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1 Summary

Words can be meaningless. If they are
used in such a way that no sharp
conclusions can be drawn.

Richard Feynmann.

The problem of magnetic reconnection is usually described by two theories: i) the
Sweet-Parker (SP) model of reconnection through long current sheet and ii) the Petschek
model of reconnection. The SP model does not provide the rate of energy conversion
required to bridge the time and scale gap for the eruption of a solar flare or a coronal
mass ejection (CMEs). Moreover, the SP model predicts a reconnection rate inversely
proportional to the magnetic-Reynolds-number Re, making that model unusable for as-
trophysical plasmas whose magnetic-Reynolds-numbers are large: Re ∈ O(1010 − 1017).
The Petschek model, in the other hand, is able to produce a reconnection rate fast enough
to be comparable with the observed one during the impulsive phase of solar flares or
coronal mass ejections. The Petschek model was, however, found to be viable only for a
localized anomalous molecular resistivity and for specific boundary conditions. In other
circumstances, the Petschek model is unstable and the current sheet turns into a Sweet-
Parker-type with a small reconnection rate.

Since high-magnetic-Reynolds-numbers astrophysical plasmas are known to be tur-
bulent, the time and scale gap problem between the usual theoretical models and ob-
servations are, in this work, addressed through magnetohydrodynamics (MHD) turbu-
lence. Instead of imposing turbulence externally through a constant forcing, it is through
a Reynolds-averaged turbulence model that the effects of turbulence are investigated. The
reason is that the small scales fluctuations and large scales inhomogeneities are in fact two
faces of the same coin. Through that model, turbulence is self-sustained and -generated
by the mean (large scale) fields and their gradients. At the same time, the feedback of
the turbulence to the mean-fields in the induction equation through the turbulent electro-
motive force allows to consider the influence of the small scales fluctuating fields on the
large scale mean-fields. The closure problem of turbulence is solved, in this formalism,
by means of governing equations for the mean field turbulence variables.

Such turbulence model is constructed on a few statistical quantities representing tur-
bulence. They are chosen based on MHD ideal invariants such as the energy or cross-
helicity. Practically, it is the energy (K), its dissipation rate (ε), the cross-helicity (W)
and the residual helicity (H) of the turbulence that are used to parametrize the turbu-
lence model. The turbulence transport coefficients enter the expression for the turbulent
electromotive force by means of an apparent turbulent resistivity β for the energy of the
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1 Summary

turbulence and two dynamo-like terms, γ and α, for the cross- and residual helicity of
the turbulence. The turbulence transport coefficients α, β and γ are related to the residual
helicity H, energy K and cross-helicity W of the turbulence by a turbulence correlation
time τ which is algebraically expressed as τ = K/ε.

As a first approach, the evolution equations for the turbulent energy and turbulent
cross-helicity are numerically solved together with the mean field MHD equations. The
consequences of turbulence on the reconnection rate are tested by varying the turbulence
timescale τ which is considered as constant, i.e., the turbulence energy dissipation rate
governing equation is not numerically solved. In order to extend the experiments to con-
ditions closer to the solar corona, a force-free current sheet equilibrium is considered for
a plasma-beta smaller than unity. The consequences of a guide magnetic field parallel to
the current flow are explored and important relations between the turbulence level and the
reconnection rate are inferred. A governing equation for the turbulence energy dissipation
rate is then used to consistently solve for the turbulence correlation time. The outcomes
of such a self-determined timescale on the reconnection rate are investigated.

The last part of this work is dedicated to high resolution direct numerical simula-
tions (DNSs) of the turbulence. The repercussions of turbulence on the reconnection rate
are inspected by considering a extension of the Reynolds-averaged turbulence model to
a subgrid-scale one. Turbulence is then statistically computed from the MHD variables
filtered off the DNSs by a Gaussian filter. The applicability of the Reynolds-averaged tur-
bulence model, as well as of a non-linear subgrid-scale model, to the problem of magnetic
reconnection is investigated and the relation between turbulence and the reconnection rate
of both turbulence models is obtained. The energy, its dissipation rate, the cross-helicity
and the helicity of the turbulence are later called "turbulent energy", "turbulent energy
dissipation rate", "turbulent cross-helicity" and "turbulent residual helicity".

14



2 Introduction

Nobody ever figures out what life is all
about, and it doesn’t matter. Explore
the world. Nearly everything is really
interesting if you go into it deeply
enough.

Richard Feynman

2.1 The Sun
The Sun is the star closest to the Earth. It is, therefore, a very special and impor-

tant laboratory for physics and astrophysics. For instance, the first observation (by the
Sudbury Neutrino Observatory) of neutrinos produced in the Sun’s core constituted a ma-
jor breakthrough for particle physics.1 Even though the Sun is globally well understood,
several processes remain a mystery. An important unsolved question is the coronal heat-
ing problem. In the core of the Sun, exothermic nuclear reactions convert protons into
helium through the proton-proton chain. This nuclear fusion generates a temperature of

Figure 2.1: Image of the Sun illustrating its interior, surface and activity. Credits: SOHO
(ESA & NASA)
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2 Introduction

the order of 15 · 106K which decreases to about 6000K in the photosphere and down to
approximatively 4500K above it. The temperature of the solar corona is, however, close
to one million degrees (figure 2.2).2 The second law of thermodynamics states that heat
flows from a hot to a cold body. This means that the temperature should rather decrease
away from the Sun’s surface as it is expected for thermal conducting environments. The
temperature of the solar corona seems, therefore, to contradict thermodynamic principles.
Several processes were proposed to additionally heat the corona such as different waves
models (AC models), current cascading or magnetic reconnection (DC models).3–6 Un-
like the temperature, the particle density drops dramatically from the photosphere to the
solar corona (figure 2.2). There, the electron density is below 108 cm−3 for a tempera-
ture above 106 K. These parameters make the solar corona atmosphere filled with a fully

Figure 2.2: Profile of the electron temperature Te and number density ne as a function of
the height above the photosphere. From Aschwanden.7

ionised plasma with a large particles mean free path of the order of kilometers. Particles
encounters and scatterings are, therefore, rare events. In the solar corona, the motion of
the particles is determined by the strong magnetic field. Their initial velocity parallel to
the magnetic field and the Lorentz force make the particles propagating with a cyclotron
motion along the magnetic field lines. The relative strength of the thermal energy of a
plasma compared with the magnetic energy is provided by the plasma-βp parameter

βp =
pth

pmag
=

2ρkBTe

µ0B2 , (2.1)

where pth and pmag are the thermal and magnetic pressure (energy), Te the electron tem-
perature, ρ the plasma density, µ0 is the magnetic permeability of the vacuum, kB the
Boltzmann constant and B the magnetic field strength. The magnetic field determines
the particles behavior for βp < 1 while they can slip from its grasp for βp > 1. In most
of the solar corona, the plasma-βp is much lower than unity, i.e., the magnetic pressure
dominates the thermal pressure (figure 2.3).

The magnetic field properties of the solar corona distinguish two regions on the
surface of the Sun. In the polar regions, the magnetic field lines are opened to the inter-
planetary space. I It is also the locations of the fast solar winds (≈ 800km s−1) carrying

I. Maxwell’s law ∇ · B requires theoretically that these field lines connect somewhere in the interplan-
etary space.
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2.1 The Sun

Figure 2.3: Plasma-βp in the Sun’s atmosphere. From Aschwanden.7

the plasma towards the heliosphere. The rest of the solar surface is connected by closed
magnetic field lines. These regions hold coronal loops which are filled with the cold or
heated plasma from the chromosphere. Their topology is determined by the magnetic
field. The loops can also open into the interplanetary space producing a slow solar wind
with a speed of the order of 400 km s−1.

The Sun exhibits flares (figure 2.4) above active regions (sunspots) where the mag-
netic field is strong. The occurrences of such phenomena are related to the solar activity
and the magnetic cycle. For instance, the solar flares number can be up to three per day

Figure 2.4: Schematic of a flare model. Credits: NASA

during a solar maxima with a large number of sunspots (regions of strong magnetic field).
During solar minima, the fewer sunspots reduce the eruption of flares to about one every
five days. The heated plasma trapped in strong magnetic fields can be ejected into the
interplanetary space following a large solar flare. Such an event is called a coronal mass
ejection (CME). The ejected magnetic flux and plasma (mostly electrons and protons)
is called a plasmoid. Solar flares are characterized by the rapid release (a few minutes)
of the stored coronal magnetic field energy which is converted to particle acceleration
and heat. II The magnetic instability responsible for the topological reconfiguration of the
magnetic field in solar flares and CMEs, as well as the rapid release of a large amount of
energy, could be related to magnetic reconnection.

II. Red dwarfs, stars similar to the sun and UV Ceti type variable stars also exhibit flares.8,9
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2 Introduction

2.2 The Importance of Magnetic Reconnection

The idea that the magnetic field may change its topology, and by so be able to release
its energy rapidly, anchored in the 40s.10 This process is called magnetic reconnection.
The key point of magnetic reconnection is its ability to rapidly convert the stored mag-
netic energy into other forms of energy. In the Sun, magnetic reconnection could reshape
dynamical structures such as coronal loops and trigger events above active regions from
critically stressed magnetized structures. Flares or coronal mass ejections (CMEs) could
be triggered, in the solar corona, by magnetic reconnection. The exact thresholds and
reasons for reconnection to happen are, however, still not understood.

The Sun is not the only astrophysical object where reconnection takes place. Other
stars, mainly fast rotator red dwarfs, also exhibit large stars flares. The phenomenon is
similar to solar flares except that the amount of energy released by stellar flares is much
larger. III Additionally to stars, planets endowed with a magnetosphere and hit by solar or
stellar winds show evidence of reconnection events. For instance, the day- and nightside
Earth’s magnetopause can exhibit reconnection. At the dayside, the solar wind magnetic
field interacts with the Earth’s magnetic field. Part the solar wind energy is converted
by reconnecting the wind magnetic field with the Earth’s field into kinetic energy and
heat. Following the dayside reconnection, the interconnection of the solar wind and Earth
magnetic field allows the solar wind to stretch and carry the Earth’s combined magnetic
flux toward the magnetotail. More energy is then released at the tail when reconnec-
tion occurs. Reconnection of the Earth’s magnetic field at the nightside is, therefore, a
consequence of the reconnection of the solar wind magnetic field at the dayside. Other
astrophysical objects like accretion disks also manifest reconnection events. The disks
exhibit jets of gas along their polar axis. Such jets release the angular momentum of the
disks, losing only a few percentage of mass in the process. The reduction of the angular
momentum by magnetic reconnection allows the gas to collapse on the massive object
in the center of the disk.13 Magnetic reconnection is not only an important phenomenon
for astrophysics but also for fusion plasmas. Fusion plasma experiments try to confine
hot plasma at a timescale sufficient to sustain nuclear reactions. Tokamak experiments
show, however, several instabilities due to magnetic reconnection that render the plasma
confinement difficult. The sawtooth oscillation is an example of magnetic reconnection
producing a relaxation of the plasma which may considerably degrade the confinement.14

Magnetic reconnection can be globally defined as a rapid change of magnetic field
topology which results in an efficient release of the stored magnetic component of the
field energy. The key ingredients for reconnection to happens are oppositely directed
magnetic field and a finite magnetic diffusivity (non-ideality of the plasma). Figure 2.5
represents magnetic field lines before and after being reconnected. The field line origi-
nally connecting A to B is, after reconnection, connecting A to C. The plasma trapped by
the reconnecting field lines is rapidly ejected by the released magnetic tension. The speed
at which plasma is ejected is a measure of the efficiency of reconnection. This is our cur-
rent understanding of reconnection in two dimensions. The same concept can be exported
to three dimensions. The important common point between two- and three-dimensional

III. Their is an important link between the rotation of a star, its activity and its magnetic field. The
magnetic field increases with rotation.11,12 The strength of the stored magnetic energy is therefore greater
for fast rotator stars resulting in a larger amount of energy released.
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2.2 The Importance of Magnetic Reconnection
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D B D

A C

Before After
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Figure 2.5: Schematic representation of magnetic reconnection. A magnetic field line
connecting A to B is, after reconnection, connecting A to C. The red area represents the
location of the current sheet.

reconnection is the rapid change of magnetic field topology and energy release. The
efficiency of the magnetic energy conversion into other forms is characterized by the re-
connection rate.

A plasma is a conducting ionised gas. On Earth, plasma is hardly found in the nature,
except for lightnings. On the contrary, plasmas are widely spread in the Universe and
compose approximatively 99% of the known visible matter. Even though a plasma is a
conducting gas made of particles, its magnetohydrodynamics (MHD) description (chap-
ter (3)) is used to tackle the reconnection problem. MHD is a theoretical framework which
allows to study electrically neutral fluids by a few variables without taking into account
the particles dynamics. The ideal MHD is a theory able to describe the behavior of large
magnetized structures filled with plasmas such as coronal loops. Since MHD describes a
magnetized fluid, the Navier-Stokes and Maxwell’s equations are solved together to de-
termine the fluid behavior. The power of the MHD theory resides in its ability to describe
a phenomenon by considering the forces balance and instabilities acting on a magnetized
fluid. The MHD approach is further able to consider a problem from the viewpoint of
ideal invariants such as the magnetic helicity or the total (magnetic plus fluid kinetic) en-
ergy of the plasma. This makes MHD an efficient tool to describe the global behavior of a
plasma. For the MHD approximation to be valid, fundamental assumptions on the length
and time scales under considerations must be made. It is required, in principle, that the
minimum non-ideal MHD length scale is larger than the mean free path between particle
collision (ion inertial length) and the cyclotron (Larmor) radius. It is further assumed
that the time needed for a light wave to cross the medium is much shorter than the MHD
timescale. Finally, the fluid can be assumed to be in thermodynamical equilibrium such
that the exchange of heat flux is adiabatic.
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Figure 2.6: Structure of the Earth’s magnetosphere. Credit: NASA/Goddard/Aaron
Kaase.

MHD is said to be "ideal" when the plasma resistivity is negligible and "resitive"
when finite plasma resistivity is considered. In ideal MHD, the plasma resistivity is ne-
glected and magnetic field moves together with the surrounding fluid and vice versa (sec-
tion (3.1)). The fluid can move along the direction of the magnetic field but not across it.
For instance, a "tube" of fluid wrapped around a magnetic field line will stay connected
to it whatever the deformation the "tube" feels under the external (fluid) forces acting
on it. This interaction of the fluid with the electromagnetic field is called the frozen-in
condition of the plasma. Ideal MHD condition can be broken if the plasma resistivity is
non-negligible. This extension is called resistive MHD. When magnetic flux with field
components in opposite directions are pushed towards each others, e.g. in narrow regions
filled with an electric current (current sheet), reconnection can take place. In collisional
plasmas, the enhanced friction between electrons and ions gives rise to an electric resis-
tivity which allows for reconnection. In collisionless plasmas such as the solar corona,
such encounters are rare but the frictions of the ions and electrons might be a source of
ambipolar diffusion able to reconnect magnetic field lines.15 While a plasma resistivity
might break the frozen-in condition, its role is not clear in collisionless plasmas.

A current sheet is a region between two oppositely directed magnetic field where an
electric current density appears. The motion of the fluid may produce tangential dis-
continuities of the field. The intensity of the current density can rise in time due to the
continuous pressure of the inflow but its growth is slowed down as soon as the magnetic
field is dissipated. The increased current density in this thin region toghether with a fi-
nite value of the molecular resistivity cause a non-negligible diffusion of the magnetic
field. The frozen-in condition is broken and magnetic reconnection can take place. A
current sheet is, therefore, an appropriate environment for magnetic reconnection to hap-
pen. Current sheets can be found in the magnetopause at the Earth’s day- and nightside.16

The solar system largest know current sheet is found in the heliosphere at the Earth’s
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nightside (figure 2.6). Aurorae might be a result of the particles acceleration in the Earth-
ward direction due to magnetic reconnection in the tail current sheet. On the Sun, current
sheets appearing above active regions possibly allow a quick release of the stored mag-
netic energy.17 Once reconnection takes place, the magnetic flux inflow is balanced by the
magnetic flux outflow. Such a steady state reconnection has a "Y"-point geometry for a
finite uniform resistivity (Sweet-Parker (SP) model18,19) and an "X"-point geometry when
the finite resistivity is localized (Petschek-like reconnection model20).21 These two differ-
ent models and their associated rate of magnetic energy conversion are discussed further
in sections (7.1)-(7.2). The open question is: how can fast reconnection be obtained in
the collisionless plasma of the solar corona? A possible answer can be given considering
turbulence a trigger for fast reconnection.

2.3 Turbulence

As soon as a fluid is set into motion, turbulence may develop. Turbulence encom-
passes all chaotic changes and unpredictable behavior of a fluid. One striking point of a
turbulent flow is its irregularity. Rather than considering turbulence from a deterministic
point of view, its complex influence on the fluid’s behavior should be considered statisti-
cally. Since non-magnetized fluids are largely spread on Earth, hydrodynamic turbulence
is well studied. This is not the case for magnetohydrodynamics turbulence even though it
is ubiquitous in astrophysical plasmas. Magnetic turbulence is important for MHD since
magnetic field fluctuations are more important at macro than micro scales.22

Even though it is possible to obtain similar properties for different realisations of the
same turbulent plasma, the genuine unpredictable nature of turbulence renders difficult
its reproducibility. Furthermore, measurements of turbulence in space environments such
as the solar wind are not easily comparable with theory. These difficulties are partially
addressed by means of numerical simulations whose results can be compared with theoret-
ical models. Numerical simulations face, however, difficulties to fully resolve all scales
of turbulence due to the extreme astrophysical parameters. For instance, the magnetic
Reynolds number Re which provides an estimation of the relative effects of the magnetic
field advection to its dissipation, i.e. Re = VL/η where V is the fluid velocity scale, L
the typical length scale of the flow and η is the molecular resistivity, can be in the range
1010−1017. In terms of the magnetic Reynolds number Re, the ratio of the largest turbulent
eddy size l to the smallest one η is given as l/η = R3/4

e . For a three-dimensional simula-
tion to solve all the scales from the large containing scales to the smallest dissipative one,
the number of grid points required is ≈ R9/4

e .23 Three-dimensional numerical simulations
of the solar convection zone (Re ≈ 1015) requires at least 1034 grid points or floating-
points operations per seconds (FLOPS) to resolve all fluid processes. The supercomputer
presently available are able to reach up 1022 FLOPS. The necessary computational power
is unfortunately not reachable in the foreseeable future due the slow down of the compu-
tational power increase of the fastest HPCs. The scale gap between the resolvable grid
scales (GS) of numerical simulation and the small-scale influence on turbulence on the
large ones can be grasped by statistical turbulence modelling.

A model is a simplification of a given situation. Turbulence models usually simplify
the complexity of the fluctuations by decomposing any field into its mean (steady) and
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fluctuating component. Such a decomposition of the MHD variables results in the tur-
bulence closure problem: there are more unknowns than available equations. This kind
of turbulence models try, therefore, to close the system of equations by expressing the
unknowns quantities in terms of the available (resolved) fields. Turbulence models distin-
guish the mean- and fluctuating fields. The former being the part of the plasma holding
most of the energy while the latter is the length scale at which energy can be dissipated.
Mean variables are defined for the slowly varying fields and flows. In this work, two kinds
of turbulence simulations are used: (i) large eddy simulations (LES) and (ii) Reynolds-
averaged turbulence approach.24–26 The LES resolves the large scale motions containing
most of the energy and models the unavailable subgrid-scale (SGS) where the turbulence
resides. On the contrary, all plasma scales are modeled in the Reynolds-averaged tur-
bulence models and solely the mean field variables are computed. Reynolds-averaged
turbulence models need, therefore, to model turbulent motion with transport equations of
statistical quantities. They are often chosen as statistical properties of ideal MHD invari-
ants such as the energy, its dissipation or the cross-helicity.

The Richardson’s picture of turbulence describes a dissipation of large scale fluid en-
ergy towards the small scales: Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls, and so on to viscosity. -Richardson, (1922). The large
scale energy supplies and sustains turbulence which in turns dissipates the energy at small
scale by the viscosity ν. The process is similar to magnetic reconnection which converts
the large scale magnetic energy into other forms in a small region of space through the
magnetic diffusivity η. Since turbulence interacts nonlinearly over a wide range of scales,
it may play an important role in magnetic reconnection.27 For instance, Turbulence is
capable of breaking the ’frozen-in’ condition allowing for reconnection.28–30 From that
point of view, the energy dissipation by turbulence at small scales can be a part of the
reconnection process. It has to be noted that turbulence does not only breaks large scale
structures into smaller one. For instance, large scale magnetic field can be enhanced by
a dynamo effect due to small scales fluctuations.31,32 In particular, the turbulent dynamo
is an active field of research in the generation of strong magnetic field from turbulence at
the surface of the Sun and Sun-like stars.33–36

The MHD approach is adequate for describing fluid turbulence as long as it concerns
only fluid and magnetic field fluctuations. Most of the interesting information that can
be retrieved from turbulence are obtained in the frequency domain (Fourier analysis). In
terms of the wave number k, the global properties of the inertial range of self-similar
processes of a transfer of energy from large to small scales is characterized by power
laws. A well known power law providing spectral information on energy transfer is the
Kolmogorov (K41) power law which predicts an energy spectrum EK41 ∼ k−5/3.37 The
Kolmogorov picture of turbulence is presented in chapter (6). Solar wind turbulence are
found to follow K41 spectrum at MHD scales but changes to exponential power laws at
kinetic scales where dissipations take place.38,39

2.4 Addressing the Open Questions

Magnetic reconnection is a key process for understanding the dynamics of the so-
lar corona. The rate of magnetic energy conversion can be theoretically estimated. The
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Figure 2.7: Range of applicability of turbulence models.

Sweet-Parker model of reconnection for incompressible plasmas is such a model. It pro-
vides a reconnection rate Vin = VAS −1/2 for the Alfvén velocity VA and the Lundquist
number S = LVA/η (Reynolds number for V = VA).18 Most of astrophysical process in-
volving reconnection have large Lundquist numbers and the reconnection rate based on
the Sweet-Parker model is tiny. For instance, S ∼ 1012 in solar corona which provides a
solar flare diffusion time t ≈

√
S L/vA ≈ 0.3 years. This is way too long compared with the

duration of the impulsive phase of a flare which lasts a few minutes only.40 To enhance the
reconnection rate, Petschek considered slow shocks in compressible plasmas increasing
the reconnection rate to Vin = VA/ ln(S ) able to match observations.20 A Petschek-like
current sheet is, however, only formed for a localized anomalous resistivity.41 In order to
enhance the reconnection rate, several processes for collisionless plasmas were proposed
spanning from kinetic models,42,43 to anomalous resistivity44,45 and Hall physics.46,47 In
MHD, the plasmoid instability has been proposed to produce fast reconnection for a given
threshold of the Lundquist number.48 In two-dimensional numerical simulations, the in-
stability was found to reach a faster reconnection rate than the Sweet-Parker model (see
section (10.1)).49,50 In three dimensions, the plasmoid instability is found to reach lower
reconnection rates than in two-dimensional simulations.51 The most interesting fact about
plasmoid instability is its deviation from the Sweet-Parker scaling for high-Reynolds-
number-plasmas.52 Such a behavior indicates that other mechanisms than the molecular
resistivity η are at the origin of fast magnetic reconnection.

Magnetic reconnection is a multi-scale process capable to liberate a large amount of
energy at large scales by diffusive processes at small ones. How this large scale difference
can be bridged is an important open question. The fact that turbulence also spans a large
range of scales might provide some answers to this question. Since astrophysical plasmas
are ubiquitously turbulent,53 turbulence is an appropriate approach to this question. Fur-
thermore, solar winds in-situ observations revealed that turbulence and reconnection are
closely related to each other.54,55 This relationship was also observed in numerical simu-
lations.56,57 Three-dimensional simulations of the plasmoid instability also revealed that
the non-linear phase of magnetic reconnection is related to turbulence.51 For strong im-
posed Alfvénic turbulence, it was proposed that turbulence can lead to significantly faster
reconnection rate than the Sweet-Parker reconnection at large-Reynolds-numbers.28,29,58

The relation between turbulence and reconnection is related to the size of the current
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sheet diffusive layer. The Sweet-Parker reconnection is enhanced by any processes able to
enlarge the thickness of the diffusion layer to a size comparable to its length. For instance,
the fluctuations of the magnetic field in the diffusion region could enhance the diffusion
region thickness.28 The argument provides an upper limit of the turbulent reconnection
rate proportional to the Reynolds number Vin = VAM2

A for the Alfvén Mach number
MA = Vrms/VA.28 This specific argument was shown, however, to not hold for three-
dimensional reconnection with stratified turbulence which deviates from the Sweet-Parker
scaling.57 The weak dependence of the reconnection rate on the resistivity agrees, how-
ever, with Lazarian and Vishniac.28 Note that the intrinsic spatio-temporal randomness of
turbulence does not require any external forcing,59 especially for large-Reynolds-number-
plasmas.58 The enhanced transport due to turbulence may directly affect the mean-fields.
At the same time, the properties of turbulence are determined by the large scale (mean)
fields. The turbulence should, therefore, be treated simultaneously with the large scale
mean-field evolution instead of being externally imposed. Reynolds-averaged turbulence
models for which turbulence is self-generated and -sustained by the mean-field inho-
mogeneities provide such a simultaneous treatment of turbulence and mean-field evo-
lution.34,60 Such models provide a rate of energy conversion faster than the Sweet-Parker
scaling and hold a very weak dependence on the Ohmic resistivity at large-Reynolds-
numbers. Reynolds-averaged turbulence models are, therefore, good candidates to study
magnetic reconnection in a turbulent plasma.
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3 Magnetohydrodynamics (MHD)

You must understand that there is
more than one path to the top of the
mountain.

Miyamoto Musashi.

Magnetohydrodynamics treats about magnetized fluids. By fluid, it is understood a
ionised gas which is electrically neutral over macroscopic scales. The fluid is considered
as macroscopic for global length scales much larger than the Debye length and the Larmor
radii of the charged particles. Another important assumption is that the MHD frequency
ω is much smaller than the cyclotron frequency of the ions ωci. Under these approxima-
tions, the plasma can be described by fluid motions. Hence, the Navier-Stokes equations
can be used. Since the fluid is magnetized, the Maxwell’s equations are needed. This
chapter describes, therefore, the non-relativistic MHD equations (section (3.1))

Formally, the equations describing magnetohydrodynamics are obtained from micro-
scopic physics equations (kinetic theory). By the appropriate statistical quantities, MHD
equations are obtained taking the different moments of the Boltzmann’s equations. It
is, however, not the purpose of this dissertation to deal with this derivation and only an
heuristic approach is used to obtain the MHD equations. A full derivation can be found
in Aschwanden.7

The foundation of the magnetic reconnection theory of MHD lies in the magnetic field
properties inside a fluid which conduct electricity. Any electrically conducting material
is characterized by a resistance to the movement of the charge carriers. It is represented
by the magnetic diffusivity η = 1/(µ0σ) where sigma is the electric conductivity. The
magnetic diffusivity is called resistivity for the rest of this dissertation. Two MHD limits
which depend on the resistivity are presented. The limit of vanishing resistivity I leads to
the notion of magnetic flux conservation and the description of the magnetic field topol-
ogy. This limit is called ideal MHD (section (3.1.1)) which bears several invariants (sec-
tion (3.1.2)). On the other hand, the MHD equations for a finite resistivity η is the resistive
MHD limit (section (3.1.3)) for which the diffusion of magnetic field occurs. These two
limits distinguish whether the magnetic field can be reconnected or not.

I. Similar to a perfect conductor
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3 Magnetohydrodynamics (MHD)

3.1 Single fluid and Non-Relativistic Maxwell’s Equations
The single fluid MHD equations are described in terms the mass density ρ, the fluid

velocity V, the scalar pressure p and the magnetic field B. Considering a small volume
element dV inside the fluid, the total mass is M =

∫
ρ dV where ρ is the mass density.

Assuming that the total mass M is conserved, any flux of mass through a volume’s surface
given by ρV is equal to the rate of mass density change ∂tρ. This yields the following
MHD continuity equation

∂tρ + ∇ · (ρV) = 0, (3.1)

where V is the bulk velocity of the plasma
Since the magnetic field B is part of the MHD description, its behaviour is determined

by Faraday’s law
∂tB = −∇ × E, (3.2)

for the electric field E. The current density J is provided by Ampère’s law which, under
the MHD assumption V � c, is II

∇ × B = µ0 J. (3.3)

Finally, the non-existence on magnetic monopoles yields

∇ · B = 0. (3.4)

The momentum equation for the fluid motion is obtained by considering and adding
the forces acting on it. A charged particle is moving under the effect of the Lorentz force
(FL), which is the sum of the interaction over all charged particles inside a volume V.
Moreover, a fluid being electrically quasi-neutral, the Lorentz force reads

FL = J × B. (3.5)

The pressure is considered as isotropic and gravitational forces are, in magnetized plas-
mas, negligible compared to Lorentz force. The viscous forces are considered through the
(constant) kinematic viscosity µ. Hence, the fluid momentum equation is

ρ∂tV = −ρV · ∇V − ∇p + J × B + µ∇2ρV, (3.6)

where ρ is the mass density from equation (3.1). Note that the quasi-neutrality of the
plasma enforces no force from the electric field E.

