − 1
γ

p1

p0
+

s1

cp

]
T0. (4.19)

Figures 4.18a, b, and c show meridional distributions of the enthalpy flux Fe for the three
extracted vorticity modes summed over m = 1 − 39. We note that all of these modes
transport the thermal energy radially upward. The ζz-symmetric columnar convective
modes transport about 65% of what is required in the upper convection near the equator.
The n = 0 Rossby modes and the mixed modes can transport about 8−9% of the required
thermal energy in the lower and upper convection zone, respectively, outside the tangential
cylinder.

This is a striking result because the n = 0 Rossby modes are believed to be quasi-
toroidal and cannot contribute to the thermal energy transport in the linear theory for the
simplified case with uniformly rotation, no turbulent diffusion, and adiabatic background
stratification (e.g., Saio 1982, Damiani et al. 2020). We find that, under the influence of
strong turbulent diffusion and superadiabatic background, the n = 0 equatorial Rossby
modes become partially convective especially at high m.
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4 Amplitudes of equatorial vorticity modes from a nonlinear simulation

Figure 4.19: Reynolds stresses associated with the extracted modes in our simulations
summed over m = 1−39. Panels (a), (b), and (c) show those of the ζz-symmetric columnar
convective modes, the n = 0 equatorial Rossby modes, and the mixed Rossby modes,
respectively. In panel (d), the total Reynolds stresses (including other modes and small-
scale convection) is shown. Upper and lower panels correspond to ρ0⟨vrvϕ⟩ and ρ0⟨vθvϕ⟩.

4.6.3 Angular momentum transport

These equatorial vorticity modes also transport the angular momentum. Figures 4.19a,
b, and c show the Reynolds stresses ρ0⟨vrvϕ⟩ (upper panels) and ρ0⟨vθvϕ⟩ (lower panels)
summed over all m values for the extracted ζz-symmetric columnar convective modes,
n = 0 equatorial Rossby modes, and the “mixed Rossby modes”, respectively. These
terms are proportional to the radial and latitudinal components of the convective angular
momentum flux. For comparison, we show the total Reynolds stresses in our simula-
tion (which include contributions from the other modes and small-scale convection) in
Fig. 4.19d.

As for radial transport of the angular momentum, the dominant contribution is from
the ζz-symmetric columnar convective modes that is about 8 times bigger than those from
the n = 0 Rossby modes and the “mixed Rossby modes”. The radially-upward angu-
lar momentum flux by the columnar convective modes accounts for about 37% of the
total amount in the upper half of the convection zone near the equator. The positive
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4.7 Summary and discussion

⟨vrvϕ⟩ outside the tangential cylinder is a common feature of convection simulation in a
strongly rotationally-constrained regime (Gastine et al. 2013, Fan and Fang 2014, Hotta
et al. 2015a, Matilsky et al. 2020).

On the other hand, the angular momentum is preferentially transported equatorward
in our simulation, as manifested by positive (negative) ⟨vθvϕ⟩ in the northern (southern)
hemisphere in Fig. 4.19d lower panel. Our analysis reveals that both the ζz-symmetric
columnar convective modes and the n = 0 Rossby modes contribute to this net equator-
ward angular momentum transport by about 30 − 40% near the surface and at the base,
respectively. The “mixed Rossby modes” turn out to be rather insignificant for the net
angular momentum transport in the latitudinal direction.

4.7 Summary and discussion

In this paper, we report a mode-by-mode analysis of the low-frequency equatorial vorticity
modes in a fully-nonlinear simulation of solar-like rotating convection. This study was
motivated by the recent observational discovery of various types of inertial modes on the
Sun (Löptien et al. 2018, Gizon et al. 2021) and the consequent theoretical study on these
modes in a linear regime (Bekki et al. 2022b).

Based on the equatorial velocity power spectra, we have successfully identified and
characterized several types of equatorial modes in our simulation. For each mode, eigen-
functions are extracted using the SVD method. We have also carried out the linear eigen-
mode analysis with the simulated differential rotation included. The computed linear dis-
persion relations and eigenfunctions are compared with the simulated power spectra and
the extracted eigenfunctions. Our work provides a technique for subsequent numerical
studies of low-frequency inertial modes in nonlinear convection simulations.

We have successfully identified the ζz-symmetric columnar convective modes, the n =
0 equatorial Rossby modes, and the “mixed Rossby modes”. Table 4.1 summarizes the
modes identified in this paper. Although we have mainly focused on these equatorial
modes in this paper, we have also checked that the high-latitude modes are found to exist
in our simulation as well (see Appendix 4.8.5).

Our major findings can be summarized as follows. The north-south ζz-symmetric
columnar convective modes have the highest power in our simulation. They originate pri-
marily from the compressional β-effect near the surface and thus can be well characterized
by the dispersion relation similar to that of Glatzmaier and Gilman (1981). They trans-
port a significant fraction of enthalpy upward and are the dominant term in the angular
momentum transport near the equator.

Our analysis reveals that, at high m, the equatorial Rossby modes with no radial nodes
(n = 0) have eigenfunctions that deviate from that of the uniformly-rotating and inviscid
case (rm sinm θ). As m increases, we find that these modes are more and more confined
near the base of the convection zone. We argue that this is due to the strong diffusion
arising from the turbulent convective motions on resolved scales, which breaks the radial
force balance between the pressure gradient and the Coriolis force and drives radial flows
(Bekki et al. 2022b). We find that these equatorial Rossby modes are the longest-lived
modes in our simulation.

Mode mixing between the equatorial Rossby modes and the columnar convective
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4 Amplitudes of equatorial vorticity modes from a nonlinear simulation

modes is found in our nonlinear simulations, as predicted by the linear analysis of Bekki
et al. (2022b). The surface power spectrum of the north-south symmetric vθ can be char-
acterized by two oppositely-propagating modes that form a single well-defined power
ridge across m = 0. The retrograde and prograde modes for m > 0 can be identified
as the n = 1 equatorial Rossby modes and the north-south ζz-antisymmetric columnar
convective modes, respectively. We call them “mixed Rossby modes” following Bekki
et al. (2022b). An analogy can be drawn between these “mixed modes” and the Yanai
waves (mixed Rossby-gravity waves) where the retrograde-propagating Rossby waves
and prograde-propagating gravity waves (Kelvin waves) are mixed with one another (e.g.,
Vallis 2006). The existence of the “mixed Rossby modes” has important implications.
One of these follow from its frequency which is very close to that of the n = 0 equatorial
Rossby mode at m ≥ 5 (see Fig. 10 in Bekki et al. 2022b). Therefore, it is possible that
the observed Rossby modes on the Sun could be n = 1 modes rather than n = 0 modes as
is typically assumed.

The nonlinear simulations contain a wealth of information about many more modes
of oscillations in the inertial frequency range. In fact, the analysis method reported in this
paper can be used in the future to study the m = 1 high-latitude inertial mode (Gizon et al.
2021, Bekki et al. 2022b) and the l = m + 1 high-frequency retrograde modes (Hanson
et al. 2022).
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4.8 Appendix

4.8 Appendix

4.8.1 Spatio-temporal discretization scheme
The same numerical scheme as Vögler et al. (2005) is used. Suppose that a partial equa-
tion describing the time evolution of a quantity Q is written as

∂Q
∂t
= −

∂F (Q)
∂x

+ S(Q), (4.20)

whereF andS are the x-directed flux function and the source function, respectively. Time
integration is conducted in a following 4-step manner to compute the value at t = (n+1)∆t,

Qn+1/4
i = Qn

i −
∆t

4∆x
(F̃ n

i+1/2 − F̃
n

i−1/2) +
∆t
4
Sn, (4.21)

Qn+1/3
i = Qn

i −
∆t

3∆x
(F̃ n+1/4

i+1/2 − F̃
n+1/4

i−1/2 ) +
∆t
3
Sn+1/4, (4.22)

Qn+1/2
i = Qn

i −
∆t

2∆x
(F̃ n+1/3

i+1/2 − F̃
n+1/3

i−1/2 ) +
∆t
2
Sn+1/3, (4.23)

Qn+1
i = Qn

i −
∆t
∆x

(F̃ n+1/2
i+1/2 − F̃

n+1/2
i−1/2 ) + ∆tSn+1/2. (4.24)

Here, i denotes the index of the grid position along a spatial direction x, and F̃i+1/2 repre-
sents the numerical flux evaluated at the cell boundary as

F̃i+1/2 =
−Fi+2 + 7Fi+1 + 7Fi − Fi−1

12
. (4.25)

The source functions are calculated with fourth-order accuracy using the first and second
spatial derivatives,(

∂Q
∂x

)
i
=
−Qi+2 + 8Qi+1 − 8Qi−1 + Qi−2

12∆x
, (4.26)(

∂2Q
∂x2

)
i
=
−Qi+2 + 16Qi+1 − 30Qi + 16Qi−1 − Qi−2

12∆x2 . (4.27)

4.8.2 Slope-limited artificial diffusion
We use the slope-limited (strongly non-linear) artificial diffusion proposed by Rempel
(2014). The artificial viscous term is added after the 4-step Runge-Kutta time integration,

Qnew
i = Qi +

∆t
∆x

( f̃i+1/2 − f̃i−1/2), (4.28)

where f̃i+1/2 denotes the numerical artificial diffusive flux at the cell interface. In order to
minimize the numerical diffusions on the resolved scale and to obtain an effective cutoff
at the grid scale, the numerical diffusive flux is determined in the following manner. First,
we reconstruct the values at the cell interface i + 1/2 that are extrapolated from left and
right sides based on the discrete solutions ui as

QL
i+1/2 = Qi + ∆Qi/2, (4.29)

QR
i+1/2 = Qi+1 − ∆Qi+1/2. (4.30)
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Figure 4.20: Schematic diagram explaining how to reconstruct the values at the cell inter-
faces, extracted from both sides, for (a) an oscillatory region where the solution is locally
non-monotonic, (b) a shock region where the solution is locally monotonic but has a jump,
and (c) a region where the solution is monotonic and is sufficiently smooth.

Here, ∆Qi denotes the reconstruction slope for the ith cell and given by

∆Qi = minmod
[Qi+1 − Qi−1

2
, 2(Qi+1 − Qi), 2(Qi − Qi−1)

]
, (4.31)

where minmod selects the variable whose amplitude is the smallest among three if all of
their signs are the same, whereas it returns zero when any of them has a different sign
from the others. As a result, QR

i+1/2 − QL
i+1/2 becomes the largest possible value Qi+1 − Qi

when a discrete solution shows a zigzag structure whereas QR
i+1/2 − QL

i+1/2 vanishes if the
discrete structure is sufficiently smooth. This is clearly illustrated in Fig. 4.20.

The Numerical diffusive fluxes are given so that it becomes essentially proportional to
a difference between the two extrapolated values at the cell interface as

f̃i+1/2 = −
ci+1/2

2
Φh

[
QR

i+1/2 − QL
i+1/2,Qi+1 − Qi

]
· (QR

i+1/2 − QL
i+1/2). (4.32)

Here, an adjustment factor Φh is further introduced to minimize the diffusion. We use the
functional form of Φh given by

Φh(a, b) =
{

max [0, 1 + h (a/b − 1)] (ab > 0)
0 (ab < 0). (4.33)

Here, a parameter h controls the degree of diffusion. For example, a choice of h = 0
(and thus Φh = 1) reduces to that of Lax-Friedrich scheme. For 0 < h < 1, the scheme
becomes less diffusive than Lax-Friedrich scheme since Φh returns a value smaller than 1
for smooth regions, i.e., |(QR

i+1/2 − QL
i+1/2)/(Qi+1 − Qi)| is small. For h > 1, Φh begins to

return 0 for sufficiently smooth regions, i.e., |(QR
i+1/2−QL

i+1/2)/(Qi+1−Qi)| < 1−1/h. This
is clearly illustrated in Fig. 4.21. In all of our calculations, we set h = 1.5.

The slope-limited artificial diffusion described above is applied to the momentum ρ0u
after the final Runge-Kutta time integration. The kinetic energy dissipated by the artificial
diffusion Q̃D is converted to the internal energy to keep the global energy conservation
well. This is given by

Q̃D = − f̃i j(ρ0u)
∂vi

∂x j
, (4.34)
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4.8 Appendix

Figure 4.21: Dependence of Φh on h parameter. Blue and red color scale linearly corre-
sponds 0 and 1, respectively. As h increases, Φh is switched on only when QR − QL ≈

Qi+1 − Qi, i.e., the solution is highly oscillatory.

where f̃ denotes the artificial diffusive momentum flux.

4.8.3 Implementation of the Yin-Yang grid
In this appendix, we briefly explain how to transform vectors and tensors between Yin
and Yang grids. The transformation matrix (metric tensor)M is defined as

eβ̄ =Mα
β̄
eα, (4.35)

where eα and eβ̄ are the unit vectors of the Yin (denoted by subscripts without bar) and
Yang grids (denoted by subscripts with bar), respectively. In the spherical coordinate, the
above equation can be expressed as (Kageyama and Sato 2004),

(
er̄, eθ̄, eϕ̄

)
=

(
er, eθ, eϕ

)  1 0 0
0 − sin ϕ sin ϕ̄ − cos ϕ̄/ sin θ
0 cos ϕ̄/ sin θ − sin ϕ sin ϕ̄

 . (4.36)

This leads to a useful formula of Yin-Yang transformation,

r̄ = r,
θ̄ = cos−1 (sin θ sin ϕ), (4.37)

ϕ̄ = tan−1
(
−

cos θ
sin θ cos ϕ

)
.

Note that the transformation matrix M is orthogonal, meaning that the Yin-Yang trans-
formation is symmetric and complemental with each other,

tM =M−1. (4.38)

Since a vector V is invariant with respect to the choice of the coordinate;

V = Vαeα = V β̄eβ̄, (4.39)

the vector transformation can be easily derived as

V β̄ =Mβ̄
αVα. (4.40)
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4 Amplitudes of equatorial vorticity modes from a nonlinear simulation

Figure 4.22: Result of the strong-scaling test. Shown is the relative speed-up as a function
of number of cores. Red and blue points indicate the simulations with and without the
viscous terms. Black dashed line represent the ideal scaling.

In the spherical coordinate, this can be expressed as
V r̄

V θ̄

V ϕ̄

 =
 1 0 0

0 − sin ϕ sin ϕ̄ − cos ϕ/ sin θ̄
0 cos ϕ/ sin θ̄ − sin ϕ sin ϕ̄


 Vr

Vθ

Vϕ

 . (4.41)

In the same way, the tensor transformation can be derived as follows. Let us consider a
second-order tensor T ,

T = T αβeα ⊗ eβ = T γ̄δ̄eγ̄ ⊗ eδ̄. (4.42)

Substituting the Eq.(4.35), we have

T γ̄δ̄ = T αβMγ̄
αM

δ̄
β. (4.43)

The Eq.(4.43) can be used to set the boundary condition of the viscous stress tensor or
determining the Λ-effect tensor in the simulation code.

