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Summary

In the presented thesis, the explosive phenomena in the solar atmosphere like flares or
coronal mass ejections, often related to active regions on the Sun, are aimed to be in-
vestigated. For this purpose, a detailed knowledge of the magnetic field in the outer
solar atmosphere (the corona) and its coupling with the lower solar atmosphere (the chro-
mosphere and photosphere) is crucial. Well established, direct measurement techniques
allow it to routinely measure the magnetic field vector in the photosphere. Difficulties are
met, however, in trying to measure the magnetic field vector in the chromosphere and the
corona and routine measurements are usually not available. In order to be, nevertheless,
able to investigate the magnetic field in these layers, numerical methods have been devel-
oped. These methods estimate the magnetic field in the outer solar atmosphere, indirectly,
based on measurements routinely made at the photospheric level.

Within this work, we use a numerical model which allows us to approximate the mag-
netic field in these layers with the so-called “force-free” field approach. This approach as-
sumes that the Lorentz force vanishes, i.e. that the magnetic field and the electric currents
are aligned with each other. This is justified in regions where the ratio of the plasma pres-
sure to the magnetic pressure is significantly lower than unity. This is true in large parts of
the chromosphere and corona while the photosphere is a region where this assumption is
not warrantable. Since we use routine measurements of the photospheric field vector as an
input for our numerical method (as lower boundary condition), we have to “preprocess”
the photospheric data in order to achieve boundary conditions that are consistent with the
force-free assumption. We use the preprocessing algorithm of Wiegelmann et al. (2006)
which approximates the physics at a chromospheric level as it transforms an observed, not
force-free, photospheric magnetic field to a nearly force-free, chromospheric-like state. It
minimizes a functional so that the preprocessed magnetogram suffices the force-free con-
dition in such a way that the optimized boundary condition stays close to the measured
photospheric data and is sufficiently smooth. Optionally, chromospheric magnetic field
information can be additionally taken into account (Wiegelmann et al. 2008). From these
consistent boundary conditions, we are then able to reconstruct potential, linear force-free
and nonlinear force-free fields. While potential and linear force-free fields, which only
need the longitudinal (line-of-sight) component of the photospheric magnetic field as an
input, are capable of reproducing the true coronal magnetic field only to a certain extent,
the more general approach of nonlinear force-free fields, which need the full photospheric
magnetic field vector as an input, is favorable. Within this work, we use the multigrid-
like optimization code of Wiegelmann (2004) to extrapolate the 3D nonlinear force-free
coronal magnetic field. It minimizes the volume-integrated force-free and solenoidal con-
dition for the magnetic field vector simultaneously. We also calculate the corresponding
potential fields, using a Green’s function method after Aly (1989), from the longitudinal
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Summary

component of the photospheric field. With these prerequisites, we are able to investigate
the topology of the 3D coronal magnetic field above solar active regions and to estimate
the related physical quantities such as the magnetic energy content, the free magnetic
energy (which can partly be released during solar eruptions) and the magnetic energy
density (i.e. the amount of stored magnetic energy per unit volume).

In particular, we have investigated the coronal magnetic field associated with the two
solar active regions NOAA 10540 and NOAA 10960 both of which were associated with
flares and coronal mass ejections. The active region NOAA 10540 launched a large flare
while the active region NOAA 10960 only produced two small flares. We were, in partic-
ular, interested in the temporal evolution of the magnetic field topology and its associated
magnetic energy content in the course of the eruptive events. The 3D coronal magnetic
field above active region NOAA 10540 from Jan 18 – 21, 2004 was extrapolated from
four photospheric vector magnetograms, measured with the Solar Flare Telescope Vector-
Magnetograph of the National Astronomical Observatory of Japan. The 3D coronal mag-
netic field above active region NOAA 10960 on June 7, 2007 was extrapolated from nine
photospheric vector magnetograms, measured with the Synoptic Optical Long-term In-
vestigations of the Sun Vector-Spectro-Magnetograph of the National Solar Observatory.

The outcome of the analysis of these active regions can be summarized as follows.
First, magnetic energy accumulates before a flare and part of the excess (free) magnetic
energy is released during a flare. Second, a higher amount of free magnetic energy avail-
able in an active region leads to larger flares while a smaller amount of free energy powers
only smaller flares. Third, the decrease in the magnetic energy of the nonlinear force-
free fields is higher than that of the associated potential fields, indicating that the energy
release is likely to be more related to the change of the transverse than to that of the
longitudinal magnetic field. This implies that the energy storage and energy release are
directly related to the field-aligned electric currents in the corona. Fourth, the coronal
magnetic fields do not totally relax to a potential field configuration, supporting the the-
ory of magnetic helicity conservation. Fifth, the evolution of the integrated energy density
with height indicates that the energy changes due to the flaring activity mainly take place
within heights of tens of megameters above the photosphere. Sixth, the computation of
iso-surfaces of the absolute magnetic field magnitude supports a proposed, and recently
observationally confirmed, implosion scenario for coronal transient phenomena.

Besides the magnetic energy, also the magnetic helicity of the coronal field is often
used as a tracer to quantify the topological properties of a magnetic field. As magnetic
flux travels from the convection zone until the solar corona, the helicity content of coronal
fields may be completely determined by its flow through the photosphere on the one hand
and its loss-rate into the solar wind on the other hand. To evaluate the magnetic helicity
content of the solar corona, the knowledge of the 3D magnetic vector potential, associated
with the 3D magnetic field, is needed. We developed and tested a method to calculate the
3D magnetic vector potential as a physically meaningful quantity. Future application of
our method to estimate the helicity content above solar active regions will enable us to
compare the calculated amount of helicity with the amount of helicity injected through
the solar photosphere and its contribution to the coronal helicity content.
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1 Solar magnetic field

1.1 Observations

Localized volumes in the atmosphere of the Sun, which involve strong magnetic fields,
frequently give rise to different dynamic and spatially confined phenomena. Such phe-
nomena are, e.g., sunspot groups, faculae, plages, filaments or prominences (when viewed
on the solar disk or on the solar limb, respectively) and flares. A localized region of the
Sun’s surface and atmosphere that displays some or all of these phenomena is often called
an “active region” (Murdin 2001). Active regions form when bundles of magnetic field
lines emerge from below the photosphere and expand, in form of loop systems, into the
solar atmosphere. The magnetic footprint of the atmospheric loop systems on the solar
photosphere is observed in form of bipolar magnetic fields. These bipolar magnetic fields
represent the locations of positive or negative polarity where magnetic field lines emerge
from or re-enter the solar surface, respectively. Each endpoint of an emerged loop repre-
sents a separate photospheric element, of opposite polarity. These bipolar magnetic fields
are concentrations of strong magnetic fields and, although often complex in structure, they
contain on average equal quantities of positive and negative magnetic flux. The overall
lifetime of active regions can be up to several months (i.e. much longer than the lifetime
of the individual sunspots forming within the active regions and persisting for about two
to four weeks), slowly disappearing due to the dissipation of the underlying magnetic field
(e.g. Durrant 1988).

In the following, the observational findings regarding the magnetic field in the dif-
ferent layers of the solar atmosphere are discussed. Characteristic magnetic features as
observed in the solar photosphere are described in § 1.1.1, that of the chromosphere and
corona in § 1.1.2. Solar activity, as appearing in the form of flares and coronal mass ejec-
tions, arising from solar active regions with sufficiently complex magnetic configurations,
are discussed in § 1.1.3.1 and § 1.1.3.3, respectively. The associated theoretical concepts
of how to explain the mechanisms involved in these eruptive phenomena are accordingly
pictured in § 1.1.3.2 and § 1.1.3.4. Direct measurement techniques of the solar magnetic
field and approaches to infer it indirectly via different model approaches are depicted in
§ 1.2. Finally, § 1.3 deals with the theoretical view on how the solar magnetic field is gen-
erated in the solar interior, briefly outlining existing dynamo models and in § 1.4 a short
summary is given.
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1 Solar magnetic field

1.1.1 Photospheric magnetic field

One or more small dark features (magnetic pores), having diameters of some thousands
of kilometers with field strengths of about 200 mT – 250 mT, usually precede the emer-
gence of sunspots in a previously undisturbed region of photospheric granulation. Pores
have, in contrast to sunpots, no clear penumbra and hence appear like an isolated umbra
(Keppens 2001). Interestingly, most of the formed small clusters of pores never develop
beyond this stage, disappearing again after a couple of days. Only occasionally, the pores
increase in size to evolve into proper sunspots. Sunspots are identified as to be proper
if they possess a penumbra. This is a filamentary, inclined field structure of lower mag-
netic field strength which surrounds the more vertically oriented umbral field of higher
magnetic field strength (Title et al. 1993, Lites et al. 1993). The formation process of a
sunspot penumbra is difficult to observe since it involves timescales of less than one hour
and spacial scales of less than one arcsecond (Leka and Skumanich 1998). Once formed,
however, the sizes of proper sunspots vary greatly between extreme cases showing di-
ameters of less than 3000 km or up to 60 000 km (Bray and Loughhead 1964). Given
that sunspots grow rapidly after their emergence, they soon reach their maximum size
and decay slowly afterwards. Not only the instantaneous size distribution of sunspots
but also the distribution of the maximum sunspot sizes have been shown to be of a log-
normal shape, i.e. the logarithm of the covered area is normally distributed (Baumann and
Solanki 2005). Moreover, the same relative size distribution is found not only for the dif-
ferent phases of a solar cycle but also for various individual cycles (Bogdan et al. 1988).
Usually, the magnetic field strength is about 100 mT in a penumbra and about 300 mT
(sometimes up to 400 mT) in the center of a sunspot. It is also possible that individually
observed large pores which show no signatures of a penumbra (thus appearing as an iso-
lated umbra) are larger than the smallest sunspots, possessing both a penumbra and an
umbra. Also, the lifetime of sunspots varies significantly from hours to months for the
smallest and largest sunspots, respectively, being linearly correlated to the maximum area
covered by a sunspot (Waldmeier 1955, Petrovay and van Driel-Gesztelyi 1997).

After a certain time, however, the sunspots break up and their fragments are subject
to transport and distortion by the convective flows in and below the photosphere. Contin-
uously squeezed by granules and swept to the boundaries of supergranular cells, a patchy
network of magnetic components is created. This network not only roughly outlines the
supergranular cells, it is also detectable in the upper photosphere and even more pro-
nounced at higher altitudes in the solar atmosphere. Magnetic elements have measured
field strengths of 100 mT – 150 mT and lifetimes from minutes to hours (Solanki 1993).
The difficulty to determine the lifetimes of individual magnetic elements is rooted in their
small sizes which are in the order of a few tens of kilometers. Therefore, the analy-
sis of such structures and the associated lifetimes depends on the spacial resolution of
the magnetograms used to study them and the ability of different instruments to detect
weakest magnetic fluxes. Consequently, Ramsey et al. (1977) and Wang et al. (1985) set
quite different lower limits of ten minutes and one hour, respectively, on the lifetimes of
small-scale magnetic structures. The magnetic elements represent the opposite-polarity
footpoints of small loops which are swept to the edges of the supergranular cells due to
convective transport at the solar surface. Since it is there where footpoints of different
loops with mixed polarities meet, magnetic elements of opposite flux cancel each other
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1.1 Observations

and disappear. Only at points where several supergranular cells meet accumulations of
magnetic elements can be found but also in the interiors of the supergranular cells mag-
netic features (so-called “internetwork elements”) are located.

A quite different behavior is found for sunspot groups which are thought to form
due to a successive emergence of many large strands, previously making up a large flux
rope beneath the solar surface. Continuously, loops emerge to form spots where they
merge together but also loops are produced which end outside of the previously formed
spots. However, they are also aligned like the ones passing through the spots so that
the magnetic elements at their footpoints are grouped together in two regions of opposite
polarity. In other words, the formation of sunspots implies the formation of active regions
which typically are of a bipolar magnetic structure (Durrant 1988, Solanki et al. 2006).
Outside of sunspots, the magnetic field of active regions is mainly concentrated in more or
less discrete features (magnetic elements) forming so-called “faculae” or “plage” regions.
Plages are regions of enhanced temperature and density which float in the chromosphere.
These regions form before sunspots appear and outlast, for some time, after the sunspots
disappeared. Features that are similar in nature but which are observed in the photosphere
are called faculae (Murdin 2001). However, the magnetic field in both active regions and
the quiet Sun appears as an accumulation of discrete magnetic flux elements, separated
by regions with little magnetic flux (called “field-free” regions to a first approximation).

While smaller magnetic features (which only sometimes appear as pores but mostly
in the form of magnetic elements) are distributed over the entire solar surface, sunspots
are restricted to well-defined zones of latitude on either side of the solar equator. This
latitude-dependent distribution is thought to mirror regions which are occupied by strong
toroidal fields, previously generated by the internal dynamo process (see § 1.3.2). Plotting
the position of the sunspots versus time results in a so-called “butterfly diagram” which
shows that two latitude bands on either side of the equator form first at mid-latitudes and
then move towards the equator as each cycle progresses (see Fig. 1.1). It takes about 11
years before the first spots of the following cycle show up again at mid-latitudes while
sunspots of the present cycle are still observable at near-equatorial latitudes (“Spörer’s
law”). It is thought that sunspots are manifestations of strong magnetic fields which
emerge in form of toroidal flux tubes from the underlying convection zone. Consequently,
the locations where magnetic field lines emerge from or re-enter the solar surface are
the locations of sunspots with opposite polarity. Because of the emerging flux always
appearing in form of a system of magnetic loops, the two intersections of the loop system
with the solar surface create a bipolar group of sunspots. In general, the leading spots of
a sunspot group are located closer to the equator than the following ones (“Joy’s law”).
Based on the magnetic classification of sunspots (e.g. McIntosh 1990, 2001), Hale et al.
(1919) analyzed 970 sunspots during one solar cycle and proposed the formulation of a
sunspot polarity law from which the polarities of spots of any type can be predicted, for
either hemisphere and any epoch in the sunspot cycle. They noticed that the preceding
and following spots of binary groups were, with few exceptions, of opposite polarity.
In the following we call the opposite polarity of leading and following spots in sunspot
groups, i.e. the positive/negative or negative/positive polarity of the leading/following
spots, the “polarity order”. They also found that the corresponding polarity order of such
groups in the northern and southern hemisphere was opposite. Investigating the magnetic
polarities of sunspot groups during three solar cycles, Hale and Nicholson (1925) were
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1 Solar magnetic field

Figure 1.1: Daily observations of sunspot area since 1874, averaged over individual solar rota-
tions. The sunspot area in equal-area latitude strips (vertical axis) is shown as a function of time
(horizontal axis). The color code indicates the area covered by a sunspot or a group of sunspots
located within a certain latitude strip. (Courtesy of D. Hathaway.)

able to verify the earlier proposed polarity law. They found that out of 2147 spot groups,
61% could be classified as bipolar during the greater part of their existence and that the
polarity law applied to about 98% of 1735 groups. Usually, the polarity order in the two
hemispheres remains unchanged while a cycle progresses but is reversed in the following
cycle (which is usually referred to as “Hale’s polarity law”). Thus the full underlying
magnetic cycle, i.e. the interval between the appearance of mid-latitude spots of the same
magnetic polarity, spans around 22 years.

1.1.2 Chromospheric and coronal magnetic field
The role of magnetic fields in the quiet chromosphere is less obvious than in active re-
gions. Nevertheless, the magnetic flux concentrated along the network and outlining su-
pergranulation cells in photospheric magnetograms, coincides with the chromospheric
network as well. Appearing bright in chromospheric radiation, the magnetic elements ap-
pear to be larger in size than in the photosphere. This is because the flux tubes are thought
to expand due to the decreasing pressure of the surrounding gas with increasing height,
until they finally merge with neighboring flux tubes (Durrant 1988). This network can
even be traced up into the transition region which separates the lower atmospheric layers,
dominated by gravity and gas pressure, from the higher atmospheric layers, dominated by
magnetic forces. This, however, led to some confusion since the magnetic network can be
observed at heights in the solar atmosphere which lie much above the heights where flux
tubes are expected to merge (Hammer 1994).

The transition region is the connection between the hot corona and the cool chromo-
sphere and the energy needed to maintain this transition layer is supplied by a heat flow
from the corona (the so-called “back-heating”; Dowdy et al. 1986). The standard mag-
netic picture of the quiet transition region pictures the magnetic field lines, emerging from
the boundaries of supergranules, to fan out rapidly with height to fill the corona (Gabriel
1976). This is consistent with the observation of the transition region’s ultraviolet emis-
sion which appears to be largely confined to the network defined by the photospheric
magnetic field. It successfully reproduces the run of the emission measure with tempera-
ture (that is a summary of the temperature structure of the outer solar atmosphere, derived
from a select subset of line fluxes) in the hotter part of the transition region, at tempera-
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1.1 Observations

tures of T & 105 K. Also different kinds of back-heating models were able to successfully
reproduce the observed run of the emission measure at these temperatures. However, even
the approximate behavior of the emission measure in the cooler transition region, at tem-
peratures of T . 105 K, was failed to be reproduced by these models (Athay 1981, 1982).
This led to the development of a picture of the magnetic transition region, in particular dif-
fering from the standard picture in the suggestion that only a few footpoints of large loops
and open magnetic regions (“coronal funnels”) properly connect to the corona, while the
rest of the chromospheric plasma is concentrated in small low-lying loops, closing within
the network which are not connected to the corona (Dowdy et al. 1986, Feldman 1998).

The coronal magnetic field appears in two configurations: open or closed. Open mag-
netic fields have their footpoints in polar regions over most parts of a solar cycle and
sometimes (preferentially in periods of magnetic field reversal) originate at low latitudes.
These field lines are found to be more or less radial where the field in the underlying pho-
tosphere is predominantly unipolar. The open field lines, along which an efficient plasma
transport takes place as chromospheric plasma is heated at their footpoints, connect the
solar surface with the interplanetary magnetic field. As the coronal plasma is frozen into
the magnetic field (i.e. the plasma cannot cross the field lines), regions filled with open
field lines allow the plasma to escape from the Sun. This results in regions of reduced
plasma density, emitting less radiation than their surrounding, consequently appearing as
darker areas and which are therefore called “coronal holes”. Analyzing the soft X-ray
emission of the Sun, Timothy et al. (1975) found the coronal holes to come in two basic
configurations: compact or elongated. The compact features are almost entirely enclosed
by fields of opposite polarity and lie predominantly in one hemisphere of the Sun. The
elongated holes show a north-south orientation and extend from one pole to mid latitudes
in the opposite hemisphere (extending over ≈ 110◦ – 120◦ of solar latitude). The forma-
tion of polar coronal holes takes place around the time of the polar magnetic field reversal
and once established they persist for several years. Initially, often irregular shaped holes
which are not centered on the pole are observed which, during a longer period of rela-
tively steady growth, develop to holes that are more symmetric about the poles. After
reaching, on average, their maximum size during the minimum phase of the solar cy-
cle, they start to decay steadily (Harvey and Recely 2002). Low-latitude coronal holes
tend to be situated near the edges of magnetically complex active regions and sometimes
active regions even emerge within the coronal holes themselves (Cranmer 2009). Wiegel-
mann and Solanki (2004) investigated the emissivity of closed loops in equatorial coronal
holes and quiet-Sun loops by extrapolating the photospheric, line-of-sight magnetic field,
obtained with the Michelson-Doppler Imager on board of the Solar and Heliospheric Ob-
servatory (SoHO/MDI; Scherrer et al. 1995), into the corona. Based on the assumption
that the temperature of a loop depends on its length and, in particular, that short loops are
cooler than long loops, they used a model-based scaling law by Rosner et al. (1978) to
convert loop length into temperature. Then they were able to show that the fraction of the
considered volume, filled with transition region gas at a temperature of T = 4× 105 K in
coronal holes was ≈70% of that in the quiet Sun, while this fraction dropped to about 10%
at T = 9× 105 K. Therefore, it was concluded that the almost complete absence of closed
loops at coronal temperatures in coronal holes yields hardly any emission in lines formed
at high temperatures. Over the rest of the solar surface the basic structural component
of the corona are regions that mainly contain closed magnetic field lines which are filled
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1 Solar magnetic field

with chromospheric plasma and appear as bright, overdense loops. Most of these loops
have both footpoints located in the same active region. However, some appear to link
different active regions on the same solar hemisphere while others are found in the form
of “transequatorial” loops, connecting active regions on either side of the solar equator.
If such closed loops reach heights of more than about one solar radius, they can connect
to the heliosphere since the plasma confinement decreases with decreasing magnetic field
pressure (e.g. Durrant 1988, Aschwanden 2004).

In the outer layers of the solar atmosphere the magnetic field replaces the gravita-
tional force as the major influence controlling the atmospheric structure. The outer solar
atmosphere loses energy in form of radiation and the kinetic and potential energy of the
solar wind. Nevertheless, since all magnetic features which expand to the outer solar at-
mosphere are rooted below the solar photosphere where the magnetic field is frozen into
the plasma, (sub)surface motions continue to control the location of the parts of the flux
tubes lying below the surface. This naturally implies the flow of electric currents which
continuously increases the energy content of the magnetic field above. Part of this energy
is instantaneously released on small spatial scales to heat the corona. The rest continues
to accumulate until a given magnetic structure becomes unstable and abruptly releases the
previously stored magnetic energy in the course of an explosive event (e.g. Durrant 1988,
Vršnak 2005).

1.1.3 Explosive phenomena
The plasma in the outer solar atmosphere is dominated by the magnetic fields in the sense
that the magnetic energy density is orders of magnitude greater than the thermal, kinetic
and gravitational energy density (Forbes 2001). If the changes of the coronal structures
take place on length scales comparable to the typical coronal scale height (& 50 000 km, as
a consequence of the high coronal temperature and light hydrogen gas; see Aschwanden
2004), one can assume the electric currents to be co-aligned with the magnetic field.
Thus, the Lorentz force vanishes and the magnetic field is said to be in a “force-free”
state. Then the coronal magnetic field can be considered to evolve slowly through a
sequence of neighboring force-free equilibria. Due to the subsequent deformation of the
magnetic field, electric currents are induced and magnetic energy is consecutively built up
so that the stored energy in any force-free field is predominantly of magnetic type. Besides
from the shear or twist of existing magnetic fields, the electric currents can also arise
from the emergence of new magnetic loops from below the solar surface into an existing
coronal magnetic field (Benz 2001). If the magnetic energy content reaches a critical
point, an instability may occur so that the system evolves to a new equilibrium state
of lower energy and, consequently, that part of the previously stored energy is released
(Priest and Forbes 2002). The magnetic energy that is available to be released during the
eruptions is called the “free” magnetic energy and represents the energy stored due to the
topological reconfigurations of the coronal magnetic field. The amount of free energy in a
coronal volume is related to the size of the occurring eruptions and can therefore basically
be used as a precursor for the magnitude of the upcoming events.

The large-scale eruptions, as observed in the solar atmosphere, are of three different
types: coronal mass ejections (CMEs), prominence eruptions or large two-ribbon flares.
These may well occur close in time and thus be associated with each other, indicating the
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different manifestations of a joint basic physical process. During CMEs, solar material
and magnetic flux are ejected from the lower corona into the interplanetary space on
large scales. This thus leads to the opening of magnetic field lines in active regions,
observable as the formation of flare ribbons and loops (Priest and Forbes 2002). While
large flares are frequently associated with a CME and the eruption of an active-region
prominence, most CMEs are not associated with large flares but more than half of all
are conjoint with erupting quiescent prominences outside of active regions. In particular,
Munro et al. (1979) found for mass ejections associated with near-surface activity that
≈ 40% were associated with flares and more than 70% were associated with an eruptive
prominence or filament disappearance (with or without a flare). Gosling et al. (1976)
found flare-associated CMEs to move considerably faster through the corona than those
associated to eruptive prominences which led them to suggest that flare-associated events
are more impulsive. Sheeley et al. (1983) studied the association between CMEs and
full-disk X-ray events over about three years of high sunspot activity. They found that
the estimated CME probability continuously increased with the X-ray duration of the
associated flaring. Analyzing 72 X-ray flares, observed within predefined CME onset
windows, Harrison (1995) estimated a probability of ≈7%, ≈15% and ≈24% of detecting
a CME in association with a B-, C- and M-class flare, respectively (for the solar flare
classification based on the measured solar soft X-ray flux see § 1.1.3.1 and Table 1.1).

1.1.3.1 Flares

The localized sudden release of energy within a solar active region, causing a variety of
phenomena observable from gamma to radio wavelengths, is called a flare. Large flares
often occur above “neutral lines” (that is the line dividing regions of opposite polarity)
which are bridged by arcades of loops. In a relaxed state the field lines are directed per-
pendicular to the neutral line but if, for some reason, the opposite-polarity magnetic field
regions move with respect to each other, then the field line footpoints move relative to the
neutral line. This is then called a “sheared” configuration where in extreme cases the field
lines are oriented nearly parallel with respect to the neutral line. Due to the shear electric
currents are induced and, consequently, flares preferentially occur in regions where the
electric current has a maximum (Benz 2001). The occurrence rate of flares is also related
to the magnetic field strength in given areas on the Sun. Since the magnetic energy is
stored faster in strong field regions, preferable flaring locations are sunspot groups while
flaring only occasionally occurs in spotless regions. In general, stronger (larger) flares
occur when stronger fields are involved, since a higher amount of previously stored free
magnetic energy is available to be released (Vršnak 2005). Besides being partly respon-
sible for the heating and large-scale reconfiguration of the solar corona, the largest flares
may well affect our Earth. Moreover, the flare-caused disturbances can be immediate, for
instance enhancing the ionization of the ionosphere and thus influencing the propagation
of radio waves (Benz 2001). However, flaring is not only related to the solar atmosphere
in and above, sometimes very complex, active regions. In quiet-Sun regions at the bound-
ary and even in the interior of supergranular cells so-called “microflares” are observed,
being about a million times smaller than their active-region relatives. These occur where
small-scale magnetic fields build up due to the convective transport of frozen-in magnetic
field to the down-draft regions at the surface.
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Figure 1.2: Basic processes common to most flares. Interacting magnetic field lines (dark gray
solid lines) result in flaring loops (light gray solid line). Electron beams are produced in the
primary energy release site and propagate upwards and downwards (black solid arrows). Chro-
mospheric and transition region material is heated and evaporates upwards along the flaring loop
(black dashed lines). Adapted from Vršnak (2005).

Being in some cases only a minor part of a large-scale destabilization of the solar
corona, a general flare mechanism involves the release of energy in the corona through
magnetic reconnection, the acceleration or heating of particles as well as the launch of
violent mass motions. The heated and/or accelerated particles propagate from the coronal
energy release site downward, encounter the denser material of the chromosphere and lose
their energy due to collisions. This in turn, significantly enhances the temperature of the
chromospheric material by electron beams and/or thermal conduction (e.g. Fisher 1989).
Consequently, the plasma of the chromosphere and transition region is convected upwards
so that it expands and adds new, high-temperature plasma to the atmosphere above which
is referred to as “chromospheric evaporation” or “ablation” (first suggested by Neupert
(1968) to explain the observation of the soft X-ray emission of flares to peak later than
the hard X-ray emission). The upward motion of the chromospheric and transition-region
plasma not only fills the coronal loops, i.e. the magnetic field lines that connect locations
of opposite polarities, but also may continue in form of an expansion of those magnetic
loops. Finally, due to radiative losses, the hot and dense plasma rapidly cools (see Fig. 1.2
and e.g. Benz 2001). The outlined scenario is thought to be common to most solar flares
and involves a number of energy transport processes. The energy release is assumed to
primarily take place in the corona since radio bursts drifting to lower as well as to higher
frequencies reveal electron beams propagating upwards and downwards (for a discussion
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Soft X-ray flare classification scheme
Flare soft X-ray class Peak intensity of flare emission [ Wm−2 ]

A I < 10−7

B 10−7 ≤ I < 10−6

C 10−6 ≤ I < 10−5

M 10−5 ≤ I < 10−4

X 10−4 ≤ I

Table 1.1: Classification of solar flares according to the GOES soft X-ray brightness in the 0.1 nm –
0.8 nm band. Flare classes are termed by the letter A, B, C, M or X, according to the peak intensity
of flare emission on a logarithmic scale.

of flare-associated radio bursts see e.g. Cliver (2001)). This, according to Bastian et al.
(1998), supports the assumption of the energy release site in flares to be located some-
where in the lower corona and, in particular, higher in the solar atmosphere than flaring
loops emitting soft X-rays (Aschwanden and Benz 1997). These radio bursts are fast-
drifting, narrow-band radio fine structures at decimeter to meter wavelengths (denoted
as DCIM in Fig. 1.2). Electron beams which escape outwards from the primary energy
release site excite type III radio bursts while electrons accelerated downwards along the
magnetic field lines stay trapped and excite type IV radio bursts (Vršnak 2005). In strong
magnetic fields, electrons with large pitch angles produce emission from millimeter to
centimeter wavelengths (denoted as MMCM in Fig. 1.2 and see e.g. Benz 1993). Elec-
trons with small pitch angles penetrate through the magnetic mirrors located near the
footpoints of the magnetic loops and hit the dense transition region and chromospheric
plasma, exciting line emission of atoms and ions along with hard X-rays. The earlier
mentioned chromospheric evaporation represents the establishment of a new hydrostatic
equilibrium by the heated chromospheric plasma that starts to expand. Consequently, the
closed flaring loops are filled with dense and hot plasma, becoming the source of soft X-
ray emission and above these loops a super hot loop top is sometimes observed (Tsuneta
et al. 1997, Uchida et al. 2001).

There are several methods to classify solar flares, for instance, in terms of the asso-
ciated Hα or soft X-ray emission, the related meter-wavelength radio bursts or energetic
particle events or the magnetic topology. In the following, only the grouping of flares into
classes due to the associated soft X-ray emission is explained in detail since this is the
classification scheme we are referring to when describing the flaring activity of active re-
gions later on in this work. For the classification of flares due to the other aforementioned
accompanying phenomena we refer to the detailed review by Cliver (2001).

The solar soft X-ray observations in the 0.1 nm – 0.8 nm spectral band of the Geo-
stationary Observational Environmental Satellite (GOES) provide the basis for the soft
X-ray flare classification scheme (see Table 1.1 and e.g. Zirin 1988). Flares are classified
with a letter (A, B, C, M or X), according to the peak-intensity of the flare emission on a
logarithmic where A ∝10−8 Wm−2, B ∝10−7 Wm−2, C ∝10−6 Wm−2, M ∝10−5 Wm−2 and
X ∝ 10−4 Wm−2. Additionally, a number acts as a multiplier to indicate the level within
each class so that, for example, the most powerful flare ever recorded in soft X-rays on
Nov 4, 2003 was classified as an X28 event, according to its peak flux in intensity of
28×10−4 Wm−2.
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Figure 1.3: Overall picture of an emerging-flux flare. (a) Due to the collision of a newly emerging
loop with a preexisting coronal field of opposite polarity a current sheet forms (striped region). (b)
Rapid reconnection of field lines is caused by the onset of a resistive microinstability and leads
to the conduction of heat (red arrows) and particles to the lower chromosphere. Adapted from
Heyvaerts et al. (1977).

1.1.3.2 Flare models

The earlier described basic flaring process represents the heart of flare models and can
be incorporated in different flaring scenarios which are constrained by several basic prop-
erties as established by various observations. First, the magnetic energy density of the
plasma in the outer solar atmosphere is about three orders of magnitude greater than the
thermal, kinetic and gravitational energy density (Forbes 2001). Consequently, it is the
magnetic energy which is the only source capable of producing the radiative and kinetic
energy output associated with a flare. Second, the slow movements of magnetic features
in the solar photosphere are, due to the much higher plasma density, unaffected by the
occurrence of flares in the low-density coronal plasma above. Third, the timescale in
which the thermal and kinetic energy is generated after the onset of flares is only a few
minutes which is extremely short for flaring processes which usually involve regions of
several tenthousands of kilometers. This implies dynamic velocities from hundreds to
thousands of kilometers per second, comparable to the speeds at which slow magneto-
acoustic and Alfvén waves, respectively, propagate in the corona (e.g. Nakariakov and
Verwichte 2005). The two main flare models are those of interacting magnetic systems
(referred to as “interacting-flux” flares) and that of “two-ribbon” flares. The former are di-
rectly associated with the reconnection between two or more distinct interacting magnetic
systems while the latter involve a pre-flare structure slowly evolving through a series of
equilibria, causing a slowly rising filament (arcade) structure to lose its equilibrium and,
consequently, to erupt.

A distinct type of interacting-flux flares, associated with emerging flux regions, is
usually called an “emerging-flux” flare. There, magnetic flux emerging from below the
photosphere presses against an overlying, preexisting field of opposite polarity because
of which a current sheet forms. This current sheet grows and a micro-instability devel-
ops once a critical threshold is reached. Then, the local resistivity of the plasma might
increase so much that the current sheet is rapidly dissipated by the magnetic reconnection
between the interacting magnetic systems (see Fig. 1.3 and Heyvaerts et al. (1977) but
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Figure 1.4: Overall picture of a two-ribbon flare. (a) The slow initial rise (black arrows) of the
magnetic field lines of a sheared arcade (black solid lines) due to a non-equilibrium is followed
by (b) the onset of reconnection below the rising flux tube (dark gray solid lines). The light
gray dashed line represents the neutral line, subsequent higher field lines are represented by the
subsequent darker color. Adapted from Priest and Forbes (2002).

also e.g. Vršnak (2005)). The reconnection can be caused by emerging or merging mo-
tions or can be driven by coalescence instabilities (e.g. Tajima et al. 1987, Kliem 1995).
Another type of interacting-flux flares are the so-called “interacting-loop” flares where
aligned loops can interact with each other either due to the attraction of longitudinal cur-
rents, driving reconnection of azimuthal fields or the reconnection of longitudinal fields.
This was shown by Linton et al. (2001) who studied the way how magnetic reconnection
occurs, depending on the angles between the magnetic field lines when they come into
contact.

Two-ribbon flares involve additional observational constraints in the form of a contin-
uous, low-level emission over a period of several hours after their initial rapid phase and
the formation of two bands (“ribbons”) of chromospheric emission which slowly prop-
agate away from each other during the evolution of the flares. The preceding evolution
of such flares involves, first, a sheared or twisted arcade (containing a prominence) that
slowly rises during the pre-flare phase and, second, a rapid eruption (revealing the “flare
onset”) due to the onset of reconnection below the rising prominence (see Fig. 1.4 and
Priest and Forbes (2002) but also e.g. van Ballegooijen and Martens (1989) and Vrsnak
et al. (1991)).

1.1.3.3 Coronal mass ejections

Coronal mass ejections (CMEs; originally termed “coronal transients”) are thought to
contain an erupting filament/prominence (when viewed on the solar disk/on the solar limb,
respectively). This implies that a mass up to several billion tons of coronal material at
speeds of several hundreds to thousands of kilometers per second is bodily removed from
the solar atmosphere (e.g. Gosling et al. 1976). Due to the eruption, magnetic field lines
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become open towards the interplanetary space along which material can escape. Although
CMEs mainly originate from regions with a closed magnetic field structure, and therefore
hardly originate from coronal holes, filaments in the vicinity of coronal holes are often
observed to initiate such ejections. Bhatnagar (1996) found that the open magnetic field
configuration of coronal holes provides the necessary field structure for reconnection to
take place so that a filament eruption can be initiated. In general, the CME activity is
related to flaring active regions and to quiet solar regions which contain a filament (van
Driel-Gesztelyi et al. 1999). CMEs, therefore, come in two basic flavors: flare-related or
associated with a filament/prominence eruption. Consequently, young solar active regions
produce mainly the first while the dispersal of active-region magnetic flux results in the
dominance of the latter (van Driel-Gesztelyi 2005). Erupting prominences outside of
active regions also produce features typical of large flares, like flare ribbons moving apart
in time and faint loops (“giant arches”, representing the CME counterparts of the flare
loops of two-ribbon flares). Compared to the continuous, slower growth of flare loops in
time, the CME loops exhibit an upward movement at nearly constant or even increasing
rates (Forbes 2000).

Once initiated, the basic CME mechanism involves, first, an acceleration and subse-
quent expansion. Both are part of the initiation of a CME itself but are also of possible
importance for the long-term evolution. Second, it involves drag and distortion which
result from the interaction of the CME with the ambient solar wind, co-rotating interac-
tion regions or other CMEs (Forbes et al. 2006). Typically, when CMEs erupt close to
the solar limb they are observed as a bright frontal part (the so-called “leading edge”),
followed by a darker cavity and a core where the latter is usually even brighter than the
leading edge (see Fig. 1.5). When directed towards the Earth, CMEs are recognizable in
form of an outflow and an expanding coronal brightness around the Sun (referred to as
“halo” CMEs; Howard et al. 1982). Since such events, due to their Earth-directed char-
acter, are difficult to analyze the launch of the Solar TErrestrial RElations Observatory
(STEREO; Kaiser et al. 2008) spacecrafts represents an advantageous basis to provide es-
timates of the speed and direction of individual coronal events, based on the observation
from two different viewpoints (e.g. Davis et al. 2009). Such “stereoscopic” monitoring
has the ability to improve space weather forecasts, not only in the case of Earth-directed
eruptions.

