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Summary

Observations indicate that magnetic fields emerge into the photosphere of the Sun as
bundles of magnetic flux, also referred to as magnetic flux tubes. In this dissertation, this
phenomenon is studied by means of numerical simulations.

• Idealized two-dimensional magnetohydrodynamics (MHD) simulations of the rise
of individual horizontal magnetic flux tubes through an initially static, stratified
medium were carried out. The buoyant rise, fragmentation, and vortex shedding of
magnetic flux tubes were studied.

• Three-dimensional radiative hydrodynamics simulations were carried out to study
the properties and dynamics of near-surface convection and the photosphere in the
quiet Sun. The convection zone and the photosphere are, respectively, super- and
sub-adiabatically stratified. The granulation pattern of the quiet Sun consists of
relatively hot and bright cells (granules) separated by cool and dark intercellular
boundaries at optical depth unity. With increasing geometrical height and decreas-
ing optical depth, the pattern of temperature fluctuations reverses, so that the inter-
cellular boundaries become hotter than the cellular regions. Thisreversed granu-
lation pattern results from the radiative heating and cooling of convecting plasma
overturning in the stably stratified photosphere.

• To model magnetic flux emergence, we carried out radiative MHD simulations of
buoyant magnetic flux tubes, initially embedded in the near-surface layers of the
convection zone. The results from the simulations highlight the important of radia-
tive energy exchange and magneto-convection on the properties of emerging mag-
netic flux.

• The observational signatures of magnetic flux emergence in our simulations agree
qualitatively and quantitatively with observations of emerging flux regions. Flux
tubes with a longitudinal flux of about1018 Mx evolve passively with the convec-
tive flow and magnetic flux preferentially emerges in the form of horizontal fields
through the interior of granules. Within a granulation time scale (∼ 5 min), the
emerged flux is expelled to the intergranular downflow network.

• The emergence of an arched flux tube carrying a longitudinal flux of about1019

Mx can lead to the transient appearance of an anomalous dark lane, which has a
life time of about10 min and is spatially coincident with upflows at the emergence
site. The appearance of bright grains flanking the ends of the transient darkening is
associated with the development of downflows at the photospheric footpoints of the
arched flux tube.
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Summary

• Synthetic magnetograms for the previous emergence event were produced. The
appearance of the surface field depends on the spatial resolution and effective noise
level in the magnetograms. At a resolution of about1 Mm, the evolution of the
surface flux in the synthetic magnetograms is akin to that of an ephemeral region.
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1 Introduction

Solar magnetic fields on the surface of Sun exist and evolve over a wide range of length-
and time-scales. The most prominent magnetic features on the solar surface are sunspots.
Beginning with the work of Schwabe (1843), it has been established that the number
of sunspots appearing on the solar surface follows, on average, an11-year cycle. Our
knowledge of the existence of solar magnetic fields began with the work of Hale and his
co-workers (Hale 1908, Hale et al. 1919), who used the Zeeman effect to explain the
splitting of spectral lines forming in sunspots. Since this discovery, understanding solar
magnetism has been, and continues to be, one of the main challenges of astrophysics.

In order to explain solar magnetism, we need to address the questions of the origin
of magnetic fields and equally importantly, how the fields appear and then evolve on the
solar surface. The study of magnetic flux emergence is key to reaching this goal.

1.1 Global properties of magnetic flux emergence

Sunspots do not reside on the solar surface as isolated magnetic structures in a non-
magnetic background. Between the sunspot and the quiet Sun, there is a whole hierachy
of magnetic features including pores, micropores, plages and faculae. Anactive region
is an extended bipolar configuration on the solar surface resulting from the emergence of
magnetic fields. In terms of the amount of magnetic flux in each polarity, there is a con-
tinuous spectrum of active region sizes (Hagenaar et al. 2003). Although a partitioning of
the flux spectrum for the sake of classification may seem somewhat arbitrary, it allows us
to conveniently refer to active regions of different sizes.Large active regionshave polar-
ities containing a flux of5 × 1021 − 4 × 1022 Mx and contain sunspots. In large active
regions, the magnetic flux is shared amongst a whole hierachy of magnetic features in-
cluding spots, pores, micropores, plages and faculae. Large active regions have lifetimes
of up to months.Small active regions, which contain a flux of1 × 1020 − 5 × 1021 Mx
in each polarity, may consist of pores and smaller magnetic features but lack sunspots.
Small active regions may persist for up to days to weeks.Ephemeral active regionshave
even less flux (3× 1018 to 1× 1020 Mx), and have lifetimes of only hours to days (Zwaan
1987). Often, ephemeral active regions are simply refered to as ephemeral regions.

The characteristic timescale for the emergence of flux is only a fraction of the lifetime
of an active region. For instance, almost all the flux of a large active regions emerges
within the first4 days of their development (Zwaan 1985, Hagenaar 2001).

Systematic studies of sunspots and active regions reveal important global properties
of solar magnetic activity. The following points summarize the observed properties of
large and small active regions (excluding ephemeral active regions).

9



1 Introduction

• In the majority of cases, sunspots appear as bipolar pairs. Within an11-year sunspot
cycle, the east-west orientation of bipolar pairs in one hemisphere remains the same.
Within the same cycle, sunspot pairs appearing in the northern and southern hemi-
sphere have opposite east-west orientations. In the same hemisphere, the east-west
orientation of sunspot pairs reverses during the minimum of the11-year sunspot
number cycle. As such, the magnetic cycle in the Sun has a 22-year period. These
results are collectively known asHale’s polarity laws(Hale et al. 1919).

• The axis of a sunspot pair is tilted with respect to parallels of latitude, with the
leading spot closest to the equator. This is known asJoy’s law(Hale et al. 1919).

• The appearance of sunspot pairs is confined to two latitudinal bands between8◦ and
27◦ on either side of the equator. At the beginning of each sunspot number cycle, the
sunspot pairs tend to appear at higher latitudes. In the course of the sunspot number
cycle, the mean apppearance latitude of sunspot pairs migrates equatorward (Spörer
1890). A well-known visual expression of this effect is Maunder’s (1922)Butterfly
diagram.

• The amplitude of the11-year sunspot cycle is modulated. The maximum number
of spots during the peak of the cycle, as well as the length of the cycle vary. In
particular, historical records show that in the past, there have been time intervals
of reduced sunspot number spanning several11-year periods. The most famous
example is the Maunder Minimum, which occured between the years1640 and
1710 (Eddy 1976).

• Systematic asymmetries in terms of morphology and proper motion exist between
the leading and following polarities of pairs of sunspot groups (Zwaan 1985, van
Driel-Gesztelyi and Petrovay 1990, Petrovay et al. 1990).

The small sizes and short life-times of ephemeral active regions make them difficult
to identify and to track. To study their global properties, one requires full-disk magne-
tograms of high resolution and high cadence. As a result, there are very few studies in
the literature addressing this problem. Recent studies using data from the Michelson In-
terferometer (MDI) onboard theSOHOspacecraft have provided important information
about the global properties of ephemeral regions (Hagenaar 2001, Hagenaar et al. 2003).
Hagenaar (2001) performed a study of38, 000 ephemeral regions and found that roughly
60% of the regions follow Hale’s polarity law. In comparison,95% of large active regions
follow Hale’s law. More recently, Hagenaar et al. (2003) show that the emergence fre-
quency of bipolar regions on the solar surface strongly increases with decreasing flux, a
trend that is independent of the phase of the cycle. For instance, ephemeral regions with a
flux of 1019 Mx are about104−105 times more frequent than active regions with1021 Mx.
Over the course of the solar cycle, the emergence frequency of active regions varies. Their
analysis suggests that the variation of the emergence frequency of ephemeral regions is in
antiphase with the variation of the emergence frequency of larger active regions. Further-
more, the emergence frequency of ephemeral regions varies by a factor of about1.5 over
the cycle, which is about one order of magnitude smaller than the corresponding factor
for large active regions.
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1.1 Global properties of magnetic flux emergence

The fact that almost all large active regions follow Hale’s law is suggestive of a global-
scale structuring of magnetic fields in the solar interior. Since the period of the magnetic
cycle of sunspots is much shorter than the lifetime of the Sun, one is motivated to con-
struct dynamo models to explain the solar cycle. Although a number of models exist, there
remains a lack of consensus regarding which type of model provides the most encompass-
ing and robust description (Charbonneau 2005). In addition to the global solar dynamo,
it has been proposed that other dynamo mechanisms operate to produce magnetic fields
at smaller length scales and shorter timescales. For instance, based on the analysis of
ephemeral regions described in the previous paragraph, Hagenaar et al. (2003) proprosed
a scenario in which ephemeral regions with fluxes below30 × 1018 Mx originate from a
small-scale turbulent dynamo, whose operation is largely decoupled from the global-scale
dynamo responsible for large active regions.

With regards to theoretical work which addresses the global-scale evolution of solar
magnetic activity, two bodies of work deserve special mention. The first of these, theflux
tube models, take as their basic assumption that the azimuthal field of the Sun is stored
in the form of discrete, toroidal magnetic flux tubes in the overshoot layer underlying
the convection zone. A magnetic flux tube is essentially an idealization of a bundle of
magnetic flux. As the result of an instability, parts of the flux tube rise towards the surface
by means of magnetic buoyancy (Parker 1955). In the case that the cross-sectional radius
of the flux tube is much smaller than all the other relevant lengthscales in the system, the
flux tube may be described byThin Flux Tube Approximation(Roberts and Webb 1978,
Spruit 1981), which models each individual flux tube as a one-dimensional entity (see
Section 2.4).

Flux tube models take as the basic assumption the existence of toroidal flux tubes in
the overshoot layer. Given such an assumption, this paradigm provides a self-consistent
model of storage, instability and eruption of flux tube from the overshoot layer through
the convection zone (Schüssler et al. 1994). Numerical simulations of the dynamical
evolution of toroidal flux tubes carried out in this framework have been very successful at
reproducing, and explaining the emergence latitudes of active regions, their tilt angles as
well as the asymmetry between leading and following polarities (D’Silva and Choudhuri
1991, Fan et al. 1993, Moreno-Insertis et al. 1994, Fan et al. 1994, Caligari et al. 1995). In
addition, stochastic fluctuations of the field strength of flux tubes stored in the overshoot
layer can reproduce time intervals of extended low sunspot number similar to the Maunder
Minimum (Schmitt et al. 1996).

The second body of work in the literature that we would like to mention is the class
of surface flux transport models, which began with the work of Leighton (1964). These
models describe the time evolution of the radial component of magnetic fields on the solar
surface. The basic building blocks of such models which aim to explain the solar cycle are
(1) the emergence of bipolar regions following Hale’s law and Joy’s law; and (2) the su-
pergranular diffusion of the surface fields. Considering these two effects alone, Leighton
(1964) argued that there must be a reversal of the sign of the flux in the polar caps between
each11-year cycle. The reason for this is the preferential cancellation of field of leading
polarities on both sides of the equator, which leaves behind a net flux of the following
polarity in each hemisphere. The supergranular diffusion of the remnant flux cancels
and eventually replaces the polar flux from the previous cycle. Subsequent observational
and thereoretical work has indeed confirmed this prediction. The additional inclusion of
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1 Introduction

advection of surface flux by differential rotation and by the poleward meridional flow
has improved the correspondence between observation and modelling (see review paper
by Sheeley, 2005). By incorporating all these ingredients, surface flux transport mod-
els have been successful in reproducing the reversal in the signed flux of the polar caps
between successive11-year cycles (Baumann et al. 2004).

Surface flux transport models and flux tube models are complementary. There exists,
however, strong connections between the two. While Joy’s law is abasic assumption
of flux transport models, it is aconsequenceof thin flux tube models. Simulations of
rising toroidal flux tubes (for a range of magnetic field strengths) naturally reproduces
Joy’s law because the Coriolis force rotates the rising loops. Another assumption of flux
transport models is that the surface field of active regions be advected by the surface
motion in a passive manner. This requires that the field at the surface bedynamically
disconnectedfrom their roots in the solar interior. The work of Schüssler and Rempel
(2005) indicates that the dynamical disconnection process is a robust feature of the post-
emergence evolution of active regions. One desirable feature that is common to these two
types of models is that they make testable predictions. Neither is tailor-made to describe
only solar magnetic activity. While maintaining their basic structures and assumptions,
both can be (and have been) applied to model magnetic activity on other stars (Schüssler
et al. 1996, Granzer et al. 2000, Schrijver and Title 2001, Schrijver et al. 2003, Holzwarth
and Schüssler 2003a,b).

1.2 Small-scale properties of magnetic flux emergence

A thorough understanding of the fine structure of solar magnetic fields is as important
as an understanding of the dynamics at the global scale. As in the previous section,
we first present an overview of observed small-scale phenomena before discussing their
underlying theoretical aspects.

Observations of the birth of an active region indicates that the total flux in each polarity
of region is not the consequence of the emergence of a coherent, monolithic flux bundle.
Rather, it builds up as the result of many small flux bundles emerging simultaneously or
in succession. An Emerging Flux Region (EFR) is the area on the solar surface where
these emergence events take place (Zirin 1972, Zwaan 1985). The onset of the birth of
an active region is characterized by the appearance of a compact and very bright plage.
The plage consists of magnetic flux elements of opposite polarity, which move apart at
an initial velocity of about2 km s−1. New flux continues to emerge near the polarity
inversion line. The orientation of the emerging field is not random. Rather, they are
roughly aligned along the axis connecting the two polarities. This regularity leads to an
accumulation of flux in both polarities. If sufficient flux has emerged, pores and possibly
sunspots appear. These tend to be formed near the leading and following edges of the
expanding plage (see Zwaan 1985, and references within).

The granulation pattern in an EFR may appear different than that of the quiet Sun. In
quiet-Sun granulation, bright granules correspond to upflows whereas the dark integran-
ular boundaries are consists of downflow lanes and vertices. Transient dark alignments
in the central part of an EFR have been detected in intensity maps of both the continuum
and in the cores of photospheric spectral lines (Bray et al. 1984, Brants and Steenbeek
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1.2 Small-scale properties of magnetic flux emergence

Figure 1.1: Model of an Emerging Flux Region (EFR). In this model, sunspots form as a
consequence of the sucessive emergence of flux bundles at the surface. These flux bundles
are connected deeper below the surface (adapted from Zwaan 1985).

1985, Zwaan 1985, Strous and Zwaan 1999). The darkenings are roughly aligned along
the axis connecting the two polarities of the active region and typically last about10 min-
utes. In the continuum, they are darker than the intergranular boundaries but the spectral
lines show upwards Doppler velocities beyond0.5 km s−1. By estimating the diameter
and strength of emerging flux bundles that lead to the appearance of dark alignments in
an EFR, Brants and Steenbeek (1985) calculated that each bundle contains a longitudinal
flux of about1019 Mx. This value is in agreement to the estimate given by Born (1974),
who inspected the total flux in an active region and counted the number of arch filaments
seen in Hα.

On the basis of the observations previously summarized, Zwaan (1978, 1985) con-
structed a heuristic model of an EFR at and below the solar surface. Fig. 1.1 shows a
sketch adopted from his model. In this figure, the solid arrows show the orientation of
field lines and the outlined arrows show the motion of flux tubes. In his model, flux
emerges as a collection of arched flux tubes rising through the convection zone. Deep
in the convection zone, the flux tubes connect to the same roots. Near the surface, how-
ever, they are separated from each other. In this model, the transient dark alignments in
the observations correspond to positions where the apices of the flux tubes emerge at the
surface. In his interpretation, the alignments are dark because the horizontal magnetic
fields suppress turbulent heat exchange. After the horizontal top of a tube has emerged,
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1 Introduction

the photospheric footpoints of the tubes separate and the field at the footpoints become
increasingly vertical. The coalescence of the vertical flux elements in each polarity may
lead to sufficient flux to be accumulated for the formation of pores and sunspots.

Subsequent observations of EFRs tend to support many aspects of Zwaan’s heuristic
model. Strous and Zwaan (1999) performed a statistical analysis of over two hundred
emergence events in a single EFR. They found that emerging flux is characterized by
the transient appearance of dark alignments between the polarities. Often, they observed
the appearance of faculae at the ends of the dark alignments. The faculae are typically
associated with downflows. More recently, full Stokes observations carried out by Lites
et al. (1998) and by Kubo et al. (2003) have supported a number of aspects of Zwaan’s
model. They report the detection of horizontal fields with strengths of about200−600 G.
As the newly emerged flux move away from the emergence site, the fields become vertical
and obtain strengths in excess of1, 000 G.

As pointed out by Schüssler (1990), magnetic fields that have just emerged at the sur-
face are initially in a dynamical state.Flux expulsion(see Schüssler 1990, and references
within) sweeps the emerged magnetic flux from the granules to the intergranular down-
flow network, leading to an intensifcation of the magnetic field. Due to the presence of
radiative cooling, the intensification of the field is not limited by the equipartition value
(at the surface,Beq = v

√
4πρ ≈ 450 − 700 G) of the convective flow. The cooling of

the magnetic region in an intergranular downflow accelerates the downflow, which further
increases the magnetic field strength. This mechanism makes it possible for the magnetic
fields to reach superequipartition field strengths in the kilogauss range.

1.3 The buoyant rise of magnetic flux tubes

As the observations at global scales and at smaller scales indicate, the most conspicous
form of flux emergence at the photosphere is due to the arrival of coherent magnetic flux
bundles at the surface. This motivates the investigation of the detailed dynamics related
to the rise of buoyant magnetic flux tubes.

At present, the demand on computational resources is still far too great to carry out
realistic 3-dimensional magnetohydrodynamic (MHD) simulations of a flux tube rising
across the convection zone until it emerges at the photosphere, even more so if one wants
to include its further rise into the upper solar atmosphere. This is due to the extremely
wide range of length and time scales involved in the process and to the complicated mix-
ture of physical phenomena associated with the rise of the tube in its different phases
(e.g., turbulent convection, radiative transfer, magnetic reconnection). A possibility to
make progress in spite of these limitations is to perform idealized simulations to address
different aspects of the problem separately.

A branch in this undertaking is devoted to the basic magnetohydrodynamics of buoy-
ant flux tubes rising in stratified and (otherwise) unmagnetized media studied by way of
2D or 3D numerical experiments (see review by Fan, 2004). One example is an initially
horizontal magnetic flux tube embedded in a stratified layer. The tube is endowed with a
density deficit with respect to the surroundings, so that it rises and, in doing so, it expands,
displaces the surrounding medium and develops a trailing wake. A number of results, ob-
tained mostly for 2D (more precisely, 2.5D) configurations, concern the conversion of the

14



1.4 Research program of the present thesis

rising magnetic tube into pairs of vortex tubes. These experiments focus on the evolution
in a vertical plane normal to the axis of the tube and use the simplifying assumption of
independence of all quantities (scalars or vectors) with respect to the coordinate along
that axis. When the magnetic field in the horizontal tube is purely longitudinal (i.e., has
no components in the plane normal to the tube axis), an initially cylindrical tube, after
rising a height equivalent to a few times the tube diameter, splits into two roughly mirror-
symmetric vortex rolls. The rolls have vorticity of opposite signs pointing in the direction
of the tube axis and separate horizontally from each other. This behavior had been noted
in an early paper by Schüssler (1979) and was analyzed by Longcope et al. (1996) who
showed that the motion of the resulting vortex tubes could be explained as a result of the
combined action of the buoyancy and lift forces on them.

Another branch of study has been the emergence of magnetic flux tubes into the solar
atmosphere. Since Forbes and Priest (1984) and Shibata et al. (1989), a substantial body of
work has appeared in the literature presenting results of magneto-hydrodynamics (MHD)
simulations of this phenomenon. The focus of most studies in the literature has been
on the evolution of the emerging magnetic field in the chromosphere and in the corona.
Typically, these simulations ignore convection as well as energy exchange via radiative
transfer in the underlying layers. Nevertheless, simulations of flux emergence into the
corona have been successful in reproducing many observed features (see, for example
Archontis et al. 2004, Isobe et al. 2005).

This dissertation focuses on a different aspect of the problem. We wish to study in
detail the effects of convecting flows and radiative transfer on emerging magnetic flux.
To this end, we restrict our attention to flux emergence from the near-surface layer of the
convection zone into the photosphere.

1.4 Research program of the present thesis

This thesis presents an investigation of the emergence of magnetic flux into the photo-
sphere. As explained in the preceding discussion, the study of the global properties as
well as the fine structure of flux emergence is important for our generally understanding
of solar magnetism. We take a step-wise approach to help us study the many aspects of
the problem.

The rest of the thesis is structured as follows. In Chapter 2, we present a study of the
rise of magnetic flux tubes in an idealized stratified layer by means of two-dimensional
MHD simulations. Special emphasis is placed on studying the fragmentation of the rising
tube, its trailing wake and the formation of a vortex street in the high-Reynolds number
regime. Furthermore, we evaluate the relevance of the thin flux tube approximation with
regards to describing the evolution of magnetic flux tubes in the simulations.

Before we proceed to study flux emergence in the photosphere, it is important that we
are familiar with the properties of the quiet Sun. In Chapter 3, we study the properties of
the photosphere as well as the near-surface layers of the convection zone in the absence
of magnetic fields. This is done by means or carrying out a radiative hydrodynamics
simulation using theMPS/University of ChicagoRadiative MHD code (Vögler 2003,
Vögler et al. 2005). This code allows us to realistically model those layers in the Sun by
treating the effects of radiative transfer and partial ionization. After a description of the
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1 Introduction

governing equations and the numerical methods implemented in MURaM to solve these
equations, we present an analysis of the properties of the quiet-Sun atmosphere. One of
the topic treated is the structure of the reversed granulation of the photosphere.

In Chapter 4, we present results from two-dimensional simulations of flux emergence
into the photosphere. Emphasis is placed on studying the effect of radiative cooling on
an emerging flux tube. To simplify the analysis, the simulations neglect the presence of
convective flows.

In Chapter 5, we finally include the effects of convection. This chapter presents re-
sults of the emergence of buoyant magnetic flux tubes initially embedded in the vicinity
of convecting plasma in the sub-surface layers. The results are directly compared with
emerging flux observations.

16



2 Moving magnetic flux tubes:
fragmentation, vortex streets and
the limit of the approximation of
thin flux tubes

2.1 Background

The objective of the present study is to carry out 2.5D numerical experiments of the rise
of a buoyant horizontal magnetic flux tube in a stratified medium using a state-of-the-art
AMR code (the FLASH code) and profiting from the unprecedented computational power
allowed by today’s massively parallel computers. The chapter is organized as follows. In
Section 2.2, we present details of the simulation setup, including the system of equations
solved, the numerical method used, initial conditions of the simulation. Additionally, in
Section 2.2.4, we present the method used to track the flux tube. In Section 2.3, the results
from the 2.5D simulations are presented. The following aspects of the simulations are
discussed: dependence on Reynolds number (Section 2.3.1), the dependence of the flux
retention on twist (Section 2.3.2) and the evolution of the twist in the tube (Section 2.3.3).
In Section 2.4, we use a thin flux tube model to explain the evolution of the flux tube as
it rises through the stratified layer. In Section 2.5, we explore the transition from the thin
flux tube regime to the thick flux tube regime. Finally, in Section 2.6 we discuss possible
implications for understanding real magnetic flux tubes in the solar interior.

2.2 Equations, numerical method and initial conditions

2.2.1 Equations

The medium is taken to be a compressible, electrically conducting ideal gas with the
equation of state:

p = RρT, (2.1)
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whereR = R?/µ̄ is the individual gas constant and̄µ the mean molar mass. The time
evolution of the system is governed by the ideal magnetohydrodynamics equations:

∂ρ

∂t
+ ∇ · (ρ~v) = 0, (2.2)

∂(ρ~v)

∂t
+ ∇ ·

(
ρ~v ⊗ ~v − 1

µ0

~B ⊗ ~B

)
+∇ptot = ρ~g, (2.3)

∂(ρ e)

∂t
+ ∇ ·

(
~v[ρ e + ptot]− 1

µ0

~B[~v · ~B]

)
= ρ~g · ~v, (2.4)

∂ ~B

∂t
+ ∇ · (~v ⊗ ~B − ~B ⊗ ~v) = 0, (2.5)

(2.6)

where~v ⊗ ~v, ~B ⊗ ~B etc. denote dyadic products and

ptot = p +
B2

2µ0

, (2.7)

e =
1

2
v2 + ε +

1

ρ

B2

2µ0

(2.8)

are total pressure and total specific energy.ε is the specific internal energy. The solenoidal
condition∇ · ~B = 0 applies as an initial condition. These equations are valid in the
absence of thermal, viscous and Ohmic diffusion.

2.2.2 Initial conditions

2.2.2.1 Background stratification

A hydrostatic, adiabatically stratified polytropic layer of ideal monatomic gas was chosen
as the initial background stratification. This initial polytropic layer is described by the
following temperature, density and pressure profiles:

T (y) = T0

[
1 +

∇ad

Hp0

(d− y)

]
, (2.9)

ρ(y) = ρ0

[
1 +

∇ad

Hp0

(d− y)

]1/∇ad−1

, (2.10)

p(y) = p0

[
1 +

∇ad

Hp0

(d− y)

]1/∇ad

, (2.11)

wherey is the height coordinate,d the thickness of the layer, andT0, ρ0, p0 andHp0 are the
temperature, density, gas pressure, and pressure scale height at the top boundary (y = d),
respectively. The logarithmic temperature gradient is∇ = ∇ad = (d ln T/d ln p)s =
1 − 1/γ2. γ2 is Chandrasekhar’s second adiabatic exponent (Chandrasekhar 1957). For
the case of a completely ionized or completely neutral, monatomic gas,γ2 = 5/3. An
adiabatic stratification was chosen because it is neutral to motions induced by the rise of
the flux tube. This is, of course, an idealization of what happens in the solar convective
zone. However, here we are interested in studying the rise of the tube purely by its own
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2.2 Equations, numerical method and initial conditions

buoyancy. Furthermore, forB À Beq, whereBeq is the equipartition field strength with
respect to the convective flows, we can safely neglect the effects of the external convection
on the rise of the tube.

We choose to useρ0, p0 and Hp0 as units for the density, pressure and length re-
spectively.RT is used as the temperature variable. The units for the velocity and time
c0 =

√
p0/ρ0 (the isothermal sound speed at the top of the layer) andt0 = Hp0/c0 re-

spectively. The unit for specific energies ise0 = p0/ρ0 and the unit for the magnetic field
is B0 =

√
2µ0p0. Expressed in these units, the initial polytropic profiles (2.9) to (2.11)

become

T̃ (ỹ) = [1 + (d̃− ỹ)∇ad], (2.12)

ρ̃(ỹ) = [1 + (d̃− ỹ)∇ad]
1/∇ad−1, (2.13)

p̃(ỹ) = [1 + (d̃− ỹ)∇ad]
1/∇ad , (2.14)

where the tilde denotes a quantity expressed in these units. In what follows, all quantities
are expressed in terms of these units and we drop the tilde from all the symbols. Quantities
inside the flux tube are denoted with a subscripti and quantities outside the flux tube have
no subscripts. For example,T andTi refer to the temperature outside and inside the flux
tube respectively. From here on, the symbolHp always refers to the local pressure scale
height.