4.8.4 Code performance
Since our code is designed to avoid the global communications among cores as much as
possible, it is expected to hold a high MPI parallel efficiency. In this appendix, we carry
out performance benchmark tests to evaluate the code’s strong scaling: The elapsed CPU
time used to finish 300 steps of time integration is measured with an increasing number of
cores, while fixing the total problem size to (Nr,Nθ,Nϕ) = (144, 768, 1536). The scaling
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Figure 4.23: Mollweide-projected view of radial velocity at (a) r = 0.99R⊙ and at (b)
r = 0.92R⊙ from our high-resolution calculation.

tests have been carried out at the COBRA HPC system at the Max Planck Computing and
Data Facility (MPCDF). We use Intel compiler version 19.1 and Intel MPI version 19.7.
Figure 4.22 shows the result of the performance test for the cases with and without the
explicit viscous and thermal diffusion. When the explicit diffusion is excluded (and only
the artificial diffusion is used), the code scales almost perfectly up to 104 cores. However,
it is shown that the use of explicit diffusion makes the code slightly inefficient. This is
because we set the boundary condition on the viscous stress tensor in the code as well.

To demonstrate a high performance of our code, we show a snapshot of the high-
resolution simulation of rotating convection in Figure 4.23. Although the scale of convec-
tion at the surface becomes much smaller than the low-resolution simulation discussed in
§4.5.1, the existence of thermal Rossby waves (’banana’ cells) can still be confirmed.
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4 Amplitudes of equatorial vorticity modes from a nonlinear simulation

Figure 4.24: (a) Power spectrum of nouth-south anti-symmetric component of latitudinal
velocity at the base of the convection zone r = 0.71R⊙ at m = 1 as a function of latitude.
The high-latitude power associated with topographic Rossby mode is denoted by white
arrows at ω/2π ≈ −105 nHz. (b) Extracted eigenfunctions of topographic Rossby mode
(with north-south symmetric for ζz) at m = 1. Upper and lower panels show the eigen-
functions extracted from simulation and that of linear analysis, respectively.

4.8.5 High-latitude modes
In this appendix, we demonstrate that the high-latitude modes (topographic Rossby modes),
as well as traditional equatorial Rossby modes and columnar convective modes, exist in
our simulation predominantly at m = 1. For m = 2 and 3, the power still exists but
is getting substantially weaker. Figure 4.24a shows the power spectrum of north-south
symmetric component of vθ at the base of the convection zone r = 0.71R⊙ at m = 1 as a
function of latitude. The power of topographic Rossby mode can be seen at ω/2π ≈ −105
nHz from middle to high latitudes. The extracted eigenfunctions of this mode are shown
on the upper panels of Fig.4.24b and are compared with the results of linear analysis
(lower panels). The associated flow is dominantly z-vortical and is strongly confined
inside the tangential cylinder. This mode can be called as ’north-south symmetric high-
latitude mode’ because ζz is symmetric across the equator. The product of ζz and p1 is
negative throughout the domain, showing that the mode is in geostrophic balance.

In addition to the symmetric modes, we also identified the north-south anti-symmetric
high-latitude modes in our simulation. Figure 4.25a shows the same power spectrum
as Fig. 4.24a but for symmetric component of vθ between the hemispheres. The power
resides at ω/2π ≈ −48 nHz in high latitudes (above ±50 deg) whereas the equatorial
Rossby mode (r mode) exists at ω/2π ≈ −400 nHz in low latitudes. Figure 4.25b shows
the extracted eigenfunctions of anti-symmetric high-latitude mode at m = 1. Unlike the
symmetric mode, ζz is dissected between the hemispheres. However, there exists a latitu-
dinal velocity at the equator, which can correlate the vortices between the hemispheres.

156



4.8 Appendix

Figure 4.25: (a) Power spectrum of north-south symmetric component of latitudinal ve-
locity at the base of the convection zone r = 0.71R⊙ at m = 1 as a function of latitude.
High-latitude mode power exists at the frequency of about −48 nHz, whereas the equa-
torial Rossby power can be seen at the frequency of about −400 nHz. (b) The same as
Fig. 4.24(b) but for the high-latitude mode with north-south anti-symmetric for ζz.
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5 Baroclinic instability as an origin of
the high-latitude inertial modes in
the Sun

Abstract

Recent observations show that, at high latitudes, the large-scale flow on the Sun is dom-
inated by a retrograde-propagating spiraling pattern with the azimuthal order m = 1.
However, the physical origin of this flow feature is still unknown. The aim of this study
is to demonstrate that the observed high-latitude flow feature can be explained in terms of
the baroclinically-induced Rossby modes. We first carry out a linear analysis of the eigen
oscillations of the Sun including the latitudinal entropy gradient in the solar convection
zone. It is shown that baroclinic instability occurs at high latitudes when the latitudi-
nal entropy gradient is included. The eigenfunctions at the surface show a spiral pattern
which is in a good agreement with the observations. The dispersion relation of the most
unstable baroclinic modes agree well with the observed mode frequencies for 1 ≤ m ≤ 4.
We further conduct a set of nonlinear simulations where the thermal wind is artificially
forced and show that the baroclinic instability leads to an efficient equatorward transport
of the thermal energy. In the nonlinear phase, the most dominant baroclinic mode always
turns out to be the m = 1 mode with the north-south anti-symmetric longitudinal velocity.
It is also demonstrated that the baroclinic instability serves as an inherent mechanism to
regulate the amplitudes of latitudinal differential rotation (and the entropy variation) in
the solar convection zone. We emphasize for the first time a significance of the baroclinic
instability on the large-scale flow dynamics in the solar convection zone.

5.1 Introduction

In the outer 30% of the Sun, thermal convection occurs on various spatial and temporal
scales. On small scales, granulation and supergranulation are robustly observed at the
surface (e.g., Nordlund et al. 2009). On the other hand, large-scale convection in the Sun is
rather poorly understood. It is generally predicted that large-scale convective motions are
strongly rotationally-constrained and tend to exist in the form of the columnar convective
modes (thermal Rossby waves) (Glatzmaier and Gilman 1981, Busse 2002, Miesch et al.

This chapter reproduces a draft paper prepared by Y. Bekki, R. Cameron, and L. Gizon. Contribution:
Y. Bekki did most of the work.
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Figure 5.1: Observed spiralling pattern of the longitudinal velocity vϕ at high latitudes.
(a) A temporal snapshot of the non-axisymmetric vϕ on the solar surface at 2018/12/30
00h:00m:00s UT. The flow data is obtained by the local correlation tracking of supergran-
ulation seen in the HMI data (Hathaway and Upton 2021). (b) The surface eigenfunction
of vϕ for the m = 1 high-latitude inertial mode extracted from the 10-year time series of
HMI data. The flow data is obtained by the ring-diagram analysis (Gizon et al. 2021).

2008), also known as "banana-cell" convection (e.g., Elliott et al. 2000). However, these
large-scale convective patterns have never been successfully observed (Gizon et al. 2021).

Recent observational studies have revealed that the large-scale flow pattern on the Sun
falls into two distinct regimes (Hathaway and Upton 2021, Gizon et al. 2021). First, at
low latitudes, Rossby modes (r modes) have been unambiguously detected (Löptien et al.
2018, Liang et al. 2019, Hanasoge and Mandal 2019, Proxauf et al. 2020, Mandal and
Hanasoge 2020). The observed properties of the equatorial Rossby modes in the Sun are
theoretically investigated in both linear (Damiani et al. 2020, Gizon et al. 2020b, Bekki
et al. 2022b) and nonlinear regimes (Chapter 4).

At high latitudes, on the other hand, observations have found the longitudinal flow
features that spiral around the poles (Hathaway et al. 2013, Bogart et al. 2015, Hathaway
and Upton 2021, Gizon et al. 2021). We show in Fig. 5.1 an example of this flow feature
obtained by supergranulation tracking at the solar surface. The velocity power predomi-
nantly lies at the azimuthal order m = 1, and the flow pattern propagates in a retrograde
direction with respect to the Carrington frame. They have relatively large velocity am-
plitudes of about 9 − 12 m s−1 (Howe et al. 2015, Hathaway and Upton 2021, Gizon
et al. 2021). The associated Reynolds stresses become positive (negative) near the north
(south) poles, implying that they can substantially contribute to the equatorward angular
momentum transport at high latitudes.

Despite their significance on the convection zone dynamics, the physical origin of
these high-latitude flow features remains largely uncertain. Hathaway et al. (2013), Hath-
away and Upton (2021) claimed that they likely represent the giant convection cells ad-
vected by differential rotation in the deep convection zone. Indeed, Gilman (1975) has
shown that the most unstable convective modes at high latitudes exhibit spiralling pat-
terns using the linear model of rotating Bouussinesq convection. However, these features
are not well reproduced in solar-like rotating convection simulations in a spherical shell.
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5.2 Linear stability analysis of baroclinic modes

In this paper, we alternatively propose the baroclinic instability as a possible physical
origin for the observed large-scale high-latitude flow features in the Sun.

Baroclinic instability is an instability of thermal wind in a stratified rotating fluid. In
the Earth’s atmosphere, this instability plays a critical role in controlling the weather at
middle latitudes (e.g., Vallis 2006, Holton and Hakim 2013). Moreover, in the Venus at-
mosphere, the baroclinic instability is often considered crucial for sustaining the observed
"streak" structure of the clouds (Kashimura et al. 2019).

In the solar convection zone, the non-Taylor-Proudman differential rotation is con-
sidered to be maintained by the latitudinal entropy gradient via the thermal wind balance
(Kitchatinov and Ruediger 1995, Rempel 2005, Miesch et al. 2006, Brun et al. 2011, Hotta
2018), and thus should be essentially unstable for baroclinic instability. Historically, it has
long been believed that baroclinic instability is strongly suppressed when the background
is convectively unstable (Knobloch and Spruit 1982, Spruit and Knobloch 1984). Thus,
the main focus has been on the stability of the solar tachocline both in hydrodynamic
(Gilman and Dikpati 2014, Gilman 2016) and in magnetohydrodynamic regimes (Gilman
2015, 2017). Similar stability analyses have also been conducted for the stellar radiative
interiors with weak radial differential rotation (Kitchatinov 2013, 2014). However, recent
numerical experiments indicate that the baroclinic instability can still occur and grow even
in the presence of vigorous small-scale convection (Callies and Ferrari 2018).

In this paper, we claim that the observed large-scale high-latitude flow features result
from the baroclinic instability in the Sun. To this end, we carry out a set of numerical
experiments in both linear and nonlinear regimes: In the linear regime, the basic prop-
erties (dispersion relations and eigenfunctions) of the baroclinically-unstable modes are
investigated and compared with the observations. Then, we carry out a set of nonlin-
ear simulations of the large-scale flows in a spherical shell to study how the instability
develops and saturates inside the solar convection zone.

5.2 Linear stability analysis of baroclinic modes

In this section, we discuss the baroclinically-unstable modes in the solar convection zone
in the linear regime.

5.2.1 Numerical methods

For the linear analysis of baroclinic instability in the Sun, we use the numerical code de-
veloped and described by Chapter 3 (Bekki et al. 2022b). We seek for the low-frequency
eigenmodes under the influences of solar differential rotation and associated the back-
ground entropy gradient. The linearized equations of mass, motion, entropy, and state are
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5 Baroclinic origin of the high-latitude inertial modes

given in a spherical coordinate as

Dρ1

Dt
= −∇ · (ρ0u), (5.1)

Du
Dt
= −
∇p1

ρ0
−
ρ1

ρ0
ger + 2u ×Ωez

−r sin θu · ∇Ω +
1
ρ0
∇ ·Dvis, (5.2)

Ds1

Dt
= −vr

∂s0

∂r
−
vθ
r
∂s0

∂θ
+

1
ρ0T0
∇ · (κρ0T0∇s1), (5.3)

p1

p0
= γ

ρ1

ρ0
+

s1

cv
. (5.4)

Here D/Dt = ∂/∂t + (Ω −Ω0)∂/∂ϕ denotes the material derivative and Ω0/2π = 456 nHz
is the Carrington rotation rate. u = (vr, vθ, vϕ) denotes the velocity perturbation and p1,
ρ1, and s1 are the perturbations of pressure, density, and entropy with respect to the back-
ground quantities (denoted by subscript 0). We use the same solar background model as
Bekki et al. (2022b), which mimics the standard internal model S (Christensen-Dalsgaard
et al. 1996a). cv is the heat capacity per unit mass at constant volume and γ = 5/3 is the
specific heat ratio. Dvis represents the viscous stress tensor,

Dvis = ρ0ν

[
S −

2
3

(∇ · u)I
]
, (5.5)

where ν is viscous diffusivity and S denotes the velocity deformation tensor. For simplic-
ity, we use the spatially constant viscous and thermal diffusivities with ν = κ = 1012 cm2

s−1.
For prescribing the differential rotational in the convection zone Ω(r, θ), we use the

solar observational data inferred from global helioseismology (Larson and Schou 2018).
Note, however, that we slightly modified the rotational profile at high latitudes where the
measurements are not reliable, following the method described in Karak and Cameron
(2016). Figure 5.2a shows the profile of the differential rotation used in our linear analysis.

∂s0/∂r and ∂s0/∂θ represent radial and latitudinal deviations from the adiabatic back-
ground, respectively. Note that the deviation is assumed to be very small (≈ 10−6) so
that we can still use the adiabatic description for the background pressure, density, and
temperature. In order to distinguish the baroclinic modes from the convective modes,
we set the background to be convectively-neutral by omitting the radial entropy gradient
(∂s0/∂r = 0) in this study. On the other hand, the latitudinal entropy gradient ∂s0/∂θ is
estimated based on the thermal wind balance in the convection zone (e.g., Kitchatinov
and Ruediger 1995, Rempel 2005, Miesch et al. 2006, Brun et al. 2011),

g

cp

∂s0

∂θ
= r2 sin θ

∂Ω2

∂z
, (5.6)

as shown in Fig. 5.2b.
The numerical domain extends from the base of the convection zone r = 0.71R⊙ to

r = 0.985R⊙ and both radial boundaries are assumed to be impenetrable and stress-free.
At both poles (θ = 0, π), we set all variables to zero; u = ρ1 = s1 = 0. We seek for
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5.2 Linear stability analysis of baroclinic modes

Figure 5.2: (a) Differential rotation in the Sun deduced from the global helioseismology
(Larson and Schou 2018) used in the linear analysis. The rotational profiles near the poles
are corrected using the analytical model. The data is available online. (b) Latitudinal
entropy gradient estimated by the Eq.(5.6). Dotted lines denote the location of the top and
bottom boundaries used in our linear eigensolver.

solutions of the linearized equations assuming that the perturbations are proportional to
∝ exp

[
i(mϕ − ωt)

]
, where m is azimuthal order andω is frequency. The spatial derivatives

are evaluated with second-order finite-differences by 16 grid points in radial and by 72
grid points in latitudinal directions. The above Eqs (5.1)-(5.3) are combined in a matrix
form into a complex eigenvalue problem, which is numerically solved using the LAPACK
routine. For mode details about the linear eigen-solver, refer to Chapter 3.

5.2.2 Results
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5.2 Linear stability analysis of baroclinic modes

Figure 5.4: Eigenfunctions of azimuthal velocity vϕ of the baroclinically-unstable modes
with north-south anti-symmetric vϕ. Top, middle, and bottom rows show the modes with
kθ = 0, 1, and 2, respectively. Left and right panels are the meridional eigenfunctions
at the central meridian and the sphertical eigenfunctions at the surface r = 0.985R⊙,
respectively.