When launched in the quiet Sun, the streamer cavity of the ejected structure can be
directly seen in white light or soft X-rays which corresponds to weak effects similar to
flaring activity as observable in chromospheric Hα images (Hudson et al. 2006). Also
related to CMEs is also the disappearance of filaments and the formation of flare ribbons
observable in Hα, He  1083.0 nm and microwave observations. The ribbons produced by
erupting prominences outside of solar active regions are often too faint to be observable in
Hα but, however, can often be identified in the He  1083.0 nm line which is more sensitive
to chromospheric excitation. At extreme ultraviolet wavelengths, the eruption of a dark
filament is usually followed by the formation of an arcade of bright flare loops in its
wake, where the post-eruptive arcade is seen in soft X-rays (van Driel-Gesztelyi 2005).
The outer edges of the hot soft X-ray loops map the outer edges of the Hα ribbons while
the innermost edges of the cool Hα loops, which are formed by a thermal condensation
process from the hot loops, map the inner edges of the Hα ribbons (see Fig. 1.5 and Forbes
(2000) and references therein). Furthermore, on both sides of the post-eruptive arcade so-
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Figure 1.5: Schematic view of the basic features related to CMEs, erupting close to the solar
limb (yellow circle). A frontal shock (light gray dashed line) is followed by a cavity. During the
filament/prominence eruption Hα flare ribbons (dark red solid lines) and an arcade of giant loops
(gray solid lines) are produced. The post-eruptive arcade (black cusp-shaped loops) is observable
in form of soft X-ray loops. Adapted from Forbes (2000).

called “dimming regions” are visible as darker regions, e.g. in 19.5 nm images of the
Extreme-ultraviolet Imaging Telescope on board the SoHO (SoHO/EIT; Delaboudinière
et al. 1995), which indicates that the coronal material may become less dense and/or
colder. Referring to these areas of reduced emissivity to as “transient” coronal holes, Rust
(1983) interpreted these regions as zones of depleted coronal material. The evidence of
these regions to be associated with coronal material escaping along the open field lines,
as indicated by Doppler signatures in coronal emission lines, was found by Harra and
Sterling (2001). However, not all of the aforementioned features are necessarily visible in
all of the observable CMEs. Some ejections may not contain a prominence, others may
not be associated with any detectable chromospheric signatures of flare ribbons and some
CMEs may not produce an obvious shock wave.

1.1.3.4 CME models

Since there is an absence of strong effects on the photospheric magnetic field, CMEs are
thought to involve energy storage and release in the corona (Hudson et al. 2006). Because
the energy of CMEs is so high it is unlikely, though not impossible, that they are directly
driven by emerging magnetic fields in the photosphere (e.g. Melrose 1995). Therefore,
most CME models assume that the energy storage takes place in the coronal magnetic field
over a long period of time and that its sudden release is caused by a loss of equilibrium
(van Driel-Gesztelyi 2005). The mechanisms resulting in the loss of equilibrium itself
might be caused by purely ideal or non-ideal processes (e.g. magnetic reconnection) but
do not necessarily involve an energy release. Two mechanisms that trigger solar eruptions
are thought to exist. One requires the magnetic energy to be quickly injected into the
coronal magnetic field and the other one presumes the energy to be slowly stored in the

19



1 Solar magnetic field

coronal magnetic field prior to an eruption. Accordingly, CME models can be divided into
two distinct groups, namely “dynamo” or “flux injection” models and “storage” models
(Lin et al. 2003, but see also the reviews by Forbes (2000) and Klimchuk (2001)).

Dynamo models (e.g. Sen and White 1972, Heyvaerts 1974, Kan et al. 1983) assume
the source of the eruption in a dynamo region in the convection zone. Due to a sudden
motion of the plasma in that region, a field-aligned current is produced in a magnetic
loop. The increase in the loop current drives the loop outwards, producing an eruptive
process. Flux injection models (e.g. Chen 1989, 1996) assume that, e.g., a flux tube
which rises from the base of the convection zone results in magnetic flux emergence
through the photosphere and the formation of a coronal loop. Correspondingly, a current
is injected into the corona which leads to a rapid increase of the energy of the magnetic
field. Both models have in common that the injected flux and the associated sudden
enhancement of the current (flowing from the convection zone to the corona) necessarily
cause photospheric plasma flows (since the photospheric magnetic field is frozen into
the plasma). This would lead to the evolution of purely horizontal flows in the case
of dynamo models and both upward and horizontal flows in the case of flux injection
models. However, such displacements of photospheric material during eruptions have not
been observed so far (Lin et al. 2003).

Storage models assume that energy is stored in the coronal magnetic field and once
the field loses its equilibrium, an eruption occurs and energy is released. In contrast to
dynamo and flux injection models, the continuous emergence of new flux from the con-
vection zone and the movement of footpoints of closed coronal field lines cause the build-
up of stresses in the coronal field over a long period of time. Once these stresses exceed
a level beyond which a stable equilibrium can not any longer be maintained, the coronal
structure erupts. According to Lin et al. (2003), the most successful theoretical storage
models are the so-called “sheared arcade”, “break-out” and “flux-rope catastrophic” mod-
els. Sheared arcade models (e.g. Mikic et al. 1988, Mikic and Linker 1994) assume that a
coronal arcade responds to slow photospheric flows, thus to become continuously sheared
and hence building up magnetic energy. Once a critical amount of shear is reached the
magnetic equilibrium is lost and the arcade expands outward from the Sun so that field
lines are opened and a current sheet forms. In the case of finite resistivity, magnetic re-
connection occurs at the current sheet which leads, besides others, to the dissipation of
energy and to the ejection of a plasmoid. Break-out models, as first proposed by An-
tiochos et al. (1999), also require magnetic reconnection to trigger the eruption but, in
contrast to sheared arcade models, assume the reconnection to take place on top of a
low-lying, sheared arcade so that an existing unsheared field above is bodily removed.
Flux-rope catastrophic models, as developed by Forbes and Isenberg (1991), assume that
the mass flow in the photosphere forces oppositely directed field lines of a flux rope to
meet and thus to reconnect. Consequently, magnetic flux and energy is transported quasi-
statically into the coronal magnetic field. Once the stresses reach a critical value the flux
rope is ejected upward and part of the stored magnetic energy is released.

So far, the observational properties of the magnetic field in the solar atmosphere as
well as the role of the solar magnetic field, being the underlying cause of eruptive phe-
nomena, have been discussed. The next chapter will deal with the techniques of how to
measure the magnetic field at different heights in the solar atmosphere, using either direct
or indirect methods.
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1.2 Measurements

1.2.1 Direct measurements

Most widely used methods to estimate the strength of the solar magnetic field are based
on the Zeeman effect. This effect reflects the ability of a molecule which possesses a non-
vanishing magnetic moment to interact with an external magnetic field (e.g. Herzberg
1950). The Zeeman effect causes a spectral line to split if the line originates from a mag-
netically sensitive transition and if the line-formation region is embedded in a magnetic
field. The splitting is meant in the way that the action of a magnetic field causes any
atomic level to split in sublevels spaced equally. Consequently, the energy levels in the
atoms split up into sublevels (which are symmetrically distributed around the unperturbed
energy level), resulting in the emitted light being split up into differently polarized com-
ponents (e.g. Condon and Shortley 1970). Basically, the Zeeman effect is made up of
two contributions arising from the influence of a magnetic field, one that is proportional
to the magnetic field strength (“linear” Zeeman effect) and one which is proportional to
its square (“quadratic” Zeeman effect), where the impact of the latter for field strengths
found on the Sun is, in general, small compared to the former and is thus neglected.

In the case of weak magnetic fields, the separation between the split components is
directly proportional to the square of the wavelength, the magnetic field strength and the
Landé factor 1. Here, “weak” means that the magnetic field is not strong enough to pro-
duce energy changes comparable to the separation of the sublevels (Condon and Shortley
1970). It is the ratio of the splitting to the linewidth which determines the ability to de-
tect small splitting effects and, consequently, the Zeeman effect is more significant when
probed at longer wavelengths. The splitting itself can be either “normal” or “anomalous”,
where the former manifests itself in one unshifted (π) and two oppositely directed, dis-
placed (σ) components (together making up a “Zeeman triplet”) while the latter shows
more than one unshifted and more than two displaced components which, due to the
mostly insufficient splitting, can rarely be distinguished (e.g. Stix 2002). If the mag-
netic field is directed parallel to the line-of-sight, the π-component of the normal Zeeman
triplet is absent and the two σ-components are right- and left-handed circularly polarized
(“longitudinal” Zeeman effect). In the case of the magnetic field being oriented perpen-
dicular to the line-of-sight, the intensity of the π-component equals the sum of the two
σ-components. Then, the π-component is linearly polarized with the electric vector be-
ing parallel to the magnetic field if the line is observed in emission and perpendicular to
the magnetic field if observed in absorption. The σ-components are linearly polarized,
perpendicular to the direction of the π-component (“transversal” Zeeman effect). Last,
if the magnetic field is arbitrarily oriented with respect to the line-of-sight, the π- and
σ-components will exhibit elliptical and mutually orthogonal polarizations (e.g. Stenflo
1978).

To summarize, the lines corresponding to the Zeeman splitting exhibit certain polar-
izations. Since the polarization depends on the direction in which an electromagnetic field

1The Landé factor is a particular example of a “g-factor”, namely for an electron having both a spin
and an orbital angular momentum. The g-factor relates the observed magnetic moment of a particle to
the appropriate angular momentum quantum number and the appropriate fundamental quantum unit of
magnetism (usually the Bohr magneton or nuclear magneton).
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is vibrating, it carries information about the magnetic field vector. In particular, the line-
of-sight component of the magnetic field can be obtained through the circular polarization
via V∼B cosγ, where V describes the amount of right- or left-handed circular polarization
and γ is the angle between the magnetic field vector and the line-of-sight. The transverse
magnetic field can be estimated using the linear polarization with Q∼B2 sin2γ cos2ϕ and
U ∼ B2 sin2γ sin2ϕ, where Q describes the amount of linear horizontal or vertical polar-
ization and U the amount of +45◦ or −45◦ polarization. Furthermore, ϕ represents the
azimuth of the field vector which evidently implies an 180◦-ambiguity in the transverse
magnetic field measurements using the Zeeman effect (Raouafi 2005).

In the case of very strong magnetic fields, the line-splitting effect is no longer linearly
proportional to the magnetic field. Here, “strong” is a relative measure depending on the
magnetic sensitivity of a given spectral line and means that the magnetic field is suffi-
ciently strong to produce energy changes comparable with the separation of the sublevels
(Condon and Shortley 1970). Then, the caused line splitting can be large compared to
the separation of the spin-orbit system so that the coupling between the orbital and spin
angular momenta gets disrupted and the spectral line rearranges (which is referred to as
the “Paschen-Back effect”). This is different from the weak-field Zeeman effect in which
the magnetic field is not strong enough to disturb the orbit-spin interaction so that the
total angular momentum is conserved. However, Maltby (1971) showed that the Paschen-
Back splitting of the Li  670.8 nm resonance lines must be taken into account for sunspot
magnetic fields. Using the Zeeman-sensitive He  1083.0 nm triplet, which allows to de-
termine the magnetic field vector in the upper chromosphere, Socas-Navarro et al. (2004)
showed that the Zeeman components are strongly influenced by the Paschen-Back effect,
especially for magnetic field strengths of a few tens of mT.

As already mentioned, the splitting of the energy levels into sublevels based on the
Zeeman effect is a function of the field strength. If the splitting is small so that the sub-
levels overlap each other (i.e. that the energy separation does not exceed the energy un-
certainty of a level), the superposed wavefunctions of the sublevels may interfere with
each other. In particular, this interference occurs in coherent scattering and all polariza-
tion signatures caused by this phenomena are called “Hanle effect”. If no magnetic field
is present, coherent scattering produces linear polarization signals while the presence of
a magnetic field causes a reduction of the polarization degree. In the solar photosphere,
most of the scattering occurs incoherently so that the polarization resulting from the Hanle
effect is very small and therefore difficult to measure. The magnitude of the Hanle effect
essentially depends on the ratio of the line splitting to the inverse lifetime of the excited
level and is therefore much more sensitive to weak magnetic fields than is the Zeeman
effect (Stenflo 1978).

The magnetic field strength in photospheric sunspot umbrae, where the field strength
is high, can be well determined by measuring the wavelength separation between the Zee-
man components at visible and infrared wavelengths. Far away from sunspots, however,
the Zeeman splitting can in general not be seen. This is because the magnetic flux in the
quiet Sun is concentrated in small isolated areas with a small filling factor 2. Therefore,
magnetic field measurements based on the Zeeman effect are limited by the difficulty to

2The magnetic filling factor is a measure of the fraction of the observed part of the solar surface which is
covered by intense magnetic fields. The field strength of magnetic elements increases slowly with increasing
filling factor but also with increasing cross-sectional area of the elements (e.g. Solanki et al. 2006).
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resolve weak magnetic structures (. 5 mT) and by the cancellation of opposite polarities
within the resolution elements (Emonet and Cattaneo 2001, and references therein). Nev-
ertheless, the lines exhibit a polarization pattern due to the present magnetic field. Conse-
quently, the depolarization of spectral lines by turbulent magnetic fields can be detected,
allowing measurements in areas of mixed polarities (Stenflo 1982). The Hanle effect, in
contrast, does not suffer from this cancellation and is sensitive only to weak magnetic
fields. In particular, investigating the signatures of Hanle depolarization, Stenflo et al.
(1998) set a range of 0.4 mT – 4 mT for the magnetic field strength of the turbulent mag-
netic fields which fill about 99 % of the photospheric volume.

Measurements of the chromospheric magnetic field suffer not only from the plasma
density being several orders of magnitude lower than that of the photosphere but also
from the, on average, lower magnetic field strength. The low plasma density leads to
weak emission and absorption signals of the spectral lines, the latter overmore exhibiting
a strong contribution from the photosphere. The lower average magnetic field strength ad-
ditionally weakens the Zeeman signals in the spectral lines for which the interpretation is
already hampered by scattering polarization and its modification by the Hanle effect. The
Hanle effect, however, finds more favorable conditions in the chromospheric field since,
due to the lower plasma density, the collisional rates are smaller and thus scattering be-
comes coherent. Furthermore, the dominantly radiative energy transport and population
imbalances between atomic sublevels, as induced by anisotropic illumination, hamper
the measurements and, after all, the assumption of local thermodynamic equilibrium is
violated (Wedemeyer-Böhm et al. 2009). However, since the Zeeman effect is more sig-
nificant at infrared wavelengths, its measurement combined with that of the Hanle effect
on the Ca  850 nm and 854 nm lines as well as the He  1083 nm line made it possible to
infer the magnetic vector above sunspots as well as active regions, respectively (Solanki
et al. 2006). For a number of reasons the He  1083 nm line turned out to be very useful
for the quantitative diagnostic of the upper-chromospheric magnetic field related to both
sunspots and active-region plages (Rüedi et al. 1994).

The difficulty to determine the magnetic field in the corona is the high temperature of
the coronal plasma so that thermal and non-thermal broadening of the emission lines make
it much harder to detect the Zeeman splitting. For typical extreme ultraviolet lines with
a wavelength of 20 nm in a coronal environment (B≈ 20 mT, T ≈ 2 MK) the ratio of the
Zeeman splitting to the thermal broadening is in the range of 10−4. This ratio is even lower
at shorter wavelengths (X-rays) but improves for lines at visible and infrared wavelengths
(Cargill 2009). As already mentioned, the amount of Zeeman splitting increases with
increasing wavelength and hence the measurements should improve using visible and
infrared lines (although the latter is restricted to measurements made off the solar limb,
sufficiently high above the solar surface). Up to now, using either the Zeeman or the
Hanle effect allowed the successful measurement of the magnetic field vector in the hot
solar corona above the solar limb in a few cases, based on observations of resonance
scattering of the Fe  530.3 nm (Arnaud 1982), the O  103.2 nm (Raouafi et al. 2002)
or the Fe  1074.7 nm (Lin et al. 2000) spectral line.

Alternatively, the Hanle effect on ultraviolet emission lines can be used to measure the
coronal magnetic field but this requires space-based observations. In particular, Trujillo
Bueno and Asensio Ramos (2007) used the He  1083.0 nm multiplet and Raouafi et al.
(2009) used the H Lyα and Lyβ lines to test their ability to probe the coronal magnetic
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field. Coronal emission lines at optical frequencies are very faint and extremely broad-
ened due to the low coronal plasma density and the high temperature of emitting ions,
respectively. Not only the extraction of very weak signals hampers the success of coro-
nal magnetic field measurements but also the necessary long integration times and the
line-of-sight integrated character of the measurements (the latter especially for off-limb
observations). Kramar et al. (2006) discussed the associated limitations and pictured the
possibility of reconstructing the 3D structure of the coronal magnetic field based on longi-
tudinal Zeeman effect measurements of magnetically sensitive lines, using a tomographic
inversion method. Optionally, the gyroresonance emission of strong active-region mag-
netic fields, originating from electrons gyrating along the coronal magnetic field lines can
be measured. Although radio waves at low frequencies are blocked by the atmosphere
of the Earth, the gyroresonance emission of few tens of mT can well be measured with
ground-based instruments (Cargill 2009).

1.2.2 Indirect estimates
Since several difficulties are met in trying to infer the chromospheric and coronal magnetic
field, alternative approaches have been developed which estimate the magnetic field in the
upper solar atmosphere based on measurements made on the surface, i.e. at photospheric
levels or, individually, at distinct heights in the solar atmosphere.

For instance, the mean parameters of the corona such as the magnetic field strength
can be estimated based on measurements of the periods, wavelengths and amplitudes
of coronal magnetohydrodynamic (MHD) waves, fed into specific theoretical models of
the coronal wave phenomena. Incorporating as many as three modes (Alfvén, slow and
fast magnetoacoustic modes with their quite different dispersive, polarization and prop-
agation properties) these “coronal seismology” approaches are very powerful (Roberts
et al. 1984). In particular, observed properties of the MHD modes associated with, e.g.,
active-region loops or open structures have been shown to be in good agreement with the
theoretical models (for a detailed review on coronal seismology see e.g. Nakariakov and
Verwichte 2005).

Alternatively, the structure of the coronal field can be inferred by extrapolating it from
photospheric magnetic field measurements using so-called “force-free” magnetic field
models. The term force-free arises from the assumption that the magnetic field is domi-
nating all other forces in the upper chromosphere and big parts of the corona (though this
assumption is not valid at photospheric levels and in the solar wind), i.e. that the Lorentz
force vanishes. Then, the equilibrium coronal magnetic field can be reconstructed subject
to appropriate boundary conditions (for a recent review of existing methods see Wiegel-
mann 2008). Optionally, “potential field source surface” (PFSS) models or MHD models
can be used to extrapolate the global magnetic structure of the solar corona. Neglecting
the contribution from transverse magnetic fields (which, however, are of particular impor-
tance in active regions), both methods derive the radial magnetic field component from
photospheric line-of-sight magnetic field measurements. PFSS models can resolve global
structures on spatial scales beyond those that can be handled by the MHD models but
cannot directly incorporate time-dependent phenomena. This, however, is unavoidable if,
e.g., magnetic reconnection is aimed to be studied (for a comparison of specific models
see Riley et al. 2006).
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The extrapolation of coronal magnetic fields can also be used in the context of “mag-
netic stereoscopy” (Wiegelmann and Inhester 2006). Classical geometric stereoscopic
reconstruction techniques aim to estimate the 3D magnetic field topology from two (pref-
erentially simultaneously taken) 2D images like, e.g., provided by the STEREO space-
crafts. Therefore, the projected magnetic loops as visible in the 2D images have to be
extracted via some feature tracking method and corresponding ones have to be identified
(correspondence problem). This introduces a certain ambiguity in the stereoscopic re-
construction since one often encounters multiple coronal loops which overlap each other
so that a clear one-to-one correspondence between structures in the two images is not
evident. Consequently, the stereoscopic reconstruction is not unique, i.e. the calculated
3D field not only contains the actually existing loops but also additional, unphysical ones
(ghost features). Fortunately, the 3D magnetic field lines as calculated from a previously
extrapolated force-free magnetic field can be used as a proxy. Once projected onto both
2D stereoscopic images, recognized loops can be compared to the projected force-free
field lines and, consequently, corresponding loops precisely associated with each other by
minimizing the averaged distance between them (see e.g. Feng et al. 2007).

So far we dealt with the observational properties of the solar magnetic field in the
different layers of the solar atmosphere. Also the direct measurement techniques and the
indirect (model) methods to derive the magnetic field in the different atmospheric layers
have been described. Therefore, it is left to discuss the basic mechanism, assumed to
operate below the visible solar surface, which gives rise to the magnetic field.

1.3 Generation mechanism

1.3.1 Magnetohydrodynamics
Magnetohydrodynamics (MHD) describes the dynamics of electrically conducting fluids
(liquid or gaseous) which move in a magnetic field. It combines the basic principles of
hydrodynamics and electrodynamics in a fluid description. It is capable of depicting how
a velocity field across a magnetic field induces electric currents in a conductive fluid,
whose magnetic field and associated Lorentz force act back on the velocity. It applies to
(at least partially) ionized gases (plasmas) which move at non-relativistic speeds (i.e. the
temporal variations are slow) and which are highly collisional. The assumption of the
temporal variations to be slow allows it to neglect the displacement current in Ampere’s
law. Additionally, the fluid is assumed to be globally neutral, which does not mean that
the constituents of the fluid are neutral but that there is an approximately even number of
positive and negative electric charges present in a given volume at a certain time. In MHD,
the equations of fluid dynamics (the mass continuity equation, the momentum equation
and the energy equation) are combined with the reduced Maxwell equations

∇ ×E = − ∂tB, (1.1)
∇ ×B = µ0 J , (1.2)
∇ ·B = 0 (1.3)

and Ohm’s law,
J = σ (E + v ×B ), (1.4)
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where E, B and J represent the electric field, magnetic field and electric current densi-
ties, respectively, v is the fluid velocity, µ0 denotes the permeability of free space and σ
the electric conductivity.

The time evolution of the magnetic field can be investigated by inserting Ohm’s law
(1.4) into Faraday’s law (1.1) and eliminating the current density J with the help of
Ampère’s law (1.2) to gain the MHD induction equation

∂tB = ∇ × (v ×B ) − ∇ × ( η∇ ×B ) (1.5)

with η = (µ0 σ)−1 being the magnetic diffusivity. The induction equation together with
the solenoidal condition (1.3) describes the evolution of the magnetic field B, once the
velocity field v is known.

If the magnetic diffusivity η is assumed to be spatially constant, (1.5) reduces to

∂tB = ∇ × (v ×B ) + η∆B. (1.6)

Here, the first and second term on the right-hand side describe the induction and diffu-
sion effects, respectively. The relative importance of these two terms is described by the
dimensionless magnetic Reynolds number Rm, defined as the ratio of their magnitudes in
the form

Rm ≡ | ∇ × (v ×B ) |
| η∆B | =

vc lc

η
, (1.7)

where vc and lc are the characteristic velocity and length scales of the system, respectively.
Three different domains may be defined according to the relative magnitude of the

inductive and diffusive effects. First, if the diffusion dominates the induction then Rm�1,
which occurs if either vc or lc is small or if η is large. Then, the resistivity (that is the
inverse of the electric conductivity σ) becomes important in that instabilities may locally
increase the effective resistivity of the plasma so that magnetic diffusion can occur quickly
(“resistive” MHD). This implies that, in imperfectly conducting fluids, the magnetic field
can move through the fluid. Second, when the induction and the diffusion approximately
balance each other then Rm ≈ 1. Third, if the inductive effects dominate the diffusive
ones then Rm�1, which is considered as domain of “nearly perfect conductivity”. Then
one deals with the so-called “ideal” MHD which is applicable if the resistive terms are
negligible compared to all other terms. This occurs if either vc or lc is large or if η is small.
It applies only for a limited time for a region of a given size before diffusion becomes too
important to be ignored. The “perfect-conductivity” limit, where Rm→∞ (i.e., σ→∞ or
η→ 0), is the formal limit where B satisfies the frozen-inn condition ∂tB =∇×(v×B),
implying Alfvén’s theorem which states the magnetic flux to be conserved across any
Lagrangian surface (Moffatt 2002). Then the plasma is said to be “ideal” or “perfectly
conducting” and the magnetic field and the plasma move together as an ensemble (e.g.
Bellan 2006).

1.3.2 Dynamo theory
Solar dynamo theories have to reproduce the systematic global behavior of solar magnetic
field and the associated observable photospheric magnetic patterns since they originate in
the solar interior. In particular, this includes the 11-year sunspot cycle, the migration of
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the emergence latitudes of sunspots, the polarity rules for sunspot groups, the 22-year
magnetic cycle, the reversal of the polar fields at times of sunspot minimum and the
modulation of the magnetic field on long time scales (see § 1.1.1 for details).

The basic mechanism of a MHD dynamo aims to picture how a magnetic field can be
sustained by electric currents which are induced in a plasma by the motions of the matter.
In general, it involves the induction of electric currents from plasma motions across an
existing magnetic field where the currents are again a source of the magnetic field. The
magnetic field, in turn, influences the velocity field via the Lorentz force so that all these
processes are strongly nonlinearly coupled. In particular, a motion v perpendicular to a
magnetic field B induces an electric field v×B. This electric field, according to Ohm’s
law (1.4), drives an electric current and, according to Ampére’s law (1.2), produces a
magnetic field. The magnetic field with its associated Lorentz force J×B influences the
velocity field to close the system (e.g. Schmitt 1985).

The solution to this highly nonlinear problem needs to show that there exists a velocity
field which creates a magnetic field and sustains it against Ohmic losses and, moreover,
that the existing forces allow the velocity field to occur. This is called a “hydromagnetic”
dynamo problem and implies that both the induction equation (1.6) and the equation of
motion for the fluid need to be solved in parallel. Due to the complexity of the problem,
the dynamo action of a given velocity field on a weak magnetic field alone is often in-
vestigated which is then referred to as a “kinematic” dynamo problem. This means that
the problem of the velocity field to be created by the forces and the back reaction of the
magnetic field on the velocity field via the Lorentz force is left out of the considerations.
The more general class of hydromagnetic dynamo models, however, also incorporates the
force due to the magnetic field on the fluid velocity. In any case, an important require-
ment for a successful dynamo action, based on the magnetic induction equation (1.6), is
that the induction term overcomes the diffusion term and, consequently, that the magnetic
Reynolds number as introduced in (1.7) is larger than unity (e.g. Solanki et al. 2006).

In the following, the dynamo action of a given velocity field is discussed and hence a
kinematic dynamo problem is assumed. Let us furthermore assume, as a first approxima-
tion, that the solar magnetic field can be regarded as axisymmetric about the rotation axis
of the Sun. This allows the magnetic field to be decomposed into a poloidal (meridional;
Bp) and a toroidal (azimuthal;Bt) component (see Fig.1.6 and e.g. Davidson 2001). The
field lines of a poloidal field lie in planes through the rotation axis of the Sun while those
of a toroidal field are circular and lie in planes perpendicular to the rotation axis. The
poloidal component Bp can be expressed as the curl of a toroidal vector potential At so
that the decomposition of the total magnetic fieldB can be written as

B = Bp +Bt = ∇ ×At +Bt. (1.8)

A similar decomposition for the velocity field can be made in the form

v = vp + vt = vp +$Ωteφ (1.9)

with $=r sinθ and Ωt being the angular velocity. Substitution into the induction equation
(1.6) and separating the poloidal and toroidal components yields two coupled equations
of the form

∂tAt = η∆At + vp × (∇ ×At ), (1.10)
∂tBt = η∆Bt + ∇ × (vp ×Bt ) + ∇ × (vt ×Bp ), (1.11)
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Figure 1.6: Schematic view of the (a) poloidal and (b) toroidal components of an axisymmetric
magnetic field B, together with the associated electric currents J . The poloidal field lines lie in
planes through the rotation axis of the Sun while the toroidal field lines lie in planes perpendicular
to the rotation axis. The radiative core and the surface of the Sun are represented by the orange
sphere and the gray mesh, respectively. Adapted from Davidson (2001).

where the Coulomb gauge (∇·A = 0) has been used and where vt×Bt = 0 due to the
axisymmetry. Using At = Ateφ and Bt = Bteφ in (1.10) as well as (1.11) yields for the
φ-components

∂tAt = η

(
∆ − 1

$2

)
At︸            ︷︷            ︸

resistive decay

− 1
$

(vp · ∇ ) ($ At )︸                  ︷︷                  ︸
advection

, (1.12)

∂tBt = η

(
∆ − 1

$2

)
Bt︸            ︷︷            ︸

resistive decay

−$vp · ∇
(

Bt

$

)
︸           ︷︷           ︸

advection

− Bt (∇ · vp )︸       ︷︷       ︸
compression

+$Bp · ∇Ωt︸       ︷︷       ︸
shear

. (1.13)

The only true source term is the shearing term in (1.13) which represents the mechanism
creating a toroidal from a poloidal magnetic field. Since there is no comparable source
term in (1.12), the poloidal field diffuses away and, consequently, also the generation of
the toroidal field stops. This means that the assumed axisymmetric field alone cannot be
maintained against Ohmic dissipation (Charbonneau 2005, Cowling 1934, Bullard and
Gellman 1954, Cowling 1957, Ivers and James 1988).

Accordingly, a non-axisymmetric mechanism resulting in a source term in (1.12)
which could, under solar conditions, create a poloidal from an existing toroidal field is
needed. In other words, besides the generation and amplification of toroidal from poloidal
fields through differential rotation (referred to as the “Ω-effect”), a flow regenerating the
poloidal field is additionally required. Such a mechanism was found in form of the gener-
ation of poloidal flux loops from the toroidal fields due to the action of the Coriolis force
on convective up- and downflows, forcing them to show an opposite cyclonic character in
the two solar hemispheres. A large-scale poloidal field develops through the superposi-
tion of a great number of such poloidal loops with its polarity being opposite with respect
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to that of the poloidal field which was initially stretched and wound up around the Sun by
the differential rotation to create the toroidal field (“Parker loop”; Parker 1955, 1970).

An important step towards developing successful dynamo theories was done by intro-
ducing a formal way to incorporate the mechanism proposed by Parker, in the form of
the so-called “mean-field” dynamo theory (Steenbeck et al. 1966, Steenbeck and Krause
1966, Krause and Rädler 1980). Within this approach, the magnetic field and the velocity
field, as functions of space and time (B =B(x, t), v = v(x, t)), are separated into mean
slowly varying parts (〈B〉, 〈v〉) and fluctuating, rapidly varying parts (B′, v′). This de-
composition is called the “two-scale” approach so that the magnetic and velocity field can
be written as

B = 〈B〉 +B′, v = 〈v〉 + v′. (1.14)

Inserting the decomposition (1.14) into the induction equation (1.6) and applying the
Reynolds rules for the averages (see appendix A) then yields

∂t〈B〉 = η∆〈B〉 + ∇ ×
(
〈v〉 × 〈B〉

)
+ ∇ × E, (1.15)

∂tB
′ = η∆B′ + ∇ ×

(
〈v〉 ×B′ + v′ × 〈B〉

)
+ ∇ × G (1.16)

with E = 〈v′×B′〉 being the mean electromotive force and describing the action of the
fluctuating parts on the mean magnetic field and G = v′×B′−〈v′×B′〉. Since (1.16)
indicates that the relation between 〈B〉 and B′ is a linear one, E can be expressed in the
form of a Taylor expansion of the form

Ei = αi j 〈B j〉 + βi jk ∂ j〈Bk〉 + . . . , (1.17)

where αi j and βi jk are the mean field transport coefficients (being a second-rank and third-
rank tensor, respectively). These are functions of the fluctuating velocity field v′ only,
i.e., independent of 〈B〉 (e.g. Ossendrijver 2003a). Assuming isotropic turbulence, one
can express the cyclonic tensor αi j and the tensor of turbulent diffusivity βi jk as

αi j = − 1
3
δi j

∫ ∞

0
〈v′(t) · (∇ × v′(t − τ)

) 〉 dτ = α δi j, (1.18)

βi jk =
1
3
εi jk

∫ ∞

0
〈v′(t) · v′(t − τ) 〉 dτ = − β εi jk, (1.19)

where εi jk is the Levi-Civita tensor 3 and δi j is the Kronecker-Delta 4. Thus,

α = − 1
3

∫ ∞

0
〈v′(t) · (∇ × v′(t − τ)

) 〉 dτ ≈ − τc

3
〈v′ · ∇ × v′ 〉, (1.20)

β =
1
3

∫ ∞

0
〈v′(t) · v′(t − τ) 〉 dτ ≈ τc

3
〈v′ · v′ 〉, (1.21)

where τc denotes the correlation time of turbulent motions. Furthermore, the quantity
〈v′ ·∇×v′〉 represents the mean kinetic helicity of the turbulent motions, described by

3With the properties that εi jk = 0 if (i, j, k) are not all different, εi jk = +1 if (i, j, k) are all different and
cyclic and εi jk =−1 if (i, j, k) are all different and anti-cyclic.

4With the properties that δi j =0 if i, j and δi j =1 if i= j.

29



1 Solar magnetic field

the scalar product of the velocity v′ with its vorticity ω′ = ∇×v′ (Ossendrijver 2003a).
Though very likely not to be true for the solar interior (but nevertheless commonly used
in dynamo modelling) is the assumption of isotropic turbulence which yields the tensors
αi j and βi jk to become isotropic and representable by a scalar. Then, E takes the form

E = α 〈B〉 − β∇ × 〈B〉 (1.22)

and inserting (1.22) into (1.15) results in the mean-field induction equation

∂t〈B〉 = ∇ ×
(
〈v〉 × 〈B〉 + α 〈B〉

)
+ ηT ∆〈B〉 (1.23)

with ηT = η+β being the total diffusivity. The physical meaning of α is that it yields a
mean electric current parallel or anti-parallel to the original mean magnetic field 〈B〉. In
fact, this leads to the source term lacking in (1.12) for the generation of a poloidal from
a toroidal field (called the “convective α-effect”; e.g. Ossendrijver 2003b). In case of
cyclonic convection (i.e. an existing correlation between v′ and ω′), as brought along by
the action of the Coriolis force, this term represents the incorporation of the Parker mech-
anism into the dynamo formalism (e.g. Solanki et al. 2006). Now, a successful dynamo
action can be accomplished by the combination of the generation of a global poloidal
field by the α-effect and the regeneration of the toroidal field, either by differential rota-
tion (αΩ-dynamo) or alternatively also by the α-effect itself (α2-dynamo).

Although being successful in reproducing some of the key observations on the Sun,
for instance the periodic field reversal and the polarity rules of sunspot groups, conven-
tional αΩ-dynamos operating in the bulk of the convection zone have some difficulties in
reproducing the equatorward migration of the activity zones. Solutions of an αΩ-dynamo
propagate from mid-latitudes to the equator only if the product α ∂rΩ is negative/positive
in the northern/southern solar hemisphere. Therefore, for αΩ-dynamos for which α is
positive/negative in the northern/southern hemisphere, ∂rΩ<0 is required, i.e. an inward
increasing radial differential rotation (e.g. Schmitt 1985). This assumption, however, does
not match helioseismic observations showing a radial gradient of angular velocity only at
the base of the convection zone and, moreover, almost no radial differential rotation in the
bulk of the convection zone.

Several models exist to overcome this and other problems, including “overshoot layer”
dynamos where the dynamo action is entirely restricted to the overshoot region at the base
of the convection zone, “interface” dynamos where the generation regions of toroidal and
poloidal fields are spatially separated so that the differential rotation acts in the over-
shoot layer and the α-effect works throughout the entire convection zone. Currently most
promising seem to be the so-called “flux-transport” dynamos, basically being interface
dynamos but additionally involving an observationally supported “meridional circulation”
which bodily caries the surface magnetic flux toward the poles and some of it down to the
bottom of the convection zone and back towards the equator (see Fig. 1.7 and Dikpati
and Gilman (2006)). For detailed discussions of the (dis)advantages of different existing
dynamo models we refer to Charbonneau (2005) and Solanki et al. (2006).

1.4 Summary
A dynamo action is thought to operate somewhere in the solar convection zone and gives
rise to the solar magnetic field. The Sun’s differential rotation shears and thus consecu-
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Figure 1.7: Schematic view of a solar flux-transport dynamo. (a) Due to the Sun’s differential
rotation, a poloidal field (black arrows) is sheared and wound up around the Sun to result in (b) a
toroidal field. (c) Is the field strength high enough, bundles of field lines rise to the surface creating
sunspots (black dots). (d) Meridional circulation (orange, subsurface circulation) caries the surface
magnetic flux toward the poles and some of it down to the bottom of the convection zone and back
toward the equator (e). A polarity configuration (f), reversed to that in (a), is produced which can
be sheared again to produce a new toroidal field opposite to that in (b). The Sun is represented by
the gray mesh and its radiative core by the orange inner sphere. (Courtesy of M. Dikpati.)

tively winds up an existing poloidal field, resulting in a toroidal field. Once strong enough,
bundles of toroidal magnetic field lines buoyantly rise through the convection zone and,
subject to the Coriolis force, form poloidal flux loops. The superposition of a great num-
ber of such poloidal loops emerging into the solar atmosphere from below makes up the
large-scale poloidal field, having opposite polarity with respect to that of the poloidal
field which was initially wound up. Additionally, a meridional circulation can carry the
magnetic field from the equator to the poles but also from the surface to the bottom of the
convection zone.