In the simulations presented in Section 2.3, the polytropic layer is enclosed in the re-
gionx ∈ [−10, 10] andy ∈ [0, 35]. Therefore the density and pressure contrasts between
the bottom and top of the polytropic layer are58 and871 respectively. The number of
pressure scale heights spanned over the height of the layer isNp =

∫
dy/Hp = 6.77.

This is comparable to the number of pressure scale heights spanned between the bottom
of the solar convection zone (at depth of200 Mm) and a depth of about20 Mm. Thin
flux tube simulations of flux tubes carrying magnetic flux comparable to active regions
(Φ = 1020 − 1022 Mx) are considered to yield reliable results up to a depth of about10
Mm. Above that depth, the radii of these flux tubes become comparable to the localHp.
The number of pressure scale heights between a depth of200 Mm to 10 Mm is Np ≈ 16.

2.2.2.2 Initial magnetic profile of the flux tube

The initial flux tube is taken to be axisymmetric. In cylindrical coordinates, the longitu-
dinal and azimuthal components of its magnetic field have the form:

Bl(r) = B0 exp (−r2/R2
0), (2.15)

Bθ(r) =
λr

R0

Bl, (2.16)

wherer ∈ [0, 2R0] is the radial distance from the tube axis,R0 is the characteristic radius
of the flux tube andλ is the dimensionless twist parameter. Forr > 2R0, the magnetic
field is zero. As such, a twisted magnetic flux tube of this form carry no net current. We
note that the parameterq used by Linton et al. (1996) and Fan et al. (1998b) is equivalent
to λ/R0. At r = R0, the pitch angle is given bytan Ψ = (Bθ/Bl)|R0. The total initial
longitudinal flux of the tube is

∫
BldA = 0.98πR2

0B0.
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For each simulation, a flux tube was inserted near the bottom of the stratified layer at
time t = 0. We have carried out a number of simulations with different values ofR0 and
λ.

2.2.3 Numerical method

We have chosen to use the FLASH code for carrying out the simulations. This code im-
plements a Riemann solver that is formally second-order accurate in time and space. The
advective terms are discretized using a slope-limited Total Variation Diminishing (TVD)
scheme and time-stepping is performed using an explicit, Hancock-type scheme (Toro
1997). The system of equations is solved on a 2D grid with cartesian geometry.

As mentioned in § 2.2.1, the MHD equations (3.2)-(3.1) do not take into account the
effects of thermal, viscous and Ohmic diffusion. In practice, however, such non-ideal
effects are always present in simulations as a result of numerical diffusion. Of course, if
diffusive effects are actually important for the problem of interest, diffusive terms can be
added to the MHD equations to capture the relevant physics. In astrophysical problems,
one often encounters situations with very large dynamic and magnetic Reynolds numbers.
This is also the case for the solar interior. As such, we have chosen not to impose explicit
diffusive terms in the MHD equations. Diffusive effects in the following simulations
are purely numerical. The amount of numerical diffusion present in the simulation is
dependent on the numerical resolution used. The higher the numerical resolution, the
smaller is the amount of numerical diffusion and the larger are the effective Reynolds
numbers. Since the initial state of the background atmosphere in our problem is uniform
(except for small pressure perturbations) in the horizontal direction and smoothly varying
in the vertical direction, only relatively large grid spacing is required to resolve regions far
away from the flux tube. On the other hand, high spatial resolution is needed to resolve
the small-scale features at the interface between the tube and its surroundings (e.g., in
regions where the flux tube fragmented).

The numerical resolution we can use is limited by the computational resources avail-
able. To get the highest numerical resolution where we need it, we made use of the Adap-
tive Mesh Refinement (AMR) feature in FLASH. The cartesian domain is comprised of
adjacent square blocks, each consisting of8 × 8 grid cells. At each time-step, all the
blocks are checked to determine if the block should be refined. If the normalized second-
order spatial derivative of the absolute field strength,|B|, exceeds some fixed threshold in
any grid cell, the resolution of the corresponding block is doubled by interpolation and the
original block is split into four sub-blocks, increasing the ‘refinement level’ of the original
block by one. The reverse process (coarsening) occurs when the normalized second-order
spatial derivative of|B| is smaller than some threshold for all four sub-blocks. Then the
resolution of each sub-block is halved and the sub-blocks are merged.

For further details on the FLASH code, the reader is referred to the FLASH user
manual (ASCI Center for Thermonuclear Flashes, 2003).

2.2.4 Tracking the flux tube

In the simulations discussed here, the initial flux tube does not remain a single, monolithic
structure as it rises to the top. From the results of the literature (Emonet and Moreno-
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Insertis 1998, Fan et al. 1998a, Hughes and Falle 1998), we expect the tube to fragment
and lose flux by means of vortex shedding. However, for a sufficiently high level of field
line twist, a central portion of the tube retains its identity throughout the simulation. We
refer to this central flux filament as the ‘main tube’. To track the main tube, we make use
of the flux function:

ψ(x, y) =

∫ x

0

By(x
′, y)dx′ −

∫ y

0

Bx(x, y′)dy′. (2.17)

Field lines traced out by the transverse field (Bx, By), when projected onto thex − y
plane, correspond to contours ofψ. For the initial axisymmetric flux tube, the contours
are a family of concentric circles corresponding to the planar projection of the twisted
field lines that wind around the tube axis. Let us call one of these circlesC. The initial
magnetic flux inside this structure is given byΦ0 =

∫
C

BzdA. To identify this structure
at a later time, we calculateψ for that time and find the contour(s)∂C ′ satisfying the flux
conservation criterionΦt =

∫
C′ BzdA = Φ0. If the structure has broken up, than the

contours will be a set of closed curves and the sum of the fluxes enclosed in these curves
is Φ0.

If we arbitrarily chose a value ofΦ0 to define the main tube, we have no guarantee that
at a later time, the structure we track remains coherent. In order to define a coherent main
tube, we reverse the aforementioned procedure. At the end of a simulation (i.e. when the
main flux structure has reached the top of the domain),t = t1, we calculateψ(x, y)|t1.
We test different contour levelsψ0 = ψ|t1. If the contours corresponding to a particular
value ofψ0 consists of more than one closed loop, we dismiss them. For the remaining
values ofψ0 (each of which has only one corresponding closed curve), we pick the one
that encloses the maximum amount of flux (ΦMT). This is defined as the main tube for this
particular simulation. To back-track the main tube at earlier times, we simply calculateψ
for that time. Then the contour which encloses a flux equal toΦMT represents the main
tube at that time.

The centre of the main tube is located at the extremum ofψ (maximum or minimum
depending on whether the tube has right or left-handed twist). Although the main tube is,
in general, not circular, we can define an effective radius,

reff =

√∫

C

dA/π, (2.18)

which gives a useful measure of its size.

2.3 Simulation results

We have carried out a number of simulations in order to study different aspects of the
problem of the buoyant rise of magnetic flux tubes. Various aspects of the results are
discussed in the following sections.

2.3.1 Dependence on Reynolds number

From the same initial setup, we have carried out simulations with different levels of grid
refinement in order to study how the numerical resolution influences the outcome of the
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Run Effective resolution Re
A1 256× 448 25
A2 512× 896 140
A3 1024× 1792 630
A4 2048× 3584 2600

Table 2.1: Simulations runs out carried to study the dependence of the simulation result
on numerical resolution (and hence Reynolds number).

simulation. The initial condition is as follows: a flux tube was inserted near the bottom of
the polytropic atmosphere at(x0, y0) = (0.0, 2.5) at t = 0. The flux tube hasR0 = 0.5
(corresponding to4% of the local pressure scale height),β0 = 15 andλ = 0.25. The
material inside the tube has the same entropy as the external atmosphere, so that it is
buoyant. We carried out four runs from this initial condition. Run A1 has the lowest
effective resolution. If the simulation domain was fully refined, the domain would be
spanned by256 × 448 grid cells in thex andy directions. Runs A2, A3 and A4 have
2, 4 and 8 times the effective resolution of A1 respectively. Table 2.1 gives the effective
resolution and effective Reynolds numbers (Re) for each of the runs. The latter is defined
as

Re =

(
D

Lbl

)2

, (2.19)

whereD is the flux tube diameter andLbl is the width of the boundary layer between flux
tube and its surroundings.

Figure 2.1 shows the distribution of the longitudinal field (Bz) over the entire domain
at t = 200 for all four runs. Figure 2.2 shows thez component of the vorticity (ωz) at
the same time. To emphasize the difference in resolution between the runs, the axes are
labelled in terms of grid-points. To calculateRe, we examined the profiles ofBz andωz

near the verticalx = 0 for each of the runs att = 200. From theBz profile we can find the
tube diameterD. From the correspondingωz profile, we identify a thin boundary layer
near the apex of the tube. The left and right halves (aboutx = 0) of this boundary layer
have opposite sign. The thickness of this boundary layer - which is the site of vorticity
generation - corresponds toLbl. Inspection of the vertical profile of the magnetic field
alongx = 0 gives the distance over which the magnetic field goes to zero above the tube
apex. This gives the thickness of the magnetic boundary layer. For the simulations in this
study, we found that the magnetic and viscous boundary layers have similar thickness,
about6 grid cells, indicating that the magnetic Reynolds numberRem ∼ Re. This is not
a coincidence, since the viscous and magnetic diffusion stem from diffusion inherent in
the numerical scheme.

2.3.1.1 Structure of the wake

The structure of the wake depends on the Reynolds number. AtRe = 25 (top left panel
of Figs. 2.1 and 2.2), we identify two coherent counter-rotating vortex rolls in the wake.
These types of wake structures have been reported in past studies of rising magnetic flux
tubes (Schüssler 1979, Longcope et al. 1996, Moreno-Insertis and Emonet 1996, Emonet
and Moreno-Insertis 1998). A similar pair of vortex rolls is also found in the wake of
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the flux tube for the run withRe = 140. In this case, however, the rolls have more
internal structure. Fig. 9 of Emonet and Moreno-Insertis (1998) shows similar plots of
vorticity for a rising twisted flux tube. We note that the vorticity distribution shown in the
rightmost panel of their figure very much resembles our case forRe = 140. However,
the vortex rolls in their figure also show signs of breakup into smaller vortex rolls. At
higherRe (Re = 630 andRe = 2600 in runs A3 and A4 respectively), the breakup
of the vortex rolls is even more obvious. In these two cases, each roll is replaced by a
group of secondary rolls with the same sign in vorticity. This indicates that the shedding
of material at high Reynolds number occurs in a much more intermittent fashion than in
cases with lowRe.

2.3.1.2 Flux retention and field diffusion

The fraction of magnetic flux retained by the head of the flux tube (i.e. the main tube) also
depends on the Reynolds number. Fig. 2.3 shows the flux retained in the main tube att =
280 for the four different runs (diamonds). Clearly, with increasingRe, the percentage of
flux retained by the main tube increases. AtRe = 2600, the main tube retains84% of the
original flux of the initial tube. Although we cannot conclude from these simulations that
the flux retained converges to some value in the limitRe → ∞, Fig. 2.3 does seems to
suggest that the curve levels off for increasingRe.

Emonet and Moreno-Insertis (1998) demonstrated that in a rising, twisted flux tube,
vorticity is generated in the magnetic boundary layer between the tube and the surround-
ing flow. The material in this boundary is then advected towards the wake, leading to a
loss of magnetic flux from the tube. We can estimate the flux loss per unit time as

−dΦ

dt
= vtubeLblBbl, (2.20)

wherevtube is the relative velocity between the tube and the surroundings andBbl is the
characteristic value of the longitudinal field in the boundary layer. Making use of Eq.
(2.19), and using the approximation thatRe ≈ Rem, we find that

−dΦ

dt
= vtubeBbl

D√
Re

. (2.21)

If one makes the additional assumptions that,vtube, D andBbl do not change much with
Re, then we find that the amount of flux lost from the tube scales asO(Re−1/2). The
amount of flux retained by the main tube, as predicted by this scaling relation, is plotted
as a solid line in Fig. 2.3. The value atRe = 25 was used as a reference point for the
curve.

In ideal MHD, the ratio of mass and longitudinal magnetic flux enclosed in the main
tube,M/Φ, should remain constant. In numerical simulations, however, the ratio always
increases with time because of some mass diffusion across field lines. The size of this
change tells us how well the simulation approximates the ideal MHD case. Fig. 2.4 shows
the percentage change of this quantity for the main tube betweent = 0 andt = 280, as a
function ofRe. At Re = 25, the ratioM/Φ increased by44%. This increase in the ratio
diminishes for higher resolution. AtRe = 2600, the change is only on the order of1%.
Consequently, in order to compare the results from numerical simulations with predictions
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Figure 2.1: The structure of the wake below the rising flux tube depends on the Reynolds
number of the flow. The four panels show the distribution of the longitudinal magnetic
field at Reynolds numbers ranging from25 to 2600.
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Figure 2.2: Same as Fig. 2.1 but for thez component of the vorticity. At low Reynolds
numbers - see cases withRe = 25 andRe = 140 - the wake consists of two vortex rolls
with vorticity of opposite sign. At sufficiently high Reynolds numbers - see cases with
Re = 630 andRe = 2600 - the vortex rolls break up and the shedding of vorticity into
the wake occurs in a more intermittent fashion.
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Figure 2.3: Magnetic flux retained in the main tube as a function of the Reynolds number.
The diamonds plot the values from simulations A1 to A4. If the amount of flux lost scaled
asO(Re−1/2), it would follow the solid curve.

Figure 2.4: The change ofM/Φ (ratio of enclosed mass and enclosed magnetic flux in
the main tube) as a function of the Reynolds number.

in the approximation of thin flux tubes (which assumes ideal MHD), we should take the
results from runs with the highest values ofRe.

2.3.2 Dependence of flux retention on twist

We carried out a number of simulations to study the dependence of the flux retained in the
main tube as a function of the twist parameterλ. These runs have the same resolution as
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Figure 2.5: The dependence of the twist retained in the main tube as a function of the
twist parameterλ.

run A4. We find that a flux tube with no initial twist (λ = 0), after rising a distance a few
times its radius, splits into two counter-rotating vortex rolls, which separate horizontally
from each other. This behaviour has already been reported in an early paper by Schüssler
(1979). Longcope et al. (1996) showed that this is a result of the combination of the
buoyancy and lift forces acting on the flux tube. Our results show that even at the relatively
high Reynolds number (Re ∼ 103), the same behaviour is observed.

For magnetic flux tubes with non-zero twist, we were able to track a main tube. Fig-
ure 2.5 shows that the amount of flux retained in the main tube att = 280. It is a mono-
tonically increasing function ofλ, a result consistent with the previous work of Moreno-
Insertis and Emonet (1996). Thus, given that a main tube can be tracked, the amount of
flux it retains increases withRe.

2.3.3 Evolution of twist in the flux tube

As Parker (1974, 1979) pointed out, the radial expansion (compression) of a twisted flux
tube leads to an increase (decrease) of the pitch angle of the field lines. This is a conse-
quence of magnetic flux conservation (Fan et al. 1998b).

The radial profiles of the longitudinal and transverse field we have chosen for the
initial flux tube yield a pitch angle of the field lines that depends on radial distance from
the axis. A more appropriate measure for the amount of twist in the tube isλ, which is
dimensionless and constant over the initial tube. If the flux tube undergoes a homologous
expansion (or compression),λ evolves according to

λ

λ0

=
R

R0

, (2.22)

where theλ andR are the twist and characteristic radius of the tube, respectively. The
subscript0 denotes their initial values. Eq. (2.22) states thatq = λ/R remains constant
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Figure 2.6: The relationship between the tube’s effective radius and its twistλ. The solid
line shows the linear relation given by Eq. (2.22). Diamonds denote the evolution of the
mean twist〈λ〉 of the main tube in run A4. This good match indicates that the main tube
expands homologously over most of the tube rise.

as the tube rises (Linton et al. 1996). The second-order thin flux tube approximation also
predicts the same result (Ferriz-Mas et al. 1989). In this approximation, an axisymmetric
tube has a transverse fieldBθ(r) ∝ r. By virtue of the conservation of the transverse
magnetic flux, Eq. (2.22) can be obtained.

In Fig. 2.6, the relationship given by this equation is shown as a solid line. Overplotted
(as diamonds) are values of the mean twist〈λ〉 of the main tube in run A4 against its
effective radiusreff . Following (2.16), we define the mean twist as

〈λ〉 = reff

〈
Bθ

r′Bz

〉
, (2.23)

wherer′ is the distance of a point in the main tube from the tube centre. The match
between the simulation results and the linear law is very good up toR w 3.6R0, indicating
good compatibility with the assumption of homologous expansion. Beyond this size, the
flux tube radius is larger than the local pressure scale height and there is a clear deviation
between the linear law and the simulation results.

2.4 Comparison with a thin flux tube model

One of the main aims of this paper is to evaluate the relevance of the thin flux tube ap-
proximation with regards to describing the behavior of flux tubes in 2.5D simulations. In
the following, we consider how a rising magnetic flux tube behaves in the context of this
approximation (Roberts and Webb 1978, Spruit 1981).
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2.4.1 Thin flux tube model

The basic assumption of the thin flux tube approximation is that the radius of the flux
tube is much smaller than any other characteristic length scale in the system (e.g., local
pressure scale height and the radius of curvature of the tube axis). We assume that the
quantities are uniform over the tube cross-section, so that their values at the tube axis
are representative of their off-axis values. This assumption corresponds to retaining only
the zeroth-order term in the axis-centered Taylor-expansion of the quantities in the tube.
Higher-order treatments can also be derived (Roberts and Webb 1978, Ferriz-Mas et al.
1989). In the following, we develop a model based on the zeroth-order approximation,
which is already sufficient for modelling how the physical properties near the tube centre
evolve. To model the evolution of the twist in the main tube, it is necessary to extend to a
second-order approach.

Instantaneous pressure balance (pex = pin + B2/2µ0) between the tube and its sur-
roundings is assumed. For this assumption to hold, we require that the sound-crossing
time over the tube diameter be much smaller than the time required for the tube to trans-
verse a distance comparable to its diameter. This means the adiabatic sound speedcs

is much larger than the speed of the tube. Taking the terminal velocity (Parker 1975,
Moreno-Insertis and Emonet 1996):

vterm =

√
π

CD

∆ρ

ρ
gR (2.24)

as the characteristic speed of the tube, and taking|∆ρ/ρ| ≈ 1/β, we arrive at the criterion:

(
Rtube

Hp

)1/2 (
1

β

)1/2

¿ O(1). (2.25)

We make the additional assumption that the horizontal thin flux tube evolves adiabat-
ically, subject to instantaneous pressure balance with its surrounding. This means that the
state of the tube at any time is only a function of its initial state and the height it has risen.
A convenient measure for the height of the flux tube is theexternal pressure contrast,

χp ≡ p1/p0, (2.26)

wherep0 is the ambient pressure at the initial height of the tube andp1 is the ambient
pressure at a different height. Thus, the physical quantities within the flux tube (e.g.β, ρi

etc.) at any time are functions of their initial values andχp.
For a uniform horizontal flux tube, conservation of longitudinal magnetic flux leads

to
ρi1

ρi0

=
B1

B0

, (2.27)

whereB here is the longitudinal field strength of the thin flux tube. Combining this with
the condition of instantaneous pressure balance, we have

ρi1

ρi0

= χ1/2
p

(
β0 + 1

β1 + 1

)1/2

. (2.28)
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From the adiabatic evolution of the flux tube,

ρi1

ρi0

=

(
p1i

p0i

)1/γ

, (2.29)

and Eq. (2.28), we obtain

β1 + 1

β0 + 1
=

(
β1

β0

)2/(2−γ)

χp. (2.30)

Given an initial valueβ0, we can solve forβ1, after the tube has risen through a pressure
contrast ofχp. Forβ À 1, we haveβ1/β0 = χ

(γ−2)/γ
p . The physical properties of the flux

tube can be expressed as functions ofβ1 in the following way

B(χp) = B0

(
β1

β0

)1/(γ−2)

, (2.31)

ρi(χp) = ρi0

(
β1

β0

)1/(γ−2)

, (2.32)

Ti(χp) = Ti0

(
β1

β0

)(γ−1)/(γ−2)

, (2.33)

R(χp) = R0

(
β1

β0

)1/(4−2γ)

, (2.34)

whereR is the radius of the flux tube and the expressions on the r.h.s. can be expressed
in terms ofχp by virtue of Eq. (2.30).

Of the four simulations runs A1 to A4, we chose to compare the thin flux tube model
with results from Run A4 because the effect of magnetic diffusion is smallest for this case.
Fig. 2.7 shows the dependence of|B|, T , β and the tube radius as functions ofχp. The
values of|B|, T andβ in the simulation were taken at thecentreof the main tube, and are
plotted as diamonds. The effective radiusreff of the main tube is defined by Eq. (2.18).
The solid lines show these quantities as calculated with Eqs. (2.30) to (2.34). Sinceχp is
the pressure contrast,χp < 1 corresponds heights above the original position of the tube.
For this simulation, we have tracked the main tube untilχp = 5.4× 10−3, corresponding
to over5 pressure scale heights. The thin tube predictions agree well with the simulation
results over this wide range of heights, even at the lowest values ofχp where the radius
becomes comparable to or larger than the local pressure scale height. The thin flux tube
predictions of temperature, density and|B| deviate from their actual values in the main
tube centre by less than2%. The values ofβ calculated with the thin tube model deviate
from the actual values by3% at most and the effective radius of the main tube differs from
the theoretical value by less than4%.

The comparison we have made here shows that Eqs. (2.30) to (2.34) accurately de-
scribes the height dependence of the physical propertiesin the tube centre. In order for
our thin tube model to be a dynamical model, we must also solve the equation of motion
for a thin flux tube. This will then allow us to model the motion of the main tube as well
as the time-dependence of its physical properties in the thin flux tube framework. This
comparison is carried out in the following section.
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Figure 2.7: Comparison between the simulation (run A4) and the thin flux tube model.
Diamonds indicate values of the physical quantities at the tube centre in the simulation
and the solid lines show the predictions from the thin tube model (Eqs. (2.30)-(2.34)).
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2.4.2 Modelling the motion of the main tube

As explained in the introduction, the motion of a twisted magnetic flux tube in an un-
magnetized environment shares a number of features with the motion of a rigid cylinder
in a flow (Emonet and Moreno-Insertis 1998, Emonet et al. 2001). Under a number of
simplifying assumptions, the equation of motion of the magnetic tube can be written in a
simple way; among them we count: (1) zero circulation and small Mach number of the
surrounding flow; (2) not too low Reynolds numbers (Re & 50); (3) small length-scales
and long timescales of change for the flux tube compared to the intrinsic length and time
scales, respectively, of the flow. Under those assumptions, the integrated effect of the fluid
stresses on the periphery of the tube can be simply described by a drag force given by the
classical aerodynamic formula and an enhancement of the inertia of the tube because of
the co-acceleration of the external medium in the vicinity of the tube (Batchelor 1967).
For a cylinder or flux tube driven by its own buoyancy in rectilinear motion this would
yield:

Iv̇y = g
∆ρ

ρ
− CD

π

|vy|vy

R
, (2.35)

wherevy is the vertical velocity of the tube,∆ρ/ρ the relative density difference between
the tube and its environment andg the gravitational acceleration. The second term on the
right is the drag acceleration, withCD being the aerodynamic drag coefficient (of order
unity for Re À 1) andI the enhanced inertia factor (which is≈ 2 for β À 1).

Figure 2.8 shows the rise velocity of the main tube (upper panel) and its height (lower
panel), both as functions of time. Values from the simulation are indicated as diamonds.
The solid lines indicates the theoretical profiles found by integrating Eq. (2.35). The mean
density deficit of the main tube,〈∆ρ/ρ〉 = 0.013, and its initial radius,R = 0.64, were
used as initial conditions for the path integration. The values of the drag coefficient and
enhanced inertia factor used areCD = 2.0 andI = 2.0 respectively. To take into account
the effect of tube expansion on the buoyancy and drag forces, Eqs. (2.32) and (2.34) were
used to update the tube radius and density at each time step of the path integration.

The velocity and height profiles from the thin tube approximation are in general agree-
ment with the motion of the main tube betweent = 0 andt = 200. Betweent = 0 and
t = 20, the main tube approximately undergoes a freefall acceleration in accordance with
its own buoyancy. The motion of the main tube during this time interval is well-matched
by the solid lines. The time taken for the main tube to rise a height difference of∆y = 30
(corresponding to4.1 pressure scale heights) is∆t = 273. The corresponding rise time
predicted by the thin flux tube mode is∆t = 256, which is within10% of the actual value.

One feature of the motion of the main tube which is not predicted by the thin tube
calculations is the temporary deceleration of the tube betweent = 20 andt = 30. As
reported by Moreno-Insertis and Emonet (1996), this is a result of the differential accel-
eration experienced by the different parts of the flux tube. Since, initially, the core of the
tube has the largest density deficit, it undergoes a stronger acceleration than the parts of
the tube above it. This differential acceleration leads to a compression at the apex of the
tube, which enhances the transverse magnetic field there. The enhanced magnetic tension
near the apex of the tube eventually decelerates the core of the flux tube (our main tube)
and induces an internal oscillation.
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Figure 2.8: Rise velocity (upper panel) of the main tube and its height (lower panel),
both as functions of time. Diamonds indicate values from the MHD simulation (run A4).
The solid line shows the velocity profile calculated with the thin flux tube model, with
CD = 2.0 andI = 2.0.
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This effect, which is not described by Eq. (2.35) for the motion of a thin flux tube, is
a source of discrepancy between the simulation results and the thin flux tube calculations.
Another discrepancy is the deceleration of the main tube aftert = 200, which is not
predicted by the thin flux tube result. This deceleration is due to the closed top boundary
condition used. Eq. (2.35) does not take this into account.

Near the top of the simulation domain, the main tube is so large that it can no longer
be considered a thin flux tube. Att = 253, the main tube has an effective radius equal to
Hp. In Section 2.5, we examine in more detail how the limit of the thin flux tube model is
reached as the flux tube increases in size.

2.4.3 The asymmetric rise of magnetic flux tubes and their trailing
vortex streets

In the simulations discussed thus far, the background atmosphere was initially plane-
parallel and the flux tube initially axisymmetric and stationary. This confines the flux
tube to a purely vertical trajectory. To study the asymmetric rise of flux tubes, we carried
an additional simulation run. Run B has essentially the same initial condition as Run A4
(β0 = 15, λ = 0.25, R0 = 0.5), with the exception that the flux tube is initially rotating
solidly about its axis with angular velocityω = 0.03. The vorticity integrated over the
initial flux tube (r ∈ [0, 2R0]) is Ω0 =

∫ 2R0

0
∇× ~vtdS =

∮
~v · d~l = 0.2.

