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Summary

The solar corona is tenuous, multi-component, weakly collisional and thus mostly not
at LTE (Local Thermodynamic Equilibrium). Therefore, it isidealy suited for applying ki-
netic description of the plasma rather than using the singlefluid approach. Recent UVCS
observations revealed that the heavy ions are preferentially heated in coronal holes. Fur-
thermore, evidence that the local O+5 velocity distribution is anisotropic has been found.
These results are interpreted as a signature of the heating by resonant wave-particle in-
teractions, where the ion-cyclotron waves are expected to heat the ions perpendicularly
(with respect to the mean magnetic field). This heating mechanism is a fully kinetic pro-
cess and has nothing to do with the collisional heating mechanism described within the
single fluid approach. Therefore, we believe that the microphysics of the solar corona has
to be involved in the study of the coronal heating problem. Furthermore, the collisions in
the solar corona are not strong enough to provide an efficient heating through the classical
Ohmic dissipation or via the damping of the large-scale MHD waves. Moreover, to obtain
the necessary heating from the classical collision coefficients, we need very steep varia-
tions in the plasma parameters (e.g, the plasma temperatureor density) or in the magnetic
field. Unfortunately, these needed gradient scales are lessor comparable to the mean free
path of the collisions.

In the most collisional conditions of the plasma (e.g., in the upper chromosphere), the
maximum heating rate that can be provided by the collisionalOhmic dissipation is six
order of magnitude less than the cooling rate caused by the radiation.

Therefore, we believe that wave-particle interactions play a major role in the heating
of the solar corona. In this mechanism, the small-scale fluctuations can dissipate via a
fully kinetic process, whereas the collisions do not play any role in the conversion of the
magnetic energy into heat. In such process, the waves havingwavelengths much smaller
than the MHD scales can dissipate via resonant or nonresonant wave-particle interactions
and heat the particles. The nonresonant heating is a slow process, and it is related to
the dissipation of waves having frequencies much smaller than the ion gyrofrequency.
While the resonant heating is faster (their time scale is close to the ion gyroperiod), and
it is subjected to the damping of waves having frequencies close to the ion gyrofrequency
(also called ion-cyclotron waves) via ion-cyclotron resonance.

In coronal holes (open structures), the preferential heating and the temperature anisotropy
observed in heavy ion distributions can be well reproduced when one assumes heating
through the dissipation of ion-cyclotron waves. These waves are assumed to be excited
from small-scale reconnection events in the chromosphere,and thus provide the ultimate
source for the ion heating. This wave-generation mechanismoccurs when many of low-
lying closed field lines in the chromosphere are entangled with oppositely directed open
field lines, and while reconnecting release fluctuations having scales smaller than MHD
scales. Thus waves can dissipate via collisionless kineticprocesses and heat the solar
corona. In coronal loops (closed structures) the density ishigher, and thus the collisions
are relatively stronger than in coronal holes. Therefore, if the ions are heated through
ion-cyclotron resonance, also the electrons can be heated through ion-electron collisions.

TRACE/SXT observations have shown that the coronal loops can be heated to a few
of million kelvins. These closed structures, which are one of the basic components of
the lower corona, are brighter than the surrounding plasmas. It has been found that the
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warm coronal loops (havingT ∼ 1.3 MK) have roughly a flat temperature profile along
their lengths, when the isothermality across the loops is assumed, while the hotter coronal
loops are uniformly heated, and mostly they are in hydrostatic equilibrium. There is no
decisive answer if the closed and the open structures in the solar corona can be heated
by a similar heating process. By adopting the resonant wave-particle interactions as a
possible heating mechanism for the coronal loop, a relationship can be obtained between
the expansion of the coronal-loop flux-tube and the heating profile along the loop. It is
found, from the semi-kinetic model, that the flat temperature profile and the enhanced
density in the coronal loop is a consequence of a quasi-homogeneous loop cross-section,
whilst a uniform heating profile in the loop can be achieved when the loop flux tube
expands from the loop footpoints to the loop top.

On the other hand, there are other spectroscopic loop observations show that the coro-
nal loops are not isothermal along the line-of-sight (they have broad differential emission
measures (DEM)), and thus the temperature and the density profiles of the coronal loop
often inferred from the filter ratios of imagers are misleading. Indeed, from a multi-strand
coronal loop model, when we assume that the coronal loop is composed of small-scale
filaments having different temperatures, the loop temperature, as extracted from the filter-
ratio technique, is roughly constant along the loop, and itsvalue is biased to be∼ 1.2
MK.

6



1 General introduction

1.1 The solar corona

The visible solar atmosphere consists of three regions: thephotosphere, the chromo-
sphere, and the solar corona. Most of the visible (white) light comes from the photo-
sphere, this is the part of the Sun we actually see. The coronais the sun’s outer atmosphere
which is viewed above a certain height or above a certain temperature. It can clearly be
seen during the total solar eclipse as a bright region that extends more than some solar
radii away from the disk of the sun (see Fig. 1.1). The coronaltemperature can reach
some million kelvins according to analysis of the optical lines originating from highly
ionized atoms in corona. These high coronal temperatures were first confirmed in 1946
by the discovery of thermal radio emission at meter waves. Before that, in 1942, Edlén
identified forbidden lines of highly ionized atoms and this way established for the first
time the million-degree temperature of the corona.

The solar corona is usually subdivided into three zones, which all vary in their sizes

Figure 1.1: This image is a composition of 60 images taken with Canon EOS 5D with
1640 mm lens. The position of the Moon represents the situation 15 seconds after the
second contact. Pasachoff et al. (2006)

7



1 General introduction

Figure 1.2: Soft X-ray image of the extended solar corona recorded on 26 August 1992
by the Yohkoh Soft X-ray Telescope (SXT). (Courtesy of YokohTeam)

during the solar cycle: (1) active regions, (2) quiet Sun regions, and (3) coronal holes (See
Fig. 1.2).

(1) The active regions (regions A in Fig. 1.2) which make up only a small fraction
of the total surface area, are located in areas of strong magnetic field concentrations,
also the active regions are connected to the visible sunspotgroups in optical wavelengths
or magnetograms at the solar surface. A number of dynamic processes such as plasma
heating, flares, and coronal mass ejections occur in active regions. Also, in these regions,
there is plasma heating in the chromosphere and upflows into coronal loops that are hot
and dense.

(2) Quiet Sun (regions B in Fig. 1.2) are the remaining areas outside of active regions.
Many dynamic processes may occur in these region, ranging from small-scale phenomena
such as network heating events, nanoflares, explosive events, bright points, soft X-ray jets,
to large-scale structures, such as transequatorial loops,or coronal arches.

(3) Coronal Holes (regions C in Fig. 1.2) are situated in the northern and southern
polar zones of the solar globe. They have generally been found to be darker than the
equatorial zones during solar eclipses, and also are the main source of the solar wind. It is
fairly clear that these zones are dominated by open magneticfield lines. Because of this
efficient transport mechanism, coronal holes contain less plasma most of the time, and
thus appear much darker than the Quiet Sun.

The observation of the solar corona

The corona can be observed of corona in different wave-lengths; soft X-rays, ultravi-
olet lines, optical, and radio waves. The corona emits highly energetic photons (having
energies from 0.1 to 10 keV) in the form of soft X-rays and EUV line emissions. Since the

8



1.1 The solar corona

lower atmosphere is cooler than the corona, the lower atmosphere appears as a dark back-
ground in the coronal X-ray emission shown in Fig. 1.2. The emission includes both a
continuum emitted by free electrons and lines from highly ionized ions. The bright struc-
tures outline magnetic loops of high density (typically 109 cm−3) and high temperature
(2−3.5×106 K). Also the coronal plasma emits thermal radio waves by two physically dif-
ferent mechanisms. One of the dominant processes is "bremsstrahlung emission" of free
energetic electrons making collisions with other electrons or ions. The other process may
arise in active regions where the enhanced magnetic field strength increases the gyration
frequency of electrons in the field (see book of Benz 2003). This makes the so-called "gy-
roresonance emission" dominates the thermal radiation process between roughly 3 GHz
to 15 GHz. This process opens a possibility to measure the coronal magnetic field. High-
frequency bremsstrahlung originates usually at high density in the atmosphere. Similarly,
the intensity of gyroresonance emission is mainly proportional to the higher magnetic
fields strength. Thus, thermal high-frequency sources are generally found at low altitudes
in corona.

The solar corona is complex medium that contains many structures having different
scales. Below we list the main structures that characterizes the corona;

Helmet Streamers (see Fig. 1.3a): streamers originate at the solar surface, typically in
the bright places in the active regions, and they are outwardly directed and extend within
large radial range far from the solar surface (a few tenth of asolar radius above the limb at
nearly mid-latitudes). Their lower part contains some complex structures of closed field
lines crossing a neutral line. Above the helmet, a long, straight, near-radial stalk continues
outward into the heliosphere, containing plasma that leaksout from the top of the helmet
where the thermal pressure starts to overcome the magnetic confinement.

Loop Arcades (see Fig. 1.3b): They form the basic structure of the lower corona and
transition region of the Sun. They are a direct consequence of the twisted solar magnetic
flux within the solar body. The bright appearance of such loops is mostly linked with the
solar cycle, and for that reason they are often found with sunspots at their footpoints.

Soft X-ray Jets (see Fig. 1.3c): The polar coronal jets were first observed by SOHO
instruments (EIT, LASCO, UVCS) during the last solar minimum. They were small, fast
ejections originating from flaring UV bright points within large polar coronal holes. They
are heated plasma flows constraint by open field lines. Such jet features are visible until
the flow fades out or the structure erupts.

Postflare loops (see Fig. 1.3d): Are visible in soft X-rays after the chromospheric
evaporation process. Flare (or postflare) loops trace out dipole-like magnetic field lines,
after relaxation from flare-related magnetic reconnectionprocesses.

Also there are other structures having different magnetic field configurations, can ap-
pear in the corona like : Cusp-shaped loops which have loop-like structure with a pointed
shape at the top (see Fig. 1.3e). Also, multiple arcades (seeFig. 1.3f) which arise from
multiple neutral lines occur in active regions, that organize the magnetic field into multiple
arcades side-by-side.

Magnetic field of the solar corona

The nature of the structures of the outer atmosphere seems tobe intimately linked to
the magnetic fields at the surface. Dynamo theory predicts that strong magnetic fields are
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1 General introduction

Figure 1.3: (A) Large helmet-type structure; (B) arcade of X-ray loops seen end-on; (C)
dynamic eruptive feature which grew at a velocity of about 30km s−1 ; (D) a pair of
small symmetrical flaring loops; (E) two cusped loops with heating in the northern loop;
F) a tightly beamed X-ray jet towards the southwest at 200 km s−1. (Acton et al. 1992,
Aschwanden 2004).

generated deep in the solar interior, and then the bundles ofmagnetic flux will float to
the surface. The structure created by the field emergence is rooted in the photosphere and
extends through the chromosphere and transition region to the corona. The areas where
the bundle of field lines related to the coronal structures leaves and reenters the visible
surface are generally called the "footpoints".

The strongest magnetic field regions at the surface are in sunspots, at which the field
strengths can be in the order ofB = 2000−3000 G. Sunspot groups are dipolar and slightly
closer to the equator, and their strong appearance is reversing every 11-year cycle. Active
regions are linked to a larger area around the sunspots, withtypical photospheric fields of
B ≈ 100− 500 G (see Fig. 1.4). In the Quiet Sun and in coronal holes, thebackground
magnetic field is of the order ofB = 5− 10 G. The determination of the coronal magnetic
field is reconstructed by extrapolation from magnetograms at the lower boundary, using a
potential-field or force-free field model (see Fig. 1.5).

In the solar corona, the magnetic pressure mainly dominatesthe gas pressure espe-
cially at lower altitudes (below 1 solar radius), consequently the plasma is generally con-
fined within the magnetic fields that constitutes the structure of the corona. Therefore, it is
widely believed that the plasma intensities that appear in some regions in corona trace the
magnetic field lines existing in these regions. This is because, in the corona, the magnetic
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1.1 The solar corona

Figure 1.4: The photospheric magnetograms from 1992 January 8 to 1999 July 25,
recorded with the Vacuum Telescope of the National Solar Observatory (NSO) at Kitt
Peak National Observatory (KPNO), Tucson, Arizona. White and black colours indicate
positive and negative magnetic polarity. (courtesy of KPNO).

Figure 1.5: AR 7321 measured with SFT-data from October, 26 1992. (a) Potential field
reconstruction. (b) Non-linear force-free reconstruction. The field lines start from the
same footpoints within regions withBz > 0 in both panels. (Wiegelmann et al. 2006).

fields themselves are not directly visible.
There are two different magnetic configurations in the Solar corona, open-field and

closed-field regions. Open-field regions (white zones abovethe limb in Fig. 1.6), which
always exist in the polar regions, and sometimes extend towards the equator, connect
the solar surface with the interplanetary field and are the source of the fast solar wind.
Closed-field regions (grey zones in Fig. 1.6), contain mostly closed field lines in the lower
corona (less than one solar radius) and have an open configuration at higher altitudes. It
is believed that are the origin of the slow solar wind component. It is noteworthy that
the closed-field regions are generally bright due to the highdensity at lower altitudes (less
than 1 solar radius), and usually they form the coronal loopswhich are produced by filling

11



1 General introduction

Figure 1.6: The solar corona on 17 August 1996 (near solar minimum), with bright re-
gions plotted as dark. The inner image is the solar disk in Fe XII 195 Å emission, from
the EIT instrument on SOHO. The outer image is the extended corona in O VI 1032 Å
emission, from the UVCS instrument on SOHO. The axisymmetric field lines are from
the model of Banaszkiewicz et al. (1998).

with chromospheric plasma that stays trapped in these closed field lines. Above roughly
one solar radius, the plasma pressure may exceed the magnetic pressure, and thus plasma
confinement starts to become leaky.

Density and temperature of the solar corona

Electron densities in the solar corona varies from 106 cm−3 in the upper corona (at
height of one solar radius) to 109 cm−3 at the lower altitude in quiet regions. From Fig. 1.7
which displays the variation of the density and temperatureas a function of height above
the surface, the density increases by several orders of magnitude over coronal values, and
correspondingly the temperature drops below 11× 103K (the ionization temperature of
hydrogen) at the transition region. However, there are other over-dense structures with
higher density than in quiet regions, and these are the topical density valuesne at the base
of different regions in the sun: coronal holes,ne ≈ (0.5− 1.0)× 108 cm−3, in quiet sun,ne

≈ (1− 2)×108 cm−3 and in active regionsne is highest,ne ≈ 2×108−2×109 cm−3. From
the spectral line analysis of coronal emission, it turns outthat the coronal temperatures
are generally above 1 MK, and still the physical understanding of this high temperature in
the solar corona is unclear, and is one of the fundamental problems in astrophysics. This
rapid increase in temperature fromT ≈ 5800 K at the photospheric boundary to about 1
MK in corona seems to violate the second thermodynamic law.

The optically thin emissions from the solar corona in soft X-ray or in EUV wave-
lengths shows that the temperature is completely inhomogeneous. Using the so-called
"differential emission measure distribution", it is possible tomeasure the range of coro-
nal temperatures at different locations on the sun (at lower altitudes) from a broad range
of EUV and soft X-ray lines (see Fig. 1.8). For example, in quiet sun the temperature
ranges between 1− 2 MK, in active region is hotter,T = 2.0 − 6.3 MK, and in coronal
hole (open-field regions) the temperature is less than 1 MK. The temperature difference

12



1.1 The solar corona

Figure 1.7: Displays of the variation of the density and temperature as a function of height
above the surface. This density variation represents an averaged 1-dimensional model for
a gravitationally stratified vertical fluxtube. Electron density and temperature model of
the chromosphere (Fontenla et al. 1990) and lower corona (Gabriel 1976).

Figure 1.8: Differential emission measure distribution of two active regions (AR 93, AR
91) and two quiet Sun regions (QR 93, QR 91) measured by Brosius et al. (1996)

between Quiet-Sun and active regions gives the impression that the strong heating is most
probably related to the enhanced magnetic flux emergence.

Coulomb collisions and plasma beta in the solar corona

The plasma beta,β, is an interesting parameter that indicates which pressuredomi-
nates the plasma medium, either magnetic pressurepm or thermal pressurepth, or both of

13



1 General introduction

Figure 1.9: Plasmaβ in the solar atmosphere for two assumed field strengths, 100 Gand
2500 G. (Gary 2001)

them. The plasmaβ is defined as follows

β =
pth

pm
=

2nekBTe

B2/8π
, (1.1)

where,kB = 1.38×10−16 erg K−1 is the Boltzmann constant.B the magnetic field strength
andTe is the electron temperature.

In coronal plasma, the magnetic fieldB exerts a Lorentz force on the charged particles
leading to a gyrationmotion around the field lines. Only whenthe kinetic energy exceeds
the magnetic energy (β > 1), particles can escape from the guiding lines and diffuse across
the field lines.

A comprehensive model of the plasma-β parameter has been suggested by Gary (2001)
(see Fig. 1.9), in which we can see the range variation of the plasma-β (as shown in
grey in the figure) for any given height above the surface of the sun. It turns out that
in coronal heightsh & 140 Mm the plasma-β takes values above unity. While at lower
coronal altitudes (h . 30 Mm), the plasma-β values are very small (β ≪ 1) indicating a
strong domination of the magnetic energy. This means that most of coronal structures that
characterize the lower part of the corona like e.g, coronal loops are shaped within their
magnetic field configurations.

The coronal plasma is weakly collisional but strongly magnetized, which means that
the particle gyroradius is much smaller than the collisional free path,r i,e ≪ λi,e, and the
gyrofrequency much larger than the collision frequency,Ωi,e≫ νi,e. Numerical values of
the Coulomb collision rate,νi,e, of the electrons and protons can, for example, be found
in Braginskii (1965) or Helander and Sigmar (2002):

νi,e =

√
2

12π3/2

niZ2
i e4 lnΛ

m1/2
e T3/2

e ǫ2
0

=
(
3.44× 1011

)−1
( ne

1m−3

) (1 eV
Te

)3/2

s−1, (1.2)
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1.1 The solar corona

Table 1.1: Typical mean free path,λc, estimated for different regions; Chromosphere,
corona and solar wind. (Marsch 2006)

Parameter Chromosphere Corona Solar wind
(1.01 SR) (1.3 SR) (1 AU)

n (cm−3) 1010 107 10
T (K) 103 1− 2× 106 105

λc (km) 1 103 107

Here the plasma is quasi-neutral, i.e.,Zini ≈ ne. The parametersme, Te, ni , e, ǫ0

are respectively the mass and the temperature of the electron, the density and the charge
number of the ions, the electron electric charge and the electric permittivity in vacuum.
The Coulomb logarithm lnΛ ≈ 19 in corona. The mean free path can easily obtained
from the thermal speed of electrons, vte, and the collision frequencyνi,e asλi,e =vte/νi,e.

Some typical values of different parameters in chromosphere, corona and solar wind
are given in Tab. 1.1. It seems that collisions are generallyrare. Therefore, electrons
and ions may strongly violate the requirements of classicaltransport, which is to say that
their collisional free paths are large against any fluid scale, especially in the outer corona
and solar wind. In a simple description of collisions one maysay that the fast wind from
coronal holes is collisionless, and only in some dense coronal structures e.g., loops and
plumes where the collisions may play a role, which is still not strong enough, as we will
see in the future chapters.

1.1.1 Collisional coronal heating mechanism

Many different heating mechanisms may cause the coronal heating, butthe question is
which one can be the dominant for this heating. A number of plausible theories for coro-
nal heating have been proposed based on two main mechanisms;direct current (DC), in
which the heating can be caused by the collisional current dissipation, and alternating
current (AC) where the heating is achieved by collisional wave dissipation. It is widely
accepted that mechanical motions in and below the photosphere are the ultimate source
of the energy. These motions displace the footpoints of coronal magnetic field lines and
either quasi-statically stress the field and thus are generating currents or generate waves,
depending on whether the timescale of the motion is long or short compared to the end-
to-end Alfvén travel time. Dissipation of magnetic stresses is referred to as direct current
(DC) heating, and dissipation of waves is referred to as alternating current (AC) heating.

DC heating

Footpoint motions perform work on the coronal magnetic fieldand increase its free
energy at a rate given by the Poynting flux through the base. Magnetic flux tubes in the
photosphere are displaced by turbulent convection and are observed at the surface with a
characteristic horizontal velocity of order 10 km s−1 (Muller et al. 1994, Berger and Title
1996), and it is shown that the magnetic energy flux transported to the corona is adequate
to explain the observed energy losses of both the quiet Sun and active regions. Because
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1 General introduction

classical dissipation coefficients are extremely small in the corona, significant heating
generally requires the formation of very steep gradient andvery small spatial scales.
Magnetic gradients and their associated electrical current lead to heating by reconnec-
tion and Ohmic dissipation. Indeed, the magnetic field linesbecome twisted and braided
as a response to the continual upward advection of magnetic flux from below the photo-
sphere. However, the magnetic field can adapt itself to the motion and evolves between
near-magnetostatic equilibrium, thus the coronal currents are almost direct ones (see book
of Priest 1984). Since the collision coefficients are small, the dissipation of these current
as Joule heating is very negligible. But if the magnetic fieldlines form localized current
sheets at scales less than 100 m, then the ohmic dissipation will be efficient due to high
current formation. This also leads to a rapid diffusion of field lines produces the so called
magnetic field-line reconnection. This causes the phenomena called flare events with dif-
ferent scales, e.g., microflare, nanoflare and picoflare depending on the scale of energy
released in solar corona and solar atmosphere (see e.g., Parker 1988, Berger 1991, 1993,
Galsgaard and Nordlund 1996).

One has to note that the magnetic field reconnection often coincides with current
sheets that mark a sudden change in the direction of the magnetic field, but a current
sheet is not necessary to the formation of a separatrix, or tomagnetic reconnection.

Is still not obvious that the small-scale flare events can be responsible for the base
heating of solar corona since these events may occurred in animpulsive way in some local
positions in corona and upper chromosphere. However, from the entangled magnetic field
lines caused by the magnetic carpet (the low-lying close field) and the expanded flux tube,
the reconnection may often occurs, leading to a nearly static release of energy. Therefore,
this mechanism can be a good candidate to explain the coronalheating.

AC heating

When the velocity field in the photosphere changes on a shorter time scale (shorter
than the Alfvén transit time in closed loop) the same turbulent convection (that quasi-
statically stresses the coronal field) also generates a large flux of upwardly propagating
waves. These waves can be acoustic, Alfvén, and fast and slowmagnetosonic plane
waves, as well as torsional, kink, and sausage magnetic flux tube waves. At different
heights in the atmosphere, these waves undergo mode coupling and processes and transfer
the energy between the wave types (see, e.g., Stein et al. 1991). The estimated energy flux
of these waves at the top of the convection zone is roughly several times 107 erg cm−2 s−1

(Narain and Ulmschneider 1996). Energy fluxes of this magnitude are more than adequate
to heat the corona. However, due to the very steep density andtemperature gradients that
exist in the chromosphere and transition region, only a small fraction of the flux is able
to pass through. Acoustic and slow-mode waves form shocks and usually are strongly
damped, while fast-mode waves can be refracted and reflected(Narain and Ulmschneider
1996). Mostly, transversal Alfvénic waves (Alfvén waves, Alfvén-like torsional and kink
tube waves), are best able to penetrate into the corona. Because they do not form shocks
and their energy is ducted along the magnetic field rather than being refracted across it.
Mostly the observed energy flux estimates of such waves is about of 107 erg cm−2 s−1 in
regions of strong magnetic field (see e.g., Ulrich 1996). Later In Sec. 3.2 we give some
works about the observations of coronal Alfvén waves.
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1.1 The solar corona

It is widely believed that the dissipation of these MHD wavesat different coronal
altitudes may provide enough source of energy to heat solar corona (see, e.g., Ofman
2005). However, the classical collision heating processesare only adequate when strong
spatial gradients of physical variables like density, velocity, temperature, or magnetic
field strength occur. Therefore, several studies have focused on the possible role of the
strong cross-field gradient which results for a strongly non-uniform Alfvén speed across
the magnetic field lines, thus, leading to an enhanced damping of Alfvén waves by either
phase mixing (see e.g., Hood et al. 1997a,b) or absorption ofsurface waves along loops
acting as resonant cavities (Ofman et al. 1995). The phase mixing occurs when the mag-
netic field is excited by Alfvén waves inducing instabilities and enhancing dramatically
the viscous or Ohmic wave dissipation (Heyvaerts and Priest1983), while resonant ab-
sorption occurs when a magnetic loop is excited with a frequency that matches the Alfvén
eigenfrequency,ωres ∼ vA

L , so that standing waves are induced in the loop. If there is a
wave-speed gradient across the loop, a single thin surface will resonate and the gas veloc-
ities will again have large gradients. The wave-speed gradient will also provide surfaces
that resonate at different frequencies, and effectively absorb waves (by Ohmic or viscous
dissipation) within a large range of frequencies (Ofman et al. 1994).

Problematics in collisional dissipation mechanism

Most of coronal heating models are mainly based on ohmic, conductive, and vis-
cous dissipation of the magnetic energy originated from therandom photospheric motion.
However, according to the corona and chromosphere plasma collisions shown in Tab. 1.1,
the collisional heating rates are too small. Therefore, shock heating is presently favoured
there (see e.g., Ulmschneider and Kalkofen 2003).

Here we present the estimation of the different collional heating rates that characterize
the upper chromosphere where the problem starts to arise (see review by Marsch 2006).
We consider the typical plasma parameters of density,n = 1010 cm−3, and pressure scale
height,h = 400 km, and assume the perturbation values are:L = 200 km (scale length),
∆B = 1 G,∆V = 1 km s−1 , ∆T = 1000 K. With these reasonable parameters the dissipa-
tion rates are (in cgs units) as follows: Through viscous shear,QV = η(∆V/L)2 = 2×10−8,
through thermal conduction,Qc = κ(∆T/L)2 = 3× 10−7 , and through Ohmic resistance,
QJ = j2/σ = (c/4π)2(∆B/L)2/σ = 7 × 10−7. Here j is the plasma current density, and
the transport coefficients are viscosity,η, heat conductivity,κ, and electrical conductivity,
σ, for which values can be found in Braginskii (1965). When we compare these obtained
values with the estimated radiative loos rateQR = n2Λ(T) = 10−1 erg cm−3 s−1 , (with
the radiative loss functionsΛ) (see book of Priest 1984), the radiative loss rateQR is a
factor of 106 or more larger thanQV,C, j. Therefore, a much smaller than the assumed scale,
(e.g.,L = 200 m), is required to match heating to cooling. Moreover, the gradient scales
L assumed for this approach is much larger than the estimatedcollision mean free path
λc = 110 km (within the chromosphere plasma condition), thus theclassical Braginskii
formulas for obtainingη andσ seriously break down. Much less collisional heating rates
are expected when considering coronal conditions where thethese classical rates have to
be enhanced by more than six orders of magnitude, to match theempirical damping of
loop oscillations (Nakariakov et al. 1999), or dissipationof propagating waves (Ofman
et al. 1999).
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1 General introduction

Moreover, in coronal regions, most of the arguments given for the conversion mecha-
nism of the magnetic energy in the diffusion area (where the current sheet is formed) are
based on the classical ohmic dissipation. This can be misleading, because at this area the
electric resistivity is small and the chapmann-Enskog regime can be completely violated,
since the magnetic field gradient is smaller than the mean free path. Therefore, the con-
version of the magnetic energy in this area has nothing to do with the classical collisional
MHD description, and rather the kinetic or multi-fluid approaches have to be involved
to describe the conversion mechanism (see e.g., work on the heating via reconnection in
weakly collional plasma Ji et al. 2001).