Additionally, due to the systematic twisting of the magnetic field within the convection
zone prior to its emergence, kinetic and current helicity is induced which can then in
principle be measured on the solar surface and in the atmosphere. Due to the motion of
loop footpoints in the photosphere and the corresponding subsequent deformation of the
magnetic field in the solar atmosphere, electric currents are introduced to consecutively
build up and store magnetic energy. Not only the shear or twist of existing magnetic
fields can induce electric currents but also new magnetic loops emerging from below the
solar photosphere into a preexisting coronal magnetic field. Once the magnetic energy
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content of the coronal field reaches a critical point instabilities in the system, previously
in equilibrium, might occur so that preliminary stored magnetic energy is released or
converted into other forms of energy.

Unfortunately, direct measurement techniques of the chromospheric and coronal mag-
netic field are not yet routinely done due to several difficulties. Measurements of the chro-
mospheric magnetic field suffer from its low plasma density leading to weak emission and
absorption signals of the spectral lines. This is even more pronounced in the corona due
to the even lower plasma density. Additionally, the coronal emission lines are extremely
broadened due to the high coronal temperatures so that the detectability of line splittings
associated to the magnetic field is hindered. Also the line-of-sight integrated character of
coronal observations complicates the interpretation of the magnetic field measurements.
To overcome the fact that chromospheric and coronal magnetic field measurements are not
yet routinely available, approaches have been developed which extrapolate the measured
photospheric magnetic field vector into the corona. Besides other methods, force-free ex-
trapolation techniques can be used to reconstruct the equilibrium coronal magnetic field
subject to appropriate boundary conditions. Therefore, the basic assumptions and validity
regimes of such extrapolation techniques are discussed in the next chapter.
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Since measurements of the chromospheric and coronal magnetic field based on direct
measurements using the Zeeman effect, Hanle effect or the gyroresonance emission are
not routinely available, alternative approaches have been developed to estimate the mag-
netic fields in the upper solar atmosphere. In this chapter, the focus lies on the method
of “extrapolating” the force-free coronal magnetic field from routinely measured photo-
spheric (vector)magnetograms.

In the following, the basic principles and assumptions of force-free magnetic field
extrapolation methods are discussed in § 2.1. Three distinct classes of magnetic field
models, namely potential, linear force-free and nonlinear force-free models arise from
these assumptions and are described in § 2.2, § 2.3 and § 2.4, respectively, along with the
existing computational methods to solve the related set of equations. The optimization
approach to extrapolate the coronal magnetic field for the analysis of solar active regions
as used in the presented thesis is discussed in § 2.4.1 and the method to provide consistent
boundary conditions to this computational method is outlined in § 2.4.2. Finally, in § 2.5
a short summary is given.

2.1 Basic principles and assumptions
Using the equations of ideal magnetohydrodynamics (MHD), consisting of the continuity
equation, the momentum equation and Ampere’s law in the limit of negligible electric
fields and vanishing electron diffusivity, together with assuming that the plasma is in
equilibrium (∂t≈0, i.e. the temporal variations to be slow) and the flows to be insignificant
(v small), the plasma of the solar atmosphere can be well described by

∇ ×B = µ0 J , (2.1)
∇ ·B = 0, (2.2)

∇p − J ×B + ρg = 0, (2.3)

where B is the magnetic field strength, J represents the electric current density and g
denotes the gravitational acceleration. Furthermore, p and ρ stand for the plasma pressure
and density, respectively, and µ0 is the permeability of free space. Note that the energy
equation and the equation of state for the plasma to close the system of equations are omit-
ted here. The set of equations (2.1) – (2.3) basically allows to describe the equilibrium
plasma in the solar atmosphere, including the photosphere and corona.

If the considered coronal structures change on length scales comparable to the typical
coronal scale height (& 50 000 km; Aschwanden 2004) one can assume the acceleration
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due to gravitation to be constant. Additionally, if one presumes that the pressure and
the magnetic field vary on the same length scale L, normalizing all quantities in (2.3) to
typical coronal values takes the form

β

2
∇p − µ0 J ×B +

β

2
L
H
ρg = 0 (2.4)

with
β =

2 µ0 p0

B2
0

(2.5)

denoting the “plasma-β” (that is the ratio of the normalized plasma pressure p0 to the
normalized magnetic pressure B2

0 (2 µ0)−1) and H representing the pressure scale height.
In the context of coronal magnetic field extrapolations, one most commonly assumes that
the ratio of the thermal pressure to the magnetic pressure is small (i.e., β� 1), since it
is the magnetic field in the corona which dictates the plasma motion. This, according to
(2.4), allows to neglect the pressure gradient and gravitational force so that

J ×B = 0, (2.6)

i.e. that the Lorentz force vanishes and, consequently, that the electric currents can be
assumed to be aligned with the magnetic field. Due to the negligibility of nonmagnetic
forces the coronal magnetic field is then said to be “force-free”. In fact, the solar at-
mosphere shows a varying pattern of dominance of either the plasma or the magnetic
pressure. Vertically, a region of β > 1 spans from below the photosphere up to the low
chromosphere, followed by a region where magnetic forces are dominant (β�1, includ-
ing the layers from the mid-chromosphere up to the mid-corona), finally reaching the β≥1
layers of the outer corona and the solar wind.

Already Metcalf et al. (1995) showed that the magnetic field associated with NOAA
active region (AR) 7216, as observed on July 3, 1992 with the Mees Solar Observa-
tory/Haleakala Stokes Polarimeter (MSO/HSP; Mickey 1985), could be considered to be
force-free only upwards from 400 km above the photosphere. Gary and Alexander (1999)
estimated plasma-β values based on photospheric magnetic field observations of NOAA
AR 7999, as observed late in Nov and early in Dec 1996, to suggest that the gas pres-
sure becomes important again at heights of about 200 Mm above the photosphere. Later,
Gary (2001) addressed the topic of the interchanging dominance of plasma and magnetic
pressure throughout the solar atmosphere by modeling the plasma-β above an AR. The
used plasma-β model resulted from calculating the ratio of the plasma to the magnetic
pressure as a function of height based on a magnetic field and a gas pressure model. The
magnetic field model was based on a static potential magnetic field, providing an active-
region-like envelope field on which a photospheric field strength of 250 mT (representing
a typical umbral field strength) was imposed and in which a correction for the solar wind
region was included (to stay consistent with the magnetic field decay in the outer corona).
The plasma pressure model was based on a barometric formulation for different temper-
ature regions which not only involved that the plasma densities associated with an AR
are higher than the global density but also considered the over-pressure of non-steady
loops and high-temperature loops. This modeling revealed that the magnetic forces above
the model AR lose their dominance at relatively low heights in the mid-corona between
≈200 Mm – 500 Mm above the photosphere (see Fig.2.1 and Gary (2001)).
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Figure 2.1: Plasma-βmodel for a solar active region. Outlined in gray is the plasma-β as a function
of height in the solar atmosphere for open and closed field lines, originating between a sunspot
(right solid black line) and a plage region (left solid black line). Horizontal dashed lines outline
the approximate vertical extension of the atmospheric layers. (Courtesy of G. A. Gary.)

To summarize, only for the atmospheric layers from the mid-chromosphere until the
mid-corona (at heights between ≈0.8 Mm and ≈200 Mm above the photosphere) one can
regard the solar atmosphere as being almost entirely force-free, so that one is allowed
to neglect the pressure gradient and gravitational term in (2.4) with the aforementioned
conditions to ensure the validity of (2.6). Once the force-free approximation is justified,
however, one finds a proportionality between the electric current density (assumed to be
field-aligned) and the magnetic field, equivalent to (2.6), which can be written as

µ0 J = αff B, (2.7)

where αff is the so-called “force-free parameter” which is in general a function of space
(αff = αff(x)). Generally, for a positive value of αff the magnetic field spirals outward
and counter-clockwise (left-handed; sinistral) for a positive magnetic region and inward
and clockwise (right-handed; dextral) for a negative magnetic region. Inserting (2.7) into
(2.1), taking its divergence and using (2.2) yields

B · ∇αff = 0, (2.8)

implying that αff is constant along field lines but can vary for individual field lines. This,
together with (2.2) and (2.7) forms the set equations to be solved for coronal force-free
equilibria.

Three different assumptions on the nature of the force-free parameter can be made.
First, and representing the most simple of all approximations to the coronal magnetic
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field, is that αff is zero everywhere. Then, from (2.7) it is evident that the electric current
density vanishes (J = 0) and according to (2.1) that this is also true for the curl of the
magnetic field (∇×B = 0), while (2.8) is automatically satisfied. Using Helmholtz’s
theorem1, one can therefore express the magnetic field by the gradient of a scalar function
φ which due to (2.2) has to fulfill ∆φ=0. Magnetic fields obeying this conditions are said
to be “potential” or “current-free”. Second, representing a more general approximation,
αff can be assumed to be constant but nonzero everywhere. Precisely, αff is then presumed
to be of the same value for all of the field lines and is in general evaluated by comparing
a computed magnetic field configuration with coronal tracers, like loops, simultaneously
seen in various spectral lines. Then again, (2.8) is automatically satisfied and due to (2.7)
the electric current density is linearly related to the magnetic field so that one deals with
so-called “linear force-free” or “constant-αff” fields. However, the assumption about the
force-free parameter αff of potential and constant-αff models are far from being true for
real solar cases since there it naturally varies from field line to field line. Consequently,
a third and most general (most realistic) assumption about the physical nature of αff is
made in the way that the assumed relation between the current density and the magnetic
field is no longer linear. Then one cannot reduce the set of equations (2.2), (2.7) and (2.8)
further and one deals with so-called “nonlinear force-free” fields. Besides a few existing
analytical solutions of nonlinear force-free magnetic fields (e.g. Low 1988, and references
therein) one then has to solve the related set of force-free equations numerically.

The first to deal with the meaning of force-free magnetic fields in the context of stellar
objects were Lüst and Schlüter (1954) who approximated the magnetic field as a dipole
field to derive the solutions to the potential and constant-αff force-free equations. In par-
ticular, it was pointed out that the assumption of the magnetic field being entirely defined
by the stellar object itself rather than by any electric current in its surrounding is not well
justified and hence one has to seek for more general solutions to the force-free equations
than those involving ∇×B = 0. Chandrasekhar and Kendall (1957) derived a general
solution to the linear force-free equations in form of the sum of a poloidal and a toroidal
vector field together with discussing its particular properties. A general discussion of
the integral properties of the dissipation of magnetic energy and the relaxation towards a
minimum energy state have been given by Chandrasekhar and Woltjer (1958) and Woltjer
(1958), respectively.

In general, the boundary value problem to be solved for the force-free fields requires
the determination of the magnetic field in a given volume (enclosed by a boundary surface
∂V) in terms of the line-of-sight component or the full magnetic field vector on ∂V (in
case of potential and linear or nonlinear force-free fields, respectively) such that the field
vanishes at infinity. The boundary surface at the bottom of the computational domain,
representing the solar photosphere, can be either specified as a sphere or can be identified
with a planar surface, depending on the usage of spherical or Cartesian coordinates within

1The Helmholtz theorem states that a vector field is uniquely specified if its divergence and curl within
a simply connected region and its normal component on the boundary of the volume is given. A vector
field for which both its source and circulation densities vanish at infinity may be written as the sum of an
irrotational and a solenoidal part (for the formal proof of these two theorems see, e.g., Arfken and Weber
2001). Therefore, the magnetic field B can be written as B = −∇φ+∇×A, with φ and A denoting the
irrotational scalar and solenoidal vector potential, respectively. This, in the case of a potential field (where
∇×B=0) reduces toB=−∇φ.
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2.2 Potential field models

the computational method, respectively (Chiu and Hilton 1977). In the following, the
numerical approaches to the different force-free cases (αff = 0, αff , 0 but constant or
αff =αff(x)) are discussed in detail.

2.2 Potential field models
The magnetic scalar potential φ is uniquely determinable if φ itself or if its normal deriva-
tive ∂nφ (which is equivalent to the magnetic field component normal to the boundary Bn)
is specified on the boundaries and, therefore, one has to solve a Dirichlet or Neumann
boundary value problem, respectively. As the line-of-sight component of the magnetic
field near the solar disk center is essentially radial it can be used to determine the distri-
bution of magnetic sources which show a straightforward relation to the current-free field
above the photosphere. A solution is obtained by solving the Laplace equation for φ with
the normal magnetic field as a boundary condition and standard methods, using either
Green’s functions or eigenfunction expansions, for this purpose are existing.

Schmidt (1964) was the first who attempted to express potential (current-free) fields
above a semi-infinite plane using a Green’s function method. After specifying the normal
magnetic field component Bn on a flat lower boundary ∂V’ (representing the photosphere),
the solution to the Laplace equation in the volume was shown to be given by

φ(x) =
1

2π

∫
∂V′

∂nφ(x′)
|x − x′ | dS ′ = − 1

2π

∫
∂V′

Bn(x′)
|x − x′ | dS ′, (2.9)

where Bn(x′) = −∂nφ(x′) with ∂n = −n · ∇ (where n is the unit vector in the vertical
direction) and where the condition for the magnetic potential at x→∞ is φ(x)→0. Then
the potential magnetic field components in the upper-half volume z ≥ 0 can be calculated
from the normal component at z = 0 and are, in particular, given by Bi = ∂xiφ(xi) with
i = (1, 2, 3) and (x1, x2, x3) = (x, y, z). The normal boundary values of Bn(x′, y′, 0) have
to be supplied through the longitudinal (line-of-sight) magnetic field Bl = Bz(x, y, 0) near
the solar disk center where the two can be equated and where the curvature of the solar
surface can be neglected. Note that in most cases when a Green’s function method is used,
the approximation of Bn with Bl is assumed to be justified.

To be able to apply this method also to regions considerably far from disk center, Saku-
rai (1982) extended it to cases where the longitudinal magnetic field component does not
necessarily need to be normal to the flat boundary plane. Nevertheless, when considering
areas larger than that covered by solar active regions, the curvature of the Sun needs to be
taken into account and so Sakurai (1982) also extended the classical Schmidt-method to
be able to specify both the longitudinal and the normal component on a spherical bound-
ary surface.

Global magnetic field models based on the extension of the potential theory were first
discussed by, e.g., Schatten et al. (1969) and Altschuler and Newkirk (1969) who solved
the Green’s function in spherical coordinates to get a full spherical solution of the Sun’s
magnetic field. However, since the force-free assumption does not hold for the solar wind
region, an artificial upper boundary (the “source surface”, owing a purely radial magnetic
field) is usually introduced at a certain distance above the solar surface in such global
models. This radial magnetic field is used to approximate, in simplest order, the solar
wind and serves as a source for the interplanetary magnetic field.
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So far, we discussed potential field models based on the use of Green’s functions and
we are left with discussing methods using eigenfunction expansions. Since they were
mainly developed in the context of linear force-free (constant-αff) fields, they always re-
veal expressions for the potential field in the limit αff→0 and will be therefore discussed
in § 2.3. Potential field models have been applied routinely as a quick and easy way to
get an overall impression of the general coronal magnetic field topology. When model-
ing solar active regions, they only require the line-of-sight magnetic field as an input for
the numerical procedures but also imply fundamental limitations. Since such models as-
sume that no electric currents are present they are not able to reproduce any topological
developments of the coronal magnetic field. Furthermore, they are only to be used for
estimating the lowest-energy state corresponding to an observed line-of-sight magnetic
field and hence do not provide any estimate for the amount of energy which is built up
in a solar active region prior to eruptions and the part of it which could be involved in
the reconfiguration of the field. That is because this excess energy is mainly related to
the change in the transversal (horizontal) photospheric magnetic field components which
a potential field approach (since it only uses the line-of-sight magnetic field information)
is not capable of reproducing.

2.3 Linear force-free field models

To overcome the fundamental limitations of potential (current-free) fields one considers
the boundary value problem of linear force-free (LFF) fields where αff is assumed to be
constant but nonzero. Taking the curl of (2.7) and using (2.1) and (2.2) yields

( ∆ + α2
ff )B = 0, (2.10)

i.e. B satisfies a Helmholtz equation. In the following, different approaches to solve the
LFF boundary value problem, either using Fourier series expansions or Green’s functions,
are summarized and for an in-depth discussion we refer to the review of Gary (1989).

Nakagawa and Raadu (1972) were first to describe a generalized representation of
LFF magnetic fields and to provide (non-unique) solutions of (2.10) using a Fourier series
expansion in Cartesian coordinates. In a subsequent work, Nakagawa (1973) formulated
a representation of LFF fields in spherical geometry (including the special case αff = 0)
but also pointed out that not only the radial magnetic field but also the radial electric
current distribution have to be given in order to be able to uniquely determine the magnetic
field. Also Seehafer (1978) used a Fourier representation to seek the solution to the set
of linear force-free equations in a Cartesian coordinate system. He pointed out that fields
being linear force-free in the whole volume outside the Sun neither possess a finite energy
content nor can be determined uniquely from the normal photospheric magnetic field
component alone. In other words, he found that the consideration of global-scale LFF
fields must be restricted to finite volumes. Later, Chiu and Hilton (1977) used Green’s
function terms to give non-unique analytical expressions for the magnetic field in the
half-space z > 0 with the limit B→ 0 for z→∞. They also discussed in very detail the
difficulties arising from the properties of Green’s functions and the physical limitations of
observational data.
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Comparing the computational speed of the Fourier and the Green’s function meth-
ods, Alissandrakis (1981) argued that using Fast Fourier Transforms (FFTs) in the series
expansion method is about (N/ log2 N)2 times faster than using a Green’s function formu-
lation if one deals with a N×N array. At the same time, the general problem for methods
using FFTs of the computed field being distorted at its edges was discussed. The repeti-
tive nature of the Fourier solutions which causes the effect of “aliasing” gives rise to the
need to place a “region of interest” (ROI; that is the true boundary field) into a sufficiently
larger array. One therefore places the ROI with a side length of, say, 2L into a larger array
with a side length of 2L′ (with L′>L), where the points of the larger array which surround
the ROI are filled with zeros. Aliasing will cause the original field pattern to be repeated
with a spatial period of P= L′ so that at the edges of the considered area the original signal
will partly be reflected. The wings of these reflections then enter into the solutions for the
ROI for z>0 and hence distort the computed field. This effect is more pronounced at the
edges ±L and is more serious for large z and small L′. This gives rise to the question of
how large L′ (or how small L) should be in order to have negligible distortions at ±L and
Alissandrakis (1981) found that from the choice L′ = L+πz tolerable errors for Bz arise.
Instead of defining a larger array and setting all points except for that corresponding to
the ROI to zero, one can alternatively map the ROI that covers a domain, say, 0≤ lxi ≤Lxi

with i = (1, 2) and (x1, x2) = (x, y) into a computational area covering four times that do-
main, i.e., −Lxi ≤ lxi ≤ Lxi . The mapping can be done using Bz(−x, y, 0) = −Bz(x, y, 0)
and Bz(x,−y, 0) = −Bz(x, y, 0) or, alternatively, by setting Bz(−x, y, 0) = Bz(x, y, 0) and
Bz(x,−y, 0)= Bz(x, y, 0), where the latter readily ensures that the net magnetic flux through
the original magnetogram area is balanced. Explicitely, this means that the solution of
Nakagawa and Raadu (1972) requires Bz(0, y, z) = Bz(Lx, y, z) and Bz(x, 0, z) = Bz(x, Ly, z)
so that the solutions to the LFF equations are periodic with the periods 2Lxi . Similarly,
the more restrictive solution of Seehafer (1978) requires Bz(0, y, z) = Bz(Lx, y, z) = 0 and
Bz(x, 0, z)= Bz(x, Ly, z)=0 with the solution being periodic with the periods Lxi .

Later, Yan et al. (1991) first proposed a boundary element method to uniquely solve
the LFF problem with a finite magnetic energy content and validated their approach by
comparing observed magnetograms at a chromospheric level with the corresponding ones
calculated from the force-free model. For this purpose, they transformed the boundary
value problem into an integral form which allows it to evaluate the magnetic field at every
arbitrary point without having to compute it in the entire volume. Independently, Aly
(1992) also established the boundary integral representation for finite-energy LFF fields
with an unique solution. He also worked out some basic estimates about the behavior
of the solutions at infinity and the proof of their stability with respect to changes in the
boundary conditions (and therefore with respect to changes in the value of αff). Moreover,
he showed that the energy content of any LFF field is smaller than that of a corresponding
open field (with the same normal magnetic field component Bn on the lower boundary).
Based on these earlier works, Yan (1995) numerically implemented the boundary integral
formulation and applied it to an active-region vector magnetogram. In agreement with
earlier works, he showed that the unique solution in the z > 0 half-space possesses a
finite energy content but also that the uniqueness of the solution does not arise from
the availability of the full vector magnetic field at the lower boundary but requires an
additionall condition. This additional constraint was imposed by Seehafer (1978) in the
form of only considering a half-space column above the solar surface, whereas Yan et al.
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(1991) made use of the “Sommerfeld condition“, Aly (1992) imposed it in the form of a
finite energy content and Yan (1995) in the form of an asymptotic condition, requiring the
magnetic field to vanish at infinity.

However, models involving the solution of the set of LFF equations do have some
general drawbacks. Chiu and Hilton (1977) pointed out that LFF fields in general have
non-unique solutions if only the normal (longitudinal) magnetic field at the photosphere
is given. This is because both a potential (αff = 0) and LFF (αff , 0 but constant) field
solution could be generated from the same boundary condition Bz(x, y, 0) since it is inde-
pendent of the physical structure of the magnetic field. To achieve uniqueness both the
normal and tangential component need to be defined on the boundary so that the physi-
cal character of the field (as represented by the αff-parameter) is clearly reflected. They
furthermore showed that a necessary requirement for the uniqueness of LFF solutions is
that the magnetic flux on the lower boundary is balanced and that this constraint can be
used as a condition how to choose the boundary integration limits. Seehafer (1978) and
Alissandrakis (1981) showed that in order to achieve a finite energy content, LFF fields
(except for αff =0) must be considered within finite volumes instead of extending them to
infinity. Additionally, αff has to be smaller than a maximum value, usually proportional to
the inverse of the smallest side length of the computational domain (this natural limitation
of αff for general force-free fields has later been demonstrated by Aly 1984). Another fact
is that, given either the normal or the transversal magnetic field as a boundary condition,
αff is in general a free parameter. This means that LFF models can be calculated for dif-
ferent values of αff so that the different solutions can well represent distinct parts of the
investigated magnetic field but may not approximate the field very well in other parts. To
overcome this, Pevtsov et al. (1995) were the first to vary only αff for a given method to
calculate the LFF field from the same normal boundary field and also to minimize the
deviation of the theoretical and measured components of the transversal magnetic field.
Consequently, they established a best-fit single value αff,best and assumed the correspond-
ing LFF field to represent the given magnetic field configuration best.

Based on the discussion above, it is evident that LFF field models are capable of de-
scribing the true coronal magnetic field only to a certain extent. Although producing a
higher energy content associated with the magnetic field due to allowing electric currents
to be introduced, the assumption of a single value of αff representative for the whole
lower boundary is very doubtful (see § 2.4). If, for example, a field line under ideal con-
ditions is twisted up by localized motions of its photospheric footpoints the configuration
departing from its initial potential state will not carry a net current. Consequently, the
currents within the force-free field must flow both parallel and anti-parallel with respect
to the magnetic field and hence αff must change its sign which cannot be realized with a
constant-αff assumption. This has been clearly demonstrated by Valori et al. (2005) who
intended to reproduce a strongly helical field line using a LFF field and found that neither
the twisted loop nor the associated shear could be reproduced using the αff,best-model.

2.4 Nonlinear force-free field models

In the previous two sections, dealing with potential (current-free) and LFF (constant-αff)
fields, it became clear that a more general approach to approximate the coronal magnetic
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field is needed. First, this is based on the fact that the force-free parameter αff is usu-
ally changing in space even inside a given solar active region. The force-free parameter
can be estimated by reformulating (2.7) and using the measured transverse photospheric
magnetic field Bt = (Bx0 , By0) to gain

αff0 =
∂xBy0 − ∂yBx0

Bz0

=
µ0 Jz0

Bz0

(2.11)

with Jz0 being the vertical current density and Bz0 the normal field component on the lower
boundary, i.e. a measured vector magnetogram. Here it should be noted that a consider-
able uncertainty in the accuracy of the transverse field measurements leads to significant
errors in the current density estimation. Regions with a weak Bz0 result in an even higher
uncertainty of the current density calculation and special care has to be taken along po-
larity inversion lines which have a vanishing normal field component (Bz0 = 0). Second,
potential and LFF fields are inappropriate in reproducing the energy content of the coronal
magnetic field accurately since they cannot hold the full magnetic energy content accord-
ing to their computation from the measured normal (line-of-sight) magnetic field only.
From (2.11) it is evident that the electric currents, as induced by the reconfigurations of
the transverse magnetic field, play a major role in the energy storage process. It is there-
fore the excess of magnetic energy over the potential and LFF field energy content that
can be either transformed or released during eruptions. Third, potential and LFF fields
cannot reproduce the complex magnetic field topology in the solar corona since they do
not at all (αff = 0 for potential fields) or only partly (αff , 0 but constant for LFF fields)
allow the topological deformation of the magnetic field, as represented by the force-free
parameter αff.

Nonlinear force-free (NLFF) field models therefore allow αff to vary from field line
to field line, i.e. being a function of space αff = αff(x). To repeat, these models have to
numerically solve the equations

∇ ×B = αff(x)B, (2.12)
B · ∇αff(x) = 0 (2.13)

simultaneously. Following Neukirch (2005), these equations for B for a given function
αff(x) are of elliptic type for which the proper boundary condition is the normal com-
ponent of the magnetic field on the boundary Bz. These equations for αff(x) for a given
B are of hyperbolic type for which αff(x) should only be prescribed on that parts of the
boundary on which Bz>0 or Bz<0 (or equivalently, the normal component of the current
density Jz = µ−1

0 αff(x)Bz on those parts). Some methods go further and use the full mag-
netic field vectorB= (Bx, By, Bz) as boundary values, giving rise to an ill-posed problem.
However, in general it is not clear if solutions to all NLFF boundary value problems exist
and in case of existence if they are unique.

The following discussion of existing NLFF field models is focused on its application
to approximate the coronal magnetic field in and around solar active regions. Therefore,
the solar photosphere (representing the lower boundary) is assumed to be validly approxi-
mated by a planar surface. Furthermore, the investigated solar active regions are assumed
to be located close to the center of the solar disk and, consequently, that the identification
of the normal magnetic field component with the longitudinal (line-of-sight) component
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is justified. A number of methods have been developed to solve the set of equations
corresponding to NLFF boundary value problems:

• “Vertical integration” methods (Nakagawa 1974, Wu et al. 1985, 1990) use the
known photospheric field and its vertical derivatives on the lower boundary to com-
pute the three components of the electric current density. Based on this, expressions
for the vertical derivatives of all three magnetic field components are integrated up-
ward in z, i.e. along the line-of-sight for each height. Although easy to implement
and being computationally fast the use of such methods seems to be unsuccessful.
This is because the particular formulation of the force-free problem is mathemat-
ically ill-posed, resulting in an unstable behavior (Cuperman et al. 1990, Amari
et al. 1997). For the nonlinear case even regularization techniques cannot prevent
the system to amplify unphysical growing modes (Cuperman et al. 1991, Amari
et al. 1998, Demoulin et al. 1992). Song et al. (2006) reexamined this method to
avoid the introduction of regularizing functions in the way that they transformed
the original partial differential equations (ill-posed) into a set of ordinary differen-
tial ones (well-posed). Still, it was found that only in the case of strong magnetic
fields all of the arising modes are of a decaying nature.

• “Boundary element” methods (Yan and Sakurai 2000, Li et al. 2004, Yan and Li
2006) use a Green’s function to reformulate the NLFF problem. The resulting
system of linear and nonlinear volume integrals is to be solved using an iterative
scheme but since the nonlinear integral equations have to be carried out over the
full domain this method is numerically expensive. However, different from other
methods it allows to evaluate the magnetic field at every arbitrary point from the
boundary data without having to compute it previously in the entire domain. This
could be of use if one addresses the computation of the NLFF field only along a
given single loop.

• “Grad-Rubin” methods (Sakurai 1981, Amari et al. 1997, 1999, 2006, Wheatland
2004, 2006, 2007), after Grad and Rubin (1958), solve either for the magnetic field,
the electric current density or the magnetic vector potential. The NLFF equations
are reformulated so that a well-posed boundary problem is addressed. At first,
a potential field is computed only from the line-of-sight photospheric magnetic
field whose transversal components are then used to compute the photospheric αff-
distribution for one polarity. The field is then iteratively updated for every height
in the computational volume until the recalculation does not yield a change in the
configuration anymore and thus can be regarded as a stationary state. Recently,
Wheatland and Régnier (2009) developed an approach to address the problem of
the photospheric measurements being, in general, inconsistent with the force-free
assumption by iteratively adjusting the boundary conditions on the solutions until
the observed boundary data is best-fitted in a self-consistent way.

• “MHD relaxation” (“evolutionary”, “magneto-frictional”) methods (Mikic and Mc-
Clymont 1994, McClymont et al. 1997) do not make use of the NLFF equations
directly. They evolve or relax an initial magnetic field that does not satisfy all of
the required boundary conditions to a final state where these are fulfilled. Although
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ensuring that the magnetic connectivity remains unchanged during the relaxation,
it cannot be guaranteed that for a given initial field based on the supplied boundary
conditions a force-free equilibrium exists to which the system may relax to. If so,
the formation of current sheets can lead to numerical difficulties. Alternative imple-
mentations “disturb” the initial potential field by the observed transverse field and
subsequently replace the boundary conditions for each iteration step while always
relaxing with the use of the same MHD-relaxation scheme. Such “stress and relax”
methods either use the magnetic vector potential (Roumeliotis 1996) or directly the
magnetic field (Valori et al. 2005).

• “Optimization” methods (Wheatland et al. 2000, Wiegelmann 2004, Inhester and
Wiegelmann 2006) minimize the volume-integrated force-free and solenoidal con-
dition simultaneously in pseudo-evolutionary procedures (for an implementation by
McTiernan see Schrijver et al. 2006). The magnetic vector field is not necessarily
divergence-free during the computation but it is divergence-free once reaching the
optimal final state for ideal boundary conditions. In case of non-ideal or inconsis-
tent boundary conditions the resulting field is either not force-free, not solenoidal
or both. However, these methods still lack the formal proof to relax to the true
force-free state of a magnetic field.

The computational implementation of the latter three methods (Grad-Rubin, magneto-
frictional and optimization) in a cubic box in general involves, first, the computation of
a start equilibrium to specify the boundary conditions on the unknown lateral and top
boundaries (hereafter called the “open” boundaries), second, the replacement of the bot-
tom boundary with the measured vector magnetogram and, third, the iterative minimiza-
tion of the force-free boundary value problem. The need to use a start equilibrium (mostly
in form of a potential field) arises from the necessity to prescribe all six boundaries of the
computational box. Clearly, the lower boundary of the box is determined by the measured
magnetic field vector and one is left with the need to specify the open boundaries properly.
Since assigning to all points on the open boundaries a value of zero would oversimplify
the problem, one either can include a variation of the magnetic field on these boundaries
or must specify reasonable values there. The way to do so depends on the numerical
method used and for the particular choices we refer to the corresponding publications as
listed above. For a review of the above listed methods see e.g. Wiegelmann (2008) and
for the comparison of the performance of some of them, as carried out during a series of
yearly workshops, see Schrijver et al. (2006), Metcalf et al. (2008), Schrijver et al. (2008)
and DeRosa et al. (2009). The optimization method is discussed in more detail in § 2.4.1
since this is the method which has been used to calculate the coronal magnetic field in the
presented thesis. Before, another requirement for the vector magnetograph data to be used
as the lower boundary condition for extrapolation methods, namely that the direction of
the measured transverse magnetic field components is truly known, is briefly discussed.

2.4.0.1 180◦-ambiguity

As already mentioned, the lower boundary of the computational box is determined by the
measured magnetic field vector in the photosphere. Most popular and well-understood for
single-height measurements of the solar magnetic field is the Zeeman effect. As discussed
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in § 1.2.1, the lines corresponding to the Zeeman splitting exhibit certain polarizations,
depending on the direction in which an electromagnetic field is vibrating and thus carrying
information about the magnetic field vector. In particular, the line-of-sight component
can be obtained through the circular polarization, while the transverse components can be
estimated using the linear polarization (e.g. Raouafi 2005). The latter implies that there
are for every transverse field vector two possible azimuths which differ by 180◦ (therefore
called the 180◦-ambiguity). The observed signal is the same for both an azimuth angle
of ψ and ψ±180◦. This ambiguity must be resolved before the magnetic field data can
be used as an input for magnetic field extrapolation methods. Several techniques to do so
have been developed and work well for active regions having a potential-field character
but difficulties are met when dealing with non-potential active regions (Metcalf 1994, and
references therein). Until now, no method is known which could resolve this ambiguity
directly using the Zeeman effect and, consequently, further assumptions on the nature
of the magnetic field like, e.g. the spatial smoothness or the divergence-freeness have
to be made. A number of existing algorithms, typically involving the minimization of a
quantity which itself depends on the choice of the azimuth, have been recently tested and
compared in Metcalf et al. (2006) by applying them to model vector magnetic field data.
In particular, methods which combine the minimization of some measure of the vertical
current density with that of an approximation of the divergence were found to be most
promising. However, some methods make use of a potential, LFF or a similar model
at least as a starting condition and so all issues based on the influence of the boundary
conditions to any outcome, as discussed throughout this work, also apply here.

2.4.1 Optimization method
The optimization approach for reconstructing NLFF fields has first been proposed by
Wheatland et al. (2000). The minimization of the global departure of an initial field from
a force-free and solenoidal state is realized for a vector field B(x, t) within a volume V
by minimizing the quantity

L =

∫
V

(
B−2 | (∇ ×B ) ×B |2 + | ∇ ·B |2

)
d3x. (2.14)

If for ideal conditions L reduces to zero, both (∇×B)×B and ∇·B are zero everywhere
in V and therefore a force-free field should exist. Using

Ω = B−2
(

(∇ ×B ) ×B − (∇ ·B )B
)
, (2.15)

the relation (2.14) can be rewritten as

L =

∫
V

B2Ω2 d3x. (2.16)

Taking its time derivative along with applying a number of vector identities (see Appendix
of Wheatland et al. 2000) yields

1
2

dL
dt

= −
∫

V
∂tB · F d3x −

∫
∂V
∂tB ·G dS , (2.17)
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where

F = ∇ × (Ω ×B ) −Ω × (∇ ×B ) − ∇(Ω ·B ) +Ω (∇ ·B ) + Ω2B, (2.18)
G = n × (Ω ×B ) − n (Ω ·B ). (2.19)

Here, n denotes the inward unit normal to the surface ∂V bounding the volume V . If now
B is solved according to ∂tB = τF , with τ> 0 being an arbitrary function and imposing
the boundary condition ∂tB = 0 on ∂V , the evolution of L in (2.17) can be written in the
form

dL
dt

= − 2
∫

V
τ F2 d3x (2.20)

and clearly L decreases since dL/dt ≤ 0. However, it has to be noted that iteratively
solving (2.20) does not ensure that one reaches the global minimum of the functional L.
This means that the reached steady state of the evolution may not correspond to the unique
(if existing) force-free state in V .

However, the condition ∂tB=0 on the boundaries ∂V would make it necessary that all
three components of B are prescribed there. All of the boundaries, in principle, equally
influence the force-free solution inside the domain and for real solar cases one basically
never deals with strictly isolated active regions so that field lines starting somewhere
on the observed magnetogram (i.e. the bottom boundary of the cubic box) might close
somewhere outside the observed region to the solar surface so that they may leave the
computational volume through the open boundaries. In this context, Wiegelmann and
Neukirch (2003) worked out a way how the assumption of ∂tB = 0 on ∂V could be
avoided within the optimization procedure. First, a potential field could be calculated
from the normal component of the photospheric field alone and then imposed on the open
boundaries as an initial condition. This would be reasonable since it is assumed that
potential fields, in general, well represent the coronal magnetic field outside of active
regions. However, to allow magnetic flux to leave the computational volume one would
not keep the boundary values on the open boundaries fixed but would instead continuously
update them, i.e. relax them together with the field inside the box. In other words, since
one would deal with ∂tB,0 in (2.17), the surface term would not necessarily vanish and
one would extend the iteration by ∂tB=τG on the open boundaries. Consequently, (2.20)
would take the form

dL
dt

= − 2
( ∫

V
τ F2 d3x +

∫
∂V
τG2 dS

)
, (2.21)

where the second term on the right-hand side would denote the iteration on the open
boundaries. Then, the boundary values would be changed in such a way that L still de-
creases and the bottom boundary would remain independent of time during the iteration
since it is constrained by the photospheric observation.