The energy equation exists under different forms but in the present dissertation, it is
the internal energy form which is used. To a good approximation, heat conduction effects
can be neglected on MHD scale and adiabatic changes are assumed for the heat transfer.
Moreover, the plasmas can be considered to follow the ideal gas law with the equation of
state p = 2nkBT linking the pressure p to the total number of particles per unit volume n,
the Boltzmann constant kB and the temperature T . Under these assumptions, the energy
equation may take the form61

ργ0

γ0 − 1
D
Dt

(
p
ργ0

)
= −L, (3.7)

II. The displacement current ∂t E/c2 is negligible. This can be understood by dimensional analysis of
equation (3.2), see the discussion in Priest.61
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3.1 Single fluid and Non-Relativistic Maxwell’s Equations

where p is the thermal pressure, γ0 is the specific heat ratio Cv/Cp equal to 5/3 and L is an
energy function accounting for all possible losses and gains of energy. The symbol D/Dt
is the convective derivative defined as

D
Dt

=
∂

∂t
+ v · ∇. (3.8)

Applying the convective derivative of equation (3.7) on p and ργ0 yields

∂p
∂t

+ V · ∇p + γ0 p · ∇V = −(γ0 − 1)L. (3.9)

Finally, using the change of variable p = 2hγ0 gives

∂h
∂t

+ ∇ · (hV) = −

(
γ0 − 1

2γ0hγ0−1

)
L. (3.10)

The energy function L can be determined by considering the Poynting flux S . In elec-
tromagnetism, the equivalent of the work-energy theorem is the Poynting theorem. This
work done on the charge carriers increases their mechanical energy Umec which is com-
posed of the plasma kinetic and internal energy in MHD. The differential form of the
Poyting theorem can be written as

∂

∂t

(
Umec +

B2

2µ0

)
= −∇ · S ≡ −∇ ·

(
1
µ0

E × B
)
, (3.11)

where Umec is the mechanical energy density of the plasma. The energy function L can
be obtained by computing the total energy density of the plasma by multiplying equa-
tion (3.6) by V, equation (3.2) by B and adding the internal energy e

∂

∂t
B2

2µ0
+ ρ

D
Dt

(
V2

2
+ e

)
= − (∇ × E) · B + V · (J × B) − V · ∇p + ρ

D
Dt

e,

where the internal energy e is given by

e =
1

γ0 − 1
p
ρ
. (3.12)

Applying the convective derivative to the internal energy, the equation for the thermal
pressure becomes

∂p
∂t

+ V · ∇p + γ0 p · ∇V = − (γ0 − 1) [∇ · S − (∇ × E) · B + V · (J × B)] , (3.13)

where the divergence of the Poynting flux is

∇ · S = (∇ × E) · B − E · (∇ × B) , (3.14)

since the heat flux is neglected. In this context, the energy source/sink function can be
identified as

L = V · (J × B) − E · (∇ × B) , (3.15)
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for a given electric field E.
In electrodynamics, a flow of current is generated as soon as a force (per unit charge)

f of any kind is applied on the charge carriers in a material. Their velocity is proportional
to the force f modulo some resistance of the material in which they move

J = ζ f , (3.16)

where ζ represents all the non-ideal effects of the plasma. The plasma is considered as a
perfect conductor in the limit ζ → ∞. The force f (per unit charge) in the present context
is the electromotive force E+V×B and the non-ideal effects ζ are considered through the
plasma resistivity η. The electric field E in the fluid moving frame (laboratory reference
frame) is then

E = ηJ − V × B. (3.17)

The magnetic field dynamic is obtained by inserting equation (3.17) into equation (3.2)

∂tB = ∇ × (V × B + ηJ), (3.18)

which is called the MHD induction equation. There exist two important limits for equa-
tion (3.18): i) ideal MHD for η → 0, and ii) resistive MHD when the Ohmic dissipation
ηJ cannot be neglected in front of the advection term V × B. In ideal MHD (limit i)),
the magnetic field is said to be "frozen-in" to the plasma and magnetic reconnection is
impeded while reconnection is possible in limit ii). The limit of ideal MHD provides in-
variant quantities of interest which characterise the constrains on the fluid dynamics due
to the frozen-in conditions. Ideal MHD is discussed in section (3.1.1), ideal invariants in
section (3.1.2) and resistive MHD in section (3.1.3).

3.1.1 Ideal MHD

In ideal MHD, the resistivity η is neglected and the plasma is free to move along the
direction of the magnetic field. The Ohm’s law (equation (3.17)) reduces to

E = −V × B, (3.19)

resulting in the ideal induction equation

∂tB = ∇ × (V × B). (3.20)

The evolution of the magnetic field is only provided by the plasma velocity, it cannot be
diffused as in equation (3.18). The integral form of equation (3.20) expresses the conser-
vation of the magnetic flux through a surface S bounded by a closed curve C moving with
the fluid

φ =

∫
S

B · dS. (3.21)

The time derivative of the magnetic flux φ is given by: i) the variation of the magnetic
field in time, and ii) how much magnetic flux flew through the surface S between the time
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t and t + dt. Taking the time derivative of equation (3.21) yields

dφ
dt

=

∫
S

∂tB · dS +

∮
C

B · V × dl

= −

∫
S

∇ × E · dS +

∮
C

B · V × dl

= −

∮
C

E · dl −
∮
C

V × B · dl

= 0, (3.22)

where dl is a line element at every point tangent to the curve C. A flux tube is defined
by the gliding in time of the curve C around the magnetic field which provides a physical
interpretation of magnetic field lines frozen-in to the plasma. Equation (3.22) states that
the magnetic field cannot change its topology, i.e., the magnetic field lines only swirl
around in the plasma without being able to reconnect.

3.1.2 Ideal Invariants
The fact that the magnetic field cannot be diffused away in ideal MHD provide in-

variant quantities of interest such as the energy, the magnetic- or cross-helicity. These
invariants are later used in the mean field turbulence modeling (section (4.1.2)) to de-
rive statistical turbulent quantities describing the effect of small scale turbulence on large
scales (mean) fields.

The first invariant to be considered is the total energy density. Since the resistivity η
is neglected, the Poynting flux for the electric field equation (3.19) is

∇ · S = (∇ × E) · B − V · (J × B) . (3.23)

Inserting equation (3.23) into equation (3.13) gives

∂t p + V · ∇p + γ0V · ∇p = 0, (3.24)

which means that the energy density Umec + Umag is a conserved quantity. There is no
conversion of magnetic or kinetic energy into heat.

Since the magnetic flux is frozen in to the plasma, it may be bent, distorted or have any
other complicated shape. Determining the magnetic field is considered from the vector
potential A as B = ∇ × A. Such complexity of the magnetic field is characterized by the
magnetic helicity Hmag

Hmag =

∫
V

A · B dV, (3.25)

which depends on the choice of a gauge. The gauge can be chosen as the Coulomb
gauge because of the conservation of the total mass M. With this choice, the electric field
becomes E = −∂t A and the convective derivative of the magnetic helicity is

DHmag

Dt
=

∫
V

(B · ∂t A + A · ∂tB) dV +

∫
V

(A · B)
d
dt

dV (3.26)

= 0, (3.27)
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where equation (3.19) is used from equation (3.26) to (3.27). The frozen-in conditions
enforces the magnetic field to retain its topology.

The last invariant to be considered is the cross-helicity W which gives information
on the alignment of the magnetic and velocity field:

W =

∫
V

V · B dV. (3.28)

Its conservation is obtained by multiplying B to equation (3.6), V to equation (3.20) and
integrating over the volumeV. III

III. The full derivation of the magnetic- and cross-helicity can be found in Biskamp.22
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3.1.3 Resistive MHD
The frozen-in condition is broken as soon as any non-ideal processes are not negligible

in front of the convective term in equation (3.18). For a finite resistivity η, this situation
is realised within a current sheet where the intense current density compensates for the
small amplitude of the resistivity, making the Ohmic dissipation ηJ comparable to the
convective term V × B. In such a situation, the electric field is given as E = V × B −
ηJ. A finite resistivity is required to break the frozen-in condition, allowing magnetic
reconnection to happen.

The consideration of a finite resistivity modifies the energy source/sink function L
in equation (3.15). For a finite resistivity η, the divergence of the Poynting flux for the
electric field equation (3.17) yields

∇ · S = (∇ × E) · B − V · (J × B) + ηJ2. (3.29)

As done for equation (3.24), inserting equation (3.29) in equation (3.13) gives the resistive
MHD internal energy equation

∂t p + V · ∇p + γ0V · ∇p = (γ0 − 1) ηJ2. (3.30)

Equation (3.30) states that the magnetic and kinetic energy are converted to heat through
the Ohmic dissipation when thermal conduction, particle radiation or turbulence are ne-
glected. The energy function L is a source of heat identified as the Joule heating. The
identification ηJ2 = −L in equation (3.10) results in the internal energy equation for the
variable h

∂h
∂t

+ ∇ · (hV) =
γ0 − 1

2γ0hγ0−1 (ηJ2). (3.31)

The total energy density is no longer conserved due to a production of heat from the
Ohmic dissipation.

An important number related to the resistivity η is found by comparing the order
magnitude of the first and second term of the right-hand side of equation (3.18). For a
typical length scale L0 and velocity V0, the magnetic-Reynolds-number Rm is defined as

Rm =
V0L0

η
. (3.32)

In most astrophysical plasmas, Rm is very large due to a small resistivity and the extremely
large length scales; the plasma is frozen-in. Reducing the typical length scale increases
the magnetic-Reynolds-number. A situation where Rm . 1 , realised for instance within a
current sheet, reduces the induction equation to a diffusion equation

∂tB = η∇2B, (3.33)

for a uniform resistivity. Equation (3.33) provides a time scale over which the magnetic
field B is diffused away: τD = L2

0/η. For instance, an active region in the solar corona has
a length scale L0 ≈ 105m and resistivity η ≈ 1m2s−1. A sunspot has, therefore, a decay
time of 30.000 years.13 This decay time is, as the one obtained for a solar flare for the
Spitzer resistivity in the solar corona,62 much longer than observations.
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3 Magnetohydrodynamics (MHD)

It is finally important to note that, in resistive MHD, the magnetic helicity (equa-
tion (3.28)) and cross-helicity (equation (3.26)) are not conserved anymore and dissipate
as

DHmag

Dt
= −2η

∫
V

J · B dV (3.34)

DHc

Dt
= − (µ + η)

∫
V

Ω · J dV (3.35)

where Ω = ∇ × V is the vorticity and µ the constant kinematic viscosity. The resistivity
η in equation (3.34) is the parameter which allow the magnetic field to change its topol-
ogy. Magnetic reconnection can, therefore, be seen as a change of magnetic topology or
connectivity.

3.2 Resistive MHD equations
Together with the conservation of mass, the set of resistive MHD equations to be used

for the rest of the dissertation is

∂ρ

∂t
= −∇ · (ρV), (3.36)

∂ρV
∂t

= −∇ ·

[
ρV ⊗ V +

1
2

(p + B2)I − B ⊗ B
]

+ µ∇2ρV, (3.37)

∂B
∂t

= +∇ × (V × B) + η∇2B, (3.38)

∂h
∂t

= −∇ · (hV) +
γ0 − 1
γ0hγ0−1 (ηJ2), (3.39)

where ⊗ denotes the tensorial product. The set of equations (3.36)-(3.39) use dimension-
less variables for a typical length scale L0, a normalizing mass density ρ0 and a magnetic
field strength B0. The full normalisation can be found in appendix (A.1).
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4 Mean-Field MHD Turbulence
Theory

If his forces are united, separate them.

Sun Tzu, The Art of War

Once turbulence takes place in a fluid, the variations of the fields become irregular in
space and time. Small structures can develop and instabilities can take place in the original
smooth fields. The turbulent small scale fluctuations influence large scale structures. The
small scale turbulence is reciprocally modified by the large scale dynamics. By means
of statistical averaging, the complex interactions between small and large scales can be
studied. For that purpose, a separation of time and length scale can be used. In particular,
it is through the decomposition of a physical quantity into its mean and fluctuating parts
that turbulence is investigated. Especially, the Reynolds decomposition of the variables is
considered to describe the physical situations in the following chapters.

In this chapter, MHD turbulence is considered through a mean-field approach. In the
mean-field MHD equations, the turbulence effect appears in the equations as averaged
second order fluctuating variables as the turbulent stress-tensor and the turbulent electro-
motive force.

4.1 Reynolds-Averaged Navier-Stokes Equations

4.1.1 Turbulence Nomenclature, Symmetry Laws
and Averaging Rules

Turbulence is defined by the statistical average properties of the fluctuating fields.
The averaged fluctuations correlate the turbulent fields to each other in a statistical sense.
Important notions in turbulence are:

1. Homogeneity: Statistical property does not change with position (translation invari-
ance). A steady turbulent field is homogeneous with respect to time.

2. Isotropy: Invariance under a rotation about any axis, no directions are preferred.

3. Mirror-symmetry: Invariance under reflection with an arbitrary plane.
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4 Mean-Field MHD Turbulence Theory

A mean quantity obtained from a turbulent field can have the properties 1-3 or be in-
homogeneous, anisotropic or non-mirror-symmetric. Certain physical quantities posses
right-handedness. It is the case for variables defined by means of the curl operator such
as the current density or vorticity. Such quantities have different transformation proper-
ties than other variables which are not defined by this operator. They are called pseudo
and axial vectors. Such vectors do not follow the usual rules of vector calculations. For
instance, for two vectors b and c, the vector a = b× c transforms under a reflection of the
axis as

a = b × c −−−−−→
reflexion

(−b) × (−c) = a. (4.1)

The curl operator produces a pseudo vector as

a = ∇ × b −−−−−→
reflexion

∇ × (−b) = a. (4.2)

For a fluctuating field, a variable f is divided into its expected mean value f and its
fluctuation f ′ as

f = f + f ′, (4.3)

and the fluctuating fields are defined as the difference f ′ = f − f . A Reynolds decompo-
sition is defined for two fluctuating fields f and g through the following relations32

f = f + f ′, f = f , f ′ = 0, (4.4)

f + g = f + g, f g = f g, f g′ = 0, (4.5)

f ′g′ , 0 ∂n f = ∂n f ,
∫

fdn =

∫
fdn. (4.6)

where the derivative and integration can be carried over space or time. The average pro-
cedure can be of three kind:

I) Time average: f T (x, t) =
1
T

T/2∫
−T/2

f (x, t + t′) dt′, (4.7)

II) Space average: fV(x, t) =
1
V

∫
V

f (x, t) dV, (4.8)

III) Ensemble average: f (x, t) = lim
N→∞

N∑
i

fi(x, t), (4.9)

where the index i in equation (4.9) refers the i-th realisation of the variable f and N
is the total number of realisations. The relations (4.4)-(4.6) are strictly fulfilled for the
ensemble average [equation (4.9)]. Spatial or time average are often technically favored
over a ensemble average since the latter can be numerically very expensive. A caveat of
the average procedure I [equation (4.7)] or II [equation (4.8)] is that the relations (4.4)-
(4.6) are only approximated. This shortcoming is reduced by minimizing the variation of
the mean variables over the average procedure under consideration.
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4.1 Reynolds-Averaged Navier-Stokes Equations

4.1.2 Mean and Fluctuating Fields Equations
The mean and fluctuating governing equations for a turbulent field are obtained by ap-

plying the decomposition (4.3). The momentum and induction equations [equations (3.6)-
(3.18)] become

∂t

[(
ρ + ρ′

) (
V i + V ′i

)]
= −∂ j

[(
ρ + ρ′

) (
V i + V ′i

) (
V j + V ′j

)
+ +

1
2

((
p + p′

)
+

(
B + B′

)2
)
δi j

− −
(
Bi + B′i

) (
B j + B′j

)]
+ µ∂ j∂ j

(
Vi + V ′i

)
, (4.10)

∂t

(
Bi + B′i

)
= εi jk∂ j

[(
εklm

(
V l + V ′l

) (
Bm + B′m

)
− η

(
Jk + J′k

))]
, (4.11)

where ∂i ≡ ∂/∂xi and the indices run over spatial dimensions. Einstein’s summation is
further assumed. For simplicity, it is assumed that ρ′ = 0. This assumption does not deny
the importance of the mass density fluctuations, especially for compressible fluids (see
appendix (B)). Such an approximation is a first step towards a full turbulence model ap-
plicable to magnetic reconnection. From now on, Alfvén normalized quantities, obtained
by dividing by the mean mass density ρ, are assumed. The magnetic field, current density
and pressure become

Bi

(µ0ρ)1/2 = Bi, Ji

(
µ0

ρ

)1/2

= Ji,
p
ρ

= p and
µ

ρ
= ν. (4.12)

These units are applied to the mean and fluctuating variables. Taking the ensemble aver-
age of equations (4.10)-(4.11) and following the rules (4.3) yields

∂tV i = −∂ j

[
V iV j +

1
2

(p + B2)δi j − BiB j + Ri j

]
+ ν∂ j∂ jV i, (4.13)

∂tBi = εi jk∂ j

[
εklmV lBm − ηJk + Ek

]
, (4.14)

where the information about turbulence is contained in the turbulent stress-tensor Ri j and
the electromotive force Ek. The turbulent stress-tensor contains the information of the
velocity and magnetic field fluctuations autocorrelation. It is composed of two parts, the
Reynolds tensor RV

i j =
〈
V ′i V

′
j

〉
(autocorrelation of the velocity field fluctuations) and the

Maxwell’s tensor RM
i j =

〈
B′i B

′
j

〉
(autocorrelation of the magnetic field fluctuations) as

Ri j =
〈
V ′i V

′
j − B′i B

′
j

〉
. (4.15)

On the other hand, the electromotive force holds the information about the correlation of
the velocity and the magnetic field fluctuations as

Ek =
〈
εknmV ′nB′m

〉
. (4.16)

As discussed in section (3.1.2), the total energy and cross-helicity are conserved quan-
tities in ideal MHD. Their turbulent counterparts are of particular importance in turbu-
lence. They are defined as

K =
1
2

〈
V ′i V

′
i + B′i B

′
i
〉
, (4.17)

W =
〈
V ′i B′i

〉
, (4.18)
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4 Mean-Field MHD Turbulence Theory

where the symbol K is the turbulent energy and W the turbulent cross-helicity. The infor-
mation about turbulence is obtained by relating the turbulent stress-tensor Ri j, the elec-
tromotive force Ek, the turbulent energy K and the turbulent cross-helicity W to the mean
velocity and magnetic field. How to determine these relations is called the closure prob-
lem. It can be addressed in two ways: i) relating algebraically the mean-fields to E, Ri j,
K and W or ii) to use equations for them in addition to the mean-field MHD equations. It
is the latter approach that is used to address the closure problem. I For that purpose, the
equations for the velocity and magnetic field fluctuations V ′i and B′i are needed.

Neglecting mass density fluctuations as previously, the equations for the velocity and
magnetic field fluctuations are obtained by subtracting equations (4.10)-(4.11) to equa-
tions (4.13)-(4.14). This provides the following equations

∂tV ′i + V j∂ jV ′i + ∂ j

(
V ′i V

′
j − B′i B

′
j + Ri j

)
+ ∂i p′M − ν∂ j∂ jV ′i
= B j∂ jB′i − V ′j∂ jV i + B′j∂ jBi, (4.19)

∂tB′i + V j∂ jB′i + ∂ j

(
V ′jB

′
i − V ′i B′j + εi jlEl

)
− η∂ j∂ jB′i
= B j∂ jV ′i − V ′j∂ jBi + B′j∂ jV i. (4.20)

The fluctuation of the MHD pressure pM = p + B2/2 in equation (4.19) is given by

p′M = p +
B2

2
− p +

B2

2
. (4.21)

The evolution equation for the turbulent stress-tensor Ri j is obtained by subtracting the
Maxwell stress-tensor RM

i j to the Reynolds stress-tensor RV
i j. It is achieved by multiplying

(4.20) with B′j for the former and (4.19) with V ′j for the latter. The governing equation
for the turbulent energy is obtained similarly but adding RM

i j to RV
i j. It is useful to define a

turbulent tensor R±i j as

〈
R±i j

〉
= RV

i j ± RM
i j =

{
Ri j for R−i j
K for R+

i j.
(4.22)

I. Note that due to the complexity of the turbulent equations, algebraic relations are often used in
combinations with the governing equations of the mean variables derived from the turbulent fields.
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4.1 Reynolds-Averaged Navier-Stokes Equations

for which the governing equation is

D
Dt

R±i j ≡
D
Dt

(
V ′i V

′
j ± B′i B

′
j

)
=

(
−V ′jV

′
k ± B′jB

′
k

)
∂kVi +

(
−V ′i V

′
k ± B′i B

′
k
)
∂kV j (4.23a)

+
(
B′kV

′
j ∓ B′jV

′
k

)
∂kBi +

(
V ′i B′k ∓ B′iV

′
k
)
∂kB j (4.23b)

− 2ν∂kV ′i ∂kV ′j ∓ 2η∂kB′j∂kB′i (4.23c)

+ ∂kν∂k

(
V ′i V

′
j

)
± ∂kη∂k

(
B′i B

′
j

)
(4.23d)

+ V ′jBk∂kB′i ± B′i Bk∂kV ′j + V ′i Bk∂kB′j ± B′jBk∂kV ′i (4.23e)

+ V ′jB
′
k∂kB′i ± B′i B

′
k∂kV ′j + V ′i B′k∂kB′j ± B′jB

′
k∂kV ′i (4.23f)

∓ B′jV
′
k∂kB′i ∓ B′iV

′
k∂kB′j + V ′k∂k

(
V ′i V

′
j

)
− ∂k

(
V ′i V

′
jV
′
k

)
(4.23g)

− V ′j∂kRik − V ′i ∂kRk j ∓ B′jεikn∂kEn ∓ B′iε jkn∂kEn (4.23h)

− ∂k

(
V ′i p′Mδk j + V ′j p

′
Mδki

)
+ p′M

(
∂ jV ′i + ∂iV ′j

)
. (4.23i)

From equation (4.17), the evolution equation for the turbulent energy K is obtained by
taking the plus sign of equation (4.22), taking its trace, dividing by two and finally taking
the ensemble average as

DK
Dt
≡

D
Dt

〈
V ′i V

′
i + B′i B

′
i

2

〉
= − Rik∂kV i − EM · J (4.24a)

− ν
〈
∂kV ′i ∂kV ′i

〉
− η

〈
∂kB′i∂kB′i

〉
(4.24b)

+ ∂k

(〈
V ′i B′i

〉
Bk +

〈
−

(
V ′i V

′
i + B′i B

′
i

2
+ p′M

)
V ′k

〉
+∂k( +V ′i B′i B

′
k + ν∂k

〈
V ′i V

′
i

2

〉
+ η∂k

〈
B′i B

′
i

2

〉)
. (4.24c)

The terms (4.24a), (4.24b) and (4.24c) are the production term PK , the dissipation term
εK and the transport term TK of the turbulent energy. The latter only transports the turbu-
lent energy from one place to another. Except for inflow or outflow from the boundaries,
TK does not contribute to the production or dissipation of the turbulent energy.

The evolution equation for the turbulent cross-helicity is obtained by multiplying
(4.20) with V ′j and (4.19) with B′j. The resulting evolution equation is

D
Dt

(
V ′i B′j

)
=+V ′i Bk∂kV ′j + V iε jnm∂nEm + V ′i η∂kkB′j (4.25a)

− B′j∂ j p′M + B′jBk∂kB′i − B j∂kRk j + B′jν∂kkV ′i , (4.25b)

where ∂kk = ∂2/(∂k∂k). The ensemble average of equation (4.25) gives the governing

37
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equation for the turbulent cross-helicity

DW
Dt
≡

D
Dt

〈
V ′i B′i

〉
= − Rik∂kBi − EM ·Ω (4.26a)

− (ν + η)
〈
∂kV ′i ∂kB′i

〉
(4.26b)

+ ∂k

[〈
V ′i V

′
i + B′i B

′
i

2

〉
Bk +

〈(
V ′i V

′
i + B′i B

′
i

2
− p′M

)
B′k

〉
+∂k( −V ′i B′iV

′
k + ν

〈
B′i∂kV ′i

〉
+ η

〈
V ′i ∂kB′i

〉
(4.26c)

−B jRki + ε jnmV iEn

]
. (4.26d)

As for the turbulent energy K [equation (4.24)], the production term PW for the turbulent
cross-helicity W is given by equation (4.26a), its dissipation εW by equation (4.26b) and
the transport term TW as equation (4.26d). Both equations (4.24) and (4.26) can be cast in
the form

DA
Dt

= PA − εA + ∇ · A where A = (K,W). (4.27)

Integrating equation (4.27) for the turbulent energy K over a volume element dV and
using the Gauss integral theorem yields∫

V

∂tK =

∫
V

PK dV −
∫
V

εK dV +

∫
S

(
−KV + TK

)
· en dS, (4.28)

where en is the unit vector pointing outwards the surface S which encloses the volume
V. Equation (4.28) shows that without energy inflow from the boundary by the transport
term TK , the production term PK sustains the turbulence while the dissipation term εK

contributes to the conversion of the energy into heat. The same reasoning holds for the
turbulent cross-helicity because it has the units of an energy density when the magnetic
field is written in Alfvén units [equation (4.12)]. The mean-field energy equation counter-
part of equation (4.24) is obtained by multiplying both equations (4.13)-(4.14) by V j and
B j, taking the trace and finally dividing by two. The resulting mean-field energy equation
is

DE
Dt
≡

D
Dt

V iV i + BiBi

2

 = +Rik∂kV i + EM · J (4.29a)

− ν
(
∂kV i∂kV i

)
− η

(
∂kBi∂kBi

)
(4.29b)

+ ∂k

[
−

(
BiV i

)
Bk + PVk + εkmiEmBi

+∂k( −V iRki − ν∂k

(
V iV i

)
− η∂k

(
BiBi

)]
. (4.29c)

Equation (4.29a) is the production term PE of the mean MHD energy due to fluctuations,
equation (4.29b) its dissipation ε E and equation (4.29c) its transport term TE. Integrating
equation (4.29) over a volume element dV gives∫

V

∂tE =

∫
V

−PK dV −
∫
V

ε E dV +

∫
S

(
−E V + TE

)
· en dS, (4.30)
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4.1 Reynolds-Averaged Navier-Stokes Equations

where PE has been identified to −PK . Hence, the sustainment of turbulent energy K by
PK is obtained by draining energy from the mean-fields. This transfer of energy from the
mean to the fluctuating field is represented by the energy spectrum or cascade. II Similarly,
the governing equation for the mean cross-helicity is obtained as

DW
Dt
≡

D
Dt

(ViBi) = + Rik∂kBi + EM ·Ω (4.31a)

− (ν + η) ∂kV i∂kBi (4.31b)

+ ∂k

V iV i + BiBi

2

 Bk + PBk + (ν + η) ∂kBiV i

 , (4.31c)

and the production of turbulent cross-helicity is also due to a pumping of the large scale
fields from the turbulence. In fact, the conservation of the total MHD energy and cross-
helicity in ideal MHD (vanishing ν and η), without source or sink from the boundaries,
allows us to write equations (4.24) and (4.26) in the exact form of equation (4.27) for
which production, dissipation and transport terms can be identified. For instance, the
residual helicity H defined as

H =
〈
B′i J

′
i − V ′i Ω

′
i
〉
, (4.32)

is not conserved in ideal MHD and its governing equation in mean-field theory is much
more complicated, its production or dissipation cannot be clearly identified. III The resid-
ual helicity vanishes in isotropic plasmas because the statistical properties of V ′i and B′i
remain the same under a reflection while H must change its sign since it is a pseudo scalar.