As already mentioned in the introduction, a flux tube with a net vorticity~Ω travelling
with forward velocity~V with respect to the external medium experiences a lift force equal
to−ρ~Ω×~V . The lift force causes a sideways acceleration of the flux tube so that its motion
deviates from the vertical. In simulations runs A1 to A4, we have seen that a flux tube
rising purely vertically sheds equal but opposite amounts of vorticity to the left and right
halves of its wake. When the tube motion is no longer purely vertical, the two sides of the
tube shed unequal amounts of vorticity. Each time a vortex roll is emitted from the flux
tube, the remaining tube and wake structure is left with a net vorticity.

Emonet et al. (2001) found that the quasi-periodic shedding of vorticity of alternating
sign by a rising flux tube leaves this tube and wake structure with a net circulation that re-
verses its sign periodically in time. Thus the horizontal component of the lift acceleration
also alternates periodically. This results in an oscillatory, horizontal motion of the flux
tube super-imposed on the general vertical rise of the tube, so that it traces out a zigzag
path. By adding the lift acceleration−~Ω×~v to the equation of motion of the thin flux tube
and assuming a sinusoidal time-varying vorticity for the tube and wake, they could model
the zigzag motion of the tube. We found thatΩz(t) = 0.04 sin (2πt/80 + 5.2) gives a
good agreement between the integrated path from the thin flux tube model (plotted as a
dashed line in Fig. 2.9) and the actual path of the main tube. The sequence of circles
indicate the positions and effective radii of the main tube as it rises and expands.

Figure 2.10 shows the vorticity distribution att = 280. The three vortex rolls of al-
ternating sign constitute a pattern reminiscent of a von Kármán vortex street. The first
vortex roll shed by the flux tube is centered at(x, y) = (−3, 12) and has negative sign.
This means that, as this roll was being shed, the remaining tube and wake system was
gaining a net positive vorticity. The lift force then acts to steer the tube and wake system
towards the right. During this time, vortex rolls with positive vorticity are preferentially
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Figure 2.9: The trajectory of the main tube in run B. The circles indicate the position of
the main tube at different times during the simulation. The effective radius of the main
tube at different instances is given by the size of the circles in the plot. The dashed line
shows the trajectory from a thin flux calculation, taking into account the aerodynamic lift
force.

shed off the tube. This continues until the tube and wake system has a net negative vor-
ticity. At this point, the lift force pushes the tube back towards the left.

2.5 Exploring the limits of the thin flux tube approxima-
tion

In this section, we address the question: How relevant are the predictions of the thin
flux tube model in describing the quasi-static structure of a rising flux tube as its radius
approaches and exceeds the local pressure scale height? To explore the transition from
the thin flux tube regime to the ‘thick’ flux tube regime, we performed a simulation (Run
C) of a rising tube, starting with a flux tube with an initial flux100 times larger than in
the previous cases. Here, the domain spansx ∈ [−40, 40] andy ∈ [0, 70]. The flux tube
is initially centered at(x0, y0) = (0, 20) with B0 = 12.3, R0 = 5 (corresponding to1/4
of the local pressure scale height) andλ = 0.1.

Figure 2.11 shows the flux tube att = 0 and t = 220. The five concentric green
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Figure 2.10: The distribution of the vorticity att = 280 for run B. In this simulation, the
flux tube had an initial net vorticity. Aerodynamic lift causes the flux tube to rise in a
zigzag fashion, leaving behind a vortex street in its wake.
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Flux roll R (Hp) Φ (Φ0) Symbol in Fig. 2.12
1 0.02 0.01 +
2 0.08 0.1 ¦
3 0.1 0.2 4
4 0.2 0.5 ¤
5 0.3 0.8 ×

Table 2.2: The flux and initial radius of the flux rolls as shown in Fig. 2.11(a).

Figure 2.11: Evolution of a large flux tube (Run C). Shown in color is the longitudinal
field. Each of the five circular green contours represent a magnetic field line projected
onto the plane. Every contour encloses a certain amount of flux, which defines aflux roll.
Table 2.2 gives the flux and initial radius of each flux roll.

contours in the left panel are the planar projection of different field lines. Each of these
contours defines aflux roll. By tracking these contours, we follow the evolution of these
flux rolls. The longitudinal flux and initial radius of each of these rolls is given in Ta-
ble 2.2.

In order to evaluate the validity of the thin flux tube approximation, we compare its
predictions with the simulation results for all five flux rolls. For the thin flux tube pre-
dictions, Eqs. (2.31)-(2.34) are used to calculate how the physical quantities evolve. The
initial values (B0, ρ0, etc.) are taken as averages inside the rolls. The values from the thin
flux tube calculations are then compared with the average values measured in the flux
rolls at later times in the simulation.

Figure 2.12 shows the relative discrepancies between the model predictions and the
average values from the simulation as a function of effective radius of largest flux roll
(flux roll 5). The size of this flux roll is representative of the ‘true’ size of the rising flux
tube. As expected, the discrepancy grows as the effective radius of the flux tube becomes
comparable to the local pressure scale height. In this regime, the flux tube interior is
sufficiently stratified that average values of its physical properties do not match with the
corresponding thin flux tube values, so the thin flux tube approximation is no longer
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Figure 2.12: Comparison between thin flux tube calculations with average quantities in-
side the flux rolls (Run C). The different symbols correspond to quantities in the different
flux rolls (see Table 2.2). As the effective radius of the flux tube approaches the local
pressure scale heightHp, the discrepancy between the simulation results and the thin flux
tube predictions grows.

appropriate for describing the state of the flux tube. The discrepancies in temperature and
density do not grow as much as the discrepancies in field strength andβ for the following
reason: for an ideal thin flux tube in pressure balance with its surroundings, the relative
difference ofT andρ between the tube and its surroundings is always of orderO(β−1).
Thus relative differences inT andρ decrease with increasingβ (the case of an expanding
tube). Consequently, discrepancies inT and ρ between the thin tube predictions and
the simulation results do not tell whether the thin flux tube approximation is good at
describing the average properties of the flux tube. In contrast, discrepancies inβ and|B|
show clearly the transition between the thin flux tube regime to the ‘fat’ flux tube regime,
when the radius of the tube is comparable to the pressure scale height.

We have also examined how the average twist,〈λ〉, of each flux roll evolves as they
expand. Fig. 2.13 shows〈λ〉 as a function of the effective radii of the flux rolls. Again,
there is good agreement between the data points and the solid curve, which plots the
relation given by Eq. (2.22).

2.6 Conclusions

We have carried out idealized 2.5D MHD simulations of buoyant magnetic flux tubes
rising in a stratified layer over a range of Reynolds numbers (25 & Re & 2600). Our
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Figure 2.13: Variation of the average twist of the flux rolls as a function of their effective
radii. The different symbols show the average twist of the five flux rolls (Run C). The
solid line shows the relation given by Eq. (2.22). The good match between the simulation
results and relation (2.22) indicates that the flux rolls expand homologously.

simulations confirm previous results in the literature. Additionally, we have analyzed the
dependence of the results on the Reynolds number. We found that the detailed structure of
the wake, as well as the amount of flux retained in the main tube, varies with the Reynolds
number. At sufficiently high Reynolds number (Re & 600), the vortex pair in the wake
break into secondary rolls. The amount of flux retained in the tube also increases with
Re.

We have studied how the twist in a flux tube varies as it expands. In particular, the
dimensionless twist〈λ〉, averaged over the main tube, scales approximately linearly with
the tube radius. If flux tubes originating from the bottom of the solar convection zone
have any amount of initial twist, this twist will be amplified upon the rise of the tube. The
twist will be maximum at the apex of the rising loop, where the cross-sectional radius is
largest.

We derived thin flux tube equations (Eqs. (2.31)-(2.34)) to model the evolution of the
properties a horizontal flux tube rising adiabatically through the atmosphere. Using these
equations to model the expansion of the tube, and using Eq. (2.35), the motion of the
main tube can be reproduced. For a tube that undergoes asymmetric vortex shedding, the
lift force can be included into the equation of motion to explain the zigzag motion of the
tube. The vortex shedding associated with this zigzag motion leaves behind a vorticity
distribution resembling a von Kármán vortex street.

Furthermore, we studied the transition from the regime of thin flux tubes to the regime
of fat flux tubes (Run C). We found that the discrepancy between the thin tube calculations
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and the average quantities of flux rolls increases as the flux tube expands. When its radius
is comparable to one pressure scale height, the discrepancy between the thin tube calcu-
lations and the simulation results can be at least of orderO(1), meaning the thin flux tube
approximation is no longer valid. This result is in accordance with previous expectations.
In the solar convection zone, rising toroidal flux tubes approach this limit at a depth of
about10 Mm, so it is no longer appropriate to continue thin flux tube simulations above
those depths. On the other hand, our results point in the direction that below such depths,
the thin flux tube approximation is useful for studying the evolution of flux tubes.
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convection and the photosphere

In order to simulate photospheric flux emergence, the first requirement is to have an accu-
rate3-dimensional model of the upper convection zone and the photosphere. In the quiet
Sun, the most prominent photospheric feature is the surface granulation. The granulation
pattern consists of granules with a typical size of1 Mm. The boundary of the granules is
the intergranular network. In white light, the granules appear brighter than the intergranu-
lar network. The granulation pattern is dynamic. Time-sequences of the granulation in the
quiet Sun reveal that the typical lifetime of surface features is about5 minutes (Leighton
et al. 1962, Title et al. 1989).

Numerical simulations have firmly established the solar granulation as a radiative-
convective phenomenon (Stein and Nordlund 1989, 1998). The individual granules are
plumes of hot, upflowing material originating from the convection zone and overshooting
into the stably stratified photosphere. The superadiabatic temperature gradient required to
drive the motion in the convection zone is maintained by radiative cooling at the thermal
boundary layer between the convection zone and the photosphere. Radiative losses make
the overshooting material relatively cold and dense. Their overturning motion feeds the
intergranular network of downflows.

On the one hand, the near-surface flow responsible for the granulation pattern can
influence the evolution of emerging magnetic fields. On the other hand, the Lorentz force
of magnetic fields embedded in the fluid may also influence the motion of the fluid. The
interplay between magnetic fields and convective plasma,magneto-convection, is a key
aspect of solar surface magnetism. The ability to model magneto-convection in the near-
surface layers and photosphere is therefore important for flux emergence simulations. A
proper treatment of this problem requires the inclusion of several physical effects:

3D compressible MHD- The convection zone and solar atmosphere are both strati-
fied. Upflowing plasma expands whereas downflowing plasma compresses. The expan-
sion/compression of fluid elements lead to the weakening/intensification of the embed-
ded magnetic field. Additionally, the flows in these layers have Mach numbers up to
M ∼ O(0.1 − 1). As such, the Boussinesq and anelastic approximations are insufficient
and the fully-compressible MHD equations must be solved.

Energy exchange via optically thin radiative transfer- The energy produced in the
core of the Sun must be carried outwards. In the radiative core, the radial energy fluxF ν

is carried by photons. Owing to the high densities and opacities in this region, the mean
free path of a photon is much smaller than the local pressure scale height (i.e. the medium
is optically thick over the typical scale of temperature and pressure variations). Thus,
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the radiative transport of energy in the radiative core can be treated with the diffusion
approximation, withF rad = −krad∇T , wherekrad is the coefficient of conduction for
radiative transport (Kippenhahn and Weigert 1994). In the convection zone, convection
takes over as the dominant mechanism for the transport of energy. Finally, in the transition
layer between the convection zone and the photosphere, radiative transfer once again takes
over as the dominant mechanism of energy transport.

The plasma at and above this transition layer, however, is tenuous and the photon
mean free path is comparable, or larger, than the local pressure scale height (Hp ∼ 150
km). This means the medium is optically thin over such a length scale. In this region, the
radiative heating rateQrad is an important source term in the energy equation and errors
in Qrad arising from the unjustified use of the diffusion approximation cannot be ignored.
An improved approach is to use the Eddington approximation. Robinson et al. (2003),
for example, carried out 3D solar surface convection simulations using the diffusion ap-
proximation for optically thick layers and the Eddington approximation for optically thin
layers. A shortcoming of the Eddington approximation is that it assumes a nearly isotropic
radiation field, which is not the case in the photosphere. In the presence of strong mag-
netic fields the horizontal gradients exasperates the problem of anisotropy. To determine
Qrad accurately, it is necessary to calculate the radiation field by solving the Radiative
Transfer Equation (thereafter RTE).

Partial ionization effects - In the upper convection zone and the photosphere, the
plasma is partially ionized, which means its thermodynamic properties are different from a
completely neutral or completely ionized ideal gas. The specific internal energy of such a
partially ionized gas has two components. The first component is attributed to the thermal
energy of the particles. There is also alatent heatcomponent, which is associated with
the ionization and excitation energies of the species in the gas. Changes in the ionization
state of the gas affect the gas pressure for a given mass density, the specific heatscv and
cp as well as the opacity of the gas (Rast and Toomre 1993a,b, Rast et al. 1993). As
shown by Rast and co-workers, all these effects are important for the local dynamics in
the convective zone as well as the global transport properties of energy and enthalpy. In
the upper few Mm of the convection zone, about2/3 of the vertical enthalpy flux is carried
in the form of latent heat. This is indicative of how important partial ionization effects are
for solar convection.

All these effects are treated by the MURaM code (Vögler et al. 2005) under the as-
sumption of local thermodynamic equilibrium (LTE). In the following paragraphs, we
review why each the aforementioned effect is important. In § 3.1, we present the full set
of radiative MHD equations solved by MURaM and discuss the numerical schemes used.
In § 3.2, we give details of the setup we used to obtain a numerical model of the upper
convection zone and photosphere. Furthermore, we discuss the properties of the convec-
tion. In § 3.4, we present an explanation for the reversed granulation, which is a reversal
of the temperature fluctuation pattern at about100 km above the visible surface. The un-
derstanding gained from this exercise will eventually help us to better interpret the results
from the flux emergence simulations, which will be presented in the next two chapters.
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3.1 The radiative MHD equations

3.1 The radiative MHD equations

The MURaM code was developed for simulation of photospheric radiative-MHD phe-
nomena. The MHD equations solved by MURaM consist of the induction equation, the
equation of continuity, the equation of motion and the energy equation. These equations
are supplemented by the equation of state (EOS) and the radiative transfer equation (RTE).

3.1.1 The equations of magnetohydrodynamics

Induction equation

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B). (3.1)

This equation describes the evolution of a magnetic field embedded in an electrically con-
ducting fluid. Here,η = c2/4πσ is the magnetic diffusivity,c the speed of light andσ the
electrical conductivity.

Continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (3.2)

This equation expresses the principle of mass conservation.

Equation of motion

∂ρv

∂t
+∇ ·

[
ρv ⊗ v + (p +

B2

8π
)1− B ⊗B

4π

]
= ρg +∇ · τ . (3.3)

This equation is a statement of the principle of momentum conservation. Here,p is the
gas pressure andg is the gravitational acceleration. In a thin layer near the solar surface,
we can take this to be constant, withg = (0, 0,−2.74×104) cm s−2. The termsv⊗v and
B⊗B represent dyadic products and1 represents the3× 3 identity matrix. The Lorentz
forcej ×B/c has been split into two terms. The first term is a gradient of the magnetic
pressure, which is defined as:

pmag =
B2

8π
.

The second term in the Lorentz force is the term∇(B ⊗ B/4π), which describes the
magnetic tension of field lines. The last term on the r.h.s. of Eq. (3.3) is the viscous force.
The components of the viscous stress tensorτ for a compressible fluid are given by:

τij = µ

(
∂vi

∂xj

+
∂vj

∂xi

− 2

3
δij(∇ · v)

)
, (3.4)

whereµ is the dynamic viscosity andδij the Kronecker-Delta symbol. The dynamic
viscosity is related to the kinematic viscosityν by the relationµ = ρν.
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Energy equation
The sum of the internal, kinetic and magnetic energy densities per unit volume ise =
ρε + 1

2
ρv2 + B2/8π. Its evolution is described by the energy equation

∂e

∂t
+ ∇ ·

[
v(e + p +

B2

8π
)− 1

4π
B(v ·B)

]
(3.5)

=
1

4π
∇ · (B × η∇×B) +∇ · (v · τ) +∇ · (K∇T )

+ ρ(g · v) + Qrad.

HereT is the temperature andK the thermal conductivity. The first and second terms on
the r.h.s. of Eq. (3.5) are the Ohmic and viscous dissipation terms respectively.Qrad =
−∇·F rad is the radiative heating rate. As mentioned earlier, the radiative transfer equation
(RTE) must be solved in order to evaluate this term.

3.1.2 Equation of state

The equation of state (EOS) used in the MURaM code is implemented in the form of
look-up tablesT = T (ε, ρ) andp = p(ε, ρ). The look-up tables were evaluated by solving
the Saha-Boltzmann equations. The first ionization of the11 most abundant elements
were considered. For a detailed account of how the tables were evaluated, we refer the
reader to Appendix A of Vögler et al. (2005).

3.1.3 Numerical treatment of the MHD equations

MURaM consists of two modules, one for solving the MHD equations and one for solving
the radiative transfer. The two modules are coupled in the following way: At each time
step, the MHD module provides the spatial distribution of temperature, density and pres-
sure. This is used by the radiative transfer module to solve the RTE. The radiative transfer
module providesQrad to the MHD module, which allows the latter to update the solution.
In this section, we describe how the MHD module solves the MHD equations numeri-
cally. In Section 3.1.5, we describe how the radiative transfer module is implemented.
For more details about both modules, see Vögler (2003) and Vögler et al. (2005).

MURaM uses the following numerical scheme to solve the MHD equations (3.1)-
(3.5). The equations are solved on a 3-dimensional cartesian grid, with regular grid-
spacing in each cartesian direction. The spatial discretization of the equations is based on
a fourth-order centered-difference scheme on a five-point stencil. The code is parallelized
by means of domain decomposition. The Message Passing Interface (MPI) is used for
communication between the sub-domains.

It has been estimated that in the surface layers of the Sun, the hydrodynamics Reynolds
number of the flow lies in the range108 − 109 (Komm et al. 1991). These values for the
Reynolds numbers correspond to viscous length scales on the order of centimeters, which
means that, at the length and velocity scales of the granulation, viscous effects are neg-
ligible. At present, it is computationally infeasible to carry out simulations of surface
granulation with sufficiently small grid-spacing to resolve such tiny length scales. As
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such, all attempts at simulating the surface granulation are effectivelylarge-eddysimula-
tions. These simulations resolve flow structures with length scales larger the than grid-
spacing available. Owing to non-linearities in the MHD equations, energy may cascade
down to sub-grid scales, which could lead to numerical instabilities in the calculations.
Some numerical schemes have inherent numerical diffusivities that prevent this from hap-
pening. For higher-order finite difference schemes, the inherent numerical diffusivities
are small. In order to keep the simulations stable, explicit diffusive terms are required.
For this purpose, MURaM makes use of artificial diffusivities. A combination ofhyper-
andshock-resolvingdiffusivities are used. Hyperdiffusivities are implemented in such a
way, that the diffusion terms associated with them are comparable in magnitude to the
inertial terms only at length scales close to the grid-spacing. For the thermal and viscous
coefficientsK andν, the hyperdiffusivities are defined throughout the entire domain us-
ing the scheme described in Vögler et al. (2005). For the magnetic diffusion term in the
Induction Equation, we impose a constant magnetic diffusivityη0 throughout the domain.
Near the top and bottom boundary boundaries and in regions of strong expansion of the
magnetic fields, we found it necessary to use an additional artificial magnetic diffusivity
to stabilize the simulation. Shock diffusivities are implemented in the same way as Vö-
gler et al. (2005). In regions of converging flow (i.e.∇ · v < 0), the values of the shock
diffusivities are proportional to|∇ · v|. In other regions of the domain, the values of the
shock diffusivities are set to zero.

MURaM uses an explicit fourth-order Runge-Kutta scheme for the temporal dis-
cretization. The maximum size of the time step,∆tmax, is determined by a modified
CFL-criterion (Hirsch 1990a,b):

∆tmax = min(∆tad, ∆tdiff), (3.6)

where∆tad is the advective time step given by

∆tad =
8

3

min(ν, η, κ)

c2
tot

, (3.7)

and∆tdiff is the diffusive time step given by

∆tdiff =
2

3

[
max(ν, η, κ)

(
1

∆x2
+

1

∆y2
+

1

∆z2

)]−1

. (3.8)

The total wave speedctot is defined as

ctot = v + csound + cAlfvén, (3.9)

wherev is the fluid speed,csound =
√

p/ρ the isothermal sound speed andcAlfvén =
B/
√

4πρ the Alfvén speed.

3.1.4 Radiative Transfer Equation

Letdεrad be the quantity of energy carried by radiation in the frequency interval(ν, ν+dν)
along the directionµ within a solid angledΩ passing through an area elementdS with unit
normaln̂ in a time intervaldt. The monochromatic specific intensityIν is then defined as

dεrad = Iν(x,µ, t)µ · n̂dSdΩdνdt. (3.10)
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3 Simulation of near-surface convection and the photosphere

The Radiative Transfer Equation (RTE) governs the change inIν :
(

1

c

∂

∂t
+ µ · ∇

)
Iν = κνρ(Sν − Iν)., (3.11)

whereκν is the monochromatic opacity andSν the source function. Since the speed of
the fluid motion is much less than the speed of lightc, the explicit time dependence can
be dropped and we have the time-independent RTE:

µ · ∇Iν = κνρ(Sν − Iν). (3.12)

A natural measure for the distance transversed by photons in absorbing media is the opti-
cal depth

dτν := κνρds. (3.13)

whereds is the path element along a given directionµ. This allows one to write the
transfer equation as

dIν

dτν

= Sν − Iν . (3.14)

This equation has the formal solution

Iν(τν) = Iν(0)e−τν +

∫ τν

0

Sν(tν)e
−(τν−tν)dtν . (3.15)

The radiative energy fluxF ν is the first moment of the specific intensity:

F ν =

∮

4π

Iν(µ)µdΩ. (3.16)

The mean intensity is

Jν =
1

4π

∮

4π

Iν(µ)dΩ. (3.17)

The radiative heating/cooling term in Eq. (3.5) is defined as

Qrad = −
∫

(∇ · F ν)dν. (3.18)

It is this term in the energy equation that couples the magnetohydrodynamics to the radia-
tive transfer. Making use of Eq. (3.12), an equivalent expression forQrad is

Qrad =

∫
4πκνρ(Jν − S̄ν)dν (3.19)

whereS̄ν = (4π)−1
∮
4π

SνdΩ is the angular mean of the source function. As yet, we
have not made any assumptions about the form ofSν . Under photospheric conditions,
we can assume that the gas is approximately in local thermodynamic equilibrium (LTE).
Under this assumption, each fluid element has a well-defined local temperature and the
ionic, atomic and molecular population levels satisfy Saha-Boltzmann statistics. This
assumption greatly simplifies the computational effort to solve the RTE, for the source
function can be approximated by the Planck function, i.e.

Sν = Bν(T ) =
2hν3

c2

1

ehν/kT − 1
. (3.20)

Since the Planck function is isotropic,S̄ν = Bν .
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3.1 The radiative MHD equations

3.1.5 Numerical treatment of the RTE

In the following, we describe how the radiative transfer module of MURaM solves the
RTE numerically (for details, see Vögler et al. 2005). The RTE is solved over a 3D
cartesian grid, with the grid centers of this radiative grid defined by the cell corners of the
grid used by the MHD module of the code. For each point on this radiative grid, the RTE
is solved over24 ray directions (3 per octant). The method of short characteristics is used
to solve the RTE. For each ray direction on a given grid-point, the transfer equation is
solved along the ray segment (short characteristic) between the grid-point and the nearest
upwind intersection of the ray with a cell boundary. The values ofT , p andρ at the ends of
the ray segment are interpolated from the values in the adjacent grid-points on the MHD
grid. Once the transfer equation has been solved for all24 directions, the quadrature sum
of Iν over these rays provides the radiative flux densityF ν and the mean intensityJν .

MURaM can treat the radiative transfer in the grey or non-grey approximation. In the
grey approximation, the frequency dependent opacityκν is replaced by a suitably defined
mean opacitȳκ, which is just a function ofT andp. This function is stored as a look-
up table, which the code uses at runtime to determine the opacities in the domain. In
the optically thick and thin regimes ,̄κ corresponds to the Rosseland and Planck mean
opacities, respectively. In the non-grey approximation, opacities at different frequencies
are sorted into a number of bins in the following way. Given a1D reference atmosphere,
the depth at whichτν becomes unity is determined for each frequency. Depending on
the depth at which this occurs, the opacities were sorted into the respective bins. For
each bin, a mean opacity look-up table was computed using the same scheme as for the
grey case. The use of4 bins is a good compromise between accuracy and performance.
When MURaM is configured to run a non-grey simulation, the radiative transfer module
solves the transfer equation4 times (once for each bin) for each ray segment of a given
grid-point. The radiative heating is then the sum ofQrad over all4 bins.

The treatment of frequency dependence by the opacity binning method greatly reduces
the computational effort required to solve the radiative transfer. Vögler (2004) has carried
out MURaM simulations of photospheric magneto-convection with grey and non-grey ra-
diative transfer and found that the properties and dynamics atτRoss = 1 for both runs are
very similar. In the upper photosphere, the non-grey run yields smaller temperature fluc-
tuations than in the grey run. This effect is more pronounced in magnetic concentrations.
The r.m.s. contrast of surface brightness maps is slightly lower in the non-grey runs than
in the grey runs. This actually leads to an enhancement of the contrast between bright
magnetic features and their surroundings.

Since the grey runs require less computational resources, and we are interested pri-
marily in the dynamics near the surface, we have used grey radiative transfer for most
of our simulations of flux emergence. We have also repeated one simulation run using
non-grey radiative transfer to check that this does not change the results and conclusions
we make, which is indeed the case. Synthesis of spectro-polarimetric diagnostics from
the simulations, however, requires non-grey radiative transfer because the formation of
many spectral lines is very dependent on temperature.
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3 Simulation of near-surface convection and the photosphere

3.2 Simulation setup

Here we give details of the simulation setup used to obtain a thermally relaxed 3D model
of the upper convection zone and the photosphere. In this simulation there are no magnetic
fields present in the domain. The horizontal size of the simulation domain is24 Mm ×12
Mm, with each direction spanned by480 and240 grid cells respectively. The height of the
domain is2.304 Mm, and is spanned by144 grid cells. The grid-spacing in the horizontal
and vertical directions is50 and16 km respectively. Periodic boundary conditions are
implemented for the vertical side boundaries. The bottom boundary is open and allows
mass to flow in and out of the domain smoothly. The specific entropys of both in- and
out-flows are constant over the bottom boundary, i.e.

