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Summary

The magnetic field contains the dominant energy per unit volume in the solar corona and
therefore plays an important role in most coronal phenomena. But until now, no direct
measurement of the magnetic field vector distribution in the corona could be made. Mod-
els of the coronal magnetic field rely almost enterely on extrapolations of photospheric
magnetic field observations. Some indirect information about the coronal magnetic field,
however, can be obtained using the Faraday, longitudinal Zeeman or Hanle effects on
emissions at magnetically sensitive coronal transition lines. The Faraday and longitudinal
Zeeman effects provide the line-of-sight component of the magnetic field integrated over
the line-of-sight. Polarimetric measurements of the Hanle effect yields information about
the magnetic field orientation integrated along the line of sight.

In this thesis, we investigate whether a tomographic reconstruction based on these
observations allow us to obtain a reliable model of the vector magnetic field in the whole
solar corona. The inversion problem is strongly ill-posed. To improve the condition of
the inversion problem we use the fact that the magnetic field has to satisfy ��������� as
an additional regularization constraint. The use of this constraint, however, may require
additional solar surface magnetogram data as boundary condition. With the help of this
constraint, we show that it is possible to reconstruct both the strength and direction of the
magnetic field from the mentioned above observations. The reconstructed field contains
details, which cannot be obtained with a traditional extrapolation of the photospheric
surface field measurements.

The inversion code based on the effects mentioned above has been developed. The
code is tested using simulated data of the longitudinal Zeeman and Hanle effects includ-
ing some artificial noise. The magnetic field configuration is chosen to consist of two
parts: a mean dipole field component and non-potential field component induced by a cir-
cular current in the corona. The tomographic inversion of the simulated data allows us to
reconstruct the potential and the non-potential component of the field, while a traditional
potential field approximation reconstructs only the main dipole field component.
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1 Introduction

The corona is the outermost part of the Sun’s atmosphere. It is bounded below at ����! #"%$
above the solar surface by the thin ( �  �&�&('�$

) transition region within which
the plasma temperature rises from chromospheric values of below ) &�*,+ to typical coronal
temperatures of above ) &�-,+ . The solar corona is structured by the coronal magnetic field
which is rooted at the solar surface and is partially open to the heliosphere. The outer
boundary of the corona is not precisely defined. Its outer boundary may be placed at a
distance of � �

- .�/10 above the solar surface where the magnetic field lines are dragged
out by the solar wind and bent into radial direction.

The solar corona consists of a hot ( 23) &�-4+ ), highly ionized and very low density
plasma ( 5 ) &7698;:<$;=7> ). The highest temperature of the coronal plasma is achieved in
regions with closed magnetic field lines where the plasma is confined and cannot escape
into the heliosphere. The reason for its high temperature is still uncertain but most ex-
planations for the coronal heating mechanism involve the coronal magnetic field (Zirker
1993; Ulmschneider 1998; Erdelyi 2004).

The bulk motion of the coronal plasma as a fluid is governed by the pressure gradient,
gravity and magnetic Lorentz force. The ratio of the first two forces can be expressed by
the ratio of the pressure scale height ? to a typical length scale @ over which the pressure
varies. Here, ? ACB�DFEHG�I;JLK�0 where B�D is the Boltzmann constant, E is the coronal
temperature, I(J is the mass of a proton, the dominant ion in the corona, and K70 is the
Sun’s gravitational acceleration. Perpendicular to the field lines, typically @NM ? � �&O"%$

, so that gravity often plays a minor role. The ratio of the pressure force to the
Lorentz force PRQ;S is expressed by the parameter TUA ��V 8XW G�Y[Z , where W is the thermal
pressure, S is the magnetic field vector, P is the electric current density vector, and

V 8
is the magnetic permeability. In the inner corona from the chromosphere up to �\) �! /[0 ,
(and sometimes higher) the plasma- T mostly is less than unity (Gary 2001). Therefore, the
coronal magnetic field is strong enough to effectively dominate the plasma motion. It can
therefore be considered as the main driving force of most plasma phenomena occurring
in the inner corona. To understand the physics of the corona, a detailed knowledge of the
coronal magnetic field is therefore absolutely essential.

Unfortunately, direct magnetic field measurements in the corona are extremely diffi-
cult. The majority of solar magnetic field measurements in the past have been taken in
the photosphere. A standard way to estimate the field in the corona is then to extrapo-
late the radial photospheric magnetic field component using the potential field or more
sophisticated model approximations. But the potential field extrapolation does not take
into account any electric current in the corona and, therefore, misses an important part
of the physics. Since the potential magnetic field is the field with the minimum energy
for a given photospheric radial boundary condition (Sakurai 1989), it cannot account for
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1 Introduction

dynamical processes such as eruptions and flares, where very probably magnetic energy
is converted into plasma kinetic energy. Indeed, soft X-ray observations of active regions
often show a non-potential structure of the magnetic field (Jiao et al. 1997). Observa-
tions of the horizontal surface field by vector magnetographs have been used to estimate
radial currents in the photosphere, part of which probably flows along field lines out into
the corona (Hagyard & Pevtsov 1999). More realistic models of the coronal field can be
obtained by applying the force-free approximation which neglects pressure and gravity
forces (Cuperman et al. 1990; Flyer et al. 2004). This method consists in solving a
boundary value problem for the equations ]_^a`cbcde`fbhgji and ^lk�bhgji , using the
radial and horizontal magnetic field components measured at the photospheric level as
boundary values. The main difficulties here are: the procedure is numerically ill-posed,
and the results are less reliable with increasing distance from the surface (Demoulin et al.
1992).

The measurements used for the determination of the line-of-sight (LOS) component
of the magnetic field at the photosphere are based on the Zeeman effect. At optical wave-
lengths this method is not sensitive enough to be used for coronal measurements, because
the coronal magnetic field strength ( m n�ipo ) is relatively small and the temperature
( mqn�i�rts ) in the corona is very high so that the Zeeman splitting is much smaller than the
thermal broadening of the line.

Polarimetric coronograph observations of coronal emission lines have been used to
estimate the orientation of the coronal magnetic field in the plane of the sky (POS) through
the Hanle effect for emission lines from forbidden atomic transitions. The possibility of
making use of the Hanle effect to derive the coronal magnetic field from the polarimetric
measurements was first investigated by Charvin(1965) and was further developed by many
authors (House 1974,1977; House et al. 1982; Sahal-Brechot 1974a,b, 1977; Cassini &
Judge 1999). An example of such an observations is shown in Fig. 1.1a.

Landi Degl’Innocenti & Landi Degl’Innocenti (1973), Landi Degl’Innocenti (1982)
and later Casini & Judge (1999) proposed and investigated the possibility to use spec-
tropolarimetric observations at infrared wavelengths to derive a longitudinal magnetic
field estimate in the corona from the longitudinal Zeeman effect. Promising coronagraph
measurements of this kind have only recently been achieved for infrared coronal lines
(Lin et al. 2000, 2004). Although these measurements were restricted to heights belowivuxw�y�z|{ above an active region, they demonstrate that the measurement technique has the
potential to be applied to the whole corona. Currently, a precision of }~n;o is obtained
with these observations after 70 minutes of integration (for Stokes- � spectrum).

Both the coronal Hanle effect observations and the coronal Zeeman effect measure-
ments are effectively LOS integrations through the corona because the respective coronal
lines are optically thin. The measurements are therefore not localized and their interpre-
tation in terms of magnetic flux densities is not straightforward. In the present thesis we
want to explore to which extent these data provide sufficient information to allow a recon-
struction of the three-dimentional (3D) magnetic field in the corona. It is not clear that
the information is sufficient: a 3D vector field locally has three degrees of freedom (i.e.,
the three vector components), while the Zeeman and Hanle effect observations provide
only a single scalar value (the projection of the vector along the LOS integrated over the
LOS for the Zeeman effect) or two scalar values (polarization degree and orientation of
the polarization plane integrated over the LOS for the Hanle effect).

8



1 Introduction

The inversion of LOS integrated information to a local 3D distribution is called a to-
mographic inversion. In the past, the tomography technique has been applied in solar
physics only for the reconstruction of a scalar field, the electron and ion densities. The
principle of scalar field tomography is based on measuring the LOS integral of the ab-
sorption or emissivity through the region to be investigated. The observations must be
performed from different positions to be able to resolve the 3D structure. The applica-
tion of scalar field tomography in solar physics has been investigated before by several
authors (Davila, 1994; Davila and Thompson, 1992; Zidowitz 1999; Frazin 2000; Frazin
& Janzen 2002).

Since we want to reconstruct a vector field, we employ an extension of classical scalar

(a) (b)
Figure 1.1: An example of the spectropolarimetric observations of the coronal line��� ��������� ˚� emitted from ��� XIII taken from Lin et al. (2004). The picture on the
panel (a) shows the measurements of the Hanle effect as short lines which represent the
orientation and, by their length, the degree of the line’s linear polarization. The measure-
ments were made above the active region NOAA AR 581 shown in the EUV image (EIT,�;������� ˚

�
of �L� XV) onto which the polarization data is superposed. The graphics on the

panel (b) show the fitted Stokes- � profiles due to the longitudinal Zeeman effect (anti-
symmetric smooth lines, left-side scale) and fitted Stokes- � profiles (lines having biggest
symmetric peak, right-side scale) above the active region. The values of the projection
of the magnetic field vector on the LOS which best fits the lines shapes are shown in
the inserts. These values were calculated by the standard magnetograph formula without
correction for an alignment factor different from unity (see section 5.9).
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1 Introduction

field tomography, namely vector field tomography (Sparr & Strahlen 1998; Osman &
Prince 1997). A variant of vector tomography is used in astrophysical observations,
sometimes called Doppler tomography, to derive plasma flow around binary systems and
accretion disks (see Boffin et al. (2001) for a review), for the plasma diagnostic in the
laboratory plasmas (Howard 1996; Fuchs & Pickalov 1998). To our knowledge, this the-
sis is the first investigation on whether vector tomography can be used in solar physics
for reconstruction of coronal magnetic fields. The tomography of vector fields is funda-
mentally more difficult than scalar field tomography. While the latter is mildly ill-posed
(Natterer 1986), Norton (1989) showed that a whole class of vector fields may be invisible
to certain types of observations. Hence, the inversion problem of vector field tomogra-
phy has to cope with an extended null-space. For example, for the 2D vector field, Norton
(1989) showed that the irrotational field component cannot be reconstructed from the LOS
projected data.

In the present thesis, we consider the possibility of a reconstruction of the coronal
magnetic field by tomographic technique based on possible coronagraph observations of
the Hanle and Zeeman effects. A prerequisite for a succesful reconstruction is a quantita-
tive describtion of these effects for the emission lines observed. In this work we focus our
considerations where quantitative expressions are needed on two coronal emission lines:�U�\������� ˚

�
of �L� XIV, for which many of the Hanle effect observations were made (Ar-

naud 1982a,b; Querfeld & Smartt 1984; ), and
�#�q��������� ˚� of ��� XIII for which both the

Hanle effect (Arnaud & Newkirk 1987; Habbal et al. 2001) and the longitudinal Zeeman
effect observations are in promising progress (Lin et al. 2000, 2004). It is assumed that
the observations are made repetitively for one solar rotation. The problems which arise
due to the non-stationarity of the coronal magnetic field during the measurement sequence
are ignored here.

The
������� ˚� line of ��� XIV (green line) is the brightest forbidden emission line in the

visible coronal spectrum. The line was discovered by Young and Harkness during the
1869 total solar eclipse, and identified later by Grotrian (1939) and Edlen (1943). A large
progress in intensity observations of the line was reached by the launch of the SOHO
spacecraft with LASCO coronagraph on board (Brueckner et al. 1995; Schwenn et al.
1997; Inhester et al. 1999). A specially designed coronameter to measure the green line
polarization has been built at Pic-du-Midi observatory (Charvin 1971; Arnaud 1982a).
For the Hanle effect application it is sufficient to perform line-integrated polarimetric
measurements over the line profile. It is not necessary to use spectropolarimetry.

The coronal emission line at
��������� ˚

�
was first observed by B. Lyot (Lyot 1939) in

1936. The first measurements of the polarization of the line were made by Eddy and
Malville (1967) during the 1965 eclipse. Later, the Coronal Emission Line Polarimeter
(KELP) was constructed by the High Altitude Observatory (HAO) and located at the
Sacramento Peak Observatory to provide more precise measurements (Querfeld & Elmore
1976; Querfeld & Smartt 1984). Lin et al. (2000, 2004) have achieved considerable
progress in the spectropolarimetric measurements of the line (see Fig. 1.1b) so that they
could estimate the longitudinal field strength from the Stokes-V polarization component.

The goal of the thesis is to investigate the possibility to apply vector field tomography
based on the polarimetric and spectropolarimetric measurements of the lines mentioned
above in order to reconstruct the coronal magnetic field.

The thesis is organized as follows. In the second and third chapters the fundamentals
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1 Introduction

of scalar and vector field tomography are reviewed. The observational geometry is defined
there. Special emphasize is devoted to the question of how an inversion effectively can
be improved by regularization (section 2.4), and to the theoretical limitations of vector
tomography (section 3.2). A special regularization operator described in section 3.4 will
be used in an attempt to overcome these limitations.

The inversion of the LOS integrated data requires a quantitative understanding of how
the observed signal is formed. In our case, we need quantitative expressions for the for-
mation of the coronal lines at �������� �� and ¡� �¢�£�¢ ˚

¤
. The Zeeman and Hanle effects

are qualitatively reviewed in chapter 4. Chapter 5 is devoted to the description of quan-
titative expressions for the observed polarimetric and spectropolarimetric data in terms
of the magnetic field. These expressions are then used in developing an inversion code
for the data and in demonstrating its capabilities in chapter 6. The results of our model
reconstructions are summarized in the conclusion chapter. In a final outlook we point out
the potential of our new method and how furthers improvements can be made.

11





2 Scalar Field Tomography

In this chapter the basics of scalar tomography are described. As for many ill-posed
problems, the tomography inversion is often stabilized by regularization which is also
illustrated in this chapter. Although currently in the inversion program we do not use the
traditional form of the regularization presented in this chapter, it can be incorporated into
the vector field reconstruction procedure too. Instead we will modify the regularization
approach for our purposes as described in chapter 3.

2.1 Formulation of the scalar field tomography problem

For wavelength for which the corona is optically thin, the radiation coming from the
corona is a LOS integral of the emissivity in the observed direction. Therefore, it is
impossible to reconstruct the spatial distribution of the emissivity from a single (in ge-
ometric sense) measurement or projection. The solution space is reduced if we have
measurements from many different view points. The reconstruction based on the obser-
vations of an object from different view angles is essential for tomography. The possibil-
ity of the reconstruction of a function from its projections was firstly studied by Radon
(1917). Several decades later, this purely mathematical research formed the basis for the
tomography method which was developed for the reconstruction of the X-ray absorption
coefficient in human bodies. The first experimental X-ray tomographic scanner was made

 �

LOS

 x

 y

 t

 O

l ¥;¦¨§�©<ª�«¬¯®±°�«³²µ´|¬
¶ ¦¨§v«·²¸´¹¬~º»°�©<ª�«¬¼F½ ¦j®|¾�°�«³²¸´¹¬¹¿À�Á ºÂ¾�°�©Ãª�«¬Ä¿À�Å

Figure 2.1: The 2D slice with the line-of-sight (LOS) in the scalar field tomography.
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2 Scalar Field Tomography

by Hounsfield (1972), and Cormack (1963,1964) independently discovered some of the
algorithms for the reconstruction. The both authors received the Nobel prize for their
investigations in 1979. Today, tomography is used in many of the fields: medicine, ma-
terial structure testing, geophysics, thermonuclear synthes investigations (TOKAMAK
reactors), astrophysics (Doppler tomography for the accretion disks) (Boffin 2001). In
solar coronal physics, the use of tomography was first proposed by Wilson (1976) and in-
dependently by Davila (1992,1994). Recently, the method was applied for reconstruction
of the 3D electron density distribution over the corona from Æ�ÇÉÈ to Ê�Ç!Ë�ÌÎÍ (Frazin 2000;
Frazin & Janzen 2002).

Since the distance between the Sun and the Earth orbit is much greater than size of
investigated volume of the corona ( ÏÐÈ�ÌÑÍ in diameter in our investigations), it is possible
to assume that the rays related to all the pixels of one image are parallel (parallel beam
geometry).

Let us make the following two assumptions:
1) The corona is stationary during at least one solar rotation, that does not cause to an
big error during solar minimum, and rotates together with Sun. So, it is possible to make
measurements from the Earth during solar rotation instead of observations from many of
spacecrafts.
2) The inclination of the Sun’s rotation axis with respect to the ecliptic plane ( Ò7ÇÓÆ�Ê7Ô ) is
neglected, i.e. we assume that the rotation axis is perpendicular to the line connecting the
Sun and the Earth. Then, we can divide the investigated volume into plane-parallel slices
in such way, that each of them is perpendicular to the rotation axis, and rays that penetrate
one slice do not intersect any other slice; i.e. slices are decoupled, and can be processed
independently. This assumption can be avoided twice per year.

So, to reconstruct a 3D configuration of a scalar field Õ×ÖÙØÚ , it is possible to split the
investigated volume in plane-parallel slices with normals along the rotation axis and deal
with the 2D problem for every slice separately. Let us consider one slice (Figure 2.1).
A single data point defined by the observing angle, Û , and distance of the ray from the
origin, Ü , can be described by equationÝ ÖXÛßÞ³Ü·Úáà â

LOS ãåä æ ÕvÖèçéÞëê×Úíì�îFà â
LOS ãïä æ ÕvÖÙÜ�ð<ñ�òLÛ¯óôî�ò·õ¸ö¹ÛßÞ·Üvò·õ¸ö¹Û~÷Âîøð<ñ�òFÛùÚ·ì�îúÇ (2.1)

The Fourier transform of
Ý Ö_ÛéÞ³Ü·Ú with respect to image position, Ü , isûÝ Ö_ÛßÞ³ü7Úýàþâ Ý ÖXÛßÞ³Ü·Úíÿ�� ����� ì�Üáà

àÐâ � â
LOS ãåä æ ÕvÖÙÜ�ð<ñ�òÛ¯ó±î�ò³õµö¹ÛßÞ³Ü�ò³õµö¹Û~÷Âî�ðÃñ�òÛFÚíÿ � ����� ì�î	� ì�ÜáààÐâ�âNÕvÖèçéÞëê×Úíÿ � ����
����������������������� ì�çì�ê~à ûÕ×ÖÙütðÃñ�òÛßÞ³ütò·õ¸öeÛùÚýà ûÕvÖ! éÞ#"�Ú (2.2)

Equation (2.2) is the central slice theorem of scalar tomography (Natterer 1986; Kak &
Slaney 1987). The right hand side in (2.2) is the two-dimensional Fourier transform of the
scalar field function. Therefore, applying the inverse two-dimensional Fourier transform

14



2.2 Matrix formulation of the scalar field tomography problem

to $% we reconstruct &�'�(*)#+�, :&-'.(*)#+�,0/2131 $&-'�4*)#56,87:9�;=<�>@?�ACBED!F�4GFH5I/2131 $% 'KJL)#MN,C7:9�O�;>NP�Q�R�S:?�B�RUT�V�S:DKWX'!MY)�JZ,8FHM�FNJ (2.3)

where WX'!MY)�JZ,[/]\\\\_^ <^ O ^ <^ S^ A^ O ^ A^ S
\\\\ /`\\\\0a�b�c J deM cEfUg Jc8f�g J M a:b�c J \\\\ /hM (2.4)

is Jacobian determinant of the variable transform '�4*)#56,ji '!MY)�JZ, . This way of recon-
struction is call the Fourier method. Applying this method for every plane, we can re-
construct the scalar function &-'�kZ, in all three dimensions. The method, however, involves
the re-sampling from polar to rectangular coordinates which leads to considerable inter-
polation. This makes the solution very noisy. In practice, other numerical methods are
used. However, the Fourier method is useful for analytical investigations of reconstruc-
tion possibilities in principal. Especially, it allows one to proof that a reconstruction from
the projections is possible.