To assess the impact of the latitudinal entropy variation on the stability of the lin-
ear system, we first carry out two case studies with and without the baroclinic term,
−vθ(∂s0/∂θ)/r, in the equation of entropy (5.3). Figures 5.3a and b compare the distri-
bution of low-frequency eigenmodes in the complex frequency domain at m = 1. Note
that positive (negative) frequencyℜ[ω] corresponds to prograde (retrograde) propagation
and positive (negative) growth rate ℑ[ω] represents instability (damping). It is clearly
shown that some modes become unstable only when the latitudinal entropy gradient is in-
cluded, as indicated by red square in Fig. 5.3b. Figure 5.3c shows a zoom-in of Fig. 5.3b,
focusing on the unstable (growing) modes. As will be shown later, these unstable modes
represent the baroclinic instability and are classified by the number of latitudinal nodes
per hemisphere ky = 0 (red), ky = 1 (blue), and ky = 2 (green). The fastest growing mode
always turns out to be the one with ky = 0. It is also shown that the modes with both north-
south symmetries (denoted by stars and circles) appear as pairs at similar frequencies and
growth rates with each other.

Figure 5.4 shows the eigenfunctions of the baroclinically-unstable modes with north-
south anti-symmetry at m = 1 extracted from the Fig. 5.3c for different ky. Shown in
left and right panels are the meridional eigenfunctions at ϕ = 0◦ (central meridian) and
the surface eigenfunctions of the longitudinal velocity vϕ, respectively. All the modes
are confined inside the tangential cylinder, and thus, are visible only in high latitudes at
the surface. It is also clearly manifested that, regardless of ky, the baroclinically-unstable
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5 Baroclinic origin of the high-latitude inertial modes

Figure 5.5: Eigencuntions of (a) latitudinal velocity, (b) longitudinal velocity vϕ, (c)
pressure perturbation p1, and (d) entropy perturbation s1 of the north-south antisymmetric
kθ = 0 mode. Shoen are the cut at the fixed cylindrical radius r sin θ = 0.15R⊙ in the
northern hemisphere. The units are arbitrary.

Figure 5.6: Correlations between velocity and entropy perturbations (a,c) ⟨vr s1⟩ and
(b,d) ⟨vθs1⟩ of the kθ = 0 mode. Top and bottom rows correspond to the modes with (a,b)
north-south anti-symmetric and (c,d) north-south symmetric longitudinal velocity vϕ. The
eigenfunctions are normalized such that the maximum vϕ is 10 m s−1 at the surface as
inferred from observations.

modes have spiralling patterns around the poles similar to what is observed on the Sun.
To probe the depth and longitudinal dependence, we show in Fig. 5.5 the longitude-height
plots of longitudinal velocity vϕ, pressure perturbation p1, and entropy perturbation s1 of
the m = 1 and ky = 0 mode at fixed cylindrical radius r sin θ = 0.15R⊙ in the northern
hemisphere. The contours of vϕ and p1 are both strongly tilted eastward in longitudes,
whereas the contours of s1 show much more modest inclination. This structure is the
characteristic feature of the baroclinic mode discussed in §5.5.1. We have also confirmed
that the modes with ky ≥ 1 exhibit the same properties of tilted structures (not shown).
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5.2 Linear stability analysis of baroclinic modes

Figure 5.7: Dispersion relations of the baroclinically-unstable modes with kθ = 0 (red),
kθ = 1 (blue), and kθ = 2 (green). White diamonds refer to the observations (Gizon et al.
2021).

Figure 5.6 shows the correlations between the velocity and entropy perturbation, ⟨vr s1⟩

and ⟨vθs1⟩, for the ky = 0 mode with north-south anti-symmetric vϕ at m = 1. Note that the
eigenfunctions are normalized such that the maximum amplitude of vϕ at the surface is 10
m s−1. Positive ⟨vr s1⟩ implies that the radial motions associated with the baroclinically-
unstable mode are mostly buoyantly-driven. Positive (negative) ⟨vθs1⟩ in northern (south-
ern) hemisphere indicates the equatorward heat transport, which leads to an alleviation of
the latitudinal entropy difference of the initial state. In other words, the potential energy
of the thermal wind balanced state is converted to the kinetic energy of the instability.
Since the radial velocity is much weaker than the horizontal components (about 10%),
the associated thermal energy transport is predominantly latitudinal. Nonetheless, it is
striking to note that the heat can be transported radially outward by this instrability even
when the background is convectively-neutral. In the nonlinear phase, this equatorward
heat transport is expected to feedback on the mean thermal wind state so as to saturate the
instability.

Figure 5.7 shows the dispersion relations of the baroclinic modes for a range of az-
imuthal order, 1 ≤ m ≤ 5, in comparison with the observed frequencies of the high-
latitude modes (Gizon et al. 2021). Different colors represent the modes with different ky,
and we only show the north-south anti-symmetric modes. It is revealed that the baroclinic
modes are almost non-dispersive and their propagation frequencies are only slightly af-
fected by the number of latitudinal nodes ky. For 1 ≤ m ≤ 4, the agreement on the
propagation frequencies between our model and the observations is striking. Therefore,
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5 Baroclinic origin of the high-latitude inertial modes

we convincingly argue that the high-latitude flow pattern observed on the Sun should be
regarded as baroclinically-unstable modes. At each m, the most unstable mode of the
system is always given by ky = 0. For growth rates, we find that the typical e-folding time
scales are about one year for m ≤ 3. It is also found that the growth rates tend to increase
as m increases within the range of azimuthal orders investigated (1 ≤ m ≤ 5).

In summary, both propagation frequencies and eigenfunctions of the high-latitude flow
feature observed on the Sun can be well reproduced by the baroclinically-unstable modes
under the influences of solar differential rotation and the corresponding latitudinal entropy
gradient.

5.3 Nonlinear simulations of large-scale flows in a spher-
ical shell

Observations suggest that the observed high-latitude flow feature predominantly has an
azimuthal order m = 1 and its symmetry is largely north-south symmetric (anti-symmetric)
in vθ (vθ) (Hathaway and Upton 2021, Gizon et al. 2021). So far, we have discussed the
linear eigenmodes of the baroclinic instability in the Sun. However, to address the final
amplitudes of the baroclinic modes in a statistically stationary state, the study needs to be
extended into a nonlinear regime. In this section, we study the nonlinear evolution of the
baroclinic modes by explicitly solving the temporal evolution of the large-scale flows in
a three-dimensional spherical shell.

5.3.1 Numerical model

Although the baroclinically-unstable modes grow by extracting the available potential en-
ergy of the axisymmetric thermal wind state, care must be taken that the potential energy
is being continuously replenished in the Sun: The latitudinal entropy gradient is main-
tained either by the anisotropic heat transport of rotationaly-constraint turbulent convec-
tion (Kitchatinov and Ruediger 1995, Küker and Stix 2001, Hotta 2018) or by the inter-
action of meridional circulation and the weakly subadiabatic tachocline (Rempel 2005,
Brun et al. 2011). Therefore, the model requires the external forcing term in addition to
the nonlinear terms to sustain the thermal wind state of the solar differential rotation.

We use the hydrodynamic solver of the numerical code developed in Chapter 4. In
fact, the model can be regarded as a three-dimensional realization of Rempel (2005)’s
two-dimensional mean-field model of the solar differential rotation and meridional circu-
lation. In this framework, we do not explicitly solve the small-scale thermal convection
and only focus on the large-scale axisymmetric and non-axisymmetric flow patterns. The
small-scale convective processes such as the convective angular momentum transport (Λ-
effect, see Rüdiger 1989) are parameterized. Another key ingredient in our model is an
inclusion of weakly subadiabatic layer beneath the lower convection zone (Bekki et al.
2017, Käpylä et al. 2017, Karak et al. 2018, Hotta 2017), which produces the latitudinal
entropy gradient (Rempel 2005) and serves as an external energy injection source of the
available potential energy for the instability.

The governing system equations are the mean-field hydrodynamic equations in a
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three-dimensional spherical shell,

∂ρ1

∂t
= −

1
ξ2∇ · (ρ0u), (5.7)

∂u

∂t
= −u · ∇u −

∇p1

ρ0
−
ρ1

ρ0
ger + 2u ×Ω0ez

+
1
ρ0
∇ ·R, (5.8)

∂s1

∂t
= u · ∇s1 + cpδ

vr

Hp
+

1
ρ0T0
∇ · (ρ0T0κ∇s1)

+
1

ρ0T0
(R · ∇) · u, (5.9)

where u, p1, ρ1, and s1 are the velocity, pressure, density, and entropy deviations from
the background. We use the same background model as prescribed in §5.2.1. Hp =

p0/(ρ0g) is the pressure scale height. δ = ∇ − ∇ad denotes the superadiabaticity where ∇
is the double-logarithmic temperature gradient. As discussed above, the lower half of the
convection zone is set weakly subadiabatic as

δ =
δ0

2

[
1 − tanh

(
r − rsub

dsub

)]
, (5.10)

where rsub = 0.725R⊙ is the height below which the stratification is weakly subadiabatic,
and dsub = 0.0125R⊙ is the transition thickness. The superadiabaticity in the overshooting
layer δ0 (< 0) is treated as a free parameter in this model. See Table. 5.1.

The Reynolds stress arising from the small-scale convective motions is decomposed
into the turbulent diffusive part and the non-diffusive part (Λ-effect) as

Rik = ρ0ν

[(
Sik −

2
3
δik∇ · u

)
+ Λik(1 + σ′ik)Ω0

]
, (5.11)

where Λik denotes a dimensionless tensor that specifies the amplitude and direction of
the Λ-effect. In our model, differential rotation is primarily driven by the Λ-effect, which
transports the angular momentum largely equatorward. σ′ik represents the three-dimensional
random fluctuation of the Λ-effect due to the unresolved turbulent convection. The ran-
dom field σ′ik is constructed at every time step (thus uncorrelated in time) by superposing
30 gaussians with amplitudes of |σ′| < 2. Note, therefore, the random forcing does not
have a preferred azimuthal order m. For detail functional profiles for ν, κ, Λik, and σik,
refer to § 6.2.2.

We numerically solve the Eqs (5.7) - (5.9) using the 4th-order centered-differencing
method for space and 4-step Runge-Kutta scheme for time integration (Vögler et al. 2005).
To avoid the severe CFL constraint for time step, the background sound speed is artifi-
cially reduced by a factor of ξ = 100 in the Eq. (5.7) (e.g., Hotta et al. 2012). The
numerical domain extends from rmin = 0.65R⊙ up to rmax = 0.985R⊙, in middle of which
lies the base of the convection zone rbc = 0.71R⊙. At both radial boundaries, impenetrable
and stress-free boundary condition is assumed. The Yin-Yang grid is avoid the singular
points in a full spherical geometry (Kageyama and Sato 2004). The grid resolution used
in this study is 72(Nr)×96(Nθ)×288(Nϕ)×2(Yin and Yang grids). Each simulations start
from the zero initial condition.
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5 Baroclinic origin of the high-latitude inertial modes

Table 5.1: Summary of nonlinear simulations.

Case δ0 ∆θΩ/2π [nHz] ∆θs [erg g−1 K−1]

1 ... −5 × 10−6 72.6 296.7
2 ... −2 × 10−5 124.4 797.1
3 ... −4 × 10−5 157.9→ 86.4 1068.0→ 609.8

Note: δ0 is the input free parameter. ∆θΩ denotes the latitudinal variation of the differen-
tial rotation between the poles and the equator at the surface. ∆θs represents the latitudinal
entropy variation. In Case 3, amplitudes of ∆θΩ and ∆θs are substantially relaxed due to
the baroclinic instability as denoted by→ in the third row.

5.3.2 Results

We conduct three simulation runs (Cases 1-3) with varying δ0, as summarized in Ta-
ble.5.1. From Case 1 to 3, the stratification at the base of the convection zone becomes
more and more subadiabatic. Figure 5.8 shows the profiles of differential rotation and
entropy perturbation averaged over longitudes (m = 0), for Cases 1-3. It is clearly shown
that, as the subadiabaticity is increased from Case 1 to Case 3, the generation of posi-
tive (negative) entropy perturbation by the radial meridional flow near the poles (equator)
becomes more and more efficient, leading to an enhancement of the latitudinal entropy
gradient in the convection zone (Rempel 2005). The latitudinal differential rotation be-
comes accordingly amplified from Case 1 to Case 3 via the thermal wind balance. The
values of latitudinal variations of differential rotation ∆θΩ and entropy perturbation ∆θs
are given in the third and fourth columns of Table. 5.1. We emphasize that the increase
of ∆θs1 from the Case 1 to 3 means that the mean states become more and more subject
to the baroclinic instability.

We find that the solutions of Case 1 and Case 2 are close to axisymmetric (m = 0),
i.e., the flow motions are largely dominated by differential rotation (and meridional cir-
culation). Although non-axisymmetric modes (such as p-modes, g-modes, and Rossby
modes) are excited by random forcing in the Λ-effect, these non-axisymmetric perturba-
tions are kept substantially small in power with respect to the mean (m = 0) part. In
these two cases, differential rotation is driven and maintained by the Λ-effect and be-
comes almost stationary after t ≥ 10 yr without experiencing any instability. In Case 3,
however, we find that the solution qualitatively differs from those of Cases 1 and 2, i.e.,
a very strong differential rotation is generated as a mean (m = 0) state at an initial stage
but then it undergoes a sudden distortion that is brought about by the non-axisymmetric
(m , 0) disturbances. Consequently, the amplitude of the differential rotation is sub-
stantially weakened, as shown in Fig. 5.8c and d. It is also observed that the latitudinal
variation of the mean entropy is correspondingly reduced, as shown in in Fig. 5.8g–h.
This can be well explained by the baroclinic instability. As discussed in §5.5.1, the lati-
tudinal entropy variation is a measure of the available potential energy stored in the mean
(m = 0) state, and thereby, will be tapped by the baroclinic instability when it exceeds a
threshold value. In our simulations, only in Case 3, the mean state becomes sufficiently
baroclinic for the instability to occur: Baroclinic modes may exist in all runs, but they can
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5.3 Nonlinear simulations of large-scale flows in a spherical shell

Figure 5.8: Profiles of temporally- and azimuthally-averaged (top, a-d) differential rota-
tion Ω and (bottom, e-h) entropy perturbation s1, for Cases 1-3 from left to right. Third
and fourth columns show the results of case 3 before and after the baroclinic instability,
respectively.

grow and become strong enough to have a substantial impact on the mean state only in
Case 3. The threshold value of the latitudinal entropy difference across the poles and the
equator is estimated as 103 erg g−1 K−1 (see Fig. 5.8 (g)), corresponding to the temperature
difference of about 7.4 K.

Figure 5.9 shows snapshots of the non-axisymmetric components of the longitudinal
velocity vϕ and the entropy perturbation s1 at the surface r = 0.985R⊙ for Cases 1-3 focus-
ing on the structure around the north pole. In Case 1, non-axisymmetric perturbations are
small in amplitudes and do have a preferred azimuthal order m. In Case 2, on the other
hand, it is obvious that the m = 1 mode of perturbation becomes dominant in amplitudes
with typical longitudinal velocity amplitude of about vϕ ≈ 10 − 15 m s−1. Furthermore, a
spiralling pattern around the pole is clearly seen on the surface flow map, just as suggested
by observations and by our linear analysis in §5.2.2. It should also be noted that vϕ (or
s1) is predominantly north-south anti-symmetric whereas vθ being symmetric (as will be
discussed later). These properties are not limited to the snapshots shown in Fig. 5.9 but
are found quite general. The non-axisymmetric flow pattern in Case 3 look very similar to
that of Case 2 except for the amplitude: Qualitatively, they both are dominated by m = 1
north-south anti-symmetric mode and are spiralling westward around the poles. Quanti-
tatively, however, the m = 1 perturbation in Case 3 is about 3 times greater than that of
Case 2, which is large enough to affect the mean (m = 0) state.
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5 Baroclinic origin of the high-latitude inertial modes

Figure 5.9: Snapshots of the non-axisymmetric components of (top, a-c) the longitudinal
velocity vϕ and (bottom, d-f) entropy perturbation s1 at the surface r = 0.985R⊙ at t = 30
yr. Left, middle, and right panels correspond to the Case 1, 2, and 3, respectively.