1.1.2 Collisionless heating mechanism

Coronal heating by collisionless dissipation

Now, it seems that the coronal heating process has to be rather explained by colli-
sionless dissipation mechanism that may convert the magnetic energy density to heating
in solar corona and upper chromosphere. In other words, one has to deal with kinetic
descriptions of the coronal heating instead of the classical resistive MHD theories.

In collisionless dissipation mechanism, the so-called "ion-cyclotron waves" (small
scale fluctuations close to the ion inertial length 1/kd) play the major role in the heating
of the solar corona and even on the acceleration of ions in solar wind (see, e.g., Cranmer
2001). It is found that, for any plasma beta valuesβ, the ion-cyclotron damping is the
dominant dissipation mechanism for parallel propagating waves, however, in low plasma
beta, also the damping at the electron Landau resonance can be relevant for oblique prop-
agating waves withk < kd (see e.g., Gary and Borovsky 2004).

However, there are no direct measurements of ion-cyclotronwaves in the solar coronal
medium, and it is supposed that these waves get absorbed at distances close to the Sun
before they reach the heliosphere. However, the main signatures of the dissipation of these
waves were observed in solar wind as well as in solar corona. Indeed, recent observations
using Helios data (see e.g., Heuer and Marsch 2007) have confirmed the plateau formation
in the velocity distribution functions (VDfs) of proton species, which is interpreted as a
consequence of resonant wave-particle interaction causedby the ion-cyclotron waves (see
Fig. 1.10). Furthermore, in the corona, the spectroscopic determination of the widths of
extreme ultraviolet emission lines, as obtained from measurements made by SUMER
and UVCS onboard of SOHO indicate that heavy ions in various ionization stages in the
corona are very hot (see, e.g., Kohl et al. 1998, Tu 1988, Wilhelm et al. 1998, Cranmer
et al. 1999a, Grall et al. 1996) particularly in the polar coronal holes where electrons are
relatively cold (Fig. 1.11).

It is believed that these ion-cyclotron waves are generatedat the coronal base when
the small-scale reconnection may continuously occurs in the chromospheric network (see,
e.g., Axford and McKenzie 1995, Axford et al. 1999). This microflare like-event is pro-
duced when the cooled small-scale loops (∼ 1 Mm), that arise from the convection mo-
tion, reconnect with the expanding flux tube then cause a small-scale reconnection at the
chromosphere network, thus can generate high-frequency waves via current-driven mi-
croinstability in the diffusion areas when the current sheets are formed. The dissipation of
these high-frequency waves occurs close to the Sun within a fraction of solar radius and
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1.1 The solar corona

Figure 1.10: Contours of core/beam decompositions of two exemplary proton VDFs.
They were obtained by Helios 2 at (left) 10/46/08 on 14 April 1976 and (right) 04/24/52
on 16 March 1976. Both proton core and beam are here represented by drifting bi-
Maxwellians. The contours are plotted in the plane spanned by the mean magnetic field
(x axis) and the mean proton velocity, which coincides with the origin. The contours cor-
respond to fractions 0.9, 0.7, 0.5, 0.3, 0.1, 0.03, 0.01, and0.003 of the maximum of each
distribution function. (Heuer and Marsch 2007).

involves a linear kinetic mechanism such as Landau damping and ion-cyclotron resonance
absorption through the frequency-sweeping mechanism in a rapidly declining magnetic
field (Tu and Marsch 1997, Vocks 2002).

Other possible scenario as "MHD cascade mechanism" can be responsible the the
generation of ion-cyclotron waves. The high-frequency ion-cyclotron waves may be gen-
erated locally through turbulent cascade of low-frequencyMHD-type waves towards high
frequency ion-cyclotron waves (Hollweg 1986, Tu 1987, 1988, Marsch and Tu 1990, Hu
et al. 1999, Hollweg 2000, Ofman et al. 2002). In the turbulence scenario, the large-
amplitude, long-wavelength magnetic fluctuations, undergo nonlinear processes that cas-
cade their energy to successively shorter wavelengths. This leads to an ensemble of fluctu-
ations with a random phases and a broad range of wave vectors propagating in the plasma.
This picture is well explained by MHD simulations in homogeneous, collisionless, mag-
netized plasmas (Biskamp and Müller 2000) which satisfy theclassical Kolmogorov pic-
ture of fluid turbulence so that the magnetic power spectrum is approximately proportional
to k−5/3, this wave number regime is usually termed the "inertial range".

Turbulence magnetic fluctuations are subject not only to thecascade process but also
to collisionless damping in which some of the wave energy is transferred to particles. This
collisionless damping can be higher when the wavenumberk is larger so that the wave-
length is comparable to the ion or electron inertial range orcalled "dissipation range".
Although magnetic power spectral properties in the inertial range are independent of the
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1 General introduction

Figure 1.11: Plot of empirically derived temperatures and wind velocities. Upper panel:
electron (solid), hydrogen (dotted), and oxygen (dashed) temperatures, with neutral hy-
drogen and O5+ in the corona, and protons and O6+ in the far solar wind. Lower panel:
proton velocities derived from mass flux conservation (solid lines), Doppler dimming ve-
locities for hydrogen (dotted) and oxygen (dashed), and thesummed (up + VA) "surfing"
speeds (dash-triple-dot). The gray region denotes the range of polar IPS speeds reported
by Grall et al. (1996).

cascade processes, the properties of the dissipation rangespectra depend upon the damp-
ing rate. Also, the turbulence cascade usually leads to|δB| /B0 ≪ 1 in the dissipation
regime which allows to use the linear theory for describing the dispersion properties.
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1.2 Coronal loops

Figure 1.12: Example of solar coronal loops observed by the Transition Region And
Coronal Explorer (TRACE), in the 171Å filter. These loops have a temperature of ap-
proximately 106K.

1.2 Coronal loops

1.2.1 Coronal loop observations

Coronal loops are often observed as isolated bright flux tubes that can extend to altitudes
lower than one solar radius (see Fig. 1.12). Therefore coronal loops form the basic
structure of the lower corona and transition region of the Sun. These highly structured
and elegant loops are a direct consequence of the twisted solar magnetic flux within the
solar body. The population of coronal loops can be directly linked with the solar cycle, it
is for this reason the coronal loops are often found with sunspots at their footpoints.

The temperatures and densities of loops are found to vary transversely on small scales
between adjacent loops (Aschwanden et al. 1999, 2000b, Lenzet al. 1999, Brkovíc et al.
2002). Serio et al. 1981 proposed a hydrostatic loop model including gravity, in which
they considered a semi-circle loop with a constant cross section and assumed a constant
pressure along the loop with uniform heating. Their model predicts a steep temperature
profile that rises from the loop footpoints and increases above the transition to the loop
apex. The model was found to be consistent with the high-temperature loops observed
with X-ray instruments (e.g., Kano and Tsuneta 1996).

Most of the warm coronal loops (T ≃ 1 MK) observed in EUV emission by TRACE
and EIT imagers, are over dense compared to what is expected for static equilibrium
(Aschwanden et al. 1999, 2001, Winebarger et al. 2003a) or for steady flow equilibrium
(Patsourakos et al. 2004). The discrepancy is reduced, but not eliminated, if the heating is
assumed to be concentrated near the loop footpoints. Furthermore, under the assumption
that the plasma is isothermal across its field lines, severalauthors (e.g., Lenz et al. 1999,
Aschwanden et al. 2000b, Testa et al. 2002, Winebarger et al.2003a) measured the density
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1 General introduction

Figure 1.13: (a) Temperature and (b) emission measure as functions of fractional distance
along four loops: for loop (1) (plus signs), loop (2) (diamonds), loop (3) (triangles), loop
(4) (squares). They are compared with the hydrostatic loop model withTapex= 1.34×106

K and uniform line-of-sight depthD = 1010 cm (connected asterisks). (Lenz et al. 1999).

and temperature profiles along coronal loops using data fromTRACE and EIT on board
SOHO. Their results show that the warm coronal loops visiblein the extreme ultraviolet
(EUV) light are dense and have a roughly constant temperature along their segments (see
Fig. 1.13-1.14).

In contrast, from Fig. 1.15, hot loops,T > 2 MK (or often called SXR loops) ob-
served by Yohkoh are under dense compared to static equilibrium (Kano and Tsuneta
1996, Winebarger et al. 2003a). Loops of intermediate temperature observed by the SXI
instrument on GOES-12 have about the right density (Lopez Fuentes et al. 2004, Klim-
chuk 2006). This may indicate three physically distinct classes of loops, perhaps heated
in completely different ways, but there is another possibility that unifies theresults into
a single picture. The over and under densities are related tothe ratio of the radiative to
conductive cooling times (τr/τc). Radiation and thermal conduction losses are compara-
ble in equilibrium loops (Vesecky et al. 1979), and therefore the cooling time ratio should
be close to unity for loops that are near equilibrium.

The isothermality assumption across the field has recently been debated. Some works
had the conclusion that the cross-field temperature is roughly constant. Using TRACE im-
ages and coalignement data from the Coronal Diagnostic Spectrometer (CDS) on SOHO,
they found the similar features of warm EUV loops given above(see e.g., Cirtain et al.
2007, Landi and Landini 2004, Warren et al. 2008). However, some other observations
(see e.g., Schmelz et al. 2001, Martens et al. 2002) indicatethat a loop can have varying
cross-field temperature, which means that loops are composed of many strands that are
heated differently (i.e., different heating scales and heated at different times).

1.2.2 Expansion of coronal loops

According the force-free models, the flux tubes of coronal loops expand with height lead-
ing to thicker widths at the loop top than at the footpoints (or the end-points of the coronal
loop which are situated near the transition region) (see e.g., Klimchuk 2000, Watko and
Klimchuk 2000). However, from the observations, it is shownthat loop widths of most of
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1.2 Coronal loops

Figure 1.14: Ratio of observed densities to predicted densities as a function of temper-
ature. If the observations agreed with static solutions of hydrodynamic equations with
uniform heating, the points would lie on the solid line. Footpoint heating has the potential
to increase the density in a loop by a factor of 3 over uniform heating; this is shown in the
figure panels as a dotted line. Apex heating has the potentialto decrease the density in a
loop by a factor of 2.5; this is shown in the figure panels as a dashed line, ((Winebarger
et al. 2003a).

EUV and SXR loops does not vary too much, and the flux tubes havea small expansion
with height.

Klimchuk (2000) has examinated the widths (radius of cross section) of 43 soft X-ray
loops observed by Yohkoh (hot loops having temperature morethan 2 MK). He deduced
that the loop tends to be slightly (≈ 30 per cent) wider at their midpoints than at their
footpoints (see Fig. 1.15), implying less-than expected expansion factorΓ = wtop/wf ≈
1.3 (wherewtop andwf are the width at the loop top and at footpoints, respectively). While
it is found that warm loops observed by TRACE/EUV emission (in 171 Å passbands) have
roughly constant widths,Γ ≈ 1, (see Fig. 1.15-1.16).

The loop widths are determined from the straightened (symmetric axis of the loop),
background-substracted images and the cross variation intensity at each segment. The
loop width is defined as the second moment of the intensity profile i.e.,

σ =

[∑
(xi − µ)2I i∑

I i

]1/2

, (1.3)

whereµ is the mean position,µ =
∑

xi I i/
∑

I i . Because the three-dimensional geome-
try of the loops is not known, it was attempted to eliminate possible projection effects by
selecting loops from a variety of different positions on the disk and at the limb. The hope
is that any such effects would then average out statistically and not influence the results.
The obtained results of small-varying loop cross sections have recently been confirmed
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1 General introduction

Figure 1.15: Expansion factor (ratio of midpoint radius to footpoint radius) as a func-
tion of loop length. Stars and diamonds are for full- and half- resolution observations,
respectively. (Klimchuk 2000).

Figure 1.16: Loop radius expansion factors are plotted versus loop length for all 15 non-
flare loops. Triangles, diamonds, and asterisks indicate 171, 195, and 284 Å measure-
ments, respectively. (Watko and Klimchuk 2000).

by López Fuentes et al. (2008) where they have shown that a constant loop widths is not
an artifact of the background and the spatial resolution.
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1.2 Coronal loops

1.2.3 Nanoflare model for coronal loop

In the most of the coronal loop models, a semi-circle geometry with varying or constant
cross section is assumed for the bundles of the coronal magnetic field lines. Also, because
the plasma and magnetic field are frozen together (low-beta condition is valid) and the
cross-field thermal conduction is weak relatively to the thermal conduction driven by
electrons along the fields, it is possible to treat the strandloop with 1D hydrodynamics
(HD) or magnetohydrodynamics (MHD) models to describe the plasma response to the
energy dissipated in the loop. Furthermore, often the magnetic field is assumed to be
rigid and plays only a passive role by channelling the plasmaand thermal energy along
the field lines. Therefore, the loop can be treated as individual magnetic flux strands being
mini-loops for which the heating and plasma properties are approximately uniform on a
cross section.

As we already mentioned, the coronal loops may have broad differential emission
measure distributions within their cross sections; i.e., they are multithermal. Given that
heat transport is inefficient across magnetic field lines in the solar corona, this indicates
that loops are composed of multi-subresolution magnetic strands. In most of the impulsive
coronal loop heating models, they suggest that each of the strands is heated impulsively
and at different times from its neighbours. Although each strand evolves rapidly, the
unresolved bundle that is the loop appears to change slowly compared to a cooling time
(Winebarger et al. 2003b).

The nanoflare heating is dating back to Parker’s idea (1988) who introduced the idea of
the impulsive releases of roughly 1024 ergs of energy (some 9 orders of magnitude smaller
than large scaleflares). Parker’s mechanism is a part of the DC heating mechanism. He
suggested that the random, slow motions of the footpoints offield lines in the photosphere
make the magnetic field in the corona entangled and braided and increase its free energy.
When the angle between adjacent misaligned flux strands reaches a threshold, usually
related to the secondary instability (Dahlburg et al. 2003,2005), current sheets will form
and via the reconnection, a thermal energy can be released via ohmic dissipation. If
nanoflares now indeed energies of 1024 erg, and if coronal loops contain a large number
of strands then the observed heating requirements of loops implies that the repeat time
for successive nanoflares in a given strand must be longer than a cooling time. Cargill
(1994), and later Klimchuk and Cargill (2001) and Cargill and Klimchuk (2004) modeled
the properties of loops in the context of this basic framework. They found that nanoflare-
heated strands initially cool by thermal conduction and later cool by radiation. The first
phase of cooling is characterized by underdensities relative to static equilibrium, and the
second phase is characterized by overdensities (Warren et al. 2002, Klimchuk et al. 2004,
Spadaro et al. 2003, Cargill and Klimchuk 2004).

This impulsive multistrands heating may explain the multithermality across the field
found by Schmelz et al. (2001). A critical aspect of this picture is that the nanoflare
repetition time is long compared to a cooling time. If it weresignificantly shorter than a
cooling time, each strand would be in a state of quasi-staticequilibrium (e.g, Walsh et al.
1997, Mendoza-Briceño et al. 2002, Testa et al. 2005). This would be the case if the loop
contained only a few strands, since the observed heating requirements imply a certain rate
of 1024 erg nanoflares across the whole loop. The nanoflare model thusimplies roughly
constant cross-field temperature.
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1.3 Motivations and outlines of the present thesis work

For the reasons we mentioned in subsection 1.1.1, the heating of solar corona seems dif-
ficult to be achieved via the the classical collisional transport theory. Indeed, the gradient
scales in the plasma parameters need to be much smaller than the mean free path that char-
acterizes the collisions in corona. This condition is certainly far from the validity regime
of the magnetohydrodynamics (MHD) or hydrodynamics (HD). This conclusion is further
confirmed given the temperature anisotropy and the preferential heating of heavy ions ob-
served corona. These observations provide a good indication that the plasma of the corona
is far from the local thermal equilibrium (LTE), thus its heating cannot be described by
the collisional MHD or HD. Therefore, a kinetic approach involving collisionless heating
mechanism is inevitably needed to describe the heating of solar corona. In such descrip-
tion the heating via ion-cyclotron resonance could be relevant for the solar corona. As we
mentioned in subsection 1.1.2, the heating via ion-cyclotron resonance may explain the
observed temperature anisotropy and preferential heatingat higher coronal altitudes, and
the plateau formation found in the proton velocity distribution function (VDFs) measured
in heliosphere regions.

In our present work, we focus on the collisionless heating ofsolar corona based on
the resonant and nonresonant wave-particle interactions described within the quasi-linear
theory of the Vlasov equation. Here, the collisions are included especially when we
deal with the lower corona, and they are evaluated kinetically using the Fokker-Planck
equation (Rosenbluth et al. 1957).

The thesis is organized as follows; In Chap. 2, we study the heating of a collision-
less plasma through the dissipation of oblique propagatingfast ion-cyclotron waves. The
damping is achieved via resonant wave-particle interactions. In Chap. 3, we study the
heating of the corona by the collisionless dissipation of low-frequency Alfvén waves (hav-
ing frequencies much smaller than the ion gyrofrequency,ω ≪ Ωi). Then, Chaps. 4-6
are devoted to the coronal loop modeling, where a semi-kinetic model (time-dependent
model) is adopted to describe the heating along the loop length. In these last Chapters,
we aim to produce the observed features of warm EUV and SXR coronal loops given in
Sec. 1.2.
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2 Proton heating by oblique fast waves

2.1 Introduction

Recent observations from the Ultraviolet Coronagraph Spectrometer (UVCS) and Solar
Ultraviolet Measurements of Emitted Radiation (SUMER) on board SOHO have shown
that the preferential heating and acceleration of ions (e.g., oxygen ions) occurs in the first
few solar radii of the high-speed solar wind (Kohl et al. 1998, Li et al. 1998, Wilhelm et al.
1998, Cranmer et al. 1999c, Frazin et al. 2003, Telloni et al.2007). Also, it is concluded
that not only do the oxygen ions flow faster than protons at a speed of 400 km s−1 at
roughly 3 RS, but also have a large temperature anisotropy at the same distance (see e.g.,
Li et al. 1998). These observed phenomena have revived the interest in the energizing of
ions by the fast kinetic dissipation of the small-scale wave-field fluctuations (in the range
of ion inertial length). It is believed that the dissipationof these waves, in the solar wind,
via the ion-cylotron resonance mechanism may cause such phenomena. The acceleration
and heating of minor ions by ion-cyclotron wave absorption has been studied in several
theoretical works (e.g., Cranmer et al. 1999b, Cranmer 2000, Hollweg 1999a,b, Li et al.
1999, Vocks and Marsch 2002, Bourouaine et al. 2008a). However, in situ measurements
have not indicated strong enough ion-cyclotron waves, hence, it has been assumed that
these waves are probably launched from the Sun and already damped in interplanetary
space (see e.g., Tu and Marsch 1997, Marsch and Tu 1997, Li et al. 1999, Heuer and
Marsch 2007).

Most studies of resonant heating of the corona and acceleration of the fast solar wind
have considered parallel-propagating waves. This limitedconsideration is for the reason
of simplicities. However, it is intuitively reasonable to expect that high-frequency waves
can obliquely propagate due to several sources or processesthat can generate oblique
propagating waves. For example, the phase-mixing mechanism that could result from
the inhomogeneity across the magnetic field lines (e.g., Voitenko and Goossens 2000a,b),
forces the parallelly launched waves into oblique propagation. Also, magnetohydrody-
namics (MHD) turbulence in the Kolmogorov picture favours acascade to high transverse
waves number (Cranmer and van Ballegooijen 2003).

The dissipation of the high obliquely propagating waves (e.g., Kinetic Alfvén waves)
can strongly suffer from Landau damping at lower-frequencies (frequencies much less
than ion-cyclotron frequency) when the perpendicular wavenumber is approaching the
inverse of the proton gyroradius (see e.g., Hollweg 1999c).

In this chapter, we study the heating of the protons by the obliquely propagating fast
waves. In Sec. 2.2 we establish the the linear dispersion relation for a magnetized and
homogeneous plasma. In Sec. 2.3 we study the properties of the of the oblique fast waves
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2 Proton heating by oblique fast waves

propagating in homogeneous electron/proton plasma. Finally, based on the quasi-linear
theory (QLT) for reduced velocity distribution function, we study the energization of the
protons by oblique propagation fast waves via resonant wave-particle interaction.

2.2 Magnetized dispersion relation

2.2.1 General dispersion function

In the following section, we remind of the general wave kinetic dispersion relation of
linear waves that can propagate in a homogeneous and collisionless plasma in the presence
of a constant magnetic fieldB0. In this study, we consider a vanishing external electric
field, E0. The presence of the magnetic field produces an anisotropy inthe plasma by
affecting the perpendicular particle motions through the Lorentz force.

First we recall the famous Vlasov equation that describes the evolution of the velocity
distribution function (VDF)f of non-relativistic moving particles in collisionless plasma

(
∂

∂t
+ v.∇ + q

m
(E + v × B).

∂

∂v

)
f (v, x,t) = 0, (2.1)

wherev andx are the velocity and the position vectors,q andm are the charge and the
mass of the species,s. E andB, respectively, are the electric and magnetic field acting on
the plasma species.

After considering a linear perturbation for the different quantities in the Vlasov equa-
tion (2.1), we get the following linear form of the Vlasov equation

(
∂

∂t
+ v.∇ + q

m
v × B0.

∂

∂v

)
δ f (v, x,t) = − q

m
(δE + v × δB).

∂ f0(v, x,t)
∂v

, (2.2)

whereδ f , δB andδE, respectively are the perturbed quantities of respectively the velocity
distribution function (VDF), the magnetic fieldB and the electric fieldE (with E0 = 0),
i.e,

f ≈ f0 + δ f ,

B ≈ B0 + δB,

E ≈ E0 + δE. (2.3)

The response of the plasma due to these perturbations is represented by the perturba-
tions occurred in the electric currentδρe and charge densityδj such that

δρe =
∑

s

qs

∫
d3vδ fs,

δj =
∑

s

qs

∫
d3vvδ fs. (2.4)

Sinceδ f depends on the time,t and the six phase-space coordinates of the vectorsv
andx, the left-hand side of (2.2) is the total time derivative ofδ f along a particle phase
space orbit, and the right-hand side describes the change ofthe distribution function along
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this orbit under the effect of the wave field. Thus this equation can be written as

d
dt
δ f (v(t), x(t), t) = − q

m
[δE(x(t), t) + v(t) × δB(x(t), t))]

×∂ f0(v(t), x(t),t)
∂v

, (2.5)

and then the calculation ofδ f needs an integration of the above equation over the time

δ f (v(t), x(t), t) = − q
m

∫ t

−∞
dt′

[
δE(x(t′), t′) + v(t′) × δB(x(t′), t′))

]

×∂ f0(v(t′), x(t′),t′)
∂v

. (2.6)

At this stage, the knowledge of the phase-space orbit of all particles for all times
t′ < t is required to evaluate this integral. This is not possible,but within this linear
approach where the nonlinear terms are completely neglected, it is possible to consider
approximately the particle orbit when the plasma is in its unperturbed state and only under
the effect of the background magnetic fieldB0. Then, the equations of motion of particles
that move under the effect of an external constant magnetic field can be expressed interms
of the gyrofrequencyΩ ,

v(τ) =
{
v⊥ cos

[
Ω(τ) + ψ

]
, v⊥ sin

[
Ω(τ) + ψ

]
, v‖

}
, (2.7)

whereψ is the initial phase angle,τ = t′ − t andv‖ (v⊥) is the parallel (perpendicular)
component of the velocity vectorv with respect toB0. The time integral of the velocity
equation (2.7) gives the position of the particle,

x(τ) − x = Ω−1 {
v⊥ sin

[
Ω(τ) + ψ

]
,−v⊥ cos

[
Ω(τ) + ψ

]
, v‖(τ)

}
. (2.8)

Now assuming the plane wave form for the small perturbed wavefield and considering
the Faraday’s law, yieldingk × δE = ωδB (wherek is the wavenumber vector andω is
the frequency ), then eq. (2.6) becomes

δ f = −qδE(k,ω)
mω

.

∫ ∞

0
dτei(ωτ+k(x(τ)−x)) [I (ω − k.v(τ)) + kv] .

∂ f0(τ)
∂v(τ)

. (2.9)

By using the expressions (2.4) and (2.9) which connect between the linear current and
the perturbed VDF, it is possible to extract the linear conductivity σ of the magnetized
plasma from Ohm’s law (δj = σδE).

On the other hand, the general linear wave equation of the fluctuating electric fieldδE
(with E0 = 0) can easily be obtained from the known Maxwell equations and is given by

∇2δE−∇(∇.δE) − ǫ0µ0
∂2δE
∂2t
= µ0

∂δj
∂t
. (2.10)

This equation is applicable to any medium with a linear response to an applied field
fluctuation. Its left-hand side is independent of the presence of any medium and represents
the electromagnetic part. The response of the medium is included on the right side via the
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2 Proton heating by oblique fast waves

conductivity tensor that connects the current with the fluctuation electric field.