(
∂s

∂z

)

bottom

= 0. (3.21)

The velocities of the downflows (vz < 0) and upflows (vz > 0) at the bottom boundary
are treated differently. The following stress-free boundary conditions are satisfied for
downflows at the bottom boundary:

(
∂vx

∂z

)

bottom

=

(
∂vy

∂z

)

bottom

=

(
∂vz

∂z

)

bottom

= 0. (3.22)

Upflows at the bottom boundary are vertical:

(vx)bottom = (vy)bottom =

(
∂vz

∂z

)

bottom

= 0. (3.23)

For this purely hydrodynamic run, we imposed a closed top boundary, with the veloc-
ities satisfying

(
∂vx

∂z

)

top

=

(
∂vy

∂z

)

top

= (vz)top = 0. (3.24)

We found that, for simulations of magnetic flux emergence, a closed top boundary is
inappropriate because it artificially traps the emerged magnetic field inside the domain.
For the flux emergence simulations, we have modified the top boundary so that it allows
for a smooth outflow or inflow of material. The details of the implementation of this open
top boundary condition is given in the next chapter. Details of the boundary condition for
the magnetic field at both the top and bottom boundaries will also be discussed in that
chapter.

For the initial condition, we took the 1D height profiles ofρ andε from the mixing
length model of Spruit (1974) and imposed a plane-parallel atmosphere into the simula-
tion domain. To break the symmetry, we imposed pressure perturbations on the order of
a few percent. We then ran the simulation until we obtained a statistically stationary state
for the convection. The properties of this 3D model are discussed in the next section.
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3.3 Properties of near-surface convection and the photosphere

Figure 3.1: A snapshot of the 3D model of the upper convection zone and the photosphere.
The gray surface shows theτRoss = 1 level. The grey scale on this surface shows the
vertical velocity of the material at that level (dark is downflowing and light is upflowing).
The vertical slice on the right side of the domain shows the temperature stratification. The
vertical slice on the left side shows the specific entropy distribution.

3.3 Properties of near-surface convection and the photo-
sphere

Figure 3.1 shows a snapshot of our numerical model of the upper convection zone and the
photosphere. The grey surface shows the RosselandτRoss = 1 level, calculated along rays
directed vertically downwards. From hereon, when we speak of thevisible surface, we
are referring to this level. The pattern of the surface granulation can be clearly discerned
from the gray-shading on this surface, which shows the vertical velocity of the material
at that level. The grey-shading ranges between−3 (black, downwards) to+3 (white,
upwards) km s−1. TheτRoss = 1 surface is corrugated. The surface is depressed in the
intergranular network and elevated in the interior of granules. The r.m.s. of the height of
this surface is30 km, consistent with the value reported by Stein and Nordlund (1998),
who also used numerical simulations to study solar granulation. We take thex-y plane at
which 〈τRoss〉 = 1 (horizontal average ofτRoss) to bez = 0, with z increasing upwards.
This plane is450 km below the top boundary. Defining the pressure scale-height asHp =
(d ln p/dz)−1, the number of pressure scale heights between the bottom boundary and the
visible surface isN(Hp) =

∫
dz/Hp = 5.

The colour-coding on the vertical plane on the right side of Fig. 3.1 shows the tem-
perature distribution in that plane. Similarly, the colour-coding on the vertical plane on
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3 Simulation of near-surface convection and the photosphere

Figure 3.2: Topology of near-surface convection. The red isosurfaces indicate upflow re-
gions and the blue isosurface indicates the downflow regions. The strong downflows form
a connected network, which separates the upflowing material into disjoint upwellings.

the left side of this figure shows the specific entropy distribution in that plane. We discuss
this in more detail in Section 3.3.3.

3.3.1 Topology of near-surface convection

Figure 3.2 shows isosurfaces of the kinetic energy density of the vertical component of
velocity 1

2
ρv2

z = 8125 erg cm−3. For the mean surface density of〈ρ〉 = 2.6×10−7 g cm−3,
this kinetic energy density corresponds to a vertical speed of2.5 km s−1. The isosurfaces
coloured red indicate upflow regions and the isosurface coloured blue indicate downflow
regions. This figure shows that the upflows are broader and the downflows are narrower.
The downflow network consists of lanes, which outline the granules, and vertices, which
connect the lanes. The asymmetry between the upflows and the downflows is a robust
feature of compressible convection in a stratified medium: ascending material expands
and descending material is compressed. For a convecting flow in statistical equilibrium,
the net mass flux crossing a horizontal plane is close to zero. This requires the narrow
downflows to have larger speeds than the broad upflows. Betweenz = 0 andz = −300
km, downflows have typical speeds of4− 8 km s−1 whereas upflows have typical speeds
of only 2− 4 km s−1. Since the downflows are more compact and faster, they are able to
penetrate through upflowing regions and separate them into disjoint upwellings.

Figure 3.2 shows that the intergranular downflows reach down to the bottom boundary
of the simulation domain. The simulation domain of Stein and Nordlund (1998) reaches
down to 2.5 Mm below the visible surface. In their simulations, the downflows also
reach the bottom boundary. At the moment, it is unclear just how far the surface-driven
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3.3 Properties of near-surface convection and the photosphere

Figure 3.3: Horizontally averaged pressure (solid) and temperature (dashed) as functions
of z.

downdrafts can penetrate into the convection zone. Although there are theoretical rea-
sons suggesting that at even greater depths, coherent downdrafts will self-organize and
merge into stronger downdrafts (Spruit et al. 1990), it is a hypothesis that remains to be
confirmed or refuted by future simulations and helioseismic observations.

3.3.2 Logarithmic temperature and density gradients

In the original version of the MURaM code (Vögler et al. 2005), the EOS was described
by the two look-up tablesT (ε, ρ) andp(ε, ρ). This is sufficient for the code to run. In this
study, we are interested in using additional thermodynamic quantities as aids for analyz-
ing the simulations. As is shown in Appendix A, a number of important thermodynamic
quantities can be readily calculated from the look-up tables for temperature and pres-
sure. The specific entropys and the adiabatic temperature gradient∇ad, for example, are
particularly useful because they are related to adiabatic processes.

The horizontally averaged temperature and pressure as a function ofz are shown in
Fig 3.3 as dashed and solid curves respectively. Figure 3.4 shows the corresponding
logarithmic temperature gradients:

∇ :=
d ln T

d ln p
, and (3.25)

∇ad :=

(
∂ ln T

∂ ln p

)

s

. (3.26)

∇ (solid black curve) is the actual average temperature gradient in the simulation and∇ad
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3 Simulation of near-surface convection and the photosphere

Figure 3.4: Logarithmic temperature gradients∇ (solid black curve),∇ad (solid red
curve) and the super/sub-adiabaticityδT = ∇−∇ad (dashed curve).

(solid red curve) is the adiabatic temperature gradient.∇ad describes the variation of tem-
perature of a fluid element undergoing adiabatic expansion or compression. It is related
to Chandrasekhar’s second adiabatic exponent byγ2 = (1−∇ad)

−1 (see Appendix A.5).

The super/sub-adiabaticity is defined asδT := ∇ − ∇ad. This quantity is plotted
as a dashed curve in Fig. 3.4. In the special case that the gas is completely neutral or
completely ionized, all three of Chandrasekhar’s adiabatic exponents converge to the same
quantityγ, which is equal to the ratio of specific heatscp/cv. In the photosphere, the
chemical species are almost completely neutral. Since molecules have not been taken into
account in our EOS, the gaseous mixture in our model is monatomic. For a monatomic
gas,γ = 5/3 and so in our model photosphere,∇ad = 1 − 1/γ = 0.4. As we go deeper
into the convection zone, the ionization fraction of hydrogen (and traces of other species)
increases. This has the effect of decreasing the adiabatic temperature gradient, so that
∇ad < 0.4.

The (in-)stability of the stratification to convective motion is influenced by changes in
the ionization state. Consider the classical picture of a parcel of gas in an average back-
ground stratification. Initially, it has the same density and pressure as its surroundings.
Let it be displaced vertically and let it do so adiabatically. If, upon ascent (descent), the
parcel gains a density deficit (excess) relative to the surroundings, the buoyancy force
accelerates the parcel in the same direction as its motion. In this case, the stratification
is said to be unstable the convective instability. Formulated mathematically, the criterion
for instability is

∇ρ,ad > ∇ρ (3.27)
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3.3 Properties of near-surface convection and the photosphere

Figure 3.5: Logarithmic density gradients∇ρ (solid black curve),∇ρ,ad (solid red curve)
and their differenceδρ = ∇ρ −∇ρ,ad (dashed curve).

where∇ρ,ad :=
(

∂ ln ρ
∂ ln p

)
s

= 1/γ1 is the density response of the parcel and∇ρ := d ln ρ
d ln p

is

the actual density gradient in the background atmosphere. In analogy with the super/sub-
adiabaticityδ, we call the difference between these two termsδρ := ∇ρ −∇ρ,ad. Fig. 3.5
shows these three quantities as functions ofz in our 3D model. The regionz < 0 (i.e. the
convection zone) hasδρ < 0 and is convectively unstable. The photosphere (z > 0), in
contrast, is stable to the convective instability sinceδρ > 0. The quantityδρ is indicative
of the amount of buoyancy driving in the unstably stratified layers. After a parcel of gas
has been displaced from its equilibrium positionz0 by a vertical distance∆z, the ratio of
the internal density of the parcelρi with respect to the external densityρe is given by

ln

[
ρi

ρe

]

z0+∆z

= −
∫ z0+∆z

z0

δρdz

Hp

, (3.28)

whereHp = (d ln p/dz)−1 is the local pressure scale height.
Criterion (3.27) can be expressed in terms of the super/sub-adiabaticityδT in the fol-

lowing way
δT > 0. (3.29)

This is theSchwarzschild criterionfor convective instability. Inspection of the height
dependence ofδT in Fig. 3.4 indeed shows thatδT is positive in the convection zone and
negative in the photosphere.

3.3.3 Specific entropy distribution

In the convection zone (in the simulation domain), the upflows have a typical specific
entropysup ≈ 6.0R? (recall R? is the universal gas constant). Downflows, which are
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3 Simulation of near-surface convection and the photosphere

Figure 3.6: Vertical profiles of the specific entropy. The solid curve shows the horizontally
averaged profile as a function of heightz. The dashed curves show examples of vertical
entropy profiles along upwellings. These profiles show that below the visible surface, the
upflows rise almost adiabatically.

cooler and denser, have lower entropy. Fig. 3.6 shows vertical profiles ofs in the simula-
tion domain. The solid curve shows the horizontally averaged profile as a function ofz.
The average profile of entropy is almost identical with that found by Stein and Nordlund
(1998). This curve has a minimum very near toz = 0 (whereτRoss = 1). In the convec-
tion zone (z < 0), ds/dz < 0. Abovez = 0, ds/dz > 0. Schwarzschild’s criterion can be
restated in terms of vertical gradients in specific entropy. Whends/dz < 0, the layer is
convectively unstable to adiabatic perturbations and whends/dz > 0, the layer is stable.

The dashed curves in Fig. 3.6 show some examples of vertical profiles ofs inside up-
flowing regions. These curves show that, along upwelling regions (granules), the material
ascends to the visible surface almost adiabatically. At optical depths100 & τRoss & 1, the
material loses entropy by radiative cooling. The corresponding thickness of this thermal
boundary layer is about150 km, comparable to the local pressure scale height. In the
near surface layers, the dominant contributor to the opacity is negatively ionized hydro-
gen (H−). The opacity related to this species is highly temperature sensitive and decreases
rapidly with temperature (∼ T 10), so that when a fluid element of plasma cools, its opac-
ity drops rapidly and the cooling is enhanced (Stein and Nordlund 1998). This is the
reason why the thermal boundary layer between the convection zone and the photosphere
is so thin. We have not shown vertical profiles along downflow regions because the down-
flows tend to be displaced horizontally as they descend and interact with the surrounding
upflows.
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3.4 The structure of the reversed granulation in the photosphere

3.4 The structure of the reversed granulation in the pho-
tosphere

Intensity maps in the visible continuum show bright granules and dark intergranular
boundaries at the base of the photosphere (τRoss = 1). Intensity maps taken in the wings
of the Ca II H & K lines reveal a similar pattern. In these intensity maps, the cells are
in general co-incident with the surface granules, as are the boundaries. The intensity
contrast, however, is reversed. (Evans and Catalano 1972, Suemoto et al. 1987, 1990).
This effect, known as thereversed granulation, has also been observed in intensity maps
of other photospheric spectral lines (Espagnet et al. 1995, Balthasar et al. 1990, Kucera
et al. 1995). These observations indicate that the reversed granulation occurs already at
a height ofz ≈ 150 km. Recently, Rutten et al. (2004) carried out cross-correlations be-
tween time sequences of intensity maps from the G-band and theCa II H line. They found
that the anticorrelation between the two patterns is highest if theCa II H intensity maps
are time-delayed by2 − 3 minutes with respect to the G-band intensity maps. Leenaarts
and Wedemeyer-Böhm (2005) extended this analysis by synthesizing intensity maps for
the blue continuum andCa II H wing (in the LTE approximation) from numerical simu-
lations of the photosphere and chromosphere. From the unsmoothed synthetic intensity
maps, they found that the anticorrelation between the two does not vary significantly be-
tween a time delay of0 and2 minutes. The anticorrelation decreased for longer time
delays. When the images were smoothed to1.5 arcsec resolution, a time-delay of2 − 3
minutes yielded a significantly higher value of the anticorrelation compared to no time
delay. The result from both of these papers indicate that magnetic fields play no major
role in the formation of the reversed granulation.

In this section, we study the reversed granulation in our 3D model. For lines (or re-
gions thereof) that form in approximate LTE conditions, such as some Fe I lines and the
wings of theCa II H & K lines, fluctuations in line intensity are a proxy for diagnosing
temperature fluctuations. An intensity excess in the intensity map corresponds to a tem-
perature excess in the layer of the atmosphere in which the line forms. An inspection of
the temperature fluctuations at different heights of the atmosphere allows one to ascertain
the height at which the reversed granulation begins (Steffen et al. 1989).

The top row of Fig. 3.7 shows the relative temperature fluctuations at the surfaces
τRoss = 1 (left column) andτRoss = 0.1 right column. The bottom row of this figure
shows the vertical velocity at the same surfaces. On average, theτRoss = 0.1 surface is
140 km higher than theτRoss = 1 surface. AtτRoss = 1, one finds the normal granulation
pattern: the granules are hotter than their boundaries. AtτRoss = 0.1, the reversed gran-
ulation is already clearly visible: the cell boundaries are regions of temperature excess.
When we inspect the velocity structure, we find that the cells atτRoss = 0.1 are upflowing
regions. The cellular boundaries at this optical depth are downflows. This layer of the
atmosphere is stably stratified (see section 3.3.2), which means vertical motion is sup-
pressed by the stratification. The material in the cells in the higher layer originates from
the granules at the base of the convection zone, and are overshooting into the stably strati-
fied photosphere. This is the reason that the vertical flow speeds atτRoss = 0.1 are smaller
than the vertical speeds atτRoss = 1. Although the amplitude of the speeds are different,
the granular pattern in terms of velocity is the same at both optical depths. So, we em-
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3 Simulation of near-surface convection and the photosphere

Figure 3.7: Patterns of temperature fluctuations (∆T/T̄ ) and vertical velocity at two
different optical depths. The left column shows the patterns atτRoss = 1, the right
τRoss = 0.1. The upper and lower rows show the temperature fluctuation and vertical
velocity patterns respectively. The reversed granulation shows up as a reversal of the
temperature fluctuations, but not in the velocity pattern.

phasize the point, that a reversal of the pattern of temperature (and intensity) fluctuations
is not accompanied by a reversal of the velocity pattern.

We would like to determine the optical depth at which the reversed granulation begins.
For each vertical line-of-sight (l.o.s.), we inspected the vertical velocity and temperature
as functions of optical depth. To separate cell and boundary regions, we use the follow-
ing classification: For a given l.o.s., if the plasma is upflowing atτRoss = 1, the l.o.s.
is labelled as one that penetrates a cell. This l.o.s. is then an element of the setLcell.
Similarly, if the vertical velocity along the l.o.s. is zero or negative atτRoss = 1, the l.o.s.
is binned into the setLboundary. For eachl, we have a profile of temperature as a func-
tion of optical depth. An average of the profiles at each optical depth over all l.o.s. (in
bothLcell andLboundary) gives the mean temperature as a function ofτRoss, i.e. T̄ (τRoss).
Given this mean temperature profile, we can calculate the relative temperature fluctuation
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Figure 3.8: Mean temperature fluctuation of cells (blue diamonds) and of boundaries (red
triangles) as a functions of optical depth. The reversed granulation begins at an optical
depth of aboutτRoss = 0.3.

(∆T/T̄ ) at each optical depth for each l.o.s. We refer to the mean of the relative tem-
perature fluctuations over the setLcell (Lboundary) as the mean temperature fluctuation in
the cells (boundaries). These two quantities are plotted as functions ofτRoss in Fig. 3.8.
The blue diamonds indicate the mean temperature fluctuation in the cells whereas the red
triangles indicate the mean temperature fluctuation in the boundaries. These two are not
simply the negative of each other because the cells and boundaries have different filling
factors. Starting fromτRoss = 1, the temperature excess (deficit) of the cells (bound-
aries) diminishes with decreasing optical depth. AtτRoss ≈ 0.3, the mean temperature
fluctuations of both regions cross zero. At even shallower optical depths, the temperature
fluctuation is reversed. This leads us to conclude that reversed granulation begins already
at τRoss ≈ 0.3. On average, this level is80 km above the base of the photosphere. This
finding is in agreement with that of Suemoto et al. (1987), who concluded from observa-
tions in the inner wing ofCa II K that “the granular hotter layers do not extend higher
thanτ ∼ 0.3 and that an intergranular hotter layer is located considerably higher than
τ ∼ 0.3”.

What is the cause of the reversed granulation? First, consider the following scenario.
Suppose we have an atmosphere with a subadiabatically stratified layer sitting on top of a
superadiabatically stratified layer. This is analogous to the photosphere/convection zone
region. For the moment, we consider only adiabatic motion. When a parcel of fluid in
the convection zone ascends, it gains a temperature excess relative to its surroundings.
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3 Simulation of near-surface convection and the photosphere

When this parcel has crossed the interface and has moved into the stable layer, its tem-
perature excess begins to diminish, until at a certain height in the stable layer, it has the
same temperature as the surroundings. Since the parcel has finite vertical momentum, it
will continue to move upwards. During thisovershootphase, the parcel becomes colder
(and denser) than its surroundings and experiences a downwards acceleration. At a cer-
tain penetration height into the stable layer, the parcel will have zero vertical velocity but
continues to be accelerated downwards. At this instant the parcel overturns and begins
its return journey. Applying this model to the near-surface convection zone and the pho-
tosphere, we can explain the overturning of the granules in the photosphere. However,
one is then led to believe that at any given height in the photosphere, the upflows and
downflows have the same temperature. This scenario does not explain the reversal of the
temperature fluctuations between the upflows and downflows.

In order to explain the reversed granulation, we must consider non-adiabatic effects
associated with radiation in the photosphere. Fig. 3.9 shows a subvolume in the simula-
tion domain in the neighbourhood of a granule (the one centred at[x, y] = [4, 5] Mm in
Fig. 3.7). In both panels, the grey scale shows the vertical velocity atz = 0 at the same
instant. Overplotted are a set of streamlines emanating from this granule. The pattern
of streamlines resemble a fountain: they begin near the centre of the granule, travel up
to the photosphere and eventually overturn to the intergranular lanes. In the upper panel
of this figure, the colour-coding of the streamlines corresponds to the value ofs at each
point on the curve (purple is low entropy, orange high entropy). In the lower panel, the
colour-coding corresponds to the sign ofQrad (dark blue meansQrad < 0, yellow means
Qrad > 0).

We have examined how different physical quantities vary along these streamlines.
Fig. 3.10 shows profiles ofs andT along a representative streamline. The left column
shows the profiles as functions ofz and the right column shows the profiles as functions
of the optical depthτRoss. The colour-coding of the curves gives the sign ofQrad (c.f.
Fig. 3.9).

Imagine a fluid element travelling on any one of these streamlines1. Its trajectory in
the photosphere has the shape of a loop. In the convection zone (z < 0), it hass = 6.0R?.
As it approaches the surface, between100 & τRoss & 1, the fluid element loses entropy
and buoyancy by radiative cooling. Nevertheless, it has vertical momentum and enters the
photosphere (z > 0). As it rises, the fluid element expands but its temperature decreases at
a subadiabatic rate because the fluid element is continually being heated by the radiation
field below (Qrad > 0). This leads to an increase ofs of the fluid element. At the
apex of its trajectory, the fluid element overturns. The exact height at which the fluid
element overturns is determined by the dynamics in the neighbourhood of the granule.
In general, however, fluid elements that originate from near the centre of the granule are
able to penetrate higher into the photosphere than those that originate near the edge of the
granule.

The radiative heating of the fluid element does not stop at the apex of its trajectory. As
Fig. 3.10 shows,Qrad remains positive for a short distance at the beginning of its descent.
The radiative heating, together with the compression of the fluid element as it reaches

1Since the flow is time-dependent, streamlines and trajectories do not coincide. We have repeated the
following analysis on trajectories of tracer fluid elements in the simulation and confirmed that indeed the
radiative heating is the main source of entropy change.
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3.4 The structure of the reversed granulation in the photosphere

Figure 3.9: The upper and lower panels show the neigbourhood of a granule in the pho-
tosphere. In both panels, the grey scale shows the vertical velocity atz = 0. Streamlines
beginning from the granule are colour-coded according to the local value of the specific
entropys (upper panel; purple is low entropy, orange high entropy) and the sign ofQrad

(lower panel; dark blue meansQrad < 0, yellow meansQrad > 0).
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3 Simulation of near-surface convection and the photosphere

Figure 3.10: The profiles of specific entropy and temperature along a representative
streamline shown in Fig. 3.9. The colour-coding of the curves correspond to the sign
of Qrad (dark blue meansQrad < 0, yellow meansQrad > 0).

denser layers, leads to an increase of its temperature. At some point, the fluid element
is sufficiently hot, so that it emits and absorbs radiation in equal rates (i.e.Qrad = 0).
The fluid element is then inradiative equilibrium. The temperature at which this occurs
is denoted byTRE. When the fluid element has a higher temperature thanTRE, Qrad is
negative. This is why the fluid element loses specific entropy as it returns to the base
of the photosphere. The important point here is that the cumulative total of the heating
(upon ascent and for a short while after overturn) and cooling (during descent) of the
fluid element occur in unequal amounts. A fluid element that travels fromz = 0 to the
photosphere and back gains more entropy than it loses. This asymmetry is the cause
for the reversed granulation: at the same geometrical height and optical depth in the
photosphere, the downflows (cell boundaries) are hotter than the upflows (cells).

An estimate for the lower bound ofTRE is possible when we assume the fluid ele-
ment to be located atτRoss = 0. Recall thatQrad =

∫∞
0

4πκνρ(Jν − Bν)dν. In the
approximation of grey radiative transfer,κν is replaced by the mean opacityκ̄, so that

Qrad = 4πκ̄ρ[J −B(T )], (3.30)
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whereB(T ) =
∫∞
0

Bν(T )dν = (σ/π)T 4 is the frequency-integrated Planck function and
J = (4π)−1

∫
4π

∫∞
0

IνdνdΩ is the angular-averaged, frequency-integrated intensity. As-
sume that the solar atmosphere has plane-parallel symmetry. In this case,Iν is symmetric
about thez-axis. Making use of the Eddington-Barbier approximation, we obtain

J =
1

4π

∫ ∞

0

∮

4π

IνdΩdν, (3.31)

=

∫ ∞

0

[
1

2

∫ 1

−1

Bν(T |τ=µ)dµ

]
dν, (3.32)

=
σ

2π

∫ 1

−1

(T |τ=µ)4dµ, (3.33)

whereµ = µ·ẑ = cos θ. TRE is defined so thatQrad = 0. That is,B(TRE) = (σ/π)T 4
RE =

J . To evaluateJ , we use our model and calculate the average temperature〈T 〉 at different
values ofτRoss. This yieldsTRE = 4600 K. Inspection ofT andQrad along the streamlines
shows that typical values ofTRE lie between4600 and5000 K. The higher values ofTRE in
the simulation just reflects the fact that the fluid elements are located in the photosphere at
finite optical depths. This analysis tells us that, even when a fluid element is descending
in the photosphere, it will be heated by the radiation field as long as its temperature is
belowTRE ≈ 4600− 5000 K. Thus fluid elements that overturn at largerz will be heated
more than those which overturn at lowerz.

To summarize, the reversed granulation is a reversal of the pattern of intensity contrast
between intensity maps in the continuum and intensity maps in spectral lines forming in
the middle to upper photosphere. This is linked to a reversal of the temperature fluctua-
tions with respect to height (see Fig. 3.8). The downflows in the cellular boundaries are
relatively cooler than the upflowing granules forτRoss > 0.3. ForτRoss < 0.3, the bound-
aries are relatively hotter. This reversal in the temperature contrast is explained by the
radiative heating and cooling of convective plasma overturning in the photosphere. This
study confirms the conclusion by Rutten et al. (2004) and Leenaarts and Wedemeyer-
Böhm (2005) that surface magnetism plays an insignificant role in the formation of the
reversed granulation.
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4 Photospheric flux emergence:
2-dimensional simulations

In Chapter 2, we presented a study of the rise of horizontal magnetic flux tubes in a strati-
fied layer. The simulations in that study are idealized: the convection zone is modelled by
a polytrope; the medium has the properties of an ideal gas; and radiative energy exchange
is not included. To realistically model photospheric flux emergence, these idealizations
must be abandoned. In this chapter, we present results from 2D simulations that include
these two effects. The simulations model the rise and emergence of a magnetic flux tube
initially embedded in the sub-photospheric layers. The convective motion of the back-
ground material in the convection zone is not included. The effect of magneto-convection
is discussed in subsequent chapters, where we presents results from 3D simulations.

4.1 Simulation setup

The simulations here were carried out in a 2D cartesian geometry. The components of
the velocity and magnetic field in they-direction (parallel to tube axis) may be non-
vanishing, but∂/∂y of all quantities are identically zero. Often, such a setup is referred to
as2.5D. For these simulations, the MHD equations (3.1)-(3.5) and the RTE are solved. We
consider a simulation domain with a horizontal size of24 Mm and a height of2.304 Mm.
The grid-spacing in the horizontal and vertical directions is50 and16 km, respectively.