To better support the above argument, we show in Fig. 5.10 the temporal evolution of
the volume-integrated kinetic energies separately computed for different azimuthal orders
(0 ≤ m ≤ 3) for different colors. The solid and dashed lines represent the modes consisting
of (v+r , v−θ , v+ϕ) and those of (v−r , v+θ , v−ϕ), respectively, where the north-south symmetric (+)
and anti-symmetric (−) velocities are defined as

v±(r, θ, ϕ) =
1
2

[
v(r, θ, ϕ) ± v(r, π − θ, ϕ)

]
. (5.12)

The black line represents the axisymmetric (m = 0) component, consisting of differential
rotation and meridional circulation. The non-axisymmetric (m (, 0)) perturbations are
almost negligible in Case 1, and they own comparable power with each other. In Case 2,
the mean flows are still by far dominant in power but we now clearly observe the m = 1
perturbation stands out. It is also noteworthy that this m = 1 mode is predominantly
north-south anti-symmetric in vϕ. In Case 3, the non-axisymmetric perturbations grow
significantly in power (up to about 10% of the kinetic energy of the mean differential
rotation), causing an instability at around t ≈ 17 yr, as indicated by the grey shaded area
in Fig. 5.10. Once the instability occurs, there is a substantial amount of equatorward
heat transport at high latitudes, leading to a reduction in the latitudinal entropy variation.
Note that this accompanies an poleward transport of the angular momentum so as to keep
the thermal wind balance of the differential rotation. The available potential energy of the
mean state is consequently reduced, which in turn limits a further growth of the baroclinic
modes. This so-called "baroclinic adjustment" (e.g., Stone 1978) takes place over about
5 years (18 yr ≲ t ≲ 23 yr) in our numerical model. In the saturated phase, the mean state
becomes statistically stationary (t ≳ 30 yr).

It is instructive to note that, in both Cases 2 and 3, the power of non-axisymmetric per-
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5.3 Nonlinear simulations of large-scale flows in a spherical shell

Figure 5.10: Temporal evolution of the volume-integrated kinetic energies associated
with m = 0 (black), m = 1 (red), m = 1 (red), m = 2 (blue), m = 3 (green), m = 4
(orange), and m = 5 (purple) flow components. Panels (a), (b), and (c) show the Case
1, 2, and 3, respectively. Grey shaded area in the panel (c) denote the time where the
instability occurs. Solid and dashed lines represent the modes with different north-south
symmetries,

∫
ρ0(|v±r |

2 + |v∓θ |
2 + |v±ϕ |

2)/2 · dV , where v±r,θ,ϕ are defined in the Eq. (5.12).

turbations lies predominantly at m = 1 north-south anti-symmetric mode. To understand
how this occurs, we have investigated the sensitivity of the baroclinic modes’ growth rates
to the latitudinal entropy variation in the linear regime. The results are briefly reported in
an Appendix 5.5.2. It is shown that, as the latitudinal entropy variation ∆θs is increased,
the m = 1 north-south anti-symmetric mode is the first one to becomes unstable: The
threshold value of ∆θs for the baroclinic instability at m = 1 is about 300 − 400 erg g−1

K−1 for the north-south anti-symmetric mode, whereas that of the north-south symmet-
ric mode is about 800 erg g−1 K−1. Although many simplifying assumptions are made
in the linear calculation (such as fixed differential rotation, spatially-uniform diffusivi-
ties, adiabatic stratification in radial direction), this explains why the m = 1 north-south
anti-symmetric mode becomes unstable first and able to grow in time.

In Case 3, the non-axisymmetric modes are excited at a wide range of azimuthal or-
ders, even though the dominant mode is m = 1 and the power become weaker as m in-
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5 Baroclinic origin of the high-latitude inertial modes

Figure 5.11: Snapshots of pressure perturbation p1 (color contour) and the horizontal ve-
locity (vθ, vϕ) (vector fields) for Case 3 after the instability. Left and right panels represent
the azimuthal order m = 1 and m = 2 components, respectively. Top and bottom rows
show the horizontal cuts at the surface r = 0.985R⊙ and at the base r = 0.7R⊙.

creases. Interestingly, we empirically find that the modes are predominantly north-south
symmetric (anti-symmetric) in vϕ when m is even (odd). Note that this symmetry selection
rule is clearly shown in Fig. 5.10c for 1 ≤ m ≤ 3 but it holds for m ≥ 4 as well. In order
to investigate the spatial structure and the dynamics of the baroclinic modes with both
north-south symmetries, we show in Fig. 5.11 a snapshot of the pressure perturbation p1

and the horizontal velocities (vθ, vϕ) in a statistically stationary state of Case 3 for m = 1
(left panels) and m = 2 (right panels) components. Top and bottom rows show the hori-
zontal (spherical) cuts at the surface r = 0.985R⊙ and near the base of the convection zone
r = 0.7R⊙, respectively. It is generally confirmed that the positive (negative) pressure per-
turbations p1 > 0 (< 0) are associated with negative (positive) radial vortices ζr < 0 (> 0)
in the northern (southern) hemisphere. This implies that the modes are in a geostrophical
balance. The baroclinic modes are strongly confined at high latitudes (> 45◦) near the
surface, but as we go deeper in the convection zone, the vortices in each hemisphere are
connected with each other across the equator, i.e., the latitudinal (longitudinal) flows are
driven at the equator for m = 1 (2), by which the north-south symmetry is maintained. It
should be noted that this structure resembles that of the topographic Rossby modes with
both north-south symmetries discussed in detail in § 4.3 of Bekki et al. (2022b). In this
sense, we consider the baroclinic modes could be regarded as topographic Rossby modes
under the influence of thermal wind.

Kashimura et al. (2019) have reported that the baroclinic instability can lead to a for-
mation of the global-scale spiralling flow pattern at m = 1 in the Venus atmosphere, which
is mostly north-south symmetric. They have further argued that this north-south symme-
try is likely to be maintained by the equatorial Kelvin waves. We must note here that the
equatorial Kelvin waves do not exist in our simulations even for m = 2 where the struc-
ture is predominantly north-south symmetric. This is clearly manifested in Fig. 5.11d
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5.3 Nonlinear simulations of large-scale flows in a spherical shell

Figure 5.12: Power spectra of the north-south anti-symmetric vϕ at the surface r =
0.985R⊙ as a function of latitude at m = 1 for (a) Case 2 and (b) Case 3, respectively.
White lines denote the time-averaged latitudinal differential rotation at the surface. In
Case 3, the differential rotation profiles before and after the instability are distinguished by
dashed and solid lines. Red horizontal line denotes the observed frequency ω/2π = −86.3
nHz.

where the positive (negative) vϕ at the equator is associated with negative (positive) pres-
sure perturbation. We consider that this discrepancy comes from the relative thickness
of the convective layer between the Sun and Venus. Since the solar convection zone is
much thicker compared to its raius (≈ 30%) than the Venus atmosphere (≈ 1 − 2%), the
topographic β-effect of the inner sphere is expected to become much more dominant.

Next, let us we examine the propagation frequencies of baroclinic modes in our non-
linear simulations. We use the 10-year-series of data (35 yr < t < 45 yr) with the time
cadence of about 4.7 days. Each variable is then Fourier transformed in time and longitude
as

q(r, θ, ϕ; t) =
∑

m

∑
ω

q̃(r, θ; m, ω) exp
[
i(mϕ − ωt)

]
, (5.13)

where q takes either of vr, vθ, vϕ, s1, ρ1 or p1. We consider the range of azimuthal order
0 ≤ m ≤ 5 to focus on the large-scale flow features. Note that we choose a Carring-
ton frame as a reference frame (Ωref/2π = 456 nHz) for the temporal Fourier transform.
Figures 5.12a and b show the surface power spectra of the m = 1 longitudinal velocity
as a function of latitude for the Cases 2 and 3, respectively. White lines represent the
latitudinal differential rotation profiles at the surface, and the red dashed line denotes the
observed frequency of the m = 1 high-latitude mode Gizon et al. (2021). The strong
velocity power is located at high latitudes (> 45◦) with a well-defined frequency peak.
Despite the significant difference in the high-latitude differential rotation rates, the mode
frequencies of Cases 2 and 3 are found strikingly close. The obtained propagation fre-
quencies of the m = 1 mode in our simulations are ω/2π = −69.6 nHz (Case 2), −65.8
nHz (Case 3) that roughly corresponds to the surface differential rotation rate at about
50 − 60◦ in latitude.
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5 Baroclinic origin of the high-latitude inertial modes

Figure 5.13: High-latitude power spectra (k − ω diagram) of the longitudinal velocity
vϕ for (a) Case 2 and (b) Case 3. Shown are the spectra at the surface averaged over
high-latitudinal band (50◦ − 90◦) in both hemispheres. The power is normalized at each
m. White diamonds and red points refer to the observations (Gizon et al. 2021) and the
dispersion relation obtained from the linear analysis in § 5.2.2, respectively. Red dashed
lines denote the dispersion relation of the sectoral Rossby modes of the Sun (Löptien et al.
2018).

Figures 5.13a and b show the high-latitude power spectra (k − ω diagram) of vϕ at the
surface for Cases 2 and 3, respectively. Note that the power is averaged over the high-
latitude band (50◦ − 90◦) and normalized at each m. In both cases, well-defined power
ridges can be seen in a negative frequency domain starting for 1 ≤ m ≤ 4, and they
are almost non-dispersive, as observed and also predicted in our linear calculation. For
the sake of comparison, we show the dispersion relation of the most unstable (ky = 0)
baroclinic modes obtained from our linear calculation by red solid lines, and the observed
mode frequencies by white diamonds. The mode frequencies in our nonlinear simulations
are slightly lower (less retrograde) than those of the linear analysis (errors are less than
10%) but are generally in good agreement with the observations, especially in Case 3.
For m ≥ 5, we find that the power is more predominantly visible at the frequencies of the
traditional Rossby modes (r modes), as denoted by red dashed lines.

At each m, the eigenfunctions of the baroclinic modes can be extracted from the non-
linear simulation data by performing the singular-value decomposition for the power spec-
trum. For a more detail description of this method, see § 4.3.2. Figure 5.14 shows the
extracted eigenfunctions of the m = 1 baroclinic mode in the Case 2, where the top and
the bottom panels show the real and imaginary parts, respectively. We note here that the
eigenfunctions extracted from Case 3 are found to be almost identical to those of Case 2
except for the amplitudes (not shown). Generally, the eigenfunctions look similar to those
of the ky = 0 north-south anti-symmetric baroclinic mode obtained in the linear analysis:
The flow motion is predominantly toroidal (|vr| ≪ |vθ|, |vϕ|) and strongly confined inside
the tangential cylinder. Th surface eigenfunctions exhibit a clear spiralling pattern around
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5.3 Nonlinear simulations of large-scale flows in a spherical shell

Figure 5.14: Meridional eigenfunctions of the m = 1 baroclinic mode extracted from the
nonlinear simulation Case 2. Eigenfunctions of vr, vθ, vϕ, s1, and p1 are shown from left
to right. Top and middle rows show the real and imaginary parts of the eigenfunctions,
respectively, where we set the phase where vθ is maximum at the surface as real. Note
that the real phase is π/2 ahead in longitude with respect to the imaginary phase. The
black dashed lines denote the location of the base of the convection zone, below which
the stratification is weakly subadiabatic in our model.

Figure 5.15: The velocity correlations (a) ⟨vrvϕ⟩ and (b) ⟨vθvϕ⟩, and the correlations
between velocity and entropy (c) ⟨vr s1⟩ and (d) ⟨vθs1⟩ of the m = 1 baroclinic mode
extracted from our nonlinear simulation Case 2.

177



5 Baroclinic origin of the high-latitude inertial modes

the poles. It is also confirmed that the eigenfunctions of vθ, vϕ, and p1 have larger eastward
inclination than that of s1 as discussed in § 5.5.1. On the other hand, there are mainly two
differences from the linear analysis: First, the extracted eigenfunction of vϕ at the surface
peaks at 61◦ which is slightly lower in latitude than that obtained from linear analysis
which peaks at 70◦. Second, the strong entropy perturbation is generated in the weakly
subadiabatic layer beneath the convection zone which is not included in our linear model.

Finally, let us estimate how much these baroclinic modes can contribute to the trans-
port of thermal energy and angular momentum in the Sun. Figure 5.15 shows the Reynolds
stress ⟨umvϕ⟩ and the velocity-entropy correlation ⟨ums1⟩ associated with the m = 1 baro-
clinic mode extracted from Case 2. Here, um = (vr, vθ) denotes the meridional velocity.
It is shown from Figures 5.15a and b that the angular momentum is preferentially trans-
ported equatorward at high latitudes in both hemispheres, as suggested by observations
(Hathaway and Upton 2021). The positive ⟨vr s1⟩ in Fig. 5.15c means that the baroclinic
mode transports the heat radially outward at high latitudes even though the bulk con-
vection zone is adiabatic or weakly subadiabatic, as already pointed out in § 5.2.2. A
substantial amount of the equatorward heat transport is represented by positive (negative)
⟨vθs1⟩ in the northern (southern) hemisphere in Fig. 5.15d.
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5 Baroclinic origin of the high-latitude inertial modes

In both Cases 2 and 3, we have computed the maximum amplitudes of the velocity and
entropy perturbation of the m = 1 baroclinic mode and shown in Table. 5.2. We also report
in Table. 5.2 the amplitudes of the associated Reynolds stress ⟨umvϕ⟩ and the corresponding
enthalpy flux Fe = ρ0cp⟨umT1⟩, where T1 denotes the temperature fluctuation. Note that
the enthalpy fluxes are normalized by the solar energy flux F⊙ = L⊙/4πr2 where L⊙ is the
luminosity of the Sun. Since observations infer that the root-mean-square (RMS) velocity
amplitude of the high-latitude flow feature is about 10 − 12 m s−1 (Hathaway and Upton
2021, Gizon et al. 2021), we consider the baroclinicity in the Sun is slightly larger than
our Case 2 but not as large as Case 3.

5.4 Summary and discussion

In this paper, we provide a concrete theoretical explanation for the high-latitude large-
scale flow pattern observed on the solar surface (Hathaway et al. 2013, Bogart et al. 2015,
Hathaway and Upton 2021, Gizon et al. 2021). We propose that they are baroclinically-
induced Rossby modes in the solar convection zone, rather than the giant cell convection
cells advected by differential rotation as previously argued. To support our argument, we
present two series of numerical experiments.