The wave equation (2.10) can be then written in its Fourier transform as follows:
[(

k2 − ω
2

c2

)
I − kk−iωµ0σ(ω, k)

]
.δE =0. (2.11)

The nontrivial solution of this equation requires that the determinant of the tensor in
brackets vanishes, thus yielding the general dispersion relation

det

[(
k2 − ω

2

c2

)
I − kk−iωµ0σ(ω, k)

]

= det

[
k2c2

ω2

(
kk
k2
− I

)
+ ǫ(ω, k)

]

= detD = 0, (2.12)

whereD is the dispersion tensor, andǫ(ω, k) is the dielectric tensor

ǫ(ω, k) = I +
i
ωǫ0

σ(ω, k). (2.13)

From the Ohm’s law and the equations (2.9) and (2.13) we extract the expression of
the kinetic dielectric tensor in homogenous magnetized plasmas:

ǫ(ω, k) =

1−
∑

s

ω2
ps

ω2

 I−
∑

s

l=∞∑

l=−∞

2πω2
ps

n0sω2

∫ ∞

0

∫ ∞

−∞
v⊥dv⊥dv‖

(
k‖
∂ f0s

∂v‖
+

lΩs

v⊥

∂ f0s

∂v⊥

)
Sls

(
v⊥, v‖

)

k‖v‖ + lΩs − ω (2.14)

where the tensorSls has the form

Sls
(
v⊥, v‖

)
=



l2Ω2
s

k2⊥
J2

l
ilv⊥Ωs

k⊥
Jl J′l

lv‖Ωs

k⊥
J2

l

− ilv⊥Ωs

k⊥
Jl J′l v2

⊥J′2l −iv‖v⊥Jl J′l
lv‖Ωs

k⊥
J2

l iv‖v⊥Jl J′l v2
‖ J

2
l


(2.15)

and the Bessel function and its derivative,Jl , J′l = dJl/dηs, depend on the argument
ηs = k⊥v⊥/Ωs. Hereωp is the plasma frequency, andk‖ (k⊥) is the parallel (perpendicular)
component of the wave vectork with respect toB0.

Notice that, when consideringδB = 0, only the dispersion of the electrostatic (or
longitudinalδE × k = 0) modes can be obtained, and the dispersion function simplifies
considerably.

2.2.2 Dispersion relation for a bi-Maxwellian VDFs

Now, assume that each species in the plasma is described by a background bi-Maxwellian:

30



2.2 Magnetized dispersion relation

f0,s(v‖, v⊥) =
n0s

π3/2vth‖,sv2
th⊥,s

exp

−
(
v‖ − Us

)2

v2
th‖,s

− v2
⊥

v2
th⊥,s

 , (2.16)

wherevth‖,s, vth⊥,s respectively are the parallel and the perpendicular thermal speed defined
in terms of parallel and perpendicular temperatureT‖,s, T⊥,s as: vth‖,s =

(
2kBT‖,s/m

)1/2
,

vth⊥,s =
(
2kBT⊥,s/m

)1/2, andUs is the bulk speed,n0s is the density of the speciess.

The dielectric tensor given in (2.14) would take the following expression when con-
sidering a bi-Maxwellian unperturbedf0 (see Baumjohann and Treuman 1996):

ǫ(ω, k) = I +
∑

s


ǫs1 ǫs2 ǫs4

−ǫs2 ǫs1 − ǫs0 −ǫs5

ǫs4 ǫs5 ǫs3,

 (2.17)

where the components of the tensor inside the sum are given by

ǫ(ω, k) = I +
∑

s

ezez

2ω2
p

ωk‖v2
th⊥

vd +
ω2

p

ω

∞∑

l=−∞
e−λLl(η)

 , (2.18)

with

Ll(η) =



j2I l

η
A j −ilCAl

k⊥
Ω

lI l
η

Bl

ilCAl FAl
ik⊥
Ω

CBl
k⊥
Ω

lI l

η
Bl − ik⊥

Ω
CBl

2(ω−lΩ)
k‖v2

th⊥
I lBl


, (2.19)

whereI l(η) is the modified Bessel function depends on the argumentη. The following
definitions are used:

η =
k2
⊥v2
⊥

2Ω2
,

F =
l2

η
I l + 2ηI l − 2ηI ′l ,

C = I l − I ′l ,

I ′l =
d
dη

I l(η)

Al =
1
ω

T⊥ − T‖
T‖

+

1
k‖vth‖

(
ω − k‖U − lΩ

)
T⊥ + lΩT‖

ωT‖
Z0(ζl),

B j =
1
ωk‖

(ω − k‖U) +
ω − lΩ

k‖
Rl, (2.20)

whereZ0(ζ j) is the known dispersion function which depends of the cyclotron reso-
nance argument

ζ j =
ω − k‖U − lΩ

k‖vth‖
, l = ±1,±2,±3.... (2.21)

and the Landau resonance factor is determined by the case that l = 0. The polarization
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2 Proton heating by oblique fast waves

P of the waves can be defined as (Stix, 1992)

P = i
Ex

Ey

ωr

|ωr | , (2.22)

whereωr is the real part of the frequencyω = ωr − iγ (γ is the damping or the growth
rate).Ex,Ey are the coordinates of the vector electric fieldδE alongx andy axis.

2.3 Oblique fast waves in electron/proton plasma

2.3.1 Linear dispersion analysis

We study the properties of the fast waves in an electron-proton plasma in thermal equilib-
rium. Both species have isotropic Maxwellian VDFs,Tp⊥/Tp‖ = Te‖/Te⊥ = 1, describing
the background state of the plasma. Here, we consider equivalent electron and proton
plasma betas, i.e., a plasma withβe = βp = 0.01.

By solving the dispersion relation from eqs. (2.12) and (2.18), several plasma modes
could appear. Among them we only deal with the fast mode whichcould be relevant for
the heating and acceleration of protons. Here, we ignore thepossible mode conversion of
the fast waves with ion Bernstein waves than can occur in highly oblique propagation.

The top panels in Fig. 2.1 display the normalized real frequency,ωr/Ωp, of the fast
waves propagating with anglesθ = 20◦, 40◦, 60◦ and 80◦ as well as the corresponding nor-
malized damping rates,γ/Ωp. In the right bottom panel of Fig.2.1, also the real and the
imaginary part of the wave polarization are plotted for the same branches. It is clear that
the fast mode is linear and corresponds to compressive Alfvén waves whenkvA/Ωp ≪ 1
(vA is Alfvén speed). At this limit, in the case ofθ = 20◦, the waves are linearly polarized,
while the waves tend to be more circularly polarized (Re(P) ∼ 1) whenkvA/Ωp ∼ 0.8. For
the same propagation angle, in Fig.2.1b the damping rate of the modes is weaker, and at
certain values ofkvA/Ωp the damping is slightly enhanced. These values ofkvA/Ωp corre-
spond to the regionωr/Ωp ∼ 1 in Fig.2.1a, where the first harmonic cyclotron resonance
conditionωr ≈ k‖v‖ + Ωp is fulfilled. Notice that the enhancement in the damping rate
is related to the enhancement in the imaginary part of the wave polarizationsIm(P). For
the branch with propagation angleθ = 60◦ a second visible bump appears in the damping
rate and corresponds toωr ≈ 2Ωp. This enhancement also corresponds to a second en-
hancement inIm(P), while, a second enhancement in the damping rate forθ = 20◦ does
not appear.

Fig.2.2 displays the snapshot of the the normalized real part of the frequency (ωr/Ωp)
(left panel) and the damping rate (γ/Ωp) as a function ofkvA/Ωp (right panel) and the
propagation angleθ. It turns out that the first, second and the third harmonic proton cy-
clotron resonance can help in dissipation of the fast mode. The first harmonic cyclotron
resonance (ωr ≈ Ωp), which belongs to the regions close tokvA/Ωp ∼ 1 in Fig.2.1b, starts
occurring when the waves propagate with angles above 20

◦
to quasi-perpendicular propa-

gations. However, the damping via the second harmonic cyclotron resonanceωr ≈ 2Ωp,
which corresponds to the region withkvA/Ωp ∼ 1.5, is related to the waves propagating
with angles above 40◦. Furthermore, the strong dissipation of the waves having frequenc-
cies (ωr ≈ 2Ωp) occurs whenθ > 60◦. The fast waves dissipation via the third harmonic
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Figure 2.1: (a) and (b): The normalized frequency and the normalized damping rate, (c)
and (d): The real and imaginary part of the polarization. Allfigures plotted, vs. the
normalized wave vector forθ = 20◦ (line), θ = 40◦ (dotted-line),θ = 60◦ (dashed-line)
andθ = 80◦ (dash-dotted line).

cyclotron resonance (ωr ≈ 3Ωp) is very weak, and could be relatively strong only if
θ > 80◦ i.e., for quasi-perpendicular waves (see Fig.2.2b whenkvA/Ωp ∼ 2.7).

Notice that the damping of the fast waves having nonresonantfrequencies,ωr , lΩp

(l = 1, 2, 3) shown by red colore in Fig.2.2b, primarily comes from electron Landau res-
onance,ωr = k‖v‖,e. Within the domain of these nonresonant frequencies, both proton
Landau and cyclotron damping are negligible. This is because, in low-β, the proton ther-
mal velocityvth,p ≪ vph, which leads to the inequalityωr ≫ k‖v‖,p (wherev‖,p is the proton
velocity). Hence, proton Landau resonance condition wouldnot be fulfilled. However,
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2 Proton heating by oblique fast waves

due to the smallness of the electron mass relatively to the proton mass, the electron ther-
mal speedvth,e ≫ vth,p when the thermal equilibrium condition is satisfied (Te = Tp).
Therefore, electron Landau resonance

(
ωr ≈ k‖v‖,e

)
might be satisfied, then the dissipation

of the fast waves can be achieved via electron Landau damping.
The damping of the fast mode by electron Landau resonance is more efficient for

oblique waves having, 20◦ < θ < 80◦, and then starts to decrease dramatically for quasi-
perpendicular waves (see Fig.2.2b). Moreover, the electron Landau damping of these
waves is proportional to the normalized wave numberkvA/Ωp. There is no dissipation of
the parallel and quasi-parallel fast waves neither via proton-cyclotron resonance nor via
Landau damping.

Notice that for highly obliquely propagating fast waves with θ > 75◦, the fast waves
could convert into ion Bernstein waves. Hence, they also suffer from a first, second and
third harmonic proton cyclotron absorption (see e.g., Li and Habbal 2001). The enhanced
values of the imaginary part of the wave polarizationIm(P) displayed in Fig. 4.3, corre-
sponds to the enhanced damping rate in the regions when the proton cyclotron resonances
take place as shown in Fig.2.2b. In the regions whereRe(P) ∼ 1 andIm(P) is small, the
waves are right-handed circularly polarized.

Before we discuss the heating of the protons via their diffusion by fast magnetosonic
waves in the next section, we reiterate some of the basic equations on the diffusion of the
ions in general dispersive waves within the quasi-linear theory framework. In our analysis,
we rather deal with the diffusion equation for reduced VDFs proposed by Marsch (1998,
2002) to compute the different fluid moment parameters.

2.3.2 Quasi-linear theory for reduced VDF

A detailed description of the QLT has been given in the text books by Stix (1992). QLT
is quadratically nonlinear in the coupling terms between the plasma distributions and
wave fields fluctuations. However, in this theory, still the linear wave dispersion with
slowly time-varying VDFs and power spectrum density (PSD) is used for the wave field
fluctuations.

The general quasi-linear diffusion equation that describes the evolution of the usual
VDFs , f (v‖, v⊥, t), of a homogeneous and magnetized plasma under the influence ofan
ensemble of fluctuation modes with indexM, is given by

∂ fs

∂t
=

∑

M

∞∑

l=−∞

1

(2π)3

∫ ∞

−∞
dkB̂M

1
v⊥

∂

∂α

(
v⊥νs(k, l; v⊥, v‖)

∂ fs

∂α

)
, (2.23)

where the gradient of the pitch-angleα is

∂

∂α
= v⊥

∂

∂v‖
−

(
v‖ − ωM(k)

k‖

)
∂

∂v⊥
. (2.24)

B̂M is the power spectrum density (PSD) normalized to the background-magnetic field
energy density, and the ion-wave relaxation rateνs is defined as

νs(k, l; v⊥, v‖) = πΩ2
sδ(ωM(k) − sΩs− k‖v‖) ×
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Figure 2.2: Snapshots showing in colour coding the normalized frequency (left panel) and
the normalized damping rate (right panel) as a function of the normalized wave vector and
the propagation angleθ.

∣∣∣∣∣∣
1
2
(
Js−1(η)E

+
M + Js+1(η)E

−
M

)
+

(
ωM(k) − sΩs

v⊥k‖

)
Js(η)EMz

∣∣∣∣∣∣
2

,(2.25)

whereη = k⊥v⊥
Ω
, and the left (right) handed components of the wave polarization vector,

E+(E−), are defined by
E± = Ex ± iEy. (2.26)

Note that, the pitch-angleα designates the angle between the vector velocity and the
mean magnetic fieldB0 in the wave frame of reference. Therefore, the vanishing of the
angle gradient (∂/∂α) leads to the so-called quasi-linear plateau formation whereby the
plasma relaxes in its steady state. Also, in the case of a lowβ, the VDFs saturates and its
evolution switches off when the bulk speed of the species reaches the phase speed.

In the following, we demonstrate that diffusion equations for the reduced VDFs in the
moving frame of the speciess that can obtained from the general diffusion eq. (2.23). The
k-th order reduced VDFs is defined as (Marsch 1998)

Fk(v‖) = 2π
∫ ∞

0
v2k+1
⊥ f

(
v‖, v⊥

)
dv⊥, k = 0, 1, 2, ..... (2.27)
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Figure 2.3: Snapshots showing in colour coding the real part(left panel) and the imaginary
part (right panel) of the wave polarization as a function of the normalized wave vector and
the propagation angleθ.

Here, the parallel velocity is shifted,v‖ → v‖ − Us in order to express the different
equations in the moving frame of the species,s. From the first two reduced VDFs,F0 and
F1, it is now possible to obtain all the relevant plasma fluid parameters. By integration
of F0 over various powers ofv‖ we get the particle densityN, drift velocity Us parallel
temperatureT‖, and heat flux. Considering also the moments ofF1, the perpendicular
temperatureT⊥ and the perpendicular heat flux component can be obtained.

The diffusion equation of the two first reduced velocity distribution functions can be
calculated by taking the corresponding moments of the diffusion eq. (2.23), i.e.,

∂F0(v‖)
∂t

= 2π
∫ ∞

0
dv⊥v⊥

∂ f
(
v‖, v⊥, t

)

∂t
, (2.28)

∂F1(v‖)
∂t

= 2π
∫ ∞

0
dv⊥v3

⊥
∂ f

(
v‖, v⊥, t

)

∂t
. (2.29)

By inserting (2.23) and integrating overv⊥, the evolution equation ofF0(v‖) andF1(v‖)
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take the following general form

∂F0(v‖)
∂t

=
∂

∂v‖

(
D(v‖)

∂F1(v‖)
∂v‖

)
− ∂

∂v‖

(
A+(v‖)F0(v‖)

)
, (2.30)

∂F1(v‖)
∂t

=
∂

∂v‖

(
D(v‖)

∂F2(v‖)
∂v‖

)
− 2

∂

∂v‖

(
A+(v‖)F0(v‖)

)

+A−(v‖)
∂F1(v‖)
∂v‖

− H(v‖)F0(v‖), (2.31)

whereD, A± andH respectively are the diffusion, acceleration and heating coefficients.
These reduced VDFs forms given by (2.30) and (2.31) are obtained assumingf (v‖,∞) =
f (∞, v⊥) = 0, and also vanishing derivative at infinity such that|∂ f /∂v⊥|v⊥=∞ = 0.

In order to explicitly extract the forms of the diffusion operators,D, A± andH, we
simply chose the typical value,vth⊥ for the perpendicular velocity,v⊥, in the relaxation
rate. Then we have


Ds(v‖)
As(v‖)
Hs(v‖)

 =
∑

M

∞∑

l=−∞

1

(2π)3

∫ ∞

−∞
dkB̂Mν̄s(k, l; v‖)



1
lΩs

k‖(
lΩs

k‖

)2


, (2.32)

where

ν̄s(k, l; v‖) = πΩ2
sδ(ωM(k) − sΩs− k‖v‖)

×
∣∣∣∣∣∣
1
2
(
Js−1(η̄)E+M + Js+1(η̄)E−M

)
+

(
ωM(k) − sΩs

k‖

)
Js(η̄)EMz

∣∣∣∣∣∣
2

, (2.33)

with η̄ = k⊥vth⊥
Ω

.

Note that for higher order reduced VDFs with,k > 1, a Gaussian approximation inv⊥
is assumed, which allows us to introduce the following closure relations:

Fk(v‖) = k! (2vth⊥)k−1 F1(v‖), k = 2, 3, 4, .... (2.34)

Now, it is possible to calculate the acceleration and heating rates. Then the first mo-
ment gives the bulk acceleration:

∂

∂t
U =

∫ ∞

−∞
dv‖v‖

∂F0(v‖)
∂t

, (2.35)

and the second moment ofF0 and zeroth moment ofF1 give the parallel and perpendicular
heating rates:

∂

∂t
v2

th‖ =
∫ ∞

−∞
dv‖v2

‖
∂F0(v‖)
∂t

, (2.36)

∂

∂t
v2

th⊥ =
∫ ∞

−∞
dv‖

∂F1(v‖)
∂t

. (2.37)

By performing these integrations overv‖ after inserting the diffusion operators given
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Figure 2.4: Snapshot showing the first harmonic resonance function as a function of the
normalized wave vector and the propagation angleθ.

by eq. (2.32) into equations (2.35), (2.36) and (2.37), the final forms of the different rates
are (Marsch 2001):



∂
∂t Us
∂
∂tv

2
th‖,s

∂
∂t v

2
th⊥,s

 =
∑

M

1

(2π)3

∫ ∞

−∞
d3kB̂M(k)

(
Ω

k‖

)2

×
∞∑

j=−∞
Rs(k,l)



k‖
2k‖(

ωM(k)−lΩs

k‖
− Us)

sΩs

 . (2.38)

These rates are expressed in terms of integrals over the normalised PSD and sums over
the mode number,M, and resonance harmonic numberl, and the resonant functionRs(k,l)
which depends on the wave numberk and on the reduced VDFsF‖s(v‖) andF⊥s(v‖) such
that

Rs(k,l) = (2π)2 k‖∣∣∣k‖
∣∣∣

∣∣∣∣∣∣
1
2
(
Js−1(η)E

+
M + Js+1(η)E

−
M

)
+

(
ωM(k) − sΩs

k‖

)
Js(η)EMz

∣∣∣∣∣∣
2

×
[
(
lΩ
k‖

F‖s− ∂

∂v‖
F⊥s)

]

v‖=
ωM (k)−sΩs

k‖ −Us

. (2.39)
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Figure 2.5: Snapshots showing the second harmonic (left) and third harmonic (right)
resonance function as a function of the normalized wave vector and propagation angleθ.

2.3.3 Proton heating by oblique fast waves

Now we investigate the heating and the acceleration of the protons through the diffusion
of these latter by the oblique fast waves studied in subsection (2.3.1). For this purpose, we
compute the different rates given by eq. (2.38). Here, we approximate the evolving proton
VDFs by a bi-Maxwellian, withvth‖ andvth⊥ being the parallel and perpendicular thermal
speed of the proton. Hence, the general expressions ofF0(v‖) andF1(v‖) as obtained from
standard bi-Maxwellian VDFsf (v‖, v⊥) can be computed from eq. (2.34),

F0(v‖) =
n0√

2πvth‖
exp

−
(v‖ − U)2

2v2
th‖

 , (2.40)

F1(v‖) =
n0√
2π

v2
th⊥

vth‖
exp

−
(v‖ − U)2

2v2
th‖

 . (2.41)

From these expressions, the harmonic resonance function can be explicitly computed,
and is found to depend also onvth‖ andvth⊥ in addition to the wave polarizations and wave
frequencyω, i.e.:
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Rs(k,l) = (2π)2 k‖∣∣∣k‖
∣∣∣

∣∣∣∣∣∣
1
2
(
Js−1(η)E

+
M + Js+1(η)E

−
M

)
+

(
ωM(k) − lΩs

k‖

)
Js(η)EMz

∣∣∣∣∣∣
2

(2.42)

×

ωM(k) − lΩs

k‖v2
th‖

v2
th⊥

vth‖
+

lΩs

k‖vth‖

 exp

−1
2

(
ωM(k) − lΩs

k‖vth‖

)2 , (2.43)

where the integer numberl is related to the harmonic proton-cyclotron resonance condi-
tion,ωr − kv‖ − lΩ. Due to the exponential term this function is very small for all values
of k except close to the domain (k, θ) when thel harmonic proton-cyclotron resonance
condition is fulfilled.

At initial time, t = 0, the electron-proton plasma is assumed to be in equilibrium state
(the VDF is a Maxwellian) withvth‖/vA = vth⊥/vA =

√
β with β = 0.01. The initial plasma

is at the same conditions for which the fast-wave dispersionis computed (see subsection
2.3.1).

Fig.2.4 and Fig.2.5 show the numerically computed resonance functionRs(k,l) at
t = 0 plotted for l = 1, 2, 3 . It turns out that the resonance function does not vanish
only near those regions ofkvA/Ωp where resonant interactions are taking place,ωr ≈ lΩp,
i.e. the harmonic resonance function computed via quasi-linear theory reflects the same
behaviour of the linear damping rate as plotted in Fig.2.2b.However, in the case of the
harmonic resonance function only the wave-proton interactions are considered, and it
turns out that the harmonic resonance function forl = 1, 2 and 3 describes the possible
wave-proton interactions via first, second and third harmonic proton-cyclotron resonance
as shown before in Fig.2.2 in the case of linear wave analysis. For l = 1 (see Fig.2.4),
only oblique waves having propagation angles between 40◦ and 80◦ contribute to the
resonance functionRs, and waves propagating with angles above 40◦ contribute to the
second harmonic resonance function (see Fig.2.5a). Furthermore,Fig.2.5b displays the
third harmonicRs, which shows the contribution of the quasi-perpendicular fast waves to
the heating and acceleration of the protons.

Notice that, whenl = 0, the resonance functionRs ≈ 0, which means that the contri-
bution of proton Landau damping in the heating and acceleration of protons is negligible.
However in the case of electrons,Rs(l = 0) would more or less contribute in electron
diffusion, since electron Landau damping is considerable for obliquely propagating fast
waves as indicated in subsection. (2.3.1).

The heating and acceleration rates can be computed once the normalized PSD, such
that B̂M(k), of the branch is given. Here, we estimate the heating rate caused by a
monochromatic wave with propagation angleθ. In our calculation, the power-law form
for the normalized PSD is assumed,B̂M(k) = α/k̄, whereα is a constant dimensionless
parameter, and the normalized wave numberk̄ = kvA/Ωp. Here, to compute the heat-
ing and acceleration of the proton species by the oblique fast waves, we approximate the
evolving VDFs to a bi-Maxwellian in whichvth‖, vth⊥ andU are self-consistenly updated
from the diffusion equation (2.38) at each time step. Also, within the time-evolution in-
terval, we assume that the fast wave dispersion is slowly varying in time, therefore, the
dispersion of the waves is evaluated at larger time step.

In our calculation we have used normalized parameters such as normalized frequency,
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ω̄ = ω/Ωp, normalized proton parallel and perpendicular speed,V̄‖,⊥ = vth‖,⊥/vA, normal-
ized proton drift speed,̄U = U/vA, and finally, the effective normalized time,τ = αΩpt.
Also, we denote byQ‖,⊥ = ∂V̄2

‖,⊥/∂τ, andU = ∂Ū/∂τ, respectively, the normalized parallel
(perpendicular) heating rate, and the normalized acceleration rate.

Fig.2.6 and Fig.2.6 respectively display the evolution of the normalized bulk speed
and perpendicular proton thermal speed as a function of the propagation angle of the
fast waves with respect to the mean magnetic fieldB0. It turns out that the fast mode
heats perpendicularly the protons, since the heating in theparallel direction is very small.
Therefore, the waves produce an anisotropic proton temperature with a preferential per-
pendicular heating (T⊥ > T‖). Furthermore, the waves can also accelerate the protons
from zero bulk speed to a value of about 0.01vA whenτ ∼ 1. If we assume that the nor-
malized PSD is about 10−4, then the proton can be heated roughly by a factor of two
within time t ∼ 104

Ωp
.

The oblique propagating waves with, 40◦ < θ < 80◦ have a large impact on the
heating and acceleration of the protons. However, parallelwaves have no influence on the
diffusion of the proton, and a negligible effect of the fast waves havingθ less than 20◦ on
the proton diffusion. Fast waves propagating with 60≤ θ ≤ 65◦ heat the protons more
in the perpendicular direction, and strongly accelerate the proton in the direction of the
mean magnetic. The heating and the acceleration of the protons comes primarily from
the first and the second harmonic proton cyclotron absorption. However, the protons are
less energized by waves propagating withθ below 25◦ since, the first resonance function
Rs(k,l = 1)≪ 1 within the domain of those waves.

2.4 Conclusion

In this chapter, the linear analysis of the wave dispersion in magnetized homogeneous
and collisionless plasma is adopted to study the oblique fast waves (waves having phase
speedvph ≥ vA). This approach can be applied to the outer corona and solar wind medium
where the Coulomb collisions are negligible and the wave energy density is smaller than
the background magnetic field energy density.

In this study, it is shown that the dissipation of the fast mode can be achieved via the
three first harmonic proton-cyclotron resonances,l = 1, 2, 3. Furthermore, the dissipation
of the fast mode via electron Landau resonance is considerable for obliquely propagating
waves, while the damping via proton Landau is negligible. Moreover, only fast waves
having propagation angle,θ > 20◦ can dissipate. The dissipation of the fast waves via
the third harmonic proton-cyclotron resonance can be achieved only in case of quasi-
perpendicular propagation. The heating and the acceleration of the protons by the fast
mode is described by the quasi-linear diffusion theory of the reduced velocity distribution
function, where it is shown that the protons are more heated and accelerated through the
dissipation of the fast waves propagating with angle close to 62◦.

41



2 Proton heating by oblique fast waves

 

0

2

4

6

8

10
N

or
m

al
iz

ed
 p

ro
to

n 
sp

ee
d 

(1
0-3

)

0.0 0.2 0.4 0.6 0.8
τ

0

20

40

60

80

θ 
(d

eg
)

 

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 a
cc

el
er

at
io

n 
(1

0-4
)

0.0 0.2 0.4 0.6 0.8
τ

0

20

40

60

80

θ 
(d

eg
)

Figure 2.6: Snapshots showing the normalized proton drift speed (left panel), and the
normalized acceleration rate (right panel) as a function ofthe normalized time and the
propagation angleθ.
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Figure 2.7: Snapshots showing the normalized perpendicular proton thermal speed (left
panel), and the normalized perpendicular heating rate (right panel) as a function of the
normalized time and the propagation angleθ.
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3 On the efficiency of nonresonant ion
heating by coronal Alfvén waves

3.1 Introduction

Low-frequency waves in the solar corona have for decades been studied using fluid theory
(see, e.g., the recent review by Ofman (2005), and often beenproposed to heat the corona
via collisional dissipation, and to accelerate the solar wind by the wave pressure-gradient
force. However, Coulomb collisions are rare in the solar corona and wind, and thus can
not dissipate wave energy close to the sun (below the sonic point) by classical transport
processes. Much less work has been done by employing kinetictheory. Recently, using
the well known quasilinear theory (QLT) of weak plasma microturbulence in a novel
approach, Wu and Yoon (2007) showed that wave-particle interactions can lead to proton
heating by low-frequency Alfvén waves (i.e., by waves having much lower frequencies
than the proton gyrofrequency) that interact nonresonantly with the protons in a strongly
magnetized collisionless plasma. Their analytical results also appear to be consistent with
the conclusions previously reached by Wang et al. (2006) andLi et al. (2007) using test-
particle simulations.

