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Introduction to PDEs.
• Definition of Partial Differential Equations.
• Second Order PDEs.

-Elliptic
-Parabolic
-Hyperbolic

• Linear, nonlinear and quasi-linear PDEs.
• What is a well posed problem?
• Boundary value Problems (stationary).
• Initial value problems (time dependent).
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Differential Equations

• A differential equation is an equation for an 
unknown function  of one or several variables that 
relates the values of the function itself and of its 
derivatives of various orders. 

• Ordinary Differential Equation:
Function has 1 independent variable.

• Partial Differential Equation:
At least 2 independent variables.
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Physical systems are often
described by coupled

Partial Differential Equations (PDEs)

• Maxwell equations
• Navier-Stokes and Euler equations

in fluid dynamics.
• MHD-equations in plasma physics
• Einstein-equations for general relativity
• ...
• ...
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PDEs definitions
• General (implicit) form for one function u(x,y) :

• Highest derivative defines order of PDE
• Explicit PDE => We can resolve the equation

to the highest derivative of u. 
• Linear PDE => PDE is linear in u(x,y) and 

for all derivatives of u(x,y)
• Semi-linear PDEs are nonlinear PDEs, which

are linear in the highest order derivative.
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Linear PDEs of 2. Order

• a(x,y)c(x,y) − b(x,y)2 / 4 > 0  Elliptic
• a(x,y)c(x,y) − b(x,y)2 / 4 = 0  Parabolic
• a(x,y)c(x,y) − b(x,y)2 / 4 < 0  Hyperbolic

Quasi-linear: coefficients depend on u and/or
first derivative of u, but NOT on second derivatives.
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PDEs and Quadratic Equations

• Quadratic equations in the form

describe cone sections.

• a(x,y)c(x,y) − b(x,y)2 / 4 > 0  Ellipse
• a(x,y)c(x,y) − b(x,y)2 / 4 = 0  Parabola
• a(x,y)c(x,y) − b(x,y)2 / 4 < 0  Hyperbola
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With coordinate transformations these equations  
can be written in the standard forms:

Ellipse:    

Parabola:    

Hyperbola:   

Coordinate transformations can be also applied to
get rid of the mixed derivatives  in PDEs.
(For space dependent coefficients this is only 
possible locally, not globally)
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Linear PDEs of 2. Order

• Please note: We still speak of linear PDEs, even if
the coefficients a(x,y) ... e(x,y) might be nonlinear
in x and y.

• Linearity is required only in the unknown function u 
and all derivatives of u.

• Further simplification are:
-constant coefficients a-e,
-vanishing mixed derivatives (b=0) 
-no lower order derivates (d=e=0) 
-a vanishing function f=0.
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Second Order PDEs with more then
2 independent variables

• Elliptic: All eigenvalues have the same sign. [Laplace-Eq.]
• Parabolic: One eigenvalue is zero. [Diffusion-Eq.]
• Hyperbolic: One eigenvalue has opposite sign. [Wave-Eq.]
• Ultrahyperbolic: More than one positive and negative eigenvalue. 

Mixed types are possible for non-constant coefficients,
appear frequently in science and are often difficult to solve.

Classification by eigenvalues of the coefficient matrix:
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Elliptic Equations
• Occurs mainly for stationary problems.
• Solved as boundary value problem.
• Solution is smooth if boundary conditions allow.

Example: Poisson and Laplace-Equation (f=0)
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Parabolic Equations
• The vanishing eigenvalue often related to time 

derivative.
• Describes non-stationary processes.
• Solved as Initial- and Boundary-value problem.
• Discontinuities / sharp gradients smooth out 

during temporal evolution.
Example: Diffusion-Equation, Heat-conduction
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Hyperbolic Equations
• The opposite sign eigenvalue is often related to the 

time derivative.
• Initial- and Boundary value problem.
• Discontinuities / sharp gradients in initial

state remain during temporal evolution.
• A typical example is the Wave equation.

• With nonlinear terms involved sharp gradients can 
form during the evolution => Shocks
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Well posed problems
(as defined by Hadamard 1902)

A problem is well posed if:

• A solution exists.
• The solution is unique.
• The solution depends continuously on the data 

(boundary and/or initial conditions).

Problems which do not fulfill these criteria are ill-posed.

Well posed problems have a good chance to be solved
numerically with a stable algorithm.

1865-1963

http://en.wikipedia.org/wiki/Image:Hadamard2.jpg
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Ill-posed problems
• Ill-posed problems play an important role

in some areas, for example for inverse problems 
like tomography.

• Problem needs to be reformulated for
numerical treatment.

• => Add additional constraints, for example
smoothness of the solution.