First, in §5.2, we carry out the linear stability analysis of the rotating compressible
fluid in the solar convection zone with the latitudinal entropy gradient and the corre-
sponding thermal wind imposed. The similar linear analysis has been conducted to study
the properties of Rossby modes (r modes) in the Sun but the latitudinal entropy gradient
has never been considered in the previous studies (Bekki et al. 2022b). We find that the
baroclinically-unstable modes involve strong velocity amplitudes only at high latitudes
and exhibit spiralling patterns around the poles similar to the observations. Furthermore,
they generally have negative frequencies, corresponding to a retrograde propagation. The
computed dispersion relationships of the baroclinically-unstable modes agree quite well
with the observed frequencies of the high-latitude flow features for 1 ≤ m ≤ 3. It is
interesting to note that these unstable modes can transport the thermal energy not only
equatorward (as predicted in order to relax the strong latitudinal entropy variation) but
also radially outward near the poles. Although the amount of enthalpy fluxes due to the
baroclinic instability are expected to be small, this mechanism of thermal energy transport
is regarded significant because it does not require the superadiabatic background.

Next, in §5.3, we carry out a set of three-dimensional simulations of rotating com-
pressible fluid in a spherical shell to study the nonlinear evolution of baroclinic instabil-
ity. It is found that, as the latitudinal entropy variation between the poles and the equator
becomes strong enough (with the corresponding temperature variation of 7 − 8 K), the
baroclinic instability occurs at high latitudes (Case 3). The instability predominantly in-
volves the m = 1 perturbation mode with north-south anti-symmetric vϕ, which transports
the entropy and angular momentum latitudinally so as to reduce the baroclinicity of the
mean state. These baroclinic modes exhibit many properties similar to those of the lin-
ear modes discussed in §5.2, including the spiralling flow structure around the poles, the
dispersion relation of the retrograde-propagating modes at 1 ≤ m ≤ 3, and the associated
thermal energy transport both in latitudinal and radial direction.

When the latitudinal entropy variation is intermediate, i.e., large but not substantial
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5.4 Summary and discussion

enough to cause the instability (in our Case 2), we still find that the non-axisymmetric
perturbation is largely dominated by the m = 1 baroclinic mode with north-south anti-
symmetric vϕ. In this circumstance, the m = 1 mode has a typical velocity amplitude of
about 9 m s−1, which is comparable to the solar observations. Therefore, we successfully
demonstrate that our numerical model can reproduce most of the observed properties of
the high-latitude flow features with the reasonable choice of model parameters.

In this study, in order to exclude the convective instability and to focus on the baro-
clinic instability, the background is assumed to be adiabatic (or weakly subadiabatic in
the nonlinear calculations). Previous studies have shown that, when the background is
superadiabatic, the columnar conevctive modes (thermal Rossby waves) become the fast-
growing modes at low latitudes (Bekki et al. 2022b). However, it is still unclear how
superadiabatic background influences the onset and development of the baroclinic insta-
bility at high latitudes. Therefore, it will be our primary future work to carry out a system-
atic parameter survey with varying background superadiabaticity δ. Furthermore, Gilman
(1975) reported that the fastest-growing convective modes at high latitudes show spi-
ralling patterns around the poles, which is another plausible explanation for the observed
high-latitude inertial modes. Future work will also focus on distinguishing the physical
origins of the high-latitude modes, i.e., whether they are convectively- or baroclinically-
driven.

In three-dimensional realistic simulations of the rotating turbulent convection in the
Sun, the baroclinic modes at high latitudes have never been investigated in detail. We
have reported to detect the topographic Rossby modes at high latitudes in their rotating
convection simulation in § 3.3.3 but the baroclinic modes as discussed in this paper were
not observed. This might be because the thermal wind in their simulation is too weak
for the baroclinic instability to occur. It will be a interesting future work to carry out
mode-analyses for some of the recent simulations that successfully reproduced the non-
Taylor-Proudman differential rotation with huge baroclinicity (Miesch et al. 2008, Karak
et al. 2018, Hotta 2018) to examine if the baroclinic modes exist in their simulations.

Finally, possible effects of magnetic fields on the baroclinic modes in the Sun are
discussed. Observations suggest that the high-latitude flow features are more prominent
during the activity minima (2010, 2018-2020) and become fainter during the activity max-
ima (2012-2016) (Gizon et al. 2021). Thus, the dynamo-generated magnetic fields in the
Sun can have a strong impact on the excitation of the baroclinic modes. Gilman (2015,
2017) have studied the stability of the tachocline in the presence of the strong toroidal
fields and shown that the magnetic fields have a stabilizing effect for the baroclinic in-
stability. We can easily expect the same mechanism works in the convection zone. Our
linear analysis model will be extended into MHD regime to account for magnetic effects
in the near future.
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5.5 Appendix

5.5.1 Physical picture of baroclinic instability
In this Appendix, we briefly overview the physical picture of baroclinic instability. When
the isobaric surfaces (constant pressure) are not parallel to the isosteric surfaces (constant
density), the fluid is called "baroclinic" (e.g., Vallis 2006). By definition, baroclinic fluid
accompanies the horizontal temperature (entropy) gradient and the vertical shear of the
horizontal flow. The fluid parcel is unstable for a displacement in a narrow angle between
the isobaric and isosteric surfaces. This angle amounts to the degree of baroclinicity, and
is a measure of the available potential energy that is eventually converted to the kinetic
energy of the growing modes after the instability. In this sense, the baroclinic instability
is also called "slopping convection" in some literature.

To better illustrate how the baroclinic instability occurs in the Sun, let us consider an
idealized cartesian box located near the north pole in the convection zone (Fig. 5.16). The
background is assumed to be in a thermal wind balance, i.e., the Coriolis force acting on
the vertical shear of the differential rotation ∂Uϕ/∂z (< 0) is geostrophically balanced by
the latitudinal entropy gradient ∂s0/∂θ (< 0). Now, let us consider horizontal velocity per-
turbations represented by sinusoidal waves in longitude at z = z0. Note that the positive
(negative) pressure perturbation p1 > 0 (< 0) is required where the circulation is clock-
wise (counterclockwise) ζz < 0 (> 0) under the constraint of geostrophical balance. Here,
ζz denotes the z-vorticity. At the interface of the circulation cells, the equatorward flow
(vθ > 0) advects high entropy fluids (s1 > 0) and thus are warmer than the surroundings.
Owing to the gravitational stratification in a vertical direction, clockwise (counterclock-
wise) circulation with p1 > 0 (< 0) is induced in the upper (lower) layer of the convection

Figure 5.16: Schematic illustration explaining the baroclinic instability in the northern
polar region of the solar convection zone. Left: Vertical shear of the azimuthal mean flow
(differntial rotation). Right: Structure of velocity perturbation, and associated pressure
and entropy perturbations that are unstable for baroclinic instability.
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zone of the warm area (s1 > 0). The opposite happens in the cooler area (s1 < 0) where
the latitudinal velocity perturbation is poleward (vθ < 0). This structure is essentially un-
stable because the velocity perturbations induced at the upper and lower layers lead to a
further enhancement of the initial perturbations at z = z0. The instability caused by this
positive feedback is called baroclinic instability. The baroclinically-unstable structure il-
lustrated in Fig. 5.16 clearly manifests that the velocity and pressure patterns are inclined
eastward whereas the entropy or temperature has much less or the opposite inclination
in longitudes (denoted by red and blue dashed lines) (e.g., Charney 1947, Eady 1949,
Phillips 1954).

5.5.2 Stability analysis with increasing baroclinicity
In §5.2, we report the general properties of the baroclinic modes under the constraints
of solar differential rotation and the latitudinal entropy gradient. In this Appendix, we
report a linear stability analysis in which the latitudinally entropy variation is changed
as a free parameter rather than imposed as a constraint. This numerical experiment will
illustrate the inherent mechanism of regulating the latitudinal entropy difference in the
Sun’s convection zone. Furthermore, we will explain why the m = 1 north-south anti-
symmetric mode always stands out in our nonlinear simulations in §5.3.2.

Now, instead of using the formula described in the Eq.(5.6), we consider the latitudinal
background entropy variation simply expressed as

∂s0

∂θ
= −∆θs sin (2θ), (5.14)

where ∆θs = s0(θ = 0)− s0(θ = π/2) denotes the entropy difference between the poles and
the equator, and is varied from 200−1800 erg g−1 K−1. Note that, for differential rotation,
we keep using the same observational profile as used in §5.2. The viscous and thermal
diffusivities are assumed to be spatially uniform and set as ν = κ = 1012 cm2 s−1.

Figure 5.17a shows the linear growth rates ℑ[ω] of the ky = 0 (the most unstable)
baroclinic modes with north-south anti-symmetric vϕ in a range of azimuthal orders 1 ≤
m ≤ 5. It is shown that, when the latitudinal entropy variation is sufficiently small (∆θs =
200 erg g−1 K−1), all the m-modes are stable for the baroclinic instability. However, as
∆θs is increased and the baroclinicity of the system is enhanced, the low-m modes become
unstable. This may explain why the m = 1 mode always become the most dominant
baroclinic mode in our nonlinear simulations (see Fig. 5.10b and c). When ∆θs is further
increased, the modes become unstable for all m.

Figure 5.17b shows the maximum latitudinal enthalpy fluxes Fe,θ = ρ0cp⟨vθT1⟩ in the
northern hemisphere associated with the ky = 0 modes. Note that all the eigenfunctions
are normalized such that all the eigenmodes have the same total kinetic energy. In general,
as ∆θs increases, the thermal energy is more and more efficiently transported equatorward
by the baroclinic modes. This means that, when ∆θs is sufficiently enhanced in the Sun,
the baroclinic modes will grow very fast in time and will transport a substantial amount
of the thermal energy from the poles to the equator, leading to a decrease in ∆θs. Owing
to this so-called "baroclinic adjustment" (e.g., Stone 1978, Vallis 2006), the latitudinal
entropy variation in the Sun is considered to be regulated within a certain range, which is
estimated to be ∆θs ≈ 600 − 800 erg g−1 K−1 according to our nonlinear simulations.
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Figure 5.17: (Left) Growth rates of the ky = 0 baroclinic modes for 1 ≤ m ≤ 5 with
varying latitudinal entropy difference between the poles and the equator ∆θs = s0(θ =
0)− s0(θ = π/2). Top and bottom rows denote the modes with north-south anti-symmetric
and north-south symmetric vϕ, respectively. Black solid lines represent the location where
the growth rates are zero ℑ[ω] = 0. (Right) Latitudinal enthalpy fluxes Fe,θ = ρ0cp⟨vθT1⟩

of the ky = 0 baroclinic modes for 1 ≤ m ≤ 5 with varying ∆θs. Eigenfunctions are
normalized such that each mode has the same kinetic energy. The black points denote
the location where the linear stability analyses are carried out. The color contours are
obtained by interpolating the data with bicubic method.
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Figures 5.17c and d are the counterparts of the Fig. 5.17a and b for the north-south
symmetric baroclinic modes. They share the general properties of the baroclinic modes,
i.e., both the growth rates ℑ[ω] and the latitudinal enthalpy fluxes Fe,θ tend to increase
when ∆θs becomes larger. However, the behavior at low m with small ∆θs is found strik-
ingly different. At ∆θs ≈ 400− 800 erg g−1 K−1, the most unstable north-south symmetric
mode is that of m = 2, which is in contrast to the north-south anti-symmetric case where
the most unstable mode is m = 1. This probably explains why our nonlinear simulation
(Case 3) produces the m = 2 baroclinic perturbation which is predominantly north-south
symmetric in vϕ.
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6 Three-dimensional
magnetohydrodynamic simulation of
Babcock-Leighton solar dynamo

Abstract

It still remains largely uncertain how the cyclic magnetic activity is maintained inside the
Sun’s convection zone (dynamo theory). Traditionally, numerical simulations of the solar
dynamo have been carried out in a kinematic mean-field framework. More realistic mod-
els of rotating magneto-convection in the Sun have difficulty in reproducing the observed
large-scale mean flows and solar-like magnetic cycles. In this study, we present a new
numerical framework to simulate the solar dynamo in the three-dimensional (3D) mag-
netohydrodynamic (MHD) regime. We extend the conventional two-dimensional (2D)
mean-field model of the Babcock-Leighton flux-transport dynamo into 3D MHD regime.
The large-scale mean flows such as differential rotation and meridional circulation are
driven by the parameterized Λ-effect. For the dynamo part, we use a new implementation
of the Babcock-Leighton α-effect by which the surface bipolar-magnetic regions (BMRs)
are produced in response to the dynamo-generated toroidal field inside the convection
zone. Our simulation reproduces many observational features of the large-scale flows and
magnetic fields such as solar-like differential rotation, single-cell meridional circulation,
solar-like magnetic cycles, emergence of BMRs at low latitudes, equatorward migration
of the BMRs. The flows and magnetic fields become substantially non-axisymmetric due
to the BMRs at the surface. The simulation shows the torsional oscillation pattern similar
to the solar observations but the equatorward branches are likely due to the thermal forc-
ing associated with the diffusive heating of the superequipartition BMRs. Nonetheless,
this study is significant because it is the only MHD dynamo simulation that is driven by
observationally-friendly differential rotation and meridional circulation in our model. Our
model will serve as a promising tool to study torsional oscillations, active region inflows,
and Rossby modes in the context of the solar dynamo.

This chapter reproduces an initial draft of the article Three-dimensional non-kinematic simulation of
post-emergence evolution of bipolar magnetic regions and Babcock-Leighton dynamo of the Sun by Y.
Bekki and R. Cameron, submitted to Astronomy and Astrophysics. Contributions: Y. Bekki did most of the
work.
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6.1 Introduction

The Sun exhibits a 11-year cyclic magnetic activity which is sustained by the internal
dynamo processes in the convection zone (e.g., Charbonneau 2020). Babcock-Leighton
flux-transport model is one of the most promising solar dynamo models at present that can
explain many observational features (e.g., Dikpati and Charbonneau 1999). In this model,
the equator migration of the sunspots group is attributed to an equatorward transport of
the dynamo-generated toroidal flux by the meridional flow near the base of the convection
zone (Wang et al. 1991, Choudhuri et al. 1995). This is supported by the recent helioseis-
mic observations in which meridional flow is found to be poleward at the surface and
equatorward at the base (Rajaguru and Antia 2015, Gizon et al. 2020b). Another charac-
teristic feature of this dynamo model is that the main conversion process from toroidal to
poloidal fields is done by the so-called Babcock-Leighton mechanism, in which the sur-
face poloidal fields are generated by the poleward advection and equatorial cancellation
of the bipolar sunspots that are tilted with respect to east-west direction (Babcock 1961,
Leighton 1964). Numerical investigations of this dynamo model have been mostly carried
out in a two-dimensional (2D) mean-field framework both in a kinematic regime (Chat-
terjee et al. 2004, Hazra et al. 2014, Karak and Cameron 2016) and in a non-kinematic
regime (Rempel 2006, Ichimura and Yokoyama 2017, Inceoglu et al. 2017).

There are several recent studies that aim to realize the Babcock-Leighton process in a
more realistic three-dimensional (3D) domain. Yeates and Muñoz-Jaramillo (2013) pre-
sented a kinematic model in which the upward velocity perturbation associated with the
magnetic buoyant flux tubes is explicitly prescribed to produce the tilted bipolar magnetic
regions (BMRs) at the surface. This method has also been used in Kumar et al. (2019) and
Whitbread et al. (2019). On the other hand, Miesch and Dikpati (2014) have developed
a different model of the Babcock-Leighton dynamo, in which the BMRs are artificially
placed at the surface in response to the toroidal field at the base under the constraint of
Joy’s law. This model has been used to study the long-term cycle variability (Karak and
Miesch 2017). However, all of these models are kinematic. Therefore, it still remains
unclear how the Lorentz-force of the surface BMRs affects the dynamo solution in the
magnetohydrodynamic (MHD) regime.