4.1.1 Boundary conditions

Periodic boundary conditions are imposed at the vertical boundaries. The boundary con-
dition at the lower boundary is identical to the one used for the 3D convection model of
Chapter 3. The magnetic field at the lower boundary is kept vertical.

For the following simulations, we have modified the top boundary condition to allow
for the bodily transport of magnetic field through the top boundary. This is important
because we do not want the emerged magnetic field to be artificially trapped in the photo-
sphere. In principle, stress-free conditions on all three components of the velocity at the
upper boundary, i.e.

∂vx

∂z
=

∂vy

∂z
=

∂vz

∂z
= 0, (4.1)

suffice for a smooth outflow. This condition, however, is independent of whether the mass
flux through the upper boundary is appropriate or unrealistically high. In order that the
mass flux be kept at appropriate levels, additional constraints must be applied. To this
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4 Photospheric flux emergence: 2-dimensional simulations

end, we follow Stein and Nordlund (1998) and implement afiducial layerabove the top
boundary of our simulation domain.

The bottom surface of our fiducial layer is co-incident with the horizontal plane con-
taining the cell centres of the first ghost layer above the top domain boundary. To simplify
the following discussion, let us use the position of this plane as the reference height, i.e.
z = 0 at the bottom of the fiducial layer. Using this reference, the height of the cell
centres in the uppermost domain layer isz = −h, whereh is the vertical grid-spacing.
We impose that each vertical column of the fiducial layer be isothermal and be in hydro-
static equilibrium. This means that each column of mass in the fiducial layer follow an
exponential decay with height,

ρ(x, y, z) = ρ(x, y, 0)e−z/Ĥp , z ∈ [0, 3Ĥp] (4.2)

whereĤp is the pressure scale height evaluated at the uppermost domain layer. The fidu-
cial layer has a thickness of3Ĥp. Our aim is to specify an appropriate density distribution
ρ(x, y, 0) at the bottom of the layer in order to fill the values of density in the ghost cells.
To do this, we keep track of the total mass enclosed in the fiducial layer. By imposing
the stress-free condition (4.1) on the velocity everywhere within the fiducial layer, we can
determine the mass fluxes through the bottom and top surfaces of the layer. The total mass
in the layer is given by

Mfid =

∫ 3Ĥp

0

∫ ∫
ρ(x, y, z)dxdydz, (4.3)

= ρ̄0ĤpA[1− e−3], (4.4)

whereA is the area of a horizontal plane in the domain andρ̄0 = A−1
∫ ∫

ρ(x, y, 0)dxdy
is the mean density at the bottom of the fiducial layer. Expression (4.4) relates the mass
of the fiducial layer with the mean densitȳρ0 at the bottom of the layer. We require
that density perturbations in the fiducial layer follow the same horizontal distribution as
the corresponding perturbations in the uppermost domain layer. Let us denote the mean
density in the uppermost domain layer asρ̄D. Our requirement means that

ρ(x, y, 0) =

[
ρ̄0

ρ̄D

]
ρ(x, y,−h). (4.5)

At each time step, the r.h.s. of the above expression is calculated and Eqs. (4.2) and
(4.5) are used to specify the density in the ghost cells. By keeping track ofMfid, we
give memory to the fiducial layer. When too much mass has crossed from the domain
into the fiducial layer,̄ρ0 becomes larger than̄ρD and so the stratification near the top
boundary becomes top-heavy. Any further mass outflow through the top boundary is then
suppressed by gravity. Conversely, in case too much mass has drained from the fiducial
layer into the domain,̄ρ0 becomes much smaller than̄ρD, inducing a upwards directed
pressure gradient that overcomes gravity to drive an outflow from the domain into the
fiducial layer.

Besides the density, we also need to specify the values of the specific internal energy
ε in the ghost layers. This quantity is taken to be uniform over the fiducial layer. At a
particular time stepn, we specify this quantity in the ghost cells using

εn = [1− δ]εn−1 + δε̄n
D, (4.6)

64
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whereεn−1 is the value from the previous time step andε̄n
D is the horizontally-averaged

value evaluated in the uppermost domain layer at time stepn. The small quantityδ can
be varied to control how quickly we allowε in the ghost layers to adjust to the values in
the domain. In all the simulation runs described in the following, we usedδ = 10−3 so
that the adjustment is slow. This is desirable because we do not wish our fiducial layer to
excite waves with periods comparable to the magnetohydrodynamic time scales of interest
in the simulations.

The magnetic field above the upper boundary of the domain is matched to a potential
field. This requires an extrapolation of the magnetic field in the uppermost domain layer
into the ghost cells at each time step. The method we used for the field extrapolation
is appropriate for both potential fields and more generally, linear force-free fields. For
further details, we refer the reader to Appendix C.

4.1.2 Initial conditions

The background stratification in the domain is initially plane-parallel and static. The
horizontally-averaged profiles ofε andρ as functions of height were taken from the 3D
model of Chapter 3. In the presence of convection, as is the case with the 3D model, the
energy flux carried by radiation at the surface is maintained by a continuous replenishment
of upwelling, high-entropy material. This process keeps the average height of the visible
surface approximately constant. Since there is no convection in the initial configuration
here, the cooling of the visible surface causes the visible surface to sink in the course of
the simulation. In the following simulations, the visible surface sinks by between100 and
300 km over a duration of25 minutes (the typical time scale of an emergence event). This
side effect has relatively unimportant consequences compared with the alternative option,
which would be a removal of the radiative heating term from the energy equation. Such
a modification would eliminate what is arguably the most interesting result of this set of
simulations, namely, the effect of radiative transfer on an emerging flux tube.

At t = 0, an axisymmetric magnetic flux tube was introduced into the sub-photospheric
layers. The longitudinal and transverse components of the magnetic field have the form:

Bl(r) = B0 exp (−r2/R2
0), (4.7)

Bθ(r) =
λr

R0

Bl, (4.8)

wherer ∈ [0, 2R0] is the radial distance from the tube axis andR0 the radius of the tube.
Its longitudinal flux is given byΦ0 =

∫
BldS = 0.98πR2

0B0. λ is the twist parameter.
In the absence of the magnetic field, the divergence of the total stress tensor (viscous+
Maxwell + pressure) is zero. Since we are primarily interested in studying the buoyant
rise of the flux tube, we require that this condition holds when the flux tube is introduced.
In such a case, the flux tube experiences only the gravitational force at timet = 0. Since
the magnetic field contributes to the total pressure locally, the gas pressure in the flux
tube must be decreased accordingly. Additionally, the magnetic tension of the transverse
field (if present) exerts a force directed radially inwards, which must be balanced by an
appropriately chosen pressure distribution. Having specified the internal gas pressure dis-
tribution, one is still free to choose the distribution ofone and only oneof the following
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4 Photospheric flux emergence: 2-dimensional simulations

thermodynamic properties:ρ, s or T . Choosing a distribution for any one of these quan-
tities constrains the distributions of the remaining two.

4.2 Simulation results

In this section, we describe in detail results from two simulation runs. In both of these
runs, the flux tube hasB0 = 8500 G, R0 = 200 km andΦ0 = 1019 Mx. The flux tubes
have the same internal specific entropy as the average value for the upflows in the 3D
model of Chapter 3 (s = 6.0R?). Both are placed1.35 Mm below the visible surface at
t = 0. In the first run, the flux tube is untwisted (λ = 0). In the second run, the flux tube
has twist (λ = 0.5). The relative density deficit is largest at the axes of the tubes, about
40%. In both cases, the density deficit averaged over the whole tube is much smaller,
about5%.

4.2.1 Dependence of emergence morphology on twist

Figures 4.1 and 4.2, respectively, show time sequences of the emergence of the untwisted
(λ = 0) and the twisted (λ = 0.5) flux tube. In both figures, the temperature distribution
of the background stratification is shown in greyscale. The absolute field strength|B| is
indicated by the colour-coding. In each panel, theτRoss = 1 level is indicated by a purple
line running across the horizontal extent of the domain.

We first describe features that are common to both simulations. In both cases, the
buoyancy force accelerates the flux tube upwards. The buoyant acceleration of each flux
tube is accompanied by a co-acceleration of non-magnetic material above it. The upwards
displacement of non-magnetic material above the tube is indicated by the local elevation
of theτRoss = 1 level (see the snapshots att = 4 min andt = 8 min in Figs. 4.1 and 4.2)
with respect to the average geometrical height of the same optical depth. Radiative cool-
ing of material near the surface causes it to become denser than material in the underlying
layer. This top heavy configuration is unstable to perturbations displacing material in the
vertical direction. With the flux tube rising towards the surface, the overly dense material
is able to descend by sliding around the rising tube. The sinking of the dense material into
the superadiabatically stratified convection zone instigates the development of two down-
flows, one on either side of the emerging tube. In Figs 4.1 and 4.2, the two downflows
show up as two ‘fingers’ of cool (dark in the greyscale) material reaching into the opti-
cally thick layers (i.e. the convection zone). The pressure deficit in the wake of the rising
tube with respect to the surroundings gives a pressure gradient that deflects the developing
downflows towards the wake.

The tube expands as it rises into layers of lower external pressure. In the convec-
tion zone, expansion in the vertical and horizontal directions occur at comparable rates.
Once the magnetic structure has reached the surface, the expansion becomes markedly
asymmetric with respect to the vertical and horizontal directions. The reason for this is
simple: expansion in the vertical direction requires lifting of material into the stably strat-
ified layer, which requires work to be done against gravity. This explanation follows that
of Archontis et al. (2004), who carried out idealized simulations of flux emergence into
the corona. To make the computation feasible, their simulations ignore radiative transfer
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Figure 4.1: Time sequence of the emergence of an untwisted magnetic flux tube (λ =
0). The background greyscale indicates the temperature stratification. The absolute field
strength|B| is indicated by the colour-coding. In each of the panels, the purple line
running across the horizontal extent of the domain indicates theτRoss = 1 level.

and convection in the layers underlying the corona. However, their background atmo-
sphere does contain a stably stratified layer mimicking the photosphere. Although our
simulation setups are different, both yield the result that a flux tube emerging into the
photosphere expands preferentially in the horizontal direction.

The upper panel of Fig. 4.3 shows profiles of the longitudinal magnetic fieldBl (upper
panel) att = 10 min. The profiles were evaluated at the level of constant geometrical
height (z = 0 km). The solid and dashed lines show the profiles for the untwisted and
twisted cases respectively. The profiles ofBl in the upper panel show that the twisted tube
has a core with field strengths of up to900 G. In comparison, the untwisted tube has a
relatively weak field of200 G.

The lower panel of Fig. 4.3 shows the corresponding profiles of thex−component
of the velocity att = 10 min. The strong horizontal expansion of the emerging mag-
netic structure leads to the creation of two shock fronts propagating in opposite horizontal
directions. This is illustrated by the profiles of the horizontal velocity in Fig. 4.3. The
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Figure 4.2: Same as Fig. 4.1, but for a twisted flux tube (λ = 0.5).

horizontal velocity profile has maximum amplitude justoutsidethe magnetic structure
(compare with the upper panel of the same figure). The non-magnetic material residing
immediately outside the tube can have speeds reaching10 − 15 km s−1, corresponding
to Mach numbers ofM ≈ 1 − 2. The expanding flux tube acts like a piston, which
does work on the surrounding non-magnetic material. The acceleration of the material in
the neighbourhood of the tube is so strong that they reach supersonic speeds and shocks
form. In Fig. 4.3, the pair of shock fronts propagating in opposite directions are centered
atx = 9 Mm and atx = 15 Mm respectively. Viscous dissipation in the shock fronts lead
to localized specific entropy production, enhanced temperature and radiative cooling.

The kinetic energy density in the supersonic outflows driven is several times larger
than the kinetic energy density of the granular flow at the surface, which has typical
horizontal speeds of2 − 4 km s−1. Suppose such a flux tube were to emerge at the solar
surface. Its expansion would be so strong, that we expect the resulting outflows to modify
the granulation pattern. Our 3D simulations of flux emergence, which will be presented
in Chapter 5, indeed confirm this expectation.

From previous work in the literature (Schüssler 1979, Longcope et al. 1996) and
from our study presented in Section 2.3.2, we know that an initially untwisted flux tube
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Figure 4.3: Profiles of the longitudinal magnetic fieldBl (upper panel) and of the hor-
izontal velocityvx (lower panel), both taken at timet = 10 min at the levelz = 0.
The solid lines and dashed lines indicate the profiles for the untwisted and twisted cases
respectively.

rising under its own buoyancy separates into a pair of counter-rotating vortex rolls after
transversing a distance a few times its diameter. A similar behaviour is found in the
simulation presented in this chapter. Byt = 8 min, the initially untwisted tube (see
Fig. 4.1) is separating into two vortex rolls. This is the reason that in Fig. 4.3, we find
that in the twisted tube, the maximum of the longitudinal field is strongest in the core,
whereas the longitudinal field in the untwisted tube is relatively weak.

4.2.2 Intensification of emerging magnetic fields by radiative cooling

The inclusion of radiative transfer has interesting consequences for the evolution of the
flux tube during emergence. Here, we focus our attention on describing the behaviour of
the twisted flux tube withλ = 0.5 (see Fig. 4.2) as it emerges at the visible surface. Since
the flux tube in this case is twisted, we can apply the method as discussed in Section 2.2.4
to track the time evolution of physical quantities at the axis of the tube. Fig. 4.4 shows
the field strength (|B|, upper panels) and the radiative heating rate per unit mass (Qrad/ρ,
lower panels) as functions of height (along the verticalx = 12 Mm) at timest = 7.7,
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Figure 4.4: The propagation of the cooling front through the emerging tube leads to an
intensification of the magnetic field strength. The three panels in the top row show|B|
as functions of height (along the verticalx = 12 Mm). The lower panels show the cor-
responding vertical profiles of the radiative heating rate per unit mass (Qrad/ρ). In each
panel, the diamond indicates the position of the tube axis. The left, middle and right
columns respectively correspond to the state of the flux tube before, during and after the
cooling front has passed through the tube centre.

t = 10.0 andt = 11.6 min. The diamond in each panel indicates the position of the tube
axis. At each time, we find a narrow dip with a width of about50 km in the profile of
Qrad/ρ. This corresponds to the thin cooling layer at optical depths1 . τRoss . 100
where the radiative cooling is most intense. In the following discussion, we refer to this
feature as thecooling front. Located above the cooling front are the optically thin layers
of the photosphere.

The sequence of profiles in Fig. 4.4 shows the propagation of the cooling front through
the tube as it emerges into the photosphere. Att = 7.7 min, the flux tube is beginning
to emerge. By this time, the uppermost portion of the flux tube (parts of it above the
cooling front) has already entered the photosphere but the axis of the tube is still in the
convection zone. The field strength at the axis of the tube is|B| = 1, 200 G. As the centre
of the tube continues to rise, its expansion weakens the local field strength. Att = 10.0
min, the axis of the tube has|B| = 800 G. The cooling front has already reached the
tube axis. Equivalently, one can say that the axis of the tube is emerging at the surface.
Thereafter, the cooling front continues to propagate through the lower portion of the tube.
At t = 11.6 min, we find that the tube axis has a field strength of|B| = 1, 000 G, higher
than the value before the tube axis has emerged. This is despite the fact that the tube axis
has reached layers of the atmosphere with lower external gas pressure. Thus, the radiative
cooling has intensified the emerged magnetic field.

To emphasize the point made in the previous paragraph, we inspected the time evolu-
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Figure 4.5: The radiative heating per unit mass (Qrad/ρ), the plasma-β, the field strength
|B| and the densityρ at the axis of the tube as functions of time. Betweent = 9.5 min
and t = 11.0 min, the tube axis undergoes substantial radiative cooling, leading to a
compression. The result of the compression is an intensification of the magnetic field, in
terms of both|B| andβ.
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tion of values ofQrad/ρ, β, ρ and|B| taken at the tube axis. Fig. 4.5 shows these quantities
as functions of time. The rise of the flux tube in the convection zone betweent = 0 and
t = 9.5 min is accompanied by a decrease in the density at the tube axis. The evolution of
the magnetic field strength at the tube axis is approximately described by|B|/|B|0 = ρ/ρ0

(see Section 2.3.1.2). In the limit of ideal MHD, we expect this relation to hold exactly. In
numerical simulations, however, the effect of magnetic diffusion causes the field strength
to fall slightly more rapidly than the density. In Appendix B, we calculated that the char-
acteristic diffusion time scale for a flux tube of radiusR0 is τ = R2

0/4η0. For the value
of the magnetic diffusivity used in these simulations (η0 = 2.8 × 1010 cm2s−1), this cor-
responds toτ = 60 min. The typical timescale for a flux tube to rise to the surface is
about10 min. Comparison of these timescale indicates that magnetic diffusion does not
dramatically weaken the flux tube before it emerges.

The mechanism by which radiative cooling intensifies the field at the surface is as
follows: A negativeQrad in the energy equation decreases the internal energy of the fluid
element. This in turn leads to a decrease in the local gas pressure. The resulting pressure
gradient, which is directed towards the tube centre, drives a compression of the tube,
increasing the internal density. Since the magnetic field strength is directly related to the
density, the field is intensified. The second panel in Fig. 4.5 shows that the intensification
of the field causes the plasma-β to decrease from a value of8 just below the surface to a
value of3− 4 after emergence. Of course, the effect of this mechanism is not confined to
the field at the tube axis, nor is it confined to intensifying just the longitudinal component
of the field. When variations parallel to the field are allowed, as is in the 3D case, the
intensification or weakening of the magnetic field need not be due to compression or
expansion of the fluid element. A stretching of the fluid element in the direction parallel
to magnetic field lines without changing the volume of the fluid element can also intensify
the magnetic field.

4.2.3 Dependence of emerged flux on twist

The fraction of the initial longitudinal magnetic flux (crossing the plane) that success-
fully emerges into the photosphere depends on the initial twist of the tube. Let us define
Φphoto(t) as the total longitudinal flux in the regionτRoss ≤ 1 in the simulation domain.
Similarly, we defineΦconv(t) as the total longitudinal flux in the regionτRoss > 1 in
the domain. Since the top and bottom boundaries allow the bodily transport of longi-
tudinal magnetic fluxout of the simulation domain,Φphoto(t) + Φconv(t) ≤ Φ0, where
Φ0 is the initial longitudinal flux of the tube. The escaped flux is defined asΦesc(t) :=
Φ0 − Φphoto(t) − Φconv(t), and is the amount of flux that has exited the domain. For all
the cases discussed below and within the time interval considered (0 ≤ t ≤ 24 min.),
no magnetic flux ever reaches the bottom boundary. Thus,Φesc effectively represents the
amount of flux that emerges and passes above the photosphere to exit the domain.

Figure 4.6 showsΦconv, Φphoto andΦesc as functions of time. The left panel shows
the quantities for the emergence of the untwisted tube, the right panel for the emergence
of the twisted tube (λ = 0.5). The untwisted tube begins to enter the photosphere at
t = 7 min. In this case, the further rise of the magnetic structure into the photosphere
continues only untilt = 12 min. After this time, the amount of flux aboveτRoss = 1
steadily decreases. This decrease indicates a submergence of flux that had previously

72



4.2 Simulation results

Figure 4.6: The two panels showΦconv (the longitudinal flux belowτRoss = 1 in the
simulation domain; solid line),Φphoto (the longitudinal flux aboveτRoss = 1; dashed line)
andΦesc (the longitudinal flux that has left the simulation domain; dash-dotted line). All
three quantities are shown in units ofΦ0, the initial flux of the tube. The left panel is for
the emergence of an untwisted flux tube, the right for a twisted flux tube withλ = 0.5.
Comparison of the two cases shows that the rise of a twisted flux tube is much more
efficient at transporting magnetic flux into and above the photosphere.

emerged. The dash-dotted line (Φesc) in the left panel is barely visible because almost
all of the flux that emerges into the photosphere is either trapped there, or is recirculated
back into the convection zone. Compare this scenario with that of an emerging, twisted
flux tube. In the right panel of Fig. 4.6, we find that the fraction of flux in the photosphere
increases betweent = 7 min andt = 12 min. The maximum amount of the flux at any
time residing in the photosphere is about0.7Φ0. Thereafter,Φphoto decreases steadily for
two reasons. Firstly, part of the emerged flux is drawn into the developing downflows and
is returned to the convection zone. This behaviour is similar to the case for an untwisted
tube. Secondly, some of the emerged flux rises through the upper boundary of the domain
and escapes. This is indicated by the increase inΦesc after t = 11 min. At t = 24 min,
about50% of the initial longitudinal flux of the tube has escaped the domain through the
upper boundary.

The previous comparison suggests that the higher the level of twist in the initial flux
tube, the larger the fraction of flux that can emerge at the visible surface. We have carried
out additional simulation runs at intermediate levels of twist (betweenλ = 0 andλ = 0.5)
to see whether there is a systematic trend. Since, at any time, the emerged flux can be
residing either in the photosphere or above the top domain boundary, the appropriate
quantity for comparison between the runs is the maximum ofΦphoto + Φesc = 1 − Φconv

over the time interval of of the emergence event (0 ≤ t ≤ 24 min). Fig. 4.7 shows
this quantity as a function of the initial twist of the flux tube. Clearly, the maximum
fraction of flux above the visible surface is an increasing function ofλ. What is the
physics behind this trend? Firstly, we point out that the twist of magnetic field lines
counter-acts the splitting of the tube into a pair of vortex rolls. A more twisted, and
consequently more coherent tube, maintains a greater amount of buoyancy. Thus a twisted
tube, upon emergence at the surface, is able to overshoot further into the photosphere than
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Figure 4.7: The maximum fraction of longitudinal magnetic flux above the visible surface
(τRoss = 1) as a function of the initial twist of the flux tube.

an untwisted tube.
The suppression of vertical motions by the stably stratified photosphere may be insuf-

ficient to halt the further rise of the magnetic field. Consider a subadiabatically stratified,
hydrostatic layer in the absence of magnetic fields. Gravity acts to counteract pertur-
bations in the vertical velocity. Now imagine that we introduce a horizontal magnetic
structure of finite thickness such that the layer remains static and mechanical equilibrium
is maintained. This requires a reduction of the internal density of the magnetic layer, cre-
ating a top-heavy configuration at the interface between the top of the magnetic layer and
the original stratification.

Using the linear stability analysis of Acheson (1979, originally carried out for the flux
sheet configuration mentioned above), Archontis et al. (2004) have pointed that, given a
sufficiently strong field, a magnetic buoyancy instability can develop from perturbations
of the vertical velocity despite a subadiabatic stratification. Furthermore, they pointed
out that perturbations which bend the field lines are more destabilizing than perturbations
which do not. The reason is that in the former case, mass in the crests of the perturbed
magnetic structure can drain down along the fields lines, effectively enhancing the buoy-
ancy of the rising parts of the magnetic structure. In the context of these two points, they
explained why a high magnetic field strength and the presence of a transverse component
of the field (i.e. twist) aid the rise of a magnetic flux tube beyond the photosphere in their
3D simulations. Previous 2D flux emergence simulations by Shibata et al. (1989) and
by Magara (2001) have also identified magnetic buoyancy instabilities as mechanisms
that allow magnetic structures to emerge past the photosphere into the chromospheric and
coronal layers.
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3-dimensional simulations

In Chapter 4, we presented a study of photospheric flux emergence using 2D simulations.
In that study, we considered the effects of radiative transfer on an emerging flux tube, but
neglected the effects of convection. In this chapter, we extend our study by carrying out
3D numerical simulations including the effects of convection. Having included all the
relevant physics, we are in a position to compare our simulation results with observations
of flux emergence.

5.1 Simulation setup

5.1.1 Boundary conditions

Periodic boundary conditions are imposed on the vertical boundaries. The boundary con-
ditions of the upper and lower boundaries used in these simulations here are identical to
the one used for the 2D study. We refer the reader to Section 4.1.1 for details.

5.1.2 Initial conditions

In Chapter 3, we discussed the properties of the photosphere and the underlying near-
surface convection in the absence of magnetic fields. For the present study, we have
carried out a number of simulation runs, each modelling the emergence of an individual
flux tube. To prepare the initial configuration for each simulation run, a snapshot from the
purely hydrodynamic simulation was chosen as the background atmosphere. Recall that
the domain has dimensions24× 12× 2.3 Mm3. In all subsequent discussion,t = 0 refers
to the moment when a flux tube is introduced into the sub-surface layers. The axis of the
tube is located at[y, z] = [6,−1.35] Mm. The longitudinal and transverse components of
the magnetic field have the form given by Eqs. (4.7) and (4.8).

In principle, one would prefer to introduce the flux tube into the domain in such a
way that the disturbance added to the system is minimized. The most appropriate way to
do this is to introduce the tube, so that the distribution of divergence of the total stress
tensor (Maxwell+ pressure+ viscous) remains unchanged. For this reason, the original
gas pressure in the volume occupied by the tube is decreased. The modification of the gas
pressure distribution is necessary in order to balance the Lorentz and pressure gradient
forces. If, in addition, we keep the original velocity distribution in the field-free domain,
we would satisfy the aforementioned criterion. We prefer, however, to begin a simulation
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Label B0 (G) R0 (km) λ Φ0 (1019 Mx) Entropy distribution
U1 8500 200 0.5 1 Uniform
U2 8500 200 0.25 1 Uniform
U3 8500 200 0 1 Uniform
U4 5250 200 0.5 0.66 Uniform
U5 2500 200 0.5 0.31 Uniform
L1 8500 200 0.5 1 Loop

Table 5.1: Initial properties of the individual magnetic flux tubes in each of the simula-
tion runs. The label of each run is given in the leftmost column. Entries in the remaining
columns indicate the magnitude of the longitudinal field at the tube axis (B0), the charac-
teristic tube radiusR0, the twist parameterλ, the total longitudinal fluxΦ0, and the initial
specific entropy distribution.

with a flux tube that has its own initial identity. As a compromise between these two
considerations, we use a tapering function to specify the initial velocity distribution. Let
vorig be the original velocity distribution in the non-magnetic domain. The initial velocity
distribution within the flux tube is such that,vtube(r) = (1− e−r2/R2

0)vorig, wherer is the
radial distance from the tube axis andR0 the characteristic radius of the flux tube att = 0.
This tapering function makes the fluid on the tube axis stationary. With increasing radial
distance from the axis, the fluid velocity approaches the original velocity distribution of
the external convecting flow.

Following the simulation setup of the 2D study, we choose to specify the initial spe-
cific entropy distribution in the tube. Table 5.1 gives the values of the initial parameters in
each of the simulations. In runs U1 to U5, the flux tube has a uniform initial specific en-
tropy distribution. Throughout the tube, the value of the specific entropy issup = 6.0R?,
which is the average value of upflowing regions at the initial depth of the tube (z = −1.35
Mm). This initial configuration is essentially the same as the one used for the 2D study.
In simulation L1, the initial specific entropy distribution is chosen, in such a way that the
initially horizontal flux tube develops into anΩ−type loop. For details about the initial
configuration of this last simulation run, see Section 5.4. The insight we gained from the
2D study facilitates us to analyze the 3D results and pick out features that are common
to both studies. It also helps us to isolate effects in the 3D simulations that are due to
convection and to variations in the third direction.