The corona extends to the Earth’s orbit and further. But we concentrate on measure-
ments only of the part of the corona up to several solar radii. This is called interior
problem, and this problem has no unique solution. Only bounded problems have a unique
solution (Natterer 1986). Therefore, we need to introduce an outer boundary, so that
regions outside of the bounded domain do not make any contribution to the data. This
assumption is close to reality because the coronal mass density and strength of magnetic
field decrease with distance from the sun very rapidly.

Observations of the solar corona have one more special feature: on some slices, the
central part of the image is occulted, i.e. we have data only for l#monhpqmrsdutYm ( tXvwp r ),
where t is the distance from the ecliptic plane to the reconstructing slice. This is called
the exterior problem in tomography, and it is uniquely solvable too (Natterer 1986).

2.2 Matrix formulation of the scalar field tomography
problem

Discretizing the LOS integral (2.1) we obtain a set of algebraic equations which can be
represented by the matrix equation xzy|{ /h} (2.5)

Here, the elements (6~ of the column vector

{
contain the values of & in the grid cells with

index ��/���)����U��)#� , and + 9 is the data value for the � -th ray, where index ��/���):�U���U)E� counts
both the discrete view angle J and pixel position l . The matrix element � 9 ~ represents the
LOS projection of volume element � onto LOS related to the pixel � .

Usually, the matrix

x
is rectangular ( ����� , � �/�� ) with rank ' x ,�v min '!��)E��, .

There are two important cases:
1) If rank ' x ,���� , then the system is underdetermined, and there are infinitely many
solutions;
2) If rank ' x ,���� , then the system is overdetermined, and usually no solutions are
possible.
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2 Scalar Field Tomography

Direct inversion is formally possible if ���2��� rank �K�s� , which is usually not the case.
In all other cases it is possible to find some approximation to the real solution (residual),� 

, by minimizing the distance between �¢¡   and £ (least-square fitting), i.e.�  � argmin ¤q¥��¦¡  ¢§ £¨¥ ©:ª (2.6)

In the underdetermined case, (2.6) yields the solution with the smallest norm, �¬«�®¥�¯  ¥ © ; in
the overdetermined case, we have the solution with the smallest data error, �¬«�°¥ ��¡±¯ �§ £¨¥ © .
2.3 Singular Value Decomposition method

One of the methods which is suitable for numerical calculations and allows one to find
approximate solutions for both cases listed above is based on the singular value decom-
position (SVD) of the matrix � developed by Lanczos (1961).

Any real rectangular matrix ( � rows, � columns) can be decomposed into three ma-
trices: �`�w²¢¡´³µ¡�¶ T · (2.7)

where ² and ¶ are �¹¸�� and ��¸�� matrices, respectively, and both have orthogonal
columns so that ² T ²���ºH» · ¶ T ¶��¼ºH½6ª (2.8)

The columns of the matrices ² and ¶ are the left and right singular eigenvectors of� , respectively. ³ is a square �¨¸�� matrix with off-diagonal elements set to be zero
and non-negative diagonal elements, ¾À¿ (with «¬� Á · ª�ªUª · � ), which are the eigenvalues
(singular values) of the matrix � usually ordered with descending magnitude. In the case
of rank �K�s�ÃÂ¨� , all the rest � § rank �!�s� diagonal elements in ³ are set to zero.

The residual of (2.5) is calculated by pseudoinverse of � :�  �Ä�.¶�³ÆÅYÇ�² T ��£ · (2.9)

where the elements ÈÀ¿ of the inverse matrix É ÅYÇ are equal to Á|Ê�¾Y¿ . The singular values ¾À¿
strongly decrease with « . Therefore, to avoid a big error in ÈZ¿ for the large « , the values
of ÈY¿ corresponding to the small singular values are set to zero, because small ¾Z¿ means
that the measurements were insensitive to the structure represented by eigenvector ËÌ¿ ( « -th
column of the ² ).

For problems which involve integral equations, the left and right singular vectors Í0¿
and ÎÏ¿ tend to an oscillatory behaviour with increasing index « , i.e., with decreasing value
of ¾-¿ . Therefore, setting these elements to zero (cut-off), the high-frequency components
in the solution are damped, i.e., the solution is smoother.

The SVD method is only possible for moderately small (rank �!�s��ÐÑÁ|Ò�Ó ) matrices.
For the high-rank matrices, it is more suitable to use algorithms based on the algebraic
iterative techniques.

2.4 Regularization

In astrophysics we usually have underdetermined problems. Moreover, data obtained
from measurement process are always contaminated by noise. So £ �¦£ÕÔ®ÖØ× , where
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2.4 RegularizationÙsÚ
is the unperturbed data, and Û is a vector containing random noise. Therefore, to

stabilize the problem, it is necessary to add more information about the possible solution.
One type of additional information can be the property that the residual norm Ü�ÝÞ Ü must be
as small as possible. To find a solution in this case, we should minimize Ü�ß2à ÞµáâÙ Ü=ã andÜ Þ Ü ã together, which is the simpliest form of the regularization method. The regularization
method was developed independently by Phillips (1962) and, in a more general way, by
Tikhonov (1963). For the problem (2.5) the regularized solution can be found by the
minimization: ÝÞåäoæwçHèêéNë¬ìíZîðï Ü ßzà Þ¢á�Ù Ü ã�ñóò Ü ô¦à Þ Ü ã�õ±ö (2.10)

where the second term is a general linear regularization term with the regularization ma-
trix ô and regularization parameter ò . If ô is a unit matrix, then we have a zero-order
regularization term. If ô÷à Þ represents a finite difference approximation to the first
derivative, there is first-oder regularization; and, analogously, when ôøà Þ represents a
finite difference approximation to the second derivative, we have a second-oder regular-
ization, and so on for the higher orders. The general solution of the minimizing problem
(2.10) is ùÞåäoæûú�ï ß T ß ñóò ã ô T ô õ´üYý ß T þ Ù�ÿ (2.11)

The eigenvalues of matrix ß T ß are �Ïã� . Even if they are small or zero for large
ì
, the

eigenvalues of
ï ß T ß ñóò ã#ô T ô õ are finite, and the smallest is controlled by ò .

The solution (2.11) depends on the chosen regularization parameter ò . What is the
optimal value of ò ? To answer this question, it is very convenient to use the L-curve
method (Miller 1970; Lawson & Hanson 1974; Hansen 1993). The L-curve is a log-log
plot of the residual norm Ü�ß¢à ùÞåä á�Ù Ü ã versus the norm Ü ô]à ùÞåä Ü ã of the regularization
term. The curve is often has an ”L” shape (Fig. 2.2).

The error

ùÞåä á Þ��
of the regularized solution consists of two components: the pertur-

bation error from the error Û in the data and regularization error due to the regularization
of the error-free data component

Ù��
.

The almost vertical part of the L-curve corresponds to the solutions where the reg-
ularization error dominates, i.e. where the solution is very smooth due to the big value

less filtering

The optimal
value of  �

|
~

| log YXA −

|
~

| log XR

more filtering

Figure 2.2: The L-curve
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2 Scalar Field Tomography

of � , and therefore the regularization term � �	��
�� � � changes a little with the regular-
ization parameter. The almost horizontal part of the curve corresponds to solutions that
are dominated by the data error, and therefore the smoothness of the solution rapidly de-
creases. The logarithmic scale emphasizes this difference of the vertical and horizontal
parts (Hansen 1992; Hansen & O’Leary 1993). Therefore, it is logical to choose the
optimum value of � which corresponds to the point closest situated to the corner of the
L-curve (Hansen & O’Leary 1993). It is impossible to find a solution that corresponds to
a point below the L-curve. Any regularized solution must be on or above (when it was
not enough number of iterations proceeded) this curve.
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3 Vector Tomography

The basic introduction to the vector tomography is presented here. The possibility of
the reconstruction of the irrotational and solenoidal components of the 3D vector field
are considered from a theoretical point of view. Then, for practical implementation the
discrete formulation of the vector tomography problem in a matrix form is introduced.
A modified regularization procedure for the vector tomography of the magnetic field is
described.

3.1 The formulation of the vector field tomography prob-
lem

Vector tomography data for optically thin objects is generally expressed by line-of-sight
integrals like for scalar field tomography, but instead of a scalar function ������� we must
reconstruct a vector argument ������� of a scalar function � . The observations can be
expressed as � �����! "�$#&%'�$()%*�,+ -

LOS .0/21 3$1 4$561 7�5$8 �9���:�;�<���=�6��>? /*1 3 �A@&BC� (3.1)

where angles � and  define the direction >? /21 3 of the LOS in a spherical coordinate system,#&% and ()% are coordinates of the image pixel in the projection plane (Fig. 3.1). Contrary to
scalar field tomography, not only the integration domain but also the integrand, function� in (3.1), depends on the LOS direction.

Depending on the physical effect used in the measurements, the function � can depend
on some components of � . For example, the longitudinal component, DFEG+H�	I�>? /21 3 for
the Faraday- and Zeeman-effect, or the direction of the transverse component �KJL+�NMO>? /*1 3 for the Hanle-effect with respect to the LOS:P � E�"QSR /21 3$1 4$5T1 7�5 +

-
LOS .0/21 3$1 4 5 1 7 5 8

P � E ���U�!�VI:>? /21 3 �� Q ���U�!�WMH>? /21 3 � R @&BCX (3.2)

The special expressions for � E and � Q (Zeeman and Hanle observations) will be de-
rived later in the chapter 5. Here we will consider simplified, linearized expression� E +OYZ���=�U���	IU>? /21 3 �\[^]_���=� to derive some theoretical results. Firstly, the linearization
is a good approximation for the actual kernel for Faraday- and Zeeman-effect observa-
tions. Secondly, the limitations of a reconstruction with the linearized kernel will almost
certainly prevail for the non-linear problem.

19



3 Vector Tomography

3.2 Vector tomography for the LOS projection data

The first row of (3.2) connected with `ba is known as vectorial ray transform. The tomog-
raphy problem for the vectorial ray transform is investigated for the case of velocity field
of a fluid flow (Sparr & Strahlen 1998; Osman & Prince 1997; and references therein).
In this case the data for the coronal observations of the longitudinal Zeeman or Faraday
effects is expressed byc aedgf�h;ijh$k&l'h!mel*n,o p

LOS q0r2s t$s u$vTs w�v!x�y d�z=n|{ a d�z�n|}=~�o p
LOS q0r2s t$s u$v6s w�v$x=� a d�z=n$}�~�oo p

LOS q�r*s t$s u$v6s w�v$x d�� u��e�'� f �$��� i���� w��|��� f �$��� i���� u��)�'� i�n|����h (3.3)

where y d�z=n is some scalar function of position in space (in the case of the Faraday effect,
this function is the electron density), and � o y { . In the case when the observer posi-
tions are confined to the equatorial plane ibo������ , we can decompose the reconstruction

2

x

y

z

n

xp

yp

LOS

LOS
ê

Figure 3.1: The 3D view of the tomography geometry

20



3.2 Vector tomography for the LOS projection data

domain into plane-parallel slices normal to the � -axis. Then, from eq. (3.3) one can see
that for the plane-parallel case only two components of the vector field, �=� and ��� , con-
tribute to the data. Therefore, having �=� -type data from plane-parallel measurements, it is
impossible to fully reconstruct a vector field without additional constraint. This, however,
is the situation for most observing space crafts usually located in the plane of the ecliptic.

But even the reconstruction of the ��� and ��� components which could be performed
independently for each plane is not unique. Norton (1989) showed that the irrotational
part of a 2D vector field cannot be reconstructed from the vectorial ray transform. It can
be reconstructed uniquely if �^�' V¡�¢ by solving a boundary value problem.

We extend the work of Norton (1989) to the case of a 3D vector field  ¤£�¥=¦ for which
we have a Helmholz decomposition: 	¡O�¨§ª©^«��^�¬ (3.4)

where © and ¬ are the vector and scalar potentials respectively, �®§¯© and �O�e¬ are the
solenoidal and irrotational parts of   , respectively. The vectorial ray transform (3.3) can
be rewritten in the form

�)°2± ²*£�³&´¶µ!·e´*¦,¡¹¸eº'»�¼½»$¾�¿�À\ÁÂÁÂÁ
Corona

���¶£�³:µ!·�µ;�¶¦AÃ6�C´*ÃT��´*Ä'³�Ä¶·ÅÄ&��«
«ª»|¾�¿9¼½»|¾�¿ÆÀ ÁÂÁ\Á

Corona

����£�³:µ!·�µ;�¶¦AÃ6�C´*ÃT��´*Ä'³�Ä¶·ÅÄ&��«
«Ç¸)º'»ÈÀ\Á\ÁÂÁ

Corona

��É£�³:µ$·=µ;�'¦|Ã6�C´ÊÃ6�g´*Ä¶³�Ä¶·"Ä&�Åµ (3.5)

where the line integration is written as a volume integral with suitable Dirac-delta func-
tions ÃT�C´Ë¡ÌÃÅ£Í³½»|¾�¿Î¼SÏÐ·Ñ¸eº'»�¼SÏÐ³&´¦6µÃT��´½¡�Ã"£AÏ�³½¸eº'»=¼½¸)º'»�ÀËÏ¤·G»$¾�¿9¼½¸)º'»ÈÀ�«<�\»|¾�¿9ÀËÏ¤·)´2¦6µ (3.6)

are the Dirac delta-functions. Substituting (3.5) into the 2D Fourier transform of �°2± ²*£�³&´¶µ$·)´*¦
with respect to the image position £�³"´¶µ!·e´*¦ ,Ò�)°2± ²*£�Ó"ÔTµTÓ'ÕT¦,¡ ÁÂÁ

Image of Ö °*± ²C× � Ö °2± ²C×|£Í³&´¶µ!·)´2¦|Ø�Ù&Ú Ö�ÛTÜ �$Ý!Þ Û|ß ��Ý!× Ä'³&´2Ä¶·e´'µ (3.7)

and changing the order of integration, one obtainsÒ�)°2± ²2£gÓ"ÔTµTÓ'ÕT¦\¡Ì¸eº'»=¼½»$¾�¿àÀ Ò���j£�á:µ!âÈµ!ãË¦ä«<»|¾�¿Î¼½»$¾�¿ÆÀ Ò���'£�á:µ!âÈµ!ãå¦=«<¸eº'»ÈÀ Ò��É£�á:µ!âÈµ!ãË¦6µ (3.8)

where
Ò��� , Ò��� and

Ò��É are the 3D-Fourier transforms of �È� , ��� and ��É respectively, with
respect to the position in the corona £�³:µ!·�µ;�¶¦ , andá�¡OÓ"Ô"»$¾�¿9¼SÏ¤Ó¶ÕÈ¸eº'»�¼½¸)º'»ÈÀjµ\âF¡æÏ½Ó"Ô�¸eº'»�¼SÏ_Ó'ÕÈ»$¾�¿Î¼½¸eº'»�À"µÂãÌ¡�Ó'ÕÈ»$¾�¿�À"ç (3.9)

If we have plane-parallel slices ( ¸eº'»�Àè¡V¢ ), then equation (3.8) represents the central-
slice theorem for a 2D vector field. Taking into account (3.4) and (3.9), the 3D Fourier
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3 Vector Tomography

transform of the components of the vector é areêë�ìjí�î:ï!ðÈï!ñËòôó¹õgð êöË÷í�î�ï$ð�ï$ñåò�øèõ�ñ êö½ù�í�î:ï!ðÈï!ñËòäú_õ�î êûüí�î:ï!ðÈï!ñåòTïêë�ù'í�î:ï!ðÈï!ñåòZóýõ�ñ êöËì&í�î:ï!ðÈï!ñåò:ø¤õ�î êöË÷*í�î:ï!ðÈï!ñËòäú_õ�ð êûüí�î:ï!ðÈï!ñåòTïêë�÷í�î:ï!ðÈï!ñåò�ó¹õ�î êö½ù�í�î:ï!ðÈï!ñËò�ø¤õ�ð êö½ì&í�î:ï!ðÈï!ñåò=ú<õ�ñ êûüí�î:ï!ðÈï!ñåòTþ (3.10)

Placing (3.10) into (3.8), one hasêÿ���� �2í����Tï	��
;òÂóýõ�í�������������������ú���
��������äò êö½ìúúËõ�í�������������������åø���
��� ���äò êö½ùÆøÐõ!���"�#�$�%� êöË÷2ï (3.11)

which is independent on the source
êû

of the vector field. This means that even with
measurements from all possible directions in 3D space, it is impossible to reconstruct the
irrotational component of the vector field.

3.3 Matrix formulation of the vector tomography prob-
lem

Like in the scalar field tomographic problem, vector tomography for the
ÿ'&

-type data (3.2)
can be represented in matrix equation form as well:(*),+ ó.-èþ

(3.12)

Here, the components /1032	4�5 (
��ó76"ï�8'ï	9

) of the column-vector
+

contain components
of the vector : in the ; -cell, and < = is the data value for the

õ
-th ray, where the indexõ ó>8'ï)þ�þ þ�ï�?

counts both view angles,
�

and
�
, and pixel position

í /A@ ï <�@ ò . The matrix
elements B�= � 032	4�5 represents the projection of volume element ; onto the LOS, related to
the pixel

õ
, multiplied with the components of a unit vector co-directed with the LOS; i.e.B�= � 032	4�5 are the components of vector CED . Here we do not take into the account the electron

density dependence of the measured data. The way how to include this dependence into
the matrix

(
will be described in section 6.3.