• Input data need to be regularized / preprocessed.
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Ill-conditioned problems

• Even well posed problems can be ill-conditioned. 
• => Small changes (errors,noise) in data lead

to large errors in the solution.
• Can occur if continuous problems are solved

approximately on a numerical grid.
PDE => algebraic equation in form  Ax = b

• Condition number of matrix  A:

are maximal and minimal eigenvalues of A.

• Well conditioned problems have a 
low condition number.
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How to solve PDEs?
• PDEs are solved together with appropriate

Boundary Conditions and/or Initial Conditions.
• Boundary value problem

-Dirichlet B.C.: Specify u(x,y,...) on boundaries
(say at x=0, x=Lx, y=0, y=Ly in a rectangular box)
-von Neumann B.C.: Specify normal gradient of
u(x,y,...) on boundaries.

In principle boundary can be arbitrary shaped.
(but difficult to implement in computer codes)

http://en.wikipedia.org/wiki/Image:Bounday_value_problem.PNG
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Boundary value problem
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• Initial value problem
• Boundary values are usually specified on

all boundaries of the computational domain.
• Initial conditions are specified in the entire

computational (spatial) domain, but only
for the initial time t=0.

• Initial conditions as a Cauchy problem:

-Specify initial distribution u(x,y,...,t=0)
[for parabolic problems like the Heat equation]

- Specify u and du/dt for t=0
[for hyperbolic problems like wave equation.] 
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Initial value problem
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Cauchy Boundary conditions
• Cauchy B.C. impose both Dirichlet

and Von Neumann B.C. on part of
the boundary (for PDEs of 2. order).

• More general: For PDEs of order n the
Cauchy problem specifies u and all
derivatives of u, up to the order n-1
on parts of the boundary.

• In physics the Cauchy problem is often
related to temporal evolution problems 
(initial conditions specified for t=0)

Augustin Louis Cauchy
1789-1857

http://upload.wikimedia.org/wikipedia/commons/0/0c/Augustin_Louis_Cauchy.JPG
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Introduction to PDEs
Summary

• What is a well posed problem? Solution exists, 
is unique, continuous on boundary conditions.

• Elliptic (Poisson), Parabolic (Diffusion)
and Hyperbolic (Wave) PDEs.

• PDEs are solved with boundary conditions
and initial conditions.

• What are Dirichlet and von Neumann
boundary conditions?
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Semi-analytic methods to solve PDEs.

• From systems of coupled first order PDEs
(which are difficult to solve) to uncoupled
PDEs of second order.

• Example: From Maxwell equations
to wave equation.

• (Semi) analytic methods to solve the
wave equation by separation of variables.

• Exercise: Solve Diffusion equation
by separation of variables.
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How to obtain uncoupled 2. order
PDEs from physical laws?

• Example: From Maxwell equations to  
wave equations. 

• Maxwell equations are a  coupled system of first 
order vector PDEs.

• Can we reformulate this equations
to a more simple form?

• Here we use the electromagnetic potentials,
vectorpotential and scalar potential.
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Maxwell equations

James C. Maxwell
1831-1879

http://de.wikipedia.org/wiki/Bild:James_Clerk_Maxwell_big.jpg
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What do we win with wave equations?

• Inhomogenous coupled system of
Maxwell reduces to wave equations.

• We get  2. order scalar PDEs
for components of electric and
magnetic potentials.

• Equation are not coupled and have
same form.

• Well known methods exist to solve
these wave equations. 
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Wave equation

• Electric charges and currents on right side of
wave-equation can be computed from other sources:

• Moments of electron and ion-distribution in
space-plasma.

• The particle-distributions can be derived from
numerical simulations, e.g. by solving the
Vlasov equation for each species.

• Here we study the wave equation in vacuum for
simplicity.
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Wave equation in vacuum
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(Semi-) analytic methods
• Example: Homogenous wave equation

• Can be solved by any analytic function 
f(x-ct)  and g(x+ct).

• As the homogenous wave equation is a
linear equation any linear combination of
f and g is also a solution of the PDE.

• This property can be used to specify boundary
and initial conditions. The appropriate coefficients
have to be found often numerically.
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Semi-analytic method: Variable separation
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Semi-analytic method: Variable separation
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Semi-analytic method: Variable separation
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Show: demo_wave_sep.pro

This is an IDL-program to
animate the wave-equation

Semi-analytic method: Variable separation
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Exercise:
1D diffusion equation

lecture_diffusion_draft.pro
This is a draft IDL-program to solve the 
diffusion equation by separation of variables.

Task: Find separable solutions for
Dirichlet and von Neumann boundary conditions
and implement them.
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Semi-analytic methods 
Summary

• Some (mostly) linear PDEs with constant
coefficients can be solved analytically.