5.2 Influence of convection on flux emergence

Convection plays a key role in determining the properties of emerging flux. As discussed
in Section 3.3.1, near-surface convection in the Sun consists of disjointed upwellings
separated by a network of downflow lanes and vertices. An initially horizontally flux
tube embedded in this setting will encounter both upflows and downflows. Whereas the
upwellings aid the emergence of some segments of the tube, the downflows impede the
rise of other segments. Given such an initial configuration, under what circumstances can
we expect the tube to emerge intact without severe distortion by the downflows? In other
words, what does it mean to have a ‘strong’ flux tube?
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5.2 Influence of convection on flux emergence

There are a number of comparisons we can make. First of all, let us compare the
magnetic energy density of the tube with the kinetic energy density of the external flow.
Given a characteristic fluid densityρ and a characteristic speedv, we define theequiparti-
tion field strengthBeq such that the magnetic energy density is equal to the kinetic energy
density,

B2
eq

8π
=

1

2
ρv2. (5.1)

From considerations of the energetics alone, we expect that in order for the magnetic
field to evolve passively with the flow, the field strength within the tube must satisfy
B0 ¿ Beq. On the other hand, for the magnetic field to have the capacity to partially
control the dynamics, the magnetic field strengthB0 should satisfy

B & Beq. (5.2)

A statement equivalent to (5.2) is that we require the Alfvén speed,vA = B0(4πρ)−1/2,
to be larger than the characteristic fluid speed.

Consideration of the force balance on the tube allows us to determine a similar cri-
terion (Fan et al. 2003). For the following analysis, let us suppose that the flux tube has
uniform magnetic field strength,B0, and uniform density deficit,∆ρ, with respect to the
surroundings. Consider a cross-section of the flux tube that happens to be in the way of a
downflow. Under a number of simplifying assumptions (see Section 2.4.2), the drag force
experienced by the flux tube is given by:

Fdrag = −CD

π

ρv2

R0

, (5.3)

whereR0 is the radius of the tube andv the characteristic velocity of the downflow.CD is
the drag coefficient and has a magnitude of order unity forRe & 50. The buoyancy force
experienced by the tube is directed upwards and is given by

Fbuoyancy = g∆ρ. (5.4)

Using the relation that∆ρ/ρ w ∆p/pγ1 = (γ1β)−1, we can express the density deficit in
the tube as a function of the internal field strength. In order for the flux tube to acceler-
ate upwards, the buoyancy force must overcome the drag force. For this to happen, the
magnetic field strength in the tube must satisfy

B0 &
(

2CDγ1

π

)1/2 (
Hp

R0

)1/2

Beq, (5.5)

v
(

Hp

R0

)1/2

Beq, (5.6)

whereHp is the pressure scale height of the background. The factor2CDγ1/π is of order
unity, which allows us to go from expression (5.5) to (5.6). This criterion is similar
to (5.2) but is more stringent because it takes into account the radius of the tube. The
radius is important because, given the same field strength, a flux tube with a larger radius
has more buoyancy than a smaller tube. We should restrict our attention to cases where
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5 Photospheric flux emergence: 3-dimensional simulations

R0 < Hp when using (5.6) for the reason that whenR & Hp, the drag force is no longer
given by (5.3). What we learn from criterion (5.6) is that in order for the flux tube to
rise against downflows, it is not enough for the flux tube to have an equipartition field
strength. If the tube has a radiusR0 = 0.25Hp, then it must have a field strength of at
least2Beq in order to have sufficient buoyancy to rise against the drag of downflows. We
should emphasize here that the foregoing derivation serves to provide estimates of the
magnitudes of the different forces acting on a tube. Strictly speaking, the speed of the
flow past the cylinder should have small Mach numbers for Eq. (5.3) to be valid. This
assumption is violated by the strong downflows just beneath the solar surface. Despite this
limitation, the simulation we will present in the following indicate that criterion (5.6) is
indeed useful for understanding the qualitative behaviour of flux tubes in our simulations.

Fan et al. (2003) have studied the interaction of flux tubes with convection by means of
3D MHD simulations. They found that flux tubes with sub-equipartition fields strengths
do indeed evolve passively with the convective flow. Even for flux tubes with a central
field strengthB0 = Beq, the evolution of the flux tube depends on the local conditions of
segments of the tube. Segments of the tube aligned with upflows rise, whereas segments
in the way of downflows are pinned down to the bottom boundary. As they increased the
field strength beyond the value(Hp/R0)

1/2Beq, they found that the evolution of the flux
tube approached the behaviour of flux tubes rising in static atmospheres.

The simulation results of the present study support the findings of Fan et al. (2003).
Although our simulations also model the interaction of a horizontal magnetic flux tube
with convection, there is an important difference. Our simulations were performed by
solving the fully-compressible MHD equations whereas Fan et al. (2003) performed theirs
under theanelasticapproximation. This approximation is valid only for a flow with
speeds much less than the sound speed, which means it is not suitable for simulating
near-surface convection. For their study, they were able to introduce flux tubes with fields
strengths up to10 times the equipartition value because the speed of the downdrafts in
their convecting layer were strongly subsonic. In contrast, the Mach number in the near-
surface layers of the convection zone reachM ∼ O(0.1)−O(1). If we were to introduce
a flux tube with a field strength many timesBeq for these strong flows, the total pressure
within the tube would also be many times the external gas pressure. Such an initial condi-
tion is likely to be unphysical. Therefore, we are restricted to initial field strengths lower
than, or comparable toBeq. The value of the equipartition field strength is different for
different depths. At the original depth of the flux tube (z = −1.35 Mm), the ambient
density isρ = 4.2 × 10−6 g cm−3. The typical vertical velocity of downflowing material
at this depth is4 − 8 km s−1. For this range of velocities, the corresponding range of
equipartition field strengths isBeq = 2900 − 5800 G. Taking the typical values at the
surface (ρ = 2.6× 10−7 g cm−3, v = 2− 4 km s−1), the equipartition field strength there
is Beq = 450− 700 G.

We now proceed to discuss our own simulation results. First we focus our attention
on run U5. In this run, the initial field strength at the tube axis isB0 = 2500 G. The
corresponding plasma-β at the tube axis has a value of22. The magnetic flux a cross-
section of the tube is3.1× 1018 Mx. The tube is initially twisted (λ = 0.5). The tube has
an initial characteristic radius ofR0 = 200 km≈ 0.4Hp. Criterion (5.6) tells us that the
tube must have at least a field strength of(Hp/R0)

1/2Beq = 4600−9200 G in order to rise
against the downflows. Since the tube has only a central field strength ofB0 = 2500 G
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5.2 Influence of convection on flux emergence

Figure 5.1: The passive evolution of a weak magnetic flux tube (run U5,B0 = 2500 G)
with the convective flow. Shown above is a sequence of isosurfaces of|B| = 400 G. On
each isosurface, the blue (red) colour-coding indicates upflows (downflows). Segments of
the tube co-incident with upflows are able to rise and emerge, whereas segments aligned
with downflows are kept submerged.

Figure 5.2: Same as Fig. 5.1 but for a flux tube with higher initial field strength (run
U1, B0 = 8500 G). The isosurfaces here correspond to|B| = 700 G. In this case, the
convective flows do not completely control the dynamics of the flux tube.
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5 Photospheric flux emergence: 3-dimensional simulations

(the average field strength over its cross-section is even smaller), we expect the evolution
of the flux tube to be dominated by the convective flows. This is indeed what we find.
Fig. 5.1 shows a time sequence of 3D isosurfaces of|B| = 400 G. In all three panels, the
blue (red) colour-coding indicates that the vertical velocity at the isosurface is upwards
(downwards). Near the beginning of the simulation (t = 2.2 min), we already find that
the flux tube has been distorted by the convective flows. In subsequent snapshots, we find
that the upflows have advected segments of the tube upwards, whereas the downflows have
pinned down other segments below the surface. The shape of the flux tube resembles asea
serpent.

Figure 5.3 gives another illustration of how the flux tube in run U5 evolves passively
with the convecting flow. The figure shows a sequence of snapshots of a cross-section of
the simulation domain atx = 12 Mm. The grey scale indicates the temperature distribu-
tion and the colour-coding indicates the absolute field strength|B|. The arrows indicate
the components of the velocity field in they−z plane atx = 12 Mm. The purple line run-
ning nearz = 0 indicates the level of optical depth unity in the continuum at a wavelength
of 5000 Å (τ5000 = 1). At t = 0 min, this particular segment of the tube is aligned with
a downflow. In the following snapshot att = 4.4 min, we find that this segment of the
tube has been displaced downwards. In the final two snapshots (t = 8.8 min andt = 12.4
min), we witness the tube segment being severely deformed by the shear in the velocity
field at the interface between upflows and downflows. While the central part of the tube
segment is pushed downwards, other parts of the tube segment are carried upwards.

We have carried out other simulation runs with higher initial field strengths. As ex-
pected, the ability of the convective flows to dominate the evolution of the tube lessens
with increasing initial field strength. In run U1, the initial field strength on the axis of the
tube isB0 = 8500 G, which is within the range ofBeq for the original depth of the tube
and corresponds to a plasma-β approximately equal to unity. The total longitudinal mag-
netic flux carried by the tube is1019 Mx. Fig. 5.2 shows a time sequence of isosurfaces
of |B| = 700 G for this run. Again, the colour-coding indicates upwards or downwards
vertical velocity. In this case, the flux tube is not so weak, that it is simply advected by
the convective flow. Nor is it sufficiently strong, that it rises as if it were embedded in an
initially static medium. The behaviour of the tube is in an intermediate regime between
these two extremes. On the one hand, the convective flow is able to deform the tube. On
the other hand, the bulk of the tube finally does overcome the impeding downflows to
emerge at the surface.

Fig. 5.4 helps emphasize the previous point. Att = 0 min, the tube segment shown
is aligned with a downflow. In run U5, this downflow advects the tube downwards. The
situation in run U1 is very different. While the downflow is able to divert the tube slightly
towards the right, it is unable to keep the tube beneath the surface. Instead, the tube is
sufficiently buoyant that it overcomes the downflow and emerges. During emergence,
the expansion of the tube drives two supersonic, horizontal outflows to the left and right
sides of the emergence site. The expansion of the tube is strong enough, that shock fronts
develop. We have already seen this behaviour in our 2D simulations of the emergence of
flux tubes in an initially static atmosphere (see Section 4.2.1). In that case, the outflows to
the left and to the right were exactly symmetric because the background atmosphere was
initially plane-parallel. This symmetry is not found in the present case because the flux
tube’s rise is no longer purely vertical.
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5.2 Influence of convection on flux emergence

Figure 5.3: Time sequence of a cross-section of the simulation domain atx = 12 Mm
for run U5. The tube segment is passively advected by the convecting flow. The grey
scale indicates the temperature distribution and the color-coding indicates the absolute
field strength|B| distribution. The arrows show the components of the velocity field in
they − z plane atx = 12 Mm. The purple line shows theτ5000 = 1 level. 81



5 Photospheric flux emergence: 3-dimensional simulations

Figure 5.4: Same as Fig. 5.3 except for run U1, withB0 = 8500 G. In this run, the flux
tube is sufficiently buoyant and the magnetic field sufficiently strong to rise against the
drag of the downflow (see snapshot att = 0 min). The expansion of the rising magnetic
complex drives horizontal flows away from the emergence site.
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5.3 Observational signatures

5.3 Observational signatures

In the following sections, we compare the simulation results with observations of flux
emergence.

5.3.1 Quiescent flux emergence

The tube in run U5 evolves passively with the convective flow. Consequently, the emer-
gence of magnetic flux does not lead to a severe disturbance in the appearance of the
granulation in white light intensity images. For this reason, we refer to these flux emer-
gence events asquiescent.

Figure 5.5 shows the emergence event in U5. In the left column, the grey scale indi-
catesI5000, the emergent continuum intensity at a wavelength of5000 Å calculated for
vertical lines-of-sight (µ = 1). The overlaid arrows indicate the horizontal components of
the surface velocity field atτ5000 = 0.1. A vector with a length of one grid-spacing in the
vector plot corresponds to a speed of4 km s−1. The right column shows the corresponding
time sequence ofsynthetic vector magnetograms. Strictly speaking, a proper comparison
between the simulation results with the observations would require us to first synthesize
Stokes profiles using the simulation data, and then invert these synthetic profiles to re-
trieve the physical properties of the atmosphere. While this is certainly an interesting
exercise, it is beyond the scope of this dissertation. Instead, we produce our synthetic
magnetograms (and also synthetic Dopplergrams) by evaluating the values of the mag-
netic field at an optical depth ofτ5000 = 0.1 for vertical lines-of-sight. The reason for
choosing this optical depth is the following: The maxima of the contribution functions
of many photospheric lines commonly used to probe surface magnetic fields (e.g. Fe I
6301, Fe I 6302) is located close to this optical depth. As such, we can expect that the
information carried by the line to be representative of the physical quantities in this layer
of the atmosphere.

In all eight panels of Fig. 5.5, the overlaid contours indicate the vertical component
of the magnetic field (Bz) at the levels±[50, 100, 200, 400] G. Green and red contours
correspond to positive and negative polarities respectively. The grey scale in panels in the
left column indicates the absolute field strength|B| and the overlaid arrows in this column
indicate the horizontal components of the magnetic field. A vector with a length of one
grid-spacing in the vector plot corresponds to a magnitude of250 G.

The flux tube is initially aligned in thex−direction alongy = 6 Mm. At t = 12.4
min, we see the first signs of flux emergence into the photosphere. In this simulation run,
the magnetic field always emerges within the interior of granules. In a granule where flux
emerges, the magnetic field near the granular centre is predominantly horizontal. Towards
the edge of the granule, the magnetic field becomes more vertical. This is in accordance
with the fact the magnetic field threading a granule is forced to emerge in an arched
configuration. One example of the above is the bipolar region emerging in the granule
centered at[x, y] = [4, 7] Mm (see snapshot att = 12.4 min). At this particular instant,
the flux contained in each polarity of this small-scale bipolar is8 × 1017 Mx. The flux
contained in this small-scale bipole is at least an order of magnitude smaller than the flux
contained in small ephemeral regions.

The vector plots of the horizontal velocity field in the left column of Fig. 5.5 show
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that the granules are sites of horizontally diverging flow. The diverging flow has the effect
of expelling the emerged flux to the intergranular network. Thisflux expulsionprocess
is efficient and occurs on the granulation timescale, which is on the order of5 min (see
Chapter 3). Att = 17.7 min (about5 minutes after the first snapshot), the distribution
of |B| andBz show that the regions of strongest field are in the intergranular lanes. In
comparison, the granule interiors have significantly weaker fields. The next snapshot at
t = 22.1 min also shows that the strongest fields are located in the intergranular lanes.
Within the time interval already discussed, the surface field strength atτ5000 = 0.1 rarely
exceeds the equipartition value of450 G.

Weiss (1966) was the first to demonstrate the behaviour of flux expulsion from fluid
eddies by carrying out 2D simulations in the kinematic regime (i.e. neglecting the back
reaction of the magnetic field on the flow). More recent numerical simulations of self-
consistent magneto-convection in 2D (Proctor and Weiss 1982, Hurlburt and Toomre
1988) and in 3D (Cattaneo et al. 2003) have demonstrated that flux expulsion is indeed a
robust feature of magneto-convection. Typically, these simulations begin with a uniform
vertical magnetic field embedded in initially convecting, stratified layer. The stratification
may be idealized (such as that of a polytrope) or may be be close to that of the near-
surface layers (Bercik et al. 2003, Vögler et al. 2005). The latter authors have used the
MURaM code to carry out magneto-convection simulations of the near-surface convec-
tion zone/photospheric layers. Their simulation setup is very similar to the one we use for
the flux emergence simulations in this study. The one crucial difference is in the choice
of initial conditions. In their magneto-convection simulations, Vögler et al. imposed a
uniform distribution of purely vertical magnetic field of one polarity. Thus their initial
condition has a net signed flux crossing the visible surface. Our initial condition involves
a initially submerged magnetic structure with a predominantly horizontal field. The initial
total vertical flux crossing any horizontal surface is zero. They also found flux expulsion
to be an important feature of their simulations. Given that the magnetic field is not so
strong that it suppresses convective motion, most of the vertical flux is expelled into the
intergranular network within a few granulation timescales.

How do our simulation results compare with observations? Using the Swedish Vac-
uum Tower Telescope, De Pontieu (2002) has been able to obtain high cadence and high
resolution observations of an emerging flux region (EFR). From a3.5 hr time series of this
EFR, he identified seven individual small-scale emergence events. His two key findings
relevant for this discussion are:(a) that magnetic concentrations emerge in the interior
of granules; and(b) that within 10 − 15 min of initial appearance, the flux concentra-
tions are quickly dispersed by the granular flow. He estimates the average flux density
of the emerging magnetic concentrations to be about200 ± 30 Mx cm−1. If one were
to interpret his estimate of the flux densities as an estimate of the actual magnetic field
strength, one comes to the conclusion that the emerging fields have sub-equipartition
strength (Beq ≈ 450 G), a finding that is consistent with(a) and(b). De Pontieu also
gives estimates for the average flux of the emerging concentrations, which turn out to be
(9 ± 4) × 1017 Mx. This is the same order of magnitude as what we find for individual
polarities of emerging flux concentrations in run U5.

De Pontieu suggested that the small-scale emergence events he detects may be related
to the so-called horizontal internetwork fields (HIFs, Lites et al. 1996). According to Lites
et al., HIFs arepredominantly horizontalmagnetic structures with length and time scales
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Figure 5.5: Emergence of magnetic field into the photosphere in run U5. The left column
shows a time sequence of the emergent continuum intensityI5000. The vector overlays in
the left column indicate the horizontal components of the velocity field atτ5000 = 0.1. The
right column shows the corresponding time sequence of synthetic vector magnetograms.
The grey scale indicates the absolute field strength|B| and the vector overlays indicate the
horizontal components of the magnetic field, both taken atτ5000 = 0.1. In both columns,
the contour overlays indicate the distribution of the vertical component of the magnetic
field atτ5000 = 0.1. Green (red) contours indicate magnetic field directed out of (into) the
visible surface.
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Figure 5.6: Left column: Joint probability distribution functions (JPDFs) of the zenith
angle of the magnetic field vector against the absolute field strength|B|. Both quantities
have been evaluated for theτ5000 = 0.1 level. Right column: JPDF between the zenith
angle and the vertical fluid velocity. The colour coding indicates the logarithm of the
probability. The upper and lower rows respectively show the JPDFs att = 12.4 min and
t = 61.1 min for run U5.

of 1 − 2′′ and5 min respectively. The existence of HIFs are inferred from the distinctive
signals in the Stokes Q and U profiles of relatively quiet regions of the solar surface. The
strength of these signals indicate that HIFs are generally weak with|B| . 600 G. HIFs
are usually detected in regions where the spectral lines are slightly blueshifted, indicating
the association with HIFs with upflows. Both Lites et al. and De Pontieu interpret these
as signatures of the crests of magnetic loops emerging through granules.

We have analyzed simulation run U5 to check whether this interpretation is tenable.
Fig. 5.6 shows joint probability distribution functions (JPDFs) between different surface
quantities in the simulation run for timest = 12.4 min (upper row) andt = 61.1 min
(lower row). The left column shows JPDFs between thezenith angleγ of the magnetic
field against the absolute field strength|B|, both evaluated atτ5000 = 0.1. The zenith
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angle is defined as the angle betweenB and thez−axis. As such, magnetic field vectors
with γ = 0◦ andγ = 180◦ correspond to purely vertical magnetic field that points out of
and into the plane respectively. Purely horizontal fields haveγ = 90◦. The right column
shows JPDFs between the zenith angle and|B|. The left column shows JPDFs between
zenith angle and the vertical fluid velocity (for surface regions with|B| > 0). Recall from
Fig. 5.5 that flux begins to emerge approximately att = 12.4 min. The JPDFs at this time
indicate the existence of predominantly horizontal field with strengths of up to|B| ≈ 400
G. These horizontal fields mainly have rise velocities of1 − 2 km s−1, which is typical
of granular upflows. This finding is compatible with the scenario proposed by Lites et al.
and by De Pontieu (2002) for the explanation of HIFs.

Now, let us proceed to study the JPDFs at a much later time oft = 61.1 min. We find
a distinctly different shape for the JPDF between the zenith angle and|B|. There exists a
pair of horn-like features that indicate the existence of some strong vertical fields of up to1
kG. We will return to this point in the following section. For the moment, we are interested
in the existence of horizontal fields. Indeed, we find at this time that there is a continuous
distribution of nearly horizontal fields with strengths of up to300 G. The accompanying
JPDF between the zenith angle andvz indicates that the majority of horizontal fields reside
within upflow regions (granules). In fact, the JPDF between the zenith angle and|B| at
t = 61.1 min resembles those found by Vögler (2003), who studied magneto-convection
in the near-surface layers with the MURaM code. In his simulations, the initial condition
consisted of a uniformly vertical field instead of an initially submerged field. What this
comparison tells us, is that the abundance of weak horizontal fields in granule interiors
is a feature of the process of magneto-convection and not necessarily associated with
emerging flux.

5.3.1.1 Surface evolution of emerged field: cancellation, coalescence and secondary
emergence

In run U5, the morphology of the emerged field bears little resemblance to the initial
horizontal flux tube structure. The arrangement of the surface field some minutes after
initial flux emergence (see snapshots att = 17.7 and22.1 min in Fig. 5.5) looks a bit
like the salt and pepperpattern of quiet Sun magnetic fields observed by Domínguez
Cerdeña et al. (2003). Our results and their observational results are similar in that we
both have a mixture of positive and negative small-scale flux in the intergranular network.
Their observations have a cadence of50s, which enabled them to study the dynamic
evolution of these small-scale flux concentrations. The time series of intensity images
and magnetograms in Fig. 10 of their paper show the ability of the granular flow to
disperse and to advect the existing flux concentrations horizontally. Furthermore, there
are instances when flux concentrations of like polarities meet, and appear to coalesce (to
within the resolution limit). In another instance, which they explicitly point out in the
caption to Fig. 10, there appears to be a flux cancellation event due to the encounter of
opposite polarities. In our simulation (run U5), we also find instances of both these types
of events. In the following, we focus on one particular coalescence event between two
flux concentrations.

Fig. 5.7 shows an example of such a coalescence event. At timet = 47.9 min, we
find a number of magnetic flux concentrations of both polarities. The most prominent
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feature is centered at[x, y] = [2.5, 9] Mm. This feature resides at a downflow vertex
between intergranular lanes and has a flux of1.5 × 1018 Mx. The core of the feature has
a maximum vertical field strength ofBz = 1, 200 G (at τ5000 = 0.1). A few minutes
later, att = 52.1 min, we find a small bipolar pair emerging through a granule, which is
located just to the right of the pre-existing flux concentration. The bipole is oriented such
that the pole closest to the pre-existing flux concentration has the same polarity (positive).
The horizontal velocity field at this time shows how the newly emerged flux is expelled to
the intergranular network. When the newly emerged positive feature has been expelled, it
encounters the pre-existing feature and the two coalesce into a larger flux concentration.
The flux concentration resulting from the coalescence has a total flux of2.6 × 1018 Mx,
comparable to the longitudinal flux of the horizontal flux tube at the beginning of the
simulation.

This particular example is interesting for a number of reasons. Firstly, the new bipole
emerges at a relatively late stage of the calculation. The emergence of this bipole occurs
many granulation times (40 min) after the initial appearance of flux at the surface (see
Fig. 5.5). Its emergence location is also unusual. In Fig. 5.5, we see that almost all
the flux emerges within a horizontal distance of2 Mm awayy = 6 Mm (the original
position of the tube axis at the beginning of the simulation). The new bipole, however,
emerges significantly further away, aty ≈ 9 Mm. These two points are consistent with
the fact that, when a section of a flux tube is passively carried by an upwelling, not all
the flux contained in the tube emerges in one single event. The material near the edge
of an upwelling may overturn before it reaches the surface. Consequently, the magnetic
field threading this material fails to emerge on first attempt. This magnetic field may
then continue to travel downwards, or may get caught up in another upwelling and travel
upwards again. From this consideration, we can argue that although some magnetic field
fails to emerge on first attempt, the convective flowsmayeventually bring it to the surface
after some convective turnover times. The emergence of the bipole in Fig. 5.7 is one such
example. The magnetic field associated with this bipole has overturned several times
before it eventually reaches theτ5000 = 0.1 surface. Considering that it had been caught
up in different upflows and downflows, it is not surprising that its emergence location is
about1 Mm further afield.

The coalescence event shown in Fig. 5.7 is interesting for another reason. We have
already mentioned that the pre-existing positive flux concentration att = 47.9 min resides
in a downflow vertex. This flux concentration is not as dark as the average intergranular
lane or vertex. After coalescence, the resulting concentration appears even brighter. To
explain this, we make reference to Fig. 5.8. Let us first look at the top row of this figure.
The panels in this row show joint probability distribution functions (JPDFs) between the
value of |Bz| at a horizontal plane of constant geometrical height〈z0.1〉 and its value
evaluated at optical depthτ5000 = 0.1 (for line-of-sights withµ = 1). The height〈z0.1〉
corresponds to the average geometric height of theτ5000 = 0.1 surface in the absence of
magnetic fields. On average, theτ5000 = 0.1 surface is higher than theτ5000 = 1.0 surface
by about160 km (i.e. 〈z0.1〉− 〈z1.0〉 = 160 km). We first focus on the distribution of field
strengths at the horizontal planez = 〈z0.1〉 (i.e. ignore the y-axis). A few minutes after
the initial appearance of flux at the surface (t = 17.7 min), the vertical field strengths do
not exceed500 G. Some time later, att = 34.6 min, a small fraction of the vertical flux
concentrations have field strengths of up to700 G in the horizontal planez = 〈z0.1〉. At
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Figure 5.7: This time sequence shows the coalescence of newly emerged magnetic con-
centrations with pre-existing surface field. The grey scale in each panel indicates the
normalized continuum intensity at5000 Å (I5000/〈I5000〉). The vector overlays indicate
the horizontal velocity field at optical depthτ5000 = 0.1 and the contour overlays indicate
Bz at the same optical depth at the levels±[100, 200, 400, 800, 1600] G. Green (red) con-
tours correspond to positive (negative) polarities. Att = 47.9 min, a bipole centered at
[x, y] = [3.5, 9.2] Mm is emerging through a granule. Flux expulsion leads to a coales-
cence between the pre-existing positive flux with the positive part of the newly emerged
flux.
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t = 61.1 min, we find even stronger fields, approaching|Bz| = 1 kG atz = 〈z0.1〉.
The appearance of stronger magnetic fields several granulation timescales after the

initial emergence of flux suggests that some type ofconvective intensificationmechanism
may be operating. From our synthetic magnetograms from run U5, we find that the maxi-
mum value of|Bz| that exists within a vertical magnetic bundle with a fluxΦ is an increas-
ing function ofΦ. In order to identify individual flux bundles from our magnetograms,
we choose some threshold,Bthreshold. For each discrete region in the magnetogram with
|Bz| ≥ Bthreshold, we measured the value of the maximum value of|Bz| in the region
as well as the amount of flux contained within the region. A scatter plot of these two
quantities are shown in Fig. 5.9. The crosses, diamonds and squares indicate values from
magnetograms taken att = 17.7, t = 34.6 andt = 61.1 min respectively. The thresh-
old used for this plot wasBthreshold = 50 G. The scatter plot clearly shows that larger
flux bundles can support stronger internal field strengths. This trend is not sensitive to
the threshold value used. Our finding is compatible with the work of of Venkatakrishnan
(1986), who predicted the radiative heating of flux tubes by their surroundings inhibits
the intensification of the flux tubes. The observational study by Solanki et al. (1996) also
supports his prediction. We must point out, however, that the various types of diffusion
present in the simulation have effects which are more prominent for smaller flux bundles.
For instance, a flux bundle with a mean field strength of100 G and a flux of1016 Mx has
a radius of about50 km, which is the horizontal grid spacing used in our simulations. We
must therefore keep in mind, that the trend in the scatter plot in the rangeΦ . 1017 Mx
are influenced by diffusion.