The most realistic models of the solar dynamo are provided by MHD convective dy-
namo simulations in a spherical shell (e.g., Brun et al. 2004, Ghizaru et al. 2010, Brown
et al. 2010, Fan and Fang 2014, Hotta et al. 2016, Strugarek et al. 2017). However, they
have difficulty in reproducing the large-scale mean flows as we observe when the solar pa-
rameters are used (known as convective conundrum, e.g., Nelson et al. 2018). Moreover,
they still cannot capture the full dynamics of the flux-emergence and the resulting for-
mation of BMRs at the surface comprehensively (Nelson et al. 2011, Fan and Fang 2014,
Chen et al. 2017). Therefore, it is still helpful to use mean-field models in which the large-
scale mean-flows are largely controllable with proper parameterizations of the small-scale
convective angular momentum transport (Λ-effect; see Kitchatinov and Ruediger (1995)).

In this study, we present a new numerical framework to study the solar dynamo in 3D
MHD regime, which takes advantage of both the mean-field approach for the solar dif-
ferential rotation / meridional circulation system and the 3D realization of the Babcock-
Leighton process. Therefore, our model is more realistic than both 2D mean-field MHD
models (e.g., Rempel 2006) and 3D kinematic Babcock-Leighton models (e.g., Miesch
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and Teweldebirhan 2016). Although our model is less realistic than 3D MHD convective
dynamo models (e.g., Hotta et al. 2016), this instead enables us to solve the MHD dy-
namo equations under the constraints of the observed differential rotation and meridional
circulation. We believe that our model can potentially provide many future applications
such as data assimilation, prediction of the next cycle, studies on non-axisymmetric MHD
instabilities and modes in the Sun.

The organization of this chapter is as follows. The numerical model is explained in
detail in §6.2. An implementation of the BL process is described in §6.2.3. Our initial
results of our simulation are presented in §6.3. We close by summarizing our results and
discussing the future prospects in §6.4.

6.2 Model

6.2.1 Governing equations

We numerically solve a set of MHD equations in a spherical coordinate (r, θ, ϕ):

∂ρ1

∂t
= −∇ · (ρ0u), (6.1)

∂u

∂t
= −u · ∇u −

∇p1

ρ0
−
ρ1

ρ0
ger + 2u ×Ω0

+
1

4πρ0
(∇ × B) × B +

1
ρ0
∇ ·D, (6.2)

∂B
∂t
= ∇ × (u × B + E − η∇ × B), (6.3)

∂s1

∂t
= u · ∇s1 + cpδ

vr

Hp
+

1
ρ0T0
∇ · (ρ0T0κ∇s1) (6.4)

+
1

ρ0T0

[
(D · ∇) · u +

η

4π
|∇ × B|2

]
, (6.5)

where g, ρ0, p0, and Hp denote the gravitational acceleration, density, pressure, and pres-
sure scale height of the background state which is in an adiabatically-stratified hydrostatic
equilibrium. We use the same background model as described in § 4.3, which mimics the
standard model S (Christensen-Dalsgaard et al. 1996a). ρ1 and p1 are density and pressure
perturbations with respect to the background that are assumed to be sufficiently small, i.e.,
|p1/p0| ≈ |ρ1/ρ0| ≪ 1, so that the equation of state is linearized.

p1 = p0

(
γ
ρ1

ρ0
+

s1

cv

)
, (6.6)

where γ is the specific heat ratio and s1 is entropy perturbation from the adiabatic back-
ground. Ω0 denotes the rotation rate of the radiative core, for which we set the value as
Ω0/2π = 431.3 nHz.
D denotes the turbulent Reynolds stress associated with small-scale convective mo-

tions that are not explicitly resolved in our model. This in principle contains the effects
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of turbulent diffusion and turbulent momentum transport (Λ-effect, see Kitchatinov and
Ruediger (1995)). Therefore, the Reynolds stresses are expressed as

Dik = ρ0

[
νvis

(
S ik −

2
3
δik∇ · u

)
+ νlamΛikΩ0

]
, (6.7)

where S ik and δik denote the velocity deformation tensor and Kronecker-delta unit tensor.
Detail tensor expressions of Si j in a spherical coordinate are given in the Eqs. (3.10)-
(3.15).

In our model, turbulent viscous, thermal, and magnetic diffusivities are all assumed
to be isotropic. We use the same radial profiles for the viscous (νvis), thermal (κ), and
magnetic (η) diffusivities as of Rempel (2006). It will be instructive to give readers the
diffusivity values at the top boundary; νvis = κ = 5 × 1012 cm2s−1, and η = 1012 cm2 s−1.

In order to break the Taylor-Proudman’s constraint of the differential rotation via the
thermal wind balance, a latitudinal entropy gradient needs to be negative (positive) in the
northern (southern) hemisphere. Rempel (2005) proposed that this can be achieved when
the base of the convection zone is weakly subadiabatic and the meridional circulation is
counter-clockwise (clockwise) in the northern (southern) hemisphere. We adopt the same
physical model of Rempel (2005) to generate the latitudinal entropy gradient by giving
the superadiabaticity δ = ∇ − ∇ad as follows,

δ(r, θ) = T−(r; rsub, dsub) δsub(θ), (6.8)
δsub(θ) = δpl + (δeq − δpl) sin2 θ, (6.9)
rsub(θ) = rpl + (req − rpl) sin2 θ, (6.10)

where T denotes a transition function defined by

T±(x; x0, d) =
1
2

[
1 ± tanh

( x − x0

d

)]
. (6.11)

We set the base superadiabaticity at the poles and at the equator as δpl = −1.5 × 10−5 and
δeq = −2 × 10−5, respectively. The depths where the stratification changes from subadia-
batic to adiabatic are given as rpl = 0.725R⊙ and req = 0.735R⊙. The weakly subadiabatic
layer near the base is thought to be an outcome of a nonlocal energy transport of strongly
magnetized convection in the Sun (Skaley and Stix 1991, Brandenburg 2016) and is re-
ported in the numerical experiments (Käpylä et al. 2017, Hotta 2017, Bekki et al. 2017).
The subadiabaticity is slightly enhanced in the equatorial area owing to the latitudinal
variation of the Coriolis force acting on low-entropy downdrafts (Karak et al. 2018).

6.2.2 Λ-effect
Λik is a dimensionless tensor that specifies the amplitude and direction of the turbulent
momentum transport. In this model, we only consider the turbulent angular momentum
transport. Therefore, Λik becomes nonzero only when k takes ϕ. We parameterize Λrϕ and
Λθϕ similarly to the model presented in Rempel (2005),

Λrϕ = +Λ0 f̃l(r, θ) cos (θ + λ)
[
1 + ζr(r, θ, ϕ)

]
, (6.12)

Λθϕ = −Λ0 f̃l(r, θ) sin (θ + λ)
[
1 + ζθ(r, θ, ϕ)

]
. (6.13)
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The overall amplitude of the Λ-effect is given as Λ0 = 0.85. The inclination is set to
λ = +(−)15◦ in the northern (southern) hemisphere. Thus, the associated angular mo-
mentum flux becomes largely equatorward and slightly cylindrically outward. The spatial
distribution of the Λ-effect is specified as

f̃l(r, θ) =
fl(r, θ)

max| fl(r, θ)|
, (6.14)

fl(r, θ) = sin2 θ cos θ tanh
(
rmax − r

dl

)
. (6.15)

where dl = 0.025R⊙. With this parameterization, the profiles of differential rotation and
meridional circulation become similar to observations (Howe 2009, Gizon et al. 2020b)

ζr and ζθ denote random fluctuations due to the unresolved turbulent convection. In
order to randomly vary the amplitude and direction of the Λ-effect in space, we construct
ζr and ζθ separately. In our model, we construct the random field by simply superposing
multiple gaussians for the sake of numerical feasibility,

ζ(r, θ, ϕ) =
N∑

i=1

ci exp
− (r − ri

δr

)2
−

(
θ − θi

δθ

)2

−

(
ϕ − ϕi

δϕ

)2, (6.16)

where the locations of gaussian peaks (ri, θi, ϕi) are randomly chosen and their amplitudes
ci are also randomly determined within the range −2 < ci < 2. The spatial scale of each
gaussian is set as (δr, δθ, δϕ) = (0.03R⊙, 5◦, 5◦). In our reference calculation, we set the
number of gaussians N = 30. We generate the random field ζ at every time step and
therefore it is uncorrelated in time. Note that the non-axisymmetric flows can be partially
driven by the random fluctuation of the Λ-effect which has an azimuthal dependence.

6.2.3 Babcock-Leighton α-Effect

The electro-motive-force E in the Eq.(6.3) represents the Babcock-Leighton α-effect, by
which the surface poloidal field is produced as a result of north-south tilt of the BMRs
(Babcock 1961, Leighton 1964). In our model, the emergence of BMRs at the surface
is assumed to occur in response to the dynamo-generated toroidal field near the base of
the convection zone, i.e., toroidal flux that is sufficiently amplified by Ω-effect becomes
unstable and rise up to the surface. During the rise and the subsequent emergence, the
toroidal flux is twisted by Coriolis forces and acquires a north-south tilt in its apex (Fan
2009). In order to incorporate this physics into our model, we take the following steps
to construct E. Our approach differs from the method presented in Yeates and Muñoz-
Jaramillo (2013) and Kumar et al. (2019) where the velocity associated with magnetic
buoyancy is prescribed nor the method used in Miesch and Dikpati (2014) and Miesch
and Teweldebirhan (2016) where the BMRs are explicitly spotted at the surface.

First, the mean toroidal field near the base of the convection zone is computed at every
time step,

B̄tor(θ, ϕ) =
1

rb − ra

∫ rb

ra

Bϕ(r, θ, ϕ)dr, (6.17)
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where ra = 0.71R⊙ and rb = 0.735R⊙. Then, we determine the location of the flux
emergence in a spherical surface (θ∗, ϕ∗). In order to suppress the emergence at high
latitudes as suggested by the observations, we apply a latitudinal mask to B̄tor(θ, ϕ) such
that

B̄∗tor(θ, ϕ) = T+(θ; π/2 − θem,∆θtran) ×
T−(θ; π/2 + θem,∆θtran)B̄tor(θ, ϕ), (6.18)

where θem = 17.5◦ and ∆θtran = 8.5◦. A necessary condition for the flux emergence to
occur is that |B̄∗tor(θ, ϕ)| exceeds a threshold field strength Bcrit = 500 G. The location of
emergence (θ∗, ϕ∗) is randomly chosen when the above condition is satisfied on multiple
points.

Eventually, E is expressed as follows being proportional to B̄∗tor(θ
∗, ϕ∗), Er

Eθ

Eϕ

 = α0 f̃ ∗α (r, θ, ϕ)

 0
− cosψ∗

sinψ∗

 B̄∗tor(θ
∗, ϕ∗), (6.19)

where f̃α represents the spatial distribution of BMRs,

f̃ ∗α (r, θ, ϕ) = exp
− (

r − rmax

dsf

)2

−

(
θ − θ∗

∆θbmr

)2

−

(
ϕ − ϕ∗

∆ϕbmr

)2. (6.20)

The Babcock-Leighton α-effect is confined near the surface with the thickness dsf =

0.04R⊙. ∆θbmr and ∆ϕbmr determine the size of BMRs. In our model, we set ∆θbmr =

∆ϕbmr = 6 deg, which is consistent with observations suggesting the typical size of BMRs
of rbmr ≈ 5−100 Mm (e.g., Solanki 2003) that leads to ∆θbmr = ∆ϕbmr ≈ 2rbmr/R⊙ ≈ 0.4−8
deg. The overall amplitude of the Babcock-Leighton α-effect is set to α0 = 50 km
s−1. This value, in combination with the typical toroidal field strength near the base
B̄∗tor ≈ 5 − 20 kG (Dikpati and Charbonneau 1999), leads to the total magnetic flux of
BMRs of 1022 − 1023 Mx, which is consistent with observations (Schrijver and Harvey
1994).

The north-south tilt of BMRs (ψ∗) obeys Joy’s law such that,

ψ∗ = 35◦ cos θ∗ + ψ′f , (6.21)

where ψ′f denotes the random fluctuation of the tilt angle around Joy’s law (Hale et al.
1919, Howard 1991, Stenflo and Kosovichev 2012, Wang et al. 2015). For simplicity, we
assume that the probability distribution of ψ′f is roughly given by the following Gaussian
distribution,

Pf(ψ′f) =
1

σf
√

2π
exp

[
−ψ′2f /(2σ

2
f )
]
, (6.22)

with σf = 15◦. Unlike the kinematic model of Karak and Miesch (2017), a quenching
term is not necessary in our model because the saturation of the dynamo occurs owing
to the Lorentz-force feedback self-consistently (Rempel 2006, Ichimura and Yokoyama
2017).
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Figure 6.1: Example structure of BMRs per each hemisphere produced from our Babcock-
Leighton α-effect modeling. Radial field at the solar surface is shown where red (blue)
points represent positive (negative) Br. Solid black arrows denote the direction of the
electro-motive-force E defined by the Eq.(6.19). Positive (negative) toroidal field in the
northern (southern) hemisphere is implicitly assumed at the base of the convection zone.

In order to prevent overlapping emergence events on the same location in a very short
time span, we introduce a following time delay algorithm as presented in Miesch and
Dikpati (2014), Miesch and Teweldebirhan (2016), Karak and Miesch (2017): The log-
normal distribution of the emergence events is defined by

Pem(∆t) =
1

σt∆t
√

2π
exp

[
−

(∆t − µt)2

2σ2
t

]
, (6.23)

where ∆t = t − ts is the time lag since the last emergence event at ts. The flux emergence
is allowed only when the cumulative of Pem exceeds a number z ∈ [0, 1] randomly chosen
at every time step. σt and µt are specified by the mean and mode of the distribution τs and
τp, respectively, as

τp =
2.2 days

1 + (Bt,bc/Bτ)2 , τs =
20 days

1 + (Bt,bc/Bτ)2 (6.24)

where Bt,bc is the horizontally-averaged B̄∗tor defined in the Eq.() and Bτ denotes the thresh-
old toroidal field strength near the base of the convection zone. The flux emergence be-
comes frequent when Bt,bc exceeds Bτ (solar maxima) and less frequent as the cycle ends.
An example of the resulting BMR is illustrated in Fig. 6.1.

6.2.4 Numerical scheme
We numerically solve the Eqs (6.1)-(6.5) using the 4th-order centered-differencing method
for space and 4-step Runge-Kutta scheme for time integration (Vögler et al. 2005). To
avoid the severe CFL constraint for time step, the background sound speed is artificially
reduced by a factor of ξ = 200, which still ensures that flows remain sufficiently subsonic
(e.g., Hotta et al. 2014a). Moreover, we use the hyperbolic divergence cleaning method
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(9-wave method) for minimizing the numerical error resulting from the divergence of
magnetic field (Dedner et al. 2002). See the Appendix 6.5.2. In addition to the explicit
diffusivities, the same artificial viscosity reported in Rempel (2014) is used to stabilize
numerical computation.