Here we will show that this nonresonant heating, which occurs perpendicularly to the
mean magnetic field, may be relevant for the heating of coronal ions. Thus our finding
may alter the widely spread opinion that the ion temperatureanisotropy observed in coro-
nal holes (see e.g., Kohl et al. 1997, Frazin et al. 2003) mustbe a consequence of resonant
ion-cyclotron wave absorption. These important remote-sensing observations support the
idea that heavy ions are perpendicularly heated by cyclotron resonance. Furthermore, in-
situ observations in the solar wind lead one to believe that mostly resonant diffusion in
the ion-cyclotron-wave field causes the observed plateau formation in measured proton
VDFs (Heuer and Marsch 2007). All these phenomena can well bedescribed using tradi-
tional QLT, if the wave amplitudes are sufficiently small, as indeed can be assumed in the
corona. Results have been successfully obtained with this approximation, e.g., in coronal
funnel by Vocks and Marsch (2002), to explain the preferential heating of heavy minor
ions like O5+ and Fe12+. More recently, this approach was used also to model the thermal
structure and extrem ultraviolet and X-ray emissions of coronal loops (Bourouaine et al.
2008a,b).

This Chapter is oganized as follows: In Sec. 3.2 we present some recent observations
of coronal Alfvén waves. Then, in Sec. 3.3 we mention some recent theories on the
heating by low-frequency Alfvén waves. In Sec. 4 we briefly describe these interactions
within quasi-linear theory. Then a parametric study of the ion heating and some numerical
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3 On the efficiency of nonresonant ion heating by coronal Alfvén waves

results are given in Sec. 3.5. In Sec. 3.6, we study, including Coulomb collisions, the
application of the wave heating mechanism to the lower corona. Finally, we summarize
the obtained results in Sec. 3.7.

3.2 Observation of Coronal MHD Alfvén waves

The Alfvén mode is an incompressible transverse oscillation that propagates along the
magnetic field lines. Researchers realized that Alfvén waves could transport energy from
the oscillating turbulent solar photosphere into the solarcorona, and thus, they might
dissipate in the plasma leading to the coronal heating.

Alfvén waves have been detected through in-situ measurements in the solar wind for
several decades (Tu and Marsch 1997). However, their observation in the solar corona has
been lacking for two reasons. First, Alfvén waves are not visible as intensity fluctuations
since they are incompressible, and therefore the intensityimagers used for coronal ob-
servations cannot detect them. Second, velocity fluctuations inferred from Doppler shifts
emission lines require spectrograph or narrow-band graph filter measurements. Then,
in most of observational works one used spectrographs that cannot observe over a large
enough field and with a cadence sufficiently high to resolve the wave frequencies.

More recently, using the Fe+12 1074.7 nm coronal emission line with the Coronal
Multi-Channel polarimeter (CoMP) instrument, Tomczyk et al. (2007) have detected ubiq-
uitous upward propagating waves, with phase speeds of 1 to 4 Mm s−1 propagating parallel
to the magnetic field as it was inferred from the linear polarization measurements. These
waves have been observed in the corona at altitudes between 1.05 and 1.35 Rsun. Fig.
3.2, shows CoMP solar observations. A Fourier analysis of the region of bright active
region loops shows an enhanced, broad peak in the power spectrum of velocity fluctua-
tions centred at∼ 3.5 mHz (5-min period) with a width of about 1 mHz. However, no
peak appears in the corresponding power spectrum of intensity fluctuations or line width.
The authors concluded that this result, besides the calculation of the phase speed and the
almost zero propagation angle with respect to the magnetic field which is inferred from
the linear polarization measurements, are a good indication that these waves are incom-
pressible Alfvén waves having phase speed much larger than the sound speed (∼ 2 Mm
s−1). It is also shown that the nonthermal component of coronal emission line widths is
typically∼ 30 km s−1.

Oscillations with 5-min period are not surprising because fluctuations in the corona
with periods near 5-min have been widely observed as acoustic oscillation modes origi-
nating from the escaping photospheric 5-min acoustic oscillation (p modes) into higher
layers via interactions with surface magnetic field.

More recently, Alfvén waves have also been observed by De Pontieu et al. (2007).
The authors used images of high temporal (5 s) and spatial (150 km on the sun) resolution
obtained with the Solar Optical Telescope (SOT) on board theJapanese Hinode satellite to
reveal the existence of Alfvén waves in chromosphere and lower corona. These observed
waves have strong amplitudes on the order of 10 to 25 km s−1 and periods of 100 to 500
s. By analysing several times series of chromospheric Caii H-line (3968A), it is found
that the chromosphere is dominated by a multitude of thin ( 200 Km wide), dynamic,
jetlike extrusions called spicules (see Fig. 3.3) that can reach heights between 2 and 10
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3.2 Observation of Coronal MHD Alfvén waves

Figure 3.1: The CoMP observations of time-averaged intensity (A), Doppler velocity (B),
3.5-mHz filtered Doppler velocity (E). (D) SOHO/EIT 19.5-nm image averaged over the
same time. Dot-dashed lines are representing distances of 5and 25 percent of of solar
radii. Tomczyk et al. (2007)

Mm. Many of these chromospheric spicules undergo substantial transverse displacements
on the order of 500 to 1000 km during their short lifetimes of 10 to 300 s. It shown that,
some longer-lived spicules undergo oscillatory motion in adirection perpendicular to their
own axis (see Fig. 3.3a), with the displacement varying sinusoidally in time with a period
of 3 min. Since the the spicules are formed at heights where the plasma-beta is small,
they outline the direction of the magnetic field. As a result,these transverse oscillatory
motions to the long axis of spicules implies the presence or passage of Alfvénic waves
motions. Also, these waves could be interpreted as MHD kink-mode waves.

By taking the value of the observed nonthermal velocityδv ≈ 20 km/s, the spicule
mass density,ρ = 2.2×10−11 to 2.2×10−10 kg m−3, and spicules magnetic fieldsB ≈ 10−3,
the estimated energy flux of these waves in the chromosphere is E = ρ < δv2 > vA = 4
to 7 kW m−2 (with Alfvén speed that is taken between 50 to 200 km/s). This energy flux
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3 On the efficiency of nonresonant ion heating by coronal Alfvén waves

Figure 3.2: Fourier power spectrum of the Comp Doppler velocity (blue), intensity
(green), and line width (red). The Gaussian filter applied inthe analysis (dot-dashed
black line) and the average power spectrum of intermediate degree photospheric oscilla-
tions (solid black line). Tomczyk et al. (2007)

carried by these waves indicate that such Alfvén waves are energetic enough to accelerate
the solar wind and possibly to heat the quiet corona.

3.3 Ion heating by Alfvén waves (test-particle simulation)

Using test-particle simulation, (Wang et al. 2006, Li et al.2007) demonstrate that the
ions can be heated by Alfvén waves (having higher frequencies than the observed Alfvén
waves) via nonresonant nonlinear interaction. Thus, it is shown that the lower the plasma
beta value, the more effective is the heating process. Furthermore, the authors showed
that the heating of ions is more prominent along the perpendicular direction.

Their simulation is based on the 1D equation of motion of a particle under the effect
of a constant magnetic field,B0 = B0iz, and parallel propagating Alfvén waves, i.e.,

m
dv
dt
= q

[
δEw + v × (B0 + δBw)

]
, (3.1)

dz
dt
= vz, (3.2)

with the wave electromagnetic fieldδEw andδBw are chosen to have right-hand circular
polarization:

δBw = Bk(cosφkix + sinφkiy), (3.3)

δEw = −vA

c
B0

B0
× δBw, (3.4)
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Figure 3.3: Example of the transverse displacement of a spicule: (A) the intensity as a
function of time (represents the bulk motion) along the spatial cut (in Mm) shown by the
white line in (B) to (F). This motion is consistent with the propagation along the spicule
of an Alfvén wave with a large wavelength (>4 Mm). (B) to (G); A time series of Ca II H
3968 Å images from the Hinode SOT (movie S1), and the white line shows the extent of
the transverse displacement of the spicule (black guide line). De Pontieu et al. (2007)

where
(
ix, iy, iz

)
are the unit vectors, andφk = k(vAt − z) denotes the wave phase.

When a lowβ is assumed and by considering Alfvén waves having frequencies rang-
ing between 0.01Ωp < ω < 0.05Ωp, i.e., the wave frequencies are much lower than the
proton gyrofrequency,Ωp, it is shown that the protons can be heated along the perpendic-
ular direction with respect to the direction of the mean magnetic field,B0. The amount
of energy transferred to the protons is proportional to,δB2

ω/ |B|20 which is the averaged
energy content of the Alfvén waves normalized to the magnetic energy density.

Fig. 3.4 displays the scattered test particles in thev‖ − v⊥ plane at different time evo-
lution and for input parameters

(
δB2

ω/B
2
0, vth,p/vA

)
= (0.05, 0.07). In this plot the initial

particle velocities (atΩpt = 0) are assumed to have a Maxwellian distribution with ther-
mal speed,vth,p which is less thanvA to ensure that the cyclotron resonance condition
cannot be fulfilled by the ions for these low-frequency Alfvén waves. WhenΩpt = 7, it
is clear that protons are scattered more towards the perpendicular direction. This means
that Alfvén waves can result in nonresonant pitch-angle scattering of protons in low-beta
plasma. This process is more efficient for proton heating when the averaged wave energy
is large. Moreover, from Fig. 3.5, it turns out that as long asthe plasma beta is low the
wave energy can effectively randomize the proton orbits, and this leads to higher kinetic
temperatures in the directions transverse than the ambientmagnetic field,B0.
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Figure 3.4: The Velocity scatter plots of the test particleswith parallel (Vz) and perpen-
dicular (V⊥) velocity components (normalized to the proton thermal speed), atΩt = 0 (a)
andΩt = 0t (b) for input parameters (δB2

w/B
2
0, vp/va) = (0.05, 0.07). Li et al. (2007)

Figure 3.5: The temporal evolution of the parallel (a) and perpendicular (b) kinetic
temperatures normalized to their initial valuesTi: both plots are for input parameters,
(δB2

w/B
2
0, vp/va) = (0.05, 0.07), (0.12, 0.07), (0.05, 0.35) and (0.12, 0.35). The results

are represented by the solid line, the dots, the dash-dots, and the dashed line, respec-
tively. The analytical results are indicated by the horizontal short lines for the cases
(δB2

w/B
2
0, vp/va) = (0.05, 0.07) and (0.12, 0.07). Li et al. (2007)

3.4 Nonresonant wave-particle diffusion

Following the work of Marsch (1998, 2002), Vocks (2002), andVocks and Marsch (2002)
we derive below the different diffusion-type operators for the nonresonant wave-particle
interaction terms in the kinetic equation. Starting point is the quasi-linear theory (see
equations of the previous chapter) for a homogeneous magnetized plasma. In the case of
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parallel propagating dispersionless Alfvén waves, this equation can be written as

∂ fs

∂t
=

1
2

∫
dk
|δE|2k
B2

0

(
ck
ωk

)2
γk(

ωk ±Ωs − kv‖
)2
+ γ2

k

∂

∂α

(
v⊥
∂ f j

∂α

)
, (3.5)

with the gradient of pitch-angle diffusion is defined in eq(*), and the the spectral energy
density of the electric field|δE|2k = (vA/c)2 |δBk|2 ; γk is growth rate.

In the case of resonant quasilinear diffusion theory, the factorγk

[(
ωk ±Ωs − kv‖

)2
+ γ2

k

]−1

can be approximated byπδ(ωk±Ωs−kv‖) in the limit γk→ 0. However, for Alfvén waves
in low-β plasmas the inequalities,Ωs≫ ωk ≫ kv‖ andΩs ≫ γk, apply which means that
the conditions for resonant interaction is not satisfied andinstead we have:

γk(
ωk ± Ωs− kv‖

)2
+ γ2

k

≈ γk

Ω2
s

. (3.6)

By inserting this equalitity into eq. 3.5, we get

∂ fs

∂t
=

∫
dk

∂

4∂t

( |δB|2k
B2

0

)
∂

∂α

(
v⊥
∂ f j

∂α

)
(3.7)

In deriving the above equation we have made use of the evolution equation for the spectral
wave energy density, i.e., 2γk |δB|2k = ∂ |δB|2k /∂t.

Then, in the nonresonant limit, the diffusion operator for non-dispersive Alfvén waves
can be written in a concise nonresonant form as

∂ fs

∂τ
=

1
4v⊥

∂

∂α

(
v⊥
∂ fs

∂α

)
, (3.8)

whereτ =
∫

dkB2
k/B

2
0 is the integrated wave spectrum normalized to the energy density

of the mean magnetic field. The variableτ plays the role of an effective diffusion time.
This parameter has an upper limit, which should not exceed a value of say 0.05, in order
to stay within the quasi-linear regime and fulfill the requirement of perturbation theory.

Here the treatment is not fully self-consistent in the sensethat the Alfvén waves are
assumed to be excited by an external source (e.g., a beam of high energetic ions) and
propagate in the plasma. Here we do not study the mechanism that could generate these
waves with growthγk.

In what follows we make use of the approximations made by Marsch (1998) for the
diffusion equation and integrate equation (3.8) over the perpendicular speed. At this stage
we therefore have to define thelth-order reduced VDF as follows:

Fl(v‖) = 2π
∫ ∞

0
v2l+1
⊥ f

(
v‖, v⊥

)
dv⊥ l = 0, 1, 2, ..... (3.9)

Relevant plasma parameters (e.g., density, temperatures,and heat flux) can be obtained
from F0(v‖) andF1(v‖). Generally, for any waves propagating parallel to the meanmag-
netic field, the combined diffusion equations for the two reduced VDFs can be written
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(Marsch 1998) in the compact form:

∂F j,0

∂τ
=

∂

∂v‖
(D j

(
v‖
) ∂F j,1

∂v‖
) − ∂

∂v‖
(A+j

(
v‖
)
F j,0), (3.10)

∂F j,1

∂τ
=

∂

∂v‖
(D j

(
v‖
) ∂F j,2

∂v‖
) − 2

∂

∂v‖
(A+j

(
v‖
)
F j,1)

+A−j (v‖)
∂F j,1

∂v‖
− H j(v‖)F j,0, (3.11)

whereD j, A±j andH j respectively are the diffusion, acceleration and heating coefficients.
In the case considered here of nonresonant wave-particle interactions, by using equations
(3.8), (3.10) and (4.11) , these coefficients simplify and read:D j =

1
8, A±j = ±1

4(vA−v‖) and
H j = −1

2(vA−v‖)2. Similarly to the resonant case, here the diffusion process also switches
off when the pitch-angle gradient in the wave frame of referencevanishes. Furthermore,
the heating and acceleration cease when the particles’ meandrift speed parallel to the
background field matches the Alfvén speed. This final state may not be reached, though,
since the averaged normalized wave energy (variableτ) is usually finite. Thus for a given
value ofτ, the achievable heating as well as acceleration of the ions will be limited.

If the collisions between the different ion species have to be taken into account (e.g.,
when we deal with the lower corona), the Coulomb collision term has to be added to the
diffusion equation (3.5). Within the approximation of the reduced VDFs, the Coulomb
collision term has in detail been calculated and evaluated by Vocks (2002). The diffusion
equation now includes the sum of the wave-particle term given in (3.8) and the Coulomb
collision term:

∂F j,k

∂τ
=

(
∂F j,k

∂τ

)

w−p

+

(
∂F j,k

∂τ

)

Col

. (3.12)

3.5 Heating of a collisionless multi-ions plasma

In the following parametric study, we discuss what is required for an efficient ion heating
via nonresonant wave-particle diffusion without collisions. We consider a multi-ions,
magnetized and homogeneous plasma, which consists of protons, helium and oxygen
ions He2+ and O5+ (with the abundancesNHe/Np = 0.1 andNO/Np = 10−3), and assume
non-dispersive Alfvén waves propagating parallel to the magnetic field. Since we are
interested in the nonresonant wave-particle interactions, the low-frequency Alfvén waves
are assumed to have frequencies|γk| < ωk ≪ Ωi. Also, since the plasma is assumed to be
homogeneous on scales smaller than the density scale length, L = n/(∂n/∂s) (with spatial
coordinates), the frequency range of the waves is limited by the inequality, vA/L < ωk ≪
Ωi, e.g., at lower heights in the coronavA/L ≈ 1 s−1, and the proton cyclotron frequency
Ωp could reach some 104 s−1 for a fieldB0 of several gauss, and|γk| can have values below
1 s−1.

At the initial value ofτ = 0, which corresponds to no waves propagating in the plasma,
all species are assumed to have the same initial temperature, T0 = 0.2 MK (with initial
proton thermal speedvth0), and a Maxwellian velocity distribution. The diffusion of the
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3.5 Heating of a collisionless multi-ions plasma

ions by Alfvén waves is connected to the evolution of the averaged wave amplitude. Here,
we assume that the normalized wave energyτ ranges between 0.0 and 0.05. Within this
interval, the QLT is still valid, as the wave amplitude is sufficiently small.

The numerical results for the heating profiles of the ion species are plotted in Fig. 3.6
for plasmaβ = 2 × 10−2 and 2.6 × 10−3. It turns out that heating of the ions up to tem-
peratures of (≥ 1 MK) is in fact possible via nonresonant wave-particle interactions. This
heating requires a relatively large averaged wave amplitude and a small plasmaβ, since
the heating mainly depends on the differential speed (vA− v‖) in the diffusion coefficients,
which can be high in very-low-beta plasma (vA ≫ v‖).

In accord with the results obtained by the test particle simulations (Wang et al. 2006,
Li et al. 2007) shown in Fig. 3.4 and 3.5, our Fig. 3.6a,b show that the all ion species
suffer strong perpendicular heating. In Fig. 3.6c,d, the anisotropy ratio is much larger
in case of O5+, which can reach up to 35 when the normalized wave amplitude is at its
maximum valueτ = 0.05 andβ = 2.6×10−3. A smaller anisotropy will be achieved when
the waves interact with a lighter ion species, such as protons and helium ions. The protons
are hardly heated up when the plasmaβ is about 10−2 (see Fig. 3.6b). This is so even when
the wave amplitude reaches maximal values. However, the oxygen ions can be efficiently
heated, and their perpendicular temperature can exceed 1 MKwhen the normalized wave
amplitude obeysτ > 0.01.

The preferential heating of heavy ions can clearly be seen inthe results of our study.
Fig. 3.6 shows that the ion temperature is proportional to the wave amplitude. A closer
inspection of the numerical values for different ions in Figs. 3.6a,3.6b reveals that the
temperature is inversely proportional to the plasmaβ, and proportional to the mass ratio
mi/mp (with mi andmp being, respectively, the ion and proton mass).

Interestingly, this heating process does not involve the dissipation, and is reversible.
Here the reversibility means that the temperature increases as the waves get amplified
and decereases when the waves get damped havingγk negative. It might be that this
process will not a provide a real heating which is irreversible, but rather gives an apparent
or pseudo-heating which leads to an apparent temperature that is hardly distinguishable
from the real temperature. This is still an open question of how to deal with this situation.
But when the collisions are included (see next section), thereversibility can be broken
and this pseudo heating can turn to a real heating. In the following, we simply adopt the
previous appelation which is "heating" when dealing with the nonresonant interactions.

The perpendicular temperature of the three ions, proton, helium and oxygen ions are
plotted as a function of the effective time evolutionτ and the plasma beta that ranges
between 10−4 and 10−3 (see Figs. 3.7,3.8). At a given beta value, one can clearly see the
linear dependence of the perpendicular temperature on the effective timeτ that represents
the averaged wave-energy. While, at a fixed value ofτ, the perpendicular temperature
of the species is inversely proportional to beta. Moreover,Fig. 3.9 displays the ratio
(T⊥/T0)−1 of each species plotted as function of beta for several values ofτ. As expected,
as long as the wave power is high, the ratio (T⊥/T0) − 1 increases. Also this quantity is
proportional to the ion mass and seems to satisfy the proportionality relation (Ti,⊥/T0 −
1) ∝ (τ/β) × (mi/mp). These numerical results of nonresonant ion heating are consistent
with analytical ones obtained previously by Wu and Yoon (2007), who derived them for
the case of proton heating only.

The heating can be interpreted in terms of the diffusion of the full f and the reduced
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3 On the efficiency of nonresonant ion heating by coronal Alfvén waves

Figure 3.6: Various plasma parameters of the ions are plotted, on the left forβ = 2.6 ×
10−3 and the right forβ = 2 × 10−2, versus the normalized wave energyτ: (a) and (b):
Perpendicular temperature normalized to the initial temperature; (c) and (d): Ratio of
the perpendicular over parallel temperature indicating the thermal anisotropy; (e) and (f):
Normalized perpendicular thermal speeds; (g) and (h): Normalized drift speed which is
the same for all ion species. Proton, helium and oxygen parameters are represented by
solid, dotted and dash-dotted lines, respectively
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3.6 Heating of the collisional lower corona

(F0, F1) VDFs. The two reduced VDFs of oxygen ion are plotted in Fig. 3.10 for beta
valueβ = 2.6×10−3. The solid-line in this figure represent the initial reducedF0 andF1 at
τ = 0, after a time designed byτ = 0.035, the two reduced VDFs diffused and represented
by the dot-line in the figure. It turns out thatF0 hardly evolves, whileF1 is more diffused
by Alfvén waves. The diffusion process acts mainly on the ions with negative velocity
since the Alfén waves propagate along the direction of the mean magnetic field. For
negative value ofv‖ the heating diffusion operatorH increases, consequently the diffusion
of F1 (which determinesT⊥) also increases, and thus the heating is more dominant in the
perpendicular direction. SinceF0 (which determinesT‖) does not evolve considerably a
slight increase inT‖ is expected.

The gyrotropic VDF,f , which has an effective perpendicular temperature determined
by F1, can be constructed fromF0 andF1

f (v‖, v⊥) =
F2

0(v‖)

F1(v‖)
exp

[
−v2
⊥F0(v‖)
F1(v‖)

]
(3.13)

The resulting VDFs of the helium and oxygen ions are plotted in Fig. 3.11 forβ =
2 × 10−2, 2.6 × 10−3 andτ = 0.035. For heavy oxygen ions, the shape of these VDFs
in the presence of low-frequency Alfvén waves is completelydeformed from its initial
Maxwellian form. This is due to the diffusion term which enforces motion on a circle cen-
tered in the Alfvén speed, and diffusion only comes to a stop for a vanishing pitch-angle
gradient in the wave frame of reference. This process, whichbefore was a consequence
of a resonant interaction between cyclotron waves and particles (e.g., Heuer and Marsch
(2007)), is now in the low-beta plasma a consequence of nonresonant interaction with
low-frequency Alfvén waves, which drive the minor heavy ions more strongly to attain
a VDF with vanishing pitch-angle gradient in the wave frame.This mechanism gives all
minor heavy ions the same thermal speed when collisions are negligible and the wave
energy is relatively large, as found in the solar wind (von Steiger et al. 1995).

It was shown in previous works (see, e.g., Ofman et al. 2001, 2002) that a perpen-
dicularly heated ion VDF might in turn become unstable and produce ion-cyclotron fluc-
tuations, if the temperature anisotropy exceeds a certain threshold value that depends on
the plasma beta. In our model, the reached anisotropy could become a source of small-
amplitude ion-cyclotron waves, in case ofβ = 2.6 × 10−3 and if τ is large enough, i.e.,
it must exceed roughly a value of 0.04. However, this possible instability does not affect
the results essentially. Furthermore, in case ofβ = 2 × 10−2, the anisotropy obtained is
not large enough for causing an instability. Certainly, thecyclotron-resonance instability
provides a kinetic mechanism for limiting the anisotropy obtained nonresonantly.

3.6 Heating of the collisional lower corona

From the parametric study given in Sec. 3.3, it turns out thatthe nonresonant Alfvén
waves may heat a collisionless model corona in which the plasma is highly dominated
by the magnetic field pressure. However, in the real corona atlower altitudes collisions
have to be accounted for. Here they still are efficient in comparison with the outer corona
and the solar wind. Also, the time between ion collisions is shorter than the periods of
the waves considered. To study the evolution including Coulomb collisions of the reduced
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3 On the efficiency of nonresonant ion heating by coronal Alfvén waves

Figure 3.7: Perpendicular temperature normalized to the initial temperature plotted vs.
plasma betaβ and the effective timeτ.
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3.6 Heating of the collisional lower corona

Figure 3.8: Perpendicular temperature normalized to the initial temperature plotted vs.
plasma betaβ and the effective timeτ.

VDFs in dependence onτ, we consider a typical (at some lower altitudes in corona) proton
density ofNp = 1014m−3 with a helium abundance ofNHe = 0.1Np, andNO5+ = 10−3Np,
and assume∂τ/∂t ∼ τγ with γ ≈ 1 s−1.

One result from the collisional kinetic model is plotted in Fig. 3.12 for two values of
the plasmaβ. All ion temperature profiles coincide, and thermal isotropy is now ensured
due to the efficient collisions. The Alfvén waves tend to heat ions preferentially in the
perpendicular direction, whilst the dominant collisions succeed in thermalizing all ions at
the same temperature. Recent observations show that ion temperatures in the low corona
do not differ drastically, yet there is weak evidence for preferentialion heating with mass
per charge, which may be attributed to resonant cyclotron heating (e.g., see Dolla and
Solomon (2008)). Collisions can thus help in rising the temperatures of protons and
helium ions with respect to heavy ions. It appears that Alfvén waves can heat the lower
corona, whereby collisions enforce isothermal conditions. The wave heating discussed
here is of purely kinetic nature and has nothing to do with fluid-type dissipation through
viscosity or resistivity. It does not rely on the existence of small gradient scales assumed
in current and vorticity sheets, but occurs everywhere in a space-filling manner whenever
there are Alfvén waves.

