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Numerical Integration of
Partial Differential Equations (PDEs)

••• Introduction to Introduction to Introduction to PDEsPDEsPDEs...
••• SemiSemiSemi---analytic methods to solve analytic methods to solve analytic methods to solve PDEsPDEsPDEs...
••• Introduction to Finite Differences.Introduction to Finite Differences.Introduction to Finite Differences.
• Stationary Problems, Elliptic PDEs.
••• Time dependent Problems.Time dependent Problems.Time dependent Problems.
••• Complex Problems in Solar System Complex Problems in Solar System Complex Problems in Solar System 

Research.Research.Research.
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Stationary Problems, Elliptic PDEs.

• Example: 2D-Poisson equation.
• From differential equations to difference

equations and algebraic equations.
• Relaxation methods:

-Jacobi and Gauss-Seidel method.
-Successive over-relaxation.
-Multigrid solvers.

• Finite Elements.
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Boundary value problems for elliptic PDEs: 
Example: Poisson Equation in 2D

We define short notation:

After discretisation we get the difference equation:
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Equation holds on inner
points only!
On the boundary we specify:

-u (Dirichlet B.C.) or 
-Derivative of u 
(von Neumann B.C.)
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How to solve the difference equation?

We can interpret u as a vector and write the equation
formally as an algebraic matrix equation:

• Theoretical one could solve this algebraic
equation by well known algebraic
equation solvers like Gauss-Jordan elimination.

• This is very unpractical, however, because A
is very large and contains almost only zeros. 



8

How large is A ?
• For a very moderate 2D-grid of 100x100

-u has 100 x 100= 104 gridpoints, but
-A has 104 x 104 =108 entries!

• For 3D-grids typically used in science
application of about 300 x 300 x 300
-u has 3003= 2.7 *107 gridpoints, 
-A has (2.7 *107 ) 2 =7.29*1014 entries!

=> Memory requirement for 300-cube  to store
u ~100 MB,  A~3Million GByte
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Structure of A ?

0

0
0

0
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• We have reduced our original PDE
to  algebraic equations (Here: system
of linear equations, because we started
from a linear PDE.)

• To do: Solve these equations.
• As exact Matrix solvers are of no much use

we solve the equations numerically by
Relaxation methods.

How to proceed?
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Relaxation: Jacobi method

Carl Jacobi
1804-1851

we derived the algebraic equations:

Assume any initial value, say u=0 on all grid points (except 
the specified boundary values of course) and compute:

From

Use the new values of u as input for the right side and
repeat the  iteration until u converges. (n: iteration step)

http://de.wikipedia.org/wiki/Bild:Carl_Jacobi.jpg


12

Relaxation: Jacobi method

• Jacobi method converge for diagonal 
dominant matrices A. 
(diagonal entries of A larger than the others)

• This condition is usually fulfilled for Matrix
equations derived from finite differencing.
(Tridiagonal block matrix: Most entries in A are zeros!)

• Jacobi method converges (but slowly) and can be 
used in principle, but maybe we can improve it?

• For practice: Method should converge fast!
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Gauss Seidel method

• Similar as Jacobi method.
• Difference: Use on the right-hand

site already the new (and assumed to
be better) approximation un+1, 
as soon as known.

C.F. Gauss
1777-1855

http://en.wikipedia.org/wiki/Image:Carl_Friedrich_Gauss.jpg
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How fast do the methods converge?

To solve:

We split A as:
Lower
Triangle

Diagonal
Elements

Upper
Triangle

For the rth iteration step of the Jacobi method we get: 
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How fast do the methods converge?
We have to investigate the iteration matrix

Eigenvalues of iteration matrix define how
fast residual are suppressed. Slowest decaying
Eigenmode (largest factor) defines convergence
rate. => Spectral radius      of relaxation operator.
0 <      <1

How many iteration steps r are needed to reduces
the overall error by a factor of 10-p ?
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How many iteration steps r are needed to reduces
the overall error by a factor of 10-p ?

In general:

For a J x J grid and Dirichlet B.C. one gets:

Jacobi method                 Gauss Seidel method
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Can we do better? 

Gauss Seidel 
iteration:

Can be rewritten as:
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Successive Overrelaxation (SOR) 

Now we overcorrect the residual error by

overrelaxation
parameter

Method is only convergent for 0<w<2. 
(for w<1 we have underrelaxation)
Aim: Find optimal overrelaxation parameter.
Often done empirically.
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Successive Overrelaxation (SOR) 

For the optimal overrelaxation parameter w the number 
of iteration steps to reduce the error by 10-p are:

Number of iteration steps increases only linear with 
the number of mesh points J for SOR method.
For Jacobi and Gauss Seidel it was ~J2
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Successive Overrelaxation (SOR) 

• SOR method only more effective when
overrelaxation parameter w is close it’s optimum.

• Some analytic methods exist to estimate optimum w, 
but often one has to find it empirically.

• Unfortunately the optimum value w does not depend 
only on the PDE, but also on the grid resolution.

• The optimum asymptotic w is not necessarily a
good initial choice.