3.4 Special regularization for coronal vector tomography

Taking into account that magnetic field is free of divergence ( F ) : óG9
), it is possible to

introduce a regularization term into the minimizing function of the form:HOóIH
tomo

úKJLH
reg
ó M

all LOS

N ÿ sim øÐÿ obs O 
 ú�JIM
Corona

P F ) :RQTSLU P 
 þ (3.13)

By applying finite difference approach to F ) : , one gets a matrix form for the regular-
ization term: H

reg
ó P (

reg
)�+ øV-

b
P 
 ï

(3.14)

where the column vector
+

is the same as in (3.12). The number of rows in
(

reg is equal
to the number of cells involved in the calculations (equal to the number of elements in

+
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3.4 Special regularization for coronal vector tomography

divided by three). Matrix W b contains boundary values defined from the measurements
of the magnetic field at the photospheric level.

This regularization is different from the one presented for the scalar field tomography,
where the regularization term represents the roughness of the solution and its minimiza-
tion ensures a certain degree of smoothness of the solution. The regularization XIY[Z]\G^
has large null space and acts only on the irrotational part of the field. The null space is
therefore composed of all divergencefree fields compatible with the measured boundary
condition W b. It is well known (Bellan 2000) that the field with the smallest energy, i.e._ `a_ b \ c

corona

_ Z _ b
, within this null space is the potential field that fits the boundary con-

ditions. Many solution algorithms for (3.13) implicitly minimize the solution norm
_ `a_db

.
Hence, such an algorithm will yield the potential field model of the corona if no tomogra-
phy data is present and only the second term in (3.13) is minimized. Any tomography data
will yield possible non-potential extensions of the coronal magnetic field. The numerical
implementation of the term will be further described in the section 6.2.
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4 The possible effects used for deriving
the magnetic field

4.1 Zeeman-effect

The Zeeman-effect was discovered by Zeeman (1897), and consists in the splitting of
individual spectral lines of an emission spectrum into three or more polarized components
in presence of a magnetic field. When spectral lines split into the three components, egf ,e"h and i , the effect is known as normal Zeeman effect. The case when spectral lines split
into more than three components is known as anomalous Zeeman effect (Figure 4.1).

In the presence of a magnetic field each level with the magnetic quantum number j�k
gets additional energy l�monqp jak�rts�uvxwzy n.p�{�|~}��

(4.1)

where s is the elementary charge, u the magnetic field strength,
w�y

the mass of the
electron,

{
the Planck constant,

|�}
is the Larmour frequency, and

p
is the Lande factor

depending on the quantum numbers � , � , � and j�k : � is for orbital angular momentum
of the electrons, � is their spin quantum number, � is the associated total angular momen-
tum quantum number, and j�k is the quantum number for the component of total angular
momentum along the direction of the magnetic field (magnetic quantum number). The
Landé factor is p�n��v�� �%��� �q����� ����� �q���v ����� �q��� � (4.2)

Each level with total angular momentum � splits into � v � �.��� sublevels. As a result, the
frequencies related to the transitions between the lower level with ��� and upper level with��� are defined by � k#��������k#�[��� n ��� � s�uv�wzy¡  � p ��jE� � p ��j¢� � (4.3)

where

�x�
is the frequency of the line in the absence of magnetic field,

p � and

p � are the
Landé factors for the upper and lower levels respectively, and ja� and j¢� are the magnetic
quantum numbers for these levels.

The selection rules for allowed electric dipole (E1) transitions are:£ � nG¤��[¥ � � ��� nI¤§¦ ��� nI¤
is forbidden

�
£ � nI¤A�	¥ � � £ � nG¤A�

(4.4)£ j nI¤A�[¥ � �
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4 The possible effects used for deriving the magnetic field

Figure 4.1: Zeeman transitions.

The selection rule for magnetic dipole (M1) transitions is ¨ª© « ¬A	®�¯ . The lines° ± ¬ ± ˚
²

and ¯�¬�³�´µ³ ˚
²

of the ¶�· XIV and ¶�· XIII ions, respectively, are forbidden for the
electric dipole (E1) transitions but allowed for the magnetic dipole (M1) transitions. The¸ -components correspond to the transitions with ¨¹© «>¬ , and º -components – with¨ª© «»®�¯ (Fig. 4.1). If the LOS is parallel to the direction of the magnetic field, clock-
wise polarization at frequency ¼ ½	¾ will be observed and counterclockwise at the frequency¼�½	¿ (longitudinal Zeeman-effect), where

¼x½ ¾ «G¼xÀ�Á�¨¹¼xÂÃ¼x½ ¾ «G¼xÀ�Á�¨¹¼xÂÃ (4.5)¨ª¼xÂÄ« Å�ÆÇ�ÈzÉ¡Ê"Ë Ì�Í © Í Á Ì�Î © ÎÏË�Ð
If we observe along the direction perpendicular to the magnetic field vector, we see a
linear polarization parallel to the vector Ñ at frequency ¼Ò«Ó¼ À and a linear polarization
perpendicular to the Ñ at ¼Ô«Õ¼�ÀÖ®G¨¹¼xÂ (transversal Zeeman-effect). The intensity of
the circularly polarized signal corresponding to the longitudinal Zeeman-effect is much
higher than intensity of the linear polarized signal for the transversal one.

4.2 Hanle-effect

The Hanle-effect was discovered by Hanle in 1923 (Hanle 1924). Here we briefly describe
the key points of this effect. A more detailed description can be found in Mitchel &
Zemansky (1934), and Landi & Landolfi (2004). Let us consider scattering of unpolarized
light of an atom with × Î « ¬ and × Í « ¯ without magnetic field (Fig. 4.2a). If no
magnetic field present, the atom can be described by three independent linear oscillators.
The radiation scattered along the direction of incident light is unpolarized. But if we
observe from a direction perpendicular to the incident light, we find linear polarization.

Let us introduce now a magnetic field parallel to the Ø -axis (Fig. 4.2b,c). Then
the atom must be described by a linear oscillator parallel to the magnetic field and two
counter-rotating circular oscillators in the ÙAÚ -plane oscillating at frequencies Û�À'ÁzÛ�Ü and
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4.2 Hanle-effect
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Figure 4.2: Polarization of forward and perpendicular scattered radiation in the absence
of magnetic field (a) and in the presence of the field parallel to the perpendicular LOS
direction (b,c).
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4 The possible effects used for deriving the magnetic field

Ý~Þ�ß�Ý~à , where Ý�à is the Larmor frequency. The resulting trajectory of the electron in theá�â -plane is (Trujillo Bueno 2000)ã ágä3å#æèçGéëê�ì�íµîðï!ñ!òÃó�ô õ�äöÝ~àµå#æAó�ô�õ�äöÝ~Þ�å#æø÷â�ä3å#æ�çGéëê�ì íµîðï!ñ!ò õ�ù�úLäûÝ�àµå#æAó�ô õ�äöÝ~Þ�å#æ[÷ (4.6)

where ü is a life time.
When the magnetic field is strong ( Ý�à üþý ÿ ), the oscillation axis rotates several times

(Fig. 4.2c). The trajectory of the electron in á�â -plane is a ”daffodil”, and the scattered
light into the perpendicular direction is totally unpolarized. For the forward scattering
case we have a maximum amount of linear polarization.

In case of the weak magnetic field ( Ý�à ü�� ÿ ), the oscillation axis rotates only for some
angle � (figure 4.2b). The electron now describes a ”rosette” in the áAâ -plane, with result
that the radiation scattered into the � -direction will be partially polarized. In comparison
with non-magnetic case, we have a decreased degree of polarization and rotation of the
polarization plane.

4.3 Faraday-effect

Linearly polarized radiation can be described as the superposition of two circularly po-
larized components with opposite rotation. The total electric field vector in case of a
propagation along the â -direction is splitted in a sum of two electric vectors,

���
and

���
,

corresponding to the right- and left-hand circularly polarized field components,� ç ��� ß �	� ç ä�
�� ß���
��� æ��%Þ�� e
��������� í! xî#" ßGä�
��%$ ��
��� æ&��Þ�à e

�����(')� í! �î#" ÷ (4.7)

where ��Þ�à and ��Þ�� are the amplitudes for the left- and right-hand circularly polarized
components, respectively, * à and * � are their respective wave vectors in the â -direction,Ý is the cyclic frequency, and å is the time, 
�+ and 
��� are the unit vectors defining the � -
and á -directions, respectively.

The polarization angle , is defined through the ratio of the � - and á -components of
the electric field vector,

ó�ô.- , ç �0/�01 ç 2435'2�35� ó�ô õ�ä * à�â�ßaÝ�å#æ'ßKó�ô�õ�ä * ��â $ Ý�å#æ2435'2 35� õ�ù�ú ä * à�â�ßaÝ�å#æ'ßKõ#ù$ú ä * ��â $ Ý�å#æ ÷ (4.8)

and for the circular polarization, when ��Þ�� ç6��Þ�� , we have

ó�ô.- , çqó�ô.-87 * à $ * �9 â�:<; (4.9)

The values of the propagation vectors * à and * � may differ in a magnetized plasma.
We consider radio or light waves for which the frequency Ý is much larger than plasma
frequency Ý>= ç@?>A ì,ñB A(C Þ ÷ (4.10)
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4.3 Faraday-effect

where DFE is the electron density, GHE the electron mass, I the elementary charge and J the
electric constant. For our purpose the wave numbers as derived in magneto-ionic theory
(Stix 1962) therefore areK�L	MON P QSR NUTVNXWYN[Z<N E(\4] K�^HM_N P Q`R NUTVNXWaN R N E(\�b (4.11)

Here,
P

is the speed of light, N E M IdcXeG�E (4.12)

is the electron gyrofrequency, and cfe is the projection of the magnetic field vector on the
propagation direction g . For the radio waves and typical coronal magnetic field strengthNih N E . So, the total rotation of the polarization plane of the linearly polarized electro-
magnetic wave after passing the corona isjHM Ilkmon G TE P T)WYNqp mon \ TUr D>E(cseut4g b (4.13)

Since the rotation angle is inversely proportional to the square of radiation frequency,
the Faraday-effect is more effective for radio waves. The Faraday rotation can be used
for the determination of the magnetic field in the corona by polarization measurements
before and during the occultation by the Sun of a distant linearly polarized radio source.
For example, Stelzried et al. (1970) observed this effect between v RwQ m.xzy

during the
Pioneer 6 passage behind the Sun. Golnev et al. (1969) found a magnetic field strength
of
Qd{4| T~} for the corona at a distance of � xfy during the occultation of the Crab Nebula.
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5 The line formation of magnetically
sensitive lines

The processes of the formation of polarized emission of coronal lines in presence of a
magnetic field is briefly described in this chapter. The emission lines are formed due to
atomic transitions from an upper excited state to lower one. The excited state of an atom
in the corona is mainly caused by thermal collisions or by radiation incident from the pho-
tosphere. The polarization of the emitted radiation is due to the anisotropy of the incident
pumping radiation and the anisotropy induced by the magnetic field. The magnetograph
formula expresses the dependence of the Stokes- � and - � spectra from the LOS projec-
tion of the magnetic field vector. This formula is the background for the tomographic
reconstruction based on the longitudinal Zeeman-effect data. The expressions for calcu-
lation of the Stokes- � , - � and - � vectors, integrated over the line profiles for the infrared
( �d�!����� ˚

�
) and green ( �.���.� ˚

�
) lines, are presented in the sections 5.10 and 5.11. These

expressions are directly involved in the reconstruction procedure using the Hanle-effect
data described in the next chapter.

5.1 Stokes vector

The electric field vector of the monochromatic electromagnetic wave propagating in the� -direction is expressed by �`�4�a�������0�������)�Y���������o�
(5.1)

�0�!�a�������0�������l�a����� �+�l�
(5.2)

where

�`�
and

�`�
are the amplitudes,

�¡�
and

���
are phase shifts,

�
is the cyclic frequency

and

�
the time. Instead of these four parameters describing the wave (

�X�!¢£�`��¢u�+�.¢u�+�
),

G.Stokes introduced another set: �¥¤ �6�§¦�0¨ �z¦� ¢
(5.3)�f¤ �w� ¦� � � ¦� ¢
(5.4)�©¤ ��ª.�`�d�`�F�����)�«�+�S� ���l�u¢
(5.5)�¬¤ �ª.�0�)�0�®�(¯±°©�²���`���+���¥³
(5.6)

These Stokes parameters satisfy the relationship:� ¦¤ � � ¦¤ ¨ � ¦¤ ¨ � ¦¤ ³ (5.7)
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5 The line formation of magnetically sensitive lines

The Stokes parameters are chosen in the way that ´�µ describes the total intensity of polar-
ized monochromatic light, ¶·µ is the intensity of linearly polarized radiation along ¸ -axis
minus intensity of linearly polarized radiation along ¹ -axis, º»µ the intensity of linearly
polarized radiation along the unit vector ¼�½¾¬¿ÁÀ ½¾�Â�Ã(Ä�Å Æ minus intensity of linearly polar-
ized radiation along ¼&ÇÈ½¾�¿·À ½¾�Â�Ã(Ä Å Æ , and É¬µ the intensity of right circularly polarized
radiation minus the intensity of left circularly polarized radiation.

But the monochromatic approximation of the wave is far from reality. A more realistic
description of electromagnetic radiation is the superposition of many wave packets having
a limited extension in space and time (quasi-monochromatic radiation). Therefore the
Stokes-parameters now is expressed by averaging over the statistical distribution of the
wave packets: ´�Ê_Ë«Ì§Í¿ À ÌzÍÂ�Î�Ï (5.8)¶ÐÊ_Ë²Ì§Í¿ Ç ÌzÍÂ Î�Ï (5.9)º�Ê_Ë Æ Ì ¿ Ì ÂFÑ�Ò�Ó ¼«Ô ¿ Ç Ô ÂlÃ Î�Ï (5.10)ÉÐÊ_Ë Æ Ì ¿ Ì Â®Ó(Õ±Ö ¼²Ô ¿ Ç�Ô Â�Ã Î¥× (5.11)

Now ´ ÍSØ ¶ Í À º Í À É Í , and total intensity, ´ , is a sum of the intensities of the polarized
component and unpolarized one:´ÙÊOÚ ¶ Í À º Í À É Í À ´ unpolarized

× (5.12)

The relation Û Ê Ú ¶ Í À º Í À É Í´ (5.13)

defines the degree of polarization.

5.2 Radiative Transfer for the Polarized Radiation

Under the assumption that the corona is optically thin, the radiative transfer equation
(RTE) for polarized radiation takes formÜ�ÝÜ4Þ Ê�ß Ï (5.14)

where

Ý ÊO¼à´ Ï ¶ Ï º Ï É Ã T is the Stokes vector (sign ”T” here notes matrix transpose oper-
ation), ßáÊ_¼5âoã Ï â�ä Ï â.å Ï â�æ Ã T is the emission vector, and

Þ
is the coordinate along the LOS.

The emission coefficients in the emission vector for the magnetic dipole transition for
polarized radiation can be written in a similar way like for the unpolarized case, but we
have to take into the account the dependence of the Stokes components on the orientation
of the magnetic dipole with respect to the chosen reference system (Fig. 5.1) (Landi &
Landolfi 2004): âoã0Ê Re ¼²ç�è�è À ç�é�é Ã Ïâ�äÈÊêÇ Re ¼²ç�è>é À ç�é�è Ã Ïâ.åHÊ Im ¼²çoè>éëÇ�ç�é�è Ã Ïâ�æìÊ Re ¼²ç�è�è�Ç ç�é�é Ã Ï (5.15)
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5.2 Radiative Transfer for the Polarized Radiation

where for the case of magnetic dipole transitions íoîlï%ðòñ.ó¡ô4õö¥÷ùø.ú õuôö óüûþýý ÿ������� �	� ����
� ý��� î � ����� �	� ��� � 
� ý��� ï � ����������� � ��� � ô ��� � ô �"! (5.16)

Here,
� ��� is magnetic dipole moment for the transition #%$'& , �(���)� is a density matrix

element that should be found by solving statistical-equilibrium equations, and
û

is the
density of the radiating ions. Here the reference system defined by the unit vectors

� ��
a * �� b �

was replaced by the circulating reference system defining by the unit vectors��,+.- � ��� ð /0 ñ � �� a
� ���21 i

��
b
� ���3� *��546- � ��� ð /0 ñ � � �� a

� �7�21 i
��

b
� �����8! (5.17)

The function � is a generalized complex line profile expressed in units of Doppler width,9;:,< ð :.=�>�?ö * 9 ô < ð ô =�>@?ö * (5.18)

where >@? is the thermal velocity, ö the speed of light, and
:6=

and

ô =
define the position

of the gravity center of the spectrum in wavelength or frequency (when a macroscopic
velocity is not taken into account). The profile of the function � can be written as:� ð /0 ú 9 ô < 
�A B ô ����� ô9 ô < � > A *DCFE 1 i0 ú 9 ô < 
HG B

ô ���I� ô9 ô < � > A *DCFEJ* (5.19)

where C ð K9 ô < ð K : ÷=ö 9;:,< ! (5.20)

L
��

a

��
b

�M N

Figure 5.1: The unit vector of reference direction,
��

a, and associated unit vector
��

b so that��
a

ý���
b O � , where � is propagation direction (LOS direction).
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5 The line formation of magnetically sensitive lines

Here PRQTSVUFWYXRUFZ\[�]_^8` is the damping parameter, and UaW and U(Z are probabilities per
unit time that the atom leaves the level b or c .
The functions d SfehgDi([jQ i`lk.mno m

e
oFprq sSfe tYu5[�vwXxi\v\y u6g (5.21)z SfehgDi([{Q s` k.mno m
e
oFp q e|tYuSfe|tYu5[�v�X}i\vFy u (5.22)

are the Voigt-function and the associated dispersion profile, respectively, obtained by the
convolution of a Maxwell distribution function (thermal broadening) with a Lorentzian
profile, and e A is the Doppler shift induced by LOS component of the macroscopic veloc-
ity, e LOS: e A Q e LOSe@~ Q��h� e LOS��� �h� Q��� e LOS��� �� g (5.23)

where under the assumption of a Maxwellian velocity distribution and single-atomic gase�~�Ql� �\�(��]b � ( � is the Boltzmann constant, and b � is the mass of the atom).

x

y

z

� U
���� S���[

��5� S���[��
�

�
��� �

Figure 5.2: The geometry of the scattering process. The vectors �;� and � define the
directions of the incident and scattered radiation, respectively. The unit vectors of polar-
ization reference

��.� and
��5� are chosen in the way that

��h��� ��5� , �� a   �� b ¡ � , and
���� lies

in the plane defined by the vectors � and � � .
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5.3 Statistical-equilibrium equation

Let us consider an atomic system without hyperfine structure, and with energy lev-
els characterized by the quantum numbers ¢ representing the set of quantum numbers
(electronic configuration, total orbital angular momentum, £ , total electronic spin, ¤ ), ¥
representing the total angular momentum, and magnetic quantum number ¦ .