The main point of the turbulent model used later in the present work is the consider-
ation of the mean velocity field inhomogeneities in the turbulent electromotive force E.
Traditionally, the mean electromotive force is assumed to be a linear functional of the
mean magnetic field and its derivatives as

(EM)i = αi jB j − βi jk∂ jBk + · · · , (4.33)

under the assumption that the mean magnetic field Bi depends only weakly on time and
position.32 It is further assumed that the mean flow V i vanishes and that V ′i is homoge-
neous, isotropic and steady in the statistical sense. The α and β tensors represent the
dynamo and dissipation of the magnetic field due to turbulence. In most astrophysical
flows, the approximation V i = 0 as well as the steadiness of V ′i is not valid anymore.
Relaxing these approximations, the electromotive force becomes

(EM)i = αi jB j + γi jk∂ jVk − βi jk∂ jBk + · · · , (4.34)

where the transport coefficients α, β and γ contain the contributions of the fluctuating
fields to the mean-fields. Deriving the governing equation for E is helpful to understand
the reasons for retaining a term proportional to the mean-field velocity in equation (4.34)
as well as to relate the transport coefficients to the fluctuating fields. Following Yokoi,63

it is shown that the basic dependence of the transport coefficients on the turbulent quan-
tities can be obtained even with the simplest assumptions on the fluctuations: isotropic

II. See chapter (6).
III. The reader is referred to Yoshizawa34,60 for more details about the governing equation of the residual

helicity.
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4 Mean-Field MHD Turbulence Theory

and homogeneous fields. The evolution equation for the turbulent electromotive force is
obtained multiplying equation (4.25) by the Levi-Civita symbol εni j and then taking the
ensemble average. This gives

DEn

Dt
=

1
3

〈
B′jε jki∂kB′i − V ′jε jki∂kV ′i

〉
Bn −

1
3

〈
V ′jV

′
j + B′mB′m

〉
εnki∂kBi

+
2
3

〈
V ′jB

′
j

〉
εnki∂kV i − εni j

〈
B′j∂i p′M

〉
+ H.O.T., (4.35)

where H.O.T. stands for higher order terms which are neglected. Assuming that the trans-
port coefficients αi j, βi jk and γi jk can be written as

αi j =αδi j, (4.36a)
βi jk = βεi jk, (4.36b)
γi jk = γεi jk, (4.36c)

where δi j is the Kronecker symbol, the electromotive force of equation (4.34) takes the
form

(EM)i = αδi jB j + γεi jk∂ jVk − βεi jk∂ jBk + · · · . (4.37)

The transport coefficients can be identified as

α = τ
1
3

〈
B′jε jki∂kB′i − V ′jε jki∂kV ′i

〉
, (4.38a)

β = τ
1
3

〈
V ′nV ′n + B′nB′n

〉
, (4.38b)

γ = τ
2
3

〈
V ′nB′n

〉
, (4.38c)

when equation (4.37) is compared with equation (4.35). The symbol τ is the timescale
over which the electromotive force evolves. Equation (4.38) provides a strong rela-
tion between the turbulent energy K [equation (4.17)], turbulent cross-helicity W [equa-
tion (4.18)] and residual helicity H [equation (4.32)] to the coefficients β, γ and α respec-
tively. The point of turbulence modelling is to obtain the transport terms α, β and γ in
terms of the mean-fields Vi, Bi, K, W and H.

4.2 Reynolds-Averaged Turbulence Model
As already mentioned before, the most important quantities for MHD turbulence are

the turbulent stress-tensor Ri j [equation (4.15)] and the turbulent electromotive force EM

[equation (4.16)]. They characterize the transport due to turbulence of the mean magnetic
field and velocity flow. In order to express the symmetry between Ri j and EM, the latter is
written in terms of the turbulent magnetic Reynolds stress Mi j

Mi j = −
〈
V ′i B′j − V ′i B′j

〉
, (4.39)

Ek = −
1
2
εki jMi j. (4.40)
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Assuming isotropy and homogeneity of the fluctuating electromagnetic fields, flows and
plasma density, the equations for the turbulent Reynolds stress-tensor (obtained from
equation (4.23)) and the turbulent magnetic Reynolds stress (obtained from equation (4.16))
read

Ri j = −
1
3

〈
B′nB′n − V ′nV ′n

〉
δi j − νK

(
∂iV j + ∂ jV i

)
+ νM

(
∂iB j + ∂ jBi

)
, (4.41)

Mi j = −αεi jkBk − βK
(
∂iV j − ∂ jV i

)
+ βM

(
∂iB j − ∂ jB j

)
. (4.42)

The coefficient νK is the traditional eddy-viscosity coefficient which is the viscosity due
to velocity fluctuations while νM arises from the magnetic field fluctuations. The α co-
efficient is the usual dynamo term which is genuine to magnetic field. Its effect is the
generation of magnetic field due to small scale fluctuations.35,64,65 The coefficient βM is
an apparent turbulent resistivity, sometimes called anomalous resistivity, which causes
a diffusion of magnetic flux. Finally, the coefficient βK is a term corresponding to the
correlation of the magnetic field and velocity fluctuations. Comparing equation (4.42)
with equation (4.37), the term βK is related to the cross-helicity W through the γ term
[equation (4.38c)] and βM to the turbulent energy K [equation (4.38b)]. The coefficients
νK and βM [equations (4.41)-(4.42)], which represent an enhancement of the mean-field
dissipations due to small scales fluctuations, are related in two-scales direct-Interaction
approximation (TSDIA) IV as

βM =
5
7
νK. (4.43)

From equation (4.37), the term βM is related to the turbulent energy K through the β-term
in equation (4.38b). A similar relation is obtained from TSDIA for the coefficients βK and
νM as

βK =
5
7
νM, (4.44)

which is mostly written in terms of the cross-helicity due to relation of βK with the γ-
term when equations (4.37) and (4.38c) are compared. In fact, the deformations of the
magnetic field lines from the fluid motion generates the coefficients in equation (4.44)
which means that the cross-helicity is converting the kinetic/magnetic energy into mag-
netic/kinetic energy.34,67 The concept of cross-helicity is, therefore, of certain importance
for magnetic reconnection which is an energy conversion phenomenon.

4.2.1 Bulk Turbulence Model
A simple approach to turbulence is reached by considering statistical turbulent quan-

tities relevant for the problem under consideration. Since magnetic reconnection relies on
the possibility to convert the magnetic energy into other forms, the turbulence energy K
[equation (4.17)] is necessary to account for the annihilation of the magnetic field due to
the field fluctuations. The turbulent cross-helicity W [equation (4.18)] is further required
since it is related to the energy conversion. In addition, the turbulent energy decay rate εK

is also a necessary variable to describe the transfer of the turbulent energy from large/small
scales to small/large scales. V The last turbulence quantity to be considered is the residual

IV. Appendix (C) summarizes the key steps of the TSDIA formalism. The detailed description can be
found in Yoshizawa.66

V. See chapter (6).
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helicity H [equation (4.32)] which is related to the dynamo effect through the α term in
equations (4.37)-(4.38a). The residual helicity has to be considered in two-dimensional
guide field reconnection (see section (7.4)) as well as three-dimensional reconnection.68

The set of model equations for mean-field MHD turbulence results from the TS-
DIA.34,66 The Alfvén units [equation (4.12)] prevail for the rest of the section. In this
formalism, the mean momentum equation reads

∂tV + ∇ ·
(
V ⊗ V − B ⊗ B

)
= −∇PM + ∇ · R + ν∇2V, (4.45)

where R is the turbulent stress-tensor. The mean-field induction equation yields

∂tB = ∇ ×
(
V × B + EM − ηJ

)
, (4.46)

where J = ∇ × B and EM is the turbulent electromotive force. The solenoidal conditions
∇ · V = 0 and ∇ · B = 0 hold for both equations (4.45) and (4.46). In the bulk turbulence
formalism,34,66,69 the turbulent stress-tensor and turbulent electromotive force are written
in terms of the turbulent energy K, turbulent cross-helicity W, the residual helicity H and
the turbulent energy dissipation rate as

Ri j = CνK

K2

εK

(
∂iV j + ∂ jV i

)
−CνM

KW
εK

(
∂iB j + ∂ jBi

)
, (4.47)

EM = Cα

KH
εK

B −CβM

K2

εK
J + CβK

KW
εK
Ω, (4.48)

where ∇ × V = Ω. The constants C� are model constants related to the constants in
equations (4.41)-(4.42). In order to close the system of equations, the following governing
equations for the turbulent energy K and turbulent cross-helicity W are needed

DK
Dt

= −Ri j∂iV j − J · EM − εK + ∇ ·

(
WB + CK

K2

εK
∇K

)
, (4.49)

DW
Dt

= −Ri j∂iB j −Ω · EM −CW
εKW

K
+ ∇ ·

(
KB + CW2

K2

εK
∇W

)
. (4.50)

The last two equations to be considered are the governing equation for the residual helicity
H and the dissipation rate of the turbulent energy εK . The TSDIA leads to

DH
Dt

= CH1

εK

K
B · J −

εKH
K2

[
CH2 B

2
+ CH3Ω · B

]
−CH4

εKH
K

+ ∇ ·

(
CH5

K2

εK
∇H

)
, (4.51)

DεK

Dt
= Cε1

εK

K

(
Ri j∂iV j − J · EM

)
−Cε2

ε2
K

K

+Cε3

εK

K
∇ ·

(
WB

)
+ ∇ ·

(
Cε4

K2

εK
∇εK

)
. (4.52)

The multiple constants C∗ in equations (4.49)-(4.52) have to be determined and optimized
depending on the physical situation under considerations.34 In order to treat the problem
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of magnetic reconnection from the viewpoint of mean-field theory, the production mecha-
nism of the chosen statistical quantities is important. From equation (4.27), the production
mechanism for the turbulent energy and turbulent cross-helcity are written as

PK = Ri j∂iV j − J · EM, (4.53)

PW = Ri j∂iB j −Ω · EM. (4.54)

Equations (4.53)-(4.54) show that the production of turbulent energy K and cross-helicity
W is of two kinds: i) the production due to the turbulent stress-tensor Ri j, and ii) the pro-
duction due to the electromotive force EM. The residual helicity H has similar terms as
equation (4.27) but they cannot be identified to production, dissipation or transport be-
cause the residual helicity is not a conserved quantity in MHD.60 Keeping this point in
mind, the principle term responsible for the generation of residual helicity can be identi-
fied as

GH = CH1

εK

K
B · J −

εKH
K2

(
CH3Ω · B

)
. (4.55)

Finally, equations (4.38a)-(4.38c) are written in terms of the turbulent energy K, turbulent
cross-helicity W and residual helicity H as

α = τCαH, (4.56)
β = τCβK, (4.57)
γ = τCγW, (4.58)

where τ = K/εK is the turbulence timescale and C∗ model constants of the order of
O(10−1).

4.3 Turbulent Electromotive Force and Turbulence Pro-
ductions

As described in section (4.2.1), the production of the bulk turbulence is important to
grasp the influence of turbulence on reconnection. As far as the turbulent energy K and
turbulent cross-helicity W are concerned, the turbulent stress-tensor Ri j [equation (4.47)]
as well as the turbulent electromotive force EM [equation (4.48)] contribute to the pro-
duction of turbulence. This is related to the fact that Ri j and EM represent the mean-field
correlations of the magnetic and velocity fluctuations. The physical arguments on the pro-
duction of turbulence can be found in Yokoi and Hoshino.70 In the present work, only the
production of turbulence due to the turbulent electromotive force is considered because
the influence of the residual helicity H on the reconnection problem is investigated.

4.3.1 Production of Turbulent Energy and Turbulent Cross-Helicity
The production mechanism PK due to the electromotive force is obtained by inserting

equation (4.48) into equation (4.53)

PK = βJ
2
− γΩ · J − αJ · B, (4.59)
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Figure 4.1: Schematic depicting the position of the production term of i) the turbulent
energy PK , ii) the turbulent cross-helicity PW and the generation term of the residual
helicity GH. The term PW always contributes to localise the turbulent resistivity β = CβτK
inside the diffusion region while GH can suppress K for a sufficiently large guide magnetic
field Bg.

where α, β and γ are defined by equations (4.56)-(4.58). The first case to be considered
is a vanishing mean flow gradients and a non-alignment of the mean current density to
the mean magnetic field. In such a situation, only the first term on the right hand side of
equation (4.59) remains, the turbulent energy is then located where the current density is
defined. Their is also no contribution of the cross-helicity to electromotive force and the
mean-field induction equation reads

∂tB = ∇ ×
(
V × B − ηT J

)
, (4.60)

where ηT ≡ η + β. In such situations, the magnetic field cannot be frozen in to the
plasma even in the limit of vanishing resistivity η. It is therefore required that another
phenomena balance the diffusion of magnetic field by the turbulent resistivity β. This
might be achieved in presence of a strong guide magnetic field parallel to the mean current
density. For vanishing mean flow gradients, the generation of residual helicity H (∝ α) is
given only by a term proportional to B · J. This means that: i) the sign of α is that of B · J
and ii) the residual helicity H is also located where the current density accumulates. The
production mechanism for the turbulent energy becomes

PK =
(
βJ − αB

)
· J, (4.61)

For a moderate guide magnetic field strength, the residual helicity contributes to reduce
the production of turbulent energy. For a sufficiently large guide magnetic field parallel to
the mean current density, the turbulent energy K can be suppressed by the residual helicity
H. If such a balance of turbulence happens, the mean-field induction equation in the limit
of vanishing mean flow gradients reads

∂tB = ∇ ×
(
V × B − ηJ

)
. (4.62)
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For sufficiently large-Reynolds-number-plasmas, the magnetic field can be frozen in to
the plasma. It is, however, due to the balance of turbulence. In this specific situation, the
frozen-in condition may break and magnetic field can be diffused or generated by the β or
α term.

A similar balance of the turbulence happens for non-vanishing mean flow gradients.70

An important point is the reduction of turbulent energy by the production of turbulent
cross-helicity. Inserting equation (4.48) into equation (4.54), the production of cross-
helicity due to the electromotive force is

PW = βJ ·Ω − γΩ
2
− αΩ · B. (4.63)

The turbulent cross-helicity is mostly localised where the mean vorticity Ω is defined.
From equation (4.58), the γ term has the same sign as the turbulent cross-helicity W
and the second term alway acts to the suppression of the turbulent cross-helicity. The
cross-helicity further bears similar sign as the mean vorticity. Therefore, the production
of cross-helicity is mainly due to the alignment of the mean current density and mean
vorticity. It also has to be noted that without the production of turbulent energy K (∝ β),
the turbulent cross-helicity cannot be generated. According to equation (4.59), the cross-
helicity W (∝ γ) always contributes to the suppression of the turbulent energy at the lo-
cations where the mean vorticity Ω is defined. A schematic representation is depicted in
figure 4.1 for a simple ‘X’-point reconnecting current sheet. In such situations, the turbu-
lent cross-helicity vanishes at the center of the current sheet since it is a pseudo-scalar. It
is only defined around the reconnection region where it can suppress the turbulent resis-
tivity β. The turbulent resistivity is constrained by the action of the cross-helicity to the
center of the diffusion region.
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5 Subgrid-Scale Phenomena

Ne nous laissons pas étourdir par un
repos qui mènerait la paresse.

Charlemagne.

The recent capabilities of super computers allow to describe the turbulence of a mag-
netized plasma over a wide range of scales. This is technically realised e.g. by means of
large eddy simulations (LES), implicit large-eddy simulations (ILES) or direct numerical
simulations (DNS). Each of these Eulerian methods determine the variables on a numer-
ical grid. The MHD variables on the grid are called grid-scale (GS) quantities while the
quantities which are not resolved by the grid are called "subgrid-scale" (SGS) quantities.
The principle of LES is to use DNS results to model the SGS quantities. It is achieved
by suppressing the SGS quantities of the DNS by means of a filter. Once modeled, the
subgrid-scale variables are then introduced on the grid-scale. This is the core of LES
methods. The ILES solve the unfiltered MHD equations without any SGS model. The
numerical procedures of ILES are such that the non-linear terms in the MHD equations
are solved with an highly-dissipative discretization. Such a discretization replaces the
dissipation effects that a turbulence model would provide.

5.1 Filtered Equations
Large eddy simulations resort on a filtering procedure to filter-out contributions from

the DNSs small scales. The filter depends on a filter width ∆F related to grid resolution
of the LES. Applying a filter LF on a DNS grid resolved variable f (x) yields

f
F
(x) =

∞∫
−∞

LF(ϕ − x,∆F) f (ϕ) dϕ. (5.1)

where the filter kernel
∞∫

−∞

LF(ϕ − x,∆F) dϕ = 1. (5.2)

is a normalised function. The filter LF must further commutes with the differentiation
operator. The filters that are commonly used in LES formulations are: i) the sharp filter
which is a step function in the Fourier space cutting high frequencies, ii) the top-hat filters
which correspond to a sinc(k) function in the Fourier space, and iii) Gaussian filters. The
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last two kinds of models reduce the amplitude of the small scales without sharply cutting
at a certain frequency. The filters ii) and iii) are both defined for a chosen filter width as

LT (x) =
1

∆T
if x <

∆T

2
and 0 otherwise, (5.3)

LG(x) =
1

∆G

√
a
π

exp
−a

(
x

∆G

)2 , (5.4)

where the constant a of the Gaussian filter LG is related to the grid resolution of the DNS.
A variable f is divided into a grid- and subgrid-scale component f

F
and f ′′. The SGS

component represents the deviation from the mean and is defined as

f ′′ = f − f
F
. (5.5)

Contrary to the ensemble average [equation (4.9)] with rules (4.4)-(4.6), a filter follows

f
F

F

, f
F
, f ′′

F
, 0, f

F
f ′′

F

, 0, (5.6)

where the GS correlation for a variable f with g is denoted

CGS = f
F
g F , (5.7)

while the SGS counterpart is defined by

CS GS = f g
F
− f

F
g F . (5.8)

The influence of the filtered small scales on the LES turbulence representation may not be
negligible. Their importance depends on the filter width chosen. If the filtering procedure
has the property

f
F

F

= f
F

(
when f ′′

F
= 0

)
, (5.9)

the CS GS recovers the usual Reynolds-averaging [equations (4.4)-(4.6)]:

CS GS = f g
F
− f

F
g F

=

(
f

F
+ f ′′

) (
g F

+ g′′
) F

− f
F
g F

= f
F
g F

F

+ f
F
g′′

F

+ f ′′g F
F

+ f ′′g′′
F
− f

F
g F

= f ′′g′′
F
. (5.10)

Convolving the MHD equations with a Gaussian kernel, the MHD equations for a
mass-weighted filter read

∂tρ
F

= −∂k

(
ρ FVk

F
)
, (5.11)

∂ρ FVi
F

= −∂k(ρ
FVi

F
Vk

F
+ Bi

F
Bk

F
) − ∂i p

F
− ∂kτik − µ∂kkVi

F
, (5.12)

∂tBi
F

= εi jk∂ j

(
εklmVl

F
Bm

F
)

+ εi jk∂ j(EM)k + η∂kkBi
F
. (5.13)
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As for the mean-field MHD equations [equations (4.13)-(4.14)], the influence of the small
scales is contained in a SGS stress-tensor τi j for the momentum equation and in the SGS
electromotive force EM for the induction equation. The SGS stress-tensor τi j is analyti-
cally defined as

τi j = ρ F
(
ViV j

F
− Vi

F
V j

F
)
−

(
BiB j

F
− Bi

F
B j

F
)

+

(
BkBk

F
− Bk

F
Bk

F
) δi j

2
, (5.14)

where the first term is the Reynolds stress SGS formulation and the second is the Maxwell’s
stress SGS formulation. On the other hand, the SGS formulation of the electromotive
force EM reads

(EM)i = εi jk

(
V jBk

F
− V j

F
Bk

F
)
. (5.15)

As for the mean-field approach of turbulence, both τi j and (EM)i contain the information
about turbulence. The SGS energy KS GS , SGS cross-helicity WS GS and SGS residual
helicity HS GS densities counterparts of the mean-field approach [equations (4.17), (4.18)
and (4.32)] are determined as71

KS GS =
1
2

ρ F
(
ViVi

F
− Vi

F
Vi

F
)

+

(
BiBi

F
− Bi

F
Bi

F
)

µ0ρ
F

 , (5.16)

WS GS =

ViBi
F
− Vi

F
Bi

F√
µ0ρ

F

 , (5.17)

HS GS = −

(
ViΩi

F
− Vi

F
Ωi

F
)

+

BiJi
F
− Bi

F
Ji

F

ρ F

 . (5.18)

The resolved grid-scale counterparts of equation (5.16) and equation (5.17) are

E
F

=
1
2

[
ρ FVi

F
Vi

F
+ Bi

F
Bi

F
]
, (5.19)

W
F

=

(
Vi

F
Bi

F
)
. (5.20)

Traditionally, it is by means of algebraic relations that the closure for τi j and EM are ob-
tained. For instance, Smagorinsky gave a closure in hydrodynamics for the SGS energy
flux.72 Concerning the SGS stress-tensor, it is often closed by the eddy-viscosity repre-
sentation.24,26 It is also possible to use governing equations to close the system as it is
done for the mean-field approach. They are usually not favored in SGS models since they
require additional closures.

5.2 Non-Linear Turbulence Model
A possible set of instantaneous closure for the SGS stress-tensor τi j and SGS electro-

motive force EM is the non-linear closure of Grete et al.73 In contrast to the electromotive
force closure

EM = αB
F

+ γΩ
F
− βJ

F
, (5.21)
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a non-linear closure extension from Balarac et al.74 to the MHD compressible regime is
proposed as

(EM)i = εi jk∆
2CEnl∂nṼ F

j ∂nB
F
k . (5.22)

where ·̃ · · is a mass-weighted filtering: Ṽ
F

= Vρ
F
/ρ F . The electromotive force closure

depends on the filter width ∆ and a model constant CEnl that has to be determined. I The
closure for the stress-tensor τi j is proposed to be an extension of the hydrodynamic non-
linear closure to MHD

τV
i j = 2CV

nlE
V
S GS

∂kṼ F
i ∂kṼ F

j

∂nṼ F
m ∂nṼ F

m

−
1
3
δi j

 , (5.23)

τB
i j = 2CB

nlE
B
S GS

∂kB
F
i ∂kB

F
j

∂nB
F
m∂nB

F
m

−
1
3
δi j

 , (5.24)

where the stress-tensor is written as

τi j = τV
i j − τ

B
i j +

2
3

(
EV

S GS − EB
S GS

)
δi j. (5.25)

For the model to be complete, a closure for the SGS energies is given in terms of Smagorin-
sky closures as

EV
S GS = CV

E∆2ρ F
[(
∂ jṼ F

i + ∂iṼ F
j

) (
∂ jṼ F

i + ∂iṼ F
j

)]
, (5.26)

EV
S GS = CB

E∆2
[(
∂ jB

F
i + ∂iB

F
j

) (
∂ jB

F
i + ∂iB

F
j

)]
, (5.27)

where CV
nl, CB

nl, CV
E and CB

E are model constants to be evaluated.
Using the same dimensional argument as the mean-field approach, a filter formulation

of turbulent resistivity β [equation (4.57)] in equation (5.21) can be written in terms of the
SGS energies

β = τCK∆

√
EV

S GS + EB
S GS ≡ τCKKnl

S GS . (5.28)

Similarly, the SGS cross-helicity related term γ [equation (4.58)] becomes

γ = τCW∆2ρ
F

2

√(
∂ jṼ F

i + ∂iṼ F
j

) (
∂ jB̃ F

i + ∂iB̃ F
j

)
≡ τCWWnl

S GS , (5.29)

where CK and CW are model constants and τ is a time scale for the turbulence evolution.
This latter can be construct dimensionally as τ = K/εK for the turbulent energy dissipa-
tion rate εK . This form requires, however, knowledge about εK . It has to be noted that
equations (5.28)-(5.29) are very similar to equations (4.57)-(4.58). For a well chosen filter
width ∆, the SGS correlation equation (5.8) has a property which leads to equation (5.10).
In such a situation, the governing equations [equations (4.47)-(4.52)] for the mean-field
turbulent energy K and turbulent cross-helicity W, residual helicity H and turbulent en-
ergy dissipation rate εK can be extended to LES formalism. Such an extended approach
is utilized in chapter (10).

I. Grete et al.73 used a three-dimensional ILES of isotropic homogeneous turbulence to determine the
different model constants for the non-linear model.
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Perceive that which cannot be seen
with the eye.

Miyamoto Musashi

An important aspect of turbulence is grasped not from its analysis in the real space but
in the wave number or Fourier space. The key point of the Fourier space is its capability
to infer information on turbulence by power laws.

Assuming self-similar turbulent process, Kolmogorov (1941) derived a relation for the
energy transfer from the large (or injection) scale down to the small or dissipation scale in
hydrodynamics.37 For magnetohydrodynamics, the Kolmogorov spectrum can still apply
even if the influence of the magnetic field must be taken into account (turbulence of Alfvén
waves). The power law then changes, due to electromagnetic forces, into an Iroshnikov-
Kraichnan spectrum (IK).75,76 Nevertheless, many solar wind data still reveal Kolomogov-
like power law.77 In this chapter, the Kolmogorov theory (K41) is presented since it bears
the main idea to describe turbulence by power laws in the wave number space. Such
aspect is utilized in chapter (8).

6.1 Dimensional Consideration and Energy Cascade

Solely three quantities are necessary to build the foundation of the K41 theory of
turbulence: a length scale in terms of the wave number k, the kinetic energy in the wave
number space E(k) and its dissipation rate εk. The energy spectrum Es is given in terms
of E(k) as

Es =

∞∫
0

E(k)dk. (6.1)

The idea is that the energy is stored at a scale kL from which it is transfered over a scale kI

towards a scale kD where the energy is eventually dissipated by viscosity (or resistivity)
effects. This picture of cascading energy is realized only for a sufficiently large separation
of the energy containing and dissipation scale kL � kI � kD. Under that assumption, the
scale over which energy is transfered is called the inertial range. The full wave number
range is then composed of three regions as depicted in figure 6.1. Over the inertial range,
turbulence develops under non-linear dynamics independently of the injection or diffusion
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of energy. The energy decrease from the kL to kD is provided by the dissipation rate as

ε = −
d
dt

k≤kD∫
kL≤k

E(k)dk, (6.2)

which can be written in terms of the wave number k and the energy E(k) from equa-
tion (4.29b) as I

ε = 2ν

k≤kD∫
kL≤k

k2E(k)dk. (6.3)

The energy transfered in the inertial range can be estimated in terms of the wave number
k and the energy dissipation ε. Denoting the length and time dimension as [L] and [T ],
the energy is written as

E(k) ∼ εakb, (6.4)
[L]3

[T ]2 =

(
[L]2

[T ]3

)a

[L]b . (6.5)

Matching the exponents a and b leads to the Kolmogorov phenomenological spectrum

E(k) = CK41ε
2/3k−5/3. (6.6)

The constant CK41 cannot be inferred from the Kolmogorov phenomenology but is deter-
mined empirically from experiment. From several experiments data, Sreenivisan (1995)
found that CK41 is a universal constant in the range 1.6-1.7.78

The length of the inertial range is determined by the Reynolds number Re = LV/ν.
For the energy equation (6.6), integrating equation (6.1) from kL to ∞ and equation (6.3)
from 0 to kD over the wave number k gives

kL =
ε

E3/2
s

, (6.7)

kD =

(
ε

ν3

)1/4
, (6.8)

kL

kD
=

νε

E2
s
≡ R−3/4

e � 1. (6.9)

Equation (6.9) shows that the length of the inertial range is longer for a large Reynolds
number. It is therefore the value of the diffusivity ν, for a fixed length scale, that deter-
mines the length of the inertial range. II

I. Considering that only dissipation occurs in the inertial range, only ε E is considered in the hydrody-
namics limit (B = 0).

II. Similar results holds for magnetohydrodynamics with vanishing mean flows but for the resistivity η
instead of the viscosity ν.
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6.1 Dimensional Consideration and Energy Cascade

Injection

Dissipation

Figure 6.1: Schematic of a log-log plot of the energy spectrum or cascade. Energy is
injected at large scales, cascades down towards the dissipation scales through the energy
dissipation rate ε. The spirals schematically represent the eddies as they are being broken
and reduced in size from the large to the small scales where dissipation occurs.

The Richardson’s picture of turbulence describes large eddies being broken onto smaller
one up to the scales where they are dissipated by viscosity. A lifetime for these eddies can
be defined in terms of their size. For instance, an eddy of scale 2π/k in the wave number
space has a lifetime (dimensional analysis)

τ(k) = Cτε
−1/3k−2/3, (6.10)

where Cτ is an empirical constant. Equation (6.10) shows that a small eddy (large k) is liv-
ing a shorter life than a large eddy (small k). Inserting equation (6.7) into equation (6.10)
gives

τ(k) =
Es

ε
≡ τL, (6.11)

which is similar to the dimensional construction of the turbulent timescale τ = K/ε used
in section (4.1.2).
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7 Magnetic Reconnection

Rien ne se perd, rien ne crée, tout se
transforme.

Antoine Lavoisier

The first part of this chapter describes the magnetic reconnection phenomenon in the
limit of resistive MHD. The Sweet-Parker model of reconnection through long current
sheet as well as the Petschek model of shock waves are discussed in sections (7.1)-(7.2).
The chapter further describes the influence of turbulence on reconnection through the tur-
bulent electromotive force. The reconnection rate for both Sweet-Parker and Petschek
model are then obtained when turbulence is taken into account through a mean-field tur-
bulence model (section (7.3)).

The last section of the chapter addresses the question of the onset of magnetic recon-
nection. For that purpose, linear theories of magnetic instabilities of i) the tearing mode,
and ii) plasmoids are derived in a mean-field turbulence theory. Since turbulence may trig-
ger reconnection in large-Reynolds-number-plasmas, an heuristic derivation of the tearing
mode (section (7.5.1)) and the plasmoid instability are given as turbulence is considered
through a mean-field turbulence model (section (7.5.2)). The onset of the instabilities is
then related to the level of the turbulence.