Since the iterative update of the values on the open boundaries would be computation-
ally expensive, Wiegelmann (2004) developed an alternative way in order to diminish the
influence of the open boundaries on the NLFF solution inside the computational volume.
He introduced a weighting function w(x, y, z) into (2.14) to explicitly solve

L =

∫
V

w(x, y, z)
(

B−2 | (∇ ×B) ×B |2 + | ∇ ·B |2
)

d3x. (2.22)
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Note that with the choice w(x, y, z) = 1 this is equivalent to the original form of the func-
tional L as introduced by Wheatland et al. (2000). At first, a potential field is calculated
from the normal component of the photospheric field alone and then imposed on the open
boundaries as an initial condition. Around the “physical” region for which w(x, y, z) = 1
(that is the volume of interest including the photosphere at the lower boundary) a finite-
size boundary layer to the open boundaries is introduced in which the weighting function
w(x, y, z) decreases to zero in form of a cos-profile so that deviations from the force-free
state are less severe close to the boundary. In other words, the influence of the assumed
potential field on the open boundaries on the solution in the physical region is the lesser
the farther away from it and finally has no effect on the open boundaries themselves since
there w(x, y, z) = 0. The iteration equation, equivalent to (2.17), then becomes (see Ap-
pendix of Wiegelmann 2004)

1
2

dL
dt

= −
∫

V
∂tB · F̃ d3x −

∫
∂V
∂tB · G̃ dS (2.23)

with

F̃ = wF + (Ωa ×B ) × ∇w + (Ωb ·B ) ∇w, (2.24)
G̃ = wG, (2.25)
F = ∇ × (Ωa ×B ) −Ωa × (∇ ×B )

+ ∇ (Ωb ·B ) −Ωb (∇ ·B ) +
(
Ω2

a + Ω2
b

)
B, (2.26)

G = n × (Ωa ×B ) − n (Ωb ·B ) (2.27)

and

Ωa = B−2
(

(∇ ×B ) ×B
)
, (2.28)

Ωb = B−2
(

(∇ ·B ) B
)
. (2.29)

Since now the weighting function reduces the effect of the assumed values on the
open boundaries on the solution in the volume of interest, again ∂tB = 0 on ∂V can be
required. This is because w(x, y, z) = 0 on ∂V and hence the surface term of (2.23) is
not incorporated directly on the open boundaries. Consequently, the magnetic field inside
the computational volume is iterated using F̃ in (2.20), again with the bottom boundary
remaining independent of time during the iteration. However, it is nevertheless of advan-
tage to choose a sufficiently large vector magnetogram for which the side boundaries are
far away from the central region of interest so that the effect of the open boundaries on
the solution is further reduced.

To summarize, the algorithm of Wiegelmann (2004) to compute the NLFF magnetic
field inside a cubic numerical box and as used in this work, performs several steps. First,
a potential magnetic field is computed from the measured normal component of the mag-
netic field Bz. For initial (test) cases the Fourier representation after Seehafer (1978) was
used but now a Green’s function method after Aly (1989) is applied for this purpose. The
potential field is then used as the initial (start) configuration and to prescribe the open
boundaries. The physical bottom boundary is replaced by the measured vector magne-
togram components B(x, y, z = 0). A finite-size boundary layer is introduced to the open
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boundaries in which a weighting function w(x, y, z) is defined so that it drops to zero in
form of a cos-profile. In this way, the assumption of a potential field around the volume
of interest is less severe closer to it. The field inside the box is then iterated according
to ∂tB = τF̃ with τ > 0 and according to ∂tB = 0 where B is observed (i.e. on the bot-
tom boundary). This continuous form guarantees that L is monotonically decreasing. In
discretized form this is ensured if the iteration (time) step dt is chosen sufficiently small.
After each step the code checks if L(t+dt)< L(t). Is this condition not fulfilled, the cur-
rent iteration step is repeated with dt being reduced by a factor of two. Is the condition
fulfilled, dt is slowly increased by a factor of 1.01 so that the time step can become as
large as possible with respect to the stability condition. The code stops if dt ≤ dt0×10−7

(where dt0 denotes the time step used at the very beginning of the iterative process) or if
|(L(t)−L(t+dt))/L(t)|<10−4 for 100 consecutive iterations.

2.4.1.1 Multi-scale implementation

The optimization code of Wiegelmann (2004) has been extended to use a multi-scale im-
plementation in order to get an optimized initial (start) equilibrium for the NLFF field
computation. For this purpose, the solution in the full resolution box (with a dimen-
sion of, say, 360×360×200 grid points) is not directly evaluated but instead the solution
on different grids is computed in a series of subsequent extrapolations. One starts with
the computation in a smallest cubic box with a coarsest resolution of, say, 90×90×50
grid points. After iterating the field inside this smallest volume until it reaches a relaxed
state, the solution is interpolated onto a larger (finer) grid with, say, 180×180×100 grid
points to be used there as the new start equilibrium. Again, the configuration is itera-
tively relaxed towards a force- and divergence-free state which is then interpolated onto
the full resolution (finest) grid with 360×360×200 grid points as the new starting equi-
librium. The multigrid-like version was first used and described in Metcalf et al. (2008)
and was found to converge faster than the version without this multi-scaling but was also
found to converge at lower values of L in (2.22). The latter means that a more force- and
divergence-free final state can be reached. The faster convergence can be assigned to the
fact that the start equilibrium on the largest grid is already more close to the final solution
on large scales. Additional parallelization of the code using OpenMP for shared-memory
architectures leads to another improvement in the computational speed of the optimization
method.

2.4.2 Preprocessing

As already mentioned, one of the basic assumptions of force-free field models is that the
plasma-β in the solar atmosphere is considerably lower than unity. This, as discussed in
§2.1, is not true for the photosphere in which the available vector magnetograph mea-
surements are performed (see also Fig. 2.1). Thus, nonmagnetic forces can in principle
not be neglected and one may find the measured photospheric magnetic field to repre-
sent an inconsistent lower boundary condition for the NLFF extrapolation. Therefore, it
is unavoidable to apply slight transformations to the observed photospheric data in order
to drive them towards being more force-free and chromospheric-like so that they can be
used as consistent boundary conditions to the extrapolation method. Such “preprocess-
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ing” methods have been developed using either simulated annealing (see Fuhrmann et al.
2007) or incorporating force-free compatibility relations into a minimization procedure
(Wiegelmann et al. 2006, 2008). The latter is discussed in detail in § 2.4.2.3 since this is
the method we use to gain consistent boundary conditions for our NLFF coronal magnetic
field extrapolations. Before, the origin of the aforementioned force-free compatibility re-
lations which are based on the virial theorem extended to the inclusion of magnetic fields
is briefly discussed.

2.4.2.1 Virial theorem

The virial theorem has originally been derived in the context of the kinetic theory of
gases and the extension to include magnetic fields was done by Chandrasekhar and Fermi
(1953). If any force acting on a system is assumed to be constant in time, one can define
a total force per unit volume f exerted on the plasma. If the system is assumed also to be
in equilibrium so that any kinetic energy vanishes, the constraint as imposed by the virial
theorem is ∫

V
f · x d3x = 0. (2.30)

Now, one can separate the forces arising from the magnetic field fm from those of any
other type f ′. Then, fm obviously represents the Lorentz force density so that one can
write ∫

V

(
f ′ + fm

) · x d3x =

∫
V
f ′ · x d3x +

∫
V

(
1
µ0

(∇ ×B ) ×B
)
· x d3x, (2.31)

where J ×B = µ−1
0 (∇×B)×B and where x denotes the position vector. Since we are

concerned with force-free fields here, any force except that exerted by the magnetic field
is neglected (i.e., f ′ = 0) and so one is left with evaluating the second term on the right-
hand side of (2.31). This leads to the requirement

1
µ0

∫
V

B2 d3x =
1
µ0

∫
∂V

B2 (x · n ) dS − 2
µ0

∫
∂V

(B · x ) (B · n ) dS , (2.32)

where n denotes the outward normal to the surface (for details see e.g. Marsch 1996).
The term on the left hand side of (2.32) is the total magnetic energy which is a positive
definite quantity and assumed not to be zero. Consequently, the field on the surface and
hence the surface terms on the right-hand side of (2.32) cannot vanish. This means that
there must be external forces to balance the outwardly directed pressure due to the total
magnetic energy and thus that the virial theorem relates the magnetic field energy in a
volume V to the magnetic field value on the surface ∂V . In principle, the virial theorem
can therefore be used to estimate the magnetic energy in a given force-free volume based
on the knowledge of the magnetic field on its boundary (e.g. Metcalf et al. 2008).

2.4.2.2 Force-free consistency criteria

As shown before, through the magnetic virial theorem one is able to estimate the en-
ergy content of a force-free magnetic field based on its values on the volume’s bounding
surfaces. Since, in general, the magnetic field on the open boundaries is unknown and
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only the magnetic field on the lower boundary (the photosphere) is observed, Moloden-
skii (1969), Molodensky (1974) and Aly (1989) defined conditions in Cartesian geometry
what a vector magnetogram has to fulfill in order to be consistent with the assumption of
a force-free field. The integral relations and their meaning as derived for force-free fields
B(x, y, z)= (Bx, By, Bz) are:

1. The net flux through the photospheric boundary S is balanced, i.e.

M0 =

∫
S

Bz dS = 0, (2.33)

with dS =dx dy at z=0. This clearly needs, at least to a good degree of approxima-
tion, to be satisfied for the region under consideration.

2. Force-free fields can, on average, not exert pressure on the photospheric boundary
S and cannot induce shear stresses along the x- and y- direction, i.e.

M1 =

∫
S

Bx Bz dS = 0, (2.34)

M2 =

∫
S

By Bz dS = 0, (2.35)

M3 =

∫
S

(
B2

x + B2
y

)
dS −

∫
S

B2
z dS = 0. (2.36)

3. Force-free fields cannot induce rotational moments along the boundary x-, y- or
z-axis, i.e.

M4 =

∫
S

x
(

B2
x + B2

y

)
dS −

∫
S

x B2
z dS = 0, (2.37)

M5 =

∫
S

y
(

B2
x + B2

y

)
dS −

∫
S

y B2
z dS = 0, (2.38)

M6 =

∫
S

y ( Bx Bz ) dS −
∫

S
x By Bz dS = 0. (2.39)

The relations (2.34) – (2.39) are always fulfilled for potential magnetic fields because of
the vanishing electric currents (J =0) which could be created, e.g., by currents at one side
of the plane S . However, if currents flow on either side of S both impulse and momentum
can be transferred from one side to the other and the distribution of the field in the plane
will not satisfy these relations (Molodensky 1974). For completeness, we note that Aly
(1984) also derived such compatibility relations which are valid in an arbitrary geometry.

The above integral relations represent moments arising from the magnetic virial theo-
rem and one could in principle additionally take higher-order moments into account. Then
also the energy relation (2.32) can be written as

1
2 µ0

∫
V

B2 d3x =
1
µ0

∫
S

Bz

(
x Bx + y By

)
dS (2.40)

which means that the total energy content of the field can be approximated through the
magnetic field distribution in a certain plane.
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2.4.2.3 Classical preprocessing

Based on the force-free consistency criteria described above, Wiegelmann et al. (2006)
defined three dimensionless parameters. The introduced flux-balance parameter εflux, the
force-balance parameter εforce and the torque-balance parameter εtorque quantify if an ob-
served photospheric vector magnetogram suffices the flux-balance criterion (2.33), the
force-balance criteria (2.34) – (2.36) and the torque-balance criteria (2.37) – (2.39), re-
spectively. Explicitely, they take the form

εflux =
M0∫

S
| Bz | dS

, (2.41)

εforce =
|M1 | + |M2 | + |M3 |∫
S

(
B2

x + B2
y + B2

z

)
dS

, (2.42)

εtorque =
|M4 | + |M5 | + |M6 |∫

S

√
x2 + y2

(
B2

x + B2
y + B2

z

)
dS

(2.43)

and where, ideally, εforce =0 and εtorque =0 for an existing force-free field.

The fact that taking a sufficiently flux-balanced, isolated active-region magnetogram
(i.e., εflux� 1) may not guarantee that the force-free conditions are fulfilled, i.e. that the
magnetogram may not be force-balanced (εforce 3 1) and may not be torque-balanced
(εtorque31), led to the development of an iterative method in which a functional

Lpp =

4∑
n=1

µn Ln (2.44)

is minimized. The numerical implementation of this functional by Wiegelmann et al.
(2006) provides the heart of the preprocessing of photospheric magnetograms and in the
prospect of later developed extensions (n>4, as described in § 2.4.2.4) this basic approach
is in the following called the “classical” preprocessing. Represented by n=1 and n=2 in
(2.44), the initial surface integral relations for εforce (2.42) and εtorque (2.43) are replaced
by summations over all grid nodes p of the bottom (photospheric) surface grid in the form

L1 =
( ∑

p

Bx Bz

)2
+

( ∑
p

By Bz

)2
+

( ∑
p

B2
z − B2

x − B2
y

)2
, (2.45)

L2 =
( ∑

p

x ( B2
z − B2

x − B2
y )

)2
+

( ∑
p

y ( B2
z − B2

x − B2
y )

)2

+
( ∑

p

( y Bx Bz − x By Bz )
)2
. (2.46)

An additional condition, represented by n=3 in (2.44) and measuring the nearness of the
optimized boundary conditions to the observed data, is introduced in the form

L3 =
∑

p

(
Bx − Bobs

x

)2
+

∑
p

(
By − Bobs

y

)2
+

∑
p

(
Bz − Bobs

z

)2
, (2.47)
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where Bobs
x , Bobs

y and Bobs
z denote the truly measured photospheric (z = 0) magnetic field

vector components. The fourth term of the classical preprocessing method, corresponding
to n=4 in (2.44), is defined as

L4 =
∑

p

( ∆Bx )2 +
∑

p

( ∆By )2 +
∑

p

( ∆Bz )2, (2.48)

where ∆ denotes the 2D Laplacian operator (the associated differentiation is done using
an usual five-point stencil). Note that since each constraint Ln in (2.44) and as introduced
in (2.45) – (2.48) represents a different quantity with different physical units, a weight-
ing factor µn for each of it is formally necessary but also allows to give more or less
importance to the individual terms.

The aim of the procedure is to minimize all Ln simultaneously so that the modified
photospheric vector magnetogram in this way suffices the force- and torque-free condi-
tion (which are enforced by (2.45) and (2.46), respectively). Furthermore, (2.47) ensures
that the optimized boundary conditions do not deviate too much from the measured pho-
tospheric data and additionally, with the help of (2.48), the boundary data is smoothed.
The latter is a necessary requirement for the successful performance of the NLFF extrapo-
lation code in which we make use of finite differences but also physically motivated since
the magnetic field at the base of the corona clearly shows much smoother structures than
at the photospheric levels where the magnetic field measurements are performed. Usu-
ally, most weight is given to the force-free and torque-free conditions, followed by the
smoothing and the nearness to the actually observed data. Here it should be noted that not
the actual weight of the individual terms is of importance but the relative one. The opti-
mal combination of the µn is usually found by preprocessing one set of photospheric data
from an individual instrument with numerous combinations of different µn (see § 2.4.2.4
for details).

Using the known set of analytical, closed force-free solutions by Low and Lou (1990)
and adding artificial noise models on it, Wiegelmann et al. (2006) were able to show that
applying the NLFF algorithm to the unpreprocessed photospheric-like lower boundary
data showed a poor agreement with the original analytical solution while preprocessing
the lower boundary data and subsequent extrapolation led to a reasonably good agree-
ment with the analytical model field. This is because the preprocessing routine uses the
noisy transverse magnetic field components (Bx and By in (2.45) – (2.48) which are for
real cases measured with much less accuracy than the normal component Bz) to drive
the lower boundary magnetogram towards boundary conditions which are more consis-
tent with the force-free assumption. In addition, Wiegelmann et al. (2006) tested the
effect of preprocessing using a real photospheric data set as measured with the Solar Flare
Telescope-Vector Magnetograph (SFT-VM; Sakurai et al. 1995) of the National Astro-
nomical Observatory of Japan. The magnetic field extrapolation based on the prepro-
cessed SFT-VM data showed that the optimization code converged at a final value of the
functional L by orders of magnitude lower than if applied to the not preprocessed data.
The positive effect of preprocessing the photospheric vector magnetograph data prior to
its input to different existing NLFF field extrapolation methods was also demonstrated
by Metcalf et al. (2008) using a solar-like reference model (see van Ballegooijen et al.
2007, and § 2.4.2.4). This model includes realistic photospheric Lorentz forces and a
complex field topology containing a weakly twisted, helical flux rope. In particular, it
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was found that some smoothing of the original data is advantageous especially for extrap-
olation methods involving numerical differentiation and hence that the smoothing term
(2.48) should not be disabled by setting µ4 = 0 in (2.44). It was also shown that trying
to reproduce a present flux rope in the solar-like reference model based on the forced,
not preprocessed photospheric data was not successful at all but that it was qualitatively
replicated when feeding the extrapolation codes with the preprocessed values of the lower
boundary.

Despite the relative success of the classical preprocessing, the routine was attempted
to be further improved by the inclusion of additional information regarding the chromo-
spheric magnetic field using chromospheric Hα images and the corresponding extension
to the classical preprocessing scheme is discussed in the following.

2.4.2.4 Hα-preprocessing

Wiegelmann et al. (2008) extended the preprocessing routine by implementing the idea
that the performance of the original classical preprocessing method, as described in
§ 2.4.2.3, can be improved by taking information about the magnetic field orientation in
the chromosphere into account. Such information can be in form of, e.g., chromospheric
fibril observations in the Hα 656.3 nm spectral line and the procedure is therefore called
“Hα-preprocessing”.

Hereby, we incorporate the general assumption that the Hα fibrils are oriented along
the horizontal chromospheric magnetic fields to connect the penumbral areas of sunspots
with the surrounding plage regions. The involvement of the Hα information is realized
with the help of an additional term µ5L5 added to (2.44) in the form

L5 =
∑

p

wpp ( Bx Hy − By Hx )2 =
∑

p

wppB
2
‖ sin2φ (2.49)

with

sinφ =
B‖ ×H
|B‖ ||H | , (2.50)

where B‖= (Bx, By) is the projection of the photospheric magnetic field vector in the im-
age (xy-) plane, φ is the angle of the projected magnetic field vector with the Hα fibrils on
the xy-plane, H = (Hx,Hy) is the direction of the chromospheric Hα fibrils and |H | is an
unit tangent vector to the chromospheric fibrils projected onto the solar photosphere and
thus representing the field direction with an 180◦-ambiguity (see also § 2.4.0.1). From
this, however, no difficulty arises since only the orientation but not the direction of the
magnetic field is aimed to be reproduced correctly by the Hα-preprocessing. The space-
dependent weighting function wpp = wpp(x, y) is not a priori related to the magnetic field
strength and can be specified to indicate the confidence level of the detected fibril direc-
tion. In regions without reliable Hα signatures one sets Hx =0 and Hy =0 so that only the
classic preprocessing terms (2.45) – (2.48) in (2.44) apply. In regions where the observed
Hα fibrils are assumed to picture the magnetic field orientation the weighting function
wpp can be used to give more or less importance to different parts of the Hα image where
Hx , 0 and/or Hy , 0 (with the limits wpp = 1 and wpp = 0 for reliable or not trustworth
Hα information, respectively).
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Figure 2.2: Hα fibril model as used within the Hα-preprocessing and as estimated from the solar-
like force-free model chromosphere of A. A. van Ballegooijen. The Hα-fibrils are thought to give
information about the transverse magnetic field orientation (with an 180◦-ambiguity).

The Hα-preprocessing method was tested using the active-region model developed by
A. A. van Ballegooijen. For constructing the model, a full-disk photospheric line-of-sight
SoHO/MDI magnetogram of Oct 10, 2005 was used which showed the isolated NOAA
active region 10814 south of the solar equator. From this photospheric data, as a first
step, a potential (current-free; αff =0) field was computed in spherical coordinates. Corre-
sponding to an observed Hα filament, following the inversion line of active region 10814,
a model flux rope (S-shaped, sinistral) was inserted into the calculated 3D potential field
configuration (for details see van Ballegooijen (2004) and van Ballegooijen et al. (2007)).
The whole system was then relaxed to a NLFF state of equilibrium using a magneto-
frictional method (van Ballegooijen et al. 2000, and see also § 2.4) and interpolated onto
a rectangular grid. The resulting active-region model is force-free throughout the entire
cubic computational domain except within two grid points above the lower boundary.
The layer at the bottom of the force-free region (i.e. the layer at the third grid point above
the lower boundary of the box) was taken to represent a chromospheric-like solar mag-
netic field and thus was used to derive the direction vectors for the artificial Hα image
(see Fig. 2.2), needed to test the Hα-preprocessing routine. For appropriately testing the
effect of including Hα information in the preprocessing method, we first searched for
the optimum combination of µ1 – µ4 within the classical scheme (with the initial choice
µ5 = 0). This makes sense, since we need to keep a certain combination of µ1 – µ4 fixed
in order to truly investigate the effect of including Hα information by incorporating the
L5-term (2.49) in (2.44) later on. As already mentioned, within the classical preprocess-
ing scheme most weight is given to the force-balance and torque-balance conditions (i.e.,
µ1 =µ2 =µ12 =1) and less weight is given regarding the deviation of the optimized bound-
ary conditions from the actually observed data (i.e., µ3 <µ12) and to the computationally
and physically motivated smoothing (i.e., µ4<µ12).
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Figure 2.3: Pearson correlation of the classical preprocessed photospheric field with the model
chromosphere for the transversal components Bx (left panels) and By (right panels) as a function
of the combination of different preprocessing parameters µ3 and µ4. The local maximum around
µ3 =0.05 and µ4 =0.15 (panels (a) and (b)) was analyzed in more detail (panels (c) and (d)) to find
the maximum of the correlation coefficient for both Bx and By at µ3 = 0.025 and µ4 = 0.155. The
color bar indicates the derived values of the correlation coefficient.

To find the best performing combination of µ3 and µ4 (while µ12 is held fixed) within
the classical scheme, about 103 combinations of the two parameters were used to pre-
process the photospheric model boundary. The relative performance of these parameter
combinations were then evaluated by calculating the Pearson correlation coefficient be-
tween the preprocessing result and the model chromosphere. This was done only for
the transversal components (Bx and By) since the correlation of the preprocessed and
model-chromospheric normal component (i.e. the line-of-sight component Bz) is in any
way higher. Note that this should apply for real solar cases, too since the line-of-sight
component of the magnetic field is not affected by the ambiguity problem and since the
measurement accuracy of this component is usually higher than that of the transversal
components. Out of about 800 combinations of −5.0 < (µ3, µ4) < 5.0 (with step sizes of
∆µ3 = ∆µ4 = 0.5 for −5.0 < (µ3, µ4) < 5.0 and ∆µ3 = ∆µ4 = 0.1 for −1.0 ≤ (µ3, µ4) ≤ 1.0)
we found a most pronounced local maximum clearly within −0.5 < (µ3, µ4) < 0.5 and
therefore, we computed another 100 combinations of −0.25 ≤ (µ3, µ4) ≤ 0.25 with a re-
duced step size of ∆µ3 = ∆µ4 = 0.05. Hereafter, the local maximum for both transversal
magnetic field components Bx and By was more precisely localized around µ3 = 0.05 and
µ4 = 0.15 (see panels (a) and (b) in Fig. 2.3). The region around this local maximum was
then analyzed in more detail by using these two values as a new initial guess. Another 100
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Figure 2.4: Illustrative results of the performance of the classical preprocessing, applied to the not
force-free model photosphere of A. A. van Ballegooijen. The top and second row show the force-
free model chromospheric and not force-free model photospheric magnetic field, respectively. The
third row shows the classical-preprocessed photospheric model data, where the optimum combi-
nation of the preprocessing parameters (µ12 =1.0, µ3 =0.025 and µ4 =0.155) has been used. From
left to right, Bx, By and Bz are shown. The color bar gives the magnetic field strength in mT.
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Figure 2.5: Weighting functions wpp(x, y) used to test the Hα-preprocessing. The different weight-
ing functions w2

pp, w3
pp and w4

pp are shown in panel (a), (b) and (c), respectively. The values of
wpp, as indicated by the color bar, control the degree of incorporation of the Hα-fibril information
shown in Fig. 2.2.

combinations of µ3 and µ4 around this pair, with a reduced step size of ∆µ3 =∆µ4 =0.005
were then investigated so that the absolute maximum of the correlation coefficients was
identified at µ3 = 0.025 and µ4 = 0.155, for both Bx and By (see panels (c) and (d) in
Fig. 2.3, respectively). The resulting classical-preprocessed photospheric magnetic field
is shown in the last row of Fig. 2.4. The best-performing combination of µ3 and µ4 found
in this way was, together with µ12 =1.0, held fixed during the tests regarding the inclusion
of Hα information as described in the following.

Equipped with the knowledge of the best-performing combination of µ1 – µ4 within the
classical preprocessing scheme we then aimed to find the suitable parameters for including
information from the model Hα image (see Fig. 2.2) into the preprocessing. For this
purpose, the weighting function wpp(x, y) in (2.49) has been defined in four different ways.
We assumed, first, that every point of our artificial Hα image gives the exact orientation
of the chromospheric magnetic field (i.e., wpp(x, y) = w1

pp = 1.0). Second, we presumed
that the magnitude of the underlying photospheric magnetic field Bph directly indicates
the reliability of the overlying chromospheric Hα information to define the corresponding
weighting function as wpp(x, y)=w2

pp =
√

(B2
x+B2

y +B2
z )ph (see panel (a) in Fig. 2.5). Third,

we assumed that only points in the Hα image corresponding to regions in the underlying
photosphere with a magnetic field magnitude≥ 50% of the maximum magnitude carry
valid Hα information. Therefore, we defined wpp(x, y) = w3

pp = 1.0 where w2
pp ≥ 0.5 and

wpp(x, y) = w3
pp = 0.0 where w2

pp < 0.5 (see panel (b) in Fig. 2.5). Similarly we assumed,
fourth, that only points in the Hα image corresponding to regions with magnetic field
magnitudes ≥ 10% of the maximum magnitude can be taken as trustworthy to define
wpp(x, y) = w4

pp = 1.0 where w2
pp ≥ 0.1 and wpp(x, y) = w4

pp = 0.0 where w2
pp < 0.1 (see

panel (c) in Fig. 2.5). We searched for the optimal values of µ5 for each of the different
weighting functions (w1

pp – w4
pp) in the range 0.0<µ5 < 2.5. Initially, we used a step size

of ∆µ5 = 0.05 and, around the first appearing maximum, we used a reduced step size of
∆µ5 =0.005. We calculated the Pearson correlation coefficient between the chromospheric
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reference field and the minimum solution of the preprocessing routine which provided us
with the optimal values of µ5 for the different weighting functions. Precisely, these were
µ5 = 1.525, µ5 = 1.765, µ5 = 1.880 and µ5 = 2.115 for w1

pp, w2
pp, w3

pp and w4
pp, respectively.

The Hα-preprocessed photospheric magnetic field, using w1
pp, w2

pp and w3
pp is shown in the

second, third and fourth row of Fig. 2.6, respectively.
The classical-preprocessed model photosphere, as pictured in the last row of Fig. 2.4,

already well reproduces the model chromosphere (as shown in the first row of the same
figure). The Hα-preprocessed model photosphere, however, was found to match the refer-
ence model chromosphere even better (see the lower three rows of Fig. 2.6). The quality
of the classical and Hα-preprocessing was evaluated by testing how well the magnetic
field, extrapolated from the preprocessed boundary conditions, agrees with the reference
field. Here, with reference field we mean the magnetic field which we extrapolated from
the model chromosphere. In particular, beside other quantities, we evaluated the total
magnetic energy of an extrapolated field, normalized to a reference field in the form

εmag =

∑
i

∣∣∣B?
i

∣∣∣2∑
i

∣∣∣Bi

∣∣∣2 , (2.51)

where B?
i and Bi are the magnetic field vectors at each grid point i. Here, B? denotes

the 3D magnetic field as extrapolated from the preprocessed data, and B represents the
3D magnetic field, extrapolated from the model chromosphere.

We found that the extrapolations based on the preprocessed fields provide much better
results than those obtained by using the unpreprocessed model photosphere. For the clas-
sical preprocessing we get the magnetic energy content of the 3D magnetic field correct
to within an error of ≈ 3%, whereas for unpreprocessed data we get an error of ≈ 35%.
Taking the chromospheric Hα information into account the result improves with respect
to the classical preprocessing so that the magnetic energy is recovered with an accuracy of
≈ 1% or better, even for the cases where we used the chromospheric information only in
parts of the entire region (depending on the choice of the weighting function wpp(x, y); for
the detailed analysis see Wiegelmann et al. 2008). However, it should be noted here, that
in principle one could also vary all µn simultaneously and that we therefore cannot ex-
clude that there might exist a combination of µ1 – µ5 resulting in an even better agreement
of our preprocessed field and the model chromospheric field. This would, however, not
be a suitable way to deal with real data because usually no routine chromospheric vector
field measurements exist to test the result. Moreover, it is not possible to provide one op-
timal parameter set suitable for different vector magnetographs. The optimal combination
of the preprocessing parameters has to be carried out for different instruments separately.
Nevertheless, we indeed expect that an optimal parameter set for a certain instrument and
particular region will also be useful for the preprocessing of other regions of the same
kind observed with the same instrument.

In the future, a further improvement of the performance of the preprocessing could
be achieved with the help of additional observations, e.g., in the form of line-of-sight
chromospheric field measurements as provided by the Synoptic Optical Long-term Inves-
tigations of the Sun (SOLIS; Keller et al. 2003a) survey of the National Solar Observatory.
These data could be included directly in the L3-term, either as a certain information or in
some weighted combination with the photospheric line-of-sight magnetic field.
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Figure 2.6: Illustrative results of the performance of the Hα-preprocessing, applied to the not
force-free model photosphere of A. A. van Ballegooijen. The top row shows the force-free
model chromospheric magnetic field. The second, third and fourth row show the result of Hα-
preprocessing the photospheric-like data, using w1

pp, w2
pp, w3

pp and w4
pp, respectively. From left to

right, Bx, By and Bz are shown. The color bar gives the magnetic field strength in mT.
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2.5 Summary
Since routine measurements of the chromospheric and coronal magnetic field are usu-
ally not available, numerical methods to estimate the magnetic fields in the upper solar
atmosphere have been developed and extensively tested. Based on a number of assump-
tions about the physical conditions in the mid- and upper chromosphere and corona its
magnetic field can be calculated using force-free field extrapolation methods. The coro-
nal magnetic field can be approximated either by potential (current-free), linear force-
free (constant-αff) or nonlinear force-free (non-constant-αff) fields. While potential and
constant-αff fields are only capable of reproducing the true coronal magnetic field (and
in particular its magnetic energy content) to a certain extent the more general approach
of non-constant-αff fields is favorable. In contrast to the aforementioned simpler mod-
els, these methods need the full photospheric magnetic field vector as the lower boundary
condition. In general, as the photosphere is a region in the solar atmosphere where the
force-free assumption is known not to be justified, the magnetograms have to be pre-
processed in order to achieve a set of boundary conditions compatible with the force-free
extrapolation method. For this purpose, a well-tested preprocessing routine can be used to
achieve consistent lower boundary conditions in which, optionally, chromospheric mag-
netic field information in form of the orientation of Hα fibrils or line-of-sight magnetic
field measurements can be included.

A number of numerical implementations of the force-free boundary value problem
exist and for the presented work an optimization approach is used to extrapolate the 3D
magnetic vector from the preprocessed (consistent) photospheric boundary values into
the corona. Then, one is able to investigate the 3D coronal magnetic field topology and
can estimate the related physical quantities such as the magnetic energy content, the free
magnetic energy (which can partly be released during solar eruptions based on the recon-
figuration of the magnetic field), the magnetic energy density (that is the stored magnetic
energy per unit volume) and also the current and magnetic helicity density.

The next chapter, therefore, deals with the application of our potential and nonlinear
force-free models to calculate the coronal magnetic field above two solar active regions.
In particular, the temporal evolution of the magnetic energy content, the associated energy
density, as well as the magnetic field topology in the course of solar eruptions launched
from these active regions are analyzed.
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This chapter deals with the application of our potential and nonlinear force-free field mod-
els to calculate the coronal magnetic field above solar active regions. A short review of
recent applications of force-free techniques to extrapolate the photospheric magnetic field
vector into the corona is given in § 3.1. The method used for our own detailed analysis of
solar active regions is outlined in § 3.2.1. The results that arose from applying our method
to the two solar active regions NOAA 10540 and NOAA 10960 are discussed in detail in
§ 3.2.2 and § 3.2.3 and have partly been published in Thalmann and Wiegelmann (2008)
and Thalmann et al. (2008), respectively. Finally, a short summary is given in § 3.3.

3.1 State of the research
When magnetic flux emerges from below the solar surface and expands into the corona,
the coronal magnetic field is destabilized, leading to explosive phenomena such as flares
and coronal mass ejections. The free magnetic energy to be released during these events,
is believed to be stored in current-carrying coronal magnetic fields that appear twisted or
sheared. In general, the energy necessary for such large-scale phenomena is assumed to
be stored and released in the corona, although the evolution of the lower lying photosphere
certainly has an influence on the available amount of free energy above. To investigate the
magnetic field configuration in the solar corona, methods have been developed to derive
it from routinely observed photospheric magnetograms.

Coronal magnetic reconstruction techniques have been used in many studies, mainly
using the linear force-free (LFF) assumption. For instance, van Driel-Gesztelyi et al.
(2000) studied two sigmoid events related to CMEs by matching an extrapolated LFF
field with data from the Yohkoh/Soft X-ray Telescope (SXT; Tsuneta et al. 1991). It was
noticed that the observed long loops and bright short loops were best characterized by dif-
ferent force-free parameters αff but also that the LFF extrapolations could not recover the
sigmoidal shape exactly since the magnetic twist, which within LFF computations is con-
sidered to be homogeneous, is likely to be more concentrated in reality. Tang et al. (2000)
used a trial and error method to fit a LFF model with Yohkoh/SXT and NAOJ/SFT Hα
data to study a brightening event. Their extrapolated field was found to be potential-like
and closely matching the observed large soft X-ray loops around the brightening region.
The observed small-scale soft X-ray loops, however, were found to be not oriented along
the potential field lines before the brightening. More recently, Mandrini et al. (2005)
analyzed the coronal magnetic field around a sigmoidal X-ray bright point. By compar-
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ing the model magnetic field lines to coronal loops, observed with the Transition Region
And Coronal Explorer (TRACE; Handy et al. 1999), they found the force-free parameter
αff to be higher in the core of the investigated active region (AR) than in the peripheries
and the derived values of αff indicated that the coronal magnetic field configuration was
highly non-potential. In both aforementioned cases, the Fast Fourier Transform method
as proposed by Alissandrakis (1981) was used to extrapolate the LFF field from the pho-
tospheric line-of-sight magnetic field component.

However, as discussed in § 2.3, LFF models cannot fully recover the free magnetic
energy to power eruptive processes as it is the excess energy of a LFF field which can
partly be transformed into kinetic energy during dynamic events. Therefore, nonlinear
force-free (NLFF) field models are needed to be able to describe the magnetic field related
to explosive phenomena.

Using one or the other of the existing NLFF field extrapolation methods (see § 2.4),
several studies have been concerned with the energy content of the magnetic field above
solar ARs. Bleybel et al. (1999, 2002) used the Grad-Rubin-like NLFF field model of
Amari et al. (1999) which assumes that the normal component of the magnetic field van-
ishes on the lateral and top boundaries of the computational box. They estimated the
global energy budget of NOAA AR 7912 before and after a long duration C1.6 flare on
Oct 14, 1995 and found a decrease in the magnetic energy over the course of the eruption.
The post- as well as the pre-flare configuration showed a total magnetic energy content
in the order of 1025 J. Furthermore, the coronal magnetic field was found not to relax to
a constant-αff LFF state, i.e. still containing nonlinearities and hence not supporting Tay-
lor’s relaxation hypothesis (for the formal derivation and a detailed discussion of Taylor’s
hypothesis see § 4.1.3.1). Analyzing NOAA AR 8151, as visible in Feb 1998 and also
using a Grad-Rubin-like method, Régnier et al. (2002) found that the available free mag-
netic energy was not high enough (∝ 1024 J) to produce a large flare. The 3D magnetic
configuration of a simultaneously observed Hα filament and X-ray sigmoid has been stud-
ied in detail by Régnier and Amari (2004). Their finding of the observed sigmoid to be
situated higher in the corona than the observed filament, though having the same orien-
tation, is in agreement with earlier observational and modeling works. Additionally, the
electric current density in these structures was found to be opposite. The same AR in its
decaying phase was compared with the newly emerged NOAA AR 8210 of May 1998
by Régnier and Priest (2007b) who found the free energy of both ARs to be within the
same order of magnitude. Furthermore, they concluded that this amount of energy was
high enough to trigger a series of small flares (which have been described in detail by
Régnier and Canfield 2006). The same extrapolation method was used to analyze NOAA
AR 10486 on Oct 27 and 28, 2003 by Régnier et al. (2005b) where the amount of free
energy was estimated as being proportional to 1025 J. They also showed that even if the
physical meaning of the potential field (αff = 0) approximation is restricted, the study
of the long-term evolution of the potential field energy can be useful to understand the
nature of an AR. To get insights into the geometry, topology and connectivity of the mag-
netic field, however, it was pointed out that NLFF computations are required. The same
AR, two days later on Oct 29, 2003 was explored by Metcalf et al. (2005). Applying the
magnetic virial theorem to chromospheric vector magnetograms from the Imaging Vec-
tor Magnetograph at the Mees Solar Observatory (MSO/IVM; Mickey et al. 1996), they
noticed an increase in the free magnetic energy prior to a flare and that part of the final
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amount of free energy (∝ 1026 J) was sufficient to power an X-class flare. Also Régnier
and Priest (2007a) compared the free magnetic energy of two ARs at distinct evolutionary
stages as computed with the help of different mathematical approaches. They found that
for both, a decaying AR and a newly emerged one, the photospheric distributions of the
current density and αff neither showed any particular patterns nor exhibited any evidence
of an organized distribution. For the decaying NOAA AR 8151 higher values of αff were
found, indicating the presence of strong currents in the magnetic configuration, while for
the newly emerged NOAA AR 8210 lower αff values were found, indicating the exis-
tence of weak currents. Consequently, as the present electric currents are thought to be
responsible for the storage of magnetic energy in the corona, ≈40% and ≈3% of the total
magnetic energy was estimated to having been stored in the decaying and newly emerged
AR, respectively. Most recently, Jing et al. (2008) have calculated the shear parameters
around the flaring polarity inversion line of NOAA AR 10930 before and after the oc-
currence of an X3.4 flare based on the extrapolation of observations performed with the
Solar Optical Telescope on board Hinode (Hinode/SOT; Kosugi et al. 2007). The com-
parison of the height variations of the shear parameters in the pre- and post-flare NLFF
fields led them to conclude that ≈ 8 Mm seemed to be a critical height below which the
non-potentiality of the field increased after the flare. Above this critical height, up to a
height of about 70 Mm, the field was found to have relaxed to a more potential state and
thus was found to be likely the altitude range in which the energy release had happened.
Besides this, various NLFF extrapolation codes were applied to the aforementioned pre-
and post-flare Hinode/SOT data, finding a decrease of the free magnetic energy in the
order of 1025 J, high enough to power the observed X-class flare (Schrijver et al. 2008).