Substituting these quantum numbers in (5.16) leads to the subsequent replacements:§©¨ ¢�ªV¥\ª«¦¬ªf ® ¨ ¢°¯\¥8¯_¦±¯F ®³² ¨ ¢2¯\¥�¯_¦´²¯  (5.24)

where indexes ” µ ” and ” ¶ ” specify lower and upper levels between which electron tran-
sitions occur. Applying the Wigner-Eckart theorem to the spherical components of the
dipole operator, and introducing the Einstein coefficient, · , for the magnetic dipole spon-
taneous transition ¢�¯\¥�¯ ¨ ¢°ª¸¥\ª , we get the spontaneous emission coefficients, ¹Vº�»��º8¼�½º8¾�½º_¿°ÀÂÁ¹¸º_Ã�½º\ÄD½ºÅH½ºÆ"À , in the form:º@Ç�¹�Èa"É7ÀÂÁ�Ê ÈË8ÌÎÍÐÏÑ�ÒÔÓ�ÒÕÏÑ�Ö�Ó�Ö ¹�×F¥�¯ÙØÛÚ@À�· Ñ Ö Ó Ö"Ü Ñ Ò Ó Ò°ÝÝ ÏÞ Ö ÞàßÖ Þ Òâá�á ß"ãåä ¥�¯ ¥�ª Úæ ¦±¯ ¦±ª æÎç_è ä ¥8¯ ¥\ª Úæ ¦ ²¯ ¦¬ª æÎç ² è ÝÝ

Re é	ê á�á ß ¹Vë½"É�À�ì Ñ�Ö�Ó�Ö ¹�¦ ²¯ "¦í¯_À½îI¹�È Ñ�ÖHÓ�Ö Þ ÖHï Ñ�ÒÔÓ�Ò Þ Ò æ È5À�ð (5.25)

Here, ê áñá ß ¹fë�"É�À with ¹ ç  ç ² Áóò�Dô�Ú@À is the reducible spherical tensor (Table A.1) specify-
ing the geometry of the observer (Fig. 5.2), and î is the complex line profile centered atÈ@ÃõÁ�È Ñ Ö Ó Ö Þ Ö ï Ñ Ò Ó Ò Þ Ò . It can be decomposed as follows:îI¹�È@ö�÷ æ È5ÀÂÁóøw¹�Èö�÷ æ È�À2Ø i ùà¹�È@ö�÷ æ È5À" (5.26)

where ø is the Voigt profile and ù is the associated Faraday-Voigt dispersion function.
The expressions in the matrix form in (5.25) are Wigner ãHú -symbols.

5.3 Statistical-equilibrium equation

The density matrix element ì ÑÓ ¹�¦û"¦ ² À can be found by solving the statistical-equilibrium
equation, which involves any possible transition between the level of interest, ¹�¢ü�¥°À , and
upper, ¹f¢°¯F�¥�¯_À , and lower, ¹�¢�ªV�¥\ª«À , levels:ýý�þ ì ÑÓ ¹�¦û"¦ ² ÀüÁ æ × Ì i È@ÿ�� ÑÓ ¹�¦ æ ¦ ² À�ì ÑÓ ¹�¦ûD¦ ² À2ØØ Ï Ñ Ò Ó Ò�ÏÞ Ò Þ ßÒ ì Ñ�Ò«Ó�Ò ¹�¦¬ªV"¦Û²ª À�� A ¹f¢ü¥2¦�¦´²VD¢°ª ¥\ª ¦¬ª ¦´²ª À2Øæ ÏÑ�Ö�Ó�Ö ÏÞ Ö ÞàßÖ ì Ñ Ö Ó Ö ¹�¦±¯F"¦´²¯ À2¹�� E ¹f¢ü¥°¦ó¦´²¸D¢2¯\¥�¯_¦±¯_¦´²¯ À2Ø�� S ¹�¢Â¥°¦�¦Û²VD¢°¯\¥8¯¦±¯8¦´²¯ À½À ææ Ï Þ ß ß � ì ÑÓ ¹�¦û"¦Û² ²«À2¹�� A ¹f¢ü¥°¦Û²«¦´² ²«À2Ø	� E ¹�¢Â¥°¦´² ²«¦´²«À2Ø	� S ¹f¢ü¥2¦´² ²«¦´²ÔÀ½À2ØØIì ÑÓ ¹�¦´² ² "¦´²«À2¹
� A ¹f¢ü¥2¦´² ²«¦�À°Ø	� E ¹�¢Â¥°¦�¦´² ²«À2Ø�� S ¹�¢Â¥°¦�¦Û² ² À½À�a (5.27)
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5 The line formation of magnetically sensitive lines
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Figure 5.3: Grotrian diagram for the radiative processes contributing to the evolution of
the density matrix elements.

where � A � � E ������� � S are the coherence-transfer rates caused by absorption from lower
levels, by spontaneous emission from upper levels and by stimulated emission from up-
per levels, respectively (Fig. 5.3). The density matrix elements are increased due to these
processes. The quantities � A � � E ������� � S are the coherence-relaxation rates caused by
absorption, spontaneous and stimulated emission, respectively. The density matrix ele-
ments are decreased due to these processes. The effect of stimulated radiation emission
(described by � S and � S) can be neglected in the coronal plasma.

With help of the Wigner-Eckart theorem as for equations (5.16) and (5.25) one finds
for the induced radiative processes:� A ����� �!�#"���� $���$%�&$%�#"$('*) �,+���$.-0/ '2143658725:9;3<7>==@? �(AB/ '2C 5ED CGF5H:IJI F

K � ��$ /AG� �&$LA4MON K � ��$ /AG� " � "$ APM " N � IJI F �,Q 3<7�R 36587(5S' � (5.28)� A ���T� �U�#" 'T) /+ H36VW72V ��+�X-#/ '21G3<7W9;3 V 7 V ==�? �(AB/ '(C D CGF HIJI F C V
K �.Y � /AG�ZY � A4M N K �[Y � /AG�ZY � " APM " N � IJI F �,Q 3 V 7 V R 3<7.' � (5.29)

and for spontaneous radiative processes:� E ���T� �U�#"S��� Y��[YO�ZYO�#"Y '*) �,+��.Y;-0/ '(\43 V 7 V 9;3<7]== ��A^/ '(C V D CGFV H I K �.Y � /AG� "Y � " APM N K �.Y � /A_�ZY � APM N � (5.30)� E ����� �!� " 'T) /+�` CaC F H 3 5 7 5 \G3<7W9;3658725 � (5.31)
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5.4 The role of the collisions

where b�c,c,dfe�gihTj kl[mon pq rtsiu@v cJc�dfe
wyx{z}|th2~ r e�g�x{z}|th(���| (5.32)

is the reducible radiation field tensor. Here,

~ r e,g�x�z | h
is the Stokes vector of the incident

radiation field propagating in the direction

z |
.

The rates in (5.27) are due to radiative processes. To include the collisional excitation
and de-excitation, it is possible to modify (5.27) within the impact approximation ( in
which the duration of the collisional interaction is much smaller than the relaxation time
due to radiation) by adding the collisional rates to the corresponding radiative ones (Lamb
& ter Haar 1971).

5.4 The role of the collisions

There are two excitation mechanisms for ions in the corona: excitation by collisions and
excitation by incident radiation coming from the photosphere.

Collisions (we consider only ��� XIII and ��� XIV, see figures 5.5 and 5.6) is the dominat
exitation process in the lower corona near the photosphere (Sahal-Brechot 1974b). Due
to the isotropic character of the collisions, they do not contribute to the polarization.
Collisions can be divided in two types: those that are responsible for excitations between
two different

b
-levels, and those that induce transitions between two magnetic sublevels

within the same

b
-level (depolarizing collisions). The last type of collisions equilibrate

the populations of the sublevels, a process which causes a depolarization of the emitted
radiation.

Not only collisions for transitions within the line of interest must be taken into ac-
count while solving statistical equilibrium equation, but also collisions causing an exited
configuration of an ion and subsequent cascades from the higher states must be consid-
ered (Pecker and Thomas 1962). The main mechanism for populating high exited levels
of ��� XIV is the electron excitation from the ground state and the first exited levels (Petrini
1970).

On the other hand, depending on the impacting particles, collisions can be due to elec-
tron and proton impacts (the ion density in the corona is relatively low). Proton impact
at coronal temperature can only excite transitions between sublevels of the ground con-
figuration; excitations from the ground state to the exited configuration can be neglected
(Landman 1975). For the ��� XIII and ��� XIV, depolarization rate caused by proton impact
is very weak in comparison with electron excitation (Sahal-Brechot 1974a).

The numerical solution of the statistical equilibrium equation (5.27) for the density
matrix elements was obtained by a number of authors (Sahal-Brechot 1974a,b, 1977;
House 1977), who took into account the various collisional regimes listed above.

5.5 Photo-excitation

Beside collisional excitation, photo-excitation by radiation coming from the photosphere
is another significant excitation process, especially at height above 1.4 solar radii (Raju et
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5 The line formation of magnetically sensitive lines

al. 1991). This process is responsible for the resonance scattering and Hanle (in presence
of a magnetic field) effects.

The photospheric radiation from the area bounded by the cone � comes to the point�
situated at the distance � from the Sun’s center (Fig. 5.4). The radiation density at the

photospheric surface according black body assumption is�����i�*�L�O��� ���� � �e �����J�2�X� ��� (5.33)

with radiation temperature ���¡ .¢[¢[£>¤ (Allen 1973). The radiation density at the point�
(Van de Hulst 1950) is ¥ �,�i�T�!¦U���,�§�*�©¨Oª	«�¬ �®���i� � (5.34)

where ¦ is the limb-darkened total dilution. The terms ª and ¬ are defined through the
center-limb darkening coefficient, ¯ (Van de Hulst 1950):ª �°� � ��¯ � ¨ � � �²± � «¡³� � � ��± ���¨ « ¯ .´ «�µ�6¶ � (5.35)¬ �°� � ��¯ �P· ¨¸ �²± « �¸ ± ��¹ « ¯ .´ � µ� � (5.36)

where ´ � � « ±»º¼¾½E¿ ±� « ¼ �µ � � « ¼ º « ±aÀ¼ ½E¿ ±� « ¼ �¼ �#Á2Â ¿ � � �_Ã Ä[� � ± �#ÅÇÆ[Á �
The radiation density,

¥
, at the point

�
can be splitted into an isotropic component,

¥
i,

and anisotropic one,

¥
a, (

¥ � ¥
i « ¥

a):¥
i
� ¸ ¬ � � �U¦ÉÈS� � � (5.37)¥

a
� �¨ � ª � ¬ ��� � �U¦ËÊ{� � � (5.38)
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Figure 5.4: Anisotropy of the incident radiation field (Charvin 1965).
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5.6 Density matrix in irreducible tensor representation

where ÌÎÍ and ÌÎÏ are isotropic and anisotropic dilution factors, respectively. The ab-
sorption rate of incident radiation can also be splitted into two parts expressed through
the Einstein coefficient for stimulated transition, Ð»ÑWÒÔÓÕÒ:ÖGÒ:×;Ñ<ÓWÖ (Sahal-Brechot 1974b),
an isotropic absorbtion rate ÐGÑWÒtÓÕÒØÖGÒ:×;Ñ<ÓWÖÚÙ ÍÛ>Ü (5.39)

and an anisotropic one, which creates the inequality of the populations of the Zeeman
sublevels Ð4ÑWÒtÓÕÒØÖGÒ:×;Ñ<ÓWÖÚÙ ÏÝXÞàß�áãâäÜ�åBæ{Ü (5.40)

where áãâ çUâ è²â#é , å is the angle between the quantization axis co-directed with ê
and the direction of the incident radiation, ë é , (figure 5.2), andÞàß�áXâ#Ü{å»æ�çíì°î2ïEð�ñ åòÜ for áãâ çäóô�õ§ö�÷fø�ù<úñ Ü for áXâ çUû>ü.ý (5.41)

5.6 Density matrix in irreducible tensor representation

The density matrix elements in (5.25) and (5.27) depend on the reference system. If the
”new” reference system, þ�ÿ���� , is obtained from the ”old” one, þ����	� , by the Euler rotation,


, then the density matrix transforms under the rule:�� Ñ<Ó ß,âäÜ�â é æ���������� ç����� Ò�� Ó� Ö ß 
 æ�� � Ó� ÒØÖGÒ ß 
 æ �� Ñ<Ó ß��oÜ � é æ����"!$# % Ü (5.42)

where � Ó� Ö ß 
 æ are rotation matrixes associated with the transformation



. This trans-
formation involves the product of two rotation matrices. It is possible to construct linear
combinations of these matrix elements in such way that the transformation



will involve

only one rotation matrix. Then the density matrix will be described by spherical tensors
of rank & (Landi 1984):�(') ß$*,+ æ*ç-�ÖaÖGÒ ß(èBü æ Ó/.�Ö10 Ý &32 ü54 + +�é &â è_â0éLè7658 � Ñ<Ó ß�âäÜ{â é æ�Ü (5.43)�� ') ß$*,+ æ9�:�;���<� ç=� ) Ò7� ') Ò ) ß 
 æ � �� ') Ò ß$*>+ æ��:�"!$# % Ü (5.44)

where, due to the properties of the 3-? symbol, & ç ó§ÜÇý%ý8ý%Ü Ý + and 6 ç è & ÜWý8ý8ý%Ü & . If
the density matrix is diagonal ( âäé ç â ), i.e. in the no-coherence case, then, because of
condition âäéiè â ç©è76 , 6 ç¡ó , a moment of the form

� '@ is a linear combination of
populations. A moment of the form

� ')
with 6BAç#ó is a linear combination of coherences

between states characterized by projections of the angular momentum differing by 6 .
Expressions similar to (5.43) and (5.44) can be written for the geometric tensor:C ') ß�D2Ü ë æ*çE�GF�F Ò ß�è^ü æ ô�õ F/H Û ß Ý &32 ü æI4 ü ü &J è J éLè76K8 C F�F Ò ß�DyÜ ë æ{Ü (5.45)� C ') ß�D2Ü ë æ���������� çE� ) ÒI� ') Ò ) ß 
 æ � C ') Ò ßLDyÜ ë æ����"!$# % Ü (5.46)
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5 The line formation of magnetically sensitive lines

where MON�M/PRQTSUN"V1W denote spherical coordinate components, and due to the properties of
the 3-X symbol S1Y[Z\Y^] and _`Qba7ZcN�dedfdeN Z .

For the ZgQ=S rank moment of the density matrix we havehjii/k$l,mon Q Wp ] mrq Wtsu hjv/w k$x N xEn N (5.47)

which means that
p ] myq W h ii k�l>mon is the population of the level k�l>m�n . The multipole

moments of rank ZzQ{W are connected with the average value of the angular momentum
components. When these values are non-zero, there is a preferred direction in space, along
which the atom is oriented. The multipole moments of rank Z Q|] are connected with
the average value of bilinear combinations of the angular momentum components. These
multipole moments are called the alignment components of the density matrix, and they
characterize the inequality of populations between } - and ~ -components of the magnetic
sublevels. The multipole moments of higher rank � are connected with the average values
of polynomials of degree � in the angular momentum components.

5.7 The non-coherence approximation

There is the possibility of coherences between levels belonging to different atomic terms
due to the level crossing. But, for ��� XIII and ��� XIV, the level crossing of different terms
involves only highly excited states (never involves the ground one), which are excited and
depopulated by isotropic collissional and spontateous emission processes (Sahal-Brechot
1977). Therefore, the magnetic levels are equally and incoherently populated within a
level k$l>m�n , such that h k�l>m�x N l P m P x P n Q=� v��	v � w:w;�ehjv/w k$x N x P n d (5.48)

Because of the low spontaneous transition probability, � , and the typical coronal mag-
netic field strength of �{W:S G ( ����� � , strong field regime for Hanle-effect), any coher-
ences between Zeeman sublevels are destroyed. Therefore, the off-diagonal components
in the density matrix vanish:hjv/w kx N x P n QT� u�u � hjv/w k$x N xEn d (5.49)

This approximation of completely diagonal density matrix leads to the restriction of the_ components in the spherical statistical tensors ( _�Q=S ):h(�� k$l,mon QT� � i h(�i�k$l,mon d (5.50)

5.8 Weak field approximation

This section is devoted to considering the emission coefficient for the special case of
the solar corona and based mainly on the investigation of Casini & Judge (1999) and
references therein.

Because of high temperature ( �gW:S���� ) and relatively weak magnetic field strength
( �\W:S�� ), thermal broadening of the line profile is much larger than Zeeman splitting.
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5.8 Weak field approximation

Therefore it is possible to represent the Voigt profile in (5.25) by a Taylor expansion up
to the first order in terms of the Zeeman splitting,�:�����>�����

L �L�¡  �£¢�¤ ¥ �¦  �£¢9�"¤¨§�©�ª
(5.51)

The expansion about the center of gravity of the line yields:
�¬«����   �9¢�   �£¢�� :® � �   �£¢��¯   �9¢����°�,¥¨��©¬� ® � �±«o¥¨��©�² ®�³ � �±«o¥´��©��������°��µ

(5.52)

where �¦  � ¢ and �¦  � ¢ � are the Lande factors of the levels �$¶ §¸·�©
and �$¶ §¸·j§"©

, respectively.
This representation suggests to divide the emission coefficients into two parts, zero- and
first-order contribution ones:¹/º � �tµ"»¼©¬� ¹(½ §£¾º � �tµ"»¼©�² ¹(½e¿ ¾º � �tµ"»¼©"µ

(5.53)¹j½ §£¾º � �tµ »¼©¬�ÁÀ �Â¦Ã�Ä �Å ·y²[Æ�©9Ç   �9¢�È   �É¢�� ® � �±«Ê¥Ë��©ÍÌÌÏÎ�Ð � ¥ÑÆ�© ¿$Ò ¢ Ò ¢9��Ó Ô�Õ Æ Æ Ö· · ·j§Ø×yÙ Ð§ �$¶ §�·o©�Ú Ð§ ��Û µ"»¼©�µ
(5.54)¹(½e¿ ¾º � �tµ"»¼©,�Ü�

L
À �Â¦Ã�Ä �Å ·y²^Æ�©£Ç   �9¢�È   �£¢�� ®�³ � ��«o¥´��©�ÌÌ ÎÐ¬Ð�Ý/Þ Ô �$Å Ö|²[Æ�© �$Å Ö ³ ²^Æ:©Iß Æ Ö Ö ³à à à�á Ù Ð§ �$¶ §¸·o©9Ú Ð Ý§ ��Û µ »�©ÍÌ

Ì{âã � ¥KÆ:© ¢/äR¢�� �¦  �9¢�Þ · � ·r²[Æ�© �$Å ·�²^Æ:© Õ Æ Ö Ö ³· · · × Õ Æ Æ Ö ³· · ·j§[× ¥
¥ �¡  �9¢��/Þ ·�§ � ·j§±²[Æ�© �$Å ·j§±²^Æ�©æåçéè Æ Ö Ö ³·�§ · Æ·�§ · Æ êéëì�íî (5.55)

Here, the two-row matrix form expressions in curved brackets are Wigner ï�ð -symbols,
and the three-row matrix form expression in curved brackets is an Wigner ñ�ð -symbol.