7.1 Sweet-Parker Reconnection
In order to discriminate the possible role played by turbulence in reconnection, the

Alfvén Mach number MA of the plasma inflow and the width ∆d of the diffusion region
are first discussed for a Sweet-Parker (SP) current sheet model. It appears that the Alfvén
Mach number MA provides a measure of the reconnection rate. The SP model is based
on the conservation of the mass between the inflow and outflow regions of reconnection
for a plasma in a steady state flow. The derivation is further based on the non-existence
of magnetic monopoles (∇ · B = 0). Furthermore, it is assumed that two regions can
be identified in the vicinity of the current sheet: i) an ideal region where the magnetic
field is frozen into the plasma, and ii) a region where dissipative effects are considered
(figure 7.1). The first region is assumed to be outside the current sheet while the second
is inside it. The internal layer is the location where the magnetic fluxes reconnect. It is fi-
nally assumed that the resistive term balances the convective term of the constant electric
field at the boundary between both regions. I From a dimensional analysis, the conserva-

I. Similar to the tearing mode regions section (7.5.1).
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External region

Internal region

Inflow

Outflow

Figure 7.1: Schematic of the internal and external region for an SP current sheet.

tion of the mass density [equation (7.1)], the magnetized plasma flow [equation (7.2)] and
divergence of magnetic field [equation (7.3)] are respectively written as

Vo∆ = ViL, (7.1)
ViBi = VoBo, (7.2)
BoL = Bi∆, (7.3)

where the index o stands for outflow and i for inflow. Following Priest and Forbes,13 the
(Alfvén) Mach number as well as the width of the diffusion region for a SP current sheet
have the form

M2
A,S P =

(
ρo

ρi

)1/2
η

VAL
, (7.4)

∆2
d,S P = L2

(
ρi

ρo

)3/2
η

VAL
, (7.5)

without considering any pressure variation along the current sheet and

M2
Ap,S P =

(
ρo

ρi

)1/2
√[

2 + βp

(
1 +

(
ho

hi

)γ0
)] (

η

VAL

)
, (7.6)

∆2
d,S P =

(
ρi

ρo

)2

L2M2
Ap,S P, (7.7)

when pressure effects are taken into account. The thermal pressure is represented by the
variable h [equation (3.10)]. For a long current sheet, the outflow is assumed to be the
Alfvén speed VA. This results from the conversion of magnetic energy into kinetic energy
of the plasma through the Joule heating. In fact, the SP model states that half of the
magnetic energy is converted into plasma kinetic energy and the other half is transformed
into heat.13 Since the Alfvén Mach number MA is a estimation of the reconnection rate
amplitude, it is clear from equation (7.4) and equation (7.6) that the reconnection rate
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7.2 Petschek Reconnection

increases or decreases together with the resistivity. II

The magnetic Reynolds number represents the relative amplitude of the advective
terms to the dissipative terms of the induction equation. The magnetic Reynolds number is
given as Rm = VL/η for the resistivity η and typical length and plasma velocity scale L and
V . Astrophysical plasmas have a large-magnetic-Reynolds-numbers and the associated
SP reconnection rate is tiny. The SP model of reconnection cannot, for instance, explain
the rapid conversion of the magnetic energy into kinetic energy and heat in the Solar
atmosphere. One problem of the SP model is the small aspect ratio of the diffusion region.
Sweet-Parker current sheets are thin and long in order to have a large current density
compensating for the small value of the resistivity. Strong currents render possible the
annihilation in the diffusion region of the incoming magnetic flux from the sides. At the
same time, the small width of the resistive layer limits the outflow of the mass flux. A
possible option to enhance the rate of energy conversion in the SP model is to enlarge the
resistive layer such that its width is comparable to its length without reducing the current
density intensity. Such considerations lead to the Petscheck case.

7.2 Petschek Reconnection
In 1964, Petschek proposed a model to enhance the rate of energy conversion by re-

connection through standing shock waves.20 Instead of requiring that most of the incom-
ing plasma passes through a long resistive layer, the flow is redirected through standing
shock waves. The Petschek model assumes a smaller diffusion region than the Sweet-
Parker (SP) model by considering a length l of the diffusion region shorter than the length
L of the SP model. The reconnection rate is enhanced from the SP to the Petschek case
by a factor L/l. The maximum value that the reconnection rate can attain is

MPet ≈
π

8 log(Rm)
. (7.8)

The logarithmic denominator does not vary much with the Reynolds number. The Petschek
model provides, therefore, a faster reconnection rate than the SP model. It is able to attain
rate as large as a tenth of the one for the maximum possible electric field. The Petschek
model is, however, stable only for a localised inhomogeneous resistivity whose intensity
decreases away from the ‘X’-point.21,41 The Petschek model can also happen when a Hall
term is taken into account.79,80

7.2.1 Angle of Reconnection
The Sweet-Parker (SP) and the Petschek (P) model of reconnection and their recon-

nection rates can be discussed in terms of the reconnection angle θ. The angle formed
between the incoming (Bi) and reconnected (Bo) magnetic field lines is related to the
reconnection rate through equations (7.2)-(7.3) as

tan(θ) ≡
Bo

Bi
=

∆

L
, (7.9)

II. Similar to the tearing mode growth rate, i.e., γr increases with η. Dimensionally γr = η/L2.
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7 Magnetic Reconnection

Figure 7.2: Schematic of the angle of reconnection θ. The incoming component of the
magnetic flux is denoted by Bi while Bo denotes the component of the reconnected mag-
netic field. The dashed box represent the diffusion region of length L and width ∆.

where ∆ is the width and L the length of the diffusion region for any reconnection model
under consideration. Figure 7.2 is a schematic of the two-dimensional situation. The angle
of reconnection is then proportional to L for the SP model and to l for the P model. The
small diffusion region of the P model speeds up the reconnection process by producing
a large angle of reconnection. For homogeneous finite resistivity, numerical simulations
and theoretical studies found that a SP reconnection-like current sheet is formed out of
a Petschek-type situation which slows down the reconnection process and reduces the
reconnection rate.21,81,82 So the question is, whether the turbulence, which is ubiquitous
in high Reynolds number astrophysical plasmas, can speed up reconnection.

7.3 Mean-Field Turbulent Reconnection

7.3.1 Turbulent Sweet-Parker Reconnection
Considering the mean-field turbulence approach described in section (4.2), the mean-

field electric field E takes the form

E = −V × B + η
(
∇ × B

)
− EM. (7.10)

The turbulent electromotive EM and the dissipative terms η
(
∇ × B

)
can be neglected in

the outer ideal plasma region while V × B is neglected in the inner (dissipative) region
(figure 7.1). Requiring that the solution is smooth at the boundary between the two regions
yields

V × B = η
(
∇ × B

)
− EM. (7.11)

Considering only the dimensions of the variables, equation (7.11) can be estimated as

ViBi = η
Bi

∆
− EM, (7.12)
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7.3 Mean-Field Turbulent Reconnection

where ∆ is the width of the diffusion region. The dimensions of EM are those of V × B.
Utilizing equations (7.1)-(7.3), equation (7.12) becomes

V2
i = η

Vo

L
−

Vo

Bo

(
∆

L

)2

EM. (7.13)

In a general approach, the mean-field electromotive force is assumed to take the form
(Taylor like expansion, instantaneous values)

EM = αB + β
(
∇ × B

)
+ δ

[
∇ ×

(
∇ × B

)]
+ ψV + γ

(
∇ × V

)
+ ζ

[
∇ ×

(
∇ × V

)]
, (7.14)

which bears the same units as V × B, i.e., EM � ViBi. This means that the units of the
coefficients of the electromotive force [equation (7.14)] are

[α] = VA
[
β
]

= VAL0 [δ] = VAL2
0, (7.15)[

ψ
]

= Bi
[
γ
]

= BiL0
[
ζ
]

= BiL2
0. (7.16)

Multiplying the coefficients in the velocity expansion by
√
µ0ρ̄/

√
µ0ρ̄, the electromotive

force becomes

EM = αB + β
(
∇ × B

)
+ δ

[
∇ ×

(
∇ × B

)]
+

√
µ0ρ̄

[
ψ∗V + γ∗

(
∇ × V

)
+ ζ∗

[
∇ ×

(
∇ × V

)]]
, (7.17)

where [
ψ∗

]
=

Bi
√
µ0ρ̄

= VA,
[
γ∗

]
=

Bi
√
µ0ρ̄

L0 = VAL0,[
ζ∗

]
=

Bi
√
µ0ρ̄

L2
0 = VAL2

0. (7.18)

The renormalization implies that the coefficients of the velocity and magnetic expansion
have the same units at each order of the expansion, i.e.,[

ψ∗
]

= [α] ,
[
γ∗

]
=

[
β
]
,

[
ζ∗

]
= [δ] . (7.19)

Utilizing the electromotive force of the Reynolds-averaged turbulent model (section (4.2)), III

the electromotive force reads

EM = −β
(
∇ × B

)
+

√
µ0ρ̄γ

∗
(
∇ × V

)
, (7.20)

for which equation (7.13) becomes

V2
i = η

Vo

L
+

Vo

Bo

(
∆

L

)2 (
β

Bi

∆
−

√
µ0ρ̄γ

Vi

∆

)
. (7.21)

III. The derivation is carried for an Harris-type current sheet equilibrium without guide magnetic field.
The mirror-symmetry in the direction perpendicular to the reconnection plane enforces α = 0.
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The influence of the mean-fields on the reconnection rate can be estimated from the
Alfvén Mach number as

M2
A,T =

(
ρo

ρi

)1/2

η

(
1 +

β

η

(
1 −
|γ|

β
η

))
, (7.22)

∆2
T,p =

(
ρi

ρo

)2

L2M2
A,T , (7.23)

when the variation of pressure along the current sheet is not taken into account and

M2
A,p =

(
ρo

ρi

)1/2
√[

2 + βp

(
1 +

(
ho

hi

)γ0
)]
η

(
1 +

β

η

(
1 −
|γ|

β
η

))
, (7.24)

∆2
d,p =

(
ρi

ρo

)2

L2M2
A,p, (7.25)

when the pressure variation along the current sheet center is not neglected. The normali-
sation for η, β and γ is given by the Alfvén speed VA and the length L0 [equation (7.18)].
The Sweet-Parker reconnection rate is recovered for:

β

η
� 1, (7.26)

or
|γ|/β � 1. (7.27)

A laminar non-turbulent regime of energy conversion is recovered (SP Mach number)
when equation (7.26) is fulfilled. In the limit of equation (7.27), the laminar flow is
recovered for a low level of turbulence. This matches the model prediction that the maxi-
mum value of the reconnection is reached when |γ|/β ≥ 1.30

In the framework of mean-field turbulence theory, the condition (7.26) can be used to
distinguish between turbulent and laminar regime of energy conversion. The reconnection
rate MA can be rewritten (neglecting compressibility) as

M2
A,T ∝ η

(
1 +

β

η

(
1 −
|γ|

β
η

))
, (7.28)

which for β � η reduces to
M2

A,S P ∝ η. (7.29)
This reveals the well know proportionality for a SP current sheet without turbulence. IV

The important implication from the Alfvén Mac number [equation (7.28)] in regimes of
small η [(7.22) or (7.24)] is that the ratio β/η together with |γ|/β are strongly affecting the
reconnection rate (see section (8.2)).

The dynamical balance between the turbulent energy K (∝ β) and the turbulent cross-
helicity W (∝ γ) is important for the reconnection rate. In fact, the Sweet-Parker recon-
nection rate increases if the width of the diffusion region is comparable to its length. The
action of the turbulent cross-helicity W localises the turbulent energy K around the diffu-
sion region. The turbulent cross-helicity increases, therefore, the angle of reconnection.

IV. Since |γ|/β ≤ 1, if β � η then |γ| � η. As a reminder, the production mechanism of the turbulent
cross-helicity is [equation (4.54)] PW ∼ βJ ·Ω − γΩ

2
. In the limit of vanishing turbulent resistivity β, W is

only dissipated by the term γΩ
2
.
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7.4 Guide Field Reconnection

7.3.2 Petschek Turbulent Reconnection
The Petschek reconnection rate reaches, without the aid of turbulence, the regime of

fast reconnection. Including turbulence, the reconnection rate for the Petschek model
becomes

MPet,T ≈
π log (η + β − |γ|η)

8
, (7.30)

which weakly varies with a decreasing resistivity η. The influence of turbulence on the
rate of Petschek reconnection is tiny. The importance of turbulence comes into play, how-
ever, due to the spatial localisation of the apparent turbulent resistivity β inside the diffu-
sion layer where it is maximum at ‘X’-points. Turbulence can also initiate the Petschek
reconnection spontaneously, becoming then a steady state. In terms of the reconnection
angle θ [equation (7.9)], the localized inhomogeneous turbulent resistivity reduces L. The
angle of reconnection θ is then increased. In a similar manner as the Petschek model, the
turbulence could provide a much faster reconnection rate than the Sweet-Parker model.

7.4 Guide Field Reconnection
In this section, the influences of a guide magnetic fields Bg parallel to the current

flow on reconnection is investigated. In particular, guide fields are important for the so-
lar atmosphere since the low plasma−β in the solar corona due to large guide field may
produce interlinked flux tubes in three-dimensions.83 Also, diverse numerical simulations
as well as laboratory experiments found an influence of a guide field Bg on the rate of
reconnection. For instance, kinetic simulations of force-free current sheets found that the
non-linear phase of reconnection is affected by a strong guide field while the maximum
value of the reconnection rate is reduced proportionally to the guide field.84,85 Such re-
ductions of the reconnection rate in presence of a guide field were also observed in two-
and three-dimensional PIC-code simulations of Harris-type current sheet.86–88 Laboratory
experiments and MHD simulations with a strong guide field also showed an influence on
the reconnection rate during the non-linear phase.40,50 It was found that the reconnection
rate was slowed down in three-dimensional MHD simulations with finite guide magnetic
field.89–91 It is then important to investigate the influence of a strong guide field on the
reconnection problem for both theory and simulations. The reduction of the reconnection
rate due to a guide magnetic field can be be determined in an heuristic way by consid-
ering the action of the Lorentz force around the reconnection region. For definitiveness,
the situation shown in figure 7.3 is considered. Let’s follow the blue dashed magnetic
flux as it is brought towards the diffusion region (orange dashed box) by the inflow ve-
locity Vin. As the magnetic flux approaches the diffusion region, the action of the Lorentz
forces increases. As soon as the magnetic flux becomes reconnected, the component of
the Lorentz force across the current sheet vanishes identically. As a result, the plasma
is ejected by the component of the Lorentz force directed along the current sheet. The
reconnection rate maybe inferred from this process. At the boundary between regions 1
and 2, ηJ ≈ V × B and the Lorentz force can be written at the boundary as

J × B|Bg,0 ≈
1
η

 VzBxBz + VyByBx

−VyB2
z + VzByBz − VyB2

x
VyByBz − VzB2

y − BzB2
x

 (ex, ey, ez

)
, (7.31)
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X

X

X

X

Figure 7.3: Sketch of the internal and external region of a current sheet reconnection in
the presence of a guide magnetic field Bg parallel to the current direction J. Ω = ∇ × V
corresponds to the vorticity.

where ei is the unity vector in direction i and Bx = Bg is the guide magnetic field. Equa-
tion (7.31) reduces to

J × B|Bg=0 ≈
1
η

 0
−VyB2

z + VzByBz

VyByBz − VzB2
y

 (ex, ey, ez

)
, (7.32)

when the guide magnetic field is null. Setting the y (or z) component of equation (7.32)
to zero yields

Vy

Vz
=

Bz

By
=

∆

L
(7.33)

which is the reconnection rate for a long Sweet-Parker current sheet. The same procedure
for the y component of equation (7.31) gives

Vy

Vz
=

BzBy

B2
z + B2

x
. (7.34)

Recalling that the ratio of the inflow over the outflow velocity is a measure of the recon-
nection rate in terms of the Alfvén Mach number MA, the ratio of equations (7.34) and
(7.33) reveals

MA,Bg =
B2

z

B2
z + B2

x
MA, (7.35)

where MA,Bg is the Alfvén Mach number of a SP current sheet with a guide magnetic field
and MA that of a non-guide field SP current sheet. Equation (7.35) shows that irrespective
of its alignment, a guide magnetic field directed parallel to the current flow always reduces
the amplitude of the reconnection rate. In the limit of vanishing guide field (Bx � Bz),
the reconnection rate is that of a SP current sheet [equation (7.4)].
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7.4.1 Turbulent Guide Field Reconnection
The influence of turbulence on the guide magnetic field during the non-linear phase of

reconnection can be addressed as follow. In the framework of the mean-field turbulence
model (section (4.2)), the guide magnetic field fluctuations takes the form Bg = B′g + Bg

and the turbulent electromotive force reads

EM = β
(
∇ × B

)
−
√
µ0ργ

(
∇ × V

)
+ αBg. (7.36)

The Aflvén Mach number obtained from equation (7.13) becomes

M2
A,T = η + β − η

(
|γ| + α

Bg

B0

)
, (7.37)

where B0 is the amplitude of the reconnecting magnetic field and Bg that of the guide
magnetic field. In the nomenclature of figure 7.3, the ratio Bg/B0 is the same as Bg/Bz. In
the presence of a large guide magnetic field, the generation of the α term is proportional
to the production of residual helicity H

Gα � τGH � τB · J, (7.38)

where equations (4.55)-(4.56) have been used. Without changing the geometry of a two-
dimensional reconnection model, the direction of the guide field can be either co- or
anti-aligned with the current density. By reversing the guide magnetic field direction,
Gα → −Gα also B · J → −B · J. Because the residual helicity related term α is a function
of the guide magnetic field alignment to the current density (whose sign is that of the
product B · J), the product αBg in equation (7.37) is always positive. It reduces, there-
fore, always the reconnection rate. The reduction is largest for a guide magnetic field
larger than the amplitude of the reconnecting magnetic field B0. In fact, it is the balance
of the turbulent terms in equation (7.37) which determines the rate of energy conversion
in the non-linear phase of turbulent guide-field reconnection in large-Reynolds-number-
plasmas. As discussed in section (4.3.1), a large guide magnetic field generates a large
residual helicity whose intensity may suppress the turbulent resistivity β. Turbulence
cannot sustain the enhancement of diffusion region width anymore. Such a suppression
results in a Sweet-Parker-like size of the diffusion region and a small value of the re-
connection rate. In terms of the reconnection angle θ [equation (7.9)], a suppression of
the turbulent resistivity reduces θ such than it might become comparable to that of the
Sweet-Parker model.

7.5 Reconnection from MHD Instabilities
The models of reconnection discussed in sections (7.1)-(7.3.2) describe the reconnec-

tion problem once a steady state is reached. The question of the onset of reconnection is
discussed in the following. This section presents two theories dedicated to the onset of
reconnection: i) the tearing mode instability (Furth, Killeen & Rosenbluth (1963)),92 and
ii) the plasmoid instability (Loureiro (2007)).48 The tearing mode instability addresses
the onset of reconnection due to a spontaneous instability of a resistive current sheet.
The plasmoid instability is a typical instability for long current sheets in high Reynolds
number plasmas.
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7.5.1 Tearing mode instability
In the following, the tearing mode instability is written in the framework of a mean-

field theory and for an electromotive force EM due to turbulence. Its influence on the
tearing mode onset is considered through the amplitude of EM. This can be of particular
importance for large Reynolds number plasmas which are usually turbulent.

Assuming that the mean magnetic field and velocity can be written in the form C =

C0 + δC where δ is the parameter quantifying the deviation, equation (4.14) becomes

∂t

(
B0 + δB

)
= ∇ ×

((
V0 + δV

)
×

(
B0 + δB

)
+ EM + δEM

)
+ η∇2

(
B0 + δB

)
. (7.39)

Assuming that the mean velocity is initially zero and that the non-perturbed quantities
are in a steady state (∂tB0 = 0), the mean induction equation yields ∇ × EM = η∇2B0.
Equation (7.39) becomes

∂tδB = ∇ ×
(
δV × B + δEM

)
+ η∇2δB. (7.40)

Following Treumann and Baumjohann 93 for the rest of the derivation, the mean magnetic
field and the mean velocity are written in terms of stream functions

B0 =
(
−∂zψ, By, ∂xψ

)
, δB = (−∂zδψ, 0, ∂xδψ) , (7.41)

V0 =
(
−∂zφ,Vy, ∂xφ

)
, δV = (−∂zδφ, 0, ∂xδφ) , (7.42)

which leads to the following form of the induction equation for the mean-fields

∂tδψ = Bx∂xδφ + η∇2δψ + δEM, (7.43)

where Bx is written as Bx = δBG(z) with δB a constant. The function G(z) is taken to
be the hyperbolic tangent since the magnetic field needs to be described by a function
which reverses its sign across the region where the current density gradient is defined.
Linearizing the momentum equation and using the Ansatz

δψ = δψ0(z)eikx x+γrt, δφ = −δg(z)
γr

kxδB
eikx x+γrt, (7.44)

δEM = δEMeikx x+γrt, (7.45)

leads to the following system of equations

δψ0 −G(z)δg(z) =
1
γrτd

(
d2

dz2 δψ0 − K
2δψ0

)
+
δEM

γr
, (7.46)

−
γ2

rτ
2
A

K2

(
d2

dz2 δg(z) − K2δg(z)
)

= G(z)
(

d2

dz2 δψ0 − K
2δψ0

)
− δψ0

d2

dz2 G(z), (7.47)

with K = kxd (d the halfwidth of the current sheet), τA = d/VA and τd = d2/η. Two
regions exist around the current sheet, an external one where the frozen-in condition rules
and an internal one dominated by diffusive process. In order to obtain the solution, these
regions are matched using jump conditions. For the external region, the jump condition
is93

D = 2
(
1 − K2

K

)
. (7.48)
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Since the tearing mode develops only when its wavelength is much lager than the width
of the diffusive layer, the following ordering is obtained

K2 |δψ0| �

∣∣∣∣∣∣ d2

dz2 δψ0

∣∣∣∣∣∣ , (7.49)

K2 |δg(z)| �

∣∣∣∣∣∣ d2

dz2 δg(z)

∣∣∣∣∣∣ . (7.50)

Assuming the constant-psi approximation V and that in the narrow diffusion region G(z) =

tanh z � z, the electromotive force enters the equation as

γrτd (δψ0 − zδg(z)) =
d2

dz2 δψ0 + τdEM, (7.51)

d2

dz2 δψ0 = −
γ2

rτ
2
A

K2

1
z

d2

dz2 δg(z). (7.52)

Integrating equation (7.52) over z and using that for the external region
D = (δψ′0,+ − δψ

′
0,−)|z=0/δψ0(0), yields

D =
−γ2

rτ
2
A

K2δψ0(0)

∫
R

dz
z

d2

dz2 δg(z). (7.53)

The matching condition depends therefore on δg(z). Its form can be found by solving
equations (7.51)-(7.52) as done in the case without EM.93 This leads to the following
maximum wave number and growth rate for the tearing mode

Kmax =

(
4
τA

τd

)1/4

, (7.54)

γr,max � (2τAτd)−1/2 . (7.55)

However, the electromotive force perturbation in its general form considerably compli-
cates the resolution of the equations. As a first approach, it is assumed that the turbulent
electromotive force perturbation takes the form

δEM = −βδJ + γδΩ, (7.56)

as described in section (4.2.1). The residual helicity related term α is dropped since the
derivation is considered for an Harris-type equilibrium without guide magnetic field in
the out-of-reconnecting-plane direction. Since the initial mean velocity is assumed to
be zero, the term related to the mean vorticity is zero as well. The diffusion time in
equations (7.46)-(7.47) is now related to turbulence as

τ̃d =
d2

η + β
. (7.57)

V. The magnetic field perturbation is constant across the diffusion region.
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The maximum wavelength and growth rate according to this new diffusion time become

Kmax,T = (4τA)1/4

β
(
η

β
+ 1

)
d2


1/4

, (7.58)

γr,max,T �
1

(2τA)1/2

β
(
η

β
+ 1

)
d2


1/2

. (7.59)

Depending on η/β, three different cases can be distinguished:

β � η ⇒ Kmax,T = Kmax, γr,max,T = γr,max, (7.60)
β � η ⇒ Kmax,T � 21/4Kmax, γr,max,T � 21/2γr,max, (7.61)

β � η ⇒ Kmax,T � (4τA)1/4
(
β

d2

)1/4

, γr,max,T =
1

(2τA)1/2

(
β

d2

)1/2

. (7.62)

In the form (7.56), the EM increases the value of the growth rates as well as its wavelength
in case of β � η. That limit favors the tearing mode to develop and attain a larger growth
rate. In situation of large-magnetic-Reynolds-numbers, in the limit of equation (7.62),
turbulence triggers the tearing mode. It is nevertheless only valid for an initial level of
turbulence comparable to the mean magnetic field perturbation. In fact, considering that
|δEM | � |d2δψ0/dz2| changes the ordering in equation (7.46) which leads to

δg(z) =
1
z

(τdδEM + γrτdδψ0(0)) . (7.63)

The jump condition for the internal region becomes

D =
γ2

rτ
2
A

K2δψ0(0)
(τdδEM + γrτdδψ0(0))

∫
R

dz
z

d2

dz2

1
z
→ 0. (7.64)

The matching condition for the external region with the internal one implies

0 =
2
K

(
1 − K2

)
⇒ K2 = 1⇒ k2

x =
1
d2 . (7.65)

As a result, the tearing mode is not unstable since its wavelength is comparable to the
width of the diffusion region. These statements confirmed the findings in Widmer et al.94

of the reconnection rate maximum value in function of the initial level of turbulence. It
is important to be noted that the derivation has been carried out assuming implicitly that
the electromotive force is anti-aligned with the mean current density. Considering that the
EM is co-aligned with the mean current density, i.e. EM · J > 0, the maximum wavelength
and growth rate associated to EM are

Kmax,T = (4τA)1/4

β
(
η

β
− 1

)
d2


1/4

, (7.66)

γr,max,T �
1

(2τA)1/2

β
(
η

β
− 1

)
d2


1/2

. (7.67)
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7.5 Reconnection from MHD Instabilities

Assumming that the amplitude of turbulence is of the same order as the magnetic field
perturbation, three limits are obtained. The resistive MHD limit is recovered when β � η
while for β � η, γr ∈ C. In such situations, the disturbance are oscillating waves for
which no growth are expected. In the limit β � η, different cases are found

η < β ⇒ γr,max,T , Kmax,T ∈ C, (7.68)
η = β ⇒ γr,max,T = Kmax,T = 0, (7.69)
η > β ⇒ γr,max,T , Kmax,T ∈ R. (7.70)

Solely equation (7.70) gives a growth rate but smaller than the one obtained in resistive
MHD. Assuming a larger amplitude of the turbulent electromotive force compared with
the magnetic field perturbation, the tearing mode is not unstable (wavelength equal to the
halfwidth). Consequently, the electromotive force has to be anti-aligned with the mean
current density to produce larger growth than the usual resistive MHD limit.

The amplitude of turbulent electromotive force dramatically affects the onset of the
instability. If the initial intensity of EM is too large, the system is so turbulent that no
reconnection can take place. In this limit, magnetic diffusion leads to a broadening of
the current sheet which suppresses the instability. On the other hand, if the amplitude of
EM is too small, the behaviour of the instability is similar to the resistive MHD limit. It
is for the right amplitude of the turbulent electromotive force that the instability can be
enhanced by turbulence.

7.5.2 The Plasmoid Instability
Since the mathematics of the plasmoid instability is similar to the tearing mode (sec-

tion (7.5.1)), the full derivation including the turbulent electromotive force is not repeated
here and only an heuristic derivation is given.48 The maximum wavenumber, the growth
rate and the inner-layer width are written in terms of the Lundquist number S = LcsVA/η
(magnetic Reynolds number for V = VA) for a Sweet-Parker current sheet. The equilib-
rium length d (current sheet halfwidth) from the previous derivations is expressed through
the length of the current sheet as

d ≡ δcs � LcsS −1/2. (7.71)

Equations (7.54)-(7.55) as well as the ratio of the inner-layer width to the current sheet
thickness are written in terms of the Lundquist number as

kmaxLcs � S 3/8, (7.72)
γp,maxτA � S 1/4, (7.73)
δinner

δCS
� S −1/8. (7.74)

The plasmoid instability is triggered for γp,maxτA � 1, kmaxLcs � 1 and δinner/δcs � 1.
Requiring that the ratio of equation (7.74) is a most 1/3, the current sheet is Sweet-Parker
stable under a critical Lundquist number S crit � 104.95 In the framework of mean-field
turbulence modelling, a first approximation is to consider η → η + β. In this limit, the
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Lundquist number in promoted to S T = LcsVA/(β + η). Proceeding to a similar analysis
as the tearing instability, the following limits are obtained

η � β ⇒ Resistive MHD (7.75)

η � β ⇒ kmax,T �
1

23/8 kmax, γmax,T �
1

21/4γp,max (7.76)

β � η ⇒ η→ β (7.77)

Equation (7.77) shows that for large Reynolds numbers, the turbulent resistivity β can be
behind a plasmoid instability. It is important to note that in the limit of equation (7.76), the
maximum growth rate γmax,T and wave number kmax,T are lower than their non-turbulent
counterparts. This can be understood from the viewpoint that turbulence enhances the
width ∆ of the diffusion region. Assuming that the latter is of the order of the current
sheet halfwidth δCS , VI the width of diffusion region in presence of turbulence, denoted
∆T , is

∆T =


L
(

η

VAL

)1/2
= δCS η � β,

L
(
η+β

VAL

)1/2
= 21/2δCS η � β,

L
(

β

VAL

)1/2
= δCS ,β η � β,

(7.78)

where equation (7.71) has been used. In terms of the width ∆T , equation (7.74) becomes

δinner

∆T
=


δinner
∆T

= S −1/8 η � β,
δinner
∆T

= 21/2S −1/8 η � β,
δinner
∆T

= S −1/8
β η � β,

(7.79)

where S β = LVA/β. The increased width of the diffusion layer in the limit β � η gives a
critical Lundquist number of the order of 106 under which a current sheet is stable against
the plasmoid instability. As for the tearing instability, a large amplitude of turbulence
compared with the amplitude of the magnetic field perturbation avoids the instability to
set on. These limits are again for an electromotive force anti-aligned with the mean cur-
rent density. In the case of EM · J > 0, only the limit η � β causes an instability compa-
rable to the resistive MHD limit. This means that the electromotive force EM obtained in
the framework of a the Reynolds-averaged turbulence model is anti-aligned to the mean
current direction.