3.2 Applications

3.2.1 Method

As the observed photospheric vector magnetograph data is extracted from magnetic field
measurements at a level in the solar atmosphere that is known to be not force-free, the
solution to the force-free equations as introduced in § 2.4 may not exist (Gary 2001, Met-
calf et al. 1995). The consistency of the observed data with the force-free assumption can
be checked with integral relations (see § 2.4.2.2, Molodenskii (1969), Molodensky (1974)
and Aly (1989)). These criteria allow dimensionless parameters to be computed that rep-
resent an estimate of the total force and torque on the bottom boundary layer, i.e. the
observed vector magnetograph data (see § 2.4.2.3 and Wiegelmann et al. (2006)), whose
values should be small in order to find a force-free solution in the corona above.

To achieve the consistency of the observed photospheric data with the force-free as-
sumptions, we apply the preprocessing routine as developed by Wiegelmann et al. (2006).
As explained in § 2.4.2.3, the procedure minimizes a functional so that the in this way
modified photospheric vector magnetogram suffices the force-free and torque-free condi-
tions, that the optimized boundary condition does not deviate too much from the measured
photospheric data and that the boundary data is sufficiently smooth. The different involved
criteria are individually weighted and as a first step when dealing with real solar data the
optimal combination of the weighting parameters has to be carried out. Once found, how-
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ever, the preprocessed data provide consistent boundary conditions for a NLFF coronal
magnetic field extrapolation. For calculating the NLFF field from these more suitable
boundary conditions we use the multigrid-like optimization code of Wiegelmann (2004)
which is a modification of the optimization approach originally proposed by Wheatland
et al. (2000). It evolves the magnetic field matching the volume-integrated boundary,
force-free and divergence-free conditions (for details see § 2.4.1). Besides computing
NLFF fields, we also calculate the corresponding potential fields that can be determined
from the vertical (line-of-sight) photospheric field alone, using a Green’s function method
after Aly (1989).

For NLFF field extrapolations, vector magnetograph data are needed near the solar
disk center to minimize unavoidable foreshortening effects. If one wants to consider the
temporal evolution of the coronal field this, of course, represents a kind of restriction
since the observed AR follows the solar rotation. Nevertheless, the observation of the
same AR for several consecutive days is important for conclusions about the energy evo-
lution before and after eventual eruptive phenomena. Gary and Hagyard (1990) worked
out in detail the problems due to the 180◦-ambiguity (see also § 2.4.0.1) and curvature
of the Sun associated with off-center magnetograms. For both, a highly non-potential
AR close to the solar limb and a quasi-potential AR near the disk center, the azimuthal
ambiguity could not be completely resolved by a potential-field acute-angle calculation.
Consequently, improper ambiguity resolutions were found to significantly influence the
heliographic results and thus the interpretation of the magnetic field structure. Further-
more, they concluded that the curvature of the Sun must be taken into account for regions
being located at angles of more than 50◦ off the solar disk center.

Once extrapolated, we calculate the total magnetic energy content of the 3D magnetic
fields by evaluating the volume integral

Em =
1

2 µ0

∫
V

B2 d3x, (3.1)

where B2(2 µ0)−1 is called the magnetic energy density and µ0 is the magnetic permeability
of vacuum. If one substracts the magnetic energy content of an extrapolated potential field
EPOT

m from that of the corresponding NLFF field ENLFF
m one finds an upper limit for that part

of the magnetic energy which can be set free and which is, therefore, called the “free”
magnetic energy ∆ENLFF

POT = ENLFF
m −EPOT

m . Alternatively, as shown by Régnier and Priest
(2007b), one can use the LFF field as a reference field to calculate ∆ENLFF

LFF = ENLFF
m −ELFF

m .
To avoid the problems of an unbounded domain, namely the energy being infinite and the
field possessing unphysical reversals, they first computed the NLFF field inside a finite
domain using the vector potential Grad-Rubin-like method (Amari et al. 1997, 1999).
Then they determined the corresponding LFF field by an iterative scheme to find the αff-
value matching the helicity of the NLFF field. Calculating the amount of free magnetic
energy in both of the aforementioned ways and comparing the results to the observed
eruptive phenomena they concluded that, for their particular method to extrapolate the
coronal magnetic fields, ∆ENLFF

LFF might give a better estimate. Another way to estimate the
coronal energy content is to use the magnetic virial theorem (see § 2.4.2.1, Molodensky
(1974) and Aly (1989)). The magnetic energy in the half-space z > 0 above the surface
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∂V at z=0 based on the virial theorem, i.e. following from (2.32), can be written as

EVIR
m =

1
µ0

∫
S

(
x Bx + y By

)
Bz dS , (3.2)

where S denotes the lower, force-free boundary. Here, besides the assumption of a force-
free field, it is additionally assumed that the field falls off sufficiently fast. Note that, in
principle, the virial energy can be estimated using all boundaries of a considered volume
but that for real solar cases it is only the lower boundary for which the magnetic field
is known. An extensive study about the ability of using the magnetic virial theorem for
magnetic energy estimations above the photosphere was done by Klimchuk et al. (1992).
Based on the vector magnetograph information used in their study, they concluded that the
best magnetic energy determinations would be accurate to only ≈ 30% and also that not
all instruments can be expected to provide this accuracy. This uncertainty was suspected
to be rooted in the noise level of the magnetograms and based on the fact that the solar
photosphere is not force-free, as shown by Metcalf et al. (2008), using a solar-like model
atmosphere by van Ballegooijen et al. (2007). There, (3.2) was applied to the model
photosphere (i.e. the lower boundary of the cubic model atmosphere) and was found to
reproduce only about 45% of the true model volume’s energy content. When applied
to the force-free model chromosphere, however, about 86% of the energy content was
reproduced. After applying the preprocessing routine of Wiegelmann et al. (2006) to the
model photosphere, to drive the model photosphere to a more chromospheric-like state,
the model coronal energy content was reproduced to within about 81%. This showed that
the preprocessing of the lower photospheric boundary improves the applicability of the
magnetic virial theorem to estimate the coronal energy content.

However, even if the estimation of the coronal magnetic energy content above a solar
AR before and after an eruption is reliable to a certain degree, one has to keep in mind
that during the processes related to the eruption, part of the coronal magnetic energy is
released but another part of it is also transformed into other forms of energy such as kinetic
energy or heat. Alternative measures of the topological complexity of magnetic fields are
the electric current and the magnetic helicity. The latter has the comfortable property to
be almost conserved in resistive MHD since its dissipation time is too long to be relevant
for most coronal processes. The practical helicity computation for coronal volumes will
therefore be discussed in § 4.

3.2.2 NOAA AR 10540
3.2.2.1 Flare activity

According to the weekly bulletin of the Solar Influence Data Analysis Center’s Space
Weather Application Pilot Project (SIDC/SWAPP), the flaring activity during the week of
Jan 12 – 16, 2004 was low, except for a C3.2 flare showing up on Jan 15 (for the solar
flare classification according to the measured peak intensity of the solar soft X-ray flux
see § 1.1.3.1). Afterwards the activity increased due to NOAA AR 10540, showing more
peaks in the C-level (corresponding to a measured soft X-ray flux between 10−6 Wm−2 and
10−5 Wm−2) and finally producing an M5.0 flare on Jan 17 and an M1.4 flare on Jan 18.
The next week, this AR produced a long duration C8.2 flare on Jan 19, accompanied by
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Figure 3.1: GOES solar soft X-ray flux from Jan 18 – 21, 2004, integrated in the wavelength range
of 0.1 nm – 0.8 nm. Blue vertical lines indicate when SFT-VM data was available to use.

a full halo CME. Two big prominence eruptions occurred on Jan 21, each leading to a
CME, and after that the solar activity dropped to background B-level (corresponding to a
measured soft X-ray flux< 10−6 Wm−2). Two M-class flares launched by AR 10540 are
of special interest for the present study. The first, on Jan 19 at 12:40 UT was classified
as an M1.0 flare and the second, at 07:43 UT on Jan 20 was categorized as an M6.1 flare,
where close in time to the latter a CME showed up first around 08:06 UT (see Fig. 3.1 for
the GOES soft X-ray flux of Jan 18 – 22, 2004).

3.2.2.2 NAOJ/SFT Vector Magnetograph

The NAOJ/SFT consists of four telescopes, of which one, a vector magnetograph (20 cm
aperture, hereafter SFT-VM) measures the magnetic field vector by using the Zeeman
effect on the Fe  630.3 nm spectral line. The conversion of the observed polarization de-
grees to the magnetic field strength is based on a model atmosphere by Holweger and
Mueller (1974) in which a constant magnetic field is introduced and local thermodynamic
equilibrium is assumed. Then, the longitudinal and transverse magnetic field strengths can
be related to the circular and linear polarization degrees, respectively. The noise levels of
the resulting longitudinal and transverse field strength is about 1 mT and 10 mT, respec-
tively. To remove the 180◦-ambiguity of the transversal magnetic field the potential-field
acute-angle method is used (see also § 2.4.0.1). It involves the computation of a potential
magnetic field from the observed longitudinal field and the subsequent comparison of the
computed (model) and observed transverse field. The azimuth which best matches the
computed field is then assumed to outline the true direction of the transverse field (for a
detailed instrument description see Sakurai et al. 1995).

For the study of NOAA AR 10540 on four subsequent days (from Jan 18 to Jan 21,
2004), at locations that are far enough from the solar limb, one SFT-VM vector magne-
togram per day was available with a pixel size of ≈1.32′′. The longitudinal magnetic field
component of the vector magnetograms of all four days is shown in Fig. 3.2. The SFT-VM
vector magnetograms contain a region of ≈336′′× 315′′, i.e. ≈241 Mm× 226 Mm and we
display the x−, y− and z− component of the photospheric vector magnetic field of Jan 18,
2004 at 01:58 UT in panels (a), (b) and (c) of Fig. 3.3, respectively.
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Figure 3.2: Longitudinal photospheric magnetic field component (Bz) of the available SFT-VM
vector magnetograms for four subsequent days. Panels (a), (b), (c) and (d) show Bz on Jan 18 at
01:58 UT, Jan 19 at 05:35 UT, Jan 20 at 03:40 UT and Jan 21 at 00:40 UT, respectively. Units are
arcseconds and the color bar indicates the magnetic field strength in mT.

Figure 3.3: Transverse (Bx, By) and longitudinal (Bz) photospheric magnetic field components
of the available SFT-VM vector magnetogram on Jan 18, 2004 at 01:58 UT. Panels (a), (b) and (c)
showBx,By andBz, respectively. Units are arcseconds and the color bar gives the magnetic field
strength in mT.
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Force-free consistency of the raw and preprocessed SFT-VM data
Jan 2004 Raw data Preprocessed data

Day Time [ UT ] εforce εtorque εforce εtorque

18 01:58 0.7341 0.8339 0.0037 0.0018
19 05:35 0.8500 0.9195 0.0037 0.0023
20 03:40 0.8595 0.9534 0.0039 0.0031
21 00:40 0.8804 1.0219 0.0075 0.0051

Table 3.1: Dimensionless force-balance parameter (εforce) and the torque-balance parameter
(εtorque) to quantify the consistency of the observed (“Raw data”) and the preprocessed photo-
spheric SFT-VM vector magnetogram data with the force-free assumption.

3.2.2.3 Preprocessing of SFT-VM data

In order to achieve the consistency of the observed vector magnetograms with the as-
sumption of a force-free field, the SFT-VM data need to be preprocessed (see § 2.4.2).
Dimensionless parameters are used to quantify whether the observed, photospheric SFT-
VM magnetograms suffice the compatibility criteria in order to be used for our NLFF field
extrapolations (the force-balance parameter εforce and the torque-balance parameter εtorque

as defined in (2.42) and (2.43) in § 2.4.2.3, respectively). These criteria are sufficiently
fulfilled only if εforce � 1 and εtorque � 1 which, obviously, is not true for the observed
SFT-VM data (i.e., εforce31 and εtorque31; see third and fourth column of Table 3.1) and
which therefore need to be preprocessed.

When applying our preprocessing routine we need to give respective weights to the
individual modifications of the observed, photospheric SFT-VM vector magnetograms.
Since Wiegelmann et al. (2006) successfully tested the application of the preprocessing
routine to SFT-VM data, we keep the set of weighting parameters used in their study.
That means that most weight is given to the force- and torque-balance condition (i.e.,
µ1 =µ2 =1.0), that the allowance of the modified boundary conditions to deviate from the
measured data is weighted with µ3 = 0.001 and that the applied smoothing is weighted
with µ4 = 0.01. After applying the preprocessing routine, with this choice of parameters,
to the SFT-VM data it can be seen that these modified boundary conditions now well
fulfill the consistency criteria (i.e., εforce� 1 and εtorque� 1; see fifth and sixth column of
Table 3.1) so that they can be consistently supplied as lower boundary conditions to the
force-free extrapolation code.

3.2.2.4 Global magnetic energy budget

Using the observed SFT-VM vector magnetograms as input data for our analysis, applying
the preprocessing routine and magnetic field extrapolation method (see § 2.4.1) gives us
a set of potential and NLFF equilibria of the 3D configuration of coronal magnetic field
above NOAA AR 10540.

For all four days we find that ENLFF
m > EPOT

m which means that the potential field con-
tains less magnetic energy than the NLFF field (see third and fourth column of Table 3.2,
respectively). The magnetic energy of the potential and NLFF field is slowly build up
before the eruptive events and both are on the order of 1026 J. However, all the energies
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Magnetic energies above NOAA AR 10540
Jan 2004 Em [ ×1026 J ]

Day Time [ UT ] EPOT
m ENLFF

m ∆ENLFF
POT ENLFF

m /EPOT
m

18 01:58 0.80 1.18 0.37 1.46
19 05:35 1.19 1.94 0.71 1.57
20 03:40 1.27 2.20 0.87 1.66
21 00:40 0.86 1.26 0.38 1.42

Table 3.2: Magnetic Energies as calculated from the extrapolated 3D magnetic fields above NOAA
AR 10540. EPOT

m represents the total magnetic energy of the potential field and ENLFF
m that of the

NLFF field. ∆ENLFF
POT = ENLFF

m −EPOT
m gives an upper limit for the free magnetic energy to be set free

(see also Fig. 3.4). The ratio ENLFF
m /EPOT

m indicates the deviation of a NLFF field from a potential
state and ENLFF

m /EPOT
m = 1.0 would mean that no free magnetic energy is available to be released

or that all of it has been released (see also Fig. 3.5).

go down remarkably after the M6.1 flare on Jan 20, whereas the M1.0 flare on Jan 19
does not seem to have a significant effect on the energy content of the coronal field (see
Fig. 3.4). This impression may be due to the low time cadence of the available data (one
vector magnetogram per day) as the influence of the M1.0 flare may simply not have been
temporarily resolved. The excess energy of a force-free field over the corresponding po-
tential field is an upper limit for the free magnetic energy available for dynamic processes
that can be transformed into kinetic energy during flares or CMEs (see § 3.2.1). We find
an upper limit for the energy to be set free on the order of ∆ENLFF

POT ∝1025 J for all days (see
fifth column of Table 3.2), where the largest amount of free energy (∆ENLFF

POT ≈8.7×1025 J)
is found before the occurrence of the M6.1 flare and which drops to ∆ENLFF

POT ≈3.8×1025 J
after it. We also estimated the ratio of the NLFF and potential field’s energy content
ENLFF

m /EPOT
m as a relative measure of the available free energy normalized to the potential

field (see sixth column of Table 3.2 and Fig. 3.5). Again, we find an increasing trend be-
fore the time of the larger M6.1 flare. A maximum of ENLFF

m /EPOT
m =1.66 is reached before

the flare and drops to ENLFF
m /EPOT

m = 1.42 afterwards. In other words, the magnetic field
configuration is farthest away from the potential configuration before the occurrence of
the M6.1 flare and is closer to it after releasing free magnetic energy during the explosion.
However, the magnetic field does not relax to the potential field configuration as this ratio
does not reach unity, i.e. the whole amount of available magnetic energy is not set free
during the M6.1 flare. This is what one would expect since the state of lowest energy a
coronal magnetic field may relax to, given the constraint of helicity conservation, is a LFF
field (for the formal proof and a detailed discussion of this so-called Taylor’s relaxation
theory see § 4.1.3.1). However, again the M1.0 flare does not seem to contribute to a
relaxation of the NLFF field towards the potential configuration. In the period of the oc-
currence of this smaller flare magnetic flux was still emerging, suppressing the influence
of the energy release even more during the M1.0 flare.

From a visual inspection of the magnetic field lines within the extrapolation volume,
we recognize remarkable changes when comparing the magnetic field structure on the day
before the M6.1 flare (which occurred on Jan 20 at 07:43 UT) with that on the day after
(see Fig. 3.6). We find that the field lines seem to avoid to close over the central part of
NOAA AR 10540 on the day before the flare, i.e. it seems that they avoid to close over
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Figure 3.4: Magnetic energies of NOAA AR 10540. The total magnetic energy of the NLFF field,
that of the potential field and an upper limit for the free magnetic energy is shown as the top black,
middle gray and bottom green curve, respectively (see also Table 3.2). Black vertical lines indicate
the two occurring M-class flares.

Figure 3.5: Relative energies of NOAA AR 10540, indicating how far the NLFF magnetic field is
away from the potential configuration (see also Table 3.2). Black vertical lines indicate the two
M-class flares.

the polarity inversion line (see panel (a) of Fig. 3.6). This, however, indicates that there
are strong localized currents present and that the magnetic field is highly sheared along
the inversion line. This most probably arises due to motions of the field lines footpoints in
the photosphere so that they move away from a potential configuration in the period prior
to a flare. The low time cadence of the data set (one magnetogram per day), however,
does not allow us to follow any footpoint motions for this event and consequently no
conclusions about their influence on the coronal energy content can be made. After the
flare we recognize that the magnetic field configuration appears more relaxed (i.e., more
potential-like) than that of the pre-flare state and the field lines appear to close also over
the central area surrounding the inversion line (see panel (b) in Fig. 3.6).

Since flares and CMEs derive their energy from the energy stored locally in the mag-
netic field, Hudson (2000) stated the conjecture that a flare or a CME must originate in a
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Figure 3.6: Magnetic field line configuration above NOAA AR 10540. Panels (a) and (b) show
selected field lines on the day before and after the M6.1 flare (precisely, on Jan 20 at 03:40 UT
and Jan 21 at 00:40 UT, respectively) which occurred on Jan 20 at 07:43 UT. Shown are calculated
field lines of the potential and NLFF field as gray and black lines, respectively. The color-coded
bottoms show the line-of-sight component of the preprocessed photospheric vector magnetograms
used as boundary conditions for the extrapolation (see also panels (c) and (d) of Fig. 3.2 for the
original SFT-VM data on those days). Units are arcseconds and, for improved visibility, the z-axis
is drawn elongated.

magnetic implosion. The site of the implosion was suspected to show the location of pre-
flare energy storage and its detection was presumed to be of high priority. Until the present
time, however, such implosions had not yet been detected and thus it was assumed that
they may occur in form of invisible large-scale flows or on non-observably small spatial
scales. From the extrapolated 3D NLFF fields we are, however, able to calculate iso-
surfaces (ISs) of equal absolute magnetic field strength and to compare those for the pre-
and post-flare configurations. This enables us to show that in the meanwhile the detection
and analysis of the coronal implosion scenario with the help of coronal magnetic field
extrapolations has become possible. In particular, we computed the IS of |BNLFF|=5 mT,
|BNLFF| = 10 mT and |BNLFF| = 20 mT (hereafter IS5, IS10 and IS20, respectively) for the
configurations prior to and after the M6.1 flare. When comparing IS5 before and after
the flare we recognize a slightly more pronounced central dip after the flare although,
on overall, the IS does not change considerably (see panels (a) and (b) of Fig. 3.7). The
change of the IS10, however, shows a higher decrease of the central dip (see panels (c)
and (d) of Fig. 3.7) and the IS20 shows clear signatures of an implosion, i.e. much less
absolute magnetic field strength of |BNLFF| = 20 mT is found after the occurrence of the
flare (see panels (e) and (f) of Fig. 3.7).

3.2.2.5 Distribution of the energy density

According to Goff et al. (2007), the M6.1 flare event on Jan 20, 2004 showed a rising soft
X-ray emission after 07:32 UT, peaking twice at around 07:37 UT and 07:43 UT, finally
decaying until 08:00 UT and followed by the first appearance of a CME around 08:06 UT.
A backward extrapolation of the CME projected distance-time profile led them to suggest
a starting time between 07:10 UT and 07:25 UT, i.e. the CME had most probably been
launched before the onset of the M6.1 flare. They also performed a LFF field extrapolation
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Figure 3.7: Iso-surfaces (ISs) of the absolute NLFF magnetic vector |BNLFF| in the pre- and post-
flare periods (left and right columns, respectively), computed within the entire computational do-
main. The IS of |BNLFF|=5 mT before and after the M6.1 flare on Jan 20, 2004 is shown in panels
(a) and (b), respectively. The IS of |BNLFF|= 10 mT prior to and after the M6.1 flare is shown in
panels (c) and (d), respectively and the IS of |BNLFF|= 20 mT of the pre- and post-eruptive mag-
netic field is shown in panels (e) and (f), respectively. Units are in pixels and one pixel corresponds
to 1.32′′ on the Sun and, for improved visibility, the z-axis is drawn elongated.
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Figure 3.8: Selected subregion of the SFT-VM magnetograms due to the visibility of the flaring
activity. Panel (a) shows a SoHO/MDI line-of-sight magnetogram of Jan 20, 2004 (units are
arcseconds with respect to the solar disk center). The white square shows the SFT-VM field-of-
view and the black outline shows the subfield containing the flaring activity visible in TRACE
images as described by Goff et al. (2007). The corresponding subregion in the SFT-VM image is
outlined in red and shown blown-up in panel (b) (units are arcseconds). The color bar gives the
magnetic field strength in mT.

based on SoHO/MDI data to outline the coronal field configuration on Jan 20 and in the
following we take a closer look at the temporal evolution of the energy density, related to
the area of flaring activity as described in their study. Therefore, a subregion of the SFT-
VM magnetograms was selected (see Fig. 3.8) due to the visibility of the flaring activity
related to the M6.1 flare in TRACE images, as discussed by Goff et al. (2007). Based on
this SFT-VM subfield, we extracted a subvolume of the 3D NLFF extrapolation domain
of ≈ 150′′×150′′×75′′ (i.e., ≈ 108 Mm× 108 Mm× 54 Mm) and estimated the integrated
energy density e as a function of height using

e =

∫
S

u dx dy, (3.3)

where u =B2
NLFF/(2 µ0) represents the energy density and S denotes the xy-plane at each

height z. Along with this, also the change in the energy density ∆u was calculated accord-
ing to

∆u = ui+1 − ui, (3.4)

where ui denotes the energy density of the previous and ui+1 that of the following day. In
this way we can get an insight how energy gains or losses are distributed in the coronal
volume above the flaring region.

First, we integrated the energy density with the help of (3.3) and displayed it as a
function of height above the photosphere in the subvolume (see Fig. 3.9). One recognizes,
that highest energy densities appear on Jan 19 and Jan 20 (denoted as e19 and e20 in
Fig. 3.9, respectively). As expected, it seems that the main energy storage takes place
before the occurrence of the M6.1 flare on Jan 20 (i.e., e19 & e21 and e20 & e21, where
e21 represents the integrated energy density on Jan 21) and after this flare was launched,
the amount of stored energy goes down remarkably. Besides this, the energy density on
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Figure 3.9: Integrated energy density as a function of height in the subvolume for the consecutive
days. In particular, e18 (violet dashed-triple-dotted line), e19 (light green dashed line), e20 (dark
green dashed-dotted line) and e21 (purple long-dashed line) represent the integrated energy density
as calculated for the subvolume of Jan 18, Jan 19, Jan 20 and Jan 21, respectively. The lower
and upper horizontal axis give the height above the solar photosphere in arcseconds and Mm,
respectively.

Jan 18 is higher than on Jan 21 (i.e., e18 & e21, where e18 denotes the integrated energy
density on Jan 18) as well, meaning that also on the first of the considered days the amount
of stored energy is higher than after the M6.1 flare which occurred on the former last day
of the data set. Nevertheless, not as much energy is available on Jan 18 to power an
explosive event as is on Jan 19 and Jan 20 (i.e., e18 . e19 and e18 . e20). Especially at the
height of ≈10′′ – 20′′ (i.e., ≈7 Mm – 14 Mm) even more energy was stored on Jan 20 than
on Jan 19 (e19<e20).

Second, we investigated the change of the integrated energy density as a function of
height within the subvolume by simply calculating ∆e1 = e19 − e18, ∆e2 = e20 − e19 and
∆e3 = e21 − e20 (see Fig. 3.10). One can see that ∆e1 and ∆e2 are mainly positive (i.e.,
e18 < e19 and e19 < e20, respectively) except that ∆e2 is negative at very low heights of
. 8′′ (i.e. below ≈ 16 Mm) above the photosphere, whereas ∆e3 is found to be mainly
negative (i.e., e20> e21). Clearly, as visible in Fig. 3.9 and Fig. 3.10, the absolute values
of the integrated energy density decrease with increasing height. However, it cannot be
concluded without some doubt that the temporal evolution of the integrated energy den-
sity is purely a consequence of the flaring activity since until Jan 20 magnetic flux was
still emerging in AR 10540. Finally, in Fig. 3.11 we display the total magnetic energy
content calculated from the NLFF field together with the change in the energy density
in the extracted subvolumes using (3.4). As found from Fig. 3.10 for the integrated en-
ergy densities ∆e1 and ∆e2, we find in panel (a) and (b) of Fig. 3.11 that ∆u1 and ∆u2 are
predominantly positive, respectively, especially above a height of ≈ 35′′ (i.e., ≈ 25 Mm).
The mainly positive values of ∆u1 and ∆u2 mean that the amount of stored energy in the
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Figure 3.10: Change of the integrated energy density as a function of height in the subvolumes.
The change of the integrated energy density between Jan 18 and Jan 19 (∆e1 =e19−e18), between
Jan 19 and Jan 20 (∆e2=e20−e19) and between Jan 20 and Jan 21 (∆e3=e21−e20) is represented by
the green solid, red dashed-triple-dotted and blue dashed line, respectively. The lower and upper
horizontal axis give the height above the solar photosphere in arcseconds and Mm, respectively.

considered volume increased until Jan 20 (i.e., u18 . u19 and u19 . u20). This might be due
to the changing magnetic field configuration during the evolution of the upcoming flaring
activity. One also finds some small areas of ∆u1<0 (i.e., u18>u19) in panel (a), especially
below ≈ 15′′ (i.e., ≈ 11 Mm), which are continuously decreasing in size with increasing
height. In small parts some magnetic energy seems to be moved around, e.g. by flows
corresponding to slow surface motions, or even to be related to the weak C-class flaring
on Jan 18. This might also be the reason for the absence of a strong gradient in ∆e1 in
Fig. 3.10, showing the change in the integrated energy density as purely positive. How-
ever, these small regions of ∆u1<0 as visible in panel (a) of Fig. 3.11 appear in general to
be of a positive value in panel (b), i.e. energy was now also stored at low heights so that
∆u2 > 0. One should notice that the major increase in the energy storage now seems to
take place in regions that appeared highly negative in panel (a) which might be related to
the flare ribbons as visible in the Hα images described by Goff et al. (2007). Again, the
main activity takes place at low heights of . 20′′ (i.e., . 14 Mm) above the photosphere
but the location of the energy loss (as indicated by the negative values of ∆e2 in Fig. 3.10)
cannot be defined clearly. In panel (c) of Fig. 3.11 the change in the energy density ap-
pears mostly negative (∆u3 < 0, i.e. u20 > u21 and in agreement with the purely negative
values of ∆e3 in Fig. 3.10) which means that the energy density on Jan 21 was lower than
on Jan 20. In other words, a considerable amount of energy was released during the M6.1
flare on Jan 20. This might have taken place in the form of converting magnetic energy
into other forms of energy by means of, e.g., magnetic reconnection. As found for the
previous days, the changes in the amount of stored energy in the considered subvolume
take place predominately within a height of ≈30′′ (i.e., ≈22 Mm) above the photosphere.
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Figure 3.11: Total magnetic energy and change of the energy density within the considered subvol-
umes. Panel (a) shows the total magnetic energy ENLFF

m of the NLFF field. In the lower three panels
the change of the energy density between consecutive days is displayed. The change of the energy
density between Jan 18 and Jan 19 (∆u1 =u19−u18), between Jan 19 and Jan 20 (∆u2 =u20−u19)
and between Jan 20 and Jan 21 (∆u3 =u21−u20) are shown color-coded in panels (b), (c) and (d),
respectively. Units are arcseconds and, for better visibility, the z-axis is drawn elongated.

Also for these subvolumes, we computed the iso-surfaces (ISs) of |BNLFF|=10 mT and
|BNLFF|= 20 mT (hereafter IS10 and IS20, respectively) for the configurations prior to and
after the M6.1 flare (see Fig. 3.12). Both IS10 and IS20 show a considerable change and, in
particular, IS20 indicates the occurrence of a coronal implosion as suggested by Hudson
(2000). Recently, Liu et al. (2009) provided observational evidence for the implosion sce-
nario by reporting, for the first time, a contraction of large-scale coronal loops (overlying
the flaring AR NOAA 10792 which was associated with a C8.9 flare on July 30, 2005)
together with a contraction of an underlying flare loop. The contraction of the overlying
coronal loops was interpreted as a manifestation of the release of the free magnetic energy
and the consequent decrease of the magnetic pressure in the flaring region. In a further
study, Liu and Wang (2009) presented observations of a coronal loop contraction in the
wake of a filament eruption which occurred in NOAA AR 9502 on June 15, 2001 in as-
sociation with an M6-class flare. They suggested that the escape of the filament resulted
in the contraction of the overlying coronal loops which can be interpreted as a variant of
a coronal implosion.
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Figure 3.12: Iso-surfaces of equal absolute magnetic field strength in the pre- and post-flare peri-
ods computed within the flaring subvolume. The iso-surface for |BNLFF|=10 mT before and after
the M6.1 flare on Jan 20, 2004 is shown in panels (a) and (b), respectively. The iso-surface for
|BNLFF|=20 mT prior to and after the M6.1 flare is shown in panels (c) and (d), respectively. Units
are pixels and one pixel corresponds to 1.32′′ on the Sun and, for improved visibility, the z-axis is
drawn elongated.

3.2.2.6 Discussion

We investigated the 3D coronal magnetic field configuration related to the flaring activity
of NOAA AR 10540 from Jan 18 to Jan 21, 2004. By using a multigrid-like optimization
code, we extrapolated the coronal field from photospheric magnetic field measurements as
obtained from the SFT-VM. We calculated the energy content of the extrapolated domain
for the four consecutive days and estimated the upper limit for the free magnetic energy
available to power two M-class flares recorded during this time period (an M1.0 flare on
Jan 19 and an M6.1 flare on Jan 20).

We found that the total magnetic energy increased before the M6.1 flare on Jan 20
and decreased afterwards. Before as well as after the flaring activity, the total magnetic
energy of the calculated NLFF field was found to be ∝1026 J, which was also true for the
potential field. The expectation that the NLFF field energy exceeds that of the potential
field could be clearly recovered. Besides this, the drop of the NLFF field’s energy was
higher than that of the potential field, i.e. the energy release seemed to be related to the
change in the transversal magnetic field rather than the normal component of it. This
supports the hypothesis that the flare energy was taken from the coronal magnetic field
where it had been slowly built up and stored prior to the flare onset. The upper limit of the
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free magnetic energy available to be set free was estimated as ∝ 1025 J which, according
to Priest and Forbes (2002), is enough to power a large flare. The first occurring smaller
M1.0 flare did not seem to have much influence on the magnetic energy content of the
coronal field above NOAA AR 10540. This might be due to the low time cadence of the
photospheric vector magnetograph data we used since this smaller event may not have
been sufficiently resolved in time. Moreover, magnetic flux was still emerging at this
time, additionally reducing any observable effect of the smaller flare. The comparison
of the NLFF field and the potential field showed that the ratio of its energy content went
down remarkably after the M6.1 flare but did not seem to be responsive to the M1.0 flare.
Moreover, the field was not found to relax to the potential configuration since this ratio
did not reach unity after the M6.1 flare. This means that not the whole amount of available
free magnetic energy was released during this flare.

From a visual inspection of the magnetic field lines within the extrapolation volume,
we recognized that the field lines seem to avoid to close over the central part of NOAA
AR 10540 on the day before the flare, indicating the presence of strong localized currents.
After the flare the magnetic field configuration appeared more potential-like and the field
lines also closed over the central area containing the polarity inversion line.

We also investigated the evolution of the integrated energy density with height to be
able to restrict the area in which the energy changes due to the flaring activity mainly
took place. We found that the major changes in the considered subvolume above the
flaring region were restricted to a height of . 30′′, i.e. . 22 Mm above the photosphere,
varying slightly for the consecutive days. This supports the finding of Jing et al. (2008)
who analyzed in detail the height distribution of the magnetic shear in NOAA AR 10930,
associated with an X3.4 flare on Dec 13, 2006. They found that the energy release pro-
cess likely happened at altitudes between 8 Mm and 70 Mm above the photosphere. We
also found that the integrated energy density as a function of height was lowest on Jan 21
which can be interpreted such that, since the M6.1 flare had already been launched, previ-
ously built-up magnetic energy was released. On all other days, we found a clearly higher
amount of energy storage that can be assigned to the change of the magnetic field configu-
ration leading to the upcoming flaring activity, including continuous flux emergence until
Jan 20. The change in the integrated energy density showed us that the absolute values
of the integrated energy density decreased with increasing height. However, it cannot be
stated that its relative values could be purely assigned to the flaring activity since magnetic
flux was still emerging until Jan 20. Only the difference in the integrated energy density
of the last two days turned out to be purely negative, which also can be attributed to the
release of free energy during the M6.1 flare. This was also seen from investigating the
change in the energy density itself which appeared to be predominantly negative within
the considered subvolume only after the M6.1 flare. Last, the computation of iso-surfaces
of the absolute magnetic field magnitude seems to support a proposed implosion scenario
during transient coronal events like flares and CMEs (Hudson 2000) which has recently
been approved observationally (Liu et al. 2009, Liu and Wang 2009).

The sequence of NLFF equilibria used here has a rather low time cadence of one day.
The trend that magnetic energy is quasistatically built up before a flare is, nevertheless,
clearly visible. Though noticing a decrease in the energy due to the M6.1 flare, the low
time cadence does not allow us to decide which part of this energy drop was related to the
sudden release of magnetic energy or to the simultaneous decay of NOAA AR 10540.
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Figure 3.13: GOES solar soft X-ray flux on June 7, 2007, integrated in the wavelength range of
0.1 nm – 0.8 nm. Blue vertical lines indicate when SOLIS-VSM data was available to use.

3.2.3 NOAA AR 10960

3.2.3.1 Flare activity

According to the weekly bulletin of the SIDC/SWAPP, the solar activity during the week
of June 4, 2007 was dominated by NOAA AR 10960. An M8.9 flare occurred on June 4
and an M1.0 flare fired off on June 9 (for the solar flare classification according to the mea-
sured peak intensity of the solar soft X-ray flux see § 1.1.3.1). Furthermore, 12 C-class
flares (corresponding to a measured soft X-ray flux between 10−6 Wm−2 and 10−5 Wm−2)
were detected during this week and originated in this group or from its vicinity. The peaks
in the measured solar soft X-ray flux indicated only one C1.0 flare on June 7, peaking at
17:20 UT, which is of interest for the present study (see Fig. 3.13 for the GOES solar soft
X-ray flux on June 7, 2007).

