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What do we see of a stellar corona ?

» photosphere: Doppler-(Zeeman)-Imaging:
structures on stellar surface

» corona: emission concentrated in few
active regions
or dominated by flares:

"point sources" in the corona

XY Ursa Major
(A. Collier Cameron)

Sonne

Yohkoh Soft X-ray Telescope (SXT), ~1 nm, ~2- 10° K

Comparing photosphere and corona: the Sun

MDI / SOHO white light Nov 16, 1999 Yohkoh Soft X-rays




Doppler imaging — principles

J.B. Rice: Doppler Imaging Techniques

longitude: position of "bump”
latitude:  way of "bump" trough profile

time series of spectra

0

surface structures

Stellar photospheres = stellar coronae

stellar surface structures
using Doppler i

Strassmeier & Rice (2001) A&A 377, 264

stellar photospheres can look
quite different than the Sun !!

How do stellar coronae look like ??




Stellar coronal observations in the radio

angular resolution of a telescope:
gt
D

Very Long Baseline Interferometry*

D = diameter of Earth
A=10cm (typical radio)
= resolution ¢ down to 1/1000 arcsec
(=mas)

radio corona:

radio emission of electrons
circling around magnetic field

(where do all these speedy
electrons come from... ?) UV Cet (Benz et al. 1998)

Surface structures of an X-ray corona

A total eclipse
of a "young Sun" (G5V):

a Coronae Borealis

X-ray bright secondary: G5V Rg:0.90 Rg
X-ray dark primary: A0V R, 2.89Rgp
period: 17.35 days
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A&A 403, 155
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active star
(a Coronae Borealis; G5 V; Gudel et al. 2003)

quiet star
(Sun; G2 V; Yohkoh)

Flare on Algol B

Eclipsing binary: Algol A (B8 V) X-ray dark Eclipse results in
Algol B (K2 Ill) X-ray bright asymmetric
light curve
3_-|._.: LI |-|,\|_.| T |u“_—| LI n_.-l. TTT [T T T T rrrrrT
. ", \‘ \

L 100 i - |

2_ 1 ,-:-‘._,eﬁ,__-n,aw:a-.e,m'«_?‘ I%':’“Ii"\.:\?: -t
o | 12 keV s
o i3
¥ f 4
s | o
< 1 4 L
’8“ [
@ [
g |
g |
S I
- If 1
S I
a
2 A
£
@ 2 3 4 ¥ XMM / Newton




What are the dominant structures in X-rays?

Where does the X-ray emission o , , ,
come from in active stars? o tonfFeldman et al. (1995) A
g |ApJ451,L79 o Pog
@ 10MF A e 1
9 e @D ©
higher “filling-factor” than Sun? Q 1w .
o .
= not enough space on the surface § :Ds, T |
= and: also stellar X-rays are structured E 1o%)- active 4
T ol > stars ]
stellar corona are not only brighter, § - - |
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oot flares
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Flares vs. background ...

» activity increases with rotation
(due to dynamo action)
saturation for rapid rotation

>> scaled-up solar-like
magnetic activity ?

» interpretation of major
contribution to X-rays
depends on
energy distribution of flares

dN/dE oc E - *

o > 2 : flare dominated
a < 2 : flares not sufficient

» thinkable scenarios:

flare-scenario

activity vs. rotation for main-sequence stars
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background scenario

Pizzolato et al. (2003) A&A 397, 147

- same “quiet” corona as Sun
- extra magnetic energy
goes into flares of all sizes

>> light curve only due to flares

- increased magnetic activity leads to higher
densities and temperatures of the quiet corong

- plus some more stronger flares
>> light curve quiet background plus flares!