VI. It is, in fact, two times the current sheet halfwidth but this can neglected for the heuristic discussion.
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8 Single ‘X’-Point Turbulent
Reconnection - Mean-Field Theory
and Simulation

If you are going through hell, keep
going.

Winston S. Churchill

The mean-field approach for turbulence was discussed in section (4). It was shown to
reproduce the solar wind Alfvénicity and some turbulent electromotive force expressions
were further validated by direct numerical simulations of a Kolmogorov flow.96,97 In the
context of magnetic reconnection, the self-generated and -sustained turbulence model de-
scribed in section (4.1) was shown to enhance the reconnection process for an Harris-type
current sheet.30 The increased energy conversion was argued to be related to localisa-
tion of the turbulent energy around the ‘X’-point due to the influence of the turbulent
cross-helicity effects. The turbulent energy is proportional to a turbulent resistivity [equa-
tion (4.57)] which decreases away from the ‘X’-point. The angle of reconnection [equa-
tion (7.9)] is then strongly enlarged and the reconnection rate is enhanced above a Sweet-
Parker rate towards the Petschek rate of reconnection (see section (7.2)). Turbulence
might be able to support the fast reconnection with the genuine capability of bridging the
time- and length scale gap between classical resistive MHD theories and observations.

This chapter is separated into two main sections. In section (8.1) the simulation of
Higashimori et al.98 is re-conducted for an Harris-type current sheet but also with a guide
magnetic field parallel to the mean current direction. Also, turbulent reconnection through
a force-free current sheet with a finite guide magnetic field is investigated. To extend
the results and confirm the importance of the turbulence cross-helicity effects, numerical
simulations of an Harris-type current sheet are carried out where the turbulence cross-
helicity is set to zero (section (8.2)).

The text of section (8.1) is based on an paper published in Physics of Plasmas. The
material is reproduced with permission from F. Widmer, J.Büchner and N.Yokoi, Physics
of Plasmas 23, 042311, (2016). Copyright 2016, AIP Publishing LLC. When a figure is
reused, it is cited as: "Taken from Widmer et al.94"
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8 Single ‘X’-Point Turbulent Reconnection - Mean-Field Theory and Simulation

8.1 Simplified Bulk Turbulence Model
The turbulence model described in section (4.2.1) is simplified by neglecting second

order derivative terms such as Ri j∂iV i. The resulting MHD and turbulence equations,
which are numerically solved, are

∂ρ

∂t
= −∇ · (ρV), (8.1)

∂ρV
∂t

= −∇ ·

[
ρV ⊗ V +

1
2

(
p + B

2
)

I − B ⊗ B
]

+ χ∇2ρV, (8.2)

∂B
∂t

= +∇ ×
(
V × B + EM

)
+ η∇2B, (8.3)

∂h
∂t

= −∇ · (h V) +
γ0 − 1

γ0h
γ0−1

(
ηJ

2
+ ρε

)
+ χ∇2 h, (8.4)

∂K
∂t

= −V · ∇K − EM · J +
B
√
ρ
· ∇W − ε, (8.5)

∂W
∂t

= −V · ∇W − EM ·Ω +
B
√
ρ
· ∇K −CW

W
τt
, (8.6)

The normalisation can be found in appendix (A.1). The symbol ρ denotes the mean mass
density (mass density fluctuations are neglected), V the mean velocity and B the mean
magnetic field. The latter is used to compute the mean current density from Ampère’s
law µ0 J = ∇ × B. The mean vorticity is obtained from the mean velocity as ∇ × V = Ω.
The background resistivity η is taken as constant and homogeneous. As presented in
section (3), the variable h is used instead of the thermal pressure p such that the internal
energy equation is in conservative form if no dissipation takes place. The thermal pressure
p and the variable h are related by the equation of state p = 2hγ0 where the ratio of
specific heats γ0 is taken for adiabatic conditions (γ0 = 5/3). It has to be noted that in
addition to the Joule heating, a turbulent energy dissipation rate ε enters the equation of
the internal energy. It represents the increase of internal energy due to the amount of the
energy transfered from large to small scales. The numerical parameter χ is used to locally
smooth strong gradients which locally can cause numerical instability. I The turbulent
electromotive force EM is given in terms of the mean magnetic field B, mean current
density J, mean vorticity Ω

EM = αB − βJ + γΩ. (8.7)

The transport coefficients α, β and γ are determined by a closure theory for inhomoge-
neous turbulence described in appendix (C).34,67 The relation of the transport coefficients
and the mean turbulence quantities can be modelled following TSDIA as

α = τtCαH, (8.8)
β = τtCβK, (8.9)
γ = τtCγW, (8.10)

I. See appendix (A.2) for more details.
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8.1 Simplified Bulk Turbulence Model

for the model constants estimated as Cβ = 0.3, Cγ = 0.3, Cα = 0.01 and CW = 1.3
[equation (8.6)].70,99 The symbol K, W and H denote the turbulent energy, turbulent cross-
helicity and residual helicity as described in section (4.2.1). In terms of the mean current
density and mean vorticity, the production mechanism PK for the turbulent energy and PW

for the turbulent cross-helicity are given as

PK = τt

CβK
J

2

ρ
−CγW

Ω · J
√
ρ

 , (8.11)

PW = τt

CβK
Ω · J
√
ρ
−CγWΩ

2
 . (8.12)

A large turbulent timescale τt produces a large amplitude of turbulence while a small am-
plitude is produced for small τ. The timescale of turbulence τt is prescribed as an external
parameter. From the discussion is section 4.1.2 and 6.1, the timescale of turbulence can
be expressed as

τt =
K
ε
, (8.13)

where ε is the turbulent energy dissipation rate. As a first step, the governing equation
for the turbulent energy dissipation rate [equation (4.52)] is not used and the timescale
of turbulence is parametrized by a constant τt [equation (8.13)]. Previous investigations
of an anti-parallel magnetic field reconnection showed that a constant timescale of turbu-
lence distinguishes three regimes of energy conversion: i) a laminar regime for which the
energy conversion rate is similar than that of the resistive MHD limit, ii) a turbulent recon-
nection regime which enhances the reconnection rate strongly, and iii) a turbulent diffu-
sion regime where the saturation of turbulence suppresses reconnection.98 The timescale
of the turbulence determines the initial amplitude of turbulence. The first two regimes
of energy conversion are similar to equations (7.60)-(7.62) obtained for the tearing mode
instability (section (7.5.1)) while the third limit is due to the large initial amplitude of
turbulence compared with the magnetic field perturbation [equations (7.63)-(7.65)]. The
regimes of energy conversion are related to the rate of energy transfer from large to small
scales as discussed in section (8.1.2).

8.1.1 Initial Configurations

The MHD equations are solved using the GOEMHD3 code.100 A MacCormack scheme
has been additionally implemented to deal with the non-linearity of the turbulence evolu-
tion equations (8.5)-(8.6) (see appendix (A.2)). The coordinate system is defined by the
orthogonal unity vectors ex, ey and ez. The reconnection plane is spanned by ey and ez

which are directed across and along the initial current sheet. The direction perpendicular
to the current sheets is along ex. The simulations box size is Lx×Ly×Lz = 0.4×64×64L3

0
resolved by 4 × 1026 × 1026 grid points. The length scale used for normalisation is the
current sheet half width L0 which is resolved by 16 grid points.

The initial values of the reconnecting magnetic field B0, the turbulent energy K0 and
turbulent energy W0 are chosen the same for all numerical simulations. An exception
is made for the investigation of the influence of the initial turbulent energy K0 (sec-
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8 Single ‘X’-Point Turbulent Reconnection - Mean-Field Theory and Simulation

tion (8.1.3)). The initial values are taken as

B0 = 1.0, (8.14)
K0 = 0.001, (8.15)
W0 = 0. (8.16)

In order to trigger a certain configuration of reconnection, the initial equilibria are per-
turbed by a (divergence free) magnetic field perturbation Bp

Bp = B0,p

[
sin (ψ) sin (φ)2 ey +

Lz

Ly
cos (ψ) sin (2φ) ez

]
, (8.17)

where ψ = 2πz/Lz, φ = 2πy/Ly, Li = (L/L0)ei for i = y, z are the box sizes and B0,p is the
initial amplitude of the magnetic field perturbation. Finally, a set of two current sheets is
initialised so that periodic boundary conditions can be used. The pair of current sheets are
separated by a distance d = 32L0 sufficient to avoid an initial interaction between them.101

Each current sheet is located at ±d = ±16L0 in the simulation box.
The Harris-type current sheets are initialised as

ρ0 = 1, (8.18)
V0 = 0, (8.19)
B0 = Bgex + B0 (tanh (y + d) − tanh (y − d) − 1) ez, (8.20)

h0 =
1
2

(
1 + βp − B

2
0ez

)1/γ0

, (8.21)

where βp is the plasma beta and Bg a constant guide magnetic field. Both βp and Bg are
normalised to the amplitude of the reconnecting magnetic field B0. The second current
sheet equilibrium used to test the averaged turbulence model is a initial force-free, i.e.
J × B = 0, current sheet model.84 The initial conditions for this equilibrium are

ρ0 = 1, (8.22)
V0 = 0, (8.23)

B0 = B0

[√(
B2

g + cosh−2 (y + d) + cosh−2 (y − d)
)
ex

B0( + (tanh (y + d) − tanh (y − d) − 1) ez
]
, (8.24)

h0 =
1
2

(
βp

)1/γ0
, (8.25)

Equation (8.24) is appropriate for the solar corona since it is valid for low plasma beta and
bears an out-of-plane guide magnetic field dependence. It is further deprived of currents
perpendicular to the reconnecting magnetic field direction (ey). The initial mean current
density J0 is given for equations (8.22)-(8.25) as

J0 =
(
cosh−2 (a) + cosh−2 (b)

)
ex (8.26)

+
tanh (a) cosh−2 (a) + tanh (b) cosh−2 (b)√

b2
g + cosh−2 (a) + cosh−2 (b)

ez, (8.27)
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Figure 8.1: Case of finite out-of-plane guide magnetic field Bg: initial amplitude of the
in-plane mean current density in normalised simulation units in force-free equilibrium
current sheet. Taken from Widmer et al.94

where a = y+d and b = y−d. The in-plane current Jez is smaller for larger initial constant
guide magnetic fields Bg (see figure 8.1). As discussed in sections (7.4)-(7.4.1), a guide
magnetic field can efficiently reduce the reconnection rate. The efficiency of the apparent
turbulent resistivity is also dramatically affected by a guide magnetic field parallel to the
mean current flow. The corresponding generation of the residual helicity H suppresses
the generation of turbulent energy K in the diffusion region (section (4.3.1)). Without
solving the governing equation for the residual helicity H [equation (4.51)], it is expected
that the breakage of mirror-symmetry due to the out-of plane guide field influences the
reconnection rate through the residual helicity.

8.1.2 Regimes of Reconnection and Energy Transfer
The spatial distribution of the mean current density J (figure 8.2a), the mean vorticity

Ω (figure 8.2b), the turbulent energy K (figure 8.2c) and the turbulent cross-helicity W
(figure 8.2d) is depicted in figure 8.2. The snapshot is taken at the time the reconnection
rate is maximum. The turbulent energy K is localised where the mean current density
accumulates and is surrounded by the turbulent cross-helicity W. The latter is found to
be distributed in a quadrupolar shape around the diffusion region as the mean vorticity.
This situation is found for all investigated current sheets at each time the turbulent recon-
nection regime is obtained. Figure 8.2 confirms the localisation of the turbulent energy
and turbulent cross-helicity at and around the reconnection region as discussed in sec-
tions (4.2.1)-(4.3) and by Yokoi and Hoshino.70

The influence of turbulence is studied by varying the timescale of turbulence for the
current sheet equilibria defined in the previous section. From the initial conditions for the
mean velocity and the turbulent cross-helicity, the initial balance of turbulence is

PK −
K
τ

= 0, (8.28)

where PK is the production term of the turbulent energy βJ
2

[equation (4.59)]. Equa-
tion (8.28) gives the initial timescale of turbulence

τ0 =

√
ρ

µ0

1

C1/2
β

1

|J |
. (8.29)
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(b) Mean vorticity Ω.

10 15 20 25 30 35 40 45
y[L0 ]

30

20

10

0

10

20

30

z[
L

0
]

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

14 15 16 17 18
10

5
0
5

10

(c) Turbulent energy K.
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(d) Turbulent cross-helicity W.

Figure 8.2: Spatial distribution at the time the reconnection rate reaches its maximum
value of the turbulent energy K, the turbulent cross-helicity W, the mean current density
J and the mean vorticity Ω. Taken from Widmer et al.94

The influence of the timescale of turbulence is tested through a variation of the variable
τ ≡ τt/τ0.

The reconnection rate is obtained by calculating the amount of magnetic flux φ recon-
nected in time. It is calculated as the integral along the current sheet, from the ‘O’-point
to the ‘X’-point, of the magnetic field component Bey (across the current sheet) as

φ

B0L0
=

zX∫
zO

By

B0L0
dz. (8.30)

Here the center of a magnetic island is denoted by z0 and the ‘X’-point location by zX.
They are both located along the current sheets center y = ±d and the integration is carried
out over dz. The reconnection rate is taken as the time derivative of the reconnected flux
[equation (8.30)]

MA =
∂tφ

B0VA
. (8.31)

Figure 8.3 shows the reconnection rate using equations (8.30) and (8.31). As previously
obtained for an Harris-type current sheet without guide magnetic field,98 the timescale pa-
rameter τ controls the regimes of energy conversion. They are also found in the presence
of a finite out-of-plane guide magnetic field Bg. The guide field is, however, reducing
the maximum possible reconnection rate. This matter is discussed in section (8.1.5). The
regimes of energy conversion are also obtained for the force-free equilibrium as it can
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(f) Bg = 10, η = 10−3.

Figure 8.3: The upper row depicts the evolution of the reconnection rate ∂tφ for Harris-
type current sheets. The second line represents the regimes of reconnection obtained for
the reconnection rate at the time the first peak is reached, i.e., t = 250τA for figure 8.3a,
t = 225τA for figure 8.3c and t = 260τA for figure 8.3e. Figures 8.3a and 8.3b taken from
Widmer et al.94
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(d) Bg = 10, η = 10−3.

Figure 8.4: Figure 8.4a and 8.4b represent the evolution of the reconnection rate ∂tφ
for the force-free current sheets equilibrium. Figure 8.4c and 8.4d present the regimes
of reconnection obtained by taking the value of the reconnection rate at the time when
the first peak is reached, i.e., t = 225τA for figure 8.4a and t = 260τA for figure 8.4b.
Figure 8.4c is adapted from Widmer et al.94

be seen in figure 8.4. As for the Harris equilibrium, the guide magnetic field reduces
the maximum reconnection rate. In addition to that reduction, the time required to reach
saturation is longer for a force-free-type equilibrium. These results are summarized in ta-
ble (8.1). The maximum value that each current sheets type can reached is highlighted in
blue. The reconnection rate reaches its maximum value later for current sheet equilibria in
the presence of a finite guide magnetic field. The value is also lower than the Harris-type
equilibrium without guide magnetic field. The regime of fast turbulent energy conversion
is broader for a larger guide magnetic field. They are in a turbulent timescale range of
[0.6;1.6] instead of [1.0;1.4] for cases without guide magnetic field. Since the results for
a guide magnetic field amplitude of 5 are similar to the results for an amplitude of 10 (for
both equilibrium), only the force-free results for a constant guide magnetic field ampli-
tude of 5 are discussed in the following.
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Table 8.1: Maximum reconnection rates in time (η = 10−3) for different types of current
sheet (CS) models: Harris (I) and force-free (II) (η = 10−3). Adapted from Widmer et
al.94

CS τ bg t/τA ∂tφ CS τ bg t/τA ∂tφ CS τ bg t/τA ∂tφ

I 0.3 0 298 0.001 I 0.3 5 298 0.001 II 0.3 5 298 0.001
I 1.0 0 299 0.008 I 1.0 5 298 0.022 II 1.0 5 299 0.022
I 1.1 0 278 0.034 I 1.1 5 265 0.026 II 1.1 5 281 0.031
I 1.2 0 248 0.034 I 1.2 5 232 0.026 II 1.2 5 267 0.032
I 1.3 0 255 0.035 I 1.3 5 231 0.027 II 1.3 5 270 0.032
I 1.5 0 299 0.002 I 1.5 5 292 0.026 II 1.5 5 298 0.026
I 0.3 10 298 0.001 II 0.3 10 298 0.001
I 1.0 10 298 0.022 II 1.0 10 299 0.022
I 1.1 10 284 0.031 II 1.1 10 281 0.031
I 1.2 10 264 0.031 II 1.2 10 268 0.034
I 1.3 10 269 0.032 II 1.3 10 276 0.034
I 1.5 10 298 0.026 II 1.5 10 298 0.026

8.1.3 Limits of Large Magnetic Reynolds Numbers
The enhancement of reconnection by turbulence was derived for a Sweet-Parker model

of reconnection in presence of guide magnetic field parallel to the current flow (sec-
tion (7.4)). The equation for the Alfvén Mach number MA, representing an estimation
of the reconnection rate, is given as

M2
A = β + η

(
1 − |γ| + α

BG

B0

)
. (8.32)

Expression (8.32) states that for a small resistivity η, the turbulence determines the value
of the reconnection rate. The discussion is focused on the influence of the Reynolds num-
ber on the reconnection rate, the action of the α term is discussed in section (8.1.5). As
presented in table (8.1), the results for a constant guide magnetic field amplitude of 5
are similar to those obtained for a amplitude of 10. Only the results for a constant guide
magnetic field amplitude of 5 are considered for the two initial equilibria. Figure 8.5
confirms that the maximum value of the reconnection rate increases as the resistivity η
is decreased. In such a case, the turbulent energy acts as turbulent resistivity localised
at the diffusion region and Petschek reconnection can be achieved (see discussion in sec-
tion (7.3.2)). There is a clear deviation from the Sweet-Parker model of reconnection
which scales as η1/2. It has to be noted that the reconnection rate saturates for a value of
the resistivity smaller than η = 10−5. This is the order of magnitude of the numerical resis-
tivity due to the finite grid resolution. At large Reynolds numbers, the energy conversion
due to turbulence is large. It exceeds the effects of the molecular resistive dissipation. In
such situations, the turbulent Reynolds number RT exceeds the magnetic Reynolds num-
ber R such that η/β0 ≡ RT/R � 1. The ratio of the initial turbulent resistivity β0 to the
resistivity η has, therefore, to be investigated. Figure 8.6 shows the dependence of the
reconnection rate as a function of the initial amplitude of the turbulent and resistivity β0

and η. A large amplitude of β0 results in small value of the reconnection rate. The initial
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Figure 8.5: Reconnection rates obtained for Harris-type current sheets. As the resistivity
η is decreased, the reconnection rate ∂tφ is increased in presence of turbulence. Adapted
from Widmer et al.94
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Figure 8.6: Maximum reconnection rate as a function of the initial amplitude of turbulent
and magnetic resistiviy β0 and η for the Harris-type current sheet equilibrium (bg = 0)

amplitude of turbulence β0 depends on both the timescale of turbulence τ and the initial
amplitude of turbulent energy K0 as

β0 = CβτK0. (8.33)

The influence of β0 is then of two kinds: i) the influence of the timescale of turbulence τ,
and ii) the initial amplitude of turbulent energy K0. The investigation on the influence of
τ was already implicitly carried out by keeping fixed the initial amplitude of turbulent en-
ergy K0 and the resistivity η, i.e., varying the timescale of turbulence. A large amplitude
of the timescale of turbulence only produces a broadening of the current sheet.

The second point ii) is now considered. As presented in section (7.5.1), as soon as
the amplitude of the turbulence exceeds that of the magnetic field perturbation, the tear-
ing mode is stable. If this statement is true, a large initial amplitude of turbulent energy
K0 compared with the amplitude of the magnetic field perturbation B0,p must also sta-
bilise the tearing mode. Figure 8.7 presents the results of the reconnection rate obtained
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Figure 8.7: Value of the reconnection rate ∂tφ as a function of: (a) the time, and (b) the
initial amplitude of the turbulent resistivity β0 = CβτK0 for an Harris-type current sheet
(Bg = 0). The initial amplitude of turbulence K0 is varied and τ = 1.3 is kept constant.
Taken from Widmer et al.94

by keeping the timescale of turbulence constant but varying the initial amplitude of K0.
The reconnection rate is largely suppressed in case of a large turbulence energy K0 as for
large τ. Both K0 and τ control the regimes of energy conversion. This is, however, an
artefact of the turbulence timescale model which assumes τ as a constant independent of
the initial turbulence energy K0. To avoid such artefacts, the turbulence timescale has to
be determined by turbulence itself rather than being imposed as an external parameter.
Such a situation is considered in chapter (9) where the governing equation for the turbu-
lent energy dissipation rate is solved together with the other evolution equations of the
turbulence.

8.1.4 Energy Transfer

In the turbulence cascade representation discussed in section (6.1), the turbulence
timescale τt is written in terms of the energy dissipation rate ε. The latter transports the
energy from large scales down to the small scales (figure 6.1) where it can be dissipated
due to a finite molecular viscosity (µ) or resistivity (η). Equation (8.13) shows that a large
timescale of turbulence implies, for a fixed K0, a small ε. In such a situation, only a small
portion of the energy is transported to smaller scales. This tiny amount of transported
energy results in a small reconnection rate.

For Reynolds-averaged turbulence model used here, the plasma kinetic and magnetic
energy transfers are analysed at two different times: i) at the time ts when the reconnection
rate starts to growth, and ii) at the time te when the reconnection rate reaches its maxi-
mum. Figure 8.8 presents the energy spectra for different parameters τ. Only the results
for an Harris-type current sheet with Bg = 0 are presented since similar regimes of energy
conversion are obtained for the force-free and Harris-type current sheets with guide mag-
netic field. A larger amount of energy is transfered for τ = 1.0 and 1.3 compared with
τ = 0.3 or 1.5. Three intervals are defined to analyse the plasma kinetic and magnetic
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Figure 8.8: The left column represents the kinetic energy spectrum taken at the time the
reconnection starts (ts) and at the time the reconnection rate reaches its maximum value
(te). The right column corresponds to the magnetic energy spectrum at ts and te. Harris-
type current sheets, Bg = 0. The dashed line corresponds to a 7/3 Kolmogorov spectrum.
Adapted from Widmer et al.94

energy transfer: i) τ ∈ [1.0; 1.3] which corresponds to the turbulent reconnection regime,
ii) τ ∈ ]0; 0.5] which is the resistive MHD limit with a Sweet-Parker-like rate of energy
conversion, and iii) τ ∈ [1.5;∞[ which is the turbulent regime limiting the energy trans-
fer.

The interval i) about the turbulent reconnection is now considered. The amount of
plasma kinetic energy for τ = 1.0 and 1.3 are of the same order when reconnection starts
while the kinetic energy amplitude for τ = 1.3 is approximatively two orders of magni-
tude larger than for τ = 1.0 when the reconnection rate reaches its maximum value. The
situation is similar for the magnetic energy. The length of the inertial range is also larger
for τ = 1.3 than τ = 1.0.

The intervals ii) and iii) are now discussed. Figure 8.3 shows that a turbulent timescale
parameter in the range ]0; 0.5] provides a similar value of the reconnection rate as the re-
sistive MHD limit. In terms of energy spectra, exactly the same amount of plasma kinetic
(and magnetic) energy is transfered from the injection scale to the dissipation scale for
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τ = 0.3 and the resistive MHD limit. This corresponds to the almost identical reconnec-
tion rate obtained for τ = 0.3 and the resistive MHD limit. Concerning the last interval,
figure 8.8 shows that the amount of energy transfered for τ = 1.5 is even smaller than the
resistive MHD limit and that the inertial range length is tiny. In terms of energy dissipa-
tion rates ε, a large τ for a fixed K0 corresponds to a small amplitude of ε. As a result, no
energy is dissipated at the small scales, i.e., reconnection does not happen.

A larger inertial range corresponds to an increased resistivity. The inertial range length
is larger for the interval corresponding to the turbulent reconnection regime than the lami-
nar or turbulent diffusion limit of energy conversion. Hence, a larger inertial range implies
a larger turbulent resistivity β which according to equation (8.32) enhances the reconnec-
tion rate. The limit of τ = 1.3 generates, therefore, a larger turbulent resistivity than
τ = 1.0. That is the reason why τ = 1.3 corresponds to the largest reconnection rate. The
time average of the energy spectra presented in figure 8.9 shows the averaged length of
the inertial range in time for τ = 0.3, 1.3 and 1.5 which emphasises that fast reconnection
rate obtained by τ = 1.3 is a consequence of a large turbulent resistivity β.
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Figure 8.9: Energy spectra averaged in time for the timescales representing the regimes
of energy conversion. Harris-type current sheets, Bg = 0. The dashed line corresponds to
a 7/3 Kolmogorov spectrum. Adapted from Widmer et al.94
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The lifetime of a turbulent eddy was presented to be proportional to its size τ ∝
ε−1/3L2/3

e [equation (6.10)], i.e., large eddy live longer. From that point of view, τt � τA

implies that Le � L0 and τt � τA gives Le � L0 where L0 is the current sheet halfwidth.
From equation (8.29), τ = 1.3 gives

τt ≡ τ · τ0 = 2.4τA, (8.34)

which is the timescale required to cross the full current sheet width. II The associated
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Figure 8.10: Total energy spectrum for various resistivity η taken at: (a) the time ts that
reconnection starts, (b) the time tm in the middle of the reconnection process and (c) at the
time te that energy conversion saturation is reached. Harris-type current sheets, Bg = 0.
The dashed line corresponds to a 7/3 Kolmogorov spectrum. Adapted from Widmer et
al.94

eddy size is Le � 2.4L0 ≡ LCS where LCS is the size of the total width of the current
sheet. In such a situation, the width of the diffusion region is enhanced by the turbulent
eddy and turbulent reconnection can take place. Turbulence is not affecting the diffusion
of magnetic energy as long as Le � L0. The reason is that turbulence develops at a
scale much smaller than the scale at which the incoming magnetic flux is converted into

II. The normalisation of the Alfvén time is in term of the current sheet halfwidth L0: τA = L0/VA
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outflowing flux in the diffusion region. For Le � L0, the incoming magnetic flux cannot
reach the current sheet since it encounters turbulence before it. As a result, the internal
thermal pressure broadens the current sheet until it reaches the size of the turbulent eddy
Le. In such situations, the amount of energy converted is almost negligible.

A similar investigation is carried out for the variation of the resistivity η. Figure 8.10
presents the amplitude of the plasma kinetic and magnetic energy at three different times
defined as: i) the start of reconnection ts, ii) at time tm when the reconnection rate has
reached the middle point in time between its start and its maximum value, and iii) when
reconnection saturates te. A resistivity smaller than 10−3 has a larger inertial range at
the time tm than for larger values. The effective resistivity due to turbulence (β) has,
therefore, a larger amplitude at that time for η < 10−3. It corresponds to the earlier start of
the reconnection process as depicted by figure 8.5a. The saturation of the maximum value
reached by the reconnection rate results in an almost similar amount of energy transfered
from the large to the small scales for η ≤ 10−3. For a resistivity η = 10−2, the amount
of energy transfered by turbulence is smaller than the resistive MHD limit for η = 10−3.
According to equation (8.32), the reconnection rate is that of the Sweet-Parker model for
η � β. In such situation, the reconnection rate decreases with the resistivity. The resistive
MHD limit with η = 10−3 attains, therefore, a larger rate of energy conversion than that
of the turbulent laminar limit obtained for η ≥ 10−2.
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Figure 8.11: Plasma kinetic and magnetic energy spectrum averaged in time for various
resistivity η. Harris-type current sheets, Bg = 0. The dashed line corresponds to a 7/3
Kolmogorov spectrum. Taken from Widmer et al.94

Finally, the saturation of the maximum value that the reconnection can attain as the
resistivity decreases (figure 8.5b) is discussed. The time averaged energy spectra are
presented in figure 8.11 for various value of the resistivity η. Due to turbulence, the
plasma kinetic and magnetic energy transfer is larger for η ≤ 10−3 compared with the
resistive MHD limit for η = 10−3. The inertial range is also broader which is due to
an enhanced turbulent resistivity β as already discussed. For a resistivity η = 10−1, the
reconnection process becomes slow Sweet-Parker-like [equation (8.32)] instead of being
fast due to turbulence. In such a situation, the resistive MHD limit for η = 10−3 has
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a larger amount of energy transfered to the small scales than for η = 10−1. The latter
reaches a smaller amplitude of the reconnection rate than the former. As a final remark,
the comparable amount of energy (plasma kinetic and magnetic) transfered from large to
small scales for η ≤ 10−4 corresponds to the saturation of the maximum value reached by
the reconnection rate in figure 8.5b. A further decrease of the resistivity does not enhance
further the reconnection rate since no more energy can be brought to small scales to be
dissipated.