3.2.3.2 NSO/SOLIS Vector Spectro-Magnetograph

The NSO/SOLIS Vector Spectro-Magnetograph (hereafter SOLIS-VSM) has provided
magnetic field observations of the Sun almost continuously since Aug 2003. The in-
strument is designed to measure the magnetic field vector everywhere on the solar disk
using the Fe  630.2 nm spectral line (Keller et al. 2003b, Henney et al. 2006). In addition,
longitudinal magnetic field measurements in the photosphere (using the Fe  630.15 nm
and 630.25 nm spectral lines) and chromosphere (using the Ca  854.2 nm spectral line)
are performed on a daily basis. Quick-look data (JPEG images and FITS files) of the
magnetic field vector in and around automatically selected ARs (Georgoulis et al. 2008)
are available on-line to the community. The Quick-look data provide estimates of the
magnetic field strength, inclination and azimuth which should, because of the high field
strength in ARs, be comparable to fully inverted data (which are acquired only once
within 24 hours) only differing by a few percent (for details see Henney et al. 2006).
The noise level of the resulting longitudinal and transverse field strengths is about 0.1 mT
and 5 mT, respectively. The azimuth 180◦-ambiguity is solved using the Nonpotential
magnetic Field Calculation method (NPFC; Georgoulis 2005) which does not introduce
any error in the azimuth or any other quantities. Since, only if the vertical electric current
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Figure 3.14: Longitudinal photospheric magnetic field component (Bz) of the available SOLIS-
VSM vector magnetograms on June 07, 2007. In panels (a), (b), (c), (d), (e), (f), (g), (h) and (i)
Bz at 17:10 UT, at 17:20 UT, 17:29 UT, 20:30 UT, 20:39 UT, 21:02 UT, 21:11 UT, 21:33 UT and
21:42 UT is shown, respectively. Units are arcseconds and the color bar indicates the magnetic
field strength in mT.

density is known a priori, the resolution of the 180◦-ambiguity would be a numerically
fully determined problem, a minimum-magnitude current density solution is explicitly
imposed. Otherwise, the NPFC disambiguation is assumption-free so that the quality of
the results depends on the quality of the measurements. The NPFC method first infers
the non-potential magnetic field component responsible for the assumed vertical currents
and then determines the vertical magnetic field whose potential extrapolation added to the
non-potential field best reproduces the observationally inferred horizontal magnetic field.

In the presented study we investigated NOAA AR 10960 during a time period of about
five hours on June 7, 2007 at locations that are far enough from the solar limb. In the time
period around a C1.0 flare on June 7, three SOLIS-VSM vector magnetograms with a
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Figure 3.15: Transverse (Bx, By) and longitudinal (Bz) photospheric magnetic field components
of the available SOLIS-VSM vector magnetogram on June 07, 2007 at 17:10 UT. Panels (a), (b)
and (c) show Bx, By and Bz, respectively. Units are arcseconds and the color bar gives the
magnetic field strength in mT.

pixel size of ≈1.133′′ were available to use. One in the rising phase of the emission, one
at the time when the flare peaked and one in its decaying phase (at 17:10 UT, 17:20 UT
and 17:29 UT, respectively). We display the corresponding longitudinal magnetic field
components of the SOLIS-VSM magnetograms in panels (a), (b) and (c) of Fig. 3.14, re-
spectively. All other magnetic field measurements on June 7, 2007 (between 20:30 UT
and 21:42 UT) allowed us to investigate the magnetic field during a period of low so-
lar activity (the corresponding longitudinal magnetic field components are displayed in
panels (d) – (i) of Fig. 3.14). The SOLIS-VSM vector magnetograms cover a region of
≈400′′× 400′′, i.e. ≈287 Mm× 287 Mm and we display the x−, y− and z− component of
the photospheric vector magnetic field on June 7 at 17:10 UT in panels (a), (b) and (c) of
Fig. 3.15, respectively.

3.2.3.3 Preprocessing of SOLIS-VSM data

In order to achieve consistency of the observed vector magnetograms with the assump-
tion of a force-free field the SOLIS-VSM data need to be preprocessed (see § 2.4.2). The
dimensionless force- and torque-balance parameter εtorque (as defined in (2.42) and (2.43),
respectively, in § 2.4.2.3) quantify if the observed, photospheric SOLIS-VSM magne-
tograms suffice the criteria to be used for our NLFF field extrapolation. These criteria are
sufficiently fulfilled only if εforce�1 and εtorque�1 (ideally, εforce =0 and εtorque =0) which,
obviously, is not true for the observed SOLIS-VSM vector magnetograms (i.e., εforce3 1
and εtorque31; see second and third column of Table 3.3) and which therefore need to be
preprocessed.

When applying our preprocessing routine we need to give particular weights to the in-
dividual modifications of the observed, photospheric SOLIS-VSM vector magnetograms.
To repeat, the force- and torque-free condition are weighted with µ1 = µ2 = µ12, the
allowance of the modified boundary conditions to deviate from the measured data is
weighted with µ3 and the applied smoothing is weighted with µ4. Since within this work,
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Force-free consistency of the raw and preprocessed SOLIS-VSM data
June 7, 2007 Raw data Preprocessed data

Time [ UT ] εforce εtorque εforce εtorque

17:10 0.6352 0.6884 0.0001 0.0002
17:20 0.6372 0.6902 0.0001 0.0002
17:29 0.6400 0.6691 0.0019 0.0033
20:30 0.6490 0.7202 0.0002 0.0015
20:39 0.6606 0.7327 0.0050 0.0069
21:02 0.6453 0.7555 0.0007 0.0011
21:11 0.6775 0.7604 0.0001 0.0004
21:33 0.6298 0.6957 0.0002 0.0003
21:42 0.6277 0.7111 0.0001 0.0003

Table 3.3: Dimensionless force-balance parameter (εforce) and the torque-balance parameter
(εtorque) to quantify the consistency of the observed (“Raw data”) and the preprocessed photo-
spheric SOLIS-VSM vector magnetograms with the force-free assumption.

our preprocessing routine has been applied for the first time to SOLIS-VSM data, the
optimum combination of these weighting parameters had to be determined first. Since,
after minimizing, the final value of our preprocessing functional (2.44) in § 2.4.2.3 might
not directly relate to the relative success of the later extrapolation, we decided to seek
the optimum preprocessing parameter set while immediately testing the evolution of the
associated extrapolation functional. In other words, we run the preprocessing method for
a certain combination of µ1 – µ4 and also perform the corresponding extrapolation. For
this purpose, i.e. to test the relative performance of the preprocessing, it is not necessary
to extrapolate the magnetic field in the entire volume. This is because one can assume that
the coronal magnetic field is potential-like at least at heights above ≈100′′ (i.e., ≈70 Mm).
Therefore, we extrapolated the coronal field only up to a height of ≈136′′ (i.e., ≈98 Mm)
which is slightly less than 50% of the height of the final full resolution computational do-
main. Repeating this procedure for more than 100 combinations of µ1 – µ4, we found the
optimum combination as follows. Most weight is given to the force- and torque-balance
condition (µ12 =1.0). The allowance of the modified boundary conditions to deviate from
the measured data is weighted with µ3 =10−4 and the applied smoothing is weighted with
µ4 = 1.0. After applying the preprocessing routine, with this set of parameters, to the
SOLIS-VSM data it can be seen that these modified boundary conditions now fulfill the
consistency criteria (i.e., εforce�1 and εtorque�1; see fourth and fifth column of Table 3.3)
so that they can be consistently supplied to the force-free extrapolation code.

3.2.3.4 Global magnetic energy budget

For all 3D magnetic field configurations considered for NOAA AR 10960, we found that
the energy of the extrapolated NLFF field exceeded that of the potential field
(ENLFF

m > EPOT
m ), both being ∝ 1025 J (see second and third column of Table 3.4). This

was also the case when considering a relative error in the energy estimation of about
0.4% for the potential field (i.e., EPOT

m ± 1.2× 1023 J) and 1% for the NLFF field (i.e.,
ENLFF

m ±3.1×1023 J). Furthermore, the available free magnetic energy was found to be
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Magnetic energies above NOAA AR 10960
June 7, 2007 Em [ ×1025 J ]

Time [ UT ] EPOT
m ENLFF

m ∆ENLFF
POT ENLFF

m /EPOT
m

17:10 3.130 3.282 0.152 1.049
17:20 3.122 3.272 0.149 1.048
17:29 2.986 3.081 0.095 1.032
20:30 3.024 3.042 0.018 1.006
20:39 3.031 3.127 0.095 1.031
21:02 2.969 3.084 0.116 1.039
21:11 2.938 3.028 0.090 1.031
21:33 2.939 3.125 0.185 1.063
21:42 2.933 3.085 0.152 1.052

Table 3.4: Magnetic Energies as calculated from the extrapolated 3D magnetic fields above NOAA
AR 10960. EPOT

m and ENLFF
m represent the total magnetic energy of the potential and the NLFF field,

respectively. ∆ENLFF
POT = ENLFF

m −EPOT
m gives an upper limit for the free magnetic energy to be set

free (see also Fig. 3.16). The ratio ENLFF
m /EPOT

m indicates the deviation of a NLFF field from a
potential state.

1023 J .∆ENLFF
POT . 1024 J (see fourth column of Table 3.4) for which we found a relative

error of about 14% (i.e., ∆ENLFF
POT ±1.6×1023 J; for the estimation of the relative error of

the calculated energy values see § 3.2.3.5). However, both EPOT
m and ENLFF

m were highest
in the phase of increasing emission of the C1.0 flare. During the 20 minute time period
of the flare (from 17:10 UT to 17:29 UT) the total magnetic energy decreased by ≈ 6%
and ≈ 38% of the available free magnetic energy was released (see Fig. 3.16). Although
the flare was already declining in intensity at 17:29 UT it still showed a soft X-ray flux of
above background B-level (see Fig. 3.13). The next vector magnetogram snapshot was ac-
quired only 3 hours later at 20:30 UT and the free magnetic energy had decreased further,
such that ≈88.16% of the original amount of free energy had been released. At 20:30 UT,
the free magnetic energy was only ≈0.6% of the total magnetic energy and consequently
the magnetic field was almost potential (see fourth column of Table 3.4). Additionally,
we estimated the ratio of the NLFF and potential field’s energy content ENLFF

m /EPOT
m as

a relative measure of the available free energy normalized to the potential field (see last
column in Table 3.4). This ratio was found to be higher before the C1.0 flare than af-
ter it. A minimum of ENLFF

m /EPOT
m = 1.006 was reached at the beginning of a very quiet

period around 20:30 UT and increased again afterwards. This can be interpreted as the
new accumulation of magnetic energy within the coronal volume. The magnetic field
configuration was found to be farthest away from the potential configuration at the end of
the investigated sequence. However, the magnetic field did not relax to the potential field
configuration (i.e. ENLFF

m /EPOT
m ,1.0) which means that not the whole amount of available

magnetic energy was set free during the C1.0 flare and, similar to the analysis of the cor-
responding parameters of NOAA AR 10540, supports the theory that the state of lowest
energy a coronal magnetic field may relax to is a LFF field. From Fig. 3.13, we can see
that AR10960 showed only background B-level activity (i.e. a measured solar soft X-ray
emission <10−7 Wm−2) after around 18:00 UT and almost the entire free magnetic energy
may have been released by that time. Unfortunately, no vector magnetograph data was
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Figure 3.16: Magnetic energies of NOAA AR 10960. Panel (a) shows the total magnetic energy
of the NLFF field (black filled circles) and that of the potential field (gray filled circles). Panel (b)
shows the upper limit for the free magnetic energy (green filled circles) on a logarithmic scale (see
also Table 3.4). Black vertical solid and dashed lines indicate the recorded C1.0 flare and CME,
respectively.

available immediately after the declining phase of the C1.0 flare and consequently we
were unable to confirm this supposition by analyzing the coronal magnetic field at that
time. However, for AR 10960, the maximum excess energy of the NLFF field over the
potential field was about 5% during the investigated period. Since this so-called free mag-
netic energy is thought to represent an upper limit to the available energy to drive eruptive
phenomena, consequently only a small C1.0 flare was recorded. No further flares oc-
curred between 20:30 UT and 21:42 UT for which SOLIS-VSM data was available but
five C-class flares were recorded about 3 hours later on June 8, 2007 between 01:00 UT
and 16:00 UT. However, a significant amount of free magnetic energy accumulated again
during the quiet period after 20:30 UT (see fourth column of Table 3.4 and panel (b) of
Fig. 3.16) so that the energy content of the coronal magnetic field increased and became,
with some fluctuations, comparable to that before the C1.0 flare had occurred.

From a visual inspection of the magnetic field lines within the extrapolation volume,
we recognize some changes in the overall magnetic field structure during the C1.0 flare
(see Fig. 3.17). We find that the field lines show, on average, their highest vertical extent
when the C1.0 flare peaked at 17:20 UT (see panel (b) of Fig. 3.17). Ten minutes earlier, in
the increasing phase of the flare, a comparable field structure was found but with a slightly
lower vertical extent (see panel (a) of Fig. 3.17). In the declining phase of the flare (nine
minutes after the flare peaked) the field line configuration reached its, on average, lowest
vertical extent (see panel (c) of Fig. 3.17). However, at 20:30 UT which corresponds
to the field configuration of the lowest energy content, the field clearly appears to have
restructured showing an even more potential-like topology (see panel (d) of Fig. 3.17).

3.2.3.5 Uncertainty of the magnetic energy estimation

We tested the influence of the noise in the photospheric vector magnetograms to be able
to give an estimate of the error in the resulting magnetic energy calculations. Therefore,
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Figure 3.17: Magnetic field line configuration above NOAA AR 10960. Panels (a), (b) and (c)
show selected field lines during the C1.0 flare on June 07 at 17:10 UT, 17:20 UT and 17:29 UT, re-
spectively. Panel (d) shows the minimum energy configuration at 21:11 UT. Shown are calculated
field lines of the potential and NLFF field as gray and black lines, respectively. The color-coded
bottoms show the line-of-sight component of the preprocessed SOLIS-VSM vector magnetograms
used as boundary conditions for the extrapolation (see also panels (a), (b), (c) and (g) of Fig. 3.14
for the original SOLIS-VSM data). Units are arcseconds and the z-axis is drawn elongated.

we created noise models, containing normally-distributed, pseudo-random numbers with
a mean of zero and a standard deviation of one. To reflect that the longitudinal mag-
netic field component is, in general, measured with higher accuracy than the transversal
ones, we defined the noise models in a way that we added more noise to the transversal
components than to the longitudinal component (see columns two to six in Table 3.5 and
Fig. 3.18). To repeat, the accuracy of the SOLIS-VSM measurements is about 0.1 mT and
5 mT for the longitudinal and transverse field, respectively. In total we created eight noise
models (see Table 3.5) which we added on the original SOLIS-VSM data at 17:10 UT (as
shown for noise model no. 2 in Fig. 3.19). After applying the preprocessing and extrapo-
lation methods to this new, noisy vector magnetograms we calculated the energy content
of the extrapolated 3D force-free fields and compared it with that of the field as calculated
from the SOLIS-VSM vector magnetogram of June 07, 2007 at 17:10 UT without any
artificial noise added on it (called noise model no. 0 in Table 3.5).

From the analyzed nine cases, the resulting accuracy of the 3D potential field energy
was found to be EPOT

m = 3.128±0.013×1025 J. For the precision of the NLFF field energy
we revealed ENLFF

m = 3.317±0.032×1025 J and for the upper limit of the free magnetic
energy we obtained ∆ENLFF

POT = 0.189±0.026×1025 J. Correspondingly, our estimates of
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Influence of noise on the 3D magnetic energy content
Minimum and maximum noise amplitudes [ mT ] Magnetic energies

Noise to be added on Em × 1025 J
model Bx By Bz EPOT

m ENLFF
m

0 – – – – – – 3.130 3.282
1 -0.304 0.344 -0.386 0.364 -0.374 0.349 3.138 3.325
2 -18.319 18.254 -17.665 17.608 -0.360 0.329 3.158 3.382
3 -0.655 0.685 -0.687 0.6765 -0.302 0.437 3.121 3.318
4 -3.711 3.739 -4.201 3.449 -0.332 0.479 3.121 3.353
5 -1.226 1.249 -1.317 1.880 -0.351 0.331 3.121 3.301
6 -3.823 3.212 -3.485 3.421 -0.364 0.330 3.121 3.287
7 -3.674 3.232 -3.395 4.097 -0.342 0.328 3.121 3.299
8 -4.372 3.104 -3.485 3.421 -0.360 0.324 3.120 3.300

Table 3.5: Effect of artificial noise added to the lower boundary data on the resulting 3D mag-
netic energies. The minimum and maximum noise amplitudes added on the longitudinal (Bz) and
transversal (Bz,By) magnetic field components of the original magnetogram for each noise model
are listed together with the resulting changes of the potential (EPOT

m ) and NLFF (ENLFF
m ) energies.

Noise model no. 0 represents the SOLIS-VSM data at 17:10 UT without any noise added on it.

Figure 3.18: Transverse (Bx,By) and longitudinal (Bz) components of noise model no. 2 as listed
in Table 3.5. Panels (a), (b) and (c) showBx,By andBz, respectively. The model creates noise of
about ± 20 mT inBx andBy and of about ± 0.3 mT inBz. For better visibility regarding the effect
of adding the artificial noise, the magnetic field strength is scaled to ±12 mT. Units are arcseconds
and the color bar indicates the magnetic field strength in mT.

EPOT
m , ENLFF

m and ∆ENLFF
POT are accurate to within ≈ 0.4%, ≈ 1% and ≈ 13%, respectively.

Obviously, the potential field energy is not as sensitive to noise in the lower boundary as
is the energy of the NLFF field. This is not surprising since the potential field calculation
makes use of the longitudinal magnetic field component only.

Here it has to be noted that the error arising from the noise amplitudes in magne-
tograms is of statistical nature and can therefore be estimated. Besides this, however,
additional errors may arise whose magnitudes or influences on the calculated magnetic
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Figure 3.19: Transverse (Bx, By) and longitudinal (Bz) components of the SOLIS-VSM data on
June 07, 2007 at 17:10 UT with and without artificial noise added on it. Panels (a), (b) and (c)
picture the original Bx, By and Bz magnetic field components, respectively. Panels (d), (e) and
(f) show the components after applying noise model no. 2 (see also Fig. 3.18). For better visibility
regarding the effect of adding the artificial noise, the magnetic field strength is scaled to ±50 mT.
Units are arcseconds and the color bar indicates the magnetic field strength in mT.

energy content of the force-free equilibria, or more generally, on the solution of the force-
free equations, carried out inside a 3D box using a numerical extrapolation scheme may
not be assessable. These are systematic errors, e.g. arising from the basic assumption of
force-freeness in the entire coronal volume under consideration which might only partly
or not at all be justified. This is the case, for instance, in the interface region between
the photosphere and chromosphere or where magnetic reconnection is under way. Ad-
ditionally, hardly possible to appraise are the errors introduced by the specific numerical
treatment of the “unphysical” boundaries, i.e. the boundaries of a cubic extrapolation box
for which no measured magnetic field values exist to be incorporated. In particular, for
extrapolations within a numerical box where only the bottom boundary is known, the
influence of the unknown lateral and top boundaries (on which reasonable assumptions
have to be imposed) on the solution inside the computational volume is hard to estimate.

3.2.3.6 Discussion

We have investigated the coronal magnetic field associated with the NOAA AR 10960
on June 7, 2007 using SOLIS-VSM data. Three vector magnetograms with a time ca-
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dence of about ten minutes were available to investigate the magnetic energy content of
the coronal magnetic field during a C1.0 flare. Six further snapshots were receivable to
analyze a period of low solar activity of about three hours after this flare. Before as well
as after the small flare, the magnetic field energy was found to be ENLFF

m ≈3×1025 J and the
NLFF field was estimated to have possessed a free energy of ∆ENLFF

POT ≈1.5×1024 J before
the occurrence of the flare. As a consequence of the C1.0 flare, the amount of the free
magnetic energy reduced by nearly a factor of ten, resulting in an almost potential config-
uration. The analysis of the six snapshots, acquired within a period of about 70 minutes
during a quiet period of 3 – 4 hours after the flare, revealed an increase of the free mag-
netic energy. Since the estimated free magnetic energy remained only about 5% of the
total energy content, no large eruption was produced by NOAA AR 10960. With the help
of artificial noise models we were able to estimate the uncertainties of our potential and
NLFF energy estimates with ≈ 0.4% and ≈ 1%, respectively. Furthermore, the accuracy
of the estimated upper limit for the free magnetic energy was found to be ≈13%.

Additionally, we pictured that the field lines showed, on average, their highest vertical
extent when the C1.0 flare peaked and their, on average, lowest vertical extent after the
peak time of the flare. At the beginning of a very quiet period and corresponding to the
field configuration owing the lowest magnetic energy content, the field showed a more
potential-like topology with field lines of a slightly higher extent when compared with the
field configuration immediately after the flare.

These results are clearly different from that of the flaring NOAA AR 10540 as ob-
served on Jan 18 – 21, 2004 and analyzed with the help of SFT-VM data of a time cadence
of about one day. There, the free energy was ∆ENLFF

POT ≈ 66% of the total energy, which
was sufficient to power an M6.1 flare. Furthermore, the activity of NOAA AR 10540 was
significantly higher than that of NOAA AR 10960 as was the total magnetic energy.

3.3 Summary

We used a multigrid-like optimization code for extrapolating the NLFF coronal magnetic
field above two solar ARs. In order to minimize unavoidable foreshortening effects, the
investigated ARs and the corresponding vector magnetograph data were selected due to
their sufficiently close location to the solar disk center. After checking the consistency
of the observed vector magnetograph data with the force-free assumption and subsequent
demonstration of its initial inconsistency, we applied a preprocessing routine to gain con-
sistent boundary conditions for the NLFF coronal magnetic field extrapolations. This
procedure ensures that the modified photospheric boundary conditions suffice the force-
balance and torque-balance condition, that they do not deviate too much from the actually
measured photospheric data and that they are sufficiently smooth. Besides computing
NLFF fields from this suitable boundary conditions, we also calculated the corresponding
potential fields that can be determined from the vertical photospheric field alone.

Despite some differences, in particular in the coronal energy content and the amount
of free magnetic energy which can be realeased during solar eruptions, also some com-
mon features were found through the investigation of the two ARs and are summarized
in the following. Magnetic energy accumulates before a flare and a significant part of the
excess energy is released during a flare. A high amount of free magnetic energy available
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in an AR leads to large flares while small amounts of free energy power only small flares.
Furthermore, the energy decrease in the NLFF field seems to be higher than that of the
potential field, i.e. the energy release is likely to be more related to the changes of the
transverse magnetic field components than to that of the longitudinal component. This
implies that the energy storage and energy release are directly related to the field-aligned
electric currents in the corona. Moreover, the coronal magnetic fields do not totally relax
to a potential field configuration and the evolution of the energy density with height allows
us to assume that the energy changes due to the flaring activity mainly take place within
heights in the order of tens of megameters above the photospheric level. The computation
of iso-surfaces of equal absolute magnetic field magnitude also seems to support a pro-
posed implosion scenario during transient coronal events like flares and CMEs which has
recently been approved observationally.

The sequence of NLFF equilibria to study solar ARs is, in general, based on the avail-
ability and quality of vector magnetic field measurements. In case of the SFT-VM (as
used for the analysis of NOAA AR 10540 in the presented study) the time cadence is
rather low and also is the pixel size (one available vector magnetogram per day and about
1.32′′, respectively). The improved time cadence of one vector magnetogram every ten
minutes (occasionally with gaps of two to three hours in between) and a pixel size of
about 1.133′′ of the SOLIS-VSM (as used for investigating the coronal magnetic field
above NOAA AR 10560 in this work) allow a qualitatively better analysis of the coronal
magnetic field in the course of solar eruptions. Investigations of the flare mechanism in
great detail, however, require vector magnetic field measurements with an even higher
temporal and spacial resolution. Therefore, such measurements, as expected in future
from, e.g., the Helioseismic and Magnetic Imager on board of the Solar Dynamics Ob-
servatory (SDO/HMI; Graham et al. 2003) with a predicted pixel size of ≈ 0.5′′ and a
predicted temporal resolution of ≈90 seconds and the corresponding coronal field analy-
sis might allow to establish magnetic field extrapolations as an useful tool to predict solar
eruptions.

When estimating physical quantities such as the magnetic energy content and the free
magnetic energy of coronal magnetic fields one has to be aware that during the processes
related to solar eruptions part of the energy is released but another part of it is transformed
into kinetic energy or heat (i.e. the energy is converted back and forth between kinetic
and magnetic forms). The next chapter therefore deals with alternative measures of the
topology of magnetic fields such as the electric current helicity, the magnetic helicity
and, in particular, the advantageous use of the latter due to its comfortable property to be
(almost) conserved in (resistive) ideal MHD.
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4 Helicity of coronal magnetic fields

In the previous chapters it was emphasized that due to the limited availability of direct
chromospheric and coronal magnetic field measurements indirect methods are required.
One possibility is the force-free extrapolation of the photospheric magnetic field vector
into the corona. As a result, one obtains the 3D coronal magnetic field topology and can
estimate the related physical quantities such as the magnetic energy content and the free
magnetic energy. During the processes related to solar eruptions, however, part of the
coronal magnetic energy is transformed into other forms of energy such as kinetic energy
or heat. That is to say, when investigating coronal magnetic fields one has to be aware
that the associated energy may be converted back and forth between kinetic and magnetic
forms. However, the topology of magnetic fields can also be investigated with the help of
the electric current helicity and the magnetic helicity. The electric current helicity (here-
after referred to as current helicity) measures the degree to which the electric currents are
aligned with the magnetic field while the magnetic helicity quantifies the shear or twist of
a non-potential field. The magnetic helicity has the comfortable property to be (almost)
conserved in (resistive) ideal MHD since its dissipation time is too long to be relevant for
most coronal processes.

Hereafter, the underlying theoretical concepts of the current helicity are discussed in
§ 4.1.1 and that of the magnetic helicity in § 4.1.2. The formulation of the magnetic he-
licity integral for the ideal case in which no field crosses the boundaries of a considered
volume is outlined in § 4.1.3 and the necessary formal modifications to apply this concept
to coronal volumes are discussed in § 4.1.4. A brief review of recent studies of the coro-
nal magnetic field’s helicity based on force-free field extrapolations is given in § 4.2. A
method how to calculate the, for the practical computation of the magnetic helicity nec-
essary, 3D vector potential is presented in § 4.3 and the results of testing the developed
scheme are discussed in § 4.3.5. Finally, in § 4.4 a brief summary is given.

4.1 Theoretical concepts
The helicity of magnetic fields can be used as a tracer of the topological changes of the
coronal magnetic field. One can either investigate the current helicity which gives an
estimate of the degree of alignment between the electric currents and the magnetic field or
one can evaluate the magnetic helicity which quantifies the contribution of the topological
properties of a non-potential field. Generally speaking, the helicity is defined as the dot
product of a vector and its curl (the dot product being the so-called helicity density),
integrated over a closed volume (Pevtsov 2008).
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4.1.1 Current helicity
The current helicity describes the linkage between current channels and can be written as

Hc = µ0

∫
V
J ·B d3x =

∫
V

(∇ ×B ) ·B d3x (4.1)

with hc =µ0 J·B being the current helicity density and µ0 representing the permeability of
free space. It can be regarded as a measure of how much ∇×B is aligned withB, i.e. how
much the magnetic field is locally twisted (Démoulin 2007). If the vector magnetic field
B is known, the corresponding electric current density J (using ∇×B = µ0 J ) can be
calculated and, therefore, (4.1) is directly evaluable. Furthermore, since B is assumed to
be a solenoidal field (∇·B=0) no gauge freedom for (4.1) arises.

Within the force-free field approximation, the current channels and flux tubes are as-
sumed to coincide. Then, one can relate the magnetic field and the associated currents
with ∇×B = αff B, where αff is the force-free field parameter (for details see § 2.1). As
already mentioned, the current helicity measures the degree of alignment between the
electric currents and the magnetic field and, consequently, for force-free fields this align-
ment is assumed to be 100%. To repeat, αff can be chosen as to be zero, constant but
non-zero or a function of position, corresponding to potential (current-free; see § 2.2),
linear force-free (LFF; see § 2.3) or nonlinear force-free (NLFF; see § 2.4) fields, respec-
tively. Within the force-free approximation one can thus write

αff =
(∇ ×B ) ·B

B2 =
µ0

B2
(J ·B ) =

hc

B2 (4.2)

and hence hc =αff B2 which can be calculated from vector magnetograph data and which
shows that the force-free parameter is proportional to the current helicity density so that
it can, in principle, be used as a proxy for the helicity density’s estimation (Hagyard and
Pevtsov 1999). This, however, needs to be integrated over a specified volume to find the
current helicity Hc in that volume and, using (4.2), one can rewrite (4.1) in the form

Hc =

∫
V
αff B2 d3x (4.3)

which implies that the current helicity, based on the force-free field assumption, is of
the same sign as the force-free parameter αff (i.e., both being positive or negative). In
the special case of potential fields, (4.2) yields a zero current helicity density and thus a
zero current helicity in (4.3). In the case of LFF fields, where αff is assumed to be con-
stant throughout an entire active region (AR), the current helicity in (4.3) can be further
rewritten as

Hc = 2 µ0 αff ELFF
m (4.4)

with ELFF
m being the total magnetic energy of the 3D LFF field (for the definition of the

magnetic energy integral see (3.1) in § 3.2.1). Although the use of LFF fields provides
a comfortable way to estimate the current helicity above solar ARs, one has to keep in
mind that αff is, in general, not of the same value throughout an AR. As a result the
amount of helicity is likely to be underestimated when using (4.4) for its evaluation (see
e.g. Démoulin 2007). The most realistic force-free approximation of the true coronal
magnetic field is that of a NLFF field where αff varies from field line to field line.
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4.1.2 Magnetic helicity
The present formalism of the magnetic helicity arose from the first attempts to describe the
interaction of electrical circuits and the thus produced magnetic field by Gauss (1833). He
defined a measure for the enlacement of two closed or infinitely long curves in the form

L12 = − 1
4π

∫
l1

∫
l2

( dl1 × dl2 ) · x1 − x2

|x1 − x2 |3 , (4.5)

known as the Gauss linking number (GLN). Here, l1 and l2 represent two curves and x1

and x2 are points on the curves 1 and 2, respectively. Gauss already noted that this number
(i.e., the number of enlacements) remains the same if the two curves are interchanged and,
moreover, is left unchanged if l1 or l2 are moved without intersecting each other.

Turning this simple relation over to the concept of magnetic field lines, the sum of the
GLN over every pair of field lines within a volume gives the magnetic helicity. If there
are N distinct flux tubes with the flux φi (with i = 1, . . . ,N) in a closed volume, the total
magnetic helicity Hm is given by

Hm =

N∑
i=1

N∑
j=1

Li j φi φ j =
∑
i, j

Li j φi φ j +
∑
i= j

Lii φ
2
i , (4.6)

where Li j is the number of windings of field line i through the field line j or vice versa.
Then, N (N−1) terms for i, j arise from the mutual linking of pairs of field lines, N terms
for i = j arise from the self linking (twist) of individual field lines and all these terms
together make up the total helicity (e.g. Berger 1998, 1999a, Priest 1999).

The different geometrical forms such as the linkage, twist and kink of field lines can
change into each other as a magnetic field gets distorted and lead to the storage of mag-
netic energy. In ideal MHD, every twisting or kinking of magnetic field lines is conserved
and, consequently, whatever energy is stored based on the deformation of the field cannot
be freed simply by an “untwisting” or “unkinking”. Ideally, field lines do not recon-
nect or pass through each other, hence do not change their topology so that the linking
and knotting is preserved, though some energy may be lost, e.g., by converting magnetic
into kinetic energy (Berger 1999b). For simple structures, one can count the number of
windings of field lines around each other or the twist of individual field lines around them-
selves in order to determine the contribution to the total helicity. Instead of such simple
configurations one will, in general, be confronted with a complex combination of twist
and linking, e.g., multiple field lines warping around each other and additionally being
highly twisted. However, though the twist and linkage contribute different amounts of
helicity, the total helicity does not distinguish between them (see e.g. Hornig and Rastät-
ter 1997). For real cases, one never deals with individual field lines but one considers an
infinite number of field lines which concentrate in magnetic flux tubes and fill a volume
or surface rather than form simple closed tubes. Then it is already a problem to determine
the linkage of two arbitrary flux tubes and, moreover, one would have to sum over an
infinite number of pairs of flux tubes. Therefore, the formulation of the linkage of pairs of
flux tubes and the twist of individual flux tubes is generalized in order to approximate the
helicity in a magnetic volume. Moffatt (1969) was the first to establish a relation between
the GLN and the helicity integral in the context of the conservation of linkages of vortex
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lines. The magnetic field is considered as a collection of an infinite number (N→∞) of
closed flux tubes, each with infinitesimal flux (φi → 0), to combine (4.5) and (4.6) to a
double integral of the form

Hm = − 1
4π

∫
V

∫
V′

(
x − x′
|x − x′ |3 ×B

(
x′

) ) ·B (x) d3x′ d3x. (4.7)

One can then employ the Coulomb-gauge vector potential

A(x) =
1
c

∫
V′

J (x′)
|x − x′ | d

3x′ (4.8)

and make use of µ0 J =∇×B to get, after partial integration,

A(x) = − 1
4π

∫
V′

x − x′
|x − x′ |3 ×B(x′) d3x′ (4.9)

to reduce (4.7) to the form

Hm =

∫
V
A ·B d3x =

∫
V
A · (∇ ×A) d3x (4.10)

with hm = A ·B representing the magnetic helicity density (e.g. Berger 1984, 1999a,b,
Bellan 1999). Obviously, by redefining A to be A′ =A+∇ξ, with ξ being an arbitrary
scalar function one recognizes that still B = ∇× (A+∇ξ) = ∇×A. That means that
A is undefined with respect to a gauge or, equivalently, that any ∇ξ can be added to
the vector potential without altering the magnetic field since the curl of a gradient is
zero. Now, the definition of the magnetic helicity as a gauge-dependent quantity would
be not helpful since a gauge has no physical meaning (Bellan 2006). In the following, the
gauge-invariant formulation of the magnetic helicity depending on the properties of the
considered volume in which it is aimed to be evaluated are therefore discussed.

4.1.3 Magnetic helicity in closed volumes
A volume V which is enclosed by a surface ∂V through which no magnetic field penetrates
is called a “magnetically closed” volume. This implies that

B · dS = B · n dS = 0 on ∂V , (4.11)

where n denotes the outward normal vector on ∂V , dS is a surface element and ∂V can
be called an “impermeable” wall. Then, a gauge transformA′→A+∇ξ would yield

δHm =

∫
V
∇ξ ·B d3x =

∮
∂V
ξB · n dS = 0. (4.12)

This shows that, although the magnetic helicity densityA·B is a gauge-dependent quan-
tity, the total helicity Hm, as defined in (4.10), in a magnetically closed volume is gauge-
independent (Berger 1999a,b). If, additionally, the tangential component of the vector
potential At on ∂V is fixed, A is unique. The freedom of the gauge selection reflects the
freedom of choice of the normal component of the vector potentialAn on ∂V (Jensen and
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Chu 1984). However, (4.11) is a very restrictive condition since it limits the application
of (4.10) to cases where no magnetic field crosses the boundary. In the MHD case this
requires that the normal component of the fluid velocity vn must vanish at the imperme-
able wall. Assuming perfect conductivity (σ→∞), Ohm’s law reduces to E = −v×B,
implying Et = −vn×B = 0, meaning that the tangential electric field Et must vanish on
∂V (sinceB lies in the plane of the wall). This means that the adoption of an impermeable
wall equals that of a conducting wall ifB lies in the plane of the wall (Bellan 2006).

4.1.3.1 Helicity relaxation

The quasistatic magnetic field configuration above the photosphere evolves slowly through
a sequence of force-free equilibria, induced by material motions in or below the photo-
sphere. Processes like turbulence or instabilities propagate upward from the photosphere,
distorting a reached equilibrium and forcing it to perform a slow quasi-static evolution
to a neighboring equilibrium (represented by varying photospheric boundary conditions).
This subsequent relaxation leads to a minimum magnetic energy state for given photo-
spheric boundary conditions. This minimum energy state in a closed system, subject to
the constraint that the magnetic helicity remains constant (i.e., is conserved), can be de-
rived using a Lagrange multiplier ζ to formulate a constrained variational principle of the
form

δEm − ζ δHm = 0 (4.13)

with δEm (δHm) being the variation of the magnetic energy (helicity) relative to the mini-
mum magnetic energy (helicity) state (Woltjer 1958, Taylor 1974).