In the same vertical flux concentrations, the value of|Bz| evaluated atτ5000 = 0.1 is
actually larger, approaching1 kG. The reason for this apparent discrepancy is simply that
the τ5000 = 0.1 level in the stronger field regions have been displaced downwards. This
effect is indicated by the second row in Fig. 5.8, which consists of JPDFs ofz0.1 − 〈z0.1〉
against|Bz| at τ5000 = 0.1. The quantityz0.1 − 〈z0.1〉 is the displacement of the local
τ5000 = 0.1 level from the mean geometrical height of this optical depth (i.e.Wilson
depression). We find that att = 34.6 min, the regions with the strongest fields suffer the
deepest depression (of theτ5000 = 0.1 surface).

The aforementioned effect is even more pronounced att = 61.1 min. At this instant,
we find even stronger field strengths than before. The discrepancy between the value of
|Bz| atz = 〈z0.1〉 and its value atτ5000 = 0.1 is even greater. The maximum field strength
at z = 〈z0.1〉 is 1 kG. This is not very surprising if we compare the magnetic pressure
of a 1 kG magnetic field with the horizontally averaged gas pressure in that plane. The
two values are almost equal. This comparison tells us that, if there exists a totally evac-
uated magnetic structure with a field strength higher than1 kG at the heightz = 〈z0.1〉,
it would tend to expand in order to maintain pressure balance with its surroundings. The
expansion would then weaken the field strength. Now, when we look at the distribution
of |Bz| at τ5000 = 0.1 at t = 61.1 min, we find field strengths approaching1.5 kG. Again,
the reason for the discrepancy is the depression of surfaces of constant optical depth in-
side strong magnetic fields. This depression is a consequence of the partial evacuation
of vertical flux concentrations leading to a modification of the internal temperature and
density structure. As a result, theτ5000 = 0.1 (or 1 etc) level is located geometrically
deeper in vertical magnetic regions. This means that the distribution of|Bz| evaluated at
this optical depth samples the deeper layers of the magnetic flux concentrations, where
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Figure 5.8: Joint probability distribution functions (JPDFs) for different surface quantities
in run U5.First row: JPDF between the value of|Bz| at a plane of constant geometrical
height z = 〈z0.1〉 and its value evaluated atτ5000 = 0.1. Second row: JPDF between
the value of|Bz| at z = 〈z0.1〉 and the local vertical displacement of theτ5000 = 0.1
surface from the mean geometrical height of the surface corresponding to this optical
depth (z0.1 − 〈z0.1〉 ). Third row: JPDF between|Bz| atz = 〈z0.1〉 and the temperature at
τ5000 = 1.0. Fourth row: JPDF between|Bz| at z = 〈z0.1〉 and the normalized emergent
continuum intensity at5000 Å. The three columns show the JPDFs at three different times.
The color coding indicates the logarithm of the probability.
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Figure 5.9: Scatter plot of the maximum value of|Bz| in an individual magnetic flux
concentration against the amount of vertical flux contained in the flux concentration. The
values of|Bz| were evaluated at the plane of constant geometrical height,z = 〈z0.1〉. The
crosses, diamonds and squares indicate values from magnetograms taken att = 17.7,
t = 34.6 andt = 61.1 min respectively.

the flux concentrations are more compact, and thus have enhanced field strengths.
The partial evacuation of vertical flux concentrations lead to another observational

signature. From the Eddington-Barbier relation, we know that the emergent intensity at
µ = 1 is approximately given by the source function atτ = 1. The panels in the third row
of Fig. 5.8 show JPDFs between|Bz| at z = 〈z0.1〉 and the temperature atτ5000 = 1.0.
The temperature at optical depth unity is higher in strong field regions. This explains why
the brightness of vertical flux tubes increases with|Bz| (see fourth row of Fig. 5.8). We
will return to the topic of convective intensification in Section 5.4.1, where we describe
in detail the physical mechanism of the intensification process for a particular example.

5.3.2 Emergence of strong magnetic field

In this section we discuss the observational signatures of the emerging flux tube with
B0 = 8500 G (run U1), which is strong enough to resist being passively deformed and
advected by the convective flow. When it emerges, its expansion leads to a modification
of the granulation pattern. Fig. 5.10 shows a time sequence of the emergent continuum
intensity throughout the emergence event (grey scale). The vector overlays indicate the
horizontal components of the velocity field atτ5000 = 0.1. Fig. 5.11 shows accompanying
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synthetic magnetograms for this emergence event.
We have seen that the emergence morphology of the field in run U5 is dictated by

the convective motion of the near-surface layers. In run U1 (where the magnetic field is
several times stronger), the convection still has an appreciable influence on the emergence
morphology. Comparison of the magnetogram and the intensity image att = 8.6 min
clearly shows that magnetic flux emerges preferentially within the interior of granules.
The accompanying magnetograms show mainly positive (negative) polarity flux in the
upper (lower) half of the field of view. This is due to the twist in the tube, which is also
indicated by the vector plot of the horizontal field.

Having pointed out the importance of convection on the emergence morphology, we
must also point out the influence of the emerging magnetic field on the local granulation
pattern. The intensity image att = 8.6 min shows that granules coincident with the
emerging flux are somewhat aligned along the direction of the tube axis. Furthermore,
these granules are relatively large (covering an area of up to9 Mm2). The disturbance of
the granulation by the emerging magnetic field is most prominent att = 11.2 min. The
intensity image at this time shows a darkening which extends the full horizontal extent
of the simulation domain. This darkening is extended but is not coherent along its entire
length. There exist bright patches on either side of the darkening but their shapes are
distinctly different from that of normal granules. As is shown in Fig. 5.4, the expansion
of the emerging tube drives horizontal outflows away from the emergence site. These
outflows can be seen in the vector plots in the central panel of Fig. 5.10. The synthetic
magnetogram for the same instant shows that much of the emerged flux already resides in
the intergranular lanes.

At t = 16.9 min, we no longer find an extended darkening along the length of the
domain. Rather, the region formerly occupied by the extended dark lane is replaced by
the usual granulation pattern. These granules are generally elongated in they-direction
because of the horizontal outflows driven by the expanding tube. In the accompanying
synthetic magnetogram, we find that the emerged magnetic flux outlines the boundaries of
these new granules. They-component of the magnetic field is on average pointed towards
the positivey−direction. This is just the opposite to what we see in the magnetogram at
t = 8.6 min. This reversal of the sign ofBy within this time span is expected. In the
earlier snapshot, theτ5000 = 0.1 surface intersects with the upper half of the flux tube.
The twist of the field lines within the tube is such thatBy < 0 in this part of the tube.
In the latter snapshot, the lower half of the tube has emerged at the surface, and so the
synthetic magnetogram shows field with predominantlyBy > 0.

5.3.2.1 The relation between field strength and zenith angle

Lites et al. (1998) have observed several emerging flux regions using the Advanced Stokes
Polarimeter. The acquisition of the full Stokes profiles have allowed them to carry out
inversions to obtain vector magnetograms of these regions. Based on their observa-
tions, Lites et al. (1998) described the following scenario for flux emergence: Magnetic
flux emerges at the surface in the form of horizontal field, with field strengths of200−600
G (in any case, sub-kilogauss). After emergence, the field quickly migrates away from the
emergence site. In the process, the field becomes vertical. Only when the field has become
vertical, do the fields obtain field strengths exceeding one kilogauss. The observational
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Figure 5.10: The emergence of the flux tube in run U1 (B0 = 8500 G) temporarily disturbs
the granulation pattern. Shown above is a time sequence of the emergent continuum
intensity at5000 Å. The vector overlays indicate the horizontal components of the velocity
at τ5000 = 0.1. A vector of length corresponding to one grid-spacing on the vector plot
corresponds to a magnitude ofv = 3 km s−1. The appearance of a transient darkening
along the length of the domain marks the site of emergence.
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Figure 5.11: Synthetic magnetograms accompanying Fig. 5.10. The vertical and horizon-
tal components of the magnetic field atτ5000 = 0.1 are indicated by the grey scale and
vector overlays respectively. A vector with a length of one grid-spacing on the vector plot
corresponds to a field strength of|B| = 400 G.
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Figure 5.12: Joint probability distribution functions (JPDFs) of the zenith angle of the
magnetic field vector versus the absolute field strength|B|. Both quantities have been
evaluated at theτ5000 = 0.1 level. A zenith angle of90◦ corresponds to a purely horizontal
field. The four panels show the JPDFs at four different times. Att = 8.6 min, the flux tube
is emerging at the surface and the strongest fields are predominantly horizontal. Kilogauss
fields are almost exclusively vertical.

study by Kubo et al. (2003) also supports these findings.
At t = 8.6 min in Figs. 5.10 and 5.11, the flux tube is just emerging at the surface. The

JPDF at this time reflects the fact that the flux tube is still coherent. The horizontal fields
are stronger than the vertical fields. Although a tiny fraction of the horizontal fields have
kilogauss field strengths, most are confined within the range400 ≤ |B| ≤ 1, 000 G. Just
five minutes later, att = 11.2 min, the distribution in the JPDF looks very different. The
appearance of two ‘horns’ in the JPDF nearγ = 0◦ andγ = 180◦ indicates the effect of the
granular flow on the emerged field. As the emerged field is advected to the boundaries of
granules (i.e. flux expulsion), it is also rotated so that it becomes predominantly vertical.
As the simulation progresses in time, the two horns in the JPDF become more distinct.
At t = 27.6 min, nearly all the field with|B| ≥ 600 G are vertical. There is actually an
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abundance of horizontal fields, however, these are confined to strengths of less than600
G. The shape of the JPDF at this time is similar to the scatter plots of zenith angle vs. |B|
measured in emerging flux regions by Lites et al. (1998) and by Kubo et al. (2003).

5.3.2.2 Anomalous transient dark lane

The physical properties of the extended dark lane is distinctly different from those of
normal intergranular lanes. In the quiet Sun in the absence of magnetic flux emergence,
the intergranular lanes are dark and associated with cold downflowing material (see Sec-
tion 3.3). The anomalous dark lane that results from the emergence of the flux tube in
run U1 is associated withupflowingmaterial for a substantial fraction of the dark lane’s
lifetime (several minutes). Fig. 5.13 shows the normalized emergent continuum intensity
at t = 11.2 min (same as the central panel in Fig. 5.7). Overplotted on the grey scale
image are contours of the vertical component of the velocity atτ5000 = 0.1 for magnetic
regions (|B| ≥ 400 G). The green contours indicate upflows withvz = [0.5, 1] km s−1 and
the red contours indicate downflows withvz = [−1,−0.5] km s−1. There is a substan-
tial overlap of the green contours with regions on the surface comprising the dark lane.
The correlation between upflows and low emergent intensity in the dark lane is also illus-
trated in Fig. 5.14. Plotted in this figure are average profiles of the normalized emergent
continuum intensity and the vertical velocity atτ5000 = 0.1 across the dark lane (in the
y-direction). The plotted values are averages taken along thex−direction at timet = 11.2
min. Away from the emergence site, there is a clear correlation between bright regions
(I5000/〈I5000〉 > 1) and upflows (vz > 0). Again, we see that within the emergence site
(y ∼ 6 Mm), the darkening (I5000/〈I5000〉 ≈ 0.93) is co-spatial with upflowing material
(vz = 0.5− 1 km s−1).

The lifetime of the extended dark lane is about10 minutes, which is comparable to the
granulation time. For the first few minutes of the dark lane’s lifetime, the regions of lower
brightness are associated with upflowing material with rise speeds of up to1 km s−1. This
is substantially lower than the typical rise speed (v ≈ 2− 4 km s−1) of magnetic material
when it is just emerging at the visible surface. In the last few minutes of the dark lane’s
lifetime, the dark lane splits up into spatially separated, dark elongations with length of
about2 Mm (see intensity image att = 16.9 min in Fig. 5.10). The vertical velocities of
these dark elongations are negative, indicating regions of downflows.

The presence or absence of a transient dark lane as an observational signature of flux
emergence depends on the initial field strength as well as the initial twist carried by the
tube. When the initial flux tube is sufficiently weak that it has relatively small buoyancy
(as is the case with run U5), a dark lane does not appear. The reason for this is simple: In
order for the dark lane to appear, the emerging field must be strong enough that its evo-
lution is not completely controlled by the convective flow. However, the flux tube having
a strong field is not a sufficient criterion. The amount of initial twist is also important.
We have carried out simulation runs with the same initial conditions for the flux tube as
in run U1, varying only the amount of the initial twist. We found that for a flux tube with
twist parameterλ = 0, there is no transient dark lane marking the emergence site of the
tube. For a flux tube with a moderate amount of twist,λ = 0.25, we find the transient
appearance of some dark patches within the granules where the emergence occurs. These
patches, however, do not exhibit a clear alignment or coherence as is the case in run U5
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Figure 5.13: The anomalous dark lane (y ∼ 6 Mm) that appears in run U1 is roughly
coincident with upflowing material. The grey scale in this image indicates the normalized
emergent continuum intensity att = 11.2 min. The green (red) contours indicate the
vertical velocity at the levels+ (−) [0.5, 1] km s−1.

Figure 5.14: Average profiles of the normalized continuum emergent intensity (solid line)
and vertical velocity atτ5000 = 0.1 (dashed line) across the dark lane att = 11.2 min.
The values indicated are averages over thex−direction.
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(whereλ = 0.5).
The following explanation accounts for the properties we have presented above: When

a flux tube (with a flux of, say,Φ0 = 1019 Mx) reaches the surface, it has a rise speed of
2−4 km s−1. As we found out in Section 4.2.3, the amount of twist in the tube determines
whether it can remain a coherent structure (largeλ) or break up into vortex fragments
(smallλ). As the flux tube emerges and cools by radiation, the flux tube loses buoyancy.
Nevertheless, the emerged magnetic material may still overshoot. If the flux tube is suf-
ficiently twisted, its core will remain largely intact and overshoot into the photosphere.
This happens despite the flux tube having lost its buoyancy by radiative cooling. As the
emerged magnetic material of the tube overshoots, its upwards motion is braked by the
stable stratification. This is why the synthetic Dopplergram in Fig. 5.13 shows upwards
velocities limited to0.5 − 1 km s−1 within the dark lane. The coolness of the magnetic
material at optical depth unity accounts for the lane’s darkness. The arrangement of the
cool and dense material in an extended lane configuration is not stable to perturbations
introduced by granular dynamics. Within a few minutes, the extended dark lane breaks
up into shorter elongations with lengths comparable to those of intergranular lanes. The
acceleration of the dense material by gravity either leads to the birth of new downflows, or
feeds pre-existing downflows in the intergranular network. The influence of the granular
dynamics on its evolution explains why the dark lane has a lifetime comparable to the
granulation timescale.

Transient appearance of dark alignments in emerging flux regions (EFRs) have been
reported by a number of observational studies (Bray et al. 1984, Brants and Steenbeek
1985, Zwaan 1985, Strous and Zwaan 1999). The darkening occurs in both the continuum
as well as in the core of a spectral line, and is spatially coincident with upflows beyond
0.5 km s−1. The orientation of the alignment is roughly parallel to the axis connecting the
two developing polarities of the active region. Strous and Zwaan (1999) have identified
111 individual emergence events in an EFR and have carried out a statistical analysis of
these events. They find that transient darkenings in the line core and in the continuum,
lasting about10 minutes, are robust signatures of emergence events. The typical length of
the darkenings is about2 Mm and they are aligned roughly parallel to the axis connecting
the two developing polarities of the active region. Their analysis also establishes that the
darkenings are associated with upflows of about0.5 km s−1. All these properties are in
agreement with the simulation results from U5. In addition, Strous and Zwaan (1999) also
report that the darkenings, on average, rotate counterclockwise at about 0.5◦ min−1. In
run U5, we do find that some of the dark elongations rotate during the breakup of the dark
lane. However, we do not find any systematic direction in which the rotation occurs.

5.4 Emergence of an arched magnetic flux tube

So far, we have only considered simulations of flux tubes which were initially imparted
with a uniform specific entropy distribution (which is closely related to a uniform buoy-
ancy distribution). These simulations have taught us much about the physics of photo-
spheric flux emergence and have explained many of their observed properties. We have
found that, despite the flux tube being uniformly buoyant along its axis, the surrounding
upflows and downflows introduced undulations along the tube so that it consists of an al-
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Figure 5.15: 3D rendering of the arched flux tube in run L1 att = 11.8 min. The grey
scale shaded surface indicates the vertical velocity (within the range±3 km s−1) at optical
depthτ5000 = 1. The subsurface trunks of the arched flux tube are indicated by the yellow
isosurfaces of|B| = 2000 G. The winding of the different field lines around the axis of
the tube shows the inherent twist within the tube.

ternating series of crests and troughs. The typical wavelength of this undulation is about
1− 2 Mm, which is the characteristic length scale for the granulation itself. For this rea-
son, the magnetic field of the tube emerges at the surface as an alignment of loops with
the horizontal tops of the loops emerging through the centres of granules. In this sense,
we can say that magnetic fields emerge at the surface as arched loops. However, bipolar
magnetic regions are observed to emerge all over the surface with the property that the
final separation between the two poles is much greater than the size of a granule (Zwaan
1985). The most extreme example is that of large active regions, whose polarities can be
up to hundreds of Mm apart. Then there are smaller bipolar regions, such as ephemeral
regions, whose bipoles can be separated by a few to tens of Mm (Hagenaar 2001). This
property points to a larger-scale undulation of the subsurface structure of emerging flux
bundles.

Motivated by the discussion above, we have carried out a simulation to study how an
arched flux tube emerges at the surface (run L1). For this simulation, the initial specific
entropy within the tube varies along the axial direction of the tube according to the profile

s(x) = s0 + (sup − s0) cos2

(
[x− x0]π

Lx

)
, (5.7)

wherex0 = 12 Mm andLx = 24 Mm is the length of the domain in thex−direction.
The distribution ofs in each cross-section perpendicular to the tube axis is uniform. The
cross-section of the tube atx = 0 Mm is initially imparted with a specific entropy of
s0 = 5.1R?, which is comparable to the value ofs of anti-buoyant material near the
visible surface. This implies that segments of the tube nearx = 0 Mm are anti-buoyant,
and will tend to sink. In contrast, segments of the tube nearx = 12 Mm are buoyant
because they have higher specific entropy. The maximum of the specific entropy profile
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is located atx = 12 Mm, where it takes a values = sup. By pre-loading the tube with
a varying entropy distribution along the tube axis, we induce it to develop into anΩ-type
loop structure with the apex of the loop nearx = 12 Mm.

Apart from the initial specific entropy profile, the flux tube in run L1 has the same
initial properties as the tube in run U1. In both cases, the field strength at the tube axis
is B0 = 8500 G and the twist parameter isλ = 0.5. The longitudinal magnetic flux of
the tube is1019 Mx. Fig. 5.15 shows a 3D rendering of the arched flux tube as it emerges
into the photosphere (t = 11.8 min). This image is intended to provide the reader with
a 3D image of the emerging loop, which will facilitate the discussion in the following
sections. The granulation pattern can be discerned from the grey scale shaded surface,
which indicates the vertical velocity at optical depth unity. At this instant, the crest of
the flux tube is just passing through the visible surface. The subsurface trunks of the
arched flux tube is indicated by the yellow shaded isosurfaces of|B| = 2000 G. The field
lines show how the two trunks are connected. The winding of the field lines is due to the
intrinsic twist of the tube (λ = 0.5 initially).

5.4.1 Appearance of bright grains at the footpoints of the loop

As mentioned in Section 5.3.2.2, Strous and Zwaan (1999) found that transient darkenings
are robust observational signatures of emerging flux. In the same study, they also found
that the transient darkenings are followed by the appearance of bright grains flanking the
ends of the darkenings. The bright grains coincide with magnetic flux concentrations
and downflows. In many cases, a single bright grain is found at one end of a darkening.
Occasionally, both ends of the darkening are flanked by bright grains. In these cases, the
flux concentrations associated with the pair of bright grains have the opposite polarity
and the orientation of the pair is consistent with the larger-scale orientation of the two
polarities of the developing active region. After their initial appearance, the bright grains
separate with an average speed of1.4 km s−1. Based of these findings, Strous and Zwaan
constructed a heuristic model, in which they interpret the transient darkening as the crest
of an emerging loop and the bright grains at the flanks as the photospheric footpoints of
the loop.

Our simulation of the emergence of an arched flux tube yields observational signa-
tures that are compatible with this model. Fig. 5.16 shows a time sequence of the nor-
malized continuum intensity over the course of the emergence event and Fig. 5.17 shows
the accompanying synthetic vector magnetograms. The green (red) contours indicate the
vertical velocity at levels of+ (−) [0.5, 1] km s−1 for regions with|B| ≥ 300 G.

At t = 11.8 min, we find the arched flux tube emerging through the surface. The
magnetogram shows an elongated magnetic complex covering a surface area of about10
by 3 Mm2. At the left and right ends of the magnetic complex, we find predominantly
positive and negative polarity flux, respectively. The interior of the complex is a region of
predominantly upflowing material but does not appear like it consists of normal granules.
The edge of the magnetic complex is outlined by downflows. Let us focus our attention
on the negative flux concentration at the right end of the magnetic complex. This flux
concentration resides in a downflow and appears relatively dark (I ≈ 0.8− 0.9〈I5000〉). A
couple of minutes later, att = 14.1 min, the same feature has been displaced towards the
right by about0.5 Mm. In the meantime, it has brightened to an intensity of1.5〈I5000〉.
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Figure 5.16: Time sequence of intensity images for the emergence of an arched flux
tube (run L1). The green (red) contours indicate the vertical velocity at levels of+ (−)
[0.5, 1] km s−1 for regions with|B| ≥ 300 G. At t = 14.1 min, a bright grain with a peak
intensity ofI5000 = 1.6〈I5000〉 appears at the right end of the magnetic complex. This
bright grain coincides with a downflow in a magnetic concentration.
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Figure 5.17: Accompanying synthetic vector magnetograms for Fig. 5.17. The grey scale
indicates the vertical fieldBz and the vector overlay indicates the horizontal components
of the field. A vector with a length of one grid spacing on the vector plot has a magnitude
of 300 G.
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5 Photospheric flux emergence: 3-dimensional simulations

Immediately to the l.h.s. of this bright magnetic concentration is an example of the tran-
sient anomalous darkenings we found in Section 5.3.2.2. This darkening has a length of
about2 Mm and is associated with upflowing material with a rise speed of0.5 − 1 km
s−1. If we go back to the intensity image att = 11.8 min, we see that the darkening
was already in progress at that time. In our simulation, the two footpoints of the loop (at
the extreme left and right ends of the magnetic complex) separate with a speed of about
3− 4 km s−1, which also compares favorably with the result of Strous and Zwaan (1999).

The appearance of the bright grain is a consequence of aconvective intensification
of the flux concentration (Grossmann-Doerth et al. 1998). We refer to Fig. 5.18 to ex-
plain the underlying physical mechanism. The six panels in this figure show profiles of
different quantities along a horizontal cut (aty = 6.1 Mm) through the magnetic flux
concentration associated with the bright grain. The profiles are shown for three different
times: t = 9.8 min (dash-dotted lines),t = 11.8 min (dashed lines) andt = 14.1 min
(solid lines). The top left panel shows the temperature structure within and around the
flux concentrationafter intensification (att = 14.1 min).

The intensification proceeds as follows: radiative cooling (Qrad < 0) of material in the
surface layers of the magnetic concentration drives a downflow, which partially evacuates
the predominantly vertical magnetic concentration. This causes a lateral compression of
the magnetic concentration, which increases the field strength at the core of the concen-
tration from a value of about700 G to 1, 200 G at the horizontal levelz = 〈z0.1〉. The
downflow and the radiative cooling modify the temperature structure within the magnetic
concentration so that, at the same geometrical height, the tube is cooler than its surround-
ings. The temperature deficit also means a reduction of the internal opacity, which causes
a local depression of surfaces of constant optical depth. Att = 11.8 min, theτ5000 = 1.0
level in the core of the concentration is already lowered from the average level by about
150 km. At t = 14.1 min, the surfaces of constant optical depth are even lower. At this
time, theτ5000 = 1.0 level in the flux concentration is300 km belowz = 〈z1.0〉. The
τ5000 = 0.1 level in the flux concentration is displaced downwards by a similar amount.
This vertical displacement is comparable to about two pressure scale heights at the sur-
face. We can crudely estimate that, over such a vertical displacement, the magnetic pres-
sure would increase by a factor of aboute2 and the magnetic field strength to increase
by a factor ofe. In fact, the field strength evaluated atτ5000 = 0.1 at t = 14.1 min is
|Bz| = 2500 G, approximately2.1 times the value atz = 〈z0.1〉.