The numerical domain is a full-spherical shell extending from rmin = 0.65R⊙ up to
rmax = 0.985R⊙. The base of the convection zone is located at rbc = 0.71R⊙. In order to
avoid the numerical problems resulting from the singular points in a spherical coordinate,
we use the Yin-Yang grid (Kageyama and Sato 2004). For more details about the imple-
mentation of the Yin-Yang grid, refer to §4.8.3. The grid resolution used in our reference
case is 72(Nr)× 72(Nθ)× 216(Nϕ)× 2(Yin and Yang grids). The code is parallelized using
message passing interface (MPI). At both radial boundaries, impenetrable and stress-free
boundary condition is assumed for velocity. The magnetic field is assumed to be radial
at the top and horizontal at the bottom. The simulation is initiated in a hydrodynamic
regime and then an axisymmetric dipolar field is added when the large-scale mean flows
become stationary. We analyze the data after the dynamo saturates and shows a clear
cyclic pattern.

6.3 Results

6.3.1 Cyclic dynamo

Figures 6.2a and b show the temporal evolution of the azimuthally-averaged radial field
B̄r at the surface and the toroidal field B̄ϕ near the base of the convection zone, repre-
sented in terms of the well-known magnetic butterfly diagram. We can clearly see the
cyclic polarity reversals that occur roughly at every 9 yr, which is slightly shorter than the
solar cycle yet comparable. In each cycle, there is an equatorward migration of sunspot
groups (BMRs) and the build-up of the polar field by poleward advection of the magnetic
fluxes associated with the trailing sunspots. These are owing to the single-cell meridional
circulation achieved in our model, which has an amplitude of about 15 m s−1 at the surface
and 2 m s−1 near the base of the convection zone. The black solid lines in Fig. 6.2b denote
the range of the emergence latitudes of BMRs at each time. The phase of the equatorward
advection of the toroidal field at the base corresponds to that of the emergence of the
BMRs at the surface.

In our MHD model, the dynamo-generated fields are expected to have strong impacts
on flows via the Lorentz force feedback. Figure 6.2c shows the temporal evolution of the
differential rotation, which is commonly known as torsional oscillations. We clearly find
both poleward and equatorward propagating oscillation patterns with the typical ampli-
tude of about 5 nHz at the surface. Figures 6.3a and b show the time-latitude profiles of the
latitudinal velocity at the top and bottom of the convection zone, respectively. Although
poleward flow at the surface and equatorward flow near the base tend to be suppressed
during the activity maxima, the feedback is not large enough to switch off the advection
of the magnetic fields. Figure 6.3c shows the temporal evolution of the entropy pertur-
bation at the surface with typical variation amplitude of about 250 erg g−1 K−1 which
corresponds to the temperature fluctuation of about 1.4 K. The surface is heated when
BMRs emerge due to the strong magnetic diffusion in our model.
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Figure 6.2: Temporal evolution of the azimuthally-averaged magnetic fields and torsional
oscillation. (a) Azimuthal mean of the radial field B̄r [G] at the surface r = 0.985R⊙ where
the bar denotes the azimuthal mean. (b) Azimuthal mean of the longitudinal field B̄ϕ [kG]
near the base of the convection zone r = 0.715R⊙. Black solid lines are the contours of
the emerged BMRs at each time. (c) Torsional oscillation pattern δΩ = Ω1 − ⟨Ω1⟩t [nHz]
at the surface where ⟨⟩t denotes the temporal average.
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Figure 6.3: Temporal evolution of the latitudinal velocity and entropy perturbation. (a)
Azimuthal mean of the latitudinal velocity v̄θ [m s−1] at the surface. Red (blue) in the
northern hemisphere represents the equatorward (poleward) flow. (b) The same as (a)
but near the base of the convection zone. Black dashed lines denote the contours of the
toroidal field at the base (8.5 kG). (c) Entropy perturbation δs1 = s1 − ⟨s1⟩t at the surface
in units of erg g−1 K−1.
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Figure 6.4: Time evolution of magnetic field and velocity. Shown are the snapshots at
t = 12.9 yr (from (a) to (e)), t = 14.9 yr (from (f) to (j)), t = 17.9 yr (from (k) to (o)),
t = 19.9 yr (from (p) to (t)) in Fig. 6.2. The mollweide projections on the 1st and 2nd
columns show the radial field Br at the surface r = 0.985R⊙ and longitudinal field Bϕ near
the base of the convection zone r = 0.715R⊙, respectively. The meridional plot in the 3rd
column represents the azimuthally-mean toroidal field (color scales) and poloidal field
(contours). The meridional plots in the 4th and 5th columns represent the azimuthally-
mean differential rotation and streamfunction of the meridional circulation, respectively.

197



6 3D MHD simulation of Babcock-Leighton solar dynamo

Figure 6.5: Snapshots of the radial field Br [kG] at the surface (top rows) and the radial
velocity vr [m s−1] near the surface (bottom rows) at t = 10.3 yr in Fig. 6.2. The black
arrows represent the horizontal flow (vθ, vϕ) at the surface. Panels (c) and (d) are the zoom-
in of the panels (a) and (b), focusing on the single BMRs denoted by red thick solid lines.

Figure 6.4 shows the evolution of the magnetic fields and mean flows (differential rota-
tion and meridional circulation) over the course of a magnetic cycle. The leftmost panels
show mollweide projections of the surface radial field. As prescribed in our BL-source
term, BMRs emerge at low latitudes obeying the Hale’s and Joy’s laws. Therefore, the
magnetic fields near the surface are substantially non-axisymmetric. On the other hand,
toroidal fields near the bottom convection zone are found to be almost axisymmetric.
Meridional plots on the 3rd, 4th, and 5th columns of Fig. 6.4 show the azimuthally-mean
profiles of the poloidal and toroidal magnetic fields, differential rotation, and meridional
circulation, respectively. When azimuthally averaged, the solution show a similar pattern
of time evolution as previous 2D mean-field models (e.g., Rempel 2006).

6.3.2 Flows associated with BMRs
In our model, non-axisymmetric flows are driven both by random fluctuations in the Λ-
effect and by non-axisymmetric Lorentz forces. In the simulation reported here, the latter
effect is found to be dominant. Figure 6.5 shows a snapshot of the radial field at the surface
(top rows) and the radial velocity near the surface (bottom rows). Black arrows represent
the horizontal flow motions at the surface. Strong flows are always magnetically-driven
in the vicinity of the BMRs: When a BMRs emerge at the surface which happens in-
stantaneously in our model, a horizontal converging flow is driven towards the polarity
inversion line (between the two spots) with the typical amplitudes of about 100 m s−1.
This is owing to a strong magnetic tension force of the bipolar sunspots (whose subsur-
face structure is half-torus) that acts as an attractive force for the two spots. This strong
converging flow further drives both horizontal outflows and radial downflows along the
polarity inversion line, as shown in Fig. 6.5c and d. Due to these strong horizontal flows
at the surface, a newly-emerged BMR that initially consists of two round-shaped sunspots
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Figure 6.6: Equatorial power spectra of latitudinal velocity vθ near the surface r = 0.95R⊙
computed for (a) the hydrodynamic (non-magnetic) simulation and (b) the dynamo sim-
ulation. The spectra are computed in a frame rotating at Ω0/2π = 431.3 nHz. The power
is normalized at each azimuthal order m. The white solid lines represent the advec-
tive effect by the differential rotation at the surface ω = m [Ω(0.95R⊙, π/2) −Ω0]. The
red lines denote the theoretical dispersion relation of the sectoral mode Rossby wave,
ω = −2Ω(0.95R⊙, π/2)/(m + 1) + m [Ω(0.95R⊙, π/2) −Ω0].

is quickly deformed into an elongated shape along the polarity inversion line, as seen in
Fig. 6.5a.

6.3.3 Equatorial Rossby (r modes)
Other interesting non-axisymmetric flow features are the equatorial Rossby modes, which
have recently been found to contribute a significant fraction of the vertical vorticity power
at low latitudes (e.g., Löptien et al. 2018). In order to characterize the Rossby modes, we
compute the equatorial power spectra of latitudinal velocity near the surface. The same
analysis method as § 3.2 is used for the Fourier transform in time and longitude. Note,
however, that unlike the rotating convection simulation of Bekki et al. (2022a), Rossby
modes are excited by the non-axisymmetric random fluctuations in the Λ-effect and by
the non-axisymmetric Lorentz-force in our non-convecting model. For comparison, we
also compute the same power spectrum for the hydrodynamic (non-magnetic) simulation
data, in which the non-axisymmetric flows are purely driven by the random fluctuations in
the Λ-effect. The results are shown in Fig. 6.6. Note that all the spectra are computed in a
frame rotating at Ωref/2π = 431.3 nHz. In both cases, we confirm the existence of Rossby
modes as represented by clear power ridges along the expected dispersion relations (red
lines) in the spectra. Compared to the hydrodynamic case where the Rossby modes exist
for azimuthal orders 3 ≤ m ≤ 8, the Rossby modes can be confirmed for 3 ≤ m ≤ 15, and
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Figure 6.7: Eigenfunctions of the equatorial Rossby mode at m = 10 extracted from
the dynamo simulation. Shown are the eigenfunctions of vr, vθ, vϕ (in units of m s−1),
and s1 (in units of erg g−1 K−1), from left to right. Top and bottom rows show the real
and imaginary phases of the eigenfunctions, where we set the phase where vθ becomes
maximum at the equator as real, respectively. Overplotted in black solid line denotes the
location of the viscous critical layer.

Figure 6.8: Normalized eigenfunctions of (a) vθ and (b) vϕ at the surface. Solid and dashed
lines represent the real and imaginary parts, respectively. Black and solid lines denote the
simulation and observation, respectively.

their linewidths become broader in the frequency domain.
Figure 6.7 shows the extracted eigenfunctions of the equatorial Rossby modes at

m = 10. For detail methods of the mode extraction from the simulation data, see §4.3.2.
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Top and bottom rows show the real and imaginary phases, respectively. The latitudinal
velocity peaks at the equator, switches sign at middle latitudes, and then decays at higher
latitudes, which is similar to the observations (Löptien et al. 2018, Proxauf et al. 2020).
This latitudinal variation is likely caused by the viscous critical layer under the influ-
ence of differential rotation as discussed in Gizon et al. (2020b) and in §3.6.1. It is also
noteworthy that the equatorial Rossby mode involves substantial radial motions near the
viscous critical layer. Figure 6.8 compares the latitudinal eigenfunctions of vθ and vϕ at
the surface between the simulation and the observations at m = 10. Solid and dashed
lines denote the real and imaginary parts, respectively. It is striking that the real eigen-
functions of both velocity components agree quite well with the observations (Proxauf
et al. 2020). However, the sign of the imaginary eigenfunctions turns out to be opposite:
ℑ[vθ] becomes positive at middle latitudes unlike the observations. This issue has already
been pointed out by Gizon et al. (2020b).

6.4 Summary and discussions

In this chapter, we have described numerical methods of the novel 3D MHD Babcock-
Leighton flux-transport dynamo model and reported some initial results of our reference
simulation. This model can be regarded as an extension of the 3D kinematic Babcock-
Leighton dynamo models (Yeates and Muñoz-Jaramillo 2013, Miesch and Dikpati 2014,
Karak and Miesch 2017, Kumar et al. 2019) to MHD regime where the dynamo-generated
magnetism can give a feedback on the flows. In this model, we do not solve the small-
scale convection and focus on the large-scale flow and magnetic structures in 3D spherical
shell. The large-scale mean flows are driven not by rotationally-influenced convection but
by parametrized Reynolds stresses (Λ-effect). The three-dimensional induction equation
is solved with the Babcock-Leighton source. It should be noted that, in this study, we
have presented a new method of implementing the Babcock-Leighton α-effect, by which
the surface poloidal field is produced in response to the dynamo-generated toroidal field
near the base of the convection zone. Although there are several artificial terms in the
governing equations in our model, this treatment allows us to simulate for the first time
the MHD dynamo under the observationally-constrained profiles of differential rotation
and meridional circulation, which is hard to obtain in the spherical convective dynamo
simulations (e.g., Hotta et al. 2016, Strugarek et al. 2017, Viviani et al. 2018).

We have successfully demonstrated that many of the observational dynamo features
are reproduced in our model such as activity cycles with decadal period, equatorward
migration of the sunspot groups (BMRs), poleward transport of the surface radial field,
torsional oscillations with both poleward and equatorward branches. However, since our
model is highly sensitive to various model parameters, there are still several disagreements
with the solar observations such as a slightly shorter cycle period of 9 yr, stronger radial
field strengths at the surface of typical amplitudes of about 200 − 300 G, and slightly
larger torsional oscillations. The most important model parameters would be Λ0 that
determines the amplitudes of the differential rotation and meridional circulation, and α0

that determines the strengths of BMRs emerged at the surface. In principle, a larger Λ0

will lead to faster meridional flows and shorten the cycle period, and a larger α0 will
increase the field amplitudes and lead to a larger torsional oscillations. Yet, the outcome
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is not trivial in the MHD regime where the flows and magnetic fields interact nonlinearly
with each other. A detailed parameter study is required in the future.

One of the most striking results is the emergence of low-latitude branches of the tor-
sional oscillations, which was not obtained in the 2D non-kinematic mean-field models
(Rempel 2006). It is often argued that, unlike the high-latitude branches of the torsional
oscillations that originate from the mean-field Lorentz force feedback (mechanical forc-
ing), the low-latitude branches are generally attributed to the enhanced surface cooling of
the BMRs (thermal forcing) (Spruit 2003, Rempel 2006, 2007). In our model, there is no
such an effect of the enhanced radiative cooling at the surface. It is found that the surface
is rather heated due to the strong magnetic diffusion of the superequipartition BMRs as
shown in Fig. 6.3 (c). As a consequence, the thermal forcing works in the opposite sense
in our model. This can be confirmed by the fact that the equatorial region is more accel-
erated (decelerated) than average in the activity minima (maxima), which disagrees with
the observations (Howard and Labonte 1980, Howe et al. 2000, Vorontsov et al. 2002). In
the future model, we plan to include the effects of the enhanced radiative cooling asso-
ciated with BMRs at the surface to study how the low-latitude branches of the torsional
oscillations are affected.

It should also be pointed out that an inclusion of the enhanced radiative cooling at the
surface will substantially affect the horizontal motions at the surface by geostrophycally
inducing inflows towards active regions (e.g., Gizon et al. 2001, Gizon and Rempel 2008).
These active regions inflows are expected to have significant impact on the properties of
the solar dynamo by regulating the poleward transport of the poloidal fluxes at the sur-
face (Cameron and Schüssler 2012, Martin-Belda and Cameron 2017). While this issue
has been conventionally studied in a kinematic regime, our model will provide a promis-
ing tool to study the effects of active region inflows in a self-consistent MHD dynamo
simulation.