It is easy to find from (5.54) and (5.55) how different multiples of the density matrix
contribute to the emission coefficients (Tables 5.1 and 5.2). Atomic orientation (

Öò�óÆ
)

can be neglected in the solar corona because the exciting radiation from the photosphere
is unpolarized. Also the contribution from the

Öô� Ô
moment can be neglected, because

it has no observational effect. Thus, linear polarization can be produced only by atomic
alignment (

Öõ� Å ). And, total level population and atomic alignment also contribute to
the circular polarization.

Finally, introducing the alignment factorö Ð÷ �$¶ §¸·�©>� Ù Ð÷ �$¶ §�·o©Ù §§ �$¶ §¸·o© µ
(5.56)

and the effective Lande factor for the transition �$¶ §�·o©¬ø �$¶ §¸·j§"©
(Landi 1982)ù� � �¡  �9¢t² �¦  �9¢9�Å ² �¡  �9¢�¥ �¦  �9¢��Â � · � ·y²^Æ�©�¥�·j§ � ·j§±²^Æ:©�©úµ

(5.57)
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5 The line formation of magnetically sensitive lines

û ü ý¼þÿ�� û������ ü	� ý¼þ�
ÿ�� û�����
0 0 1 0

0 01 0
2 ���� � ��������� ������ �0

2 ���� � �!�����"� � �#�$ � 1 0
3 — 2 ���� � ��������� � ���� �
0 0 1 0

0 01 0
2 %��� � �&�'���)(+*,��-/. � �1

2 %��� � �������0(1*���-/. � � 1 0
3 — 2 %� � � �&�'���)(+*,��-/. � �
0 0 1 0

0 01 0
2 2 %��� � ���-3.4(+*5��-/. � �2

2 2 %��� � ����-3.6(1*5�-3. � � 1 0
3 — 2 2 %��� � ���-3.4(+*5��-/. � �
0 0 1 7 %� ���"� �

0 01 7 %� �'��� �
2 03

2 0 1 7 %� ���"� �
3 — 2 0

Table 5.1: The values of the spherical tensors
ý þÿ and

ý þ 
ÿ for all possible values of
ü

and
ü �

and non-zero values of the 3-8 symbol in (5.54) and (5.55).

û 9;: ÿ�<= �?> ���@� 9;: � <= �A> ���B�
0, Stokes- C üED

0, 2
üED

1, 3
1, Stokes- F üED

2
üGD

1, 3
2, Stokes- H üED

2
üGD

1, 3
3, Stokes- I üED

1
üGD

0, 2

Table 5.2: Contributing components,
ü

, of the density matrix tensor, J þÿ �!K ÿML � , to the
emission coefficients
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5.9 Magnetograph formula

we get expressions for the emission coefficients:N+O1P?Q6R�SBT&UVN;WYX�ZX PAQ6R�SBT[U]\ Q^"_a`cbedgf+h#i P?QjT6k�ljmon fefd�prqX P�s X't Tvu�w'x�y q)z#{ l|;} | ~ R (5.58)Nv��P?Q6R�SBT&UVN WYX�Z� PAQ6R�SBT[U \ Q^"_�`ab d fvh#i PAQjTn fef d prqX P�s X�t T u| } | w�x�y |+� y��/� q z R (5.59)N"��PAQ6R�SBT[UVN�W�X�Zq PAQ6R�SBT&U { \ Q^"_�`abedgfvh#i PAQjTgn fefgdp qX P�s X't T u| } | y��/� |+� y�3� q z R (5.60)Nv�[PAQ6R�SBT&UVN W � Z� P?Q6R�SBT&U { Q�� \ Q^"_ `ab d f+h�i0� P?QjT����� mo� fef d prqX P�s XMt T� w�x�y z R (5.61)

where n fef d U�P { l1T �!� f � fgd+� u P | t m�l1T�� l l |t t t;X�� R (5.62)� fefd U u } | t m�la�����jP { l1T f+��fd � b d f � t P t m�l1T'P | t mVl1T � l | lt t t � � l l lt t t�X � {{ � bedgfd � t;X P t�X mVl1T�P | t;X m�l1T �¡£¢ l | lt;X t lt;X t l$¤£¥¦�§¨ª© (5.63)

Here `cbedgf is the population density of the exited level, and h the Einstein spontaneous
coefficient for the P�s XMt;X T[« P!s X�t T transition.

We can clearly see from the (5.58) that total emission vector, N�O , depends on the LOS
direction, and how strong this dependence is defined by the alignment factor p qX . Whenp qX P!s XMt T is much less than unity (for example, p qX P�s XMt Tj¬le® � q for the ¯,° I D3 line), we
can neglect the directional dependence of the total emission coefficient.

5.9 Magnetograph formula

From equations (5.58)-(5.61) one can see that total emission and Stokes- ± component are
connected via magnetograph formula:Nv�[PAQ6R�SBT�U³²´�� Q�� w�x�y z�µ N+O1P?Q6R�SBTµ Q © (5.64)

The effect of the alignment is represented here by the coefficient²�U l¶m·� fefdp qX P!s XMt T¸ �l¶m | � ��¹ q n fefd�p qX P�s X't T�P u�w�x�y q z#{ leT © (5.65)

Again, like in the case for the total emissivity, this coefficient, ² , depends on the alignment
factor p qX . Integrating (5.64) along some LOS we get± PAQ6R�SBT�U³º»Nv�[PAQ6R�SBT µ�¼ U³º½²¾�� Q�� w'x�y z¿µ N+O+PAQ6R�SÀTµ Q µ�¼ (5.66)
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5 The line formation of magnetically sensitive lines
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Figure 5.5: Energy levels of ÁÃÂ XIII. The Zeeman splitting is only shown for Ä s Å�Ä p Å term
(House 1977).

Here, the derivative of the total emission, Æ , which is a quantity that can independently be
measured as a LOS integral:Ç Æ�È?É6Ê�Ë@ÌÇ É ÍÏÎ Ð

Ç�Ñ+Ò ÈAÉ6Ê�ËBÌÇ É Ó Ç�ÔÖÕ (5.67)

The nice property of using the magnetograph formula, in contrary to the Faraday-effect, is
that it is not necessary to know the distribution of the ion density and temperature over the
corona. All coefficients in (5.64) are either intrinsically atomic quantities which depend
only on the type of ion, while

Ç�Ñ"Ò È?É6Ê�ËBÌ�× Ç É can be obtained from a scalar tomographic
inversion of the observations (5.67).

5.10 Emission line ØrÙ¶Ú�ÛÜÚ ˚Ý of the Þ6ß XIII

The coronal emission line àeá�âvã�â ˚ä was first observed by B. Lyot (Lyot 1939) in 1936.
Later, the line was identified by B. Edl åen (1943) as the æ P ç�èéæ P ê transition of the ground
configuration of the Fe XIII ion (Fig. 5.5). First measurements of the polarization of the
line were made by Eddy and Malville (1967) during the 1965 eclipse. The observations
showed that the linear polarization was predominantly radially oriented and the degree
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5.10 Emission line ëeì;í+î�í ˚ï of the ð0ñ XIII

of polarization increased with distance from the Sun. Later, the Coronal Emission Line
Polarimeter (KELP) constructed by the High Altitude Observatory (HAO) provided more
precise measurements (Querfeld & Elmore 1976; Querfeld & Smartt 1984). The theory
for the interpretation of the observation was also developed by Charvin (1965), House
(1974, 1977), Querfeld (1982).

Since the line is infrared it is very promising for the derivation of the magnetic field
by the longitudinal Zeeman-effect, because the Zeeman splitting is proportional to the
second power of the wavelength, but the thermal broadening increases only with the first
power. Moreover, this line has lower and upper states òôó�õöì and ò�÷øõ½ë , respectively.
The upper state therefore splits only into three magnetic sublevels which simplifies the
calculations.

As the levels of interest belong to the same ground state, we can omit ù in the follow-
ing notations for the density matrix. Taking into account that òúó0õûì and ò�÷#õüë , we write
for the sublevels with ý õÏþBë :ÿ���� ë���õ ÿ������ ë��&õ ÿ���� þ�ë��
	 ÿ������� þBë����
and for the sublevel with ý õûì ÿ���� ì���	 ÿ��� � � ì����
The emission coefficients (5.25) into space angle � can be integrated over the line profile
and are then after (Querfeld 1982)���

�
��� � ������ � ������ � ����� � �!�

"�##
$ õ&%�'�(
)*�+

���
�
ÿ���� þ�ë�� � ë-,/.�0214365��7, ÿ��8� ì���1:9<; 3 5= ÿ���� þ�ë�� � ÿ���� ì��?>�1:9<; 3 5@.�021BA"ù= ÿ��8� þ�ë�� � ÿ���� ì��?>�1:9<; 3 5@1:9C;DAvùì

"�##
$ � (5.68)

Here ù now denotes the angle between the local radius vector and the observed polar-
ization projected on the plane of the sky (POS) (Fig. 5.2). Let us denote the sum and
difference of the populations throughE õ = A ÿ��8� þBë��F, ÿ���� ì��G>�� (5.69)H õ = ÿ��8� þBë�� � ÿ���� ì��?>�� (5.70)

Then the emission coefficients are�� ��� � �!���� � �!���� � �!�
"$ õ '2(
)*�+ �� A

E , H � % .�0�1:365 � ë��% H 1:9<; 3 5@.�021BAvù% H 1:9<; 3 5@1:9<;DA"ù
"$ � (5.71)

Solving the statistical equilibrium equations (5.27), one finds that
H

is proportional to� % .8021:36I � ë�� where I is the angle between the direction of the radius vector from the
center of the Sun and the magnetic field vector (Charvin 1965; Sahal-Brechot 1974a,
1977; House 1977). The

E
and

H
can be decomposed in the manner (Querfeld 1982):E õ Eÿ�J�� ì�� ÿ�J�� ì��K

FeXIII

K
FeXIIIK

Fe

K
FeK
H

K
HKML KML õ E-N ÿ N J � ì�� KPO ) Fe

K
HKML KML � (5.72)
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5 The line formation of magnetically sensitive lines

QSR QT�U�VXW�Y T�U�VXW�YZ
FeXIII

Z
FeXIIIZ

Fe

Z
FeZ
H

Z
HZM[ ZP[ R\Q^] VX_a`8b2c:d6egfih�Y�T ]U VXW�Y Zkjml

Fe

Z
HZM[ ZP[ (5.73)

where T�U�VnW2Y is the population of the level o R W , and T ] U VnW�Y R T�U�VXW�Y:p Z
FeXIII is the popula-

tion relative to the total qsr XIII number density,
Z

FeXIII. the symbol
Z

Fe is the iron number
density,

Z
H the proton number density, and

Zt[
the electron density. The iron abundancel

Fe
R Z

Fe
p Z

H is assumed to be u�v W2wyx�h�W�z�{ (Withbroe 1971). The value of the ionization
equilibrium

ZPj R Z
FeXIII

p Z
Fe is 0.239 at temperature | R h v w}x~h�W��-� (Jacobs et al. 1977).

The helium abundance is assumed to be h�W�� , and so the proton abundance
Z

H
p ZP[ is W v w .

The dependence of the population difference
Q

on the angle e is the so called van
Vleck effect (van Vleck 1925). The van Vleck effect completely depolarizes the scattered
radiation when ek� R���� `8`�b2c�V?h�p�� _�Y��S��� v�u�� (the van Vleck angle). After the van Vleck
angle is passed (i.e. for e���e � ), the Stokes vectors � and � change sign, which means
that the plane of polarization now is perpendicular to the magnetic field.

To calculate the quantities � ] , Q ] and T ] U VnW2Y Querfeld (1982) reduced the House (1977)
statistical equilibrium equations to a set of 15 equations for all of the ground term sub-
levels by removing the explicit calculation of the 91 excited term sublevels. This set
of 15 equations was further reduced to 10 equations because of the alignment propertyT��8Vn��Y R T���V�f���Y . Solving this reduced system of equations, he approximated expres-
sions for the � ] , Q ] and T ] U VXW�Y by the fits:

T ] U VXW�Y���� l�� d�w��F�8U ZPjCl
Fe

Z
HZP[ RR\  ��WsV?h¡f/W v _�¢2W�£ ¤¥W v W���w2w2£¦d§Y h
¤�VnW v W2W2w2W   ¤¥W v W2W   h��
¨<b2© | � Y ZPªh«¤�VnW v W2w2_¬h
¤¥W v W2_2��a¨<b2© | � Y ZMª (5.74)

� ]®R W v _2¢�W�£ ¤ VnW v W���¢��D¤¥W v W�h�W�h�_a¨<b2© | � Y ZPªh
¤¥W v W¬h u w ZPª (5.75)Q^]�R W v W22W�W�£°¯ h±f²VXW v W¬h2h u   f³W v W2W u �2�@¨Cb2© | � Y ZMªh-¤¥W v W2w�h� ZMª ´ (5.76)

where hkµ | � µg_ ´ ZMª µ¦h�W2W v (5.77)

Here, £ and £°¯ are the limb-darkened total and anisotropy dilution factors as defined
by (5.34) and (5.34), with limb-darkening function ¶ R W v _2_ (Allen 1973). In the above
equations | � is the temperature in units of h�W2� K,

ZPª
is the electron density in units ofh�W ª `8· z�¸ , and ��U is the central disk brightness.

5.11 Emission line ¹�ºa»aº ˚¼ of the ½D¾ XIV

The ��_2W2_ ˚¿ line of qsr XIV (green line) is the brightest forbidden emission line in the visible
coronal spectrum. The line was discovered by Young and Harkness during the 1869 total
solar eclipse, and identified later by Grotrian (1939) and Edlen (1943). The emissivity
of the green line has a maximum at À   xÁh�W��Â� (Esser et al. 1995; Guhathakurta et
al. 1992). The excitation mechanism is mainly collisional up to À h v � � � , while in the
higher regions, the radiative excitation is dominant (Raju 1991). The line was intensively
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Figure 5.6: Energy levels of Fe XIV (House 1982).

observed by the LASCO coronograph on board the SOHO spacecraft (Brueckner et al.
1995; Schwenn et al. 1997; Inhester et al. 1999).

The observed green line emission is closely related to the underlying photospheric
magnetic field. The brightest emissions come from active regions with strong magnetic
field. A prominent feature at low solar activity are high-altitude streamers which occur
in the regions where the magnetic flux from large active regions is connected to the high-
latitude unipolar fields. The global emission pattern rotates quasi-rigidly at the rate of the
dominant active regions.

A current-free magnetic field model does not always properly reflect the observed
coronal structures, particularly near prominences and in the boundary region between
open and closed magnetic fields (Wang et al. 1997).

One of the first polarization observation of the line was made by Mogilevskij et al.
(1960) during the eclipse of June 30, 1954. Later, a coronameter especially designed to
measure the green line polarization has been built at Pic-du-Midi observatory (Charvin
1971; Arnaud 1982a). The obtained polarization maps often display a large-scale homo-
geneous structure that is surprising because of the complex density structure of the corona
(Arnaud 1982b).

As the levels of the line emission belong to the same ground configuration (Fig. 5.6),
we can omit É in the following notations for the density matrix, and taking into acount
that Ê�ËÍÌÏÎÐ and Ê2ÑÒÌÔÓÐ , we can write for the magnetic sublevels Õ Ì×ÖØÎÐ of the lower
state Ê�Ë�Ì ÎÐ ÙÛÚÜ2Ý�Þ ÎÐ�ß Ì ÙÛÚÜ�Ý ÎÐ�ß Ì ÙÛÚÜ�Ý ÖàÎÐ�ßaá Ù�â�ã4ä Ý ÖàÎÐ�ßæå (5.78)
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5 The line formation of magnetically sensitive lines

and for the magnetic sublevels ç è�éØêë�ì éîíë of the upper state ï�ðñè&íëòFóô2õ�ö êë�÷ è òFóô�õ êë�÷ è òFóô�õ é êë�÷�ø ò�ù�ú4û�õ é êë�÷ ì (5.79)ò ó ô�õ?ö íë ÷ è ò ó ô�õ íë ÷ è ò ó ô�õ éîíë ÷aø ò�ù�ú û õ éîíë ÷�ü (5.80)

The sum and difference of the magnetic sublevel belonging to the upper level can be
expressed as: ý è�þ ÿ ò ó ô�õ é íë ÷ � ò ó ô�õ é êë ÷ � ì (5.81)� è�þ ÿ òFóô�õ é íë�÷ ö òFó ô2õ é êë�÷ � ü (5.82)

Then the emission coefficients integrated over line profile are (House et al. 1982)����	� õ�
 ÷4÷�� õ�
 ÷��� õ�
 ÷
�� è�������� ���� ý � � õ������� ë"! ö$# ÷� �  &%(' ë ! ���� þ�)� �  *%+' ë !  *%+' þ�)

�� ü (5.83)

Introducing the relative sum and difference populations

ý-,
and

� ,
like in Sec. 5.10, we

may write ý è/. ý , ì (5.84)� è0. � , õ1�2�3�4 ë65 ö$# ÷ ì (5.85)

where . is the total population of all sublevels in the ground configuration, and the equa-
tion (5.83) can be rewritten as��7�	� õ�
 ÷:÷�� õ�
 ÷��� õ�
 ÷

�� è8�4����� . ��9� ý:, � � , õ������4 ë"! ö;# ÷ õ������� ë 5 ö<# ÷� � , õ1�2�3�4 ë 5 ö$# ÷  *%+' ë ! ���4 þ)� � , õ=�2�3�4 ë 5 ö;# ÷  *%+' ë !  *%+' þ�)
�� ü (5.86)

For calculating the density matrix elements, House (1974) and Sahal-Brechot (1974b)
used a nine level ( � � sublevel) model of the >@? XIV (Fig. 5.6), i.e., the statistical equilib-
rium condition involves 34 equations. To reduce the calculation time, House et al. (1982)
reduced these 34 equations to a set of six equations by reducing the equations which cou-
ple the ground to excited configurations to an equivalent set of indirect rates coupling only
ground configuration sublevels. Using the alignment assumption ò�ù�úsõ ç ÷ è ò�ù�úsõ?ö ç ÷ ,
they further reduced the remaining six equations to three. These three equations give
expressions for

ýA,
and

� ,
:ý , è B �DC üFEHG � G õI#�ö C ü C E4J4K	LNM ÷ .PO� K¬ü þ E � B � # ü C þ JHG õQ#¡ö C ü C E4JHKRLNMæ÷ .PO ì (5.87)� , è BTS õQ#Dö

ý , ÷# � J¬ü C � � õ � üUK � þ C ö C ü #V� � C L6M ÷ .PO ì (5.88)

where B and BWS are the total and anisotropic dilution factors, respectively, which can be
calculated using Allen’s (1973) limb darkening function with X^è C üFE þ (see Sec. 5.5). In
these formulae, LYM is the electron temperature in units of # C M[Z , and .PO is the electron
density in units of # C O ��\^] í .
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5.12 Influence of the alignment factor

The total population of all the sublevels in the ground configuration, _ , can be as-
sumed to be equal the total `ba XIV population, since the total population in the excited
configuration is cedgfihkjl_ . So, using the same notations like in Section 5.10, we have

_nm0_ FeXIV mo_ H p Fe
_ FeXIV_ Fe q (5.89)

5.12 Influence of the alignment factor

The total intensity (Stokes- r ) in equations (5.86), (5.71) and (5.58) is composed of two
terms. The first, proportional to sut , is isotropic while the second, proportional to vwt , de-
pends on the angles x and y which the local magnetic field forms with the LOS direction
and the local radius vector, respectively. A measure of how much the Stokes- r component
deviates from isotropy is therefore given by the ratios:z

FeXIII m v[tFeXIII{ s tFeXIII

for 10747 Å line of Fe XIII | (5.90)z
FeXIV m v[tFeXIV} s tFeXIV

for 5303 Å line of Fe XIV q (5.91)

The population difference v is proportional to the alignment factor (5.56) which is dif-
ferent for different lines and varies with density and temperature.