• Chebyshev acceleration changes w during iteration.
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Generalization of SOR-method.

Finite difference schemes from 2D-elliptic PDEs have the form:

for our example

We iterate for the solution by

and get:

Generalization to 3D is straight forward
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Summary: Relaxation methods
1.) Choose an initial solution u0 (usually zeros)
2.) Relax for unew from uold (Jacobi, GS, SOR)
3.) Are uold and unew identical within some

tolerance level?
If No continue, If yes solution is found.

4.) uold = unew and go to step 2.)

Iterate only where u is unknown!!
-Dirichlet B.C.: u remains unchanged on boundaries.
-von Neumann: compute u from grad(u)=known at each
iteration step before 2.) [Ghost cells or one-sided derivatives]



23

Computing time for relaxation methods
• For a J x J 2D-PDE the number of iteration

steps is ~J2 (Jacobi GS) or ~J (SOR)
• But: Each iteration step takes ~J2 

• Total computing time:  ~J4  (Jacobi, Gauss Seidel)
~J3 (SOR-method)

• Computing time depends also on other factors:
-required accuracy
-computational implementation 
-IDL is much slower as C or Fortran
-Hardware and parallelization
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Show: demo_laplace.pro

How fast are errors smoothed out?

This IDL program shows how fast or slow
Errors of different wave-length are relaxed
for Jacobi, Gauss-Seidel and SOR for
the homogenous Laplace-equation.
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How fast are errors smoothed out?
We use Gauss-Seidel 40x40 box and investigate
a high frequency (k=10) disturbance. 

Converged (Error <10-6) after 24 iteration steps)
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How fast are errors smoothed out?
We use Gauss-Seidel 40x40 box and investigate
a low frequency (k=1) disturbance. 

Converged (Error <10-6) after 747 iteration steps)
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How fast are errors smoothed out?
We use Gauss-Seidel on JxJ boxes and investigate
number of steps to converge for different frequencies 

k
J

1 10 20 40

40 747 24 13 11

80 2615 67 26 14

160 8800 216 72 28

Gauss-Seidel method is very good smoother!
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How fast are errors smoothed out?
Same test with SOR method

k
J

1 10 20 40

40 81 109 112 119

80 213 141 146 152

160 844 173 179 189

SOR is a faster solver, but NOT good smoother!
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How fast are errors smoothed out?
(Gauss-Seidel)

• High frequency errors are smoothed out fast.
• Low frequency errors take very long

to vanish.
• But the long frequency errors are

reduced faster on low resolution grids.
• Can we use this property to speed up

the relaxation?
• Yes! The answer is Multigrid.
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Multigrid Methods
• Aim: Be even better (faster) then 

the SOR-method.
• From experience we know that any

relaxation methods smoothes out errors
fast on small length scales, but very slowly
on large scales.

• Idea: compute solution on grids with reduced
spatial resolution.

• Interpolate to finer grids.
• Need to swap between grids in a consistent way. 
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Multigrid Methods

We want to solve the linear elliptic PDE

discretized we get

If        is an approximation and       the 
exact solution we have an error of:

The residual or defect is:

and for the error
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Multigrid methods
Any iteration methods now uses a simplified operator
(e.g. Jacobi: diagonal part only, GS: lower triangle) 
to find error or correction:

and the next approximation is:

Now we take a different approach. We do not
simplify the operator, but approximate
on a coarser grid  H=2h  by

which will be easier to solve, because of lower dimension.
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Multigrid Methods
We need an restriction operator to compute
the residual on the coarser grid:

And after we find the solution      on the
coarser grid a prolongation operator to
interpolate to the finer grid: 

Finally we update:
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Multigrid Methods
Prolongation (coarse to fine)

Restriction (fine to coarse)
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Coarse grid correction

• Compute defect on fine grid.
• Restrict defect to coarse grid.
• Solve correction exactly on coarse grid.
• Prolongate (interpolate) correction to fine grid.
• Update next approximation.

One coarse-grid correction step in 
a 2-level Multigrid scheme contains:
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2-level Multigrid scheme

• Pre-smoothing: Apply some relaxation steps
(usually with Gauss-Seidel method) on fine grid.

• Coarse grid correction.
• Post-smoothing: Relax some steps again on the

fine grid to the updated solution.

-High frequency defects are smoothed out 
fast on the fine grid.

- Low frequency defects (which took very long
to relax on fine grid) are taken care by on coarse grid.
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N-level Multigrid scheme
• Generalization of 2-level multigrid method.
• Instead of solving the equation on 2. grid

exactly we approximate it on an even coarser grid.
• Very easy to solve on coarsest grid.
• Different possibilities cycles are possible:

-V-cycle
-W-cycle
-Full multigrid

• Hint: Do not use the SOR-method for smoothing
(but Gauss-Seidel). Overrelaxation in SOR-methods
destroys the high-frequency smoothing.
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V-cycle for 3 levels

Solve exact

Restrict

Restrict

Prolongate

Prolongate

Correct
Relax

Relax 
Defect

Level

Relax 
Defect
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V-cycle                          W-cycle
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Full Multigrid cycles
Start on coarsest grid
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Multigrid and Full Multigrid

• Multigrid methods speed up the convergence
of relaxation scheme.