8.1.5 Guide Magnetic Field Effects on Turbulence
The effect a guide magnetic field parallel to the current flow was shown to reduce

the maximum reconnection (section (7.4)). From the point of view of mean-field tur-
bulence theory, the alignment of the guide magnetic field with the mean current flow
causes a residual helicity H which reduces the efficiency of the turbulent resistivity β
(section (4.3.1)). The result of such reduction is a diminished reconnection rate [equa-
tion (8.32)]. The influence of the turbulent residual helicity is proportional to the α term
[equation (4.56)] whose governing equation is approximated using equation (4.55) as

Dα
Dt
' −

1
β
EM · B ' J · B. (8.35)

For a finite guide field, whether co- or anti-aligned with the mean current density J, a
residual helicity is produced where

sign (α) = sign
(
J · B

)
, (8.36)

and the influence of the α term is proportional to that of the guide magnetic field. Fig-
ure 8.12 depicts the estimation of the α term by equation (8.35) for the Harris-type
with guide magnetic field and the force-free current sheets. The α term increases for
a larger guide magnetic field. An interesting point of an Harris equilibrium current sheet
is the possibility to reverse the direction of the constant guide magnetic field Bg [equa-
tion (8.20)]. That means that the sign of J · B can be positive of negative. Figures 8.12a-
8.12b show that the sign of the α term is that of the product J · B. In presence of large
guide magnetic field, the production of the turbulent resistivity β is given as

1
τt

Dβ
Dt
' −EM · J = βJ

2
− αJ · B − γΩ · J. (8.37)

Because of equation (8.36), the α term always reduces the amplitude of the turbulent
resistivity β. The mean magnetic field can be written in terms of the guide magnetic field
as

B = Br

1 +
Bg∣∣∣ Br

∣∣∣
 , (8.38)

where Br refers to the reconnecting magnetic field. A guide magnetic field larger than the
reconnecting magnetic field efficiently suppresses the production of turbulence-related
resistivity β, reducing in turn its influence on the reconnection process.

The reduction of the reconnection rate in presence of a guide magnetic field can also
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(a) Harris-type Bg = −5.
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(b) Harris-type Bg = 5.
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(c) Force-free Bg = 5.
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(d) Force-free Bg = 10.

Figure 8.12: Estimated α terms proportional to the residual helicity H for: (a) Harris-type
equilibrium with J · B < 0, (b) Harris-type equilibrium with J · B > 0, (c) force-free
equilibrium with J · B > 0 and Bg = 5 and (d) force-free equilibrium with J · B > 0 and
Bg = 10. Taken from Widmer et al.94

be seen in equation (8.32). Independent on the direction of the constant magnetic field, the
reconnection is reduced by the α term. Figure 8.13 confirms that a guide magnetic field,
whether co- or anti-aligned to the mean current flow, produces the same reconnection rate.
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Figure 8.13: Time evolution of the reconnection rate of an Harris-type current sheet equi-
librium with constant guide magnetic fields Bg ≡ bg (as shown in the legend). Their is
no difference whether the constant finite guide magnetic field is directed parallel (+) or
anti-parallel (-) to the mean current. Taken from Widmer et al.94
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8.1.6 Mean-Field Inhomogeneities, Turbulence and Reconnection
Rate

The reconnection rate is largely enhanced in the presence of turbulence. According
to equations (8.11)-(8.12) the production of turbulence is mainly due to the mean current
density ∇ × B = J, the mean vorticity ∇ × V = Ω and their product. It was shown
in the previous section that a decrease of the resistivity η results in an enhancement of
the reconnection process. It was argued that this phenomenon is caused by an enhanced
turbulence-related resistivity β. According to equation (8.11), an enhancement of β is, for
fixed τ, a result of an increased mean current density and vorticity. Figure 8.14 presents
the mean current density maximum amplitude

∣∣∣J ∣∣∣ and mean vorticity maximum amplitude∣∣∣Ω∣∣∣ evolution for a resistivity η = 10−3 and 10−6. The ratio |Ω|/|J | saturates in each equi-
librium at a time which corresponds to the maximum possible reconnection rate (figures
8.14a, 8.14c and 8.14e for η = 10−3). The gradients grow earlier for a smaller resistivity.
Since the mean current density and mean vorticity are principal production terms for the
turbulence, an earlier growth of these mean-fields also results in an earlier growth of the
turbulence energy K and cross-helicity W. Their time evolution is shown at the bottom
of figure 8.14. The turbulent energy and the turbulent cross-helicity grow in time as the
mean current density and mean vorticity do.

The mean current density and the mean vorticity are due to the gradients of the mean
magnetic field B and mean velocity V. In section (7.3.1), turbulence was related to the
Sweet-Parker reconnection of a long current sheet using the mean-field induction equation
for a steady state. This assumption yielded equation (8.32). The mean induction equation
is again considered in order to obtain the relation of the mean-fields inhomogeneities and
turbulence. Following the argument of Yokoi and Hoshino,70 the mean magnetic field B
and mean current density J are split into

B = Bo + δB, J = Jo + δJ, (8.39)

where δB is the mean magnetic field induced by the effect of the turbulent cross-helicity W
and δJ = ∇× δB. According to (8.39), the mean-field induction equation [equation (8.3)]
is split into a part freed of the cross-helicity effects as

∂tBo = ∇ ×
(
V × Bo

)
− ∇ ×

(
ηT

(
∇ × Bo

))
, (8.40)

and a part for the magnetic induction δB

∂tδB = ∇ ×
(
V × δB

)
− ∇ ×

[
ηT

(
∇ × δB

)
− γ

(
∇ × δV

)]
, (8.41)

where ηT = η + β. In the limit of large Reynolds numbers, a particular solution of equa-
tion (8.41) is70

δB =
γ

β
V ⇒

V
δB

=
1

CW

K
W
. (8.42)

where CW = Cγ/Cβ is a constant of order O(10−1). Figure 8.14 shows a close relation
between the ratio

∣∣∣Ω∣∣∣ / ∣∣∣J ∣∣∣ and |W | /K.
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(a) Harris-type Bg = 0.
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(b) Harris-type Bg = 0.
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(c) Harris-type Bg = 5.
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(d) Harris-type Bg = 5.
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(e) Force-free-type Bg = 5.
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(f) Force-free-type Bg = 5.

Figure 8.14: Figures 8.14a, 8.14c and 8.14e show the time history of the maximum ampli-
tude of the mean current density |J |, mean vorticity |Ω| and their ratio |J |/|Ω| (over-lines
are omitted). Figures 8.14b, 8.14d and 8.14f present the maximal amplitude in time of
the turbulent energy K and turbulent cross-helicity |W | as well as their ratio |W | K. The
results are for the Harris-type current sheet with BG = 0 and 5 and the force-free type
current sheet Bg = 5. Symbols •, 5 and B correspond to η = 10−3 while ×, 4 and C to
η = 10−6. Figure 8.14a taken from Widmer et al.94
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Since the variation of the magnetic induction δB across the current sheet produces δJ
and that the mean velocity variation along the diffusion region causes Ω, the ratio yields∣∣∣Ω∣∣∣∣∣∣J ∣∣∣ �

∣∣∣V∣∣∣∣∣∣δB
∣∣∣ ∆L , (8.43)

where ∆ and L are the width and the length of the current sheet diffusion region. The rela-
tion for the ratios of figure 8.14 is found by inserting equation (8.41) into equation (8.43)
as ∣∣∣Ω∣∣∣∣∣∣J ∣∣∣ �

(
CW
|W |
K

)−1
∆

L
. (8.44)

Equation (8.44) relates the ratio
∣∣∣Ω∣∣∣ / ∣∣∣J ∣∣∣ to the current sheet aspect ratio diffusion region

aspect ratio ∆/L which is a proxy of the Sweet-Parker reconnection rate.

8.2 Importance of the Cross-Helicity Due to Turbulence
for Fast Magnetic Reconnection
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Figure 8.15: Reconnection rate depending on: (a) the time, and (b) the timescale of turbu-
lence τ taken at the time of the first reconnection rate maximal value in figure 8.16a. Case
W ≡ 0. Harris-type current sheet equilibrium, no constant guide magnetic field (Bg = 0).

In the investigation presented in this section, the cross-helicity due to turbulence is set
to zero at all time. The reconnection rate is computed as previously for various resistivity
and turbulence timescale τ. As shown in figure 8.15, the regimes of energy conversion are
still controlled by τ. The maximum reconnection rate is smaller than the value obtained
in the presence of turbulence-related cross-helicity. Figure 8.16 presents the value of the
reconnection rate as the resistivity is decreased. Similar to the case of non-vanishing
turbulent cross-helicity, a smaller amplitude of the resistivity produces an earlier start of
reconnection. The maximum reconnection is, however, not larger for a smaller resistivity.
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8.2 Importance of the Cross-Helicity Due to Turbulence for Fast Magnetic
Reconnection

In absence of turbulent cross-helicity, the maximum value that the reconnection rate can
reach is smaller than when it is taken into account. This experiment confirms that the
action of the turbulent cross-helicity enhances the rate of energy conversion. The reason
is that the resistivity is extending around the diffusion region instead of being constrained
at its center. As a result, a smaller reconnection angle is formed and the rate of energy
conversion is reduced.
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Figure 8.16: Reconnection rate with respect to: (a) the time, and (b) the resistivity taken
at the time of the first reconnection rate maximal value in figure 8.16a. Case W ≡ 0.
Harris-type current sheet Bg = 0.
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9 Self Consistent Turbulence
Timescale

Pleasure in the job puts perfection in
the work.

Aristotle.

The simplified approach of a constant turbulent timescale τt results in different regimes
of energy conversion depending on the initial value of τt. Depending on the value of τt,
magnetic reconnection can be either faster or slower than the case of a resistive MHD
flow. The constant-τt approach is, however, similar as forcing turbulence externally with-
out letting it to self-adjust. In fact, the timescale of turbulence should be obtained by the
dynamic evolution of the turbulence. Its spatio-temporal evolution should either be de-
termined by the transport equation of the timescale or by some quantities representing it.
Since the ratio of the turbulence energy to its dissipation rate corresponds to a timescale
[equation (8.13)], solving the transport equation of the energy dissipation rate as well
as the turbulent energy equation gives the spatio-temporal distribution of the turbulence
timescale.

9.1 Energy Dissipation Rate Equation
In addition to the system of mean field MHD equations (8.1)-(8.4), the governing

equation for the turbulent energy K, its dissipation rate ε and the turbulent cross-helicity
W are solved as

∂K
∂t

= −V · ∇K − EM · J +
B
√
ρ
· ∇W − ε, (9.1)

∂W
∂t

= −V · ∇W − EM ·Ω +
B
√
ρ
· ∇K −CW

εW
K
, (9.2)

∂ε

∂t
= −V · ∇ε +

ε

K

(
Cε1 PK −Cε2ε + Cε3 B · ∇W

)
, (9.3)

where EM is the turbulent electromotive force [equation (8.7)] and Cε∗ model constants of
order O(1).34 They are chosen as Cε1 = 1.4, Cε2 = 1.9 and Cε1 = 1.0 according to TSDIA.
The symbol PK is the turbulent energy production mechanism given as

PK =
K
ε

CβK
J

2

ρ
−CγW

Ω · J
√
ρ

 . (9.4)
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9 Self Consistent Turbulence Timescale

The purpose of solving equation (9.3) in addition to equations (9.1)-(9.2) and the
mean field MHD equations (8.1)-(8.4) is to test the validity of the regimes of reconnection
found in the previous chapter in the constant-τ approximation. Since they were obtained
whatever the initial current sheet configuration used, the results for the case of an Harris-
type current sheet are shown here. The initial conditions for the mean velocity field V,
the mean magnetic field B and the mean internal energy h are given by equations (8.18)-
(8.21). The constant guide magnetic field is set to zero. The initial perturbation B0,p

is the same as equation (8.17) but its amplitude is, however, larger in order to initiate
the reconnection process earlier. The initial amplitude of the turbulent energy K0, its
dissipation rate ε0 and the turbulent cross-helicity W0 are given as

K0 = Kinit, (9.5)
W0 = 0, (9.6)
ε0 =

√
CβK0

∣∣∣J0

∣∣∣ , (9.7)

where J0 = ∇× B0 and ε0 is obtained from the initial balance of turbulence PK0 − ε0 = 0.
Here PK0 is the initial turbulent energy production given by

PK0 =
CβK2

ε0

J
2

ρ
. (9.8)

Figure 9.1 depicts the spatial distribution of the mean current density J, the mean vor-
ticity Ω, the turbulent cross-helicity W, the turbulent energy K, its dissipation rate ε and
the turbulence timescale τ estimated from the evolution of K and ε. The turbulent energy
dissipation rate ε is finite at and around the diffusion region where the turbulent energy K
is maximum. The location where ε is finite also represents the region in which the large
scale magnetic field energy is transported to smaller scales where it can be dissipated. The
timescale of turbulence τ is also maximum near the diffusion region and it is in the range
[1.2;1.4]. This range corresponds to the regime of fast turbulent reconnection obtained
for a constant turbulence timescale in section (8.1.2).94,98

The regimes of energy conversion were obtained by varying the turbulence timescale
parameter τt ≡ K/ε or the initial turbulent energy amplitude K0. In the this context, solely
the initial amplitude of the turbulent energy Kinit can be varied since the constant Cβ is
determined by the TSDIA formalism. Also, the current density amplitude is determined
by the Harris-type current sheet initialisation. Figure 9.2 presents the time evolution of
the reconnection rate as Kinit is varied for a resistivity η = 10−2. Turbulence produces fast
reconnection in comparison to the resistive MHD regime. Contrary to the results obtained
for a constant timescale parameter τt, only fast turbulent reconnection is obtained. In fact,
the other regimes of energy conversion defined as laminar and turbulent diffusion,94,98 are
artefacts of the simplified constant-τ algebraic turbulence timescale approach. The turbu-
lent energy governing equation can be written as [equation (4.27)]

DK
Dt

= τt

CβK
J

2

ρ
−CγW

J ·Ω
√
ρ

︸                           ︷︷                           ︸
PK

−
K
τt︸︷︷︸
εK

+
B
√
ρ
· ∇W︸     ︷︷     ︸

TK

(9.9)
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(a) Mean current density J.
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(b) Mean vorticity Ω.
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(c) Turbulent energy K.
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(d) Turbulent cross-helicity W.
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(e) Dissipation rate ε.
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(f) Turbulent timescale τ = K/ε.

Figure 9.1: Spatial distribution of the mean current density J, the mean vorticity Ω, the
turbulent energy K, its dissipation rate ε, the turbulent cross-helicity W and the turbulent
timescale τ = K/ε at the time the reconnection rate reaches its maximum (t = 50τA). The
resistivity is η = 10−3.
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9 Self Consistent Turbulence Timescale

where τt ≡ K/ε, PK is the production rate of the turbulent energy, εK its dissipation rate
and TK its transport term. The latter does not contribute to the turbulent energy dissipation
or production unless energy is gained or lost from the boundaries. Using τt as an input
parameter, its value is fixed during the whole current sheet evolution. The limit τt � 1 I

produces a large amount of turbulence constantly. In such a situation, εK � PK and no
process is able to transport the energy due to turbulence down to smaller scales where it
can be dissipated. In the limit τt � 1, PK � εK and the turbulent energy dissipation rate
inhibits turbulence to grow. As a result, the system behaves like in the resistive MHD
limit. In fact, turbulence increases the initial mean thermal pressure pth which in a current
sheet equilibrium is given by

pth = 1 + βp + B
2

+ Kmag, (9.10)

where βp is the plasma beta and Kmag is the turbulent energy due to the magnetic field
fluctuations only since V = 0 initially. As plasma is flowing at both sides current sheet
which has reached a steady state, the mean thermal force ∇pth compensates the mean
Lorentz force due to turbulence, i.e., −∇pth ≈ J × B. The Lorentz force derived from the
mean fields is

J × B =
1

η + β

(
−

(
V × B

)
× B + E × B + γΩ × B

)
. (9.11)

Figure 9.3 is a schematic representation of the mean-field forces in a current sheet equi-
librium. A moderate amplitude of turbulence results in an broadening of the current sheet
around the ‘X’-point. As turbulence is increased by a large τ or K0, the thermal pressure
increases while the Lorentz force is reduced and the current sheet broadens further. In the
limit τ � τA (or small K0), the thermal- and Lorentz forces are the same as in the resistive
MHD limit. These limits are, however, not obtained when the turbulence timescale is
determined by the turbulence dynamics.

Hence, from the mean-field-turbulence-model viewpoint, only the limit of fast recon-
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Figure 9.2: Time history of the reconnection rate for different initial values of the turbulent
energy Kinit. Magnetic resistivity is η = 10−2.

I. Here τt is normalized to the Alfvén time and τA is normalized to the current sheet halfwidth L0.
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9.1 Energy Dissipation Rate Equation

nection is always obtained. The turbulent energy K and its dissipation rate ε are of the
same order and the turbulence timescale is of the order of the time needed by an Alfvén
wave to cross the current sheet width. As a result, the current sheet broadens due to the
thermal pressure force while the Lorentz force due to the incoming magnetic flux is re-
duced. As a result, the rate of energy conversion is enhanced.

In the Kolmogorov picture of turbulence, the size of an eddy is proportional to the
turbulence timescale τt [equation (6.10)]. In section (8.1.2), it was found that τt ≈ 2.3τA

for which the associated eddy size is a bit larger than the current sheet width LCS . Since,
as it is shown in this section, only τt ≈ 2τA is reached, the turbulent eddy size is just a bit
larger than the current sheet width which corresponds to fast reconnection.

X

X

X

X X

Figure 9.3: Schematics of the mean forces balance for a current sheet equilibrium. The
symbol ∇ pth denotes the mean thermal pressure force and J × B the mean Lorentz force.
The negative gradient of the turbulent energy ∇K increases towards the inflow regions. A
large turbulent energy gradient enhances the mean thermal pressure while a large K re-
duces the mean Lorentz force. The current sheet width is then enlarged by turbulence until
reconnection becomes fast. The dashed-doted line represents the symmetry line across the
‘X’-point along the current sheet and the dashed ellipse symbolizes the diffusion region.
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10 Influence of Turbulence on the
Plasmoid Instability

It doesn’t matter how beautiful your
theory is, it doesn’t matter how smart
you are. If it doesn’t agree with
experiment, it’s wrong.

Richard Feynman

10.1 Introduction
A possible almost ideal MHD mechanism to reach fast reconnection is the plasmoid

instability of current sheet for large-Lundquist-number-plasmas. The Lundquist num-
ber S = LVA/η (magnetic-Reynolds-number for V = VA) provides an approximated
threshold S crit ∼ 104 above which a Harris-type current sheet becomes unstable (sec-
tion (7.5.2)).95 Resistive MHD simulations of high-Lundquist -number-plasmas current
sheets revealed the unstable growth of small magnetic islands due to reconnection of thin
current sheets.50,52,102 While the linear growth phase is a tearing-like instability,48 the
physical role of plasmoids during the non-linear phase of reconnection is not well un-
derstood. Daughton et al.103 proposed that the global reconnection rate is described by
an ensemble of Np small scale current sheets (or plasmoids). Each of them has a length
Lp ∼ L/Np and width δp ∼ δ/

√
Np where L and δ are the global length and width of

the macroscopic diffusion region. In such configuations, the global reconnection rate is
enhanced by a factor

√
Np above the Sweet-Parker rate. In the following section, the non-

linear phase of plasmoid reconnection is investigated by means of turbulence models.
The plasmoid instability repeatedly brakes a long current sheet into smaller ones, cre-

ating magnetic island-like structures at small scales. At each small-scale reconnection
site, a large angle of reconnection between the incoming and reconnecting magnetic field
is created (see [equation (7.9)]). The current density and the vorticity are enhanced near
the small scales diffusion regions. As described previously (chapter (8)), increased veloc-
ities and magnetic field gradients can enhance the reconnection rate through turbulence
[equation (8.44)]. The turbulent energy (K) produced at and around the diffusion region
has similar properties to an anomalous resistivity (section (7.3.2)). Its strength is max-
imum at the center of the diffusion region and diminishes away from it. The energy of
the turbulence decreases faster across the current sheet layer than along it. This is a con-
sequence of the quadrupolar turbulent cross-helicity about the sides of the current sheet
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10 Influence of Turbulence on the Plasmoid Instability

diffusion region (section (4.3.1)). The inhomogeneous distribution of the turbulent en-
ergy produces, therefore, an ‘X’-point reconnection region. The latter has been shown to
enhance the reconnection rate above a Sweet-Parker to a Petschek rate.41 The difference
between Sweet-Parker- and Petschek-like reconnection rate is due to the localisation of
the anomalous resistivity.21

At large-Lundquist-numbers, the plasmoid-unstable current sheet reconnection rate
is independent on the resistivity.52,104 At the same time, high-Lundquist-number-plasmas
are prone to turbulence.56,58 Turbulence might, therefore, play a key role in enhancing
reconnection in the course of the non-linear evolution of the plasmoid instability, while
the saturation of the instability at large-Lundquist-numbers can be due to the saturation of
the turbulent energy at the ‘X’-points. In fact, as shown in section (9.1), turbulence can
enlarge the diffusion region width by increasing the thermal pressure inside the current
sheet. As a result, the rate of energy conversion can be enhanced. I

The plasmoid instability is independent on the presence of a finite guide magnetic
field parallel to the mean current flow. In this chapter, the plasmoid instability is used to
investigate the influence of turbulence on reconnection. In particular, the physics of plas-
moid reconnection is tested through the extension of the Reynolds-averaged turbulence
model (section (4.2.1)) to a subgrid-scale (SGS) model of turbulence. The question of the
applicability of the non-linear SGS model (section (5.2)) to the reconnection process is
also addressed in the following.

Part of the results of this chapter are taken from a work submitted for publication
in Physics of Plasmas: "Turbulent Plasmoid Reconnection". The submitted version is
available on the arXiv.71 This concerns section (10.2), section (10.4.2) and section (10.5).
The text is different but certain figures are the same. When it is the case, the citation
related to the submitted version of the paper which is available on the arXiv is given. The
discussion about the turbulent stress-tensor in section (10.4.2) is not at all considered in
the submitted paper.

10.2 High Resolution Simulations of Plasmoid-Unstable
Current Sheets

High resolution direct numerical resistive MHD simulations (DNS) are performed in
2.5 dimensions to investigate the influence of turbulence on plasmoid-unstable current
sheets. The DNSs are carried out for both Harris-type and force-free current sheets equi-
libria. The former is simulated with or without a constant guide magnetic field parallel to
the current flow [equation (10.6)] while the latter has a non-constant guide magnetic field
with an additional constant magnetic field [equation (10.8)]. The equations solved by the

I. See the discussion about the mean-field force balance in a current sheet given at the end of sec-
tion (9.1).
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DNSs are

∂ρ

∂t
= −∇ · (ρV) , (10.1)

∂ρV
∂t

= −∇ ·

[
ρV ⊗ V +

1
2

(
p + B2

)
I − B ⊗ B

]
+ χ∇2 (ρV) , (10.2)

∂B
∂t

= +∇ × (V × B) + η∇2B, (10.3)

∂h
∂t

= −∇ · (hV) +
γ0 − 1
γ0hγ0−1

(
ηJ2

)
+ χ∇2h, (10.4)

where the χ parameter determines the amplitude of the local smoothing sometimes locally
applied for numerical stability without increasing the grid resolution (see appendix (A.2)).
The mass density, the velocity and magnetic field are denoted by ρ, V and B. The sym-
bol h represents the internal energy related to the thermal pressure by the equation of
state pth = 2hγ0 [equations (3.9)-(3.10)]. Since adiabatic conditions are assumed, the
ratio of specific heat gives γ0 = Cv/Cp = 5/3. The current density is obtained by the
Ampère’s law J = ∇ × B. Equations (10.1)-(10.4) are written in normalised units (see
appendix (A.1)). A pair of current sheets is initialised in order to use periodic boundary
conditions. The current sheets are lying in the y× z plane, the direction across the current
sheet is given by the unity vector ey while ez is directed along it. The direction ex is per-
pendicular to the plane of reconnection, i.e., parallel to the mean initial current flow. The
mean electric field is given by the Ohm’s law of resistive MHD:

E = −V × B + ηJ. (10.5)

The initial conditions for the Harris-type current sheets are

B = Bgex + B0 (tanh (y + d) − tanh (y − d) − 1) ez, (10.6)

h =
1
2

(
1 + βp − B2ez

)1/γ0
, (10.7)

while they are given for the force-free current sheet as

B = +B0

√
B2

g + cosh2 (y + d) + cosh2 (y − d)ex

+B0 (tanh (y + d) − tanh (y − d) − 1) ez, (10.8)

h =
1
2

(
βp

)1/γ0
, (10.9)

where Bg =
∣∣∣Bg

∣∣∣ / |B0| is the constant guide magnetic field normalised to the initial am-
plitude of the reconnecting magnetic field. The initial amplitude of the mass density, the
velocity flow and the magnetic field are ρ0 = 1, V0 = 0 and B0 = 1. In order to let the
instability to develop within short time, the plasmoids are triggered in a broad range of
spatial frequencies as

Bp = B0,p

128∑
k=1

ξ1 sin
(
2πk

(
z
Lz

+ ξ2

))
ey, (10.10)
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10 Influence of Turbulence on the Plasmoid Instability

where Lz is a normalizing length scale in the ez direction and B0,p is the initial perturbation
amplitude set to 0.01. The parameters ξ1,2 are random numbers in the range [0,1]. The
box size is Lx×Ly×Lz = 0.4×80×320L3

0 for a resolution of 4×3200×12800 grid points.
A finite grid resolution does not allows to follow the evolution of plasmoids over all

scales down to a scale limited by the chosen resistivity η. Turbulence is then split off the
mean variables by means of a Gaussian filter.24,26 Two turbulence models are compared
concerning their information about the fluctuation amplitude during the non-linear phase
of the plasmoid reconnection: i) the mean-field averaged turbulence model described in
section (4.2.1) and ii) the non-linear SGS model presented in chapter (5). Since a Gaussian
filter does not strictly fulfill the Reynolds rules [equations (4.4)-(4.6)], the mean-field
model is extended to a SGS turbulence model. Such an extended mean-field turbulence
model is valid if

f
F
− f

F
F

≈ 0, (10.11)

where f is any MHD field resolved by the DNS and f
F

is its filtered counterpart. The
filter width is chosen such that equation (10.11) is almost satisfied (see appendix (D)).

10.2.1 Plasmoid Instability Reconnection Rate
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Figure 10.1: Time history of the plasmoid instability reconnection rate for: Harris-type
CS bg = 0 (H0), Harris-type CS bg = 2 (H2), Harris-type CS bg = 5 (H5), force-free CS
bg = 2 (FF2 ) and force-free CS bg = 5 (FF5). Taken from Widmer et al.71

The dynamical evolution of the current sheet instability as well as the appearance of
many reconnection sites render difficult the computation of the reconnection rate in terms
of the integrated magnetic flux [equation (8.30)]. The reconnection rate is, therefore,
quantified by means of the vector potential A as B = ∇ × A. For the present 2.5D
geometry, ex is the ignorable dimension in terms of vanishing spatial derivatives. In terms
of the vector potential A, the amount of reconnected flux φ(t) is

φ(t) =

zx∫
zo

B(x, t)eydz = [A (x = zx, t) − A (x = zo, t)] ex, (10.12)
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10.2 High Resolution Simulations of Plasmoid-Unstable Current Sheets

where zx is the center of a reconnection region (‘X’-point) and zo the center of a magnetic
island. The reconnection rate is given by the time derivative of equation (10.12) as

∂tφ(t) = −

zx∫
zo

∂z [E(x, t)ex] dz = ∂t [A (x = zx, t) − A (x = zo, t)] ex, (10.13)

where Eex is the electric field perpendicular to the reconnection plane as obtained using
equation (3.2). A local maximum of Aex is, therefore, the location a magnetic island center
(‘O’-point) while a local minimum corresponds to an ‘X’-point. By means of the vector
potential A, the position of an ‘X’-point can be determined and the reconnection rate is
computed by equation (10.13) solved for all reconnection sites. Figure 10.1 presents the
time history of the reconnection rate for various equilibria. The reconnection rate is the
same for all equilibria during the first t = 100τA. A larger reconnection rate is reached by
the Harris-type current sheet equilibrium without constant guide magnetic field compared
with finite guide magnetic field equilibria. It takes approximately t = 100τA for the
reconnection rate in presence of a guide magnetic field to reach a value comparable with
the Harris-type current sheet case.

Figure 10.2 depicts the spatial distribution of the magnetic field and the velocity flow
for the Harris-type current sheet without constant guide magnetic field as well as for the
force-free current sheet with a constant guide magnetic field strength Bg = 2 at t = 100τA.
The outflow velocity Vez reaches a value near the Alfvén speed VA for the Harris-type
current sheet while it attains only eighty percent of it for the force-free current sheet. II

The largest outflow velocities are found to be located near the smallest magnetic islands.
Note that the force-free current sheet holds less small magnetic islands than the non-guide
field Harris-type current sheet. The finite non-zero magnetic field amplitude |B| is due to
the out-of-plane finite guide magnetic field.