Past and recent observations of the coronal waves (see e.g.,Nakariakov et al. (1999);
(2001); Aschwanden et al. (2002); Ofman and Wang (2008); Wilhelm et al. (2007), Tom-
czyk et al. (2007) ) show that the nonthermal velocity fluctuation amplitudeδv, resulting
possibly from Alfvén waves (with periods longer than three minutes), does not exceed
40 km s−1. Then everything hinges on the Alfvén speed in the region of wave activ-
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3 On the efficiency of nonresonant ion heating by coronal Alfvén waves

Figure 3.9: Anisotropy ratio given as function of plasma beta plotted for proton (a), he-
lium (b) and oxygen (c). All plots refer to different values ofτ: τ = 0.001 (solid line),
τ = 0.004 (dotted line),τ = 0.0078 (dashed line),τ = 0.012 (dot-dash line),τ = 0.02
(triple-dot dashed line) andτ = 0.03 (long dashed line).

ity. If we take a realistic value ofvA ≈ 1000 km s−1, for example, this will provide a
value ofτ = (δv/vA)2 ≈ 0.001, i.e. smaller by one order of magnitude than the value
needed for efficient oxygen heating, as we found in our parametric study. Furthermore,
for higher frequencies (with period less than 1 s) even smaller wave amplitudes are ex-
pected. According to the model proposed by Cranmer and van Ballegooijen (2005) of
wave amplitudes in the lower corona, it is found that the normalized velocity fluctuation
δv/vA of the Alfvén waves (with period higher than 3 s) is merely∼ 0.01. This result,
which justifies the linear approximation, is found to be in good agreement with observed
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3.6 Heating of the collisional lower corona

Figure 3.10: The zeroth-order reduced VDFsF0 (left panel) and first-order reduced VDFs
F1 (right panel) as a function ofv‖ normalized to the initial oxygen thermal speed. The
plots are for,τ = 0 (solid line) andτ = 0.035 (dot line).

off-limb nonthermal line widths from SUMER and UVCS (Wilhelm etal. 2007, Kohl
et al. 1997).

On the other hand, MHD turbulence can be another possible scenario that may gener-
ate low-frequency Alfvén waves (in the range of the frequencies proposed for nonresonant
interactions) in the corona. From a pre-existing population of very low-frequency MHD
waves (with periods longer than 3 minutes), it is possible togenerate small fluctuations
by the so-called turbulent cascade mechanism (see, e.g., Cranmer and van Ballegooijen
(2003) and references therein) in the corona. The frequency-dependent energy spectrum
of these small-scale fluctuations follows a power-law∝ ω−η, whereη is the spectral index
which is found to vary between 1 and 5/3. Thus, the wave amplitudes of those waves
having frequencies higher than the observed ones (including waves with periods< 1 s)
are expected to be less than the observed normalized velocity fluctuations.

Therefore, in the lower corona, the low-frequency Alfvén waves may not be able
to efficiently heat the major ions via nonresonant interactions due to insufficient energy
content. Also, we doubt that these waves can efficiently heat protons in the outer corona,
since there the plasma beta is higher than in the lower corona. Then, relatively speaking,
even more, relatively speaking, wave energy is required forefficient ion heating. However,
nonresonant heating could be an important contribution to basal coronal heating, since
it can help in overcoming the low initial temperature in the upper chromosphere and
transition region. More importantly, it is a mechanism thatgives all minor heavy ions
the same thermal speed, and especially helps the cold heavy species to attain (without
collisional friction) in this way the same gravitational scale height in the lower corona,
where otherwise gravity tends to hold back the heavys and thus to produce gravitational
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3 On the efficiency of nonresonant ion heating by coronal Alfvén waves

Figure 3.11: (a) and (c): Helium VDFs plotted for different plasma beta values and for
τ = 0.035; (b) and (d): Oxygen VDFs plotted for different plasma beta values atτ =
0.035. Here the velocity components are normalized to the initial thermal speed of the
helium ions.

settling. Furthermore, we also believe that ion-cyclotronwaves which can be generated
via several mechanisms, e.g., ion drifts and beams induced by the nonuniform coronal
density and magnetic field structure (see, e.g., the recent work of Mecheri and Marsch
2007, 2008), remain the most powerful candidate for preferential ion heating, and the
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3.6 Heating of the collisional lower corona

Figure 3.12: Temperature (the same for all three ion speciesconsidered) forβ = 2.6×10−3

(continuous line), andβ = 2×10−2 (dashed line) is plotted versus the relative wave energy
τ.

Figure 3.13: Kinetic-to magnetic energy density ratio (dotted line), dimensionless mag-
netic amplitude for the undamped linear model (solid line) and for the nonlinearly damped
model (dashed line). Cranmer and van Ballegooijen (2005)

likely source of the very high oxygen-ion temperature anisotropy that is observationally
inferred to exist in the outer coronal holes.
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3 On the efficiency of nonresonant ion heating by coronal Alfvén waves

3.7 Conclusion

In this chapter, we have studied the heating of ions, which can be achieved via nonresonant
wave-particle interactions in a low-beta plasma and for large averaged wave amplitudes.
Non-dispersive Alfvén waves were assumed to propagate parallel to the field in a homo-
geneous magnetized plasma, which consists of many ion species. In our treatment, the
quasi-linear theory (QLT) for the reduced velocity distribution functions (VDFs) of the
ions has been used, and on this basis different diffusion operators and kinetic equations
have been derived. As a result, in a strongly magnetized low-beta plasma, the enhanced
low-frequency Alfvén waves, withωk ≪ Ωp, can lead to significant perpendicular ion
heating. That process yields the same conic-like VDFs as found by Wang et al. (2006) in
their test-particle simulations. It was shown that the heavy ions (represented by oxygen
ions) are preferentially heated due to their larger inertia, i.e., in proportion to their masses
as compared with the protons or helium ions. Thus all ions will acquire the same thermal
widths of their distributions, given there is sufficient wave power.

Since heating by low-frequency waves needs a strongly magnetized plasma, this pro-
cess may happen only in the lower corona, where very constricted flux tubes at the photo-
sphere start to expand strongly above the upper chromosphere. However, at these altitudes
the expected values of the average amplitudes of the Alfvén waves is smaller by more than
one order of magnitude than the needed values. Even more waveenergy may be required
to heat the outer corona, and to compensate for the increase in plasmaβ. In compliance
with the solar wind in-situ measurements, the wave energy existing in the outer corona
might also not be large enough. However, the low-frequency Alfvén waves can provide
a global contribution to coronal heating, especially at lower altitudes, since these waves
can be easily generated by an MHD mechanism, and thus rise theheavy ion temperatures,
a process leading to the same thermal width for all ion species. Thus nonresonant wave
heating may also explain the kinetic feature found by in-situ measurements in solar wind,
which is that the heavy ion temperatures are proportional totheir masses (von Steiger
et al. 1995, Marsch 2006).
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4 Coronal loop model including ion
kinetics

4.1 Introduction

Coronal plasma loops are often observed as isolated bright flux tubes which are fairly
homogeneous along their length. Whereas the loops longitudinally appear to be nearly
isothermal, the temperatures and densities of loops are found to vary transversely on small
scales between adjacent loops (Aschwanden et al. 1999, 2000a, Lenz et al. 1999, Brković
et al. 2002). In 1981, Rosner, Tucker, Vaina, & Serio (RTVS) proposed a hydrostatic
loop model including gravity, in which they considered a semi-circle loop with a constant
cross section and assumed a constant pressure along the loopwith uniform heating. The
RTVS model predicts a steep temperature profile that rises from the loop footpoints and
increases above the transition to the loop apex. The model was found to be consistent
with the high-temperature loops observed with X-ray instruments (e.g., Kano and Tsuneta
1996).

However, under the assumption that the plasma is isothermalalong the loop segments,
several observations made in the extreme ultraviolet (EUV), e.g. by TRACE and the EUV
Imaging Telescope (EIT) on SOHO (Lenz et al. 1999, Schrijveret al. 1999, Aschwanden
et al. 2001, Winebarger et al. 2003a) seem to show that the warm EUV coronal loops
(with a temperatureT ≈ 1 − 1.5 MK) in active region generally have enhanced densi-
ties (yielding bright emission) with enhanced pressure scale heights in comparison to the
RTVS model and flat temperature profiles along the entire looplengths. The properties of
these observed EUV coronal loops can therefore not be reconciled with the RTVS model,
no more than with the hydrostatic models assuming uniform heating. Aschwanden et al.
(2001) have tried to model the observed EUV coronal loops with hydrostatic solutions ob-
tained from the hydrodynamic equations and used a nonuniform heating function (without
involving scaling laws). Fitting the hydrostatic solutions to 41 observed EUV loops, only
30% of them were found to be consistent with the results from amodel that uses footpoint
heating with a small heating scale length (strongly nonuniform), and none of the observed
loops were consistent with uniform heating.

Winebarger et al. (2002) and Marsch et al. (2004) detected with SUMER steady flows
along EUV loops with line-of-sight speeds of several 10 km s−1. In accord with these
observations, we believe that asymmetric heating in the presence of steady flows in loops
can give better fits to the observed EUV loops. However, Patsourakos et al. (2004) have
concluded that, according to his model, also models with steady flows are unable to ex-
plain the properties of the EUV coronal loops. Although suchmodels show density en-
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hancements, their temperature profiles appear to be inconsistent with loop observations.
In a similar approach considering mass flows in coronal loops, Li and Habbal (2003) and
O’Neill and Li (2005) modeled the EUV loops and proposed a heating mechanism that
is based on heating by dissipation of turbulence-driven Alfvén waves within a two-fluid
dynamic model. The studied loops have lengths ranging from 10 Mm to 600 Mm. It is
assumed that Alfvén waves originate below the transition region, enter the loop from one
footpoint and further up lead to proton heating. Due to heat exchange and conduction the
electrons are also heated. Recently, Petrie (2006) furtherstudied the influence of steady
flows on the scale heights in expanding flux tubes of stratifiedloops and deduced that,
when the tube cross-sectional area increases sufficiently with altitude, the scale height
could be enhanced by steady flows.

On the other hand it has been shown that the plasma of the solarcorona is usually far
from local thermal equilibrium (see, e.g., Kohl et al. 1998); Wilhelm et al. (1998), Frazin
et al. (2003). Furthermore, evidence that the local O5+ velocity distribution is anisotropic
has been found (see, e.g, Telloni et al. 2007). These observations have been explained by
the ion-cyclotron heating mechanism that may lead to preferential heating and accelera-
tion of heavy ions within a kinetic model (Vocks and Marsch 2001, Vocks 2002), and to
heating and acceleration of protons in terms of a fluid model for the magnetic funnels of
coronal holes (Marsch and Tu 1997, Tu and Marsch 1997).

In this chapter we a present a semi-kinetic model for coronalloop heating, and we
study the signatures and effects of cyclotron waves in the heating of coronal loops. Colli-
sions also have to be accounted for as they still are relatively efficient in comparison with
the outer corona and solar wind. The here proposed kinetic model includes the effects the
magnetic field has through the gyrofrequency on the dynamicsand heating of the coronal
loop, and it is therefore possible to study and understand the connections between the
plasma kinetics and the magnetic structure of the loop confining the plasma. Fortunately,
as was already mentioned, a lot of observations have been made of a variety of EUV and
X-ray coronal loops, and their plasma parameter profiles have been inferred. But much
less theoretical work on, or accurate observation of, the magnetic-field structure of coro-
nal loops has been done. Yet, that is important for a better understanding of possible wave
heating mechanisms.

The Chapter is organized as follows: in Sec. 4.2 we give a description of the model
including the coronal loop geometry. Then in Sec. 4.3 we present the numerical methods
used in the code. The numerical results will be given in Sec. 4.4, and finally in Sec. 4.5
we discuss the physical results and give some perspectives.

4.2 The model description

4.2.1 Coronal loop geometry

Before studying the coronal loop plasma model, we start withthe geometry or rather the
magnetic field structure that confines the plasma of the coronal loop. Here we neglect the
back-reaction of the plasma on the coronal loop structure ofthe magnetic field. This is
understandable since the magnetic pressure is assumed to strongly dominate the plasma
pressure.
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4.2 The model description

Figure 4.1: The geometry used for the inclination,χ, and the arc angleψ. These angles
are used to determine the gravity given by eq. (4.4).

The loop geometry is considered to be that of a semi-circularcylindric and symmetric
flux tube. The footpoints of the loop are assumed to be emerging in the transition region,
i.e., the height of the footpoints from solar surface is around∼ 2 Mm, whereL is the loop
length, ands= 0 refers to the left footpoint ands= L to the right one.L/π is the altitude
of the loop top relative to the footpoints. The tube that determines the bundle of magnetic
field lines has a symmetrically expanding cross-section area from the footpoints to the
loop apex located at (s = L/2). The variation of the normalized cross section, shown in
Fig. 4.2, is suggested to obey the following formula:

A(s)
A0
=


1
Γ2
+

(
1− 1
Γ2

) (
2s
L
− 1

)2
−1

, (4.1)

whereΓ =
√

A1/A0 = w1/w0 is the parameter of homogeneity or the expansion factor,
with A1 andw1 being the cross section and the width at the loop top andA0, w0 at its
footpoint. This means that ifΓ = 1, then the tube is homogeneous.

The magnetic flux is assumed to be conserved which meansA(s).B(s) = A0.B0 (B0

is the magnitude of the magnetic field ats = 0), thus the variation of the magnetic field
along the loop is

B(s)
B0
=


1
Γ2
+

(
1− 1
Γ2

) (
2s
L
− 1

)2 . (4.2)

Then, the situation whenχ = 0 implies that the plane of the loop is perpendicular to the
solar surface. In this case, the gavity forces along the loophave their maximal influence
on the dynamics of coronal loop ions.
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4.2.2 Theory

The model is based on the Vlasov equation for the reduced velocity distribution function’s
(VDFs) as described in the papers of Vocks and Marsch (2001) and Vocks and Marsch
(2002), where an open-field structure was considered. Here we apply this model to a
closed coronal loop. The basic equation is the reduced Vlasov equation which describes
the evolution in space and time of the gyrotropic reduced VDFFk(s, t, v‖). This kinetic
equation reads:

∂Fk

∂t
+ v‖

∂Fk

∂s
+ (

q
m

E‖ − gcosψ)
∂Fk

∂v‖
+

1
2A

∂A
∂s

(
∂Fk+1

∂v‖
+ 2v‖(k + 1)Fk)

=

(
δFk

δt

)

w−p
+

(
δFk

δt

)

coul
, (4.3)

whereA(s) is the area function of the flux/flow tube,q andm are the charge and mass of
the particle,E‖ is the parallel electric field,g the solar gravitational acceleration given later
by eq. (4.4),ψ the angle of inclination of the magnetic field with respect tothe direction
normal to the solar surface. The reduced VDFs depend only upon one velocityv‖ and
one spatial coordinates along the mean magnetic field, andv‖ andv⊥ are the parallel and
perpendicular velocity components. The right-hand side of(4.3) are the wave-particle
interaction and Coulomb collision operators defined below.Thekth-order reduced VDF
is given by eq. (2.27). Here, we will only deal with the first two moments, where a a
closure relation is introduced to avoid the higher orders ink.

From the first two reduced velocity distribution functions,F0 andF1, it is possible
to obtain all relevant plasma parameters. For example, by integration ofF0 over various
powers ofv‖ we get the particle densityN, drift velocity U, parallel temperatureT‖, and
heat fluxq‖. Considering also the moments ofF1, the perpendicular temperatureT⊥ and
heat flux vector componentq⊥ can be obtained.

The gravity accelerationg showing up in eq. (4.3) can be written, in case of inclined
loop, as follows:

g(s) =
GMSun[

RS + h(s) cosχ
]2

cosχ, (4.4)

where the lengthh is shown in Fig. 4.1,G is the constant of gravity. MS, RS un are,
respectively, the mass and the radius of the sun. It should benoted that there is an extra
cosχ term in eq. (4.4) that decreases the gravity effect on the ion dynamics in case of
inclined loops.

In our model we treat the electrons as a fluid in hydrostatic equilibrium and neglect
their inertia, and thus the electric fieldE‖ arising from charge separation is determined
from the electron momentum equation and quasi-neutrality (Ne ≈ ∑

j q jNj) as follows:

−eE‖ =
1
Ne

∂

∂s
(kBTeNe), (4.5)

whereq j and Nj are the charge and number density of ion speciesj, e andNe are the
elementary charge unit and electron number density, andkB is the Boltzmann constant.
HereTe is the electron temperature which can be obtained in electron-ions plasma through
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the following energy equation

∂Te

∂t
=

2
3NekBA

∂

∂s
(Aκe

∂Te

∂s
) + 2

∑

i

νie(Ti − Te) − 2
3NekB

Lrad, (4.6)

whereκe is the electron heat conductivity which is expressed in terms of electron collision
period,τe, as follows:

κe = 3.2
NekBTe

me
τe, (4.7)

τe = 3.44× 105T3/2
e

Neλ
(sec). (4.8)

Thus, we useκe = 1.2× 10−7T5/2
e (in cgs units) when the Coulomb logarithmλ ≈ 19.

νie is the ion-electron collision frequency given by Braginski(1965),

νie =
16π
3

Nee2
i e

2λ

mime

(
2kBTe

me

)− 3
2

, (4.9)

wheremi (me) is ion mass (electron mass).e andei, respectively are the electron and ion
charges.Lrad is the radiative energy loss function as calculated by Rosner et al. (1978),
which can be written in erg cm−3 s−1 units as

Lrad = −N2
e

4
P(T), (4.10)

whereP(T) is a function which can be approximated by a sequence of power laws as
follows:

P(T) ≈ 10−21.85, 104.3 < T < 104.6K,

≈ 10−31T2, 104.6 < T < 104.9K

≈ 10−21.2, 104.9 < T < 105.4K,

≈ 10−10.4T−2, 105.4 < T < 105.75K

≈ 10−21.94, 105.75 < T < 106.3K

≈ 10−17.73, T−2/3106.3 < T < 107K. (4.11)

The wave-particle interaction is treated self-consistently by considering the evolution
of the wave spectral energy density for waves entering from the left footpoint of the loop,
BL f

ω (t, s), and from the right side,BR f
ω (t, s), that are described by the following equations:

∂BL f
ω

∂t
+

1
A
∂

∂s
(|Avph|BL f

ω ) +BL f
ω

1
2A

(AUm) = (
δBL f

ω

δt
)w−p, (4.12)

∂B
R f
ω

∂t
− 1

A
∂

∂s
(|Avph|BR f

ω ) +BR f
ω

1
2A

(AUm) = (
δB

R f
ω

δt
)w−p, (4.13)

whereUm is the plasma’s center-of-mass velocity, and the symbolvph =
ω
k denotes the

phase velocity. The term on the right-hand side of the equations (4.12) and (4.13) upon
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integration ensures energy conservation between waves andparticles in the form:

−
∫

(
δB

L f
ω

δt
)w−pdω −

∫
(
δB

R f
ω

δt
)w−pdω

=
∑

j

mj

2

∫
dv‖

v2
‖

(
δF j,0

δt

)

w−p

+

(
δF j,1

δt

)

w−p

 . (4.14)

The wave-particle interactions are evaluated within the framework of quasilinear the-
ory for cyclotron resonance (Marsch, 1998). For simplicitywe disregard the wave disper-
sion and here merely consider nondispersive Alfvén waves, an assumption which will be
discussed and justified in the next section. Then, the kinetic particle equations including
resonant wave-particle effects can be written as:

(
δF j,0

δt

)

w−p

=
∂

∂v‖
(D j

(
v‖
) ∂F j,1

∂v‖
) − ∂

∂v‖
(A+j

(
v‖
)
F j,0), (4.15)

(
δF j,1

δt

)

w−p

=
∂

∂v‖
(D j

(
v‖
) ∂F j,2

∂v‖
) − 2

∂

∂v‖
(A+j

(
v‖
)
F j,1)

+A−j (v‖)
∂F j,1

∂v‖
− H j(v‖)F j,0, (4.16)

whereD j, A±j andH j respectively are the diffusion, acceleration and heating coefficients:

D j =
πµ0

2B2
Ω j


|vph|
|vph| − v‖

B
L f

ω=
|vph|Ω j
|vph|−v‖

+
|Avph|
|vph| + v‖

B
R f

ω=
|vph|Ω j
|vph|+v‖

 , (4.17)

A±j = ±(|vph| − v‖)
πµ0

B2
Ω j

|vph|
|vph| − v‖

B
L f

ω=
|vph|Ω j
|vph|−v‖

∓(|vph| + v‖)
πµ0

B2
Ω j

|vph|
|vph| + v‖

BR f

ω=
|vph|Ω j
|vph|+v‖

, (4.18)

H j = −2(|vph| − v‖)2πµ0

B2
Ω j

|vph|
|vph| − v‖

B
L f

ω=
|vph|Ω j
|vph|−v‖

+2(|vph| + v‖)2πµ0

B2
Ω j

|vph|
|vph| + v‖

B
R f

ω=
|vph|Ω j
|vph|+v‖

. (4.19)

Hereµ0 is the free-space permeability, andB the magnetic field magnitude. The gyrofre-
quency of speciesj is defined asΩ j = q jB/mj. In the expressions given above only
the left-hand polarization part is considered for both forward and backward propagating
waves having the spectrumBL f or BR f.

The initial model spectra are assumed to vary inversely withthe wave frequency. The
Coulomb collision term on the right side of (4.3) has in detail been calculated and eval-
uated within the approximation of reduced VDFs by Vocks (2002) using the full Focker-
Planck operator. Notice that also ion-electron collisionshave entirely been included in
the Coulomb collision term, but they are small in comparisonwith the ion-ion collisions
owing to the smallness of the mass ratio (me/mp). The role of collisions is significant,
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4.3 Numerical method

Figure 4.2: Variation of the normalized cross section relative to the footpoint cross sec-
tion, for Γ = 1.48 (line) andΓ = 1.04 (dashed line), shown versus distance along the
loop.

and they suffice to enforce local isotropy which can be maintained in an electron-proton
plasma loop as we will see in the next section.

4.3 Numerical method

Here, we deal with a system of partial differential equations (4.3), (4.6), (4.12), (4.13)
and (4.14) which have to be solved self-consistently at eachtime step. The reduced VDFs
F0 andF1 depend on positionsi, velocity coordinatev‖,m and timet j. Fig. 4.3 shows
the simulation domain that represent the coronal loop in onespatial dimension in which
the velocity coordinates are represented in the prependicular axis. To obtain the updated
functionsF0 andF1 a finite difference scheme method is used.

The coordinatess andv‖ are discretized non-equidistantly as sketched in Fig. 4.3.
The left and the right bounds are, respectively, located in the left and right footpoint
of the loop which are embedded in the relatively cool and dense upper chromosphere.
The discretization in space,∆si = si+1 − si , and the velocity∆v‖,m = v‖,m+1− v‖,m are not
equidistant, and the space shells are chosen to be smallest close to those boundaries, while
the velocity shells are chosen to be proportional to the absolute value ofv‖,m .

The determination of the space grid points on the space axis,(see Fig. 4.3), is based
on the values(N0, as), whereN0 is the number of the grid space for one half of the loop
(with half length,L

2), andas = ∆si/∆si−1 is the factor of the space proportionality. Then,
the space shell thickness∆s0 can easly be obtained from the sum of a geometrical series
with a constant factoras , 1 as follows;

∆s0 =
L
2

1− as

1− aN0+1
s

(4.20)
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4 Coronal loop model including ion kinetics

Figure 4.3: Sketch of the simulation box that represents themodeled coronal loop.

The determination of the velocity grid points on the velocity axis (see Fig.4.3) for
plasma speciesj is based on the choice of the factor of the proportionality,av = v‖,m+1/v‖,m,
and the parameterα such that

∆v‖,0 = αvth0, (4.21)

wherevth0 is the initial thermal speed of the speciesj given at positions= 0.
The non-equidistance space discretization is adopted for the reasons of stability in nu-

merical solutions and to guarantee the convergence of the solutions of the wave-energy
equations (4.12), (4.13). The stable solutions can be achieved when the Courant–Friedrichs–
Lewy (CFL) condition,

∣∣∣vph∆t/∆s
∣∣∣ < 1 is satisfied. In our model, as we will see in the

next section, the phase speed,vph, increases as much as we move toward the loop top due
to the decrease in electron density. Thus, an increasing extent of the space shells towards
the loop top,∆s> ∆si−1, guarantee more stability in the numerical solutions.

To solve eq. (4.3) we used the same numerical routines used before in Vocks’s code
which has been developed for a coronal funnel (see Vocks). Inthe following we summa-
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4.3 Numerical method

rize the numerical methods used to solve eq. (4.3): First, equation (4.3) has been divided
into three main terms, wave-particle term, Coulomb collision term and the advection term.
The spatial derivatives,∂Fk/∂s,which only show up in the advection term, are discretized
using central differences method with first order correction in the upwind direction for a
non-equidistance grid space;

∂Fk

∂s
(s− v∆t) =

∂Fk

∂s

∣∣∣∣∣
1
− v∆t

∂2Fk

∂s2

∣∣∣∣∣∣
2

. (4.22)

To compute the first and the second spatial derivatives with subscript 1and 2, a quadratic
interpolation approximation has been used at the three points, si−1, si andsi+1, such that

f (s) = a(s− si)
2 + b (s− si) + c, (4.23)

with the coefficientsa andb being given by

a =
∆si−1 fi+1 + ∆si fi−1 − fi(∆si−1 − ∆si)

∆si−1∆si(∆si−1 + ∆si)
, (4.24)

b =
(∆s2

i − ∆s2
i−1) fi + ∆s2

i−1 fi+1 − ∆s2
i fi−1

∆si−1∆si(∆si−1 + ∆si)
, (4.25)

where fi−1 = f (si−1), fi = f (si) and fi+1 = f (si+1), which are needed to compute the first
and the second spatial derivative ofFk(s) as:

∂Fk

∂s

∣∣∣∣∣
1,s=si

= b, (4.26)

∂2Fk

∂s2

∣∣∣∣∣∣
2,s=si

= 2a. (4.27)

The same technique of the quadratic interpolation given in eqs. (4.23), (4.24) and
(4.25) has been used at velocity pointsvm−1, vm and vm+1 to compute the first and the
second velocity derivative ofFk in the advection term and wave-particle interaction term.
On the right-hand side of eq. (4.3), the wave-particle interaction term is evaluated using
an explicit scheme in time, i.e.,

Fk(t + ∆t) = Fk(t) + ∆t
∂Fk(t + ∆t)

∂t
, (4.28)

while an implicit method withFk(t+∆t) is considered for the Coulomb collision operator:

Fk(t + ∆t) = Fk(t) + ∆t
∂Fk(t)
∂t

. (4.29)

Now, to we come the explanation of the numerical method used to compute the equa-
tion of the electron thermal energy (4.6). Unlike in case of outer corona, the thermal
energy of electrons in case of coronal loops (which characterize the main structure of low
corona) cannot be neglected due to the enhanced electron density that leads to the energy
exchange between ion and electron plasma species. Consequently, thermal energy can be
transferred to the electrons, and thus they can be heated.
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4 Coronal loop model including ion kinetics

The electron thermal energy (4.6) has to be solved self-consistently with the rest of
the PDE system (4.3), (4.12-4.14). An implicit-scheme method has been employed for
the diffusion term of equation (4.8) (term that contains the second spatial derivative), and
an explicit-scheme for its rest terms, i.e.,

∆T(si, t j)

∆t j
=

2
3NekBA(si)

∂

∂si

(
A(si)κe(si, t j + ∆t)

∂Te(si, t j + ∆t)

∂si

)

+2
∑

i

νie(si, t j)(Ti(si, t j) − Te(si, t j))

− 2
3NekB

Lrad(si, t j), (4.30)

wheret j andsi are the time and space grid points, and∆T(si , t j) is the update in electron
temperature att j + ∆t (∆t is the time step), i.e,

Te(si, t j + ∆t) = Te(si , t j) + ∆T(si , t j). (4.31)

To calculate the first and the second spatial derivative of the electron temperatureTe,
and also the first derivative of lnA (the cross section), we used the first-order and second-
order central differences for non-equidistance schemes as showed in eqs. (4.23-4.27).