In order to determine the minimum-energy magnetic field Bmin for a given helicity,
one considers an arbitrary variation of the magnetic field B =Bmin +δB which satisfies
the same boundary conditions as Bmin. Furthermore, B is assumed to have an associated
vector potential A =Amin +δA and the magnetic energy associated with B is assumed
to be higher than that of Bmin. If one additionally hypothesizes that the volume V is
bounded by a perfectly conducting surface (i.e., to be magnetically closed) so that Et =0
on ∂V one must, to achieve accordance with the assumption of helicity conservation, also
assume the tangential component of the vector potential’s variation to vanish at the wall
(i.e., δAt =0 on ∂V; Bellan 2006). With these assumptions and using δB=∇×δA we can
rewrite δEm in (4.13) as

δEm =
1

2 µ0

∫
V

(
B2 −B2

min

)
d3x

=
1
µ0

∮
∂V

( δA ×Bmin ) · n dS +
1
µ0

∫
V
δA · (∇ ×Bmin ) d3x, (4.14)

where the surface term vanishes in accordance to δAt = 0 on ∂V and where we assumed
that higher-order variations ofA are negligible. Accordingly, we rewrite δHm in (4.13) as

δHm =

∫
V

(A ·B −Amin ·Bmin ) d3x

=

∮
∂V

( δA ×Amin ) · n dS + 2
∫

V
δA ·Bmin d3x. (4.15)
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Inserting (4.14) and (4.15) into (4.13) results in∫
V
δA · (∇ ×Bmin − ζBmin ) d3x = 0, (4.16)

where we made use of the fact that one can re-define the arbitrary parameter ζ so that it
absorbs the factor µ0 in (4.14) and the factor of two in (4.15). Since the variation δA is
assumed to be arbitrary within V, the rest of the integrand must vanish and, consequently,

∇ ×Bmin = ζBmin (4.17)

with ζ being spatially uniform (Woltjer 1958, Taylor 1974, Bellan 1999, 2006). This
shows that any closed system relaxes by energy dissipation to a force-free field configura-
tion. This may formally explain why the coronal energy content of the NLFF fields above
the two analyzed solar ARs (presented in § 3.2.2 and § 3.2.3) does not reduce to that of the
corresponding potential field after the occurring flares because the relaxation of a NLFF
field to a potential state obviously conflicts with the conservation of its magnetic helicity.

When considering perfectly conducting fluids, the magnetic field is frozen into the
plasma and follows its continuous flow. This implies, that the field lines cannot change
their topological properties which are therefore conserved for all times. Then, (4.17) only
tells that the attained state of minimum magnetic energy is “some” force-free equilibrium.
This is because there may exist many subvolumes in the plasma (i.e., many individual flux
tubes), bounded by magnetic surfaces for which the corresponding Hm is to be conserved.
Because the helicity has to be assumed as constant in each elementary flux tube, in prin-
ciple, as many Lagrange multipliers as there are flux tubes need to be introduced and the
variational principle, allowing for all these extra constraints, does not lead to a force-free
field with constant ζ for most initial states. This would be far from being universal and so
one considers that real plasmas are never perfectly conducting (Taylor 1974). In plasmas
with small but finite resistivity the topological properties are no longer conserved and field
lines may reconnect. Though the requirement of helicity conservation for individual field
lines would no longer hold, it should still be approximately conserved when considering
the entire volume that contains all the field lines. This can be assumed since the topologi-
cal changes related to individual field lines result only in small changes of the field itself.
Consequently, the sum of the helicity over all field lines in the entire volume remains al-
most unchanged during its evolution to a minimum energy state. If this is true, the final
state of minimum energy corresponds to a state with the same value ζ representative for
all pairs of field lines (Taylor 1974, Heyvaerts and Priest 1984, Taylor 1986). Now it is
clear that ζ, under these conditions, equals the already introduced constant but non-zero
force-free parameter αff of a LFF field so that for subsequent discussions we go back to
this notation.

Based on the discussion above, we can write ∇×B = αff B = αff (∇×A) or, which
is equivalent, ∇×(A−α−1

ff
B) = 0. Uncurling this expression gives A = α−1

ff
B+∇ξ with

ξ being an arbitrary scalar function that can be added to the A without altering B. The
volume-integrated (total) magnetic helicity can then be written as

Hm =

∫
V

(
α−1

ff B + ∇ξ
)
·B d3x =

∫
V
α−1

ff B2 d3x +

∮
∂V
ξB · n dS . (4.18)
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Since we assumed a magnetically closed volume (i.e., B ·n dS = 0 on ∂V), the surface
integral is zero so that for LFF fields (where αff is assumed to be consant within the
considered volume) one can write

Hm = 2 µ0 α
−1
ff ELFF

m (4.19)

which means that the magnetic helicity is reversely proportional to αff and of the same
sign (i.e. both being positive or negative; see e.g. Bellan 1999, 2006).

Note that a similar expression was already found for the total current helicity in (4.4)
with the difference that it was found to be directly proportional to αff . Thus, in the case
of LFF fields and using (4.3) and (4.18) one can establish the relations

hm = α−2
ff hc, (4.20)

showing that both helicity densities are of the same sign and

hm = α−1
ff B2, (4.21)

indicating that the magnetic helicity density can be determined by magnetograph data
(Hagyard and Pevtsov 1999). Nevertheless, in the most general case of the force-free
parameter being a function of position (i.e., αff =αff(x)), the helicity densities hm and hc

cannot be expected to be simply related since the distribution of αff(x) is a key ingredient
in (4.3) and (4.18). Evenmore, as pointed out by Régnier et al. (2005a) and Démoulin
(2007), for certain solar configurations hm and hc may not be of the same sign.

4.1.4 Magnetic helicity in open domains
In contrast to the previous discussions, the considered volume V is magnetically open
(i.e. magnetic field penetrates the boundaries so that B ·dS , 0 on ∂V) if one aims to
study the helicity of the solar corona. This is because magnetic flux emerges through
the photosphere from below. Even if one were able to count the linkages of flux tubes
in the coronal volume, one could not know about the linkage of the flux tubes below the
photosphere. This ambiguity in counting the linkage of flux tubes is equivalent to the
gauge ambiguity (Bellan 1999). In addition, magnetic field lines have endpoints on the
boundaries of the computational volume (representing the considered coronal volume)
and hence linking numbers will be undefined. Now, any gauge of the form A′→A+∇ξ
results in δHm , 0 in (4.12) and Hm will not be invariant with respect to the ambiguous
gauge ofA and hence will not provide a physically meaningful quantity.

This led to the development of the concept of the “relative” magnetic helicity (Berger
and Field 1984, Jensen and Chu 1984). One attempts to measure the helicity inside a
volume of interest (VOI) which is generated by currents partly inside and outside of it.
Therefore, one defines a volume external to the VOI so that the sum of the two contains no
open field lines (Berger 1988). This means thatB·dS=0 on the boundary of the external
volume butB·dS,0 on the interface between the VOI and the external volume. Then an
integral over the entire volume (containing the external volume and the VOI) does not fail
to count linkages since, by assumption, no open field lines are present (Bellan 1999). This
is similar to regarding a magnetic fieldB to be the sum of a closed field (B̂; representing

97



4 Helicity of coronal magnetic fields

the VOI) and an open field (B̄; representing the external volume) in the formB=B̂+B̄,
with the special properties ∇×B̄=0, B ·dS=B̄ ·dS and B̂ ·dS=0 (Kusano et al. 1995).
Usually, B̄ is called the “vacuum” field and is chosen to be represented by a potential
field. If we write the measure of the linking of two fields in the form

HV(B′,B′′) ≡
∫

V
A′ ·B′′ d3x, (4.22)

whereB′=∇×A′ and whereB’ andB” represent any two divergence-free vector fields,
the helicity of the configurationB=B̂+B̄ takes the form

HV = HV(B,B ) = HV( B̂, B̂ ) + 2 HV( B̄, B̂ ) + HV( B̄, B̄ ), (4.23)

where HV(B̂, B̂) measures the self helicity of the closed field and HV(B̄, B̂) the mutual
helicity between the open and the closed field. Note that the factor of two arises from
the fact that B̄ is linked with B̂ but also vice versa (see § 4.1.2). Both HV(B̂, B̂) and
HV(B̄, B̂) are well-defined quantities, making up together the relative helicity. HV(B̄, B̄)
is the self helicity of the vacuum field which does not reflect any field linkage and can
therefore be omitted (Berger 1999b). The integral formulation for the relative helicity
Hrel can then be written as

HV = Hrel =

∫
V

(
Â · B̂ + 2 Ā · B̂

)
d3x. (4.24)

Since we decomposed the magnetic field B into B̂ and B̄ and since these are associated
to their vector potentials via B̄=∇×Ā and B̂=∇×Â, the total magnetic vector potential
can also be decomposed in the formA=Â+Ā. Using this in (4.24) yields

Hrel =

∫
V

(
A − Ā

)
· B̂ d3x +

∫
V

2 Ā ·
(
B − B̄

)
d3x

=

∫
V

(
A + Ā

)
·
(
B − B̄

)
d3x (4.25)

which is usually called the “Finn-Antonsen formula” (Berger and Field 1984, Jensen and
Chu 1984, Finn and Antonsen 1985). If the gauge potentials ∇ξA and ∇ξĀ are added to
A and Ā, respectively, the change in the relative helicity is

δHrel =

∫
V
∇ ( ξA + ξĀ ) ·

(
B − B̄

)
d3x =

∮
∂V

( ξA + ξĀ )
(
B − B̄

)
· n dS = 0, (4.26)

where we made use ofB·dS=B̄·dS. According to Jensen and Chu (1984), the boundary
condition on B̄ can be automatically satisfied by choosing the gauge of A and Ā so that
A×dS=Ā×dS so that the relative helicity can be written as

Hrel =

∫
V

(
Â · B̂ − Ā · B̄

)
d3x. (4.27)

Also Hornig (2006) considered the total helicity integral (4.10) for magnetic fields which
are not closed within a domain. His representation does not require an explicit reference
field as the one for the relative helicity integral does. Instead, he constructed an unique
expression for the magnetic helicity by giving up the gauge freedom and introducing
a gauge condition for A on ∂V which corresponds to the closing of the domain by a
topologically unique field.
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4.2 Helicity studies based on force-free fields

Based on 3D coronal magnetic field extrapolations, the current and magnetic helicity can
be evaluated for an entire computational volume. In the following, the results of some
recent work, using force-free extrapolation methods to investigate the coronal magnetic
field’s helicity, are discussed.

The coronal magnetic helicity associated with the simple bipolar, isolated NOAA
AR 7978 between July and Nov 1996 was analyzed by Démoulin et al. (2002). They
first computed the LFF (constant-αff) coronal magnetic field using SoHO/MDI line-of-
sight magnetic field measurements as the lower boundary condition (assuming a given
value of αff) and then compared computed field lines to coronal loops observed with
the Yohkoh/SXT. The αff,best-value whose corresponding LFF field computation fitted the
coronal loop observations best was found through an iterative process in which LFF fields
were calculated using different values of αff. Based on the αff,best-LFF field extrapola-
tions, it was shown that over a time period of about six months the relative magnetic
helicity sign corresponded to the southern hemisphere where the AR emerged. With the
correspondence of the helicity sign to a particular solar hemisphere we refer to the obser-
vationally established “hemispheric sign rule” which (though maybe being more a trend
than a rule) manifests itself in the form of predominantly negative/positive helicity pat-
terns in the northern/southern solar hemisphere. Modelling 78 ARs with LFF fields based
on SoHO/MDI magnetograms, Nindos and Andrews (2004) found the αff,best-values from
fitting the model loops to SoHO/EIT observations of the AR’s coronal loops and com-
puted the coronal current helicity from the resulting LFF fields. Averaging all αff,best of all
ARs, they found a higher value than the average photospheric αff,best derived by Pevtsov
et al. (1995) who studied 69 ARs. The source of this difference was suspected to be due to
the selection of the considered ARs. They found that the pre-flare value of αff,best as well
as the absolute coronal magnetic helicity of ARs to be smaller when flares without CME
association occurred. Also possible changes of the sign of αff,best and thus of the magnetic
helicity due to impulsive variations close to the flare onsets were underlined. Nindos and
Andrews (2004) furthermore found that for ARs for which a LFF model was not accept-
able, a change of the sign of αff within an AR occurred more often in those ARs which
produced confined flares than in those producing eruptive flares, indicating the presence
of magnetic helicity of mixed sign. A large range of αff values of mixed sign means that a
magnetic field is far from a LFF state, though a mixed sign of αff does not necessarily im-
ply a mixed sign of the magnetic helicity (Démoulin 2007). Using data from the Imaging
Vector Magnetograph of the Mees Solar Observatory (MSO-IVM; Mickey et al. 1996),
Georgoulis and LaBonte (2007) investigated NOAA AR 8844 and NOAA AR 9165 as
observed on Jan 25, 2000 and Sep 15, 2000, respectively, over a period of several hours.
While NOAA AR 8844 appeared to be a small, short-lived emerging region NOAA AR
9165 exhibited significant eruptive activity. By calculating the αff,best-LFF field (as found
by matching the coronal loops simultaneously observed with the TRACE) they found al-
most identical average absolute values of αff,best for both ARs but of different sign (though
both ARs were located in the same hemisphere). Moreover, the much larger magnetic flux
carried by the eruptive NOAA AR 9165 led to a larger helicity budget compared to that
of the non-eruptive NOAA AR 8844. Hence it was concluded that comparing the helicity
budget might be a safe way to distinguish between eruptive ARs and such which are not.
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The αff- and hence the αff,best-parameter, however, are mostly determined by large
scale loops present in an AR. A LFF extrapolation of the coronal magnetic field based on
line-of-sight photospheric magnetic field measurements generally approximates shorter
(longer) field lines less (more) sheared than they actually are when compared with coronal
loop observations. As a result, the amount of helicity present in the solar corona is likely to
be underestimated (Démoulin 2007, and references therein) and NLFF field extrapolations
are necessary to improve the match of the coronal helicity content.

Using MSO-IVM data, Régnier et al. (2002) analyzed the 3D NLFF (non-constant
αff) field of NOAA AR 8151 on Feb 11, 1998. The integrated relative helicity density
was found to be positive as was the mean value of αff(x). Since this AR was located in
the southern hemisphere this finding supports the hemispheric sign rule. Régnier et al.
(2005a) investigated the meaning of the self helicity of the closed field, the mutual he-
licity between the closed and the open field and the vacuum helicity of NOAA AR 8210
observed on May 1, 1998 using MSO-IVM data. They found that the magnetic con-
figuration of this AR was dominated by the mutual helicity and not by its self helicity.
They also showed that, though not gauge invariant, the vacuum helicity is sensitive to the
topological complexity of the reference (potential) field. The relative helicity was also
estimated using LFF fields with varying αff from the same boundary conditions as the
NLFF computation to compare the result. It was found that the relative helicity computed
for the LFF field can be very different in absolute value and sign from that of the NLFF
field (Régnier et al. 2005a, and references therein). Régnier and Canfield (2006) analyzed
NOAA AR 8210 observed on May 1, 1998 for a period of about five hours with the help
of NLFF field extrapolations based on MSO-IVM data. The self helicity of the vacuum
(potential) field was found to be nearly constant but non-zero which was suspected to be
due to the complex configuration of AR 8210 since for simply connected volumes the
self helicity of a potential field is expected to be zero. Its positive value and the apparent
location of this AR in the southern hemisphere agrees with the hemispheric sign rule.
Furthermore, an injection of negative relative helicity was found before a recorded flare
and a decrease of the relative helicity after it. However, a delay of ≈ 20 min was found
between the injection of negative helicity and its release after the flare, indicating a delay
between the injection into the corona and its associated response. In addition to the two
aforementioned ARs, Régnier and Priest (2007b) also analyzed NOAA AR 9077 on July
14, 2000 and NOAA AR 10468 on Oct 27, 2003 as observed with the MSO-IVM. They
found a correspondence of the relative magnetic helicity sign, as calculated from extrap-
olated NLFF fields, with the hemisphere in which the ARs appeared. However, in all
of these helicity studies the vector potential Grad-Rubin-like method (Amari et al. 1997,
1999) was used to extrapolate the NLFF coronal magnetic field which assumes for the
required boundary conditions on the lateral and top boundaries of the computational box
a vanishing normal component of the magnetic field. This seems less realistic than pre-
scribing these boundaries in form of the potential field, as done within our optimization
method (see § 2.4.1 and Wiegelmann 2004). Therefore, we aim to calculate the helicity
content of coronal magnetic fields extrapolated with our magnetic field model. Since for
the calculation of the magnetic helicity the derivation of the 3D magnetic vector potential
from the extrapolated magnetic fields is necessary, a recently developed method to do so
is presented in the following section.

100



4.3 Computation of the magnetic vector potential

4.3 Computation of the magnetic vector potential
To evaluate the magnetic helicity content of the solar corona the knowledge of the 3D
magnetic field vector and the associated 3D vector potential is needed. The calculation
of the 3D coronal magnetic field structure using extrapolation techniques was formally
demonstrated in § 2 and its practical application shown in § 3. Hereafter, a newly devel-
oped method to derive the vector potential from a given magnetic field is presented.

4.3.1 General formulation of the problem
Permanently, magnetic flux emerges from below through the photosphere into the corona
and hence coronal volumes are magnetically open. This, for magnetic field computations
within a cubic box, means that magnetic field penetrates all boundaries (i.e., B ·dS , 0).
Since the magnetic helicity integral for magnetically open volumes is not invariant with
respect to gauge transforms of the associated vector potential (see § 4.1.4) one aims to
evaluate the relative helicity, i.e. the helicity with respect to a reference field.

In general, in order to determine the 3D magnetic vector potential A for a given
solenoidal (∇·B=0) vector magnetic fieldB, one has to solve an inhomogeneous partial
differential equation (PDE) of the form

∇ ×B = ∇ × (∇ ×A ) = ∇(∇ ·A ) − ∆A = µ0 J . (4.28)

Since the normal magnetic field component on all boundaries ∂V of the considered vol-
ume has to be reproduced by the normal component of the vector potential’s curl, (4.28)
is subject to the boundary requirement

n ·B = n · (∇ ×A ) on ∂V . (4.29)

Since (4.28) and (4.29) define the curl of A only, i.e. define A up to the gradient of an
arbitrary scalar function ξ which could be added to A without altering B, one adds the
additional constraint ∇ ·A = 0 (the so-called Coulomb gauge). Then, one also has to
provide suitable boundary conditions onA itself which can be achieved by

n ×A = 0 on ∂V (4.30)

which defines the tangential component of the gradient of the scalar function ξ on ∂V .
We solve the inhomogeneous PDE (4.28) by seeking the special solution of the inho-
mogeneous equation ∆A = − µ0 J (which takes the electric currents into account) and
searching the set of solutions to the homogeneous problem ∆A=0 (which takes the mag-
netic flux through the boundaries into account). In other words, we calculate the total
magnetic vector potentialA as the sum of a current-carrying part Â and a Laplacian part
Ā so that A = Ā+Â (which is equivalent to the decomposition of the magnetic field in
the formB=B̄+B̂ as introduced in § 4.1.4).

To summarize, our strategy to find the total 3D magnetic vector potential involves,
on the one hand, the calculation of the current-carrying part Â by solving ∆Â = − µ0 J
(which is hereafter called the “inhomogeneous” problem; see § 4.3.2) and, on the other
hand, the computation of the Laplacian part Ā by solving ∆Ā = 0 (hereafter named the
“homogeneous” problem; see § 4.3.3). Finally, the summation of the two derived parts
Ā and Â gives us the total 3D magnetic vector potential so thatB=∇×A=∇×(Ā+Â).
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4.3.2 Inhomogeneous problem
The inhomogeneous problem corresponds to find a vector potential Â in V which takes
the electric current density J into account and is of the form

∆Â = − µ0 J (4.31)

which, using ∇·Â=0, follows from (4.28). Since Â is ambiguous with respect to a gauge
transform Â′= Â+∇ξ (with ξ being an arbitrary scalar function), we impose a condition
on the tangential component of the vector potential Ât on the boundary of the form

n × Â = 0 on ∂V . (4.32)

A gauge transform Â′=Â+∇ξ then requires

∇ · Â′ = 0 → ∆ξ = 0 in V, (4.33)
n × Â′ = 0 → n × ∇ξ = 0 on ∂V . (4.34)

Now, (4.34) is automatically satisfied where n ‖∇ξ on ∂V . On boundaries where n⊥∇ξ
it is only fulfilled if ∇ξ=0 and hence ξ must be constant on those boundaries. Therefore,
and since ξ suffices the Laplace equation (4.33), ξ is constant on ∂V and on the whole of
V so that Â in (4.31) and (4.32) is uniquely specified.

To solve the inhomogeneous problem in a cubic box we consider three scalar Poisson
problems for each Cartesian component xi of the magnetic vector potential, namely

∆Âxi = − µ0 Jxi (4.35)

with i= (1, 2, 3), (x1, x2, x3)= (x, y, z) and Jxi being the Cartesian components of the current
density. Then, (4.35) is subject to the mixed Dirichlet/Neumann boundary conditions

Âxi = 0 where exi⊥n, (4.36)
∂xiÂxi = 0 where exi ‖n (4.37)

with (ex1 , ex2 , ex3) = (ex, ey, ez). These boundary conditions guarantee that the tangential
divergence ∇t ·Ât = 0 vanishes on ∂V and together with ∇·Â = 0 in V ensure the entire
divergence-freeness of Â. Since J does not vanish on ∂V the Cartesian components Âxi

have to satisfy, besides the Neumann condition (4.37), also the Poisson equation

∂2
xi
Âxi = − µ0 Jxi where exi ‖n. (4.38)

Clearly, for a Laplace magnetic field Â vanishes (since J =0) so that the vector potential
found up to now yields the current-carrying part of the total magnetic fieldB only.

4.3.3 Homogeneous problem
Seehafer (1978) provided an analytical formulation to derive the potential (Laplacian)
field B̄. From the Fourier representation of the three Cartesian components B̄x, B̄y and
B̄z one can explicitly write down the corresponding analytical expressions for Āx, Āy and
Āz. Using Fourier expansions for the magnetic field and the associated vector potential is
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advantageous considering the resulting reduced computation time needed for the calcu-
lations. However, Fourier methods require the potential magnetic field B̄ to be periodic.
Since we want to avoid the assumption of periodic boundary conditions within our force-
free field calculations, and therefore use the Green’s function method after Aly (1989) to
calculate the potential field, we developed an alternative numerical method to solve the
homogeneous problem in order to find the associated vector potential Ā.

For the homogeneous problem we cannot maintain (4.30) anymore but must take mag-
netic field on the boundaries into account. The Laplacian field B̄ satisfies the same normal
boundary condition as B on ∂V (i.e., n ·B̄ = n ·B) and the tangential magnetic field is
explicitly required. To find the solution of the homogeneous problem we thus have to
solve

∆Ā = 0 (4.39)

which, using ∇·Ā=0 and J =0 follows from (4.28), subject to the boundary requirement

n · B̄ = n · (∇ × Ā ) on ∂V . (4.40)

Since (4.40) involves derivatives it is not as restrictive as a boundary condition of the
form (4.30) and still allows gauge transforms which automatically maintain the boundary
conditions (4.40). In particular, a gauge Ā′=Ā+∇ξ requires

∇ · Ā′ = 0 → ∆ξ = 0 in V, (4.41)

where ξ denotes any scalar Laplace field. A gauge which maintains (4.40) requires similar
as in (4.33) that ξ is constant in V. However, since ∇ξ does not affect ∇×Ā, ξ is still
ambiguous on ∂V . Consequently, Ā in (4.39) and (4.40) is not uniquely fixed so that we
additionally have to solve for ξ on the boundaries.

To solve (4.39) and (4.40) in a cubic box we again treat the three Cartesian components
xi (with i = (1, 2, 3) and (x1, x2, x3) = (x, y, z)) of the magnetic vector potential separately
and solve the three boundary value Laplace problems

∆Āxi = 0 (4.42)

with the mixed Dirichlet/Neumann boundary conditions

Āxi = given where exi⊥n, (4.43)
∂xiĀxi = 0 where exi ‖n. (4.44)

The boundary condition (4.44) ensures ∇t ·Āt = 0 on ∂V and, together with ∇·Ā= 0, the
entire divergence-freeness of Ā. In this way, the solution of the Laplace equation (4.42)
is up to a constant well-defined.

It remains to determine the 2D Cartesian components of Āxi on ∂V in (4.43). There-
fore, we take advantage of the vanishing 2D divergence on ∂V (i.e., ∇t ·Āt =0) so that we
can consider Āt on ∂V to be generated by the 2D stream functions of a Laplacian field ξ̄.
According to (4.40), we thus have to solve a 2D Laplace problem of the form

∆ξ̄ = − B̄ · n, (4.45)

on each boundary, subject to the Neumann boundary condition

∂nξ̄ = σe Āe, (4.46)
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where Āe are previously unknown constant values of Ā on the edges of each 2D boundary
(hereafter we refer to a 2D boundary of our cubic computational domain as to a “face”).
We introduce σe in order to account for the possibly different orientation which an edge
may have with respect to the two faces it is connected to (which can thus have a value of+1
or−1). We not only use the σe to ensure that the sum over all four Āe (one for each edge
of a face) of every face, i.e.

∑4
e=1 σe Āe yields a proper circulation and equals the total

outflow of a face, but also to ensure that the sign of each Āe is correct with respect to the
face outward normal vector n. Once the constant Āe on all edges of the computational
box are known, we can supply (4.45) with the required Neumann boundary conditions
(4.46). After solving (4.45) to calculate the 2D stream function ξ̄ on each face, we can
determine the tangential components of the vector potential using Āt =−n×∇ξ̄ so that,
explicitly as required in (4.43), we compute(

Āi j, Āik

)
=

(
− ∂xk ξ̄, ∂x j ξ̄

)
, (4.47)

where (i, j, k) are positive permutations of (1, 2, 3). These values are supposed to be con-
tinuous on every edge where two faces join. Implicitly, the in this way constructed ξ̄ yields
a vanishing 2D divergence ∇t ·Āt =0, or explicitly, ∂xk Āk + ∂x j Ā j =0 on every face. Then,
following Gauss’ (divergence) theorem, Ā also has a vanishing 3D divergence.

4.3.3.1 Calculation of the constant Āe-values

We choose Āe in (4.46) as constant values of the vector potential Ā at the edges of each
face of the computational domain and the following discussion is therefore restricted to
a purely 2D geometry. We construct Āe along the edges of a face in a way that the
circulation on each face gives the correct outflow

Φ f =

∫
S
B̄ · dS =

∮
∂S
Ā · dl =

4∑
e=1

σe Āe Le (4.48)

which the solution for ξ̄ in (4.45) delivers correctly due to the boundary condition (4.46).
Here, Φ f denotes the net flux through an individual face, σe =±1 accounts for the orien-
tations of the edges with respect to the particular face and Le represent the side lengths
of a the face. Since we deal with a rectangular grid with all values being defined on the
intersections of the grid cells (i.e. at the nodes of the grid and not in the center of the grid
cells), we assume the contribution of the magnetic field to the net flux at the corners of a
face (that are the pixels at the two ends of each edge) to be 25% and that of the magnetic
field along the edges (without the corners) to be 50%. The magnetic field of all other
points on the faces (that are all the pixels except that of the corners and on the edges) is
assumed to contribute with 100% to a face’s net flux. For our cubic computational box
we have six faces (2D boundaries) and each of those has four unknowns Āe (one for each
edge). To repeat, the values of Āe on edges where two faces join have to coincide so
that in total 12 unknowns have to be determined. From (4.48) six equations arise (one
for each face) which, evidently, are not sufficient to determine the 12 unknown values
Āe uniquely since there exist many possible sets of Āe which satisfy (4.48). Therefore,
we introduce an additional constraint in order to obtain the unique values of Āe so that we
minimize, besides (4.48), also

∑12
e=1 Ā

2
e and the in this way determined set of Āe fulfills
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the requirement that the total outflow Φ over all faces vanishes (i.e., Φ=
∑6

f =1 Φ f =0). So
far, we constructed a set of edge parameters Āe in (4.48) the squared sum of which has to
be minimized. A common way to minimize a given function subject to side constraints is
to use the method of Lagrangian multipliers. The Lagrangian function corresponding to
our particular problem reads as

L
(
Āe, λ f

)
=

12∑
e=1

Ā2
e +

6∑
f =1

λ f ·
(
Φ f −

4∑
e=1

σe Āe Le

)
, (4.49)

where λ f are six Lagrange multipliers. Note that incorporating all six faces of the cubic
box in the last term of (4.49) is not necessary. This is because we constructed our problem
so that Φ=0 and we can therefore omit one of the six faces in order not to overdetermine
the associated system of equations. Therefore, we decide to leave the top face of the cubic
box in the last term of (4.49) aside. This is justified since (although even in case of poten-
tial fields a large amount of magnetic flux can cross the boundaries) the coronal magnetic
field is strongly decreasing with increasing height. This is because (for flux-balanced
magnetograms as lower boundary condition) the strong fields close within low heights so
that only little flux is free to leave through the top boundary. Therefore, the requirement
of the vanishing total outflow should still be delivered correctly by minimizing

L
(
Āe, λ f

)
=

12∑
e=1

Ā2
e +

5∑
f =1

λ f ·
(
Φ f −

4∑
e=1

σe Āe Le

)
. (4.50)

To solve this minimization problem we build the first partial derivatives ∂Āe
L, arising

from the first term on the right-hand side of (4.50) to obtain 12 individual expressions for
Āe as functions of the Lagrangian multipliers λ f and the length of the individual edge
Le. Those can be inserted into the five relations for Φ f which we gain by taking the
partial derivatives ∂λ fL, arising from the second term on the right-hand side of (4.50).
Accordingly, we obtain a linear system of five equations to be solved for the λ f . Once the
λ f are found, we insert them back into the 12 relations ∂Āe

L to attain the unique values
of Āe. With the knowledge of all the Āe we properly specify the Neumann boundary
condition (4.46) which we need to provide to the 2D Poisson problems (4.45) on each
face of the cubic box.

In the previous sections, the problem of finding the total 3D magnetic vector potential
for a given 3D magnetic field has been introduced as the task to find the solutions of ho-
mogeneous and inhomogeneous equations, subject to appropriate Dirichlet or Neumann
boundary conditions. The solution of these problems is achieved by solving either Poisson
or Laplace equations and the numerical implementation is discussed in the following.

4.3.4 Numerical solution of the Poisson and Laplace equations
4.3.4.1 Finite difference formulation

A Poisson problem involving three spatial dimensions is of the form

∆Ψ(x1, x2, x3) = ∂2
x1

Ψ + ∂2
x2

Ψ + ∂2
x3

Ψ = F(x1, x2, x3), (4.51)
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where (x1, x2, x3) = (x, y, z), F(x1, x2, x3) is a known function and that is what we for-
mally solve in § 4.3.2. A Laplace problem can be regarded as a special case of (4.51) if
F(x1, x2, x3) = 0 which is therefore called a “homogeneous” Poisson problem (as techni-
cally solved for in § 4.3.3). Note that in the case of a 2D Poisson problem (as is (4.45) in
§ 4.3.3) only two spatial coordinates are considered, e.g., x1 and x2 for the bottom bound-
ary of the computational box with the coordinates (x1, x2, x3 = 0). Then x3 would not
appear in (4.51) and Ψ and F would be a function of x1 and x2 only (i.e., Ψ=Ψ(x1, x2) and
F = F(x1, x2)). In the following, the formal approximation and numerical implementation
of (4.51) is demonstrated.

Using central finite differences, ∆Ψ in (4.51) at every point (x1, x2, x3) inside a con-
sidered volume (except on the boundaries) can be written as

∆Ψx1,x2,x3 =
Ψx1+h,x2,x3 − 2 Ψx1,x2,x3 + Ψx1−h,x2,x3

h2

+
Ψx1,x2+h,x3 − 2 Ψx1,x2,x3 + Ψx1,x2−h,x3

h2 (4.52)

+
Ψx1,x2,x3+h − 2 Ψx1,x2,x3 + Ψx1,x2,x3−h

h2 ,

where we use ∆x1 =∆x2 =∆x3 =h as the distance between the individual grid points. After
rearranging (4.52) and substitution into (4.51) we find

Ψx1,x2,x3 =
1
6

(
Ψx1+h,x2,x3 + Ψx1−h,x2,x3 + Ψx1,x2+h,x3

+ Ψx1,x2−h,x3 + Ψx1,x2,x3+h + Ψx1,x2,x3−h − h2Fx1,x2,x3

)
. (4.53)

This means that if Ψ(x1, x2, x3) satisfies the Poisson equation (4.51) it is at any point inside
the considered domain (but not on its boundaries) given by the average of the values of Ψ

at the surrounding points. Consequently, in 3D the six points surrounding Ψ in a seven-
point stencil determine the value of Ψ in the center of the stencil. Note again that in the
case of a 2D Poisson problem we would only consider two spatial coordinates, say x1

and x2, and x3 would not appear in (4.52) and (4.53). Furthermore, we would deal with
Ψ = Ψ(x1, x2) and F = F(x1, x2) and a factor of 1/4 instead of 1/6 would appear in (4.53).
Accordingly, the four points surrounding Ψ(x1, x2) in a five-point stencil would determine
the value of Ψ in the center of the stencil.

On the boundaries of a considered domain, however, no seven- or five-point stencils
(in 3D and 2D, respectively) exist because the points on the boundaries are only neigh-
bored by five or three points, respectively. On boundaries where we have to incorporate
Dirichlet boundary conditions this imposes no problem since Ψ(x1, x2, x3) or Ψ(x1, x2),
respectively, can simply be specified in form of constant values on those boundaries. For
our case, we explicitly impose zeros on the 2D boundaries of our cubic domain according
to (4.36) and (4.43). Where we have to impose Neumann boundary conditions, however,
we need to specify derivatives. For our particular problem, this implies the specifica-
tion of first-order partial derivatives on the 2D faces of the 3D domain due to (4.37) and
(4.44) and on the edges of the 2D faces because of (4.46) but also the incorporation of
second-order partial derivatives on the 2D faces in accordance to (4.38).

There is a choice how to approximate first-order partial derivatives within the finite-
difference approximation, namely in form of a forward or backward one-sided finite dif-
ference. For a 2D function Ψ(x1, x2) the forward and backward difference expression for
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the first-order partial derivative with respect to x1 read ∂x1Ψx1,x2 ≈ h−1(Ψx1+h,x2 −Ψx1,x2)
and ∂x1Ψx1,x2 ≈ h−1(Ψx1,x2 −Ψx1−h,x2), respectively, where h = ∆x1 and which both are
first-order accurate. Alternatively, a centered finite-difference approximation of the form
∂x1Ψx1,x2 ≈ (2h)−1(Ψx1+h,x2−Ψx1−h,x2) is applicable which we favor due to its second-order
accuracy and which we use in order to fulfill the Neumann boundary conditions (4.46) on
the 2D faces of our computational box. Note that on the two edges of the 2D faces where
x1 = 0 and x1 = Lx (if 0 ≤ x1 ≤ Lx1 represents the length of the edge in the x1-direction),
Ψx1−h,x2 and Ψx1+h,x2 , respectively, refer to points outside the 2D face. In a similar way,
Ψx1,x2−h and Ψx1,x2+h refer to points outside the face if we wanted to employ the central-
difference expression for ∂x2Ψx1,x2 at x2 = 0 and x2 = Ly, respectively (if 0 ≤ x2 ≤ Lx2

is the extent of the edge in the x2-direction). Consequently, for such cases we need to
introduce a set of fictitious grid points around the considered 2D plane. These fictitious
points Ψ′ have to be specified at x1 = −1, x1 = Lx1 +1, x2 = −1 and x2 = Lx2 +1 in a way
that the central-difference expression for the derivative gives the required boundary val-
ues and that Ψ can still be determined with the help of a five-point stencil on the edges
where x1 = 0, x1 = Lx1 , x2 = 0 and x2 = Lx2 . We introduce such fictitious grid points
around the 2D faces of the 3D computational volume to solve the 2D Poisson problems
(4.45), subject to the Neumann boundary condition (4.46). We also need to find the rel-
evant finite-difference expressions to simultaneously fulfill the Neumann boundary con-
ditions (4.37) and (4.38) for the inhomogeneous 3D problem (4.35), involving first- and
second-order partial derivatives on the boundaries of the 3D box. Fortunately, the combi-
nation of these two boundary requirements simplifies the problem to find the appropriate
finite-difference terms. To do so, we make use of the first-order accurate forward- and
backward-difference expressions of (4.37). For example, according to (4.37), at x1 =0 we
have ∂x1Ψx1,x2 ≈h−1(Ψx1,x2−Ψx1−h,x2) = 0, where h = ∆x1. This implies that Ψ−1,x2 = h Ψ0,x2 ,
i.e. that we can immediately specify the value of Ψ at the point outside the 2D face. Hence,
we can supply the central-difference expression ∂x1Ψx1,x2 ≈ (2h)−1(Ψx1+h,x2 −Ψx1−h,x2) of
(4.38) at x1 = 0 with the previously unknown value of Ψ−1,x2 without the need to intro-
duce a fictitious layer. In a similar way, one formulates the expressions for ∂x2Ψx1,x2 at
x2 =0, for ∂x1Ψx1,x3 where x1 =0, for ∂x3Ψx1,x3 where x3 =0, for ∂x2Ψx2,x3 where x2 =0 and
for ∂x3Ψx2,x3 where x3 =0. Accordingly, we use forward-difference expression of (4.37) to
supply the central-difference expressions of (4.38) with the required values where x1 = Lx1 ,
x2 = Lx2 , or x3 = Lx3 . To approximate the first-order derivatives (4.44), required for solv-
ing the 3D homogeneous (Laplacian) problems in (4.42), we use alternative expressions
which arise from the polynomial fit to forward or backward differences. These so-called
one-sided finite differences are also second-order accurate but instead of defining ficti-
tious points one makes use of the weighted values of the two next points towards the
interior of the volume, neighboring a point on a boundary. Explicitely, we are therefore
using ∂x1Ψx1,x2 ≈ (2h)−1(∓ 3Ψx1,x2 ±4Ψx1+h,x2 ∓Ψx1+2h,x2) at x1 = 0 and x1 = Lx1 where the
alternating signs of the components correspond to taking the forward difference at x1 = 0
and the backward difference at x1 = Lx1 . Similarly, we find the expression for ∂x2Ψx1,x2 at
x2 = 0 and x2 = Lx2 , for ∂x1Ψx1,x3 at x1 = 0 and x1 = Lx1 , for ∂x3Ψx1,x3 at x3 = 0 and x3 = Lx3 ,
for ∂x2Ψx2,x3 at x2 =0 and x2 = Lx2 and for ∂x3Ψx2,x3 at x3 =0 and x3 = Lx3 .
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4.3.4.2 Iterative solution

The Poisson and Laplace equations are a set of m linear equations in k variables which
can be represented in matrix form as

C v = s (4.54)

with C = (ci j) being the m×m matrix of coefficients, v representing the column vector
of variables and s denoting the column vector of solutions. If k < m, the system is said
to be over-determined and no solution exists. If k = m and C is non-singular the system
has an unique solution in the m variables. To solve the linear system of equations we
use the successive overrelation method (SOR). This is a faster converging variant of the
Gauss-Seidel method which takes a weighted average between two successive Gauss-
Seidel iterations and which can in matrix terms be written as

vn = ( D − wSOR L )−1
(

wSOR U + ( 1 − wSOR ) D
)

vn−1 + wSOR ( D − wSOR L )−1 s, (4.55)

where D, −L and −U represent the diagonal, strictly lower-triangular and strictly upper-
triangular parts of C, respectively, wSOR is the SOR parameter and n denotes the number of
iteration. The sequence of vectors vn will converge to a solution v of (4.54), and hence of
(4.55), provided that the spectral radius ρ (that is the magnitude of the largest eigenvalue
of a matrix associated with C) is less than unity (Verner and Bernal 1968). This means
that convergence is only achieved if and only if the spectral radius of the SOR matrix
(D−wSOR L)−1 (wSOR U+(1−wSOR) D) is lower than unity and if so it will converge to the
exact solution v = C−1 s (Hajjafar 2006). In particular, the smaller ρ the more rapid is the
convergence and for the SOR method it is therefore desirable to choose wSOR so that ρ is
minimal. We have not yet carried out the required calculations for finding the optimum
wSOR using the spectral radius of the SOR matrix but a corresponding analysis is planned
for the future.