As presented in section (7.4), the reconnection rate estimated using the Lorentz force
as a proxy is reduced by a guide magnetic field parallel to the current flow as

MA,Bg = MA
B2

z

B2
x + B2

z
, (10.14)

where Bx = Bex is the magnetic field component perpendicular to the reconnection plane
and Bz = Bez the reconnecting magnetic field. MA is the reconnection rate in the absence
of a magnetic field component parallel to the current flow direction. A guide magnetic
field larger than the reconnecting magnetic field decreases the reconnection rate. The
smaller reconnection angle in the case of guide field reconnection reduces the current
density and vorticity around the ‘X’-points of reconnection. Figure 10.3 depicts the spatial
distribution of the current density J and the vorticity Ω for the Harris-type and force-free
current sheet models. The amplitude of J and Ω are larger for the Harris-type (Bg =

0) current sheet without a constant guide magnetic field than the force-free (Bg = 2)
current sheet. It is in the vicinity of the smallest magnetic structures that the amplitude
of J and Ω are the strongest. The smaller reconnection rates can be due to: i) large
magnetic structures that appear to be favored over the small ones, and ii) the formation of
less plasmoids. The reconnection rate would be reduced in case i) because the angle of

II. The velocity is normalised to the Alfvén speed
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(a) Magnetic field |B|. Harris-type CS.
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(b) Outflow velocity Vez. Harris-type CS.
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(c) Magnetic field |B|. Force-free-type CS.
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(d) Outflow velocity Vez. Force-free-type CS.

Figure 10.2: Spatial distribution of the magnetic field and velocity flow at t = 100tτA for:
(a) - (b) Harris-type current sheet without guide magnetic field and (c) - (d) force-free
current sheet with a constant guide magnetic field Bg = 2.

reconnection is smaller for large magnetic structures while in case ii) the small number of
plasmoids Np reduces the enhancement of a Sweet-Parker reconnection rate reconnection
by a factor

√
Np. Cases i) and ii) are direct consequences of the guide magnetic field

directed perpendicular to the reconnection plane. Even though the observed reduction of
the reconnection rate is related to the guide field strength [equation (10.14)], the reasons
for this dependence has still to be find out. A turbulence viewpoint is considered to
investigate the slow down of the reconnection rate in presence of finite guide field.
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(a) Current density Jex. Harris-type CS.
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(b) Vorticity Ωex. Harris-type CS.
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(c) Current density Jex. Force-free-type CS.
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Figure 10.3: Spatial distribution of the current density and vorticity at t = 100τA for: (a) -
(b) Harris-type current sheet without guide magnetic field and (c) - (d) force-free current
sheet.

10.3 Turbulent Electromotive Force and Stress-Tensor in
the Reconnection
Regimes

Whether turbulence is considered using a Reynolds-averaged or an SGS model of
turbulence, the consequences of turbulence is discussed in terms of a turbulence-induced
electromotive force E and stress-tensor Ri j. Both are given in the SGS approach as

Ei = εi jk

(
V jBk

F
− V j

F
Bk

F
)
, (10.15)

Ri j = ρ F
(
ViV j

F
− Vi

F
V j

F
)
−

(
BiB j

F
− Bi

F
B j

F
)

+

(
BiBi

F
− Bi

F
Bi

F
) δi j

2
. (10.16)

They are determined by a Gaussian filtering of the data obtained by the high-resolution
DNS. Figure 10.4 presents the spatial distribution of the turbulent stress-tensor Ri j for
the Harris-type current sheet. The components Rkk of the Reynolds stress-tensor are of
the order O(10−1) − (10−2) while the other components are negligibly small compared to
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Figure 10.4: Spatial distribution of the turbulent stress-tensor components at t = 100τA.
Case of a Harris-type current sheet without guide magnetic field.

Rkk. In presence of a finite guide magnetic field Bgex, the non-diagonal components of Ri j

obtain, however, a non-negligible finite value as shown in figure 10.5.
Figure 10.6 depicts the turbulent electromotive force components of a Harris-type

(Bg = 0) and a force-free (Bg = 2) current sheet. As obtained for the turbulent stress-
tensor, the guide magnetic field causes additional components of the electromotive force.
They are found to be within the reconnection plane, i.e., along ey and ez.

After applying a Gaussian filter, III the momentum and induction equations become

∂tV
F

= −∇ ·

(
V

F
⊗ V

F
− B

F
⊗ B

F
)
− ∇P

F
M + ∇ · R + ν∇2V

F
, (10.17)

∂tB
F

= ∇ ×

(
V

F
× B

F
+ E − ηJ

F
)
, (10.18)

where ⊗ denotes the tensorial product, P
F
M is the mean MHD pressure [equation (4.21)]

given in terms of the Gaussian filter and R is the turbulent stress-tensor. The contributions
of the ∇ · R components to the filtered velocity V

F
are

(∇ · R) ex ≡ ∂iRix = ∂yRyx + ∂zRzx, (10.19)
(∇ · R) ey ≡ ∂iRiy = ∂yRyy + ∂zRzy, (10.20)
(∇ · R) ez ≡ ∂iRiz = ∂yRyz + ∂zRzz. (10.21)

In two-dimensional situations, the components Rzx and Ryx contribute to the filtered veloc-
ity field V

F
in the ex direction (figure 10.4d). In two-dimensional magnetic reconnection,

III. For a mass-weighted filter formalism.
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Figure 10.5: Spatial distribution of the turbulent stress-tensor components taken at t =

100τA. Case of a force-free current sheet with constant guide magnetic field strength
Bg = 2.

it is the ratio of the in- (V
F
i ) and out-flow (V

F
o ) velocities which provides a proxy for the

reconnection rate. In the present geometry, they are V
F
ey and V

F
ez. It is, therefore, the

components Ryy, Ryz

(
= Rzy

)
and Rzz that can influence the reconnection rate.

The components of the curl of the turbulent electromotive force which enter the evo-
lution equation of the mean magnetic field are

∂tB
F
x : ∂yEz − ∂zEy, (10.22)

∂tB
F
y : ∂yEz − ∂zEx, (10.23)

∂tB
F
z : ∂yEz − ∂yEx. (10.24)

For a finite guide magnetic field equilibrium, Ey and Ez are finite. They are acting in the
direction perpendicular to the reconnection plane, i.e., parallel to the guide magnetic field
B

F
g . There is no direct influence of the in-plane components of E on the reconnecting

magnetic field.
Important consequences of a finite guide magnetic field are that: i) the amount of

fluctuations is reduced, and ii) the components of the turbulent electromotive force and
stress-tensor due to the guide magnetic field do not contribute to the mean velocity and
magnetic field components lying in the reconnection plane.
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Figure 10.6: Spatial distribution of the turbulent electromotive force components at t =

100τA for: (a) - (c) the Harris-type current sheet (Bg = 0) and (d) - (f) force-free current
sheet (Bg = 2).

10.4 Applicability of Turbulence Models to Magnetic Re-
connection

The applicability of the turbulence models presented in sections (4.2.1) and (5.2) is
tested by means of the data obtained from the DNSs of plasmoid-unstable current sheets.
In each case, the turbulent electromotive forces and stress-tensors models are compared
with their SGS counterparts [equations (10.15)-(10.16)]. In order to validate the expres-
sions, the Pearson correlations are calculated along the center of the current sheet.

10.4.1 Applicability of the Non-linear SGS Model
For the non-linear SGS model, the turbulent electromotive force Enl and stress-tensor

Rnl
i j are given following equations (5.22)-(5.25)

(Enl)i = εi jk∆
2CEnl∂nṼ F

j ∂nB
F
k , (10.25)

Rnl
i j = Rnl,V

i j − Rnl,B
i j +

2
3

(
EV

S GS − EB
S GS

)
δi j. (10.26)

where Rnl,V
i j and Rnl,B

i j are the kinetic and magnetic non-linear SGS stress-tensors [equa-
tions (5.23)-(5.24)]. The symbol ∆ is a characteristic length scale related to the filter
width and CEnl a model constant of orderO(10−1).73 Since only the ey and ez components of
the velocity are important for the two-dimensional reconnection rate [equations (10.20)-
(10.21)], only the components Rnl

yy, Rnl
yz and Rnl

zz of the non-linear SGS turbulent stress-
tensor are presented. The stress-tensor depends on two model constants CV

nl and CB
nl
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Figure 10.7: Spatial distribution of the non-linear SGS stress-tensor model components
at t = 100τA. Case of a Harris-type (Bg = 0) and a force-free current sheet (Bg = 2).

[equations (5.23)-(5.24)]. The values of the model constants are chosen as CEnl = 0.12,
CV

nl = 0.68 and CB
nl = 0.77. Figure 10.7 presents the non-linear turbulent stress-tensor

components for the Harris- (Bg = 0) and force-free (Bg = 2) current sheets. The non-
linear SGS model matches almost perfectly the SGS turbulent stress-tensor determined
statistically. Figure 10.8 shows that the correlations of the turbulent stress-tensor compo-
nent is close to 100% for all components of the non-linear SGS stress-tensor.

Figure 10.9 presents the comparison of the non-linear SGS electromotive force model
Enl and its SGS expression E [equation (5.15)] for the Harris- (Bg = 0) and force-free
(Bg = 2) current sheets. The similarity between the electromotive forces are striking. The
structures near and inside the magnetic islands are well resolved by Enl. The non-linear
model is also able to capture the changing polarities of the SGS expression such that Enl is
positive at the ‘X’-points vicinity and negative near the origins of the ‘O’-points. The Enl

is further found to have a smaller amplitude than that of E. This problem can be solved
by adjusting the constant CEnl by an appropriate factor.

Finally, the correlations of the non-linear SGS electromotive force with its SGS coun-
terparts are presented in figure 10.10. The correlation is above 90% in each equilibrium.
The non-linear SGS electromotive force Enl and SGS stress-tensor Rnl

i j model are, there-
fore, applicable to the magnetic reconnection problem.

10.4.2 Applicability of the Mean-Field Turbulence Model

The mean-field turbulence model described in section (4.2.1) and used in chapters (8)-
(9) is now considered after applying a Gaussian filter on the DNSs data. The model is built
on statistical quantities representing turbulence: the turbulent energy K, the turbulent
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Figure 10.8: Line plots of the turbulent stress-tensors along the current sheet center at
t = 100τA with correlation coefficient r for: (a) - (b) Harris-type current sheet without
guide magnetic field and (c) - (d) force-free current sheet Bg = 2. The solid line represents
the SGS expression Ri j and the dashed line is for the non-linear model Rnl

i j . Ri j stands for
the turbulent stress-tensor model or SGS expression.

cross-helicity W and the residual helicity H. They are expressed in the SGS formulation
by equations (5.16)-(5.17). The SGS expression of the turbulent stress-tensor reads

RS GS
i j =

7
5

Cβτ
[
KS GS

(
∂iV

F
j + ∂ jV

F
i

)
−WS GS

(
∂iB

F
j + ∂ jB

F
i

)]
, (10.27)

where τ = KS GS /ε is the timescale of turbulence and Cβ a model constant. Figure 10.11
depicts the SGS stress-tensor components in the reconnection plane. It has to be noted that
the model is unable to reproduce the component Rxx. In the 2.5D geometry, any derivative
with respect to ex vanishes and so RS GS

xx ≡ 0. The issue can be solved if equation (4.23e)
is modeled through a statistical approach such as TSDIA. Figure 10.12 presents the corre-
lation of the turbulent stress-tensors along the current sheet for both the Harris- (Bg = 0)
and the force-free (Bg = 2) equilibria. The correlation for the Ryy and Rzz components
are nearly of 90% while the negligible component Ryz has a correlation of only 22%. The
SGS turbulence model does not capture the behavior of the Ryz component of its SGS
counterparts expression. This component is, however, negligible in front or Ryy and Rzz.

In terms of the SGS energy KS GS , cross-helicity WS GS and residual helicitiy HS GS , the
SGS electromotive force model ES GS is given by

ES GS = αB
F

+ γΩ
F
− βJ

F
, (10.28)
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Figure 10.9: Spatial distribution of the non-linear SGS electromotive force model Enlex

and ez at t = 100τA for: for: (a) - (b) Harris-type current sheet without guide magnetic
field and (c) - (d) force-free current sheet Bg = 2.

where α, β and γ are modeled as

α = τCαHS GS , (10.29)
β = τCβKS GS , (10.30)
γ = τCγWS GS . (10.31)

The constants C∗ are of the order O(10−2) and τ a turbulence timescale. Since turbulence
is fully developed during the non-linear phase of the plasmoid instability, τ is chosen to
be of the order of the Alfvén transit time, i.e., τ = τA in the present normalisation. This
choice results from the investigation of turbulent reconnection in section (9.1). Based on
Yokoi et al.70, the remaining constants are chosen as Cα = 0.02, Cβ = 0.05 and Cγ = 0.04.

The spatial distribution of the SGS energy KS GS and cross-helicity WS GS is shown in
figure 10.13. The SGS energy is found to be located mainly in places where the current
density accumulates. It has an inhomogeneous structure whose maximum is decreasing
away from ‘X’-point. The turbulence-related resistivity β [equation (10.30)] becomes then
comparable to a localized resistivity. As the simulations confirmed, the SGS cross-helicity
is spatially distributed around the maximum turbulent energy. The SGS cross-helicity has
a quadrupolar shape whose polarity is that of the vorticity. The theoretical prediction
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(c) Eex, r = 0.94 force-free CS.
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Figure 10.10: Line plots of the turbulent electromotive forces along the current sheet
center at t = 100τA with correlation coefficient r for: (a) - (b) Harris-type current sheet
without guide magnetic field and (c) - (d) force-free current sheet Bg = 2. The solid line
represents E and the dashed line is for Enl. E stands for E or Enl.

of a localisation of the turbulent energy and cross-helicity during reconnection are both
confirmed. The numerical solution of the transport equations for the turbulence (chap-
ters (8)-(9)) is further validated. The assumption that turbulence dynamics is responsible
for the rapid conversion of stored magnetic energy into plasma kinetic energy and heat is,
therefore, confirmed.

It has been argued in section (8.1.5) that the SGS residual helicity HS GS is impor-
tant for the turbulence dynamics in two-dimensional numerical simulations with an guide
magnetic field parallel to the current density. The reduction of the reconnection rate ob-
served in guide field reconnection was related to HS GS . The role of the residual helicity
can be investigated by splitting HS GS into its kinetic and magnetic part as

HS GS = −Hkin + Hmag (10.32)

= −

(
V ·Ω

F
− V

F
·Ω

F
)

+

B · J
F
− B

F
· J

F

ρ F

 . (10.33)

The spatial distribution of the two residual helicities are depicted in figure 10.14. They
both vanish in the case of a Harris-type current sheet without guide magnetic field. The
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Figure 10.11: Spatial distribution of the SGS stress-tensor model components at t =

100τA. Case a Harris-type (Bg = 0) and a force-free current sheet (Bg = 2).
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(c) Rzz, r = 0.83.
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Figure 10.12: Line plots of the turbulent stress-tensors along the current sheet center at
t = 100τA for: (a) - (b) Harris-type current sheet without guide magnetic field and (c) -
(d) force-free current sheet Bg = 2. The solid line represents the SGS expression Ri j and
the dashed line is for the SGS model RS GS

i j . Ri j stands for Ri j or RS GS
i j . The correlation

coefficient is r.
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Figure 10.13: Spatial distribution of the SGS energy KS GS and cross-helicity WS GS for:
(a) - (b) Harris-type current sheet without guide magnetic field and (c) - (d) force-free
current sheet Bg = 2. The snapshot is taken at t = 100τA.

additional guide magnetic field in the direction parallel to the current flow breaks the
mirror-symmetry being then responsible for a finite SGS residual helicity HS GS . It is
found in two locations: i) near ‘X’-points and ii) close to ‘O’-points of reconnection. At
the ‘X’-point, HS GS is positive due to the residual magnetic helicity Hmag while it is found
to be negative at ‘O’-points because of a finite residual kinetic helicity Hkin. From the
initial finite guide magnetic field, a residual magnetic helicity Hmag is produced due to the
alignment of the guide magnetic field and the mean current density. In the force-free case,
a residual kinetic helicity is also produced initially due to the y- component of the current
density. Together with the reconnecting mean magnetic field component Bz, the in-plane
mean current density Jy generates a mean Lorentz force in the direction perpendicular to
the reconnection plane. This force accelerates the plasma in the direction perpendicular
to the reconnection plane. This resulting mean velocity Vx parallel to the mean vorticity
Ω causes a finite Hkin.

The SGS electromotive force model ES GS [equation (10.28)] is presented in fig-
ure 10.15. It is found to be located along the current sheet in both Harris- (Bg = 0) and
force-free (Bg = 2) equilibrium. The SGS electromotive force model does not reproduce
the negative values observed by the statistically determined SGS electromotive force E for
a Harris-type equilibrium (figure 10.6a). In the force-free case, ES GS reproduces the pos-
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Figure 10.14: Spatial distribution of the residual helicities at t = 100τA. Case of: (a) - (c)
a Harris-type current sheet (Bg = 0) and (d) - (f) a force-free current sheet (Bg = 2).

itive and negative amplitude of E properly. The negative values of ES GS near the location
of the ‘O’-points are due to the residual helicity HS GS . The component Eey is, however,
not present since neither the mean current density J, the mean magnetic field B nor the
mean vorticity Ω have a finite and non-negligible amplitude in that direction. Only the
electromotive force component in the direction perpendicular to the reconnection plane
(ex) contributes to the reconnection rate. The fact that the SGS model does not reproduce
the y-component of E is not important for the investigation of the influence of turbulence
on the reconnection rate.

Figure 10.16 presents the correlation of the electromotive forces in the SGS model
for Harris-type (Bg = 0) and force-free (Bg = 2) current sheets. The correlation for the
x-components is above 80% which confirms the applicability of the SGS model to the
magnetic reconnection problem. Even though the SGS electromotive force ES GS does
not describe E as well as the non-linear model Enl, the form of ES GS [equation (10.28)]
might prove itself more useful than Enl for the comprehension of guide field effects on the
reconnection rate.

10.5 Influence of Turbulence on the Plasmoid Instability
As shown in figure 10.1, the reconnection rate needs more time to reach saturation

when a guide field is considered. A smaller reconnection rate implies slower conversion of
magnetic energy into other forms. The mean magnetic energy density is then investigated
in the SGS formulation. The filtered, or grid-scale (GS), magnetic field energy reads

B2
F

=

(
B

F
)2

+ 2B
F

B′
F

+ B′2
F
. (10.34)
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Figure 10.15: Spatial distribution of the SGS electromotive force model ES GS ex and ez at
t = 100τA for: for: (a) - (b) Harris-type current sheet without guide magnetic field and
(c) - (d) force-free current sheet Bg = 2.

Since the filter width is chosen in a way that the cross terms are negligible, the second
term on the right hand side of equation (10.34) can be neglected. In the SGS formulation,
the evolution equation for the first term on the right hand side of equation (10.34) is

d
dt

∫
V

(
B

F
)2

2µ0
dx =

∫
V

[
−η

(
J

F
)2
− V

F
·

(
J

F
× B

F
)

+ E · J
F
]

dx. (10.35)

The first term on the right hand side is the Joule heating and last term is the contribution of
turbulence to the GS magnetic energy. The GS magnetic and kinetic energy are depicted
in figure 10.17 for a Harris-type (Bg = 0) and force-free (Bg = 2 and 5) current sheets.
The GS magnetic energy is rapidly decreasing in Harris-type current sheet without guide
magnetic field while it remains at a high level in the force-free equilibrium current sheet.
The GS magnetic energy increases with time in force-free current sheets. On the other
hand, the GS plasma kinetic energy is rapidly increasing in Harris-type (Bg = 0) current
sheets while an finite guide magnetic field in force-free current sheets slows down the
evolution of the kinetic energy. This investigation shows that a guide magnetic field slows
down the conversion of the magnetic energy. It has to be noted that the increase of the
kinetic energy is similar in both equilibria during the first t = 80τA. The differences in the
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Figure 10.16: Line plots of the turbulent electromotive forces along the current sheet
center with correlation coefficient r for the SGS model at t = 100τA. Figures (a) - (b):
Harris-type current sheet without guide magnetic field. Figures (c) - (d): force-free current
sheet Bg = 2. The solid line represents E and the dashed line is for ESGS. E stands for E
or ESGS.
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Figure 10.17: Time history of the evolution of the total magnetic and kinetic energy. The
energies are computed for a Harris-type current sheet without guide field and a force-free
current sheet with guide magnetic field bg = 2 and 5. Taken from Widmer et al.71
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10 Influence of Turbulence on the Plasmoid Instability

energies between a guide and a non-guide magnetic field equilibrium can be considered
through the effect of turbulence. As discussed in section (4.3), there is a balance of the
turbulence induced terms around the reconnection regions. Turbulence is thought to be
responsible for the reduction of the reconnection rate in presence of a finite guide field
during the non-linear phase.

10.5.1 Turbulent Energy Transfer
Investigating the energy budget during the reconnection process is important. In the

SGS approach, the contribution of the SGS turbulence to the GS magnetic energy density
is provided by the term E · J

F
. The term E · J

F
is positive at the location where the

turbulent electromotive force is co-parallel with the current and negative if they are anti-
parallel. As shown in sections (7.5.1) and (7.5.2), the electromotive force is anti-parallel
to the current when magnetic reconnection takes place, the product E · J

F
is then nega-

tive and contributes to the reduction of magnetic energy. As depicted in figure 10.6, the
electromotive force has a positive amplitude in the vicinity of ‘X’-points while its ampli-
tude is negative close to ‘O’-points. Since the current flows in the negative x-direction
(figure 10.3), the product E · J

F
is negative at and around ‘X’-points and positive near

‘O’-points. Turbulence is, therefore, enhancing the annihilation of the magnetic field at
the ‘X’-points while it favors the creation of magnetic field at the origins of magnetic
islands. The SGS electromotive force model is composed of three terms:

I) Resistive-like term: βJ
F
, (10.36)

II) Dynamo-like term: αB
F
, (10.37)

III) Dynamo-like term: γΩ
F
, (10.38)

where the term I) enhances the magnetic annihilation above the molecular resistive term
ηJ

F
while the two other terms contribute to the sustainment of the magnetic field (dynamo-

effect). In presence of a finite guide magnetic field, the product ES GS · J
F

reads

ES GS · J
F

= −β
(
J

F
)2

+ γΩ
F
· J

F
+ αB

F
· J

F
. (10.39)

The form of equation (10.39) shows that the increased annihilation of magnetic flux at the
‘X’-points is a result of the turbulence-related resistivity β since it is positive definite and
is localised where the current density accumulates (figure 10.13). The last two terms of the
right hand side of equation (10.39) always create magnetic field since sign(γ) = sign(Ω)
and sign(α) = sign(Bg · J

F
) (section (4.3.1)). Since the rate of energy conversion is

smaller in the presence of a finite guide field, the contribution of the SGS residual helicity
in equation (10.39) to the GS magnetic field energy is now considered. The SGS residual
helicity HS GS is found to be negative along the current sheets, i.e., from one ‘O’-point
to the other. In the vicinity of the ‘X’-points, its magnetic component Hmag is important
while its kinetic component Hkin matters near the ‘O’-points (figure 10.14). The SGS
energy KS GS strength is reduced at the reconnection sites by Hmag because its production
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Figure 10.18: Components of (∇ × E)S GS along the center of the current sheet. They
correspond to the zoomed regions of reconnection in figure 10.15: (a) the lower right
zoom, (b) the middle left zoom and (c) the upper right zoom. The ‘X’- and ‘O’-points
are denoted by X and O. The amplitude is multiplied by 100.0 for visualisation purposes.
Taken from Widmer et al.71

PK is given as

PK = τ
(
βJ

F2
− αJ

F
· B

F
− γΩ

F
· J

F
)
. (10.40)

As a result, the efficiency of the turbulence-related resistivity β (∝ K) is diminished and
the annihilation of magnetic field is reduced. At the origins of ‘O’-points, the conversion
of the kinetic energy into magnetic energy is favored by turbulence because Hkin is larger
than the SGS energy KS GS and the SGS electromotive force becomes positive. The forma-
tion of large magnetic structures are then favored. This is not the in non-guide magnetic
field reconnection because of the absence of residual helicity.

Turbulence contributes to the evolution of the GS magnetic field through the curl of
the SGS electromotive force [equation (10.18)]. Since the reconnecting magnetic field is
in the z-direction, the balance of turbulence terms is investigated for ∂zE. Figure 10.18
depicts the contribution of (∇ × ES GS )ez along the current sheet center. The SGS cross-
helicity does not appear since it vanishes identically at the symmetry line due to it pseudo-
scalar nature. The gradients of the turbulence-related resistivity β and residual helicity
related α-term have important impacts. While the terms related to β are enhancing the re-
sistive diffusive term η∇× J

F
, the gradient of α are diminishing them. At some locations,

the residual helicity suppresses the turbulence-related resistivity effects letting only the
resistive dissipation to convert magnetic energy into plasma kinetic energy and heat. The
enhancement of the reconnection rate by turbulence is suppressed. This does not happen
in non-guide field reconnection since there is no asymmetry in the direction perpendicular
to the reconnection plane. The reduction of the reconnection rate in guide magnetic field
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have similar polarities. Taken from Widmer
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reconnection current sheets can, therefore, be understood through the turbulence dynam-
ics.

10.5.2 Reconnection Rate in Presence of Turbulence

The inhomogeneities of the GS magnetic field and velocity distribution can be related
to the reconnection rate considering turbulence [equation (8.44)]. The relation is written
for the SGS formulation as

MA =

∣∣∣∣Ω F
∣∣∣∣∣∣∣∣J F

?

∣∣∣∣
(
|γ|

ηT

)
. (10.41)

where J
F
? = (J

F √
µ0)/
√
ρ, ηT = η + β. MA is an estimation of the reconnection rate

according to equation (10.41).94 In the limit β � η, the turbulent diffusivity β determines
the denominator and the conversion of magnetic into other forms of energy. In such situa-
tions, the reconnection rate is enhanced by turbulence and it becomes independent of the
resistivity η (section (7.3.1) and chapter (8)). Figure 10.20 shows the reconnection rate
as it is computed directly from the reconnection electric field Ex and estimated by MA

according to equation (10.41). The estimated reconnection rate MA [equation (10.41)]
matches better the evolution of the reconnection rate obtained from Ex for a force-free
current sheet than for an Harris-type current sheet. It has to be noted that MA underes-
timates Ex in the first t = 60τA for the Harris case and during the t = 100τA for the
force-free case.
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Figure 10.20: Time evolution of the reconnection rate obtained as the out-of plane electric
field Ex and estimated by MA [equation (10.41)] for a Harris-type (Bg = 0) and a force-
free (Bg = 2) current sheet (CS). Taken from Widmer et al.71

Equation (10.41) is used to determined the amount of turbulence in the system as

|γ|

ηT
� MA

∣∣∣∣J F
?

∣∣∣∣∣∣∣∣Ω F
∣∣∣∣ . (10.42)

Figure 10.21 presents the ratio |γ|/ηT as it is estimated using expression (10.42) and cal-
culated directly from the SGS energy KS GS , the resistivity η and the SGS cross-helicity
WS GS as

|γ|

ηT
=

τCγ|WS GS |

η + τCβKS GS
, (10.43)

with τ = 1, Cβ = 0.05, Cγ = 0.04 and Cα = 0.02. Expression equation (10.42) overes-
timates the turbulence ratio given by expression (10.43). Figure 10.21 shows that turbu-
lence starts to be effective around t = 60τA for the Harris-type current sheet. This is the
time at which the kinetic energy rapidly grows, faster than through a force-free current
sheet (figure 10.17). The turbulence is not efficiently enhancing reconnection during the
first t = 60 − 100τA. This is the reason why MA underestimates the reconnection rate.
This also corresponds to the similar reconnection rates of finite guide and zero-guide field
current sheet equilibrium during the first t = 60 − 100τA (figure 10.1).

Finally, turbulence can explain the deviation of the reconnection rate from the Sweet-
Parker scaling MA ∝ S −1/2 ∼ η1/2.52,104 This deviation can be attributed to turbulence be-
cause of its ubiquitousness in large-Lundquist-number plasmas. Figure 10.22 depicts the
averaged value of the reconnection rate over time as the resistivity decreases. The amount
of turbulence computed from equation (10.43) is also shown. As turbulence saturates with
ongoing reconnection, the deviation of the reconnection rate from the Sweet-Parker scal-
ing is a consequence of the saturation of the turbulence. Even though a smaller resistivity
η can enhance the effect of the turbulent resistivity β, the reconnection rate saturates.
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Figure 10.21: Time evolution of the amount of turbulence as it is computed from the
turbulent ratio [equation (10.43)] and estimated by equation (10.42) for a Harris- (Bg = 0)
and a force-free (Bg = 2) current sheet (CS). From Widmer et al.71
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From Widmer et al.71

120



11 Conclusions

The end of a melody is not its goal:
but nonetheless, had the melody not
reached its end it would not have
reached its goal either. A parable.