• One possibility is the method 
‘Separation of variables’, which leads to
ordinary differential equations. 

• For linear PDEs.: Superposition of different 
solutions is also a solution of the PDE.
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Introduction to Finite Differences.
• Remember the definition of the 

differential quotient.
• How to compute the differential quotient

with a finite number of grid points?
• First order and higher order approximations.
• Central and one-sided finite differences.
• Accuracy of methods for smooth

and not smooth functions.
• Higher order derivatives.
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Numerical methods

• Most PDEs cannot be solved analytically.
• Variable separation works only for some

simple cases and in particular usually not
for inhomogenous and/or nonlinear PDEs.

• Numerical methods require that the PDE
become discretized on a grid.

• Finite difference methods are popular/
most commonly used in science. They replace 
differential equation by difference equations)

• Engineers (and a growing number of
scientists too) often use Finite Elements.
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Finite differences

• How to compute differential quotient numerically?
• Just apply the formular above for a finite h.
• For simplicity we use an equidistant grid in

x=[0,h,2h,3h,......(n-1) h] and evaluate f(x)
on the corresponding grid points xi. 

• Grid resolution h must be sufficient high.
Depends strongly on function f(x)! 

Remember the definition of differential quotient:
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Accuracy of finite differences
We approximate the derivative of f(x)=sin(n x) on
a grid x=0 ...2 Pi with 50 (and 500) grid points by 
df/dx=(f(x+h)-f(x))/h and compare
with the exact solution df/dx= n cos(n x)

Average error done by 
discretisation: 
50 grid points:  0.040 
500 grid points: 0.004 
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Accuracy of finite differences
We approximate the derivative of f(x)=sin(n x) on
a grid x=0 ...2 Pi with 50 (and 500) grid points by 
df/dx=(f(x+h)-f(x))/h and compare
with the exact solution df/dx= n cos(n x)

Average error done by 
discretisation: 
50 grid points:  2.49 
500 grid points: 0.256 



48

Higher accuracy methods

Can we use more points for higher accuracy?
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Higher accuracy: Central differences

• df/dx=(f(x+h)-f(x))/h computes the derivative
at x+h/2 and not exactly at x.

• The alternative formular df/dx=(f(x)-f(x-h))/h
has the same shortcomings.

• We introduce central differences:
df/dx=(f(x+h)-f(x-h))/(2 h)  which provides
the derivative at x.

• Central differences are of 2. order accuracy
instead of 1. order for the simpler methods
above.
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How to find higher order formulars?
For sufficient smooth functions we describe the function
f(x) locally by polynomial of nth order. To do so n+1
grid points are required. n defines the order of the scheme.

Make a Taylor expansion (Definition                         ):
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How to find higher order formulars?

And by linear combination we get the central difference: 

At boundary points central differences might not be
possible (because the point i-1 does not exist at the
boundary i=0), but we can still find schemes of the
same order by one-sited (here right-sited) derivative:

Alternatives to one sited derivatives are periodic
boundary conditions or to introduce ghost-cells.
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Higher derivatives

How to derive higher derivatives?
From the Taylor expansion

we derive by a linear combination:

Basic formular used to discretise
2.order Partial Differencial Equations
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Higher order methods
By using more points (higher order polynomials) to
approximate f(x) locally we can get higher orders,
e.g. by an appropriate combination of

we get 4th order central differences:
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Accuracy of finite differences
We approximate the derivative of f(x)=sin(n x) on
a grid x=0 ...2 Pi with 50 (and 500) grid points with
1th, 2th and 4th order schemes:

1th order 2th order 4th order

n=1, 50 pixel 0.04 0.0017 5.4 10-6

n=1, 500 pixel 0.004 1.7 10-5 4.9 10-6

n=8, 50 pixel 2.49 0.82 0.15

n=8, 500 pixel 0.26 0.0086 4.5 10-5

n=20, 50 pixel 13.5 9.9 8.1

n=20, 500 pix. 1.60 0.13 0.0017
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What scheme to use?
• Higher order schemes give significant better

results only for problems which are smooth
with respect to the used grid resolution.

• Implementation of high order schemes makes 
more effort and take longer computing time,
in particular for solving PDEs.

• Popular and a kind of standard are 
second  order methods.

• If we want to feed our PDE-solver with 
(usually unsmooth) observed data higher
order schemes can cause additional problems.
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Finite differences 
Summary

• Differential quotient is approximated by 
finite differences on a discrete numerical grid.

• Popular are in particular central differences,
which are second order accurate.

• The grid resolution should be high enough, so
that the discretized functions appear smooth.
=> Physical gradients should be on larger scales 
as the grid resolution.
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