Finally, by making use of the spatial derivatives of lnA andTe in eq. (4.30), we obtain
the following algebraic system of nonlinear equations

ai(T,∆T)∆Ti−1, j + bi(T,∆T)∆Ti, j + ci(T,∆T)∆Ti+1, j=Xi , i = 1, .....N − 1 (4.32)

whereN is the number of space grid points, and∆Ti, j denotes the variation in electron
temperature at initial timet j and at positionsi. The coefficientsai, bi, ci and Xi can
derived from (4.30).

Since we are dealing with a system with fixed values at the boundaries (i.e.,∆Te,R, j =

∆Te,L, j = 0), two nonlinear equations at the right and left boundary have to be added to
the system of equation (4.32)

b0∆T1, j + c∆T2, j = X0, for i = 0 (4.33)

aN.∆TN−1, j + bN.∆TN, j = XN, for i = N. (4.34)

Thus, the nonlinear system of equations (4.32-4.34) can be solved by using the suc-
cessive overrelaxation method (SOR) to determine the vector ∆T at each time step∆T.

On the other hand, in our coronal loop model we considered thecontribution of waves
that can propagate in the opposite (or backward) direction which are described by the
wave-energy equation (4.13). We solved the wave-energy equation for forward propa-
gating waves (4.12) and backward propagating waves (4.13) self-consistently using an
implicit scheme, respectively, with upwind and downwind differences method, depend-
ing on the direction of wave propagation. Then, in the case ofwaves propagating in the
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opposite direction (k < 0), the implicit scheme in time is adopted as follows:

∂B
R f
ω (si , t j)

∂t
=

1
A
∂

∂s
(A|vph|BR f

ω (si , t j+1)) −BR f
ω (si , t j+1)

1
2A

(AUm), (4.35)

whereby the the first derivative of any quantity in the advection term of this equation is
calculated using simple downwind difference method,

∂ fi
∂si
=

fi+1 − fi
∆si

. (4.36)

When we implement this derivative method also a system of linear equations is obtained

αi∆B
R f
ω ,i, j +βi∆B

R f
ω ,i+1, j =Πi, i = 0, .....N, (4.37)

where∆BR f
ω ,i, j is the variation inBR f

ω at positionsi, and the coefficientsαi , βi andΠi are
given at timeti by the expressions:

αi = 1+ ∆t


vph

∆si
+ 0.5


∂vph

∂s

∣∣∣∣∣∣
s=si
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 , (4.38)

βi = −1+ ∆t
vph

∆si
, (4.39)

Πi = ∆t


∂(AvphB

R f
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∂s

∣∣∣∣∣∣∣
s=si

− 0.5(ABR f
ω )

(
∂U
∂s

∣∣∣∣∣
s=si

+ U
∂ ln A
∂A

∣∣∣∣∣
s=si

) . (4.40)

At the left boundary (sN+1) of our simulation box a source of wave energy is assumed.
The waves are generated with no time dependence. This means∆Bω,N+1, j = 0, and then
from eq.(4.42)∆BR f

ω ,N, j can be obtained as

∆BR f
ω ,N, j =

ΠN

αN
, (4.41)

and thus∆BR f
ω ,i, j for i = 0, .....N − 1 can be extracted.

Also, at each time step the energy gained by particles is wellguaranteed to be the
same as the energy lost by the waves in order to maintain totalenergy conservation as
given in eq. (4.14).

4.4 Simulation results

4.4.1 General remarks

In our model the energy source for heating is assumed to be associated with dissipation of
non-dispersive Alfvén waves via ion-cyclotron resonance.These high-frequency waves
may be released from small-scale reconnection leading to microflare-like events occur-
ring in the chromospheric network see (e.g., Axford et al. 1999). Then, they enter the
simulation box from the footpoints with a power-law spectrum density∝ ω−1, and fall in
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4 Coronal loop model including ion kinetics

left-hand resonance with the ions of speciesj obeying the condition,ω−k‖v‖−Ω j = 0, with
the parallel wavevectork‖. The ion-cyclotron heating mechanism is intimately connected
with the magnetic field structure. For a low plasmaβ value, only those Alfvén waves with
frequencies close to the gyrofrequency of any ion species can become resonant, and then
effectively exchange energy with the particles.

The loop geometry, which defines the magnetic field structure, plays an important role
in coronal loop heating and determines whether the heating is uniform or non-uniform.
According to Watko and Klimchuk (2000), most of the observedloops are not signif-
icantly thicker in their middles than at their footpoints. In fact, since an accurate 3d-
reconstruction of coronal loops has still not been achieved, studying various heating
mechanisms is very interesting, and thus it is quite relevant to study the specific signatures
of the ion-cyclotron heating mechanism in coronal loops. Inthis work, we propose a loop
geometry as described in the previous section, whereby the parameter of homogeneity,Γ
that determines the thickness in the middle of the loop, willbe chosen to have the values
1.04 and 1.48.

In the simulations we shall consider protons as single ionicspecies (together with
electrons) in the plasma of the loop, and for the boundaries we assume that the footpoints
are emerging in the transition region. Then the boundary values of the density and temper-
ature can be taken as:N0 = 5× 1015m−3, andT0 = 2× 105 K. The magnetic field ats= 0
is B0 = 80 G, which yields for the gyrofrequency at the footpointsΩ0 = 76.65× 104 Hz.
The initial conditions are chosen to be constants, i.e. we have T(s) = T0 andN(s) = N0.
At t = 0 the waves start to propagate close to the footpoints with a power-law spectrum

densityBω ≈ 2.8× 10−4
[
ω log(Γ2)

]−1
J m−3 s. In order to achieve coronal temperatures

in the loop, the required total wave energy flux has to be aboutF0 ≈ 7 × 102 J m−2 s−1

which can be obtained through the integration ofvphBω over the frequency interval from
(Ω0/Γ

2) toΩ0. In such a way the loop can, in the final steady state reach a temperature of
T % 106 K. The value of our model power-law spectrum density was computed in com-
pliance with the the energy flux of the observed oscillationsin the chromosphere which
roughly range between 3× 10−3 and 0.1 Hz. Within this domain the wave energy flux
is about 3× 103 J m−2 s−1. This value seems reasonable if we compare it with the wave
energy flux (ranging between 103 and 104 J m−2 s−1 ) inferred from the observed chromo-
spheric magnetic and velocity fluctuations (Ulrich (1996)), and the recently the detected
Alfvén waves in the corona (Tomczyk et al. (2007)). Still ourknowledge about the origin
and the properties of the coronal Alfvén waves is not clear (see, e.g, Klimchuk’s review
(2006)). If the Alfvén waves enter only from one side of the loop, an asymmetric heating
occurs, and consequently a quasi-static loop with subsonicmass flow (v ≪ cs) can be
achieved (herecs is the local sound speed). In addition, symmetric heating with static so-
lutions is possible if we have Alfvén waves entering from either footpoints with the same
energy density so that they heat the loop plasma simultaneously from both legs. In the
relaxed final steady state the plasma loop has completely forgotten its initial conditions.

4.4.2 Asymmetric heating

Here we consider the situation that Alfvén waves enter the loop only from the left bound-
ary with (BR f

ω = 0). It is thus possible to heat the protons by wave absorption, through
which the wave energy can be transferred to the protons selfconsistently, a process de-
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Figure 4.4: The proton temperature (upper left panel), electron temperature (upper right),
and density (lower left) forΓ = 1.48 (line) andΓ = 1.04 (dashed line) versus distance
along the loop; the heat flux conduction (lower right panel) for electron (line) and proton
(dashed) versus distance distance along the loop.

scribed by the transport equation of the wave spectrum (6) and (7). As a result asymmetric
heating will occur. In Fig. 4.4, the steady profiles of the plasma density and temperature
along the loop are given for the different values of the parametersΓ. ForΓ = 1.48, where
the cross section of the magnetic flux tube expands more than twice from its footpoints
to the middle of the loop, we find that the proton temperature rises smoothly from a min-
imum at the left boundary ats = 0 towards a maximum which is around∼ 2 × 106 K at
s≈ 20 Mm. Then it again decreases to a minimum at the right boundary at s= L.
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4 Coronal loop model including ion kinetics

The density profile has the inverse behaviour to the proton temperature, i.e. the density
decreases toward its minimum value of∼ 4 × 1014m−3 at the same position where the
proton temperature is at a maximum, and increases afterwards to its boundary value at
the right footpoint. Therefore, from these density and temperature profiles it turns out
that the loop reveals a quasi-uniform heating in its left leg. This means that the waves
entering the simulation box from the left slowly dissipate and heat the protons at different
positions in the left leg of the loop. In the case ofΓ = 1.04, however, when the loop
is quasi-homogeneous, it is overdense in comparison to a loop having a more expanding
cross section. The proton temperature rapidly increases close to the left footpoint and
reaches a maximum∼ 1.3 MK at positions ≈ 4 Mm. Then it weakly decreases and
becomes nearly constant in a large part of the loop. This small decrease in temperature
is due to ion-electron collisions which can slightly affect the proton temperature in the
plasma loop if there is no local wave absorption.

The corresponding electron temperature in steady state andfor the different values of
theΓ parameter is plotted in Fig. 4.4b. By comparison with the protons, the electrons
are cooler for reasons of relatively high radiative losses and strong heat conduction (see
Fig. 4.4d), which is more than∼ 102 times higher than proton heat conduction. All these
factors tend to reduce the electron thermal energy gained from proton-electron collisional
heat exchange. WhenΓ = 1.04, the electron temperature keeps a nearly constant value
aroundTe ≈ 1 MK. This flat electron temperature profile seems to be consistent with
the observed profiles in most loops showing EUV emission. Therough constancy of the
electron temperature is a consequence of thermal diffusion associated with electron heat
conduction, working even when the temperature is less than 1MK.

On the other hand, if the cross section area of the loop is larger on the loop top than at
its footpoints (withΓ = 1.48), then the electron temperature cannot remain constant along
the loop but turns out to be much higher because of the temperature difference between
electrons and protons, which due to wave heating are much hotter. Thus the electron
heating profile in loops withΓ = 1.48 is more symmetric. This is expected since electron
heat conduction, asκ is proportional toT5/2

e , is the more efficient the higher the electron
temperature is, and consequently hotter electrons can distribute their thermal energy more
uniformly along the loop.

It turns out that the nearly isothermal loops in this model are the consequence of a
quasi-homogeneous cross section of the magnetic field structure along the loop, in which
the waves dissipate faster close to left boundary. Therefore the loop shows footpoint
heating which leads to a rapid temperature increase with height, and then no further local
heating, and thus the coronal part of the loop becomes nearlyisothermal.

In fact, the heating mechanism can, via wave absorption and its connection to the
cross section variation, be well explained from Fig. 4.5 which displays the wave spectral
energy density of the Alfvén waves in the ion-cyclotron range plotted at different loop
positions for the parameterΓ = 1.04 andΓ = 1.48. From this figure it becomes clear that
the frequency interval of the absorbed waves ranges betweenthe frequencies (Ω0/Γ

2) and
Ω0 which is the gyrofrequency at the footpoints.

According to the Fig. 4.5 left panel, at the positions≈ 6 Mm which is not far from the
left footpoint, those waves having frequencies close toΩp(s) have already been absorbed
at altitudes lower thans= 5 Mm, and below this position the dissipation rate can reach its
maximum 1.19×10−4 J m−3 s−1 (see Table 1). Thus parts of the wave energy spectrum are
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Figure 4.5: The wave spectral energy density plotted in dependence on normalized fre-
quency forΓ = 1.04 on the left panel and forΓ = 1.48 on the right panel at different
positionss= 3.3 Mm (line), s= 5.3 Mm (dashed line),s= 15.6 Mm (dashed dotted line)
ands= 31.4 Mm (dashed double-dotted line).

eroded since the waves were strongly dissipated at positions lower thans = 3 Mm, as it
is indicated by the continuous line in the figure. This implies a small heating scale height
that corresponds to footpoint-type heating. Furthermore,the same figure shows in the
left panel that the proton gyrofrequency is situated nearlyin the same narrow frequency
domain at different loop positions, because of small magnetic field variation along the
loop.

Thus, from Fig. 4.5 right panel we can infer that the protons can be in resonance
with waves over a wider interval of frequencies in the spectrum. The so-called frequency
"sweeping mechanism" (Tu and Marsch, 1997) can clearly be seen here. Ats = 3 Mm
the continuous line indicates absorption around the protongyrofrequency, and since this
gyrofrequency decreases toward lower frequencies, as longas we move to the loop top
at ∼ 31 Mm, the interval of the absorbed frequencies also moves toward the loop top,
as it is shown with the other-style lines in this figure. This leads to local heating, and
consequently a relatively larger heating scale height thatcorresponds to a quasi-uniform
heating along the left side of the loop (see Table 1.). Therefore, most waves get absorbed,
and not enough wave energy is left for the right half of the loop.

The expansion factors considered in this study indicate that in loops (withL ≈ 62 Mm)
which are not much thicker at the top than at the footpoints those waves withω > Ωp are
not allowed to propagate towards the loop top. Due to the rapid absorption of the waves
inside the loop close to the local gyrofrequency, the intensity of waves withω > Ωp

becomes negligible. Protons can fall in resonance only withwaves havingω < Ωp,
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Table 4.1: The wave energy fluxF1 and the dissipation rateQ1 for Γ = 1.04, andF2, Q2

for Γ = 1.48.

s (Mm) F1 (J m−2 s−1) Q1 (J m−3 s−1) F2 (J m−2 s−1) Q2 (J m−3 s−1)
3.33 1.78× 102 11.98× 10−5 4.37× 102 8.54× 10−5

5.37 1.31× 102 1.64× 10−5 3.72× 102 2.77× 10−5

7.23 1.12× 102 7.15× 10−6 3.28× 102 2.2× 10−5

10.56 97.91 2.95× 10−6 2.59× 102 1.87× 10−5

15.74 90.39 0.96× 10−6 1.72× 102 1.44× 10−5

20.89 87.97 0.3× 10−6 1.09× 102 8.22× 10−6

31.41 86.58 0.13× 10−6 64.44 4.31× 10−6

according to the resonance condition

ω = Ωp(s)
vph

vph − v‖
, (4.42)

which means only protons with negative velocities (ifk > 0) can resonate with Alfvén-
ion-cyclotron waves. This justifies our assumption of dispersionless waves since the con-
straintω < Ωp derived from the proton-cyclotron-wave dispersion relation is already
satisfied. This consideration also applies to waves that enter the loop from the right side
and have a wavenumberk < 0 and frequencyω > 0. Thus, only wavesω < Ωp can
resonate with protons having positive velocities. Consequently, the waves propagating in
opposite directions into the loop from both sides do not interfere.

From the sketch given by Fig. 4.6, we can more explain the resonant wave-particle
absorption and the sweeping mechanism. The perpendicular axis in this figure belongs to
the frequency of waves that enter from the left footpoint. Inthis sketch, it is clear that only
waves having frequencies close to proton gyrofrequencies are able to interact and transfer
a big part of their energy to the protons. The frequency of these waves is ranging between
Ω − ∆ω andΩ + ∆ω, which denotes the interval of the resonant frequency satisfying the
resonant condition (4.42). The estimation of∆ω given in Fig. 4.7 is computed assuming
the proton thermal speed,vth, as the typical value for the absolute value of the parallel
proton velocity component|v‖| ≈ vth. With |vph| ≈ vA, we thus get∆ω ≈ vth

vA
Ω.

The sketch in Fig. 4.6 shows the initial waves entering the loop from the left footpoint.
Then only those waves having a resonant frequency close to the proton gyrofrequencyΩ0

get absorbed. At the adjacent positions1, the proton gyrofrequency slightly decreases,
and thus an opportunity is given to other initial waves having frequencies close toΩ1 to
interact with protons. However, at the positions1 only resonant waves withωres . Ω(s1)
efficiently interact and transfer their energy to the protons. This is because the resonant
waves withωres & Ω(s1) mostly get eroded at the precedent point. The same explanation
of the wave absorption by protons can be applied to the rest ofthe grid point until the loop
top where the proton gyrofrequency stops decreasing.

Notice the wave-particle interaction withωres . Ω(s) implies that waves interact with
protons when only having negativev‖. However, in the case of waves entering from the
right boundary, the same explanation of the sweeping mechanism given above for waves
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Figure 4.6: The wave-absorption mechanism.

entering from the left footpoint can be valid, but the interaction of waves would now be
with protons havingv‖ > 0, sincevph < 0 when dealing with the resonant condition (4.42).

Furthermore, we deduce from Fig. 4.7 that the interval of theresonant frequency [Ω−
∆ω,Ω+∆ω] is larger close the boundaries (due to the highest value of∆ω). This is because
at positions close to the footpoints the Alfvén speed (or phase speed) is decreasing due to
the enhancement in electron density, and thus∆ω gets increased. Therefore, the resonant
wave interval at positions close to the boundaries are wider. This leads to more wave-
particle absorption and a stronger increase of the proton temperature at these positions.
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4 Coronal loop model including ion kinetics

Figure 4.7: The estimated width∆ω for the frequency interval [Ω−∆ω,Ω+∆ω] of waves
that fall in resonance with proton gyrofrequency at the position s for Γ = 1.04 (dotted
line),Γ = 1.48 (solid line).

4.4.3 Symmetric heating

Our goal in this simulation is to produce a static loop with symmetric heating. For that
purpose we assume that Alfvén waves penetrate with the same wave-power density and
wave energy flux (F0 ≈ 7 × 102 J m−2 s−1) the simulation domain from both footpoints
of the loop and simultaneously heat the plasma. As we argued in the previous subsection,
no interference between these two wave spectra has been considered. Here we also deal
with two values of the parameter of inhomogeneity,Γ = 1.04 and 1.48 that defines the
magnetic flux tube area along the semi-circle guiding field line of the loop.

As it is shown in Fig. 4.8 forΓ = 1.48, the loop starts to be heated from either side,
and at the initial timet = 0 the loop is cooler and denser with homogeneous temperature
and density distribution:T(t = 0) = 2× 105 K, andN(t = 0) = 5× 1015m−3. Then due to
the dynamical effects of the external forces (gravity, electrostatic field, and mirror force)
on the proton VDFs and owing to wave energy dissipation, the protons can be heated from
both loop sides. Concurrently, the overall density in the loop becomes smaller until the
system relaxes within 3× 104 s to a final steady state with quiescent symmetric plasma-
parameter profiles. The final steady states for allΓ parameters are given in Fig. 4.9.

For Γ = 1.04 the loop plasma is overdense compared to the plasma in a relatively
expanding cross section, and the electron and proton temperatures profile are symmetric.
These profiles reflect that the plasma loop is heated from either side. In fact, what is
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Figure 4.8: The time evolution of the plasma temperature (left) and density (right) for
Γ = 1.48 versus distance along the loop.

important in the case of symmetric heating is that the loop can be more isothermal, with
the temperature being∼ 1.3 MK along a large section of the coronal loop in comparison
with the asymmetric heating.

Due to the close connection between the wave-energy dissipation scale along the loop
and the variation of its cross-section area (see Fig. 4.9d),it turns out that with this loop
model it is possible to produce soft X-ray loops, which are the consequence of a more
diverging magnetic field in the top parts of the loops. Apparently, these types of loops
are hot and have a flat temperature maximum� 2 MK that is centered around the top
segment of the loop. Notice that the collisions are relatively strong and suffice to main-
tain isotropy of the proton VDF, but we expect that with more heating (caused by more
strongly expanding magnetic field lines) the effects of the collisions will decrease. The
pressure along the loop in this model is not constant, as it isdemonstrated in Fig. 4.10,
and for the case of asymmetric heating the pressure profile itself shows a small asymme-
try. The thermal pressure gradient tries not only to balancethe dynamical external forces
but also the Alfvén-wave pressure gradient which acts asymmetrically on the left side of
the loop. But when the loop is symmetrically heated, the total pressure looks quite sym-
metric, since the wave pressures acting on the loop at its twolegs are equivalent. Notice
that no temperature anisotropy appears in the plasma, whichmeans the collisional mean
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4 Coronal loop model including ion kinetics

Figure 4.9: The proton temperature (upper left panel), electron temperature (upper right),
density (lower left), and heating scale length (lower right) for Γ = 1.48 (line) andΓ = 1.04
(dashed line) versus distance along the loop.

free path,λ, is still short enough as compared to the proton temperaturescale length,
L = ( 1

T
∂T
∂s )−1 in Fig. 4.9d, to maintain a proton VDF close to a Maxwellian.

At this stage, it seems useful to make a comparison between the kinetic and the macro-
scopic (fluid) transport theory for protons. For this purpose, we compute the proton heat
conduction via the third moment of the VDF in (4.4) and compare it with that derived
from Braginskii’s (1965) formula. The results are given in the three panels of Fig. 4.11,
which refers to the two values ofΓ = 1.04 and 1.48. We plot the scale ratio parameter
α(s) = λ(s)/L(s) in the upper left panel. This plot permits us to judge how small this
parameter must be to ensure the validity of the classical proton heat conduction (Fourier’s
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4.4 Simulation results

Figure 4.10: The total pressure for asymmetric wave heating(left panel) and for sym-
metric heating (right panel) forΓ = 1.48 (line) andΓ = 1.04 (dashed line) shown versus
distance along the loop.

Figure 4.11: Theα(s) parameter is plotted (left panel) forΓ = 1.48 (line) andΓ = 1.04
(dashed line) versus distancesalong the loop. The other two panels give the kinetic proton
heat flux (line) and the classical heat flux (dashed line) shown versus distance along the
loop.

law) formula, which requires thatα(s) ≪ 1 (Chapman-Enskog regime) at every position
salong the loop.
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4 Coronal loop model including ion kinetics

According to these four figures the kinetic proton heat conduction is not far from its
classical value for the twoΓ parameters, however it seems than the kinetic proton heat flux
does clearly differ from the classical one by factor of two close the loop footpoints for a
more strongly expanding cross-sectional area along the loop. This situation corresponds
to a parameterα which is of the order of 2× 10−2. For nearly constant cross sections,
e.g. Γ = 1.04, the kinetic ion heat flux looks quite identical to the classical one (see
the right panel of Fig.4.11). A significant difference can only be seen close to the loop
footpoints at which remarkable deviations of the kinetic heat flux from the classical one
can occur. In fact, this effect is related to the shape of the VDFs. As long as we are
close to a Maxwellian VDF, the macroscopic collisional fluiddescription seems valid, but
for any deviation from a local Maxwellian a consistent kinetic description of the various
moments is required.

4.5 Conclusion and discussion

In this chapter we studied the wave heating of coronal loops.For that purpose we de-
veloped a hybrid model in which the kinetic Vlasov equation for the reduced ion VDFs
was used for protons, and electrons were treated as a fluid in hydrostatic equilibrium. The
Vlasov equation includes wave-particle interactions as described within the framework of
quasilinear theory and Coulomb collisions between the particle species. When consider-
ing ion-cyclotron-wave heating, it turns out that the proton heating has a strong spatial
connection with the variation of the cross-section-area along the loop. It is deduced that
footpoint-type heating with a small scale height is a consequence of a quasi-homogeneous
flux tube, in which the proton temperature remains nearly constant in a large section of the
loop. However, if the magnetic field of the loop is more diverging from both footpoints
to the apex, the heating scale height of the protons is larger. The resulting strong wave
absorption at many different positions leads to quasi-uniform loop heating.

In this model, the electrons can be heated through the Coulomb-collision coupling
between protons and electrons, and consequently the temperature electrons can reach in a
coronal loop depends on the proton heating. However, the electrons while having to power
the radiative losses tend to be cooler than the protons, especially close to the footpoints
where the electron density is higher. But electrons furthercool due to heat conduction
which is proportional toT5/2

e . Consequently, the heating profile of the electrons is con-
nected with that of the protons as long as their temperature stays below≈ 1 MK; beyond
this value, thermal diffusion associated with the electron heat conduction more strongly
reduces the electron temperature and renders the electron temperature profile more uni-
form.

Therefore, it turns out that the model can produce both typesof observed coronal
loops, i.e. the EUV as well as X-ray loops, in dependence uponthe magnetic flux tube
geometry that shapes the plasma loop. The EUV loops can be modelled well if the cross-
section area, corresponding to the magnetic field line density in the loop, is more homo-
geneous withΓ ≈ 1.04. However, the X-ray loops observed with a quasi-uniform heating
can arise in our model if the cross section expands, withΓ ≈ 1.48.

In addition to the remote-sensing evidence for ion heating obtained by the Solar and
Heliospheric Observatory (SOHO), which is based on spectroscopic determinations of the
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widths of extreme ultraviolet emission lines and indicate that the heavy ions are hotter and
more accelerated in polar coronal hole, also strong in-situevidence for ion heating and
plateau formation was found in solar wind proton velocity distribution functions (Heuer
and Marsch 2007). All these measurements have been interpreted in terms of kinetic
wave-particle interactions, and are believed to be mainly caused by resonant diffusion of
ions in the Alfvén/ion-cyclotron wave field. These observations relate to the fast solar
wind emanating from magnetically open coronal holes.