The partial evacuation and cooling of the flux concentration means that theτ5000 = 1.0
surface probes deeper into the flux concentration. The lateral radiative heating of the in-
terior of the magnetic concentration from the sidewalls is crucial for the brightening of
the structure. Without this lateral heating, the magnetic concentration would become
dark. Such is the situation for larger magnetic concentrations such micropores, pores
and sunspots. Such large vertical flux concentrations have a sufficiently large radii, that
their interiors are effectively shielded from radiative heating from their sidewalls. In
the present case, the modification of the temperature structure within the magnetic con-
centration is such that the temperature at optical depth unity isT = 7, 000 K (almost
1, 000 K higher than the average surface temperature of the quiet Sun). Consequently,
the magnetic concentration has a brightness above the average. Its peak brightness of
I = 1.6〈I5000〉, however, cannot be maintained indefinitely. Att = 14.1 min, the ma-
terial within the magnetic concentration is cooling excessively, with a value as negative
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5.4 Emergence of an arched magnetic flux tube

Figure 5.18: Convective intensification of the flux concentration leads to its brightening.
Profiles of various quantities are shown for three different times:t = 9.8 min (dash-dotted
lines),t = 11.8 min (dashed lines) andt = 14.1 min (solid lines). Top left: The colour-
coding indicates the temperature structure in and around the magnetic concentration at
t = 14.1 min. The green curves in this panel indicate theτ5000 = 1 level for the three
different times. The horizontal white line shows the average geometrical height of this
optical depth surface in the absence of magnetic fields (i.e.z = 〈z1.0〉). The overlaid
arrows show the components of the velocity field in thex-z plane att = 14.1 min. An
arrow with a length of one grid-spacing corresponds to a speed of10 km s−1. Top right:
|B| at 〈z0.1〉. Middle left: Normalized emergent continuum intensity at5000 Å. Middle
right: Bz at τ5000 = 0.1. Lower left: The radiative heatingQrad divided by the internal
energy densityρε. Lower right: Vertical velocity atτ5000 = 0.1.
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5 Photospheric flux emergence: 3-dimensional simulations

asQrad/ρε ≈ −0.02 s−1. If the material in the tube maintains this rate of cooling, then
the timescale required for the internal energy to be depleted is, to order of magnitude,
|Qrad/ρε|−1 ∼ 1 min. This estimate is consistent with the simulation result, that within a
few minutes of reaching its peak intensity ofI = 1.6〈I5000〉, the magnetic concentration
dims toI = 1.3〈I5000〉. Thereafter, the magnetic flux concentration is in approximate
radiative equilibrium with its surroundings (Qrad ∼ 0) and its brightness is maintained
within the range(1.0− 1.3)〈I5000〉.

Let us now turn our attention to the other photospheric footpoint of the arched flux
tube. In Fig. 5.17, this feature is located at the l.h.s. of the magnetic complex and has
positive polarity. This magnetic concentration also brightens, albeit with a lower peak
intensity, and at a later time than its counterpart. Att = 14.1 min, this magnetic con-
centration is still dark. Att = 19.9 min, its brightness has increased toI = 1.3〈I5000〉,
which is already significantly brighter than non-magnetic downflows. The same physical
mechanism that we just described is responsible for the brightening of this magnetic flux
concentration.

5.4.2 Detection of an ephemeral region

The results presented thus far have shown us the importance of convection for the mor-
phology of the surface field during and after emergence. When we look at the magne-
tograms in Fig. 5.17, we do not find a clean bipolar region consisting of two distinct po-
larities neatly separated from one another. Of course, there is a predominance of positive
polarity field in the top-left half of the field-of-view, complemented by mainly negative
polarity field in the other half. The detailed morphology of the magnetic region, however,
shows a complexity that is the legacy of the interaction between the flux tube and the
granular flow.

How do our simulation results compare with observational studies (e.g. Hagenaar
2001) of ephemeral regions? To address this question, we investigate how the appearance
of the surface flux following the emergence of an arched flux tube depends on factors
such as the spatial resolution and noise level of an instrument. For reference, we use the
synthetic magnetograms directly from the simulation, which have pixel sizes of50 × 50
km2. Given a reference magnetogram, a degraded magnetogram with lower resolution is
produced in two steps. Firstly, the reference magnetogram is convolved with a normal-
ized 2D Gaussian kernel of the formK(x, y) ∝ exp[−(x2 + y2)/w2], wherew is the
characteristic width of the kernel. In order to avoid the influence of the horizontal peri-
odicity on the convolution integral, the reference magnetogram is bordered with layers of
zero-value pixels. Once we have convolved the padded reference magnetogram with the
kernel, the resulting array is resampled so that each pixel in the degraded magnetogram
has a pixel size of(0.5w)2. In other words, the resampling is done so that a resolution
element corresponds to2× 2 pixels. From hereon, we refer to the value ofw as the effec-
tive spatial resolution. To emulate the effect of different levels of noise in the degraded
magnetograms, pixels in the resampled magnetogram with absolute values smaller than a
specified threshold are set to zero.

Figure 5.19 shows a set of three synthetic magnetograms from the arched flux tube
simulation att = 37.7 min. The top panel is the reference magnetogram directly from
the simulation. The middle and bottom panels show the magnetogram degraded to effec-
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5.4 Emergence of an arched magnetic flux tube

tive spatial resolutions of0.8 Mm and1.6 Mm, respectively. These effective resolutions
correspond to pixels sizes of0.4 Mm and0.8 Mm, respectively. A common grey scal-
ing applies to all three magnetograms. For the reference magnetogram, the grey scale
indicates the actual value of the vertical magnetic field atτ5000 = 0.1. In the smoothed
magnetograms, the grey scale at each pixel indicates the flux density. The flux density
has units of Mx cm−2, which is formally equivalent to the unit of G. For this figure, we
specified a threshold for the flux density to be10 Mx cm−2.

Our choice of effective spatial resolution and threshold is motivated by the instrumen-
tal characteristics of the Michelson Doppler Imager (MDI) on board the spacecraftSOHO.
MDI provides magnetograms in full-disk and in high-resolution mode. Magnetograms in
the full-disk mode have a pixel size of2′′, corresponding to1.45 Mm at the disk cen-
tre. The pixel size in high resolution mode is0′′.61, corresponding to about0.435 Mm
at the disk centre. The noise level of individual magnetograms is estimated to be14 Mx
cm−2 (Scherrer et al. 1995, Hagenaar 2001). IfSOHOwere to observe our simulated flux
emergence event in high resolution mode, it would provide a magnetogram similar to the
one we synthesized in the middle panel of Fig. 5.19. A magnetograph with a resolution
intermediate between MDI full-disk and high resolution mode should appear like the one
in the bottom panel of Fig. 5.19.

The effect of increasing the width of the smoothing kernel is the gradual loss of small-
scale structure below the resolution limit. As expected, a magnetogram with a spatial
resolution of0.8 (or even1.6) Mm does not reveal any information about the structuring of
the surface flux by the granulation. For example, one is unable to discern that the patch of
positive flux centered at[x, y] = [6, 6] Mm is actually concentrated in the downflow lanes
around a single granule. Since the magnetic region has mixed-polarity fields, a decrease
in the spatial resolution also leads to an apparent cancellation of flux. For instance, in the
reference magnetogram, the flux (above the threshold) of a given polarity integrated over
the field-of-view is2.0 × 1019 Mx. The corresponding values of the integrated flux in
the middle and lower magnetograms are1.5 × 1019 Mx and1.3 × 1019 Mx respectively.
The use of a threshold level introduces imbalances between the integrated flux of opposite
signs at levels up to a few percent.

The magnetogram with a resolution of1.6 Mm in Fig. 5.19 shows two patches of
flux of opposite polarity, whose centres are separated by about9 Mm. In Fig. 5 of
her paper, Hagenaar (2001) shows examples of bipolar regions which were identified
as ephemeral regions based on her selection criteria. These bipolar regions do not con-
sist of two distinct polarities, each with roughly circular shapes. Instead, the bipolar
regions appear somewhat like the one we have in the bottom magnetogram in Fig. 5.19.
A time sequence of synthetic magnetograms of the simulated emergence event is shown
in Fig. 5.20. In this figure, all the magnetograms have an effective resolution of1.6 Mm
and noise level of10 Mx cm−2. The sequence shows the emergence of a bipolar region at
t = 9.8 min. At this time, the two patches of opposite polarity are each elongated roughly
in the x−direction. Betweent = 9.8 min andt = 37.7 min, the expansion speed of
the outer borders of the bipolar region in the smoothed magnetograms is approximately
2 km s−1. This value compares favorably to the expansion speeds of the outer borders
of ephemeral regions as measured by Harvey (1993) and by Hagenaar (2001). The two
authors report expansion speeds within the ranges1− 3 km s−1 and1.4− 3 km s−1, re-
spectively.
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5 Photospheric flux emergence: 3-dimensional simulations

Figure 5.19: Synthetic magnetograms of the surface magnetic field att = 37.7 min at
different effective spatial resolutions.Top: Unsmoothed synthetic magnetogram.Middle:
Magnetogram smoothed to a resolution of0.8 Mm. Bottom: Magnetogram smoothed to a
resolution of1.6 Mm. The grey scale indicates the flux density in units of Mx cm−2.
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5.4 Emergence of an arched magnetic flux tube

Figure 5.20: Sequence of smoothed synthetic magnetograms with an effective spatial
resolution of1.6 Mm. The threshold used is10 Mx cm−2. The grey scale indicates the
flux density in units of Mx cm−2.
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5 Photospheric flux emergence: 3-dimensional simulations

Figure 5.21: Synthetic magnetograms of the surface magnetic field att = 37.7 min at the
same resolution (1.6 Mm) but with different thresholds. The grey scale indicates the flux
density in units of Mx cm−2.
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Depending on the threshold we choose for our smoothed synthetic magnetograms,
the magnetic region may appear as one or two bipole pairs. Fig. 5.21 shows synthetic
magnetograms with the same effective spatial resolution (1.6 Mm) but for different values
of the threshold. For values of the threshold up to10 Mx cm−2 (see top panel of Fig. 5.21
and bottom panel of Fig. 5.19), the magnetic regions appear like a single bipole. For a
threshold of20 Mx cm−2, there appears to exist two discrete positive polarity regions and
one single negative polarity region. As we increase the threshold to40 Mx cm−2, the
negative polarity region splits into two, so that we end up with two bipole pairs.

We have produced synthetic magnetograms of our simulation of the emergence of an
arched flux tube for various spatial resolutions and for different values of the threshold.
We found that, given a sufficiently low spatial resolution, a dispersed patch of flux on
the solar surface may appear as an individual flux concentration in the synthetic mag-
netogram. In the case of our simulation, this effect can smooth out the detailed sur-
face morphology of a magnetic complex consisting of mixed-polarity field, so that the
magnetic complex appears like an ephemeral region in low-resolution magnetograms.
Given this finding, let us do the following thought experiment. Suppose we identify an
ephemeral region in an MDI magnetogram. How may we expect the same ephemeral re-
gion to appear given magnetograms of better quality and resolution? What we found out
in this section, is that at higher resolution, the apparently discrete magnetic concentrations
comprising ephemeral regions may simply be fragments of dispersed, smaller-scale flux
concentrations of like polarity. Even in MDI magnetograms, Hagenaar (2001) finds that
some ephemeral regions fragment as their outer borders expand. At higher resolution, the
fragmentation events will become more readily detectable. The Solar Optical Telescope
(SOT) on board the upcoming Solar-B space mission will provide magnetograms with
pixel sizes of60 km, delivering a spatial resolution of about100 km. This level of resolu-
tion will reveal the richness of the morphology of ephemeral region fields at sub-granular
scales.
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In this dissertation, we studied the dynamics of the buoyant rise of magnetic flux tubes,
with a special emphasis on their emergence into the photosphere. The emergence sim-
ulations we presented in Chapter 5 are ‘realistic’ in two senses. Firstly, the simulations
take into account the effects of non-local radiative energy exchange, partial ionization and
magneto-convection, all of which are important for a proper treatment of the problem.

Secondly, the simulations yield observational signatures of magnetic flux emergence
that are in qualitative and quantitative agreement with observations of emerging flux re-
gions (EFRs). Due to the limited size of our simulation domain, we are restricted to
simulations beginning with individual flux tubes, each carrying a longitudinal magnetic
flux of up to 1019 Mx. This value is comparable to the longitudinal flux contained in a
small ephemeral region, but is a few orders of magnitude smaller than the magnetic flux
contained in large active regions. Nevertheless, our emergence simulations captures ob-
servational properties pertaining to ephemeral regions as well as to the EFRs of active re-
gions during their development phase. For instance, take our simulation of the emergence
of an arched flux tube (see Section 5.4). In Section 5.4.2, we showed that at sufficiently
low spatial resolution (∼ 1 Mm), the morphology and evolution of the surface field in the
magnetograms of this emergence event are akin to those of ephemeral regions (Hagenaar
2001). In the same simulation, we found distinct observational signatures (e.g. transient
darkening coincident with upflows, followed by the bright grains flanking the ends of
the darkening) that are observed in EFRs of active regions (see, for example Strous and
Zwaan 1999).

The common ground between small ephemeral regions and active regions is the fol-
lowing: An active region does not result from the emergence of a monolithic flux bundle.
Instead, the magnetic flux of an active region builds up as the result of the emergence of
many smaller flux bundles. The amount of flux contained in each flux bundle is estimated
to be about1019 Mx (Born 1974, Brants and Steenbeek 1985). From our simulations, we
know that flux tubes a longitudinal flux of1019 Mx are able to disturb the granulation pat-
tern as they emerge. The emergence of such flux tubes leads to conspicuous observational
signatures such as dark alignments and bright grains (see Section 5.3.2).

Magnetic flux tubes with less longitudinal flux (say,1018 Mx) are not sufficiently
buoyant to rise coherently against the convective flows. The emergence events associated
with these smaller and weaker flux tubes are inconspicuous, in the sense that the granula-
tion pattern in the quiet Sun is not disturbed (see Section 5.3.1). The small spatial scales
(∼ 1 Mm) and short temporal scales (5 min) of such events make their detection difficult.
Although detections of these events have been reported (De Pontieu 2002), it is unknown
how much flux emerges at the surface in this form.

In Section 5.3.1.1, we provided an example of the secondary emergence of a bipole.
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This bipole (with a flux of1018 Mx in each polarity) is peculiar for two reasons. Firstly,
it emerged in a location that is far away from the emergence site of other bipoles. Sec-
ondly, it emerged several granulation time scales after the initial appearance of flux at the
surface. This secondary emergence event is the result of the recirculation and overturn-
ing of material in the near-surface layers of the convection zone. It suggests to us that,
at least a fraction of small-scale flux emergence events on the solar surface could result
from recirculation of material in the convection zone.
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A Calculation of important
thermodynamic quantities

In this Appendix, we explain how important thermodynamic quantities such as the specific
entropys, the specific heats (cp andcv), the adiabatic temperature gradient∇ad etc. can
be calculated when the Equation of State (EOS) is given in the formT (ρ, ε) andp(ρ, ε)1.

A.1 Specific entropy

The specific entropys is a thermodynamic state function. Its differential is defined as

ds :=
dq

T
. (A.1)

Using the1st law of thermodynamics, we can write

ds =
1

T

[
dε + pd(

1

ρ
)

]
. (A.2)

Since we have the EOS in the form of look-up tablesp(ρ, ε) andT (ρ, ε), we can at once
integrate Eq. (A.2) to evaluate the look-up tables = s(ρ, ε). The integration gives an
arbitrary constants0. The value of this offset is not particularly important for our purposes
since we are only interested in changes ins. For the work presented in this dissertation,
we sets0 = 0 for ε0 = 2.0× 1011 erg g−1 andρ0 = 1.0× 10−9 g cm−3.

A.2 The Jacobian matrix

In terms of the independent thermodynamic variables densityρ andε, differential changes
in temperature and pressure can be expressed as

(
dT
dp

)
= J

(
dρ
dε

)
,

where

J =

(
Ja Jb

Jc Jd

)
=




(
∂T
∂ρ

)
ε

(
∂T
∂ε

)
ρ(

∂p
∂ρ

)
ε

(
∂p
∂ε

)
ρ




1These were the look-up tables used by Vögler et al. (2005)

121



A Calculation of important thermodynamic quantities

is the Jacobian matrix (cf Landau and Lifshitz (1980)). On the other hand, we can write
differential changes inε andρ in terms ofdT anddp by invertingJ . Let us defineK =
J−1, so that: (

dρ
dε

)
= K

(
dT
dp

)
,

where

K =

(
Ka Kb

Kc Kd

)
=

1

det(J)

(
Jd −Jb

−Jc Ja

)

=




(
∂ρ
∂T

)
p

(
∂ρ
∂p

)
T(

∂ε
∂T

)
p

(
∂ε
∂p

)
T




SinceJ can be easily calculated from the look-up tablesp(ε, ρ) andT (ε, ρ), we can cal-
culate the mixed derivatives inK without needingε(T, p) andρ(T, p)2. In the following,
expressions for the specific heats and adiabatic temperature gradient in terms of the basic
thermodynamic variables (ε, ρ, p andT ) and components ofK are derived.

A.3 Specific heatscv and cp

In constant volume processes, the heat change in the system is equal to the change in
specific internal energy. Thus:

cv :=

(
dq

dT

)

ρ

(A.3)

=

(
∂ε

∂T

)

ρ

, (A.4)

= J−1
b (A.5)

= Kc + Ka
Ja

Jb

. (A.6)

In constant pressure processes, the heat change in the system is equal to the change in
enthalpyh = ε + p/ρ. Thus, we can writecp in the following way:

cp :=

(
dq

dT

)

p

, (A.7)

=

(
∂h

∂T

)

p

, (A.8)

= Kc − p

ρ2
Ka. (A.9)

2Note that likeJ , K is a Jacobian matrix, but for the inverse transformation. Since the EOS is smooth
and well-behaved, we do not need to worry thatJ maybe singular.
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A.4 Adiabatic temperature gradient

A.4 Adiabatic temperature gradient

To derive an expression for the adiabatic temperature gradient∇ad, let us consider Eq.
(A.2). Sinceε(T, p) andρ(T, p) are functions of temperature and pressure, we can express
dε anddρ in terms ofdT anddp, which yields:

ds = cpd ln T − p

T

[
p

ρ2
Kb −Kd

]
d ln p, (A.10)

where we have made use of Eq. (A.8). Settingds = 0, we obtain the following expression
for ∇ad:

∇ad :=

(
∂ ln T

∂ ln p

)

s

, (A.11)

=
p

cpT

[
p

ρ2
Kb −Kd

]
. (A.12)

A.5 Chandrasekhar’s adiabatic exponents

Chandrasekhar’s adiabatic exponents (Chandrasekhar 1957) are defined as

γ1 :=

(
∂ ln p

∂ln ρ

)

s

, (A.13)

γ2 :=

(
1−

[
∂ ln T

∂ ln p

]

s

)−1

, (A.14)

γ3 := 1 +

(
∂ ln T

∂ ln ρ

)

s

. (A.15)

They satisfy the relation
γ1

γ3 − 1
=

γ2

γ2 − 1
. (A.16)

The second adiabatic exponent isγ2 = (1−∇ad)
−1. Since we have already shown how to

calculate∇ad, calculatingγ2 is trivial. The first adiabatic exponent gives the response of
pressure to change in density in isentropic expansion/compression. It is a useful quantity
because sound waves consisting of adiabatic perturbations propagate through the medium
with a speed

cs =

√
γ1p

ρ
. (A.17)

To calculate this quantity, we follow the strategy of § A.2 and make use of inversions of
the Jacobian matrix. Here, we useρ andε as the fundamental thermodynamic variables.
The differentials of specific entropy and pressure are given by

(
ds
dp

)
= L

(
dρ
dε

)
,

where

L =

(
La Lb

Lc Ld

)
=




(
∂s
∂ρ

)
ε

(
∂s
∂ε

)
ρ(

∂p
∂ρ

)
ε

(
∂p
∂ε

)
ρ


 .
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A Calculation of important thermodynamic quantities

Let M = L−1 be the inverse of the Jacobian matrixL. Then

M =

(
Ma Mb

Mc Md

)
=

1

det(L)

(
Ld −Lb

−Lc La

)

=




(
∂ρ
∂s

)
p

(
∂ρ
∂p

)
s(

∂ε
∂s

)
p

(
∂ε
∂p

)
s


 .

Given that we have the functionss = s(ρ, ε) andp = p(ρ, ε), we can calculateM . By the
definition ofγ1, we have

γ1 =
ρ

pMb

. (A.18)

One can use Eqn. (A.16) to calculateγ3. Alternatively, one can express the differentials
ds anddT in terms ofdε anddρ and the relevant partial derivatives, and then invert the
resulting Jacobian matrix to findγ3.
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B Diffusion of a magnetic structure
with a Gaussian profile

In the absence of motion and for constant magnetic diffusivityη, the Induction Equation
(3.1) reduces to

∂B

∂t
= −η∇×∇×B, (B.1)

= η∇2B, (B.2)

where∇2 is the Laplacian operator. This equation establishes the fact that the diffusion
of each of the cartesian components ofB is decoupled from the other two components.
In other words, we have a scalar diffusion equation for each cartesian component.

Consider a magnetic flux tube with the longitudinal component of the magnetic field
described by the Gaussian profile

Bl(r, t = 0) = B0e
− r2

R2
0 . (B.3)

The diffusion of the longitudinal component is not influenced by the transverse compo-
nents of the field. We seek a self-similar solution of the form:

Bl(r, t) =
Φ0

πR(t)2
e
− r2

R(t)2 , (B.4)

whereΦ0 =
∫∞
0

∫ 2π

0
Bl(r, 0)rdθdr = πR2

0B0 is the longitudinal flux of the tube. Substi-
tution of (B.4) into Eq. (B.2) yields the simple ordinary differential equation forR(t)

R
dR

dt
= 2η, (B.5)

which has the solution
R(t) =

√
4ηt + R2

0. (B.6)

The field strength at core of the flux tube (r = 0) follows

Bl(r = 0, t)

B0

=
1

1 + 4ηt
R2

0

. (B.7)

This equation describes the weakening field strength due to diffusion. In order for dif-
fusive effectsnot to weaken the tube significantly within a specified time intervalτ , we
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B Diffusion of a magnetic structure with a Gaussian profile

require that

B0 −Bl(r = 0, t = τ)

B0

¿ 1 (B.8)

→ η ¿ R2
0

4τ
. (B.9)

126



C Magnetic field extrapolation

In the study of solar magnetic fields, one is often restricted to measurements of the vertical
component of the field on the solar surface. However, one would like to know how the
magnetic field is structured in the chromosphere or corona. By assuming that the magnetic
field above the surface is potential or force-free, one can extrapolate the field to the higher
layers of the atmosphere.

C.1 Potential field

Consider the vertical component of the magnetic field distributed over the planez = 0.
We assume that the field distribution is periodic in thex andy directions with periodsLx

andLy, respectively. If we assume that the magnetic field at and above the surface (z ≥ 0)
is potential, we can write

B(x, y, z) = −∇Φ (C.1)

whereΦ is a scalar potential. To findΦ, we take the divergence of the previous equation:

∇2Φ = 0, (C.2)

and solve it subject to the boundary conditions

−∂Φ

∂z
= Bz(x, y, z = 0). (C.3)

andB → 0 asz → ∞. Since the magnetic field is periodic in the horizontal directions,
we use Fourier transforms to solve this problem. Let

F (kx, ky) = FT {f(x, y)} (C.4)

=

∫ ∫
f(x, y)e−i(kxx+kyy)dxdy (C.5)

denote the two-dimensional Fourier transform of the spatial functionf(x, y). Inverse
Fourier transforms are denoted by the symbolFT −1.

Let us make the following Ansatz for the scalar potentialΦ:

Φ(x, y, z) = FT −1{A(kx, ky)

|k| e−|k|z}, (C.6)

whereA(kx, ky) is a function over Fourier-space(kx, ky) and|k| = √
k2

x + k2
z the wavenum-

ber. Applying boundary condition (C.3), we obtain

A(kx, ky) = FT {Bz(x, y, z = 0)}, (C.7)
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C Magnetic field extrapolation

and therefore

Φ(x, y, z) = FT −1{FT {Bz(x, y, z = 0)}
|k| e−|k|z}. (C.8)

We don’t actually need to evaluateΦ to calculate the magnetic field components. Substi-
tution of (C.8) into (C.1) gives

Bx(x, y, z) = FT −1{FT {Bz(x, y, z = 0)}−ikx

|k| e−|k|z}, (C.9)

By(x, y, z) = FT −1{FT {Bz(x, y, z = 0)}−iky

|k| e−|k|z}, (C.10)

Bz(x, y, z) = FT −1{FT {Bz(x, y, z = 0)}e−|k|z}. (C.11)

The factore−|k|z in these equations tells us that small-scale features in the surface field
are smoothed out with increasing height.

C.2 Linear force-free field

A force-free field is one such that the Lorentz forcej ×B/c vanishes. A potential mag-
netic field configuration is an example of a force-free field.Linear force-free fieldsare
magnetic field configurations satisfying the condition:

∇×B = αB, (C.12)

whereα is constant. As such, linear force-free fields are also called constant-α fields in
the literature. Given the appropriate boundary conditions on a boundary∂R enclosing
the volumeR, one can solve for the force-free field enclosed in the volume. In the same
manner as section C.1, suppose we are given a vertical fieldBz(x, y, z = 0) distribution
over thex-y plane. This field is periodic in both horizontal directions with periodsLx and
Lz. Furthermore,B → 0 asz →∞.

Now we make the following Ansatz for the solution:

Bn(x, y, z) = FT −1{An(kx, ky)e
−|k|z}, (C.13)

where
An(kx, kz) = FT {Bn(x, y, z = 0)}. (C.14)

For the moment, we do not specify the exact form of|k|. SinceBz(x, y, z = 0) is given
as a boundary condition,Az(kx, ky) is known. So our goal is to solve forAx andAy such
that the field given by Eq. (C.13) satisfies the linear force-free condition. Substitution of
Eq. (C.13) into Eq. (C.12) gives:

εsrnAn
∂

∂xr

[
ei(kxx+kyy)−|k|z] = αAse

i(kxx+kyy)−|k|z, (C.15)

whereεsrn is the Levi-Civita symbol. Writing out the three equations explicitly, we have:



α −|k| −iky

|k| α ikx

iky −ikx α







Ax

Ay

Az


 =




0
0
0


 (C.16)
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C.2 Linear force-free field

Eq. (C.16) is a system of three linear equations in two unknowns (sinceAz is an im-
posed boundary condition). In order for this system of equations to be consistent, the
determinant of the matrix must be zero. This is equivalent to the constraint

|k|2 = k2
x + k2

y − α2. (C.17)

For a decaying solution (i.e.B → 0 asz → ∞), we require that|k| be real and non-
negative for all possible values ofkx andky. This restricts the solution space to values of
α satisfyingα2 ≤ min{L−2

x , L−2
y }. Another restriction is that the net vertical flux through

the planez = 0 be zero (i.e.Az = 0 for kx = ky = 0). The solution to the problem is

Ax =
−i(|k|kx − αky)

k2
x + k2

y

Az, (C.18)

Ay =
−i(|k|ky + αkx)

k2
x + k2

y

Az. (C.19)

For the caseα = 0, we obtain the potential field solution.
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