Appearance of corona in a multi-loop simulation

potential field extrapolation - simple 1D static loop models to many field lines

energy flux into loop: | Fa=a BE e Lt F(Bhce) ,
quenchning to account for

sunspots being X-ray dark:
free parameters: A = __B
| free p B | 18) e (- )
[best fit values] [1.0+05] [-0.7+0.3]

real Sun

YOHKOH

Schrijver et al. (2004) ApJ 615, 512

Ay S 23 Fak e P \
A12/01 SXT (simulated)

3D stellar corona: Doppler-Zeeman-Imaging

» AB Doradus
cool active star (K2V)

Tefr ~ 4000K
half as luminous as our Sun (0.4 L)
fats rotator (50 Q@)

distance =~ 49 light years
observations: 7.—12. 12. 1995

» structures on the surface in
intensity and magnetic field
using Zeeman-Doppler-imaging (ZDI)

» potential field extrapolation
(source surface at 5 Ry)

> pressure at coronal base: p o« B2
at open field lines: p=0

Collier Cameron, Jardine, Wood, Donati (2000)

» emissivity o ne2




From the stars to the Sun: EUV profiles

Sun: 17 x1" network “full Sun”: aCen A (G2 V)
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Doppler shifts: spatially resolved vs. full disk

.
‘\kn: average Doppler shifts at disk center
BUT:

can we compare Sun at disc center | ine formation temperature [K]
with a whole star ?? 10° 10°

T T T T T T LIS I B | T

> center-to-limb variations of I, w, vy —
» structures on the stellar disk, e.g. AR }:

0 et al. (2004) u .

15, 331 .

PROBLEM: . "/i’/ ]

no Sun-as-a-star EUV spectrometer ‘__m!m: ”L o I ]
with sufficient spectral resolution !! sn g " I

How to compare

Sun and stars?
e.g.: net line shift A
» amazing match between = 10k 3
Sun and aCen A % o P IR BRI B B
~ 40 4.5 5.0 55 6.0

» BUT: — Sun at disc center
— full stellar disk !!

line formation temperature log{ T [K])




Signatures of small-scale activity?

> spectra usually well described solar-like > active stars: s
by double Gaussians ! asymmetric spectra of lines at ~10° K
IIR 1098 (K1 I¥) C v
>> what is the nature of these e
two components? oF 3 ]
- %

One possible interpretation:

« Cen A (G2 V) BV

» small scale activity
(explosive events)
causes flows ~vp
excess emission in line wings
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» the spectral
line moves on
the detector:

quasi-periodic
+1 pixel (10 km/s)
(period ~2 hours)

» wavelength
accuracy
limited by
thermal stability

al (in
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C Iv Doppler shift
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Doppler shift

» do a Gaussian fit
to each spectrum

» correct
Doppler shifts for
quasi-periodic
variation

» use intensity,
width and
corrected shift

to calculate
“corrected spectra”

» sum these spectra
to get
sun-as-star
spectrum

solar Y
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First EUV Sun-as-a-star spectrum

Composing the integral (total) solar spectrum from a SUMER full-disk raster map
F 1~ 1 T 1t [ T T T T T T ]
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non-Gaussian profiles of solar-like stars
P . Problem so far:
are due to distribution of surface structures 9l Sl B ST ey
and not signature of heating process with high spectral resolution!

Comparing the Sun to aCen A

What do we learn from the ' e T S R S W

[ faCenaA

full-Sun spectrum? M

» broad component:

signature of cell-network structure

[ few information on heating process ]
» narrow component:

shift indicative for magnetic flux

in chromospheric network

Vis. magnetic activity

Sun-as-star spectrum

) —6‘.’) I—:IU ) .—:JUI i [al . .::UI i .-llul i I{-‘n. h
Consequences for Sun vs. aCen A: bloe  ——— Doppler shift k] —=

» Sun and aCen have similar structure of super-granulation / chromospheric network
» oCen A has much higher redshift

= is there more energy density in the super-granulation ?
oCen A has ~25% lower surface gravity (Morel et al. 2000, A&A 363, 675)

= is aCen A much more active than quiet Sun?

However: no EUV cycle on aCen A on time scale comparable to Sun
(Ayres et al 1995, ApJS 96 223)

= |ess active regions on aCen A but a stronger network?




Luminous cool giants: wind detection ?

» asymmetric spectra of lines at ~10°K

(e.g.C 977 A, OvI 1032 A)

» spectra usually well described

only to red part of the spectrum
52

by double Gaussians ! =T
>> what is the nature of these E
two components? )
'_
=
-
One possible interpretation: 5:3 300
238
(Dupree et al. 2005, ApJ 622, 629) = ;
76
» single Gaussian fit E
= 14f

-3 Dra (G2 [b-llaf
- fit to
red side 3
only

>> excess absorption in
blue wing:

mass outflow ?