Here we have for the first time applied similar theoretical concepts to the heating of
coronal loops, i.e. the closed magnetic structures on the Sun. Our theory reveals a close
connection between the spatial heating (due to resonant wave-particle interaction) along
the loop and the magnetic flux tube expansion as measured fromthe footpoints to the
top. In fact, an expanding magnetic flux tube leads to local dissipation of the Alfvén
ion-cyclotron waves which is needed for strong heating and acceleration of ions beyond
2 solar radii. Uniform heating can only occur at larger distances since the magnetic field
decreases more slowly within the solar wind region. However, in case of coronal loop,
where the flux tube is expanding less than a coronal funnel, the heating tends to be more
non-uniform. Since the resonant absorption of ion-cyclotron waves is fast process, the
waves can dissipate at lower heights close to the transitionregion, and this heating is
efficient for coronal loop heating.

Thus, it turns out that this variation of the cross-sectional area plays an important role
in determining the thermodynamic structure of a loop in thismodel. However, the coronal
magnetic field still cannot be directly measured with sufficient accuracy, but rather can
be diagnosed and inferred only by using the intensity features observed in coronal loop
images. According to some linear force-free magnetic field extrapolation models for loops
(see e.g., López Fuentes et al. 2006), in some cases the modeled flux tubes expands twice
as much as the observed TRACE loops from the footpoint to the loop apex.

It is therefore surprising that soft X-ray, EUV, and visible-light images all give the
impression as if coronal loops are less thick (e.g Golub et al. 1990) but more constricted.
Also, some measurements of the expansion of loops (as observed by TRACE in the 171 Å
and 195 Å band passes with better spatial resolution) exhibit expansion factors ofΓ ≈ 1.1
(Watko and Klimchuk 2000). These results appear to be consistent with the predictions
of our model, which produces EUV loops with roughly constanttemperature along most
segments of the loop. Also, further loop observations made by YOKOH in soft X-rays
(Klimchuk 2000) showed expansion factors ranging between 1and 1.5, which means
that most loops are not strongly expanding near their tops. Afurther comparison of the
predictions of this model with observations will be made in the planned future work, in
which we shall also include the effects of minor ions on the loop temperature profile.
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5 Multi-ions kinetic model for coronal
loop

5.1 Introduction

The solar corona is weakly collisional and far from Local Thermal Equilibrium (LTE).
Particularly, a coronal loop, although it is denser than thesurrounding plasma, might
also not be in LTE. Therefore, the coronal loop has to be described more realistically by
the kinetic Vlasov equation. Furthermore, the loop heatingmechanism presumably acts
on a scale smaller than the mean free path of the particles. Consequently, HD or MHD
models will not be able to explain the heating of coronal loops, and within fluid theory
one cannot understand the origin and location of the heat source along the loop. Thus,
in such weakly collisional conditions a kinetic description of the coronal loop plasma is
inevitably needed.

Following the same theory given in chapter 4 for the coronal loop modeling, in this
chapter, some other minor ions like Helium ions, He2+, and oxygen ions, O5+ are included
in addition to the electrons and protons in the plasma loop model. Here, we aim to study
the heating of these minor ions via the resonant wave-particle absorption, and see their
effect on the heating of protons and electrons. Also, we show thecircumstances in which
the plasma loop can be close to or far from LTE.

Such a study allows us to extract the salient impacts and maineffects that small-
amplitude cyclotron waves may have on the heating of coronalloops in presence of colli-
sions, which still turn out to be efficient in loops as compared with the more tenuous outer
corona and dilute solar wind.

The coronal loop model theory used here is well described in the previous chapter,
where an ensemble of PDE equations (4.3), (4.6), (4.12) and (4.14) are involved, and
where the ion species are described kinetically in terms of their reduced velocity distri-
bution functions (VDFs). Also, a semicircular cylindricalgeometry for the coronal loop
flux tube is adopted, whereby the varying loop cross-sectionis obeying the equation (4.1)
(with the total loop length,L ≈ 63 Mm).

In the model, a power-law spectrum is assumed for the non-dispersive Alfvén waves
originating below the transition region. The ion heating isassociated with the dissipation
of these waves via ion-cyclotron resonance obeying the condition,ω− k‖v‖ −Ωi = 0, with
the parallel wave vectork‖ and wave frequencyω, and the ion gyrofrequencyΩi(s) =
qiB(s)/mi, which varies along the loop with the spatial coordinates. At the footpoints
(where the boundary conditions are set) we assume the following ion abundances,NHe =

0.1Np andNO = 0.001Np, with Np = 4.15×1015m−3, and the temperatureT0 = 2×105 K.

87



5 Multi-ions kinetic model for coronal loop

The magnetic field ats= 0 isB0 = 80 G. The initial conditions are chosen to be constants,
i.e., all the species have the same temperature,T(s) = T0, and the abundance for each ion
species is assumed to be the same as at the footpoints. Here wealso deal with two values
of the expansion factor,Γ = 1.04 for a nearly homogeneous loop andΓ = 1.48 for a
more expanding loop, (see Fig. 4.2). Att = 0 the waves start to propagate close to
the left footpoint, with the power-law spectrum density given byBω(s = 0) ≈ 2.8 ×
10−4[ω log(Γ2)]−1 J m−3 s. Generally, the frequency interval used in this study ranges
betweenΩO(s = 0)/Γ2 andΩp(s = 0). Notice that forΓ varying between 1.04 and 1.48,
the integrated power-law spectrum is equivalent to an overall nonthermal velocity ranging
between 14 and 38 km/s, which is consistent with the observational constraints (Wilhelm
et al. 2007).

5.2 Results

5.2.1 Plasma loop profiles

The kinetic temperature, which is of prime interest in this study, is plotted for each ion
species in Fig. 5.1a and Fig. 5.1b. In case ofΓ = 1.48, protons and He2+ ions show the
same isotropic temperature profiles along the loop. However, the heating of O5+ in the left
part of the loop is higher in the perpendicular direction with respect to the mean magnetic
field. This leads to a remarkable temperature anisotropy, with T⊥/T‖ > 1. The kinetic
parallel temperature of O5+, T‖,O5+, hardly differs from the temperatures of the other ion
species. The perpendicular temperatureT⊥,O5+ behaves differently, as it increases rapidly
and then reaches values up to 5 MK ats ≈ 16 Mm, leading to a maximal temperature
anisotropy withT⊥/T‖ ≈ 2.5. On the right side of the loop, at which the wave absorption
is negligible, all ion species have the same heating profile,and thus isotropy is well main-
tained. In this part, the ion temperature decreases at the loop apex to the right boundary
at s= L under the effects of ion heat conduction and ion-electron collisions.

When the loop width is nearly homogeneous (Γ = 1.04), the temperature isotropy is
well preserved beyond a distance of 5 Mm, as it becomes clear in Fig. 5.1a. The kinetic
temperatures of each species are similar and roughly constant along a big part of the loop.
Only a remarkable anisotropy in the oxygen temperature occurs close to the left footpoint,
where the wave absorption is relatively stronger than elsewhere.

In Fig. 5.1c the electron density is plotted for both cases ofthe expansion factor. The
loop with a quasi-constant cross section (Γ = 1.04) has an enhanced density in compar-
ison with the loop having a more expanding cross section (Γ = 1.48). Furthermore, in
both cases the loop is dynamic with a non-thermal subsonic flow speed (see Fig. 5.1d).
The flow in the loop is needed to guarantee that particle flux isconserved in the final
relaxed state of the plasma (see Fig. 5.1f). Indeed, the non-thermal drift speed can reach
≈ 20 km s−1 in case ofΓ = 1.04. This bulk flow speed ranges within the values often
observed in active-region loops (Aschwanden et al. 1999, Chae et al. 2000, Winebarger
et al. 2002, Marsch et al. 2004).

In the kinetic multi-ions model, the electrons are found to be cooler than the ions. The
electron thermal energy gained from ion-electron collisional heat exchange is reduced by
the effect of radiative losses and the strong heat conduction of theelectrons. The latter
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Figure 5.1: (a),(b) Proton and helium temperature (line),T‖,O5+ (dashed dotted line),T⊥,O5+

(dashed double-dotted line) and electron temperature (dashed line) are plotted forΓ =
1.04 in panel (a) andΓ = 1.48 in (b) as a function of distances along the loop. (c)
Electron density, (d) flow speed, (e) varying cross-section, and (f) the particle flux are all
plotted forΓ = 1.04 (line) andΓ = 1.48 (dashed line) as a function of distance along the
loop.
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.

Figure 5.2: The wave spectral energy density plotted in dependence on the normalized
frequency forΓ = 1.04 on the left panel and forΓ = 1.48 on the right panel at different
positionss = 3.3 Mm (line), s = 5.3 Mm (dashed line),s = 15.6 Mm (dashed dotted
line), ands= 31.4 Mm (dashed double-dotted line). HereΩ0 = Ωp(s= 0)

process, in which the heat conductivity is proportional toT5/2
e , is more efficient when the

electron temperatureTe exceeds 1 MK. This will result in a loop having a more expanding
loop width (see Fig. 5.1b) and a situation in which the electron temperature is much higher
and more uniform than in the constricted loop. However, whenthe loop width is nearly
uniform the electron and ion temperatures are almost identical in a big part of the loop.

5.2.2 Wave-absorption mechanism

The coronal heating mechanism in loops can well be explainedas being due to wave ab-
sorption of the ions (as shown in Fig. 5.2). When starting with a loop having a larger ex-
pansion factor (see Fig. 5.2b), it turns out that the ions canbe in resonance with waves over
a wider interval of frequencies in the wave spectrum. Ats≈ 3 Mm the solid line indicates
absorption around the three ion gyrofrequencies. Since these gyrofrequencies decrease as
long as the flux tube keeps opening up to the loop apex, those frequencies at which ab-
sorption occurs move to ever lower values in the spectrum. This change is now leading
to quasi-local heating, with a relatively larger heating length scale on the left (where the
waves are injected) side of the loop. It is noteworthy that the protons can strongly be
heated by wave energy absorption until a distances ≈ 20 Mm at which the proton gy-
rofrequency becomes close to the helium one at the footpoint

(
Ωp(s≈ 20)≈ ΩHe (s= 0)

)
.

Beyond this distance those waves that could interact with protons were already absorbed
by helium at lower heights in the left part of the loop. Similarly for helium ions, these
ions can more strongly be heated within distances belows ≈ 13 Mm. Beyond this dis-
tance, most of the power of those waves that could fall in resonance with helium ions was
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already decimated by wave-oxygen interactions at lower positions in the loop. Despite
this fact, the heating profiles of protons and He2+ overlap, because of efficient energy
exchange by proton-helium collisions.

However, oxygen ions can be heated from lower positions up tothe loop apex, as it is
clear in Fig. 5.2b, since they have the lowest gyrofrequency

(
ΩO = 0.312Ωp = 0.624ΩHe

)
.

Therefore, oxygen ions can interact with waves that have more wave power, and due to
the small abundance of O5+, the absorbed wave energy is distributed over a much lower
number of oxygen ions than is the case for protons. Stronger perpendicular than parallel
heating is the basic result of ion-cyclotron-resonance absorption. Therefore, the oxygen
ions will finally attain the highest perpendicular temperature of all ions considered here.

Because of the small variation of the magnetic field along theloop in case ofΓ = 1.04,
ions can be in resonance with waves only over a narrow interval of frequencies close their
gyrofrequenciesΩi(s = 0) (see Fig. 5.2a). These waves have already been absorbed at
altitudes lower thans ≈ 5 Mm. Below this position the three ions can be heated, with a
preferential heating for oxygen, since its ions have the lowest gyrofrequency and a very
small abundance in the coronal plasma. This model shows thatmost of the resonant waves
have been absorbed by the ions via the "frequency-sweeping mechanism", as described
previously by Tu and Marsch (1997) and Vocks and Marsch (2002). Therefore, most of
the waves get already absorbed at lower heights, and not enough wave energy is left for
heating the right half of the loop.

In comparison to the heating profile found in the previous chapter for a loop con-
sisting of electrons and protons, it seems that the additional minor ions hardly affect the
temperature of electrons and protons. Their collisional energy exchange with the heavy
ions has no measurable thermal impact because of the very lowminor ion density, and
also because of the proton temperature which exceeds 1 MK. This makes their collisions
weaker in comparison with the case when the protons are cooler.

5.2.3 Ion VDFs in case ofΓ = 1.48

The temperature anisotropy of the heavy ions, which is represented here by O5+, im-
plies that their usual VDFs is not Maxwellian. Assuming a Maxwellian in v⊥, a two-
dimensional gyrotropic VDFf (v‖, v⊥) can be obtained (see equation (3.13)).

Figs. 5.3-5.5 display the time evolution of VDFs of the threeions species, proton,
helium and oxygens at the position s= 16 Mm. At the initial time,t = 0, the VDFs of
the ions are Maxwellian describing a local thermal equilibrium system withTp = THe =

TO = T0 = Te = 2.105 K. It turns out that the VDFs of proton and helium species
remain isotropic during the time evolution to the relaxing steady state. The circles, which
represent the contour plots of the Maxwellian distribution, expand with time, implying ion
heating locally in space (here at position s=16 Mm far from the left footpoint). Therefore,
the diffusion of protons and helium ions is more isotropic due to the efficiency of the
Coulomb collisions comparing to ion heating process.

However, the oxygen VDFs behaves differently in Fig. 5.5. At the initial time,t = 0,
this VDFs is isotropic have a shape like a Maxwellian distribution that is represented by
circular contour centred at the normalized drift speed. Then at t = 800 s, these circles
expand more due to the diffusion process of the oxygen ions under the effect of the wave-
particle absorption.
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Notice that, at timet < 800 s, the oxygen VDFs is still isotropic due to the efficiency
of the Coulomb collisions when the ion temperature is still below 1 MK. As long the
kinetic thermal energy of the oxygen increases in time, the collisions will not be able to
thermalize efficiently these ions. Consequently, their VDF are shaped asymmetrically via
the wave-particle diffusion process. This asymmetric form starts to appear att = 2000 s
(see Fig. 5.5d) when the contour plots deviated from their initial circular shapes and thus
indicate a preferential perpendicular heating.

The resonant wave-particle interaction term by diffusion drives the particle’s VDF to
attain vanishing pitch-angle gradients in the wave frame ofreference according to quasi-
linear theory, which is supported by solar wind in situ observations (Marsch and Tu 2001,
Heuer and Marsch 2007), while the Coulomb collision operator tends to thermalize the
plasma, and to make the particle VDFs isotropic.

At t = 104 s, the oxygen VDF reaches its steady final state, and it is plotted for several
positions along the loop as shown in Fig. 5.6. The VDF, at the lower position around
3 Mm, is close to Maxwellian, and around the positionss = 7.2 ands = 10.5 Mm, the
oxygen VDFs expand more asymmetrically leading to a remarkable oxygen temperature
anisotropy. Furthermore, when the heating of oxygen is in its maximum ats≈ 18 Mm, the
VDF is very far from a Maxwellian and shows a preferential perpendicular heating with
respect to the local magnetic field. Then at larger distances(s> 20 Mm), the oxygen VDF
shrinks again towards a more symmetric form, as shown in Fig.5.6f for the case ofs= 30
Mm. This is expected since the wave dissipation process stops at positions ≈ 20 Mm
along the loop for the reasons mentioned in the previous subsection. Consequently, in the
remaining part of the loop (ats > 30), the collisions will be more efficient to thermalize
the plasma again, a process leading to a Maxwellian VDFs for the all ion plasma species.

In the diffusion process, ions having (v‖ < 0) on the tails of the VDF are much more
spread. These particles while moving inward (v‖ < 0) can fall in resonance with waves
having frequenciesω < Ωp(s), but have a negligible interaction with waves at frequencies
ω > Ωp(s), since these waves will reach the positions with low wave energy. The reason
is that their energy was already eroded at lower heights in the loop. This means the model
assumption of dispersionless Alfvén/cyclotron waves is also well justified.

5.3 Conclusion and discussion

In this chapter the heating of a coronal loop is modelled by using the kinetic description
and including wave-particle interactions which are based on the quasi-linear approxima-
tion of the Vlasov equation. Alfvén/cyclotron waves are assumed to penetrate the plasma
in the coronal loop from one footpoint, and thus to heat the ions asymmetrically via res-
onant wave absorption. Consequently, asymmetric heating occurs, with the spatial dissi-
pation scale being connected with the variation of the loop width. In this way dynamical
loops with a moderate non-thermal drift speed (subsonic bulk flow) can be produced.

We neglected in our model possible dissipation caused by plasma inhomogeneity
across the loop. We are aware of theoretical considerationssuggesting that cross-field
plasma nonuniformity might be crucial also for the dissipation of high-frequency Alfvén-
cyclotron waves, which can undergo nonlinear processes andsuffer strong phase mix-
ing, thus leading to fast Landau damping (see, e.g., Voitenko and Goossens 2000a,b,
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and references therein). Even though Landau damping, in thecircumstance when the
loop is nonuniform and of filamentary nature across the magnetic field, can occur it will
have a minor effect as long as the related dissipation lengthzL is comparatively large,
i.e. zL & 100 km which is the characteristic length scale of field-aligned ion-cyclotron
damping in our model. This condition onzL means that Landau damping only matters if
L⊥ ≤ 10 km, an inequality that is obtained by using equations (11)and (30) as given in the
paper of Voitenko and Goossens (2000b). The required short filamentation lengthL⊥ is
roughly 100 times smaller than the typical thin-loop diameter of about 1 Mm, which cab
be observed within the resolution of TRACE yields the smallest scale that can presently
be resolved.

In the present model it is found that the footpoint-type loopheating with a small scale
length is the consequence of a quasi-homogeneous magnetic flux tube, in which the elec-
tron density is enhanced and stays roughly uniform in the loop. Apart from the region
close to left footpoint, the plasma can remain close to LTE with a uniform temperature
around 1 MK along the loop. These loop features seem to be consistent with those ob-
served in the emission of so-called EUV loops.

However, if the loop width expands more strongly from its footpoints to the apex, the
heating scale length for the ions becomes larger. In such case, the plasma can evolve to a
state far from LTE, and a considerable temperature anisotropy occurs inO5+ (minor heavy
ions), where the strong wave dissipation is taking place in the loop. The electrons, which
can be heated through the Coulomb-collision coupling between ions and electrons, still
remain cooler than the ions, due to their high heat conduction as well as sizable radiation
losses.

These plasma loop features, i.e. the electron temperature and density profiles as well
as the plasma flow driven by ion dynamics, may together explain the hot dynamical loops
as they are observed at wavelengths between soft X-rays and the EUV. These kind of
loop features were in the literature (e.g., Klimchuk 2000) usually reproduced by using
hydrostatic models, which yet are not able to explain the existence of gentle flows as
observed in such loops.
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5 Multi-ions kinetic model for coronal loop

Figure 5.3: Time evolution of proton VDFs at position 16 Mm along the loop forΓ = 1.48.
vth,p is the proton thermal speed ats= 0, and U the drift speed.
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5.3 Conclusion and discussion

Figure 5.4: Time evolution of Helium VDFs at position 16 Mm along the loop forΓ =
1.48. vth,He is the helium thermal speed ats= 0.
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5 Multi-ions kinetic model for coronal loop

Figure 5.5: Time evolution of oxygen VDFs at position 16 Mm along the loop forΓ =
1.48. vth,p is the oxygen thermal speed ats= 0.
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5.3 Conclusion and discussion

Figure 5.6: Steady final VDFs of oxygen plotted for several positions along the loop for
Γ = 1.48.
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6 Multi-strand loop modeling and
filter-ratio analysis

6.1 Introduction:

In Chap. 4 we modeled a coronal loop as one single flux tube (or monolithic loop) in
which the confined plasma is heated by ion-cyclotron/Alfvén waves via the resonant ab-
sorption mechanism. It turned out from this model that the warm loop has the roughly
constant temperature profile and enhanced density (relative to static model Serio et al.
1981) is a consequence of uniform cross-section of the flux tube along the loop. Pro-
ducing this type of loop profile with uniform temperature wasmotivated by many recent
observations of EUV loop emissions (using high spatial resolution imaging provided by
TRACE; see Lenz et al. 1999, Aschwanden et al. 1999, 2000a). Under the assumption
that the loops have a single cross-field temperature, the TRACE 195:171 filter ratio im-
plies that these loops have temperatures of 1-1.5 MK which are constant along much of
their lengths. Furthermore, it was found that the densitiesof these warm loops are much
more enhanced than the densities predicted by static modelswith uniform heating (see
e.g., Aschwanden et al. 2001, Winebarger et al. 2003a). However, it was concluded that
static loop models with footpoint heating may produce flat temperature profiles and en-
hanced apex densities, but the enhancement in density was found to be not large enough
in case of long loops.

It is believed that the difficulty of reproducing the observed properties of TRACE
loops with static models is that they are not in equilibrium.Therefore, it was suggested
that the impulsive heating caused by nanoflare events could explain these observed loop
properties. In this mechanism, the coronal loops are first strongly heated by a burst of
thermal energy released when the reconnection occurs. Thenthe heating is followed by a
strong evaporation of chromospheric material into the coronal loops. During the cooling
phase, and when loop temperatures span between 1 and 1.5 MK, the loops can be denser
than in the equilibrium case (see e.g., Warren et al. 2002, Cargill and Klimchuk 1997).

However, hydrodynamics simulations showed that the cooling loop would appear si-
multaneously in both TRACE 171 and 195 Å filters for only about800 s (see e.g., Reeves
and Warren 2002). This cooling time is much smaller than the lifetime of the observed
TRACE active region loops which generally live for several hours, while maintaining
their interesting features of high densities and flat temperature profiles. Therefore, the
scenario of a temporal evolution of the loop cooling in time seems inconsistent with the
observations.

It was shown that the existence of nanoflare heating models relies heavily on the as-
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sumption of a multi-strand or multi-thread loop concept. Inthis concept, the observed
coronal loops are composed of myriads of unresolved loop strands, and thus should ex-
hibit a broad differential measure (DEM) distribution. This concept is recently endowed
by many observations exploiting the high spatial resolution of TRACE, and indicating that
the observed "fat" single loop could be composed of many small-scale filaments which
most probably have different temperatures across the field (Schmelz et al. 2001, 2003,
2005, Martens et al. 2002). The lack of the observation of very fine scale structures be-
yond TRACE resolution leads to a possibility that the observed loops may be composed of
very thin "strands or threads" that have different temperature and density profiles. There-
fore, the loop intensity could represent an ensemble of emissions of many unresolved
strands.

Adopting this concept of multi-strand loops, Reeves and Warren (2002) have produced
the features of the observed warm loops by assuming a bundle of static, uniformly heated
strands. Their model, however, implements dense and hot strand (∼ 5 MK) to reproduce
the flat TRACE filter ratios. This seems to contradict previous observations which indicate
that, generally, hot loops are not cospatial with relatively cool loops (e.g., Sheeley 1980,
Habbal et al. 1985). Recently, Warren et al. (2002) also suggested a multi-strand loop
model where the strands are at random stages of impulsive heating and cooling. The
authors synthesized the TRACE 171 and 195 Å intensities of the modeled strands, and
obtained a flat 171:195 filter ratio along the loop resulting in larger emissions relative to
those estimated by static heating.

Following the concept of a multi-strand structure of coronal loops, we now will also
model the observed TRACE loop as a bundle of seven isolated strands. However, con-
cerning loop heating we propose here that the strands are heated through the dissipation
of parallel propagating ion-cyclotron/Alfvén waves via resonant wave absorption. The
same kinetic model used in Chap. 4 to describe the heating of amonolithic loop now is
applied to the heating of an individual small-scale strand.Thus various fine structures can
have different temperatures and density profiles. Therefore, an observation of a neigh-
bouring set of filaments with a low-resolution instrument could lead to an apparently fat
loop, which yet is simply composed of a finite number of strands. Since in the corona the
cross-field heat transport is very weak, and as the plasma is dominated by the magnetic
pressure, we can assume that separate loop strands are thermally isolated.

Once we have determined the different plasma profiles of single loop strands, we
can synthesize the total emission of the composite model loop, thereby assuming its ob-
servation as a monolithic loop in the TRACE/EIT filters, and thus we can extract its
temperature by adopting the filter-ratio technique. We willshow that in any case, when
the coronal loop is composed of unresolved filaments having different temperatures and
roughly identical emission measures across the coronal loop, a quasi-uniform temperature
can be inferred along the loop length.

The chapter is organized as follows: in Sec. 6.2 we model a TRACE/EIT coronal loop
as a bundle of seven separate filaments heated through the dissipation of high-frequency
Alfvén waves. We assume different wave energy inputs at the footpoints of the different
strand. Then in Sec. 6.3, we synthesize the emission of the modeled coronal loop in
the three TRACE passbands, and thus we can derive the loop temperature from two filter
ratios 171:195 and 171:284. Finally, we discuss the obtained results and conclude in Sec.
6.4.
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6.2 Multi-strand coronal loop model:

It is believed that the small-scale reconnection events which occur in the lower corona
(or chromosphere) can be an ultimate source of high-frequency waves, namely waves
having scales comparable to the ion inertial length (also called ion-cyclotron waves) (see
Axford et al. 1999, Axford and McKenzie 1995). Many theoretical works showed that
the propagation of such waves in the corona may lead to an efficient ion heating, and can
thus explain the rapid temperature increase in the transition region and corona (see, e.g.,
Vocks 2002, Vocks and Marsch 2002). Therefore, we also believe that the formation of
coronal loops can be a consequence of the dissipation of ion-cyclotron waves along the
closed magnetic field lines that confine the plasmas of these coronal loops (Bourouaine
et al. 2008a,b). Furthermore, intuitively we think that therandom spatial occurrence of the
reconnection events may generate ion-cyclotron waves withdifferent amounts of energy.
The dissipation of these waves along the closed field lines leads to heating and plasma
evaporation, thus producing a kind of small-scale filamentsor strands (very fine loops
beyond the TRACE resolution). These filaments may have differential temperature and
density profiles. Therefore, the observation of these sets of filaments with low-resolution
instruments shows fat loops that are simply composed of a finite number of these strands.
Since in the coronal medium the cross-field heat transport isvery weak, and as the plasma
is dominated by the magnetic pressure, all the loop strands are thermally and dynamically
isolated.

In this model, we will represent a coronal loop as an ensembleof seven separated loop
strands or filaments (see Fig. 6.1). Each strand is modeled asan electron-proton plasma
confined within a semi-circular cylindric and symmetric fluxtube. All the strands (num-
bered by indexi) are assumed to have the same length (L = 63 Mm) and the same local
width, wi(s). We suggest that these strands are close to each other and situated in planes
that are perpendicular to the solar surface. The flux tubes ofthese strands expand simi-
larly with height, i.e., the filaments have the same expansion factor,Γ = 1.48. This means
that each strand has a varying cross-section which expands from the strand footpoints
(situated at the transition region) to the strand top and satisfies formula (4.1).