Taking the coronal electron density distribution from Newkirk (1970),_P~��1����m����4�4�� hk�*� �����2� dg�4��� h@�=��� ������� dgf4���4f4f�� hk���*� ���Q� ���Hdgf �����3�^hk� | (5.92)

where distance � is in solar radii, and using (5.74)-(5.76) and (5.87)-(5.88), we can calcu-
late the ratios (5.90) and (5.91) as functions of radial distance, � , and temperature, � (Fig.
5.7).

To estimate the influence of the alignment factor in the total intensity, it is neces-
sary to multiply the ratio z with the term depending on the magnetic field configura-
tion, ���1x4�*����y�� m��1� ��¡4¢ � x � dR�3��� ��¡4¢ � y � dR� . Theoretically, �£��x��*����y�� varies within
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5 The line formation of magnetically sensitive lines

©«ª¬0®°¯�±�²*®£¯�³´²A¬$µ . But because of central occulter (Sun’s disk) we have a limitation in
the possible LOS directions, and, therefore, ©«ªw¶o®�¯1±4²&®£¯�³�²�·¹¸»ºUª for ¼´½ ¶$¾w¬/ª ¼¿½ .
So, depending on the magnetic field configuration, location of the observed region and
LOS direction, the maximal contribution of the anisotropic part to the total intensity is
less than ¸Hª and À ¸´Á for the ÀgÂHÃ µ Ã and Ä ¸ Â ¸ ˚

Å
lines, respectively. This is the maximum

error of a simplified emission coefficient Æ4Ç for Stokes- È which omits the anisotropic part
of the emission. The advantage of this simplified emission Æ4Ç is that it is depends lin-
early on ÉËÊAÌ with a space-independent coefficient. Hence, ÉËÊ-Ì can be obtained with this
approximation from a straightforward scalar tomography inversion of the Stokes- È data.
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6 Test simulations

6.1 The coordinate system

The center of the main reference system is situated in the center of the sun. The Í -axis is
parallel to the sun’s rotation axis and directed to the north pole. The Î -axis is connected
to some fixed point on the solar equator, and the Ï -axis is chosen in a way giving a right-
handed reference system. The investigated volume is bounded by two spheres with radial
distances ÐÒÑ and Ð out Ó�Ô Ð«Ñ . A rectangular discretization grid was chosen which has
equidistant spacing and is aligned with the Î , Ï and Í coordinate axes (Fig. 6.1). The cells
that cross the inner (the sun’s surface) and outer spherical boundaries of the investigated
volume are cut by these boundaries, i.e. they are not cubic. Within each cell of the grid,
the magnetic field is assumed to be constant. The cells are numbered, and it is possible
to create a column-matrix Õ the elements of which are the components of the magnetic
field vector, Ö Ó0×ÙØÛÚÜ»Ý¿Þ ×PßNÚÜià«Þ ×Ùá@ÚÜiâ , at the cell’s center of gravity:ãwä�å(ækç Ó/× Øå@è ãwä�å(æ@é Óo× ßå è ãwä�å Óo× áåëê (6.1)

6.2 Discretization of the divergence operator

To calculate the regularization term ì reg in (3.13), the Gauss-Ostrogradskii theorem was
used, which states that the flux of some vector field through a closed surface equals the
integral of the divergence of the field over the volume bounded by this surface. So, as-

x

y

x

y

L C R

F

Bsb

Figure 6.1: The example of í Ôî í Ôïî í Ô grid: cross section by the plane Í Óñð . Yellow
area is the Sun.
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6 Test simulations

suming that òeóRô is constant within each cell õ , one obtainsö
Corona ÷ òeóRôùøQú6ûküþý ÿ

All cells � �� ö� -th cell ÷ òeóRôùøIú"ûkü���Dý
ý ÿ

All cells � ����	� �ü ��
 ú ö� -th cell

ûkü���Dý ÿ
All cells � � ú�ü �� (6.2)

where
� � is the net magnetic flux out of the õ -th cell, and ü � is the volume of the õ -th

cell. The ü � has the character of weighting coefficient, and it was dropped to simplify
the calculations. Let us denote the õ -th cell as ”C”(central) and the surrounding cells as
”L”(left), ”R”(right), ”F”(forward), ”B”(backward), ”U”(upper) and ”D”(down) as shown
at Fig. 6.1b (upper and lower cells are not shown). The cell may be cut by the spherical
boundary surface. The cut area is denoted by ��� . Then, a formula for the calculation of the
net flux out of õ -th cell used in simulations can be derived from the linearly interpolated
field on each cell face, i.e.� � ý��������� ����� � � � ������ ����� � � � ��� � ����� �  �!���" � ����� � " �� �$#%�� ��#�� � % � �$#&'� �$#�� � & � � �  (6.3)

where � �  � �  �   � "  � % , and � & are the areas of the faces common for the õ -th cell
and respective surrounding cells. If õ -th cell intersects with the boundary surface,

� � is
the flux out of the boundary area ��� (see Fig. 6.1), otherwise

� ��ý)( . If �*� lies on the
solar surface, the representative field is directly taken from the surface boundary data.
The flux through the outer spherical boundary is assumed to be unknown and, therefore,
we do not include the flux through the cells cut by the outer boundary in the sum (6.2),
but the magnetic field vectors defined at these cells are used to define the fluxes through
the other cells. This makes the problem more ill-posed. For late practical calculations,
especially when the outer boundary sphere exceeds

�,+�-
, the field on the outer sphere

could be constrained to be radial. So, by defining the fluxes in this manner, we can write
the regularization term in the matrix form (3.14).

In the simulations showed below it was used a rectangular grid of ./(102.3(102.3( cells.

6.3 Discretization of the line-of-sight integration

Although every image pixel has a finite size, we approximate them by a point at the
center of the physical pixel. So, the LOS volume from which the emission is projected
onto the pixel is approximated by a line. This approximation is commonly used in many
tomographic applications (Natterer 1986). It does not cause a big error in the case when
the pixel size in the image is less than the cell size chosen for the grid. The distribution
of the pixels in one image is set to be uniform with coordinates (figure 3.1):465 ý�� + out �87 4:9 � � ÷ õ;�=<Rø�ó 7 4 >?5 ý@� + out �87 >A9 � � ÷CB �D<Rø�ó 7 >  (6.4)
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6.4 Magnetic field configuration for the test calculations

where E and F are integer numbers, GIH and G�J are the cell sizes in H and J directions,
respectively, and KMLNPO H�LQSR JTLQ O K�Lout.

The observations are assumed to be made from the Earth at a time when the Sun’s
rotation axis is perpendicular to the view direction ( U�V�WYX/Z in the Fig. 3.1), and due to
the smallness of the variation of U during one solar rotation, we assume that the angle is
constant during one solar rotation. The angle [ varies in the simulations from 0 to \/],^A_
in steps of `a^ _ .

The minimizing function in the case of the longitudinal Zeeman effect data can be
written in the matrix form (see eq. (3.12) and (3.14)) as follows:b Vdcfe b tomo R b reg Vgc'eih jkeml)npo8h L R hrqkeal)nts2h L;u (6.5)

We have placed the regularization parameter at the tomographic term
b

tomo but not at
the regularization term. This only affects the value of the resulting function

b
but not

it’s behavior. The matrices here have a similar meaning as in (3.12) and (3.14). The
components v�wyx{zT| ( }~V�ZT��`/�{^ ) of the column-vector l contains the components of the
vector � in the F -cell, and J�� is the data value for the E -th ray, where the index E�V@`/� uCu�u ���
counts the view angles, [ and U , and the pixel position ��H Q ��J Q�� . The matrix element �6��� wyx�zT|
represents the projection of the volume element F along the LOS related to the pixel E ,
multiplied with some distance depended coefficient }��y� � and with the components of the
unit vector along the LOS. The coefficient }���� � is assumed to be constant within a cell.
In the case of Faraday-effect data, the coefficient }��y� � is the electron density. In the case
of Zeeman-effect data, the coefficient }���� � is defined from the magnetograph formula
(5.64), when the alignment factor, �;L� (5.56), is set to zero. The radial dependence of}��y� � in this case does not principally differ from the radial dependence of the electron
density. ”Principally” means that their power exponents do not differ by more than one
unit. Therefore, to show the possibility of the reconstruction method we assumed that the
radial dependence of the coefficient }*��� � is the same like for the electron density defined
in (5.92). Here, we assumed that the alignment factor is set to zero. Otherwise, the
minimizing function cannot be expressed in the linear form (6.5), but must be derived by
using the general form (5.64) of the magnetograph formula.

The number of the projections was set to 36, and they were equispaced in the all range
of angles from ^ to Z�W .

6.4 Magnetic field configuration for the test calculations
The model field configuration is a dipole, with the dipole axis being inclined in the H - �
plane by `a^ _ with respect to the Sun’s rotation axis ( � -axis). We added to the main dipole
field a perturbation which is induced by a circular current in the H - � -plane with radiusK N X/Z and center situated in the point ��K N X/Z��{^A��^ � (see Fig. A.2). This perturbation adds
a non-potential component to the test field which cannot be reconstructed by extrapola-
tion methods from the surface data. The perturbation also modifies the axially symmetric
unperturbed model to be a non-axially-symmetric model. The reconstruction of this per-
turbation with tomography data therefore represents a critical test of our method.

In the calculations below, we used arbitrary units for � . At the point ��` u�� K N �{^��{^ �
close to the perturbing current, the field strength of the main dipole component in the
arbitrary units is \ u�� , while the strength of the perturbing field component at this point,
one cell spacing away from the perturbing current, is Z u � .
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6 Test simulations

6.5 Reconstruction based on the Zeeman-effect data

From the model test field configuration the model data were calculated by a simple for-
ward step. Random noise was added to the tomography data and surface magnetic field
data at the photosphere (inner boundary condition) by multiplying the exact data and
boundary conditions by ¡£¢¥¤§¦�¨ , where ¦ is a uniformly distributed random number in the
range ¡£©«ª n ¬ ¤�ª n ¨ . The simulations were done with a noise level ª n d®A¯�®3° , i.e. 5%.

To minimize the function (6.5), the conjugate gradient method was used. The potential
field reconstruction described in the section A.1 was used as initial field configuration for
the iterations (Fig. A.3). The list of performed test reconstructions is shown in Table
A.2. In the further discussions, we will use the notations in this table for the performed
reconstructions.

Due to the very strong radial dependence of the electron density, the signal in a ray
which passes the Sun at a greater distance is much less than for closer rays. Therefore, the
contribution from these distant rays to the minimizing function is small. To increase the
contribution of signals from distant rays, and to stabilize their numerical reconstruction,
the data of pixel ¡�±T² ¬�³ ²�¨ was weighted with a function´¶µ�· ¡y¸�²�¨  ¸�¹²º:» ¡y¸�²�¨T¼ (6.6)

where ¸�² �½ ±�¾² ¤ ³ ¾² .
During the minimization procedure, two questions arose: How to choose the value

of the regularization parameter ¿ , and What is the optimal number of iterations. These
problems may be solved by using the L-curve method (Section 2.4). The Fig. 6.2 shows
the evolution of the logarithm of the data error, À tomo, versus the logarithm of the regular-
ization term, À reg, during the iterations for different values of ¿ . A critical value for À tomo

is the data noise level Á tomo, which in this example was calculated asÁ tomo ÃÂ ÄÆÅ © ÄfÇiÂ ¾ ¼ (6.7)

where ÄÆÅ and ÄfÇ are the tomography data with and without noise, respectively. In Fig.
6.2, ÈÊÉËÁ tomo is shown as a horizontal dashed line. The difference in the (6.7) is just random
noise with known distribution function which is added to the noiseless data ÄÌÇ . For real
problems, ÄfÇ is not known, and Á tomo may be estimated from the instrument noise level.
In the diagram È�É¶À tomo versus ÈÊÉ¶À reg, the iterations asymptotically converge to the L-
curve. Fig. 6.4 shows that the solutions obtained after 5000 iterations lie very close to the
L-curve. The corner of the L-curve however lies much below the data noise level Á tomo.
In this case the value of ¿ found from the L-curve is not optimal (Hansen 1993; Hanke
1996).

All evolution lines in the Fig. 6.2 cross below the data noise level Á tomo. However,
when the error À tomo becomes smaller than Á tomo, we begin to fit our reconstruction to
the noise in the data. For ill-conditioned problems, this results in a strongly amplified
noise in the reconstruction model. We therefore stop the iteration when À tomo Í  Á tomo.
So, this criterion (Mozorov’s criterion) determines the number of iterations in our case to
be approximately 47 for values of ¿ in the range from ¢ ®AÎTÏ to ¢ ®,Ï . But the problem of
choosing of the optimal value of ¿ is still open.
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6.5 Reconstruction based on the Zeeman-effect data
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Figure 6.2: The evolution of the L-curve during the iterations for different values of Þ .
Colored lines correspond for the values of Þ listed in the insert. The number of iterations
which were done to plot the lines are pointed out in the brackets beside. Colored numbers
near the lines are the number of iterations which were done to reach the data noise levelÒ

tomo (red dashed horizontal line).

The iteration results for different Þ mainly differ in the final value of the regularization
term ß reg. A critical number for ß reg is the logarithm of the regularization term, ß reg à�áÆÛ�â ,
for the original field áfÛ . Theoretically, the value of ß reg àyáÆÛ�â must be zero. But due to
the noise in the boundary data, and the error in the model space due to discretization,
this value is greater than zero. Hence, ß reg à�áÆÛaâ is an estimate of the discretization error
and noise in the boundary magnetic field. Its value in our example is indicated by a blue
dashed vertical line in Fig. 6.2. The boundary noise level is denoted through

Ò:Ó
.

Unfortunately, for a real problem, á'Û is unknown and we can only roughly estimate
the discretization error in the regularization term by applying it to a potential field ap-
proximation á pot. The black vertical line in Fig. 6.2 corresponds to the logarithm of the
regularization term, ß reg àyá pot â , for the potential field approximation á pot which lacks the
current perturbation. Here

ÐÊÑ ß reg à�á pot âMã Ð�Ñ ß reg à�áÆÛ�â , because the relatively large field
in the perturbed area causes a larger discretization error (the value of the error depends on
the field-strength gradient).

Another way to estimate the lower value of the ß reg is the following. The elements of
the matrix äæå áfÛ (see eq. (6.5)) are the net flux through corresponding cells. The same
elements of the matrix ç for which the corresponding cells are not cut by the boundaries
are strictly zero. The elements for which the corresponding cells are cut by the boundaries
are calculated from the observed on the boundaries magnetic field. They usually are not
zero and under influence of noise.

It is possible to divide the regularization term into two parts: the first is calculated
by involving only the cells which are not cut by the spherical boundaries, ß (n)

reg , and the
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6 Test simulations
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Figure 6.3: The regularization term calculated separately for the cells which are cut (solid
lines) and not cut (long dashed lines) by the spherical boundaries. The short dashed
lines represent ê reg calculated for the uncut cells, but without considering the cells in the
perturbed area.

second involves only the cells which are cut by these boundaries, ê (b)
reg (the symbols ”n”

and ”b” are just notations here, not an exponents). The discretization error is mainly
introduced by the ê (n)

reg because the number of cells involved in the calculation of ê (n)
reg is

much higher than for ê (b)
reg . In the case of using a high-order interpolation in the calculation

of the regularization term the discretization error can be neglected, and even for the rough
linear interpolation used here this error is not significant. Although ê (n)

reg can be compatible
with ê (b)

reg due to the much larger amount of cells involved in the calculation of the ê (n)
reg ,

the error contribution from the noisy boundary data is higher in the presented example.
Fig. 6.3 shows the values of ê reg calculated separately for these two kinds of cells during
the iterations for several values of ë . Here we see that after 47 iterations ê (b)

reg ì èié
when ëîíðï�ñ�òaóTôTõ . Even if we take ë ì ò�ó�ôTõ , it would not be a big fit to the noise
in the boundary data. The choice of the value of ë depends on which regions must be
reconstructed better than others.

It should be noted that the regularization term represented by the condition ö÷ñ{ø ì ó
has a large null-space. Therefore, a field for which ê reg ì ó is not obligatory smooth.
The regularization term ê reg differs here from conventionally chosen regularization op-
erators (Section (2.4)), which are often proper smoothing operators. Let us introduce a
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6.5 Reconstruction based on the Zeeman-effect data
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Figure 6.4: The L-curve for the reconstruction based on the Zeeman-effect data with ù�ú
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smoothness operator asü
sm ý!þ ÿ�� � � � �����
	ÿ�� � � �� �
	ÿ������ � � ������� ���
	ÿ�� � � �� �
	ÿ�� � ����� ������� ����	ÿ�� � � ��� ��	ÿ�� � � ������������ ���
 ÿ�� � � � � �
 ÿ������ � � � ����� ���
 ÿ�� � � � � �
 ÿ�� � ����� � ����� ���� ÿ�� � � � � �� ÿ�� � � ����� ������ � �
!ÿ�� � � �� �
!ÿ"����� � � � � ��� � �
!ÿ�� � � �� �
!ÿ�� � ����� � � ��� � �#!ÿ�� � � �$� �#!ÿ�� � � ����� � �&%�' (6.8)

where

� 	ÿ�� � � � ' �  ÿ�� � � � ' � !ÿ�� � � � are the ( -, ) - and * -components of the magnetic field vector at
the cell with indexes + '�,-'/. which are counted along the ( -, ) - and * -axes, respectively.
The smoothness term was not involved in the inversion procedure, but it is useful to plot
the behavior of the logarithm of the data’s error versus the logarithm of the smoothness
term,

ü
sm, during the iterations for the different values of û (Fig. 6.5). Fig. 6.5 shows

that as the iteration proceeds and
ü

tomo decreases the magnetic field model involves more
and more structures and

ü
sm increases. The blue dashed vertical line there corresponds

to the value of the smoothness term for the original field
ü

sm 0214365 and can serve as a
reference of values for

ü
sm we should achieve with our solution. However, we also do

not want to smooth solutions for which
ü

sm is less than
ü

sm 0214365 , because we would loose
real features in the reconstruction. Fig. 6.5 shows that the values of û laying between7�8:9<;#= û = ù
> 7�8<9<; satisfy these criteria. For û =?7�8@9<;

we obtain results which show
more structures (larger

ü
sm) but also include more noise. The reconstruction for û ý 7�8&9<;

after 47 iterations is shown in Fig. A.4. We see that it is a better reconstruction than for
the potential field approximation, at least it is possible to see the perturbed region.