• Number of cycles needed does not depend on grid size. 
(computing time for each cycle does of course)

• Way more demanding in programming afford.
• Multigrid computes only defect on coarser grid,

but Full Multigrid (FMG) provides solution of the PDE
on all grids.

• FMG can be generalized for nonlinear PDEs,
Full Approximation Storage Algorithm (FAS).
Discussion is outside scope of this lecture.
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Summary: Relaxation Methods

• Methods are well suited to solve Matrix
equations derived from finite difference
representation of elliptic PDEs.

• Classic methods are easy to program and
suitable not to large numerical grids. Computing
time increases rapidly with grid size.

• Multigrid methods are much faster for large
grids and should be first choice.

• Computational implementation of Multigrid
Methods is way more demanding.
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Alternatives to solve Matrix Equations
derived from PDEs

• Direct Matrix solvers: Only for very small 2D-
Problems or as exact solver on coarsest Multigrid.

• Fast Fourier Transform Methods (FFT):
Suitable for linear PDEs with constant coefficients. 
Original FFT assumes periodic boundary conditions.
Fourier series solutions look somewhat similar
as what we got from separation of variables.

• Krylov subspace methods: 
Zoo of algorithms for sparse matrix solvers,
e.g. Conjugate Gradient Method (CG).
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Exercise:
2D-Poisson equation

lecture_poisson2d_draft.pro
This is a draft IDL-program to solve the 
Poisson-equation for provide charge distribution.

Task: implement Jacobi, Gauss-Seidel and
SOR-method. Find optimal relaxation 
parameter for SOR-method.
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Elliptic PDEs
Summary

• Discretized differential equations lead to 
difference equations and algebraic equations.

• System of coupled equations is way to large
for direct solvers. => Use Relaxation methods.

• Gauss-Seidel and SOR-method are in particular
suitable to solve algebraic equations derived
from elliptic PDEs.

• Fastest solvers are based on Multigrid methods.
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Finite Element Method (FEM)

Arbitrary shaped boundaries are difficult to implement
in finite difference methods. 
Alternative: Finite Elements, popular in particular
to solve PDEs in engineering/structural mechanics.

http://upload.wikimedia.org/wikipedia/commons/4/4a/FAE_visualization.jpg
http://en.wikipedia.org/wiki/Image:Bounday_value_problem.PNG
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Finite Elements

FEM covers the space with finite elements (in 2D often 
triangles, in 3D tetrahedra). The elements do not need
to have the same size and shape. 
This allows to use a higher resolution where needed.
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Variational formulation: 1D example

If u fulfills P1 and v(x) is an arbitrary function which 
vanishes on the boundary:

Partial integration of right side

Weak formulation
of the PDE

Solution of weak problem and original PDE are identical.
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Variational formulation: 2D example
Poisson equation

For an arbitrary function v the PDE can again
be formulated in weak form (using Greens theorem): 

If we find a solution for the weak problem,
we solved our (strong form) original PDE. 
Order of derivatives is reduced in weak form,
which is helpful to treat discontinuities.
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Shape function v

• How to choose the function v ?
• v must be at least once differentiable.
• For FEM-approach one takes polynomials 

or in lowest order piecewise linear functions:

1D                                                   2D

http://en.wikipedia.org/wiki/Image:Finite_element_method_1D_illustration1.png
http://en.wikipedia.org/wiki/Image:Piecewise_linear_function2D.svg
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Basis of functions for v
We choose piecewise linear functions which are
one at a particular grid-point and zero at all
other grid-points (triangle or tent-function)  

Basic tent-function (blue)
and superposition to 
piecewise linear function (red)

We get function value and 
derivative by interpolation.

http://en.wikipedia.org/wiki/Image:Finite_element_method_1D_illustration2.png
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Basis of functions for v

• For such base-functions almost all integrals 
in the form:1D                                  2D

are zero. Only integrals of elements sharing
grid points (edges of triangles in 2D) are
non-zero.
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From FEM to matrix form
Let’s try to describe the unknown function 
u(x) and the known f(x) with these basis functions:

Aim: Find the parameters uk !
This will be the solution in FEM-approach.

How to find this solution?
Insert this approaches for u and f into the 
weak formulation of the PDE.
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From FEM to matrix form

which leads to a system of equations which has
to be resolved for uk . 
We can write in matrix form:

Lkj Mkj

This sparse matrix system can be solved with
the method we studied for finite differences.



55

Lets remember all steps:
Original PDE
(strong form)

PDE in
weak form

PDE in
discretized
form

Solve corresponding sparse Matrix system:
=> Solution of PDE in FEM-approach.
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Finite Element Method
Summary

• Finite Elements are an alternative to finite 
differences. Good for complicated boundaries.

• PDE is solved in weak form.
• More flexible as finite differences, but also

more complicated to implement in code.
• Setting up the optimal grid can be tricky.

(Some research groups only work on this.)
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