=300 =200 -100 0
WVELOCITY (km s
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300

= does it work physically ?
= isitunique ?

Dupree et al. (2005) ApJ 622, 629

1.0

0.5

» "cool giant
wind detection

0.0 :

Sun-as-a-star

fit to red side only

total

total

=1.36

broad comp. _ 047

The Sun "seen as a cool giant”

fit to red side

procedure”

used by

Dupree et al (2005)
applied to the
Sun-as-a-star spectrum
of C Iv (1548 A)

normalized intensity

1.0

0.5

> full-Sun looks 0.0

Sun-as-a-star
+ 40 % noise

fit to red side

total

total

=1.52

broad comp. _ 0.17

similar to cool giants !! —100

Doppler shift [km/s]

100

= e.g. large convection patterns on giants

>> as expected by Schwarzschild (1975) ApJ 195, 137
>> and simulated by Freytag et al. (2002) AN 323, 213

» line asymmetry of cool giants signature of stellar surface structures ?




Inferring the structure of stellar coronae

Multi-loop model: appearance of corona in a multi-loop simulation

construct the corona
as a superposition
of many loops

currently: static loops
e.g.
— 0D (constant T,p)

— constant p
— 1D static approximation

Schrijver et al. (2004) ApJ 615, 512

Example: use 1D models with different heating functions Ej ~B* = a <—T

Different approach — spectroscopy:

» use stellar spectra and derive average coronal properties through an inversion
= T,p,L (e.g.Nessetal 2004,...... )

» how reliable are such inversions ?

» what is the inferred "average" property ?

XMM / Newton X-ray observatory

Reflection Grating Assembly

XMM telescope mass
{with RGA) 520 kg
diameter 900 mm;
length 2500 mm

Exit Baffle

Pitrar Modula fanly a few maroes meresented)

XTI~ PSE VY TEII

esa



X-ray density diagnostics: He-like ions

EQ Peg: RGS1 spectrum with OVII triplet
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Differential emission measure — DEM

F = hv A dk g flign Tl NH
f SIS G(T,)s@=hyA21-—-—-—-—
Mo Tl TH Re
excitation 25 %’. ~ 0.8 for
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o “typical coronal temperature" ?|
» G(T): atomic physics ;‘ 20f .
» DEM: thermodynamics (n,T) g
= same for all lines!! _— ]
L
given a set of observed emissions F i 210 -
for lines with known G(T): £
= density-temperature structure DEM(T) r
iterative procedure; ill-posed problem * * “log T [K] >




Testing stellar inversions: coronal scale height

Input heating flux & loop length distribution i DEM inversion > DEM& T
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"Forward inversions": results & future

An inversion
» overestimates the "typical" temperature

» overestimates the "typical" density
» gets right order of coronal extension (!)

To be done:

» model multi-loop coronae with more realistic static loops:
T(s), p(s) given through analytical approximations (Aschwanden & Schrijver 2002, ApJS)

Y

test static loops using dynamically evolving loops
= compare analytic approximation to up-to-date loop models e.g. with Eg~sin(wt)

» do analytical multi-loop model for a full 3D MHD coronal model
= is the multi-loop approach meaningful?




Summary / lessons learnt

» stellar surface structures through Doppler imaging
» stellar coronae through less reliable techniques, e.g. eclipse mapping

» stellar corona are concentrated in small active regions (= filling factor?)
» are stellar coronae dominated by flares ?

» stellar EUV emission line profiles are not symmetric
(probably also in X-rays, but there we do not have the sufficient resolution...)

» are asymmetries due to
— heating process itself ?
— small scale transient events: nano-/micro-/etc flares ?
— absorption effects due to wind ?
— stellar surface structures ?

» (forward) stellar coronal models can help to interpret stellar structures
— can we reliably infer temperatures, densities, abundances ?
— what do these "average" quantities mean ?

__ 4 Stellar coronae and the Sun