Similar to the analysis described above, we have performed an analysis with
ü

tomo

replaced by
üBA

tomo which includes the data error only for those rays that pass through
the region magnetically influenced by the current perturbation (perturbed region). In the
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6 Test simulations
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Figure 6.5: The behavior of the data’s error versus the smoothness during the iterations
for the different values of F . Colored lines correspond to the values of F listed in the
insert.
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following analyses, we restrict the analyzing part of the perturbed region by the planesL
MONBPRQ�S-T , U SWVXMZY\[ D^] N`_a2bdc and by the conditions Vfehg , PjiQlk Vmi�n U i�n#Loi k ] TdPRQ c i .
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6.6 Reconstruction based on the Hanle-effect data

The Fig. 6.6 shows the behavior of the logarithm of the p#qtomo versus the logarithm
of the regularization term, p reg, calculated for all the cells, during the iterations for the
different values of r . Analogously with the Fig. 6.2, we introduce the data noise levels qtomo for the rays passing through the perturbed region. Because the noise depends on the
magnitude of the data, the value of

s qtomo is not simply proportional to the number of rays
that passed through the chosen region. The value of the

s qtomo is marked by a red dashed
horizontal line in the Fig. 6.6. The boundary data noise level,

sut
, is not so critical here

because now we are interested mainly in the perturbed region. To reach the noise levels qtomo, it is nessecary to perform 105 iterations when rZvxw�yJz<{ . Figures A.5 shows the
reconstruction for r|v}w�y@z<{ after 99 iterations.

6.6 Reconstruction based on the Hanle-effect data

For the reconstruction based on the Hanle-effect measurements of the Stokes- ~ , - � and- �
components we minimize the function

p�v�p reg � r���p tomo � � r���p tomo � � r^��p tomo ��v�������������� � ������`� r��6��~ s� �����K��~ d� � � � r�� �2� s� �����K��� d� � � � r^�K��� s� �2���K�¡� d� � �\¢�£ (6.9)

Here, the matrix � and column-matrices � and � are the same as in (6.5), ~ d� , � d� and � d�
are the data of the ¤ -th ray for the Stokes- ~ , - � and - � components, respectively, and ~ s� ,� s� and � s� are the simulated Stokes- ~ , - � and - � components, respectively, for the ¤ -th
ray, i.e., ~ s� v ¥�

-th LOS ¦ �\§<¨�©ª� s� v ¥�
-th LOS ¦ ��§:¨�©«� s� v ¥�

-th LOS ¦ ��§:¨�© (6.10)

where ¦ � , ¦ � and ¦ � are the magnetic-field-dependent Stokes- ~ , - � and - � emission
coefficients, respectively, that were calculated by (5.71) for the w�y¬d®:¬ ˚

¯
line or by (5.86)

for the °o±oy-± ˚
¯

line.
Using the model field (Section 6.4) the test data were again calculated by a simple

forward step. Then random noise was added to the tomography data and to the surface
magnetic field data at the photosphere (inner boundary condition) by multiplying the test
data and boundary conditions with �²w �O³ � , where ³ is a uniformly distributed random
number in the range �²� ¦ n ´/� ¦ n � . The simulations were made, like for the Zeeman-effect
case, with a noise level ¦ n vµy £ y° , i.e. °B¶ .

To minimize the function (6.9), the conjugate gradient method was used again. Only
the Stokes- � and - � signals were used in the minimization procedure (i.e. r��·v¸y ),
and we set r��`v�r��¡v�r as their (Stokes- � and - � ) dimensions are the same. Again,
like for the Zeeman-effect case, the potential field approximation was used as initial field
configuration for the iterations.

Similar to the Zeeman-effect reconstruction procedure, to increase contribution of
signals from distant rays the data of pixel ��¹@º ´\» º�� was weighted with a function

¼¾½À¿ ��Á\º6�Âv Á �ºÃ�Ä ��Á\ºW� © (6.11)
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6 Test simulations
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tomo (red dashed horizontal line).

ÇmÈ
is

the boundary noise level in the regularization term.
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Figure 6.8: The histograms of the distribution of the difference vector magnitudes over
the whole volume for the reconstructions H1 (Hanle-effect data, Ê�ÏÑÐ�ÒÔÓ<Õ , 7 iterations,
solid bars) and Z1 (Zeeman-effect data, Ê�ÏÖÐ�Ò Ó<× , 47 iterations, dashed bars)
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6.7 Comparison of the Hanle- and Zeeman-effect solutions

where Ø\ÙRÚÜÛ ÝmÞÙàß�á ÞÙ , and â�ã is electron density.
The Fig. 6.7 shows the behavior of the logarithm of the data error, ä tomo, versus the

logarithm of the regularization term, ä reg, during the iterations for different values ofå . The horizontal dashed line is the data noise level æ tomo calculated analogously to the
case of the Zeeman-effect (eq.(6.7)), and æ b marks the boundary data noise level in the
regularization term. In order to obtain a tomography’s data error ä tomo ç æ tomo and a
regularization error ä reg ç æ b, like for the case of Zeeman-effect data, we chose å Úéè�ê&ë<ì
and stopped after 7 iterations (see Figs. A.6a,b,c for an overview of cross sections of
the reconstructed field). To quantify the reconstruction error we calculated for every cell
the magnitude of the difference vector between the reconstructed and the original model
magnetic field vectors. For an ideal solution, these vectors must approach zero as close as
possible. The histograms of the distribution of the magnitudes of the difference vectors
for the three reconstruction methods are shown in Fig. 6.8. The distribution has a peak
at the value of íïî rec ð î4ñ&í equal to ç êJòóêJè6ô . Only in a very few cases exceeds the
distance êJòöõ , while the magnitudes of model field vectors, í î�ñ&í , are distributed in the
region èø÷ùíïî4ñJí�÷úè�ûJòýü , with a maximum at ç èoòþô and average value of ÿÜûJòóû . So, the
reconstruction error is relatively small.

To find the iteration number when we will have a better reconstruction for the per-
turbed area alone, we calculate the data noise level æ��tomo only for the rays passing through
the perturbed region like in the previous section. The data error ä �tomo calculated only for
these rays reaches the level

��� æ �tomo after ç ô�� iterations. Trying to keep the regularization
term error the same like for the case of the Zeeman-effect data (i.e., near æ b), we have to
stop the minimization procedure after 20-th iteration (see Figs. A.7a,b,c for an overview
of cross sections of the reconstructed field).

6.7 Comparison of the Hanle- and Zeeman-effect solu-
tions

Here, we will compare the solutions H2 based on the Hanle-effect data (with å Ú è�ê ë<ì
and stopped after 20 iterations, Fig. A.7) and Z2 described in Section 6.5 (Zeeman-effect
data, å Ú è�ê@ë�� , 99 iterations). The histograms of the distribution of the magnitudes of
the difference vectors in the perturbed region for these solutions are shown in the Fig.
6.9. The distributions have their maxima at values of í î rec ð î4ñ&í equal to ç ê@ò�è for
the Hanle-effect reconstruction and ç ê@òöû for the Zeeman-effect reconstruction, and in
only a few cases this value is near or greater ü , while the magnitudes of the model field
vector, íïî4ñJí , in the perturbed region are distributed in the interval è
÷ íïî|ñ&í<÷�è�ûJòýü , with
maximum at ç è-ò
	 and average value of ÿ ûJò�� . Although, the bar near zero is for the
Hanle-effect solution higher than for the Zeeman-effect solution, but the bars being more
far from zero and ranging between the values è�÷}í î rec ð î4ñ&í���õ are higher than for the
Zeeman-effect solution. Therefore, it is difficult to say which solution is better.

The Zeeman effect is insensitive to the irrotational part of the vector field, and in the
present observing geometry when observation directions are all perpendicular to the ro-
tation axis is insensitive to the  -component of the field vectors. Therefore, one would
expect that a reconstruction based on Zeeman effect data gives worse result for these
field components. The histograms in the Fig. 6.10 illustrate this situation. The his-
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6 Test simulations
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Figure 6.9: The histograms of the distribution of the difference vector magnitudes over the
perturbed volume for the reconstructions H2 (Hanle-effect data, ����������� , 20 iterations,
solid bars) and Z2 (Zeeman-effect data, ��� ���!��" , 99 iterations, dashed bars).
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Figure 6.10: The histograms of the distribution of the errers of the meridional-plane com-
ponent of the field vectors over the perturbed volume for the reconstructions H2 (Hanle-
effect data, �-�.������� , 20 iterations, solid bars) and Z2 (Zeeman-effect data, �/�0������" ,
99 iterations, dashed bars).

tograms shows the distributions of the errors of the reconstructed field vector components,� � #&%(',)
rec � � #&%(',)� �

, laying in the meridional planes defined by the rotation axis and point
where field vector is looking for. Here,

�-#+%(',) ��132
465879 %;: 132�<65879 ' , where 132
465 and 132�<65
are the radial and meridional components of the magnetic field vector, respectively. The
79 % and 79 ' are the unit vectors defining the spherical coordinate system centered at the

given point in the corona, 79 % is co-directed with the radius vector, 79 '>= 79 % , the vectors
79 % , 79 ' and ?>@ lie in the same plane, and 79 'BA ?>@DCE� .

The Fig. 6.11a shows the histogram of the distribution of the errors of the azimutal
component 1F2�G*5 of the reconstructed field vectors. We see that for this component the
reconstruction based on the Zeeman-effect data gives better result than the one based on
the Hanle-effect data. This is again understandable because, with the present viewing
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6.7 Comparison of the Hanle- and Zeeman-effect solutions
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Figure 6.11: The histograms of the distributions of the errors of the azimutal componentsI J�K,M
of the field vectors (a) and the angle between the Y - Z -plane vector components of

the reconstructed and model fields (b) over the perturbed volume for the reconstructions
H2 (Hanle-effect data, [-\.]_^a`�b , 20 iterations, solid bars) and Z2 (Zeeman-effect data,
[c\d]�^ `�e , 99 iterations, dashed bars)

a b

Figure 6.12: The cross-sections at the f�\g^!h+]ji�kml of the model field (red vectors) and
reconstructed field (blue vectors). The reconstructions are Z2 based on the Zeeman-effect
data (a) and H2 based on the Hanle-effect data (b)

geometry, the problem of definition of the azimutal field component is more ill-posed for
the Hanle effect than for the Zeeman effect. Let us explain this in more detail. Only
the Y - and Z -components of the field vector contribute to the

I J�K*M
, and the Y - Z -plane

components of the field vectors give no contribution to the Stokes- n signal. For the
Y - Z -plane components we only have information about the angle o Q(R between LOS and
this vector component through the function prq�sutuo Q(R which introduces ambiguities, i.e.
we have 4 possible directions of the field vector, and therefore the Hanle effect cannot
distinguish a field vector directed along the LOS from one directed against the LOS,
while the Zeeman effect does (due to the v,wxpyo Q(R dependence). Moreover, the Hanle effect
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6 Test simulations

does not provide any information about the strength of the magnetic field.
Is it possible that the big error in the zF{L|,} component in the perturbed region is due

to the big error in the absolute value of the ~ - � -plane vector component but not due to
its direction in these planes? Fig. 6.11b shows histogram of distribution of the angles
between the ~ - � -plane vector component of the reconstructed and model fields. We see
that this is not the case.

Finally, the Fig. 6.12 qualitatively shows the difference between the reconstructions
and the original model field in the plane �����!�+�j���m� and around the perturbed region.

6.8 Reconstruction based on the Hanle-effect: Zeeman-
effect solution as initial field

Even though the Zeeman-effect data give a better reconstruction for the particular field
configuration than the Hanle-effect data, we want to explore in this section whether the
reconstruction based on the Zeeman-effect data can be improved if they are supplemented
by the Hanle-effect observations. For this purpose, we repeat the inversion calculations
for the Hanle-effect data as in Section 6.6, but this time we use the Zeeman-effect solution
Z1 (the solution with ����������� obtained after 47 iterations) as initial field configuration
in the iterations. All others parameters used in the iterations are the same as in section
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Figure 6.13: The evolution of the logarithm of the data error � tomo versus the logarithm
of the regularization term � reg during the iterations for different values of � and for the
reconstruction based on the Hanle-effect data. The Zeeman-effect solution Z1 was used
as initial field in the iterations. The colored curves correspond to the values of � listed in
the insert. The colored numbers near the lines are the number of iterations which were
needed to reach the data noise level

�
tomo (red dashed horizontal line).

�y�
is the boundary

noise level in the regularization term.
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6.8 Reconstruction based on the Hanle-effect: Zeeman-effect solution as initial field

6.6.
The Fig. 6.13 shows the behavior of the logarithm of the data error, � tomo, versus the

logarithm of the regularization term, � reg, during the iterations for different values of � .
The horizontal dashed line is the data noise level � tomo calculated analogously to the case
of the Zeeman-effect (equation (6.7)), and � b marks the boundary data noise level in the
regularization term. In order to obtain a tomography’s data error � tomo � � tomo and a
regularization error � reg � � b, like for the case of Zeeman-effect data, we had to use
�c�d������� and to stop after 5 iterations (ZH1).

The comparison of this solution with the related reconstruction Z1 based on the Zeeman-
effect data (obtained after 47 iterations with �c�d��� ��  and depicted in the Figs. A.4a,b,c)
is presented by the histogram in the Fig. 6.14a, and comparison with the related recon-
struction H1 based on the Hanle-effect data when the potential field approximation was
used as initial field (after 7 iterations, figures A.6a,b,c) is presented by the histogram in
the Fig. 6.14b. From the plots in the Fig. 6.14 it is difficult to say which of the two
Hanle-effect reconstructions is better: the one where Zeeman-effect solution was used as
initial condition or the other with potential field approximation as initial field. But, these
Hanle solutions represent mainly the main dipole field. For its reconstruction is sufficient
to apply the potential field approximation method.

As we are interested in the reconstruction of the non-potential part of the magnetic
field, we restrict here our comparison to the perturbed area. To find the iteration number
when we have the better reconstruction for the perturbed area, we again like in previous
sections calculate the data noise level ��¡tomo only for the rays passing through the perturbed
region. The data error �¢¡tomo calculated only for these rays reaches the level £�¤���¡tomo after
�¦¥ � iterations (ZH3). Trying to keep the regularization term error the same like for the
case of the Zeeman-effect data (i.e., near � b), we have to stop the minimization procedure
after 13-th iteration (ZH2-solution). The cross sections of § for this reconstruction are
shown in the Fig. A.9a,b,c.
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Figure 6.14: The histograms of the distribution of the difference vector magnitudes over
the all volume: (a) - for the reconstructions H1 (Hanle-effect data, ��� ������� , 5 iterations,
solid bars) and Z1 (Zeeman-effect data, ��.���!��  , 47 iterations, dashed bars); (b) - for
the reconstructions both based on the Hanle-effect data, but one is ZH1 (solid bars) and
other is H1 (dashed bars). For comparison, the minimal value of the magnitude of the
model field §�¬ is � � .
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6 Test simulations
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Figure 6.15: The histograms of the distribution of the difference vector magnitudes over
the perturbed volume. The solid bars on the both panels represent the Hanle-effect so-
lution ZH2 for which the Z1 solution (dashed bars on the panel (a)) was used as initial
field. The dashed bars on the panel (b) represent the Hanle-effect solution H2 whereby the
potential field approximation was used as initial condition. For comparison, the average
value of the magnitudes of the model field vectors

¯c±
in the perturbed region is ²´³!µ�¶ .

Figure 6.16: The cross sections in the ·¹¸»º!µ�¼�½�¾m¿ plane of the model field (red vectors),
reconstruction based on the Zeeman-effect (green vectors, Z2-solution), and reconstruc-
tion based on the Hanle-effect (black vectors, ZH2-solution).

¯>±ÁÀ
in the perturbed region for this solution is shown in the Fig. 6.15. There are also

shown the related histograms for the Zeeman-effect reconstruction Z2 giving the better
reconstruction of the perturbed area (with Âc¸d¼�º!Ã�Ä and stopped after 99 iterations, panel
a) and, in the panel b, for the Hanle-effect reconstruction H2 whereby the potential field
approximation was used as initial conditions ( Â�¸�¼_º Ã�Å , after 20 iterations, Sections 6.6
and 6.7). We see that the reconstruction procedure based on the Hanle-effect data and
applied after the Zeeman-effect solution gives a better approximation to the model field
than when the potential field approximation was used as initial field configuration in the
iterations.

66



7 Conclusion

The goal of the thesis was to investigate the possibility to use the observations of the lon-
gitudinal Zeeman effect and/or Hanle effect in coronal emission lines for a reconstruction
of the coronal magnetic field. The tomographic inversion problem which we had to solve
is considerably more difficult than the traditional scalar tomography inversion problems.

For example, from longitudinal Zeeman-effect data alone, even if we assume the sim-
plifying magnetograph formula to hold, we can only determine the solenoidal part of a
vector field Æ , which is a product of the magnetic field with a density and temperature
dependent weight function. The knowledge of the sources of Æ , or likewise the fact thatÇÉÈSÊÌËÎÍ

, does not completely cure the problem since a potential field contribution to Æ
still remains undetermined. The incorporation of

ÇÏÈxÊ ËÐÍ
in our inversion procedure

as a regularization constraint, however, remedies these two deficits of the Zeeman effect
data:

ÇgÈ�Ê
is forced to become zero inside our computational domain (at least within

the numerical precision of our code) and the calculation of
Ç�ÈÑÊ

at the domain boundary
allows to integrate photospheric magnetic field observations into the inversion in a natural
way. Since this photospheric field enforces a boundary condition on our magnetic field
solution, the unknown potential field contribution of the solution is uniquely specified.

The theoretical predictions whether an inversion of the Hanle-effect data would be
possible are less obvious. The Hanle-effect data of coronal long-lived line transitions
(resonance scattering) which we considered in this thesis give no information about the
magnitude of the field nor its unique direction. It only yields a weighted line-of-sight
integral of the orientation of the magnetic field. Obviously, it is the photospheric magnetic
field data included in our inversion code which decides about the magnitude and the sign
of the solution magnetic field.