The loop strands are heated through the dissipation of nondispersive Alfvén/ion-cyclotron
waves propagating along the field lines. These waves are assumed to be injected at the
left footpoints of the strands and heat the ions via resonantwave-particle interactions.
More details about this dissipation mechanism are given in Chap. 4 in case of monolithic
coronal loop modeling. Here, for each strand, a power-law spectrum is assumed for the
Alfvén waves at the left strand-footpoint, i.e,

Bi
ω(s= 0) = αi

[
ω ln(Γ2)

]−1
J m−3s−1, i = 1, 2..7 (6.1)

whereBi
ω is the wave spectral energy density of the waves entering thestrand. The

parameterαi which corresponds to each loop strand is listed in Tab. 6.1
All the loop strands have the same boundary conditions, i.e., their electron densities

at the footpoints (s = 0, s = L) are given byNe(s = 0) = Ne(s = L) = 5 × 1015 m−3,
and their electron temperatures byT(s = 0) = T(s = L) = 2 × 105 K. Also, at t = 0
(the initial condition) we consider a similar initial statefor all the strands, i.e., the strands
are cooler and have relatively small apex densities. After about ten thousands of seconds
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6 Multi-strand loop modeling and filter-ratio analysis

Table 6.1: The parameterαi corresponds to strand "i" defined by its maximum proton
temperature shown in Fig. 1a

Strand TMax (MK) αi × 104

1 0.7 0.5
2 0.84 0.7
3 1.2 1.1
4 1.4 1.4
5 1.66 1.9
6 1.95 2.5
7 2.1 3.0

Loop cross-section 

Cross-field variation

Loop filaments 

Figure 6.1: Coronal loop that consists of many small-scale filaments

all the strands reach their steady final states, and they get filled with plasma due to the
evaporation process and particle acceleration and thus form an unresolved TRACE or
SOHO/EIT loop.

The temperature and density profiles of the species of each strand are plotted in Fig.
6.2. As expected, the higher the wave energy input the more energy is transferred to
the plasma loop strand. The Alfvén waves heat the protons viaion-cyclotron-wave ab-
sorption, and thus due to proton-electron collisions also the electrons can be heated. The
proton temperatures increase up to their maximum values close to a distance of≈ 20 Mm
where the dissipation of the waves ceases. The proton temperatures tend to decrease
under the effect of heat conduction and electron-proton energy exchangeby collisions.
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However, the electron temperature is roughly equal to the proton temperature as long as
the latter is smaller than one mega kelvin. But when the proton temperature exceeds this
value, the electron temperature remains at smaller values due to strong electron heat con-
duction. Therefore, the electron and proton temperatures in the strands "1, 2" roughly
overlap. While, in the case of strands "3, 4, 5, 6, 7", the protons are hotter than the
electrons, and electrons show a quasi-uniform heating.

In this kinetic model, the loop strands can be filled with plasma via two mechanisms,
wave-induced particle acceleration and chromospheric plasma evaporation (caused by
heat conduction from the corona). However, wave-particle acceleration is the dominant
process to fill the loop-like structures with protons, sincethe proton heat conduction is
small, and the electron inertia is neglected in our approximation. Thus, the plasma dy-
namics of the loop is only related to the proton inertia. As a result, we see that the densities
in big parts of the loop strands do not differ by much. Consequently, the strands have a
roughly similar emission measure (EM = N2w) across the loop.

Therefore, the modeled coronal loop (represented by a multi-stranded coronal loop)
has a varying cross-field electron temperature, which spansbetween 0.6 to 1.6 MK at its
top (and between 0.6 to 2 MK), but only a small cross-field density variation (or slight
cross-field emission-measure variation). The next sectionis devoted to the analysis of the
emission of the modeled coronal loop, as it would be observedin the three EUV channels
at 171, 195 and 284 Å available in the TRACE imager or SOHO/EIT.

6.3 Filter-ratio analysis:

In the following section we introduce the term "isothermal temperature",Tiso, which sim-
ply means the observationally inferred loop temperature when assuming a single cross-
field temperature and using filter-ratio technique.

It is possible to synthesize the total emission of the modeled fat loop from the seven
strand emissions. The emission of each strand can easily be computed from its modeled
density and temperature profiles using the following emission measure relation

ζi(s) = N2
i (s)G

(
Te f f

i (s)
)
, i = 1, 2..7 (6.2)

whereζi(s) = I i(s)/wi(s) (the intensity over the width) is the emission of the strand"i"
given per unit optical length (units of DN s−1 pixel−1 cm−1) at positions along the strand
(or is the intensity over the width).Ti andNi are respectively, its effective temperature
(units of Kelvin) and density (units cm−3). G(T) is the response function given for each
filter as plotted in Fig. 6.3a.

Now we study the emission of the loop strands considering, first the proton tempera-
ture to be an effective temperature (Te f f = Tp) of the emissions. Then, in the second case
Te f f = Te, whereTe is the electron temperature.

The strand emissions in the three filters are plotted in Fig. 6.4 in the case ofTe f f = Tp.
It seems that the strands brightest in the 171 Å emission are those labled with numbers
3, 2, 4, and 1 (ordered from the highest to lowest intensity).However, in this filter, the
remaining strands are less visible due to their relatively high temperatures which exceed
1.1 MK. Therefore, the first fourth strands mainly contribute to the total emissionζtot(s)
of the total loop in the 171 Å passbands (see Fig. 6.4d). Moreover, Fig. 6.4b shows that
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6 Multi-strand loop modeling and filter-ratio analysis

Figure 6.2: Plasma profile for each loop strands, (a): Protontemperature, (b) electron
temperature and (c) electron density. All parameters are plotted as function of strand
position such that (solid line) refer to strand "1", (dottedline) strand "2", (dashed line)
strand "3", (dash-dotted line) strand "4", (dash-triple dotted line) strand "5", (long dashed
line) strand "6" and (thick solid line) strand "7".

the 195 Å filter is more sensitive to the strands labeled with number 4, 5 and 3 (from the
highest to lowest intensity). This is because the maximum temperatures of these strands
range between 1 and 1.4 MK which is the temperature interval of the response of the filter
in the 195 Å passbands. Overall, these mentioned strands mostly dominate the emission
of the total loop in the 195 Å passbands shown in Fig. 6.4d.

It turns out from Fig. 6.4c that the modeled fat loop is less visible in the 284 Å emis-
sion. This is because this filter is more sensitive to hot loops (having temperatures higher
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6.3 Filter-ratio analysis:

Figure 6.3: (a): The response function for each TRACE filter;filter with 171 Å passbands
(solid line), filter with 195 Å passbands (dotted line) and filter with 284 Å passbands
(dashed line). (b): The ratio between two filters; (171:195)(solid line), (171:284) (dotted
line) and (195:284) (dashed line).

than 2 MK). Only hotter strands having apex temperature& 1.3 MK can slightly be vis-
ible in this passbands, therefore, the whole "fat" loop appears at lower intensity which
is smaller by about one order of magnitude than its emission in the filter with the 171 Å
wavelength (Fig. 6.4d). Furthermore, in the more realisticcase when the background has
to be accounted for, this modeled loop can hardly be seen in the 284 Å passbands, since
its emission would strongly be contaminated by the background effect.

When we consider the electron temperature as an effective temperature for the loop
strand emissions which are shown in Fig. 6.6, the total loop will be more visible in the
171 Å filter. According to the Fig. 6.6a, all the strands, except of the strand "7", contribute
in the total emission of the loop in the filter 171 Å. Also the loop would be more visible
in the 195 Å filter, since the cross-field electron temperature ranges between 0.5 and 1.6
MK. However, less visibility of the loop is expected in the filter 284 Å. Therefore, in both
cases of the effective temperature consideration, the total coronal loop is more visible in
the two filters with 171 and 195 Å. We can then classify our modeled multi-strand loop
as warm EUV loop in terms of visibility in TRACE filters.

In Fig. 6.5 and Fig. 6.7 the different emission ratios for each strand are computed for
both cases of the effective temperature. Generally, it seems that the strands have varying
filter ratios, which implies a varying temperature along their lengths. Now, by making use
of the total-emission ratio of the fat coronal loop, 171:195and 171:284, we can extract the
assumed single cross-field temperature (also called isothermal temperature) by assuming
that the total emission is given by

ζ(s) = N2G(Tiso), (6.3)
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whereN is the assumed single cross-field density.
Fig. 6.5c and Fig. 6.7c display the ratio between the different the total loop emissions

plotted versus the loop length. Interestingly, for both cases of the effective temperature,
the total-emission ratio (171:195) (indicated by solid line) varies slightly between two
values, 1 and 3 inside the loop. However, the total-emissionratio (171:284) (indicated by
dot lines) spans between the values 10 and 12 whenTe f f = Te, and between the values
8 and 10 in the case ofTe f f = Tp. As we will show, these variations in the different
filter-ratios are still not large enough to produce varying temperatures along the loop.

Based on the obtained results of the total-intensity ratios, and by making used of the
ratios between the response functions plotted in Fig. 6.3b,we can extract the isother-
mal temperature that corresponds to each filter ratio. Here,we deal with two filter ratios,
171:195 and 171:284 since they provide unique values ofTiso unlike the filter 195:284
that may not provide a uniqueTiso. For example the value 4 in the filter ratio 195:284 cor-
responds to two possible isothermal temperatures when assuming the temperature ranges
between 0.6 and 2 MK (see Fig. 6.3b ). Figs. 6.8a, 6.9a show different isothermal
temperatures obtained from the two filter ratios. This result gives a good indication that
we are dealing with an unresolved multithermal loop which contradicts the isothermality
assumption across the field.

Interestingly, the obtained isothermal temperatures are quasi-uniform along the loop
length for both cases of effective temperatures. Moreover, the obtainedTiso from the in-
tensity ratio 171:195 is more uniform along the loop length when we considerTe f f = Tp.
This seems to fit the TRACE coronal loop features (see e.g., Lenz et al. 1999) as discussed
in the introduction. Most of the observed warm EUV loops cannot clearly appear in the
filter (284 Å) because their emissions can strongly be affected by the background emis-
sion. Thus, one may think that these loops are isothermal across their field lines when only
using the filter ratio (171:195). But in fact when we considertheir emission in the 284 Å
filter, the temperatures obtained from two different filter-ratios may not overlap. There-
fore, the use of multiple filters is inevitably needed to determine weather the isothermality
assumption across the field is correct or not. This conclusion may explain the recent re-
sults obtained by Schmelz et al. (2003). The authors analysed 10 coronal loops that were
clearly visible in the 171, 195 and 284 Å passbands of the EIT.They showed that in each
case of the used background substraction method two different uniform temperatures were
obtained, one from the 171:195 ratio and the second for the 195:284 ratio. The authors
suggested that the single cross-field temperature assumption could provide a misleading
loop temperature.

However, we argue here that, in case of warm loops (T ≤ 1.5 MK), it is difficult
to infer the temperature from the filter ratio 195:284. This is because the ratio function
195:284 in Fig. 6.3b peaks at a temperatureT ∼ 1.26 MK, and for any ratio value that
spans between∼ 1 and∼ 26, there are two corresponding temperatures; one is above 1.26
MK and the other below it (non-unique solution). Therefore,in the case of warm coronal
loops, it is difficult to constrain the temperature value to be chosen. For that reason, we
did not use here the filter ratio 195:284 to determine the looptemperature.

By assuming a line-of-sight depth of 1010 cm, as considered by Lenz et al. (1999), we
estimate the emission measure from the filter ratio (171:195) and (171:284) (see Fig 6.8-
6.9). The emission measure profile implies an enhanced density inside the loop, and
the estimated EM for the first filter ratio is comparable to theone obtained by Lenz et al.
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Figure 6.4: HereTe f f = Tp. (a): Emission of each strand through the filter (171 Å). (b):
Emission of each strand through the filter (195 Å). (c): Emission of each strand through
the filter (284 Å). All plotted as function of the strand position. Each strand is represented
by the same type of line as given in Fig. 6.1. (d): Total loop emission through the filters
(171 Å) (solid line), (195 Å) (dot line) and (284 Å) dashed line.

(1999), however, a higher EM could be obtained if we considered the filter ratio (171:284).

Notice that the obtained isothermal temperatures in our model have nothing to do
with the computed average temperatures as shown in Fig, 6.8aand Fig. 6.9a . The average
temperatures, in both cases of effective temperatures, vary along the loop and do not show
any flat profiles.

The question is, why often flat temperature profiles are obtained when using the filter-
ratio technique? Weber et al. (2005) suggested that the flatness of the temperature profile
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Figure 6.5: HereTe f f = Tp. Emission ratios 171:195 (a), 171:284 (b), plotted for each
strand represented by the same type of line as given in Fig. 6.1. (c): Loop-emission ratio
of the loop, (171:195) (solid line) and (171:284) (dot line).

is due to a varying cross-field temperature (broad differential emission measure (DEM))
in loop, such that the emission ratio method is biased towardthe ratio of the integrated
response functions over a broad temperature interval. The authors concluded that this ratio
is about 0.81, which correspond to the TRACE temperature of∼ 1.2 MK. A TRACE-loop
temperature around this value is interpreted to be consistent with multi-thermal plasma,
and therefore with results obtained with the Coronal Diagnostic Spectrometer (CDS).

However, here we argue that the flat temperature profile can even occur in the case
when the loop consists of a finite number of strands (forming areal discrete loop struc-
ture), and if these strands have roughly a similarEMi but different temperatures across
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Figure 6.6: HereTe f f = Te. (a): Emission of each strand through the filter (171 Å). (b):
Emission of each strand through the filter (195 Å). (c): Emission of each strand through
the filter (284 Å). All plotted as function of the strand position. Each strand is represented
by the same type of line as given in Fig. 6.1. (d): Total loop emission through the filters
(171 Å) (solid line), (195 Å) (dot line) and (284 Å) dashed line.

the loop (as in the case of our modeled coronal loop). Consequently, the overall loop
intensity ratios, at a given loop position, simply would reduce to the ratios of the response
functions summed over the number of the loop strands within this coronal loop position,
i.e., to the ratios

R1 =

∑Ns
i=1 G171(Ti)

∑Ns
i=1 G195(Ti)

, (6.4)
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Figure 6.7: HereTe f f = Te. Emission ratios 171:195 (a), 171:284 (b), plotted for each
strand represented by the same type of line as given in Fig. 6.1. (c): Total-emission ratio
of the loop, (171:195) (solid line) and (171:284) (dot line).

R2 =

∑Ns
i=1 G171(Ti)

∑Ns
i=1 G284(Ti)

, (6.5)

where,Ns is the total number of the loop strands. Now by assuming a number of strands,
Ns, and making use of eqs. (6.4) and (6.5) we can infer the coronal loop temperature. The
strands are assumed to have temperatures equally distributed over the interval [Tmin,Tmax].
In Fig. 6.10 and Fig. 6.11, we plot the temperature contour plots for some values ofNs

and varying interval [Tmin,Tmax].

Overall, in case of the filter ratioR1 when 0.5 ≤ Tmin ≤ 1 MK, Fig. 6.10 shows that
the obtained temperatures are generally ranging between 0.9 and∼ 1.25 MK for all of the
proposed number of the strands,Ns. For a fixed value ofTmax below 1.5 MK (as in the
case of warm coronal loops) the inferred temperature hardlydepends on the varyingTmin

for all Ns. This may explain the flat temperature profile often observedin TRACE and
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Figure 6.8: (a) and (b): Loop temperatures and loop emissions plotted whenTe f f = Tp.
(a): Isothermal temperature,Tiso1 that corresponds to the filter ratio (171:195) (solid line),
Tiso2 that corresponds to the filter ratio (171:284) (dot line) andthe average temperature
(dash line). (b): Emission measures correspond to filter-ratio (171:195) (solid line), filter-
ratio (171:284) (dash line).

EIT warm loops when using the filter ratio 171:195.

Also, in the case of the filter ratioR2, when 0.5 ≤ Tmin ≤ 1 MK, the results of Fig. 6.11
show that the obtained temperatures are ranging between 1.0 MK and 1.4 MK for all Ns.
For a given values ofTmax & 1.4 MK, the inferred temperatures hardly vary with respect
to Tmin for all Ns.

In general, the values of the temperature obtained fromR2 do not coincide with those
obtained fromR1 for the same coordinates (Tmin,Tmax). However in the case of warm
loops, if the temperature uncertainty is accounted for, thetwo temperatures may over-
lap. Therefore, we expect that the use of the triple TRACE/EIT filters may not help in
answering if a loop is isothermal or multi-thermal.

Finally, we may say that the flatness in temperature profile often obtained in warm
EUV loops using TRACE/EIT filters can be produced by a simulated coronal loop that
consists of a small or large number of filaments (having scales below the TRACE reso-
lution) that have different temperatures and roughly similar emission measures across the
loop. Therefore, one would expect that only when the multi-thermal coronal loops have
strong cross-field EM gradients, the flat temperature profilemay not occur.

One of the consequences of our conclusion is that, in the transversal direction of the
coronal loop, the widths of the loop strands that compose this coronal loop are inversely
proportional to the square of their densities,wi ∝ 1/N2

i , since their EMi are equivalent. If
we assume that the electron temperature is inversely proportional to the density therefore
when the loop strand is hot, one expect that its width is larger comparing with cooler loop
strands. This means that the coronal loops appear wider in the hot emission lines than in
the cooler ones, since the hot strands that contribute to thehot emission are wider. This
may explain the fuzziness in the loops when observed in hot emission lines.
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Figure 6.9: (a) and (b): Loop temperatures and loop emissions plotted whenTe f f = Te.
(a): Isothermal temperature,Tiso1 that corresponds to the filter ratio (171:195) (solid line),
Tiso2 that corresponds to the filter ratio (171:284) (dot line) andthe average temperature
(dash line). (b): Emission measures correspond to filter-ratio (171:195) (solid line), filter-
ratio (171:284) (dash line).

6.4 Conclusion

In this work we synthesized the emission of seven strands which together are assumed to
constitute a coronal loop as seen in a low-resolution TRACE or SOHO/EIT observation.
Each of the loop strands used in the model is heated by Alfvén/ion-cyclotron waves via
wave-particle interactions. This process leads to proton heating in the electron-proton
plasma, and due to electron-proton collisions the electrons can then be heated as well
up to a certain temperature which is below or equal to the proton temperature. It turns
out that the plasma, in case of hot loop strands (where the proton temperature exceeds
> 1 MK) is not in local thermal equilibrium and the electrons are cooler than the protons.

In our model, the Alfvén waves, which are assumed to penetrate the strands from their
footpoints, are there generated with different intensity. Consequently, different heating
profiles occur within each strand due to the wave absorption or heating process. There-
fore, this differential heating leads to a varying cross-field temperaturein the total coronal
loop. The simulated TRACE/SXT observation of this model loop implies two different
quasi-uniform temperature profiles along the loop length, one derived from the filter-ratio
171:195 and the other for the 171:284. The flatness in the derived temperature profiles is
due to the property of a roughly constant EM of the loop strands in the cross-field loop
direction.

Furthermore, for different cases of loop strands with different temperatures and the
same EM, we showed that the loop temperatures inferred from both filter ratios (171:195
and 171:284) span a narrow interval. In the case of the filter-ratio R1, the obtained loop
temperatures range between∼ 1 and 1.2 MK, and forR2 the temperature spans between
1 and 1.4 MK.

Here we claim that the uniform loop temperature∼ 1.3 MK as obtained from 171:195
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Figure 6.10: Isothermal temperature obtained from the filter ratio R1 for some indicated
values ofNs.

ratio for the observed TRACE loop studied by Lenz et al. (1999) cannot be produced from
the multi-thermal loop assumption for a warm loop (withT . 1.5 MK) as proposed in
our work. Except if this observed loop is classified as a hot loop (if it is quite visible in
the 284 filter), then it would be possible if the minimum temperature of the strands obey:
Tmin > 1.1 MK andTmax > 1.5 MK. Otherwise it is a warm loop, and we then need loop
strands having temperatures that vary within a narrow interval (quasi-isothermal loop).
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Figure 6.11: Isothermal temperature obtained from the filter ratio R2 for some indicated
values ofNs.
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The linear dispersion of the fast waves in a magnetized, homogeneous and collisionless
plasma (consisting of electrons and protons in thermal equilibrium) has been studied in
chapter 1. It has been shown that the damping of the fast mode can be achieved via the first
three harmonic proton-cyclotron resonances. By using the quasi-linear theory we studied
the heating of the protons via the dissipation of the obliquely propagating fast waves
through ion-cyclotron resonance, and we have shown that these waves can efficiently heat
the protons perpendicularly to the direction of the mean magnetic field.

In chapter 2, the nonresonant wave-particle interactions are studied within the frame-
work of quasi-linear theory for the reduced velocity distribution functions of coronal ions.
It turned out that Alfvén waves at low-frequencies (withωk ≪ Ωi, whereΩi is ion gy-
rofrequency) can heat ions perpendicularly to the direction of the mean magnetic field
leading to a temperature anisotropy in collisionless plasma. This heating process is ef-
ficient in low-beta plasma, and the heavy ions are heated morestrongly, by a factor of
the mass ratio, than the protons. This mechanism may be responsible for the heating of
the lower corona and the upper chromosphere where the magnetic pressure is expected to
dominate the gas pressure. But at these lower coronal altitudes, such wave-induced fea-
tures will be destroyed by the collisions that are still strong there. Furthermore, although
the coronal plasmaβ is small at lower altitudes, Alfvén waves may efficiently heat the
ions only if their energy is relatively large. When assuminga power law spectrum, the
heuristic values of the wave energy needed for strong heating are, however, much larger
than the ones assumed in previous models and obtained from recent observations. Never-
theless, heating of the ions by low-frequency Alfvén waves can contribute to raising the
temperature of the lower solar transition region.

In Chapter 3, we modeled the heating of a coronal loop, consisting of electrons and
protons, by using a semi-kinetic model. The model is based onthe quasi-linear treat-
ment of the Vlasov equation for the reduced velocity distribution functions of the protons.
The collisions are included and they are described by the Fockker-Planck operator. The
coronal loop is heated through the dissipation of linear Alfvén waves. These waves are
assumed to be injected at the footpoints of the loop and heat the protons via wave-particle
interactions and wave absorption. Since the electron density in the coronal loop is rela-
tively higher than in coronal holes, the electrons can be heated via the energy exchange
with protons due to the Coulomb collisions.

It turns out that in such a model protons are hotter than electrons, and the scale
length for proton heating along the loop is determined by thedissipation scale of the
ion-cyclotron waves. Through the gyrofrequency this scaleis connected to the cross sec-
tion area of the loop and, thus, to the spatial variation of the magnetic field shaping the
coronal loop. Furthermore, it has been shown that footpoint-type heating with a small
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scale height is a consequence of a quasi-homogeneous flux tube, in which the temper-
ature profile remains nearly constant along the loop and the density is relatively higher
than in the case of loops in hydrostatic equilibrium with uniform heating. These plasma
features are consistent with those inferred from the TRACE loops that have temperatures
∼ 1.2 MK (or called warm coronal loops).

However, if the magnetic field lines are more strongly diverging from the footpoints
to the loop apex, the proton heating is found to be more uniform, resulting in a higher
temperature and lower density along the loop. These profilesare similar to those observed
in X-ray loops. In this situation, the proton temperature ishigher (can exceed 2 MK), the
collisions become then less efficient, and thus the electrons cannot be more heated and
their thermal energy is strongly reduced due to heat conduction which is proportional to
T5/2

e and to radiative losses especially at the footpoints.
By including other heavy ions in the plasma loop, we studied in chapter 5 the tem-

perature anisotropy and the preferential ion heating. Alsoin this multi-ion kinetic model
for a coronal loop, the ions in the magnetically confined plasma are heated by absorp-
tion of ion-cyclotron waves. The linear Alfvén/cyclotron waves which penetrate the loop
from its footpoint can heat the ions, and the amount of the wave-energy transferred to
each ion mainly depends of the loop expansion. Depending on the spatial variation of
the mean magnetic field, the model is able to produce warm and hot model loops hav-
ing features similar to the ones observed in extreme-ultraviolet and soft X-ray emissions
in real coronal loops. Furthermore, it is found that a loop with high expansion factor is
not in local thermal equilibrium (LTE) and shows remarkabletemperature differences be-
tween electrons and ions. Also in such case, the heavy ions (minor ions) are, via resonant
wave absorption, heated more than the protons and helium ions (major background ions),
whereby the cyclotron-resonance effect leads to a temperature anisotropy withT⊥ > T‖.
However, if the flux tube cross section is nearly homogeneous, temperature isotropy of
the ions is maintained in most parts of the loop, and the plasma is nearly in LTE. Unlike
in coronal holes, the temperature anisotropy of the oxygen ions is very small in coro-
nal loops. This is because the electron density in the coronal loop is higher than in the
open coronal field. Therefore, the collisions in coronal holes are too weak to maintain an
isotropic VDF (or Maxwellian).

Briefly, the semi-kinetic model can produce both types of observed coronal loops. The
EUV loops can be modelled well if the cross-section area, corresponding to the magnetic
field line density in the loop, is more homogeneous withΓ ≈ 1.04. However, the X-ray
loops observed with a quasi-uniform heating can arise in ourmodel if the cross section
expands, withΓ ≈ 1.48.

When assuming that the observed coronal loops are composed of many strands or
fine filaments having differential heating profiles, we may obtain a misleading coronal
loop temperature by using the filter-ratio technique. In chapter 6 we considered a fat
loop composed of seven strands or filaments. Each of the loop strands used in the model
can independently be heated by Alfvén/ion-cyclotron waves via wave-particle interac-
tions. These waves are suggested to enter the loop filaments with different energy inputs.
Therefore, different heating profiles occur within each strand, and this differential heating
leads to a varying cross-field temperature in the total coronal loop. It has been shown
that the simulated TRACE/SXT observation of this model loop implies flat temperature
profiles. The flatness in the temperature profiles often observed in TRACE/SXT coro-
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nal loops can be a signature that these loops are multithermal and have small cross-field
density variation.

As outlook, we plan to continue focusing on the role of the microphysics in the coronal
heating. It is necessary to scale the results obtained from the semi-kinetic model and
the wave-particle interactions. The scaling law of the ion-cyclotron heating process in
the coronal loop could help to describe the heating by a simple function that could be
included as heating source in the fluid equations. Furthermore, the scaling law of the
heating rate has to address the connection between the expansion of the coronal loop and
its heating profile. An other plan is to include the other modes e.g., fast and slow waves,
in the wave-particle interactions.

Also, as another future work, we plan to study an other kinetic heating mechanism
that relies on the dissipation of low-frequency waves via weak collisions. It seems that
the collisions existing in the lower corona may strongly dissipate those electromagnetic
fluctuations having wavelengths smaller that the MHD scales. This new heating mecha-
nism can be relevant for the heating of the upper chromosphere and transition region.
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