Friedrich Nietzsche

A Reynolds-averaged turbulence model constructed using few parameter to describe
MHD turbulence was utilized to investigate the consequences of the small scales MHD
fluctuations on the rate of energy conversion by magnetic reconnection. The evolution
equations for the turbulence energy and cross-helicity are numerically solved together
with the MHD equations for the mean field variables. The consequences of turbulence for
the reconnection rate were investigated using first a constant turbulence timescale τ. The
tested cases were an Harris-type current sheet with or without a constant guide magnetic
field Bg perpendicular to the current flow as well as a force-free current sheet equilibrium
with finite guide field.

Whether the considered equilibrium has a guide magnetic field or not, the timescale
of turbulence τ controls the regimes of energy conversion. In the limit τ � τA, the rate
of energy conversion is that of the resistive MHD while in the limit τ � τA only a small
amount of magnetic energy is converted into plasma kinetic energy and heat. As soon
as τ ≈ τA, the rate of energy conversion is high and fast reconnection takes place due
to turbulence. Enhanced reconnection is due to the localisation of the turbulence-related
resistivity at and around the diffusion region of reconnection. The production of turbu-
lent cross-helicity around the reconnection region, with a polarity as that of the mean
vorticity, enhances the turbulent energy, proportional to a turbulent resistivity, inside the
reconnection layer. The gradients of the turbulent resistivity is enhanced by the turbulent
cross-helicity from the center to the edges of the reconnection region resulting in a large
angle of reconnection , i.e., the reconnection rate is increased. In situations of vanishing
turbulent cross-helicity (W ≡ 0), the regimes of energy conversion are also obtained but
for a smaller reconnection rate. The action of the cross-helicity is, therefore, important
for the enhancement of the reconnection rate by turbulence.

It was further shown that reconnection needs time to reach its maximum if a finite
guide magnetic field Bg is present. The finite guide magnetic field produces an asymme-
try in the direction parallel to the current flow and a finite residual helicity H is produced.
The amplitude of the turbulent energy K is reduced by the residual helicity H. Because
the turbulence-related resistivity enhancing the reconnection rate is proportional to the
turbulent energy, the rate of energy conversion is decreased.

In fact, the regimes of energy release were obtained for a large initial amplitude of
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1 2 3

Figure 11.1: Schematics of the evolution of a current sheet depending on the turbulence
timescale τ compared to the Alfvén transit time τA through the sheet. The blue lines depict
the boundaries of the current sheet and the green spirals represent a turbulence eddy. The
size of the eddy corresponds to the scale at which turbulence takes place.

turbulent resistivity β0 = τK0 compared with the molecular resistivity η. As long as an
algebraic timescale is used, β0 can be changed either by changing the initial turbulent en-
ergy K0 or by the timescale of turbulence τ. The consequences of a variable τ and a fixed
K0 is now discussed. In the Kolmogorov self-similar transport picture, the energy is trans-
ported from the large to the dissipation scales at a rate ε = K/τ. A timescale of turbulence
larger than the Alfvén transit time results in a small transfer rate, only a few percent of the
energy is then transfered down to small scales. On the other hand, the energy transport
to small scales is enhanced by turbulence for a moderate τ. In the limit of small τ, the
turbulence is almost instantaneously dissipated and cannot efficiently transport the large
scales energy to the dissipation scales. The timescale of turbulence is proportional to the
size of a turbulence eddy. In the limit τ � τA, the size of a turbulence eddy is much larger
than the width of the current sheet. The inflow of plasma and magnetic flux does not reach
the current sheet sides as they encounter turbulence before. The thermal pressure inside
the current sheet widens the current sheet until it reaches the approximate size of a tur-
bulence eddy. At that moment, a force equilibrium is reached between the Lorentz force
and the thermal pressure and the process stops. Because of turbulence, the current sheet
cannot thin down and magnetic reconnection is impeded. In the opposite limit τ � τA,
turbulence resides at a scale much smaller than the current sheet width. It is, therefore,
not contributing to the dissipation of energy and reconnection is of a Sweet-Parker rate.
However, the limit τ ≈ τA enhances the energy dissipation; turbulence is now present at a
scale close to the current sheet width. The enhancement of the thermal pressure and the
reduction of the Lorentz force at the sides of the current sheet by turbulence enlarge the
width of the diffusion layer and the angle of reconnection is greater. The three regimes of
energy conversion described above in terms of the size of a turbulence eddy as well as the
forces acting on the current sheet are depicted in figure 11.1.
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The numerical experiments also showed that for a fixed τ, a strong level of turbulence
(large K0) reduces the reconnection rate. A turbulence level exceeding the magnetic field
perturbation results in a suppression of the tearing instability. Furthermore, a large am-
plitude of turbulent energy increases the thermal pressure force above the Lorentz force.
Contrary, a amplitude of the turbulent energy smaller than the magnetic field perturbation
provides an instability growth rate comparable to the resistive MHD prediction. In that
case, neither the thermal pressure nor the Lorentz force are enhanced by turbulence. On
the other hand, a moderate turbulence amplitude boosts the instability growth rate. In this
case, turbulence increases the thermal pressure force and reduces at the same time the
Lorentz force, the width of the diffusion region is then enlarged. I

In large Reynolds number plasmas, the energy dissipated by turbulence exceeds that
dissipated by the molecular resistivity. As predicted by the Alfvén Mach number derived
in presence of turbulence, the reconnection process is dominated by the turbulence-related
resistivity β. The investigations confirmed that the rate of energy conversion is larger for a
small resistivity in presence of turbulence. Such behaviour differs from the Sweet-Parker
rate MA ∝ R−1/2

M . In fact, decreasing the molecular resistivity increases the gradients of
the current density and vorticity which are the source that generate turbulence. A smaller
molecular resistivity implies larger gradients and therefore stronger turbulence. The rela-
tion between the current density, vorticity, turbulent energy and cross-helicity was deter-
mined and used to provide the turbulence-enhanced reconnection rate.

It was also found that the regimes of energy release obtained for a constant turbulence
timescale are artefacts of the model. In fact, the turbulence timescale τ = K/ε and the
initial amplitude of turbulent energy K0 can not be chosen independently. Moreover, im-
posing a constant turbulence timescale is comparable as imposing turbulence externally.
In order to obtain a self-consistent mean field model of turbulence, the turbulent timescale
was solved from the turbulence dynamics itself. Such a turbulence timescale is obtained
solving the evolution equation of the turbulent energy dissipation rate ε in addition to
the governing equations for the turbulent energy K and turbulent cross-helicity W. The
turbulence timescale was then consistently obtained from the evolution of K and ε. As
a result, the rate of energy conversion does not depend on the initial turbulence energy
strength because the turbulence energy is adjusted by its dissipation rate in a consistent
manner. Taking this improvement, the reconnection rate was found to be always faster
than the resistive MHD rate, i.e., solely the regime of fast turbulent reconnection is left.
This means that in the limit τ ≈ τA, fast turbulent reconnection and an eddy size of the
order of the current sheet width is automatically established. Figure 11.1 resumes the
different turbulent regimes: In the limit τ � τA, turbulence resides at a scale that does not
affect reconnection. On the other hand, turbulence enhances reconnection when τ ≈ τA

while it is suppressing it for τ � τA. Here τA is the time required by an Alfvén wave to
cross the current sheet width.

Since the evolution of a current sheet model strongly depends on the turbulence model
used, a posteriori tests of high resolution direct numerical simulations (DNS) of plasmoids-
unstable current sheets (CS) were carried out. The tested equilibrium were: i) Harris-type
current sheets with or without a finite constant guide magnetic field Bg, and ii) force-free
current sheets which always have a finite guide field Bg.

I. The initial turbulent energy K0 determines the size of a turbulence eddy.
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The reconnection rates were shown to be independent of the CS model during the first
100 Alfvén time. In the presence of a guide magnetic field, more time is needed to attain
the maximum reconnection rate. The guide field influence was investigated from the tur-
bulence viewpoint. DNSs turbulence results were analysed by means of a Gaussian filter
for: i) a non-linear subgrid-scale (SGS) turbulence model and ii) a Reynolds-averaged
turbulence model. Since a Gaussian filter does not preserve the Reynolds rules of averag-
ing, the Reynolds-averaged model was extended to a SGS model of turbulence . For the
appropriate filter width, both models were found to be applicable to tackle the problem
of turbulent magnetic reconnection. The non-linear model has correlations with the tur-
bulent electromotive force and stress-tensor which are above 98%. The SGS extension of
the mean field turbulence model revealed correlations about 85%. Even if the non-linear
model is better correlated, the SGS provides answers to the implication of turbulence
into reconnection. The localisation of the turbulence-related resistivity at and around the
diffusion layer was confirmed to be the most important reasons for the enhancement of
reconnection. Moreover, the spatial quadrupolar structure of the turbulent cross-helicity
W with similar polarities as the mean field vorticity was identified as another factor. The
SGS results confirmed the theoretical prediction of the turbulent energy and cross-helicity
spatial distribution during reconnection. The numerical solution of the transport equations
for the turbulence (chapters (8)-(9)) is further validated as well as the assumption that tur-
bulence dynamics is responsible for the rapid conversion of stored magnetic energy into
plasma kinetic energy and heat.

The SGS extension of the Reynolds-averaged turbulence model also establish that the
asymmetry in the direction parallel to the current flow, caused by a guide magnetic field,
generates a residual helicity H. Through its action, the turbulent energy production at the
diffusion region is reduced. The slower evolution of the energy conversion in presence
of a guide magnetic field is attributable to the residual helicity. The SGS extension has
further shown that the reconnection rate estimated by the grid-scale (mean-) field inho-
mogeneities matches the reconnection electric field. Turbulence was shown to strongly
influence the reconnection rate at large-Reynolds-number-plasmas. The deviation of the
reconnection rate from the Sweet-Parker scaling for plasmoid unstable current sheets was
found to be due to the saturation of the turbulent resistivity.

In this dissertation, it was shown that a fast reconnection rate is obtained in presence of
turbulence. It was also revealed that subgrid scale models grasp the effects of small scale
fluctuations without resorting to a large computational power. SGS models were shown
to apply to the problem of magnetic reconnection in large Reynolds number plasmas.
The turbulence evolution of the turbulent energy, turbulent cross-helicity and residual he-
licity revealed that fast reconnection is obtained once the turbulence is maximum. The
breaking of the mirror-symmetry in the reconnection plane is represented by a growing
turbulent cross-helicity. On the other hand, a finite residual-helicity expresses that the
direction parallel to the current flow is asymmetric. Most astrophysical plasmas bear a
guide magnetic field, in the direction perpendicular to the current flow, whose amplitude
is of the order of the reconnecting magnetic field. Its influence on the energy conversion
rate is then non-negligible and turbulence quantifies its impact. The Reynolds-average
turbulence model was shown to produce fast reconnection allowing Petschek-like fast re-
connection through the localisation of the turbulent energy in the diffusion region. Finally,
the direct numerical simulations confirmed the results obtained at low resolution by the

124



11 Conclusions

mean-field turbulence model: turbulence produces fast reconnection at large-magnetic-
Reynolds-numbers.
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11 Conclusions

11.1 Outlook
The influence of the turbulent stress-tensor was neglected in this work because the re-

connection rate is obtained solving the induction equation. The turbulent stress-tensor is
however influencing the mean MHD momentum equation. The data of the direct numer-
ical simulations showed that the components of the turbulent stress-tensor contributing
to the velocity in- and out-flow can become finite reaching the order of the turbulence-
induced electromotive force. It would therefore be interesting to consider this aspect of
turbulence on magnetic reconnection.

In this work, the influence of the guide magnetic field on the magnetic reconnection
process was shown to be related to the residual helicity. Numerically, solving an evolu-
tion equation for the residual helicity would be desirable to investigate more deeply the
contributions to its generation. This is especially important for the three-dimensional tur-
bulent magnetic reconnection. For instance, the dynamical balance between the turbulent
energy and the residual helicity might explain the phase of inhibited magnetic reconnec-
tion before the rapid release of magnetic energy of a flare. It might also give insights to
the dynamo problem.

The fluctuations of the mass density, the pressure and the heat flux are not taken into
account in the present Reynolds-averaged turbulence model. The reconnection rate es-
timated by the Alfvén Mach number MA of the plasma inflow showed that the pressure
variations along the current sheet might be important. Also, the consequences of the mass
density fluctuations might be important for compressible plasmas. Considering these fluc-
tuations is the next important step to build a proper Reynolds-averaged turbulence model.

To investigate compressible turbulent plasmas, another point of interest is the applica-
bility of the non-linear SGS model for the description of the consequences of turbulence
for magnetic reconnection. The almost perfect correlations of the turbulent electromotive
force and stress-tensor make such model extremely reliable to investigate turbulence ef-
fects on the magnetic reconnection.

Investigation of three-dimensional turbulent reconnection using an SGS or Reynolds-
averaged model of turbulence is also another important point for future work. Since three-
dimensional simulations resolving all scales of plasmas interactions are computationally
expensive, an SGS model of turbulence provides a good alternative to grasp the physics
of turbulence for three-dimensional dynamos and magnetic reconnection. The form of
the Reynolds-averaged turbulence model turbulent electromotive force and stress-tensor
might provide important insights in the global comprehension of three-dimensional re-
connection.

The implications of the residual helicity for the reconnection rate are also an inter-
esting point to be investigated in the framework of fusion plasmas such as Tokamak or
Stellarator experiments. These experiments try to avoid magnetic reconnection in order
to sustain nuclear reactions in a time sufficient to extract energy. According to the turbu-
lence dynamics, imposing a finite guide magnetic field parallel to the current flow at the
reconnection sites slows down the reconnection rate of magnetic energy conversion. For
a sufficiently large guide magnetic field, the time of plasma confinement might suffice to
retrieve the energy from the nuclear reactions for industrial use.

126



Appendices

127





A Normalisation and Numerical
Scheme

A.1 Normalisations

The equations of magnetohydrodynamics are written in the standard units system (SI)
as

∂ρ

∂t
= −∇ · (ρV) + χ∇2ρ (A.1)

∂ρV
∂t

= −∇ ·

[
ρV ⊗ V +

1
2

(p +
B2

µ0
)I −

1
µ0

B ⊗ B
]

+ χ∇2ρV (A.2)

∂B
∂t

= ∇ × (V × B) − (∇η) × J +
η

µ0
∇2B (A.3)

∂h
∂t

= −∇ · (hV) +
γ0 − 1

2γ0hγ0−1 (ηJ2) + χ∇2h (A.4)

∇ · B = 0 (A.5)
∇ × B = µ0 J (A.6)

where η is the electric resistivity and the χ terms represent viscosity that can smooth
locally steep gradients. In the energy equation (A.4), the pressure variable is replaced
p = 2hγ0 where γ0 is the specific heat ratio Cp/Cv. For the adiabatic heat exchange, the
ratio takes the value γ0 = 5/3. The symbol I is the identity matrix. In order to address
numerically the set of equations (A.1)-(A.4), they are normalized as

x→ x0 x̂ (A.7)

where x is any MHD variable and x̂ its dimensionless counterpart. The normalisation is
given in table (A.1).
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A Normalisation and Numerical Scheme

Physical quantity Units Obtained
Magnetic field B0 Given
Mass density ρ0 Given
Length scale L0 Given
∇ operator ∇0 1/L0

Velocity VA0 B0/
√

(µ0ρ0)
Time t0 L0/VA0

Current density J0 B0/(µ0L0)
Pressure p0 B2

0/(2µ0)
Internal energy h0 p0 = 2hγ0

0
Electric field E0 VA0 B0

Resistivity η0 µ0VA0 L0

χ χ0 (B0L0)/
√

(µ0ρ0)

Table A.1: Normalisation of the MHD equations

The set of equations (A.1)-(A.4) becomes:

∂ρ̂

∂t̂
= −∇̂ · (ρ̂V̂) + χ̂∇̂2ρ̂ (A.8)

∂ρ̂V̂
∂t̂

= −∇̂ ·

[
ρ̂V̂ ⊗ V̂ +

1
2

( p̂ + B̂2)I − B̂ ⊗ B̂
]

+ χ̂∇̂2ρ̂V̂ (A.9)

∂B̂
∂t̂

= ∇̂ × (V̂ × B̂) − (∇̂η̂) × Ĵ + η̂∇̂2B̂ (A.10)

∂ĥ
∂t̂

= −∇̂ · (ĥV̂) +
γ0 − 1

γ0ĥγ0−1
(η̂Ĵ

2
) + χ̂∇̂2ĥ (A.11)

where the hat quantities are dimensionless.
The turbulent electromotive force EM is written in SI units as

EM = −βµ0 J + γ
√
µ0ρΩ + αB (A.12)

where the mean vorticity Ω = ∇ × V is the curl of the mean velocity. The units of the
turbulent transport coefficients β, γ and α are given in table (A.2).

Coefficient Units (SI)
β m2s−1

γ m2s−1

α ms−1

Table A.2: Turbulent transport coefficients SI units

The turbulent transport coefficients in equation (A.12) are related to the turbulent en-
ergy K, the turbulent cross-helicity W and the turbulent residual helicity H. They are
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A.1 Normalisations

modeled as:

K =
1
2

〈
V′2 +

B′2

µ0ρ

〉
, (A.13)

W =
1
2

〈
V′ · B′√
µ0ρ

〉
, (A.14)

H =
1
2

〈
−V′ ·Ω′ +

B′ · J ′

ρ

〉
, (A.15)

where the ’ denotes the fluctuating fields. The units of the turbulent energy, cross- and
residual helicity are given in table (A.3).

Quantity Units (SI)
K m2s−2

W m2s−2

H ms−2

Table A.3: Turbulent energy, cross- and residual helicity units

The governing equations for the turbulent energy K and turbulent cross-helicity W
used in SI units are

∂K
∂t

= −V · ∇K + CβτK J
2
(
µ0

ρ

)
−CγτWΩ · J

√
µ0

ρ

+
B
√
µ0ρ
· ∇W −

K
τ
, (A.16)

∂W
∂t

= −V · ∇W + CβτKΩ · J
√
µ0

ρ
−CγτWΩ

2

+
B
√
µ0ρ
· ∇K −CW

W
τ
. (A.17)

where a mean variable is denoted as x. The normalisation of the turbulent energy K,
the turbulent cross-helcity W, the turbulent resistivity β and dynamo term γ are given
in table (A.4). The normalisation of the dynamo coefficient α and the turbulent energy
dissipation rate ε and the residual helicity H are also provided.
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A Normalisation and Numerical Scheme

Turbulent timescale τ τ0 L0/VA0

K K0 B2
0/(µ0ρ0)

W W0 B2
0/(µ0ρ0)

H H0 V2
A0
/L0

ε ε0 K0/t0

β0 β0 VA0 L0

γ0 γ0 VA0 L0

α0 α0 VA0

Table A.4: Normalisation of the turbulent quantities

The hats above the dimensionless variables are omitted throughout the monograph.

A.2 MacCormack Scheme
The governing equations for the turbulent energy [equation (8.5)], the turbulent cross-

helicity [equation (8.6)] and the turbulent energy dissipation rate [equation (9.3)] are
solved with a MacCormack scheme within the GOEMHD3 code.100 It is a second-order
spatial finite difference method and second-order in time using an explicit two-step ap-
proach which solves first a predicted value (QPr) then a corrected one (QCo). The final
value is taken as the mean between the predicted and the corrected evaluations. The
scheme is written in terms of the variable Q and a flux F as

(QPr)n+1
j = Qn

j −
∆t
∆y

(
Fn

j+1 − Fn
j

)
, (A.18)

(QCo)n+1
j = Qn

j −
∆t
∆y

(
Fn

j − Fn
j−1

)
, (A.19)

Qn+1
j =

1
2

(
(QPr)n+1

j + (QCo)n+1
j

)
− ∆tS n, (A.20)

where the variable j runs over spatial coordinates and the components n are running over
the time. The symbol S in equations (A.18)-(A.20) corresponds to the source terms ∇2B,
ηJ2, ρK/τt and the diffusive terms proportional to χ. The scheme is used to evaluate the
equations (A.1)-(A.4) since they are written in conservative forms. Equations (8.5)-(8.6)
are, however, not in a conservative form. To apply the Maccormack scheme, the right-
hand side of equations (8.5)-(8.6) are treated as source terms without flux, i.e., the source
term F in equations (A.18)-(A.20) is set to zero. Equation (A.20) is then used the compute
the predicted and the corrected values (S n

Pr) and (S n
Co) as

(QPr)n+1
i = Qn

i, j − 2∆tS n
Pr, (A.21)

(QCo)n+1
i = Qn

i, j − 2∆tS n
Co, (A.22)

Qn+1
i, j =

1
2

(
(QPr)n+1

i, j + (QCo)n+1
i, j

)
. (A.23)

The same procedure applies to the governing equation for the turbulent energy dissipation
rate ε [equation (9.3)].
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A.2 MacCormack Scheme

Finally, the parameters χ in equations (8.1)-(8.4) are used to smooth locally large
gradients. They scale the amount of smoothing at the locations where strong gradients
cause numerical instability. If the derivative of an MHD variable has a minimum of
maximum, the χ parameters are switched on locally. In fact, the χ parameters are written
as

χ = χl + χh, (A.24)

where the subscript l is for ’local’ and h for ’homogeneous’ since χh is homogeneously
distributed in the simulation box. The parameters are define such that χl > χh. The
purpose of χh is to avoid the generation of non-physical oscillating waves due to a sudden
localised and finite χl.
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B Mean Mass Density Fluctuations

In section (4.1.2), the fluctuations of the mass density are neglected, i.e., ρ′ = 0. These
fluctuations are now included in the mean field equations to show their effects. The mean
mass density, mean momentum and mean induction equations read

∂tρ + ∂i

(
ρV i

)
= −∂i

〈
ρ′V ′i

〉
, (B.1)

∂t

(
ρV i

)
+ ∂ j

(
ρV jV i

)
= −∂iP + ∂ jµSi j + εi jkJ jBk

− ∂ j

(
ρ
〈
V ′i V

′
j

〉
−

1
µ0

〈
B′i B

′
j

〉
+ V j

〈
ρ′V ′i

〉
+ V i

〈
ρ′V ′j

〉)
− ∂t

〈
ρ′V ′i

〉
− ∂ j

〈
ρ′V ′i V

′
j

〉
−

1
2µ0

∂i
〈
B′kB′k

〉
, (B.2)

where Si j = ∂iV j + ∂ jV i −
2
3
∂kVkδi j,

∂tBi = −εi jk∂ jEk, (B.3)

Ei = −εi jkV jBk + ηJi −
〈
εi jkV ′jB

′
k

〉
. (B.4)

The symbol µ is the molecular viscosity and η is the resistivity. The mass density fluc-
tuation directly enters the mean mass density and the mean momentum equations [equa-
tions (B.1)-(B.2)]. The governing equation for the density variance is given as

D
Dt

〈
ρ′2

〉
= −2

〈
ρ′V ′i

〉
∂iρ − 2

〈
ρ′2

〉
∂iV i, (B.5)

while the governing equation for the turbulent energy [equation (4.24)] becomes

DK
Dt
≡

D
Dt

〈
V ′i V

′
i + B′i B

′
i

2

〉
= − Rik∂kV i − EM · J (B.6a)

− ν
〈
∂kV ′i ∂kV ′i

〉
− η

〈
∂kB′i∂kB′i

〉
(B.6b)

+ ∂k

(〈
V ′i B′i

〉
Bk +

〈
−

(
V ′i V

′
i + B′i B

′
i

2
+ p′M

)
V ′k

〉
+∂k( +V ′i B′i B

′
k + ν∂k

〈
V ′i V

′
i

2

〉
+ η∂k

〈
B′i B

′
i

2

〉)
, (B.6c)

+∂k( −
1
ρ

〈
ρ′V ′k

〉 DV
′

k

Dt
, (B.6d)

where the terms (B.6d) is the contribution of the mass density fluctuation to the turbu-
lent energy. The governing equation of the turbulent cross-helicity [equation (4.26)] is
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B Mean Mass Density Fluctuations

changed due to the mass density fluctuation as

DW
Dt
≡

D
Dt

〈
V ′i B′i

〉
= − Rik∂kBi − EM ·Ω (B.7a)

− (ν + η)
〈
∂kV ′i ∂kB′i

〉
(B.7b)

+ ∂k

[〈
V ′i V

′
i + B′i B

′
i

2

〉
Bk +

〈(
V ′i V

′
i + B′i B

′
i

2
− p′M

)
B′k

〉
+∂k( −V ′i B′iV

′
k + ν

〈
B′i∂kV ′i

〉
+ η

〈
V ′i ∂kB′i

〉
(B.7c)

−B jRki + ε jnmV iEn

]
, (B.7d)

+∂k( −
1
ρ

〈
ρ′B′k

〉 DV
′

k

Dt
, (B.7e)

Retaining the mass density fluctuation, the turbulent electromotive force [equation (4.37)]
reads

(EM)i = αδi jB j + γεi jk∂ jVk + βεi jk∂ jBk − %εi jk
DV j

Dt
Bk. (B.8)

The transport coefficients, assumed to be scalars, are given as

α = τ
1
3

〈
B′jε jki∂kB′i − V ′jε jki∂kV ′i

〉
, (B.9)

β = τ
1
3

〈
V ′nV ′n + B′nB′n

〉
, (B.10)

γ = τ
2
3

〈
V ′nB′n

〉
, (B.11)

% = τ

〈
ρ′2

〉
ρ2 , (B.12)

where τ is the timescale of turbulence. In addition to the α−, β− and γ-term, the %-term
proportional to the mean mass density fluctuation appears in the turbulent electromotive
force. For simplicity, a steady state flow is considered, i.e., DV/Dt =

(
V · ∇

)
V and

equation (B.8) becomes

(EM)i = αδi jB j + γεi jk∂ jVk + βεi jk∂ jBk − %εi jk

(
Vk∂kV j

)
Bk. (B.13)

The sign of the last term determines whether the mass density fluctuation contributes
to the production or anhilitation of the mean magnetic field. Depending on the sign of
%εi jk

(
Vk∂kV j

)
Bk, the last term in equation (B.13) contributes to the production or ani-

hilation of the the magnetic flux. A much complexe analysis is requiered to properly
determine the role played by the mass density fluctuation in the compressible regime of
reconnection.
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C Two-Scales Direct-Interaction
Approximation: TSDIA

Yoshizawa (1984) related the turbulent transport coefficients by means of the two-
scale direct-interaction approximation formalism (TSDIA) which steps are briefly sum-
marized. I

(A) The fast variations of the fluctuating fields are distinguished from the slow varia-
tions of the mean field. A scale parameter d is introduced to separate the space and
time scales as

ξ(≡ x); X(≡ dx); τ(≡ t); T (≡ dt) (C.1)

A variable f divided into its mean f and its fluctuation f ′ is written as

f = f (X,T ) + f ′(ξ, X; τ,T ). (C.2)

(B) Fourier formalism is used to express the fluctuating variables in terms of the fast
space and time variations

f ′(ξ, X; τ,T ) =

∫
f ′(k, X; τ,T ) exp [−ik · (x − Vt)] dk, (C.3)

where exp (ikaVat) is necessary to eliminate the convection terms ikaVa f ′a(k; t).

(C) An expansion around the small parameter d of the Fourier components is carried

f ′(k, X; τ,T ) =

∞∑
n=0

d
n f ′n(k, X; τ,T ), (C.4)

Each f ′n (n ≥ 1) can be written in terms of the mean fields.

(D) The approximation comes in the retained terms of the d expansion

(a) All terms are kept in the O(d) solutions

(b) Only the velocity derivative terms are retained in the O(d2) solutions

(c) Other terms than the third-order velocity derivative terms are suppressed in
the O(d3) solutions

(E) The turbulent stress-tensor Ri j and the turbulent electromotive forceEM are obtained
from the solutions of f ′n .

I. A detailed description of the formalism can be found in Yoshizawa.66
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D Filtering Minimisation

The Reynolds-averaged turbulence model is extended to a subgrid-scale (SGS) turbu-
lence model in chapter (10). In order for such extension to be valid, it is required that
cross-terms such as 〈V′ × B〉 have a small amplitude. To avoid such issues, the mean
fields are usually defined by a global average. This kind of procedure cannot be used to
infer information about turbulence because the spatial variations of the mean fields re-
flecting the substructures of the current sheet are needed. Also, a time average cannot
be utilized since the assumption that the system reaches a steady state is not valid for a
plasmoid unstable current sheet. The influence of the cross-terms can be minimized by
reducing the difference

f
F
− f

F
F

= f ′
F
, (D.1)

for a chosen filter width. The mean field is considered to be f
F
. To respect Reynolds

rules, equation (D.1) should be as close to zero as possible and f
F
/ f

F
F

close to one.
Figure D.1 shows that an increased filter width reduces the correspondence of the SGS to
a mean-field approach. The filter width is then chosen to be equal to five in order that:
i) the spatial distributions of the turbulence is sufficiently resolved to validate the model,
and ii) that the Reynolds rule are almost fulfilled such that the SGS extension is valid.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

fp /f

f/f

Figure D.1: Amplitude of the box average of the ratio f ′/ f and f / f with respect to the
filter width. fp ≡ f ′. From Widmer et al.71
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