However, the relaxation parameter can be used either to speed up the convergence of a
slow-converging process (with the choice wSOR>1.0 for SOR) or to establish convergence
of a diverging process (using wSOR < 1.0 for a so-called successive under-relaxation). In
general, a value 0 < wSOR < 2 leads to convergence and the particular choice wSOR = 1.0
represents a basic Gauss-Seidel algorithm. For the iterative solution of the 3D Poisson
and Laplace problems (4.35) and (4.42), respectively, we chose wSOR = 1.7 and we use
wSOR = 1.9 for solving the 2D Poisson problems (4.45). By taking advantage of the
triangular form of (D−wSOR L) the elements vn can be computed in the form

vn
i = ( 1 − wSOR ) vn−1

i +
wSOR

cii

(
si −

∑
j>i

ci j vn−1
j −

∑
j<i

ci j vn
j

)
(4.56)

with i = 1,. . .,m. Within our finite-difference approximation the SOR update (4.56) is
explicitly written as

Ψn
x1,x2,x3

= ( 1 − wSOR ) Ψn−1
x1,x2,x3

+ wSOR Ψ
?n
x1,x2,x3

. (4.57)

Here, Ψn−1
x1,x2,x3

denotes the Gauss-Seidel update of the previous iteration and Ψ
?n
x1,x2,x3

de-
notes the Gauss-Seidel update of the current iteration in the form

Ψ
?n
x1,x2,x3

=
1
6

(
Ψn−1

x1+h,x2,x3
+ Ψn

x1−h,x2,x3
+ Ψn−1

x1,x2+h,x3

+ Ψn
x1,x2−h,x3

+ Ψn−1
x1,x2,x3+h + Ψn

x1,x2,x3−h − h2Fx1,x2,x3

)
. (4.58)
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4.3 Computation of the magnetic vector potential

The character of the Gauss-Seidel method, making use of computed results as soon as
they are available is evident. At every iteration n the already updated values Ψx1−h,x2,x3 ,
Ψx1,x2−h,x3 and Ψx1,x2,x3−h are immediately incorporated, assuming that these updated values
are closer to the sought-after solution. Note again that in the case of a 2D Poisson problem
one would only consider two of the coordinates, say x1 and x2, so that x3 would not appear
in (4.58), Ψ and F would only be a function of x1 and x2 and a factor of 1/4 instead of 1/6
would appear.

4.3.4.3 Remark on the relative helicity integral

We just discussed how to derive both the current-carrying part Â and the Laplacian part
Ā of the vector potential so that we can simply sum them up to get the total magnetic
vector potential A= Â+Ā of the total magnetic field B in V. We derived the Laplacian
part in a way that we involves the correct values B̄n =Bn on ∂V , though not considering
the presence of electric currents. Additionally, we constructed the current-carrying part
in a way that it owns the correct electric currents J , without incorporating the values
of the magnetic field on ∂V (note that Â was defined to have no tangential components
on ∂V and hence does not destroy the boundary condition for Ā if the two are added).
Consequently, the calculated 3D vector potential owns the electric currents as well as the
correct boundary values. From the way of deriving Â and Ā, one may recognize that we
could have avoided to split A if we were using the boundary condition (4.40) instead of
(4.32) right from the beginning. However, first of all we are now able to calculate the
relative magnetic helicity of a coronal volume according to (4.25) as introduced in § 4.1.4
and, second, this splitting turns out to be convenient due to the following reason. The
integral formulation for the relative helicity as the sum of the self helicity of the closed
field and the mutual helicity between the vacuum and the closed field has been introduced
in (4.24). However, we can now show that∫

V

(
Â · B̄ − Ā · B̂

)
d3x =

∫
V
∇ ·

(
Ā × Â

)
d3x =

∮
S

(
Ā × Â

)
· dS = 0, (4.59)

since we constructed Â in a way that Ât = 0 on ∂V . Consequently, Ā·B̂ = Â·B̄ and we
can rewrite (4.24) as

Hrel =

∫
V
Â ·

(
B + B̄

)
d3x (4.60)

so that determining the current-carrying part Â alone would be sufficient to estimate the
relative helicity and we could avoid the calculation of Ā.

4.3.5 Testing the method
To test our recently implemented method to calculate the 3D vector potential we used, as
for the testing of the Hα-preprocessing scheme presented in § 2.4.2.4, the active region
model developed by A. A. van Ballegooijen. First, a full-disk photospheric line-of-sight
SoHO/MDI magnetogram showing the isolated NOAA AR 10814 was used to compute
a 3D potential field in spherical coordinates. Corresponding to an observed Hα filament
a model flux rope was inserted into the calculated potential configuration. After relaxing
the whole system to a NLFF state using a magneto-frictional method (van Ballegooijen
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et al. 2000) a 3D model atmosphere resulted which is force-free throughout the entire
domain except within two gridpoints above the lower boundary (van Ballegooijen 2004,
van Ballegooijen et al. 2007). We assume the layer at the bottom of the force-free region
(i.e. the layer at the third grid point above the lower boundary of the box) to represent a
chromospheric-like solar magnetic field. This model chromosphere we used as the lower
boundary condition to extrapolate a NLFF field with the help of our optimization code
(Wiegelmann 2004) for which we aimed to determine the 3D vector potential. The re-
sulting computational box in Cartesian coordinates, containing the extrapolated NLFF
field is of the dimension 320×320×256 pixels and in the following we denote the spa-
tial extensions in the x-, y- and z-directions as 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly and 0 ≤ z ≤ Lz,
respectively. Furthermore, we call the 2D boundaries of our 3D box the “left”, “right”,
“front”, “back”, “bottom” and “top” face, referring to the boundaries with the coordinates
(0, y, z), (Lx, y, z), (x, 0, z), (x, Ly, z), (x, y, 0) and (x, y, Lz), respectively. In other words,
we name the faces based on their apparent position when facing the (x, 0, z)-plane of the
cubic domain.

We started with solving the 2D Poisson problems (4.45) on each face of the computa-
tional box to find the 2D stream functions ξ̄(xi, x j) (with i= (x, y, z), j= (x, y, z) and i, j),
determining the tangential components of the Laplacian vector potential Ā. According
to (4.46), we therefore calculated the unknown constant values Āe on each edge of each
face. Hence, according to (4.50), we solved the system of linear equations to find five
Lagrangian multipliers λ f (one for each face, excluding the top face). For this purpose,
we implemented the “LU matrix decomposition”, representing a matrix as the product
of a lower triangular and an upper triangular matrix. Remember that within our numeri-
cal scheme we simultaneously ensure that the resulting λ f (and hence the Āe) balance the
outflow through the individual faces and that the total outflow over all faces is numerically
zero. We were then able to specify the required Neumann boundary conditions in (4.46)
and to supply them to the 2D Poisson problems (4.45) of the form ∆ξ̄(xi, x j)=− F(xi, x j),
where F(xi, x j) denotes the known normal magnetic field component B̄n of each particu-
lar face. As introduced in § 4.3.4.2, we iteratively solve the 2D Poisson problems using
a SOR method (as presented for the 3D case in (4.57)). We chose a relaxation factor of
wSOR = 1.9 for the presented test case and note again that the retrieval of the optimum
wSOR is left as a future task. To follow the performance of the iterative solution of the 2D
Poisson problems, we calculated for each iteration n a measure for the maximum update
for two consecutive iterations. We took the maximum of the absolute difference between
the updated function ξ̄n

xi,x j
and the update of the previous iteration ξ̄n−1

xi,x j
in the form

Un
max = max

( ∣∣∣∣ ξ̄n
xi,x j
− ξ̄n−1

xi,x j

∣∣∣∣2 )
. (4.61)

The subscripts xi and x j denote the 2D coordinates of every point of one of the six 2D
faces. Then, (xi, x j) denotes (y, z) for the left and right face, (x, z) for the front and back
face and (x, y) for the bottom and top face. Starting from the second iteration (i.e., n>1)
we also compared the maximum updates (4.61) of two successive iterations in the form

∆Un
max = Un

max − Un−1
max = max

( ∣∣∣∣ ξ̄n
xi,x j
− ξ̄n−1

xi,x j

∣∣∣∣2 )
−max

( ∣∣∣∣ ξ̄n−1
xi,x j
− ξ̄n−2

xi,x j

∣∣∣∣2 )
(4.62)

and we stopped to iterate once ∆Umax<10−4.
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4.3 Computation of the magnetic vector potential

Figure 4.1: Convergence of the iterative solution to the 2D Poisson equation on the six faces of
the computational box. Panel (a) shows Umax for every iteration n and (b) shows ∆Umax for n>1.
The turquoise solid, light green dashed, violet dashed-dotted, dark green dashed triple-dotted, red
long-dashed and rose solid line represent the values corresponding to the iterative solution on the
left, right, front, back, bottom and top face, respectively.

The convergence of the iterative solution to the 2D Poisson problems on every face
of the cubic computational domain was fast (both Un

max and ∆Un
max decreased by a factor

of ≈104 during the first ≈300 iterations) before a period of less pronounced convergence
was reached (where Un

max and ∆Un
max fell by a factor of ≈ 104 during ≈ 5000 iterations;

see panel (a) and (b) of Fig. 4.1, respectively). Having a closer look to the values of
∆Umax during the first 200 iterations (i.e. before the beginning of the steady convergence)
we recognized a strong oscillatory behavior of the iterative scheme where big changes
occurred (see panel (a) of Fig. 4.2 for the corresponding values of the iterative solution on
the left, right and front face and panel (b) of Fig. 4.2 for that on the back, bottom and top
face). This might be due to the choice wSOR =1.9 and a detailed testing of the influence of
its choice on the performance of the iterative solution is planned for the future.

To test the solution of the 2D Poisson equation on every face of the computational
box we checked, as required for solving (4.45), how well ∆ξ̄+B̄n = 0 is fulfilled. This
sum is qualitatively shown in Fig. 4.3 and the last column of Fig. 4.4 and we display
B̄n and ∆ξ̄ for each face in the left and middle columns of the same figure. To have a
corresponding quantitative measure we calculated for each face the maximum value of
this sum, namely the maximum of |∆ξ̄+Bn|2, which (ideally) should be zero and which
we found to be ∝10−4 mT for all of the faces (see the second column of Table 4.1). Since,
in general, by solving the 2D Poisson problem on each face we aim to determine the
tangential component of the vector potential according to Āt =−n×∇ξ̄ we additionally
need to prove that the tangential divergence ∇·Āt is numerically zero. This is because that
is exactly what we assumed for Āt in order to be generated by a 2D stream function ξ̄ on
each of the faces. In particular, as listed in the third column of Table 4.1, we found the
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4 Helicity of coronal magnetic fields

Figure 4.2: Convergence of the Iterative solution to the 2D Poisson equation on the six faces of
the cubic computational box within the first 200 iteration steps. Panel (a) shows ∆Umax for the
left, right and front face (represented by the turquoise solid, light green dashed and violet dashed-
dotted curves, respectively). Panel (b) shows ∆Umax for the back, bottom and top face (represented
by the dark green dashed triple-dotted, red long-dashed and rose solid line, respectively).

Figure 4.3: Quality of the solution of the 2D Poisson equation on the faces of the computational
box. Panels (a), (b), (c), (d), (e) and (f) display ∆ξ̄+B̄n for the left, right, front, back, bottom and
top face, respectively. Units are pixels and the color bar indicates the field strength in mT.
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Absolute performance of the solution to the 2D Poisson problems

Face max
( ∣∣∣ ∆ξ̄+B̄n

∣∣∣2 )
[ ×10−4 ] ∇·Āt [ ×10−14 ] max

( ∣∣∣ B̄n−n·(∇×Āt)
∣∣∣2 )

left 5.610 −14.211 1.900
right 5.514 7.105 13.287
front 5.900 0.000 1.734
back 6.405 −10.658 58.555
bottom 8.158 −14.211 441.829
top 6.586 3.553 0.134

Table 4.1: Quality of the solution to the 2D Poisson equation on the faces of the computational
domain. The left, right, front, back, bottom and top face correspond to the (0, y, z), (Lx, y, z),
(x, 0, z), (x, Ly, z), (x, y, 0) and (x, y, Lz) planes of the box, respectively. All values are given in mT.

Relative performance of the solution to the 2D Poisson problems

Face
max

( ∣∣∣ ∆ξ̄+B̄n
∣∣∣2 )

[ ×10−5 ]
max

( ∣∣∣ B̄n−n·(∇×Āt)
∣∣∣2 )

[ ×10−3 ]
max

( ∣∣∣Bn
∣∣∣2 )

max
( ∣∣∣Bn

∣∣∣2 )
left 4.778 16.184
right 0.915 22.047
front 15.082 44.308
back 0.216 19.762
bottom 0.001 0.585
top 186.389 38.055

Table 4.2: Quality of the solution to the 2D Poisson equation on the six faces of the cubic compu-
tational domain in form of dimensionless numbers. The left, right, front, back, bottom and top face
correspond to the (0, y, z), (Lx, y, z), (x, 0, z), (x, Ly, z), (x, y, 0) and (x, y, Lz) planes, respectively.

2D divergence on the six faces ∇·Āt≈10−14 mT. Finally, we also checked if the resulting
Āt fulfilled B̄n = n · (∇×Āt) since this is what we imposed as a boundary condition to
our 2D Poisson problems. We therefore calculated the maximum of |B̄n−n · (∇×Āt)|2
and the resulting values are listed in the fourth column of Table 4.1. Besides the just
discussed quantitative absolute measures, we additionally calculated relative values in
form of dimensionless numbers. Therefore, we took the maximum of |∆ξ̄+Bn|2 and
|B̄n−n · (∇×Āt)|2 for each face and divided the resulting values by the corresponding
maximum of |Bn|2 (see the second and third column of Table 4.2, respectively).

Since all of the above mentioned criteria concerning the solution of the 2D Poisson
problems on the faces of the computational box were fulfilled sufficiently accurate, we
were able to supply the Dirichlet boundary conditions in form of Āt, as required in (4.43),
to the 3D Laplace problems for Ā in (4.42). Together with the Neumann boundary re-
quirements (4.44) we were then able to iteratively solve the homogeneous problems for
the three Cartesian components Āx, Āy and Āz. As before, we checked the performance
of the iterative solution by calculating Umax and ∆Umax similar as introduced in (4.61) and
(4.62), respectively, but where we used Āxi(xi, x j, xk) instead of ξ̄(xi, x j). Here, (xi, x j, xk)
denote the 3D coordinates (x, y, z) of every point of the Laplacian part of the 3D vec-
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Figure 4.4: Quality of the solution of the 2D Poisson equation on every face of the computational
box. From the top to the bottom row, the results for the left, right, front, back, bottom and top face
are shown. The left, middle and right columns display B̄n, ∆ξ̄ and ∆ξ̄+B̄n, respectively (for the
latter see also Fig. 4.3). Units are pixels and the color bars give the magnetic field strength in mT.
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4.3 Computation of the magnetic vector potential

Figure 4.5: Convergence of the solution to the 3D Laplace equation ∆Āxi = 0 in the 3D computa-
tional volume. Panels (a) and (b) show the calculated values of Umax and ∆Umax, respectively. The
three Cartesian components Āx, Āy and Āz of the Laplacian part of the magnetic vector potential
are represented by the green solid, red dashed and yellow dashed-dotted line, respectively.

tor potential Āx, Āy and Āz in the computational box. In a similar way we iteratively
solved the 3D Poisson equations for Â in (4.35) of the inhomogeneous problem subject
to the boundary conditions (4.36) – (4.38). We again checked the performance of the iter-
ation by calculating Umax and ∆Umax similar to (4.61) and (4.62), respectively, but using
Âxi(xi, x j, xk) instead of ξ̄(xi, x j). Again, (xi, x j, xk) denote the 3D coordinates (x, y, z) of
every point of Âx, Ây and Âz of the current-carrying part of the 3D vector potential. For
the iterative solution of the 3D Poisson and Laplace problems we again used the SOR
method with wSOR =1.7 and stopped the iteration once ∆Umax<10−4.

A fast convergence occurred during the first iterations and a more steady but slower
convergence rate was found for the rest of the iterations. In particular, Umax and ∆Umax

decreased by a factor of ≈105 for Āx, Āy and Āz during the first 100 iterations (see panel
(a) and (b) of Fig. 4.5, respectively). Then the convergence was slower where Umax and
∆Umax declined by a factor of ≈ 103 during about 700 iterations. A similar behavior was
found for the three Cartesian components of Â, in particular, Umax and ∆Umax calculated
for for Âx, Ây and Âz decreased by a factor of ≈ 103 and ≈ 104, respectively, during
the first 50 iterations (see panel (a) and (b) of Fig. 4.6, respectively). Then a period of
slower convergence for the next ≈500 iterations was encountered during which Umax and
∆Umax dropped by a factor of ≈ 103. We have not yet performed the necessary study
to determine the optimum over-relaxation parameter wSOR which scales with the size of
the computational box. Once done, however, an even faster convergence is expected.
Additionally, a multigrid-like scheme, similar to that we use to calculate the NLFF fields
(see § 2.4.1.1), could be introduced to further increase the computational speed.

After solving the 3D Poisson and Laplace equations for Â and Ā, respectively, we
added Ā and Â to get the total 3D vector potential A and had to test to which extent its
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Figure 4.6: Performance of the iterative solution to the 3D Poisson equation ∆Âxi = Jxi in the 3D
volume. Panels (a) and (b) show the calculated values of Umax and ∆Umax, respectively. The three
Cartesian components Âx, Ây and Âz of the current-carrying part of the magnetic vector potential
are represented by the green solid, red dashed and yellow dashed-dotted line, respectively.

curl reproduced our input NLFF magnetic fieldB (see § 4.3.1). Therefore, we calculated
the 3D magnetic field associated with the derived 3D vector potential viaB?=∇×A and
compared it to the input field B. To quantify the degree of agreement between the two
fields, we used some of the metrics developed by Schrijver et al. (2006) which compare
local characteristics and the global energy content of 3D vector fields. Note that for the
NLFF field extrapolation a finite-size boundary layer to the open boundaries (i.e., the
lateral and top boundaries) is introduced which encloses the “physical” region (including
the photosphere at the lower boundary). This is supposed to reduce the influence of the
assumed potential field on the open boundaries on the NLFF solution inside the physical
region. Accordingly, we evaluate all metrics only in the physical region, i.e. we do not
incorporate values within the finite-size boundary layer to the lateral and top boundaries
(which for the used model force-free field was defined to be 32 pixels wide). In particular,
the vector correlation metric is defined as

Cvec =

∑
i B

?
i ·Bi√∑

i

∣∣∣B?
i

∣∣∣2 ∑
i

∣∣∣Bi

∣∣∣2 , (4.63)

where B?
i and Bi are the vectors at each point i and the vector fields are identical if

Cvec = 1. Is Cvec = 0, the components of the two vector fields are perpendicular to each
other everywhere (i.e., B?

i ⊥ Bi). For our test case we found Cvec = 0.9849, i.e. an
agreement between the input NLFF field and the one calculated from the curl of the total
vector potential of ≈ 98.5%. To estimate how well the magnetic energy content of the
input fieldB had been reproduced, we normalized the energy content ofB? to that ofB
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in the form

εmag =

∑
i

∣∣∣B?
i

∣∣∣2∑
i

∣∣∣Bi

∣∣∣2 . (4.64)

Here we found εmag =1.05754, i.e. an relative error in reproducing the magnetic energy of
the NLFF field of ≈5.8%. Last, we checked for the correctness of the implicitly assumed
vanishing divergence of the 3D magnetic field and the 3D vector potential. We therefore
calculated dimensionless numbers following

Cdiv(F ) =

∫ ∣∣∣∇ · F ∣∣∣ d3x

L−1
∫ |F | d3x

, (4.65)

where L is a characteristic length of the computational domain and F represents any 3D
vector field. Particularly, we found Cdiv(B) = 4.819×10−6, Cdiv(B?) = 4.629×10−6 and
Cdiv(A)=0.184.

4.4 Summary
Based on the magnetic field information one can estimate physical quantities like the
magnetic energy and helicity. Since the magnetic energy can be converted back and forth
between kinetic and magnetic forms during the processes related to solar eruptions the
helicity of the magnetic field, due to its conservation properties, represents an alternative
to quantify the topological characteristics of a magnetic field. Based on the the use of
the LFF field parameter as a proxy or the analysis of 3D extrapolated force-free fields it
has been found that the magnetic field in the solar atmosphere owns a hemispheric trend
of handedness and an according trend of helicity. In particular, the finding of predomi-
nately negative/positive helicity patterns in the northern/southern solar hemisphere seems
to be insensitive to the magnetic field reversal at the end of the solar cycles and some
underlying, global mechanism to produce these helicity patterns is thought to exist.

However, any helicity created below the solar surface can be carried into the corona
by the emergence of magnetic field through the photosphere. Due to rotational motions in
the photosphere itself, the coronal loops can then gain even more helicity. All these pro-
cesses together then make up the total helicity content of the solar corona. If the coronal
magnetic field configuration loses its equilibrium to result in a CME, part of the helicity
can be transported into the interplanetary space. This means that the helicity flux from
photospheric motions has to balance the variation of the coronal helicity plus the helicity
which is carried away by CMEs. Consequently, the processes which transport the helicity
to the outer solar atmosphere and finally remove it from the Sun must be at approximately
the same rate as its generation in the interior (e.g. Pevtsov 2008). Studies which addressed
the question whether the magnetic helicity is mainly injected by horizontal photospheric
motions into the corona, e.g. by Démoulin et al. (2002), Green et al. (2002) and Nindos
and Zhang (2002), revealed that the coronal helicity and the helicity ejected by CMEs
are by orders of magnitude larger than the helicity injected by differential rotation and
localized shearing motions. This led to the conclusion that the main source of the coronal
helicity must be the emergence of new magnetic flux which has been previously twisted
in the convection zone. To summarize, as magnetic flux travels from the convection zone
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until the solar corona to be finally ejected from the Sun, its helicity content can be traced
and, moreover, the helicity content of coronal fields may be completely determined by its
flow through the photosphere on one hand and its loss-rate into the solar wind on the other
hand (Berger 1984). From analyzing the helicity carried away by CMEs in comparison to
the rate of helicity production by photospheric motions it seems that the main contributor
of magnetic helicity injection may either be undetected at photospheric levels or has its
origin in sub-photospheric layers (van Driel-Gesztelyi et al. 2003, Démoulin 2007).

To evaluate the magnetic helicity content of the solar corona the knowledge of the
3D magnetic field vector and also that of the associated 3D magnetic vector potential is
needed. The ability of indirectly inferring the 3D magnetic field structure in the outer solar
atmosphere (for which routine measurements do not exist) with the help of extrapolation
techniques and, in particular, for the most realistic estimation of the coronal field in form
of NLFF fields is well established. A method to calculate the 3D vector potential has been
worked out and its applicability to real solar cases discussed. We presented a method to
calculate the 3D vector potential for a given 3D magnetic field as the sum of a Laplacian
part and a current-carrying part. Therefore, we decomposed the magnetic vector potential
corresponding to the decomposition of the magnetic field as suggested for the calculation
of the relative helicity in coronal volumes for a given NLFF field. The basic strategy
of finding the 3D magnetic vector potential involves the solution of an inhomogeneous
equation, taking the electric currents in the entire computational volume (including the
boundaries) into account, and the solution of a homogeneous problem, accounting for the
boundary magnetic field of the considered volume. We furthermore imposed the condition
of divergence-freeness of both the magnetic field and the associated vector potential.

From estimating the force-free field parameter throughout our computational volumes
and comparison with the calculated magnetic helicity, we plan to investigate the relation
between them. The application of our method to estimate the helicity content above solar
ARs will also enable us to compare it to the amount of helicity injected through the pho-
tosphere and its contribution to the coronal helicity content, or alternatively, to estimate
the contribution of yet undetected, sub-photospheric sources of the helicity.
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Within this work, we used a numerical method to calculate the magnetic field above solar
active regions based on vector magnetic field measurements made in the solar photo-
sphere. In particular, we extrapolated the measured photospheric field vector into the
chromosphere and corona which, in general, allows it to compensate the lack of routine
magnetic field measurements in these atmospheric layers. Our method is based on the
force-free assumption, i. e. the adoption that the coronal currents are co-aligned with the
magnetic field. Potential (current-free) and nonlinear force-free field models were used
to calculate the coronal magnetic field, where the latter represents the currently most so-
phisticated and most realistic approximation to the true coronal magnetic field.

The analysis of the 3D magnetic field above two solar active regions led to the success-
ful establishment of a clear relation between the amount of available free magnetic energy
and the magnitude of observed flares. It was unambiguously demonstrated that nonlinear
force-free field extrapolations are a useful tool to investigate the evolution of the associ-
ated physical parameters during solar eruptions. Based on the nonlinear force-free field
extrapolations we were able to calculate the magnetic energy content, the available free
magnetic energy and the distribution of the energy density of the coronal field. This al-
lowed us to demonstrate that magnetic energy is slowly build up during the days before
an eruption and that the amount of stored magnetic energy indicates the magnitude of the
associated eruption. Furthermore, it was found that not all the stored energy has been
released during the explosions, in agreement with existing theories about the relaxation
of magnetic fields to configurations of lower energy during solar eruptions. We were also
able to localize the height and exact position in the solar atmosphere where the excess
energy is stored prior to and released during the eruptions. This is a distinct advantage
with respect to coronal observations since they can only indicate the location (projected
on the solar surface) of the explosive energy release related to flares but not its height in
the corona. Furthermore, the calculation of iso-surfaces of equal absolute magnetic field
magnitude allowed us to support a proposed coronal implosion scenario, indicating that
the release of free magnetic energy leads to a decrease of the magnetic energy density
(and hence the magnetic pressure) in a flaring region.

Despite the relative success of the presented method used to calculate the 3D coronal
magnetic field, a successful application of nonlinear force-free field models to real solar
data, in general, requires a number of prerequisites. This was concluded by DeRosa et al.
(2009) who applied different existing nonlinear force-free codes to data from the Hin-
ode Solar Optical Telescope-SpectroPolarimeter (Hinode/SOT-SP; Kosugi et al. 2007)
and where the resulting models showed remarkable differences in the field line configu-
ration and estimates of the free magnetic energy. In the following, the requirements for
a successful application of extrapolation techniques to model the coronal magnetic field
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are listed. Also, the planned modifications to our codes in order to incorporate them,
or rather incorporate them in an optimized manner, are listed together with the possible
future applications.

First, large model volumes at high spatial resolution are required which not only ac-
commodate the connectivity within an active region but also the connectivity to the sur-
rounding. This has become clear already in an earlier application of existing extrapolation
codes to Hinode/SOT-SP data by Schrijver et al. (2008) and it has been worked out that
a vector magnetogram with a small field-of-view (not containing an entire active region
and its surrounding) does not provide the necessary magnetic connectivity for an unbiased
nonlinear force-free extrapolation. Additionally, a high time cadence is needed in order
to be able to investigate the processes during solar eruptions in detail. Already available
are ground-based, full-disk and/or active-region scans of the magnetic field vector from
the Synoptic Optical Long-term Investigations of the Sun (SOLIS; Keller et al. 2003b)
survey with a pixel size of about 1.1 arcseconds and a time cadence of about 10 minutes.
Space-borne data from the Helioseismic and Magnetic Imager of the Solar Dynamics Ob-
servatory (SDO/HMI; Graham et al. 2003) will have an even higher temporal and spacial
resolution. In particular, full-disk vector magnetograms with a pixel size of about 0.5 arc-
seconds and a time cadence of about 90 seconds will become available from the SDO.
With these data, we will be able to study properties such as the magnetic energy, the
magnetic helicity (for which we recently developed a method to derive it), current sheet
formation and the topology of the pre- and post-eruptive fields in unprecedented detail.
We plan not only to carry out nonlinear force-free field extrapolations for active regions
with a high resolution but also global spherical extrapolations with a necessarily reduced
resolution. For the latter, a method to extrapolate the nonlinear force-free field locally in
spherical geometry has been recently developed by Tadesse et al. (2009) and a method
to derive the nonlinear force-free field globally has been implemented by Wiegelmann
(2007). From these global nonlinear force-free field extrapolations (even though having
a lower resolution) we can specify the a priori unknown top and lateral boundary condi-
tions for the higher-resolution active-region computations. In this way we will achieve
a consistent connectivity of the local active region magnetic field with the global field
structure. Furthermore, our nonlinear force-free models enable us to understand the evo-
lution and transport of the helicity density. For this purpose, a method to calculate the
magnetic vector potential associated with the extrapolated force-free magnetic field has
been implemented. This allows us to calculate and thus study the temporal evolution of
the magnetic helicity as involved in eruptive phenomena. If we find a significant change
of the helicity content in our computations this can only mean that the corresponding part
has been ejected into the interplanetary space.

Second, the distribution of the magnetic field strength in different heights of the solar
atmosphere, as calculated from our force-free field models, could be compared with cor-
responding radio measurements. As discussed by White (2005), virtually every feature
of the solar corona is visible in radio images at some wavelength, based on the emis-
sion mechanisms that dominate radio emission. This includes the bremsstrahlung from
thermal plasma, the emission from non-relativistic thermal plasma (gyroresonance emis-
sion), the emission of gently relativistic electrons (gyrosynchrotron emission) and plasma
emission. Radio diagnostics have the advantage of being optically thick so that different
layers of the corona can be probed at differend radio frequencies but, unfortunately, they
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do not provide absolute height information. On the one hand, by comparing our mag-
netic field models with gyroresonance radio observations we expect to be able to deliver
the missing information about the height of the observed layers in the solar atmosphere.
On the other hand, the comparison with radio observations could deliver arguments for
a proposed implosion scenario for solar eruptions which we already evidently traced in
our coronal model fields. For this purpose, however, simultaneous high-resolution maps
at many frequencies (in order to measure a wide range of field strengths) are required.

Third, the preprocessing of the lower-boundary (photospheric) vector field in order
to gain boundary conditions consistent with the force-free assumption is necessary. This
is because of the basic assumptions of force-free magnetic field models that the mag-
netic pressure is considerably higher than the thermal pressure in the solar atmosphere.
Since this is not true for the photosphere (in which the available vector magnetograph
measurements are performed) non-magnetic forces can in principle not be neglected and
one would find the photospheric magnetic field to provide an inconsistent lower bound-
ary condition for the force-free extrapolation code. The preprocessing represents the
transformation of the observed (not force-free) photospheric field to a (nearly force-free)
chromospheric-like field in order to approximate the physics in the solar atmosphere at a
chromospheric level. The preprocessing routine developed by Wiegelmann et al. (2006)
has been improved by the optional incorporation of magnetic field information with the
help of chromospheric Hα images (Wiegelmann et al. 2008) and the preprocessing of pho-
tospheric full-disk vector magnetograms, taking the curvature of the Sun into account, has
been implemented by Tadesse et al. (2009). A further improvement to reasonably approx-
imate the force-free magnetic field at the base of the corona is planned to be achieved
by the supplementary incorporation of routinely measured, chromospheric, line-of-sight
magnetic field data, e. g. from SOLIS.

Fourth, the measurement uncertainties in the lower boundary conditions need to be
accommodated. This, in particular, concerns the transversal magnetic field measurements
which own a much lower level of accuracy than the longitudinal ones. With the help of
simultaneously observed coronal images we plan to verify the model magnetic field lines,
computed from our nonlinear force-free field extrapolations. In particular, a quantitative
measure of the agreement between the magnetic field model and the observed plasma
structures can be found by computing the average distances of the plasma loops as visi-
ble in 2D coronal images and the 2D projections of the calculated model magnetic field
lines. If the distance measure is sufficiently small, the magnetic field model can be as-
sumed to represent a good proxy of the coronal field. Due to errors in the magnetograms,
limited information (e. g. if only line-of-sight instead of vector magnetograms are avail-
able) or noise, the calculated force-free field lines will deviate from the observed plasma
loops. However, as suggested by Wiegelmann et al. (2009), the information of this miss-
match is planned to be incorporated for a correction of the magnetic field calculations in
form of a distance measure. Since a given coronal image only shows the plasma along a
subset of coronal field lines, observations at different wavelengths are required to give a
complete distribution of the magnetic field. Such images at a high thermal contrast will
soon be available from the Atmospheric Imaging Assembly (AIA) on board the SDO.
In particular, simultaneous images at ten different wavelengths corresponding to different
chromospheric, transition region and coronal temperatures will be provided.
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A Reynolds rules

In general, a two-scale approach (see also § 1.3.2) implies the decomposition of a vec-
tor field X(x, t) which is a function of space and time into a mean slowly varying part
〈X〉(x, t) and a rapidly fluctuating part X ′(x, t). It also implies that an averaging pro-
cedure can be defined. This can be either a space, time or an ensemble average. A
corresponding volume-averaging operator can be defined as

〈X〉 =
1
λ3

∫
V

X d3x, (A.1)

where the volume averages are computed over some scale λ such that l� λ� L, where L
and l denote the characteristic length scales on which the slowly varying component 〈X〉
and the rapidly fluctuating partX ′ vary, respectively.

According to Krause and Rädler (1980) § 1, the Reynolds rules (after Reynolds (1895)
who first proposed it in form of time averaging in the context of turbulent flows) for aver-
aging two arbitrary functions X(x, t) and Y(x, t) are as follows.

1. The average of the sum is the sum of the averages:

〈 X + Y 〉 = 〈 X 〉 + 〈Y 〉. (A.2)

2. Averaging does not affect constants and vice versa:

〈 a X 〉 = a 〈 X 〉, (A.3)
〈 a 〉 = a, (A.4)

if a is a consant.

Note that these two conditions already imply that the averaging operator is a linear one.

3. Averaging a derivative equals the derivative of the average:

〈 ∂sX 〉 = ∂s〈 X 〉, (A.5)

with s being either a space coordinate or time.

4. Averaging products of averages and functions equals products of averages:

〈 X 〈Y 〉 〉 = 〈 X 〉 〈Y 〉. (A.6)
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From these four basic requirements to the averaging operator one can derive the following
additional properties:

5. From (A.6) follows

〈 〈 X 〉 〉 = 〈 X 〉, (A.7)
〈 〈 X 〉 〈Y 〉 〉 = 〈 X 〉 〈Y 〉. (A.8)

i.e. that the averages of averages equal the average itself.

6. For X = 〈 X 〉 + X′ follows from (A.2) and (A.6)

〈 X′ 〉 = 0, (A.9)

i.e. that the average of the rapidly fluctuating part must vanish.

7. Then, from (A.6) and (A.9) also follows

〈 〈 X 〉Y ′ 〉 = 0. (A.10)

8. And finally, from (A.5) and (A.9) follows

〈 ∂sX′ 〉 = 0, (A.11)

with s being either a space coordinate or time.
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