Finally, we note that our code is also applicable to examine the impact of magnetic
fields on Rossby modes which we found to exist in the simulation. In fact, these obser-
vations suggest that the amplitudes and frequencies of the solar Rossby modes exhibit a
cycle dependence (Liang et al. 2019). If we properly understand the effects of deep-seated
magnetic fields on the mode frequencies and eigenfunctions of the Rossby modes, obser-
vations could potentially be used to infer the location and strength of the magnetic fields
hidden in the Sun (Goddard et al. 2020).
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6.5 Appendix

6.5 Appendix

6.5.1 Extention to MHD code
The code used in this study has been developed by adding magnetic terms to the hydro-
dynamic equations,

∂u

∂t
= [ . . . ] +

1
4πρ0

(∇ × B) × B, (6.25)
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For the sake of numerical convenience, the right-hand-side of the equation of motion is
expressed in a flux form,
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Here, the relation of the background hydrostatic balance is used,
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γ
= 0. (6.29)

Note that the Lorentz force is decomposed into the magnetic pressure gradient and tension
force,

(∇ × B) × B = −∇
(

B2

2

)
− ∇ · (BB) − (∇ · B)B. (6.30)

Here, the last term represents the artificial Lorentz force resulting from the numerical
error of ∇ · B in direction parallel to the magnetic field.

6.5.2 Divergence B cleaning
In order to minimize the numerical error related to the divergence of the magnetic field,
the hyperbolic divergence cleaning method (9-wave method) suggested by Dedner et al.
(2002) is adopted. In addition to the common set of the basic equations, we also solve the
following equation coupled with the modified induction equation as

∂B
∂t
= −∇ · (uB − Bu + ψI) + (diffusion) (6.31)

∂ψ

∂t
= −c2

d(∇ · B) −
ψ

τ
. (6.32)

Here, a scalar potential ψ is introduced to remove the divergence error and is initially set
to zero. Due to the numerical error of (∇ · B , 0), a potential ψ immediately emerges
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Figure 6.9: Results of the Orszag-Tang vortex problem. Shown are (a) the temperature
and (b) the numerical error of the magnetic field’s divergence ∇ · B.

which will soon disappear with a typical damping time-scale τ. Let us neglect magnetic
diffusion for simplicity. We can eliminate u and B to get the so-called telegraph equations
for ψ and ∇ · B,

∂2

∂t2ψ = c2
d∇

2ψ −
1
τ

∂ψ

∂t
, (6.33)

∂2

∂t2 (∇ · B) = c2
d∇

2(∇ · B) −
1
τ

(∇ · B). (6.34)

Therefore, it is implied that both ψ and ∇·B evolve based on the same telegraph equation.
cd sets the propagation speed of the divergence error and given by the maximum propa-
gation speed of information allowed, i.e., cd = cmax = max [Cs,CA]. The damping time
scale is given by

τ =
∆t

ln (1/0.9)
, (6.35)

so that the error is suppressed by 10% every time step. We solve the Orszag-Tang Vortex
Problem (Orszag and Tang 1979) to check whether or not the cleaning properly works as
shown in Fig. 6.9.
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7.1 Summary of results

In this thesis, we have developed numerical models of the solar convection zone in several
different regimes and demonstrated that these codes can be used to study the properties of
low-frequency vorticity modes in the Sun. Our major findings are summarized as follows:

Linear / hydrodynamic regime:

• The dispersion relations and eigenfunctions of the equatorial Rossby modes, colum-
nar convective modes, and high-latitude modes are obtained for the first time with
the realistic background model of the Sun.

• The mixed modes between the equatorial Rossby modes with one radial node (n =
1) and the north-south anti-symmetric columnar convective modes are newly dis-
covered. This mode mixing between the two oppositely-propagating vorticity modes
can be understood in analogous to the Yanai waves (mixed Rossby-gravity waves)
(Matsuno 1966).

• With moderate diffusivities included, n = 0 equatorial Rossby modes tend to be
confined near the base of the convection zone and the surface eigenfunctions deviate
from the sectoral form. This implies that the observed Rossby modes on the Sun
are likely n = 1 modes (a part of the mixed modes) rather than n = 0 modes as
normally assumed.

• When the latitudinal entropy gradient is taken into account, we find that the to-
pographic Rossby waves become baroclinically unstable. The eigenfunctions and
dispersion relations of the baroclinically-unstable modes agree nicely with obser-
vations of the high-latitude modes on the Sun (Gizon et al. 2021).

Nonlinear (convecting) / hydrodynamic:

• The mode-by-mode analysis of equatorial modes in the solar-like rotating convec-
tion simulation has been reported. Columnar convective modes are unambiguously
identified in the surface longitudinal velocity power spectrum. They are responsible
for about 80% of the required luminosity and angular momentum transport.

• Although weak in amplitudes compared to the columnar convective modes, we also
successfully identify the equatorial Rossby modes with no radial node (n = 0). They
are confined near the base of the convection zone. Near the surface, we robustly
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confirm the existence of the mixed modes, as predicted by the linear analysis. Our
analysis has shown that, owing to the mode mixing, the equatorial Rossby modes
can be partially convective and contribute to the net angular momentum transport
(a few percent of what is required).

Nonlinear (non-convecting) / hydrodynamic regime:

• When the convection zone is sufficiently baroclinic (.i.e. the latitudinal entropy gra-
dient is large enough) a baroclinic instability occurs. This leads to a reduction of the
latitudinal entropy gradient which will decrease the amount of differential rotation.
In this way, the baroclinic instability might regulate the amplitude of differential ro-
tation of the Sun. The latitudinal temperature difference required for the instability
to occur is 7 − 8 K. This is in the range required to produce the Sun’s differential
rotation.

• The spatial structure and the propagation frequencies of the baroclinic modes agree
very well with the observations. The heat and angular momentum transport of
the baroclinically-unstable modes are significant ingredients in the solar convection
zone dynamics.

Nonlinear (non-conevcting) / magnetohydrodyanmic regime:

• The simulation reproduces many large-scale observational flow and magnetic fea-
tures such as solar-like differential rotation, single-cell meridional circulation, 11-yr
magnetic cycles, equatorward migration of the activity belts, and torsional oscilla-
tions at low and high-latitude branches.

• The BMRs emerged at the surface drive strong non-axisymmetric flows via the
Lorentz force. The entropy perturbations associated to the BMRs become posi-
tive due to the turbulent diffusive heating, which geostrophically induces the low-
latitude branch of the torsional oscillation.

• The equatorial Rossby modes are confirmed in the simulated power spectra at the
surface. The extracted eigenfunction (real part) shows a similar latitudinal variation
to the observations, i.e., sign changes at middle latitudes, which is caused by the
viscous critical layer.

7.2 Discussions and outlook

Here we discuss the current status of the convective conundrum as well as some insights
obtained from our studies. We also give our outlook for the future.

7.2.1 Missing columnar convective modes
As repeatedly emphasized throughout the thesis, the columnar convective modes play
crucial roles in the solar convection zone dynamics in the numerical models. Various nu-
merical simulations have them as the dominant convective pattern at low latitudes (where
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they are commonly known as ’banana’ cells) where they significantly contribute to the
net angular momentum and enthalpy flux transport (e.g., Miesch et al. 2008, Matilsky
et al. 2020, see also Chapter 4). However, the observations still have difficulties in de-
tecting them, e.g. in the velocity spectra at the solar surface. In fact, it is reported in
Chapter 2 that there is no excess power near the theoretical dispersion relation of n = 0
columnar convective modes in the observational spectrum of the north-south symmetric
longitudinal flows (Gizon et al. 2021). Although some velocity power can be seen with
the associated velocity amplitude of about 0.4− 0.7 m s−1 at frequencies lower than those
of n = 0 columnar convective modes (slightly prograde with respect to the Carrington
frame), it still remains uncertain whether these observed signals are from the columnar
convective modes or from the flows around the active regions (denoted by purple shades
in Fig. 2.6). However, even if we assume they are columnar convective modes in nature,
the associated kinetic energy might be insufficient to explain the required Reynolds stress
to maintain the solar differential rotation.

We find that the columnar convective modes with north-south antisymmetric longi-
tudinal velocity are essentially mixed with the equatorial Rossby modes (§ 3.3.1.2) and
these mixed modes can transport a significant fraction of enthalpy flux. These “mixed”
modes also exist in our nonlinear convection simulations (§ 4.5.3). This is a promis-
ing result in terms of convective conundrum because the conventional (north-south vϕ-
symmetric) columnar convective modes might not be crucial for the Sun’s convection
zone dynamics if the newly-discovered “mixed” modes have sufficient amplitudes. To de-
termine what amplitudes are sufficient requires a better understanding of the modes: for
example, how are they modified by a radial dependent superadiabaticity and/or turbulent
viscosity inside the Sun’s convection zone.

7.2.2 Constraining unknowns in the Sun

Superadiabaticity

There are many crucial yet unknown parameters in the solar convection zone that make the
understanding the Sun’s large-scale convection and dynamo difficult. The superadiabatic-
ity δ is the most famous example among them. One of the most striking manifestations of
the convective conundrum is that large-scale convective amplitudes are overestimated in
numerical simulations and mixing-length models. This is likely due to the overestimated
superadiabaticity δ in the numerical models. In fact, the convective amplitudes can be sub-
stantially suppressed if the superadiabaticity is substantially small than currently believed
in the upper half and/or the mean stratification is weakly subadiabatic in the lower half of
the convection zone (e.g., Brandenburg 2016, Bekki et al. 2017, Käpylä et al. 2017).

In this thesis (Chapter 2), we have carefully examined the δ-dependence of the eigen-
function of the high-latitude inertial modes, and derived an observational constraint of
δ ≤ 2 × 10−7 in the convection zone. Although this is a first attempt to constrain δ using
the observations of the inertial modes in the Sun, it is still a relevant constraint: typi-
cal values used in convection models are of the order of δ ≈ 10−6. We also find that
the frequencies and eigenfunctions of the other inertial modes (such as mixed modes and
critical-latitude modes) as well are sensitive to a small change in δ, so this estimate should
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be able to be improved in the future.
In the linear eigenmode model reported in Chapter 2, we have assumed a spatially

uniform superadiabaticity values throughout the convection zone for simplicity. How-
ever, recent numerical studies suggest that δ can substantially vary in the convection zone;
weakly subadiabatic in the lower half, weakly superadiabatic in the bulk, and strongly su-
peradiabatic near the surface. The mode frequencies and eigenfunctions can be modified
when the radial dependence is taken into account, which needs to be checked in the future
work.

The superadiabaticity δ will directly impact the excitation process of the solar iner-
tial modes, especially the columnar convective and mixed modes: As δ becomes large,
the convective modes become more and more efficiently excited, and their amplitudes
become large. On the other hand, the quasi-toroidal modes such as (n = 0) equatorial
Rossby modes are almost unaffected by the change in δ. Therefore, it is expected that
the amplitudes of the inertial modes, as well as the mode frequencies and eigenfunctions,
can potentially be used to infer the superadiabaticity. It will be a promising future work
to conduct a systematic study of fully-nonlinear simulations of rotating convection with
varying model parameters. Figure 7.1 shows the preliminary results (radial velocity and
differential rotation) of this parameter survey where the luminosity and rotation rate are
changed (therefore superadiabaticity δ and Rossby number Ro are varied, respectively).

Turbulent diffusivities

Turbulent diffusivities are important ingredients in the models of solar large-scale con-
vection and dynamo (e.g., Charbonneau 2020). Generally, turbulent viscous (ν), thermal
(κ), and magnetic (η) diffusivities are expected to be comparable assuming that the mo-
mentum, entropy, and magnetic fields should be mixed by the same turbulence eddies. In
the mean-field theory (e.g., Moffatt 1978), they can be expressed as

ν ≈ κ ≈ η ≈
τc

3
⟨v2

c⟩, (7.1)

where τc is the convective turnover time and vc is the convective speed. Thus, the ob-
servational constraint on the diffusivity provides an estimate of the large-scale convective
flows inside the Sun.

In this thesis, we find that the turbulent diffusivities significantly affect the mode prop-
erties of some inertial modes, particularly critical-latitude modes. The critical-latitude
modes owe their existence to the differential rotation and are localized near the viscous
critical latitudes. By carefully comparing their eigenfunctions (spatial extent and tilt of
the spiral) with the observations, we derived a constraint of ν ≈ κ ≤ 1012 cm2 s−1. The
constraint on ν provided by this thesis (an upper limit of about 1012 cm2 s−1) is relevant
because it is about one order of magnitude smaller than the conventional mixing-length
estimate, 1 − 2 × 1013 cm2 s−1 in the bulk of the convection zone (e.g., Muñoz-Jaramillo
et al. 2011). Because of Eq. (7.1), our measurement of the turbulent viscosity implies
that mixing-length models overestimate the turbulent kinetic energy inside the convec-
tion zone by at least a factor of 10. This implies that the convective velocity power in
numerical simulations (blue curve in Fig. 1.9) is overstimated about a factor of 10 if we
assume that the results of numerical simulations are consistent with the mixing-length
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7.2 Discussions and outlook

Figure 7.1: Snapshots of the radial velocity at the surface and the time-averaged differ-
ential rotation profiles for different values of luminosity L and rotation rate Ω. (Left) The
simulations where the luminosity is reduced by a factor of 2, 5, 20, and 60 while the
rotation rate is fixed to the solar value (Ω⊙). (Right) The simulations where the rotation
rate is increased by a factor of 2, 3, 5, and 8 while the luminosity is fixed to the solar
value (L⊙). The same solar-like background is used for all calculations.
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7 Summary and outlook

model. The inferred convetive velocity power based on our turbulent diffusivity estimate
lies in between the numerical simulation of Miesch et al. (2008) and the time-distance
helioseismic analysis of Hanasoge et al. (2012).

Baroclinicity

Global-helioseismology has revealed that the solar differential rotation deviates from
the Taylor-Proudman’s state, i.e., it should be in thermal wind balance (Schou et al. 1998).
The baroclinicity in the Sun’s convection zone, measured by latitudinal entropy (or tem-
perature) variation, is conventionally estimated from the observed differential rotation
based on the thermal wind balance as (Rempel 2005, Miesch et al. 2006, Brun et al.
2011)

g

cp

∂s0

∂θ
≈ r2 sin θ

∂Ω2

∂z
. (7.2)

This gives the associated latitudinal temperature variation of about 5 − 10 K in the con-
vection zone, which is too small to be directly measured. The physical origin of this
latitudinal entropy (or temperature) variation remains elusive; whether it comes due to
the weakly subadiabatic tachocline (Rempel 2005), anisotropic turbulent heat transport
(Kitchatinov and Ruediger 1995), small-scale magnetic effects (Hotta 2018), or magne-
torotational instability near the tachocline (Masada 2011).

Note that the Eq. (7.2) is derived under the assumptions that the Reynolds stress,
Lorentz forces, and viscous forces are all small relative to the Coriolis forces. However,
some of these assumptions are non-trivial: Therefore, it is worth obtaining an independent
observational constraint on the baroclinicity in the convection zone. In this thesis, we have
demonstrated that the high-latitude inertial modes are essentially excited by baroclinic
instability, and thus, these modes can be used to estimate the latitudinal entropy variation
in the Sun in the near future.

Furthermore, we have suggested that the latitudinal entropy variation (whatever its
physical origin is) can have a substantial impact on the solar convection zone dynamics.
Baroclinic instability likely occurs in the convection zone, as inferred from the observa-
tions of the high-latitude inertial modes, which regulates the baroclinicity and controls the
amplitude of differential rotation. This effect can only be captured in three-dimensional
models as presented in Chapter 5. Therefore, results obtained by the conventional two-
dimensional mean-field models of the solar differential rotation and meridional circulation
can be substantially affected, which needs to be carefully examined in the future.
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