From these considerations it is clear that a data set for the reconstruction of the coronal
field from coronal Hanle and longitudinal Zeeman effect data must be supplemented by
photospheric normal magnetic field observations to possibly give a unique reconstruction.
We note that the reconstruction of the coronal field from the photospheric data alone
requires to solve an extrapolation problem, which has its own difficulties and limits as
we briefly mentioned in the introduction. Hence a complete data set needed to achieve a
reconstruction of the coronal magnetic field with our method comprises:

Ò Spectropolarimetric Zeeman and/or polarimetric Hanle effect measurements above
the Sun’s limb for half a solar rotation, i.e., for about 14 days.

Ò A solar surface magnetogram of the vertical photospheric magnetic field component
for the entire surface of the Sun.

While solar surface magnetograms today are standard observational results and are readily
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7 Conclusion

available, the coronal Hanle effect and especially the coronal Zeeman effect observations
are still rare. The experimental effort is considerable and the Zeeman-effect observations
have only been successfully performed recently. Ideally, Hanle- and Zeeman-effect ob-
servations are made for the same line by a spectropolarimetric measurement of all four
Stokes components as in Lin et al.(2004) (see also Fig. 1.1).

The time cadence and the spatial resolution of the observations have great influence on
the spatial resolution of the reconstructed magnetic field solution. A precise relationship is
difficult to give but could be determined empirically with test calculations similar to those
presented here. We also have not addressed the problem of how a non-stationary coronal
magnetic field contaminates our solution which is obtained under the strict assumption of
stationarity.

In this thesis we demonstrated by means of test calculations that an inversion of the
coronal Hanle- and longitudinal Zeeman-effect data in the way proposed above is pos-
sible. We have developed a numerical tomography inversion code to perform the test
calculations. The code has been written in Fortran and parallelized with OpenMP (shared
memory parallelization). The code so far has been used with artificial data only but it is
ready for use of real data. Improvements with respect to computation time and memory
requirements need to be made for an efficient use. Also the numerical algorithm may be
accelerated if a more effective preconditioning scheme is implemented with the conjugate
gradient method employed for the minimization procedure. Most of the test calculations
presented in this thesis were performed for a corona discretized on a rectangular grid ofÓÕÔ×Ö3ÓÕÔ×Ö3ÓÕÔ

cells, the artificial observations were represented by 36 images from equally
spaced viewing angles and with a spatial pixel resolution matched to the resolution of
the coronal grid. An inversion of this resolution requires ØÚÙ�Û ÔÝÜcÞÕß�àSá,â of storage and a
computation time (on a single ãxä�Ù�å¢æ¢çéè UltraSPARC-IIIi processor) of about ãxä�ê â per it-
eration step if the Zeeman effect data is used. For Hanle-effect data the computation time
increases to Û minutes per iteration, because the inversion problem in this case becomes
nonlinear.

Using this inversion code, we have in this thesis only investigated a single model field
configuration. This model comprised a background solar dipole field with a north-south
orientated coronal current embedded. While the potential field component (essentially the
dipole field) can be reproduced from the photospheric surface observations alone by use of
Green’s theorem, the field perturbations due to the current loop are practically impossible
to be reconstructed by extrapolation methods. The main test of our calculations therefore
was to find out the quality with which this perturbation field was reproduced. As it was
emphasized in the introduction, this non-potential part of the coronal field is decisive for
a quantitative understanding of many coronal processes which are often driven by a loss
of stability of the coronal magnetic field configuration.

Good agreement between the model field and our field reconstruction were obtained
when we used artificial Zeeman effect data as input. Hanle effect data gave less satis-
factory results. We presume that the reason is the north-south geometry of the current
loop. The perturbation magnetic field of this current produces a much stronger response
in the longitudinal Zeeman than in the Hanle effect observations. This should be dif-
ferent for current loops with east-west orientation which should better be visible in the
Hanle-effect data. These latter loops should occur more often at lower height ( ë Ô ä�Ù�ì�í )
as active bipolar regions are mostly orientated in east-west direction and the dominant
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7 Conclusion

current should flow along the magnetic field lines. Older bipolar regions however are
tilted into the meridional direction by the differential rotation of the Sun’s surface. As an
example of a near-meridional loop, Fig. 7.1(a) shows an EIT image of a magnetic flux
closure across the equator between two active regions. The field which was used as a test
field (Fig. 7.1b,c) shows very similar deformations near the current loop. Note, however,
that our test field model is not force free. Also, at higher latitudes and higher altitudes
above the surface, coronograph observations suggest that streamer-type loop systems are
common which are also close to the test field model. The test simulations have shown
that:

î The tomographic inversion based on the data for the Hanle effect and(or) longitu-
dinal Zeeman effect, and on the constraint ï»ðÑñóò�ô , allows one to reconstruct the
non-potential component of the magnetic field, while a traditional potential field
approximation reconstructs only the potential field component.

î The tomographic inversions based on the Hanle effect and longitudinal Zeeman
effect, have different precision for the different vector components of the field, de-
pending on the configuration of the reconstructing field. Particularly, for the case of
observation of a vortex-like field situated in the plane perpendicular to the rotation
axis, the vortex is hardly seen in the reconstruction based on the Hanle effect, while
the reconstruction based on the Zeeman effect gives satisfactory result for this field.
The inversion based on the Hanle effect gives more precise result for the meridional
component of the magnetic field than an inversion based on the Zeeman effect.
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(a)
õ

ö

(b)

õ

÷
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Figure 7.1: An EUV image made by the EIT instrument on board the SOHO spacecraft
(a). The image was taken at the emission line of ø�ù XII at úüû ýjþaý ˚ÿ . It shows a magnetic
flux closure across the equator between two active regions (inside red box), and field lines
of the test model (lover pictures). Panel (b) shows the view from the ÷ û���� direction,
and (c) shows the view from the ö û���� direction. The most perturbed field lines are
marked by blue and green colors. The perturbing current loop is shown by the red curve.
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Outlook

The results produced by the code developed in this thesis demonstrated that it is in prin-
ciple possible to reconstruct the coronal magnetic field from coronal Hanle-effect and/or
Zeeman-effect data. The present study is to our knowledge the first investigation which
uses tomographic inversion techniques for this task. However, this thesis can only be a
first step and several questions remain to be answered and further improvements should
be made:� As mentioned above, different and more realistic coronal magnetic field config-

urations, e.g., the field above active regions or more realistic streamer-type field
structures should be studied to find out which details of the field can or cannot be
reconstructed and how much the Hanle effect or longitudinal Zeeman effect obser-
vations contribute to the respective solutions. It would also be interesting to find
out how much is gained if both observations were available.� A common problem when inversion codes are applied to real data is the influence
of the instrument noise on the solution. With the code we have developed, we can
study with test calculations systematically how much noise is tolerable to achieve a
certain precision of the solution. The signal-to-noise ratio that we obtain by these
means can then be used to determine the integration time for the coronal Hanle and
Zeeman effect observations. Since the integration time is about an hour for typical
observations of this kind, this information could be highly relevant.� Another topic that should be investigated is the influence of data gaps on the in-
version result. Since the Hanle and Zeeman effect observations are made from the
ground, missing viewing directions may well occur during the 14-day observing
sequence. Gaps in the data obviously reduce the quality of the inversion result but
is not obvious how sensitively the result is affected by them.� Observations of the Faraday rotation of the linearly polarized radio signals traveling
through the corona give information very similar to the longitudinal Zeeman effect.
However, the data is obtained at a given time only along a single line of sight rather
than on a whole set of lines of sight corresponding to the pixels of an image. It
would be interesting to study how useful these sparse measurements are for the
reconstruction of the coronal field. A one of the examples for coronal Faraday-
rotation observations are the measurements of Jensen et al. (2005), who used the
radio signal of the Cassini spacecraft during its passage behind the Sun as the radio
source.

71



7 Conclusion

� In the code used in this thesis we neglected the alignment factor (see eq. (5.56)).
As discussed in Section 5.12, a finite alignment factor will modify the numerical
expressions for the inversion of the longitudinal Zeeman-effect data by about 	�
�
or less. For a quantitative application of our code to real data, a calculation of the
alignment factor should be included.� The inversion procedure presented here could be looked at as a first step towards
a systematic line-of-sight inversion of all four Stokes components which would
then yield not only the magnetic field but also the coronal density (mainly from the
Stokes- � component)

For many issues on this list, the inversion code developed here can be used to find an
empirical answer.
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A Appendix

A.1 Potential field approximation

The potential field approximation is often used to reconstruct the magnetic field in the
solar corona on the basis of measurements of the magnetic field at the photospheric level.
The assumption for this model is that there are no electric currents above the photosphere,
i.e., ��������� � (A.1)

In this case the magnetic field can be written as the gradient of a scalar potential � ,��������� � � (A.2)

Since
��� ���!�

, we need to solve Laplace equation�#" � �$� � (A.3)

Gauss (1839) showed that having the radial component of the magnetic field, %�& , on the
photosphere is a sufficient boundary condition, and the expansion of the potential � in
spherical harmonics, ')(+* , gives a complete solution:

�-,/. 0213054)6 � 78 (:9<;
(8*=9)>?(

@BA (C*D. (�E %F(C*D. >HG:(JI)KMLMN � 'O(C*P,M1?054Q650 (A.4)

with the spherical harmonics expressed through the associated Legendre polynomials,R *( ,TSVU�WO1X6 , by the equation

'Y(+*P,M13024Q6 � Z\[ E!]^�_ , [ �a` 65b, [ E ` 6cb R *( ,TSdUXWO1X6 ei *fe (A.5)

The coefficients
A (+* and %P(+* must be calculated from the boundary conditions. If we

suppose g � gh,/.�i jk6 �!�
(no magnetic field sources above the photosphere), thenA (+* �$� 0 (A.6)

%F(C* ���ml (+*D. (JI ";[ En] 0 (A.7)

where l (C* �po "rq
; o q

; , � ] 6 * 'O(hst>u*F,T13054)6v%F&w,T.B;B0x13054)6yW{z}|~,M1�6v�u1��?4 � (A.8)

73



A Appendix

This model does not represent a real magnetic field configuration since observations
show that the coronal magnetic field is dominantly radial above approximately two solar
radii. To improve the situation, Schatten, Wilcox and Ness (1969) introduced a source
sphere at distance �\� from the solar surface where the magnetic field becomes radial. In
this case the coefficients ���+� and �P�C� for ����� are:

�F�C��� � �C������� ��� � �<� �� � ���T� � �<� �� � � � �<� �� �?� (A.9)

�P�C����� � �+�D� ��� �� � � �<� ��� � �<� �� � �v�/� � �<� �� � � � �<� �� �?� (A.10)

For ���$� the coefficient � ��� can be chosen arbitrary and

� ��� ��� � ��� � ��  ¡�¢ ��� (there is no magnetic monopole allowed) � (A.11)

There are several ways to find the radial component of the magnetic field vector at the
solar surface from magnetogram measurements (MDI). The magnetogram gives the LOS
component of the magnetic field at the photosphere. Suppose the magnetic field is con-
stant during solar rotation and on average radial at the photosphere. Then, by measuring
the LOS component of the field, � LOS, during the central meridian passage, one finds that

�F£¤� � LOS¥{¦¨§F© � (A.12)

where © is the latitude ( �«ª © ª ¢
).

In the second way, it is also assumed that the magnetic field is constant during a solar
rotation, but it has no radial structure. Let us consider a region at longitude ¬ with respect
to the central meridian, and latitude © (Fig. A.1). It is possible to measure � LOS for this
particular region for at several positions ¬  . So, we have a system of linear equations for
a single region: �F£ ¥{¦¨§®©=¯V°X¥ ¬  � �P± ¯V°�¥O©=¯V°X¥ ¬  ���P² ¥v¦}§ ¬  �!� LOS � (A.13)

where �P± and �P² are the latitudinal and longitudinal components of the field vector ³ ,
respectively. Then, if we suppose that the magnetic field is axisymmetric ( �´²k� � ),
and measuring LOS component, � LOS, during a central meridian passage ( ¬  �µ� ), the
values of the �P£ and �P± can be found from (A.13) by least-square fitting (for example, by
SVD-method). Here the inclination of the Sun’s pole was not taken into account.

A.2 Force-free field reconstruction

The force-free magnetic field approximation is valid when the electrical currents are par-
allel to the magnetic field. This occurs in the low corona where the plasma ¶ is small. A
force-free magnetic field must satisfy the equations:·¹¸ ³���� � (A.14)¡�¢»º �

·�¼
³��!½�³ � (A.15)
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Figure A.1: Definition of field components at the photospheric level.

where ¾ is current density, and ¿ is function of the spatial coordinates. Taking the diver-
gence of (A.15) and using (A.14) one obtainsÀ�Á Â ¿ÄÃ!ÅyÆ (A.16)

which shows that ¿ is constant along individual field lines.
Solution (A.14) and (A.15) require a magnetic field at the photospheric level as bound-

ary condition. The case of constant ¿ , the linear force-free model, has been widely inves-
tigated by plenty of authors (Nakagawa et al. 1971; Nakagawa & Raadu 1972; Seehafer
1978; Alissandrakis 1981; Chiu & Hilton 1977; Semel 1988).

However, the linear force-free model is still far from representing a real magnetic field
configuration. Observations show that ¿ is not constant even within a single active region
(Levine 1976; Krall et al. 1982; Schmahl et al. 1982; Gary 1987). Therefore the nonlinear
force-free model with non-constant ¿ is more realistic (Sakurai 1981; Cuperman et al.
1990; Wiegelmann 2004; Weatland 2004).

A.3 Michelson Doppler Imager (MDI)

The Michelson Doppler Imager (MDI) on SOHO makes images of the Sun on a CCD
camera with resolution of ÇBÅÉÈ\ÊÌË�ÇwÅXÈ\Ê pixels. The filter system of the instrument (front
window, the blocker, the Lyot and two wide-field tunable Michelson interferometers) al-
lows to make narrow-band ( Í�ÊÎÌÏ ) image near the ÐÒÑ I ÓÉÔ�ÓXÕ ˚Ï photospheric absorption
line. Images are obtained at five fixed wavelength equally separated by ÔXÖmÎ#Ï with in-
tensities ×VØ , × Ù , ×VÚ , ×VÛ and ×cÜ . ×VØ is near continuum, ×\Ù and ×dÜ is centered on the wings, and×dÚ and ×dÛ is centered near the core of the ÐÒÑ I line at the center of solar disk. The depth
of the ÐÒÑ I line is the continuum intensity minus the line-center one and compute from the
four images: × depth ÃÞÝ È<ßvßT×�Ùfàa×dÛcá Úfâ ß/×VÚ�àã×dÜdá Ú ácä (A.17)

The continuum intensity near the ÐFÑ I line is

× c Ã�È\×VØ â × depth å È â ßT× Ù â ×VÚ â ×dÛ â ×dÜcá å Ê<ä (A.18)
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The Doppler shift (velocity) is computed from a ratioæ/ç�è�é�çVê�ëãçdìDëãçcídî{ï<æ/ç�èfëaçVì2îcð
if numerator ñóò ðæ/ç�è~é�çdêDëãçdìDëaçcícî{ïyæTçdí�ëaçdê5îcð
if numerator ônò ð (A.19)

using results obtained from parameterized solar line profiles and the measured filter trans-
mission profiles (Scherrer et al. 1995).

The difference between the Doppler shifts taken separately in right and left circu-
larly polarized light is roughly proportional to the LOS-component of the magnetic field
averaged over the resolution element. This operation is made by inserting the polarizers.

A full-disk image has a plate scale of õ�ö ö per pixel and a resolution of ÷Xö ö . Also, MDI
produces a focused image of an øXø ö square field with higher resolution ( øXù:õXú ö ö ) and a plate
scale of òyùJûÉõXú ö ö per pixel.
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A.4 Spherical tensor ü for polarimetry of M1 transitions

A.4 Spherical tensor ý for polarimetry of magnetic dipole
transitions in reducible representation
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Table A.1: Expressions for the spherical tensor üA@B@DC �3E����F	

for lines corresponding to mag-
netic dipole transitions (Landi & Landolfi 2004). It should be noted that ü�@DCG@ ��E(���F	H�ü�@D@DC ��E��I�J	;K

.
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A.5 Wigner symbols

In this section, we give brief introduction into the Wigner 3-L , 6-L , and 9-L symbols and
describe some basic properties of them. More detailed describtion of the symbols and
theory connected with them can be found in Zare (1988), Varshalovich et al. (1989).

A.5.1 Wigner 3-M symbol

The Wigner 3-L symbol, N LPO LRQ LRST O T Q T SJUWV (A.20)

describes the coupling of two angular momenta in quantum mechanics. Here, LXO , LRQ , andLRS are the eigenvalues of the angular momentum operator, and T O , T Q , and T S are the
eigenvalues of their projections onto the quantization axis Y , respectively. The 3-L symbol
is related to the Clebsch-Gordan coefficients byN LPO LRQ LRST O T Q T SJU[Z]\�^`_ba7cDd�e�fgd�e Q c;h _i j LRS5k _Al c d(m f dc h7mon f h�m cDp mon f$p V (A.21)

and inverse relation

l c d(m f dc hBm f h�m cBp m f5p Z]\;^q_4a�c h�n cBpBe�f dPr j LRS5k _ N LPO LRQ LRST O T Q ^ T SsUut (A.22)

A Clebsch-Gordan coefficient, l cDd m fgdc h7m f h�m cBp m f$p , represents the probability amplitude that L�O
and LRQ with their projections T O and T Q are coupled into the resultant angular momentumLRS with the projection T S .

The coefficients in the 3-L symbol satisfy the follow selection rules:vwT O Zx^Fy LPO y V tzt t V y LPO y , T Q Zx^Jy LRQ y V tztzt V y LRQ y , and T S Z{^Jy LRS y V tzt t V y LRS y .vwT O9k T Q$k T S Z}| .v y LPO ^ LRQ y�~ LRS ~{\ LPO�kuLRQ a (triangular inequality).v LPO9k�LRQ$k�LRS is an integer.

If these conditions are not satisfied, then the 3-L symbol (A.20) is zero.
The 3-L symbols satisfy the orthogonality relations:�f h�m f$p

N LPO LRQ LRST O T Q T S U N LPO LRQ L��ST O T Q T � S U Z]\ j LRS5k _4a n O;� cDd�c;�d � f5d�f��d V (A.23)�c d(m f d \ j LRS$k _4a N LPO LRQ LRST O T Q T S�U N LPO LRQ LRST � O T � Q T S�U Z � f�h3f�� h � f p f��p t (A.24)

An even permutation of the columns leaves the numerical value of the 3-L symbol un-
changed,N LPO LRQ LRST O T Q T SJU Z N LRQ LRS LPOT Q T S T O
U Z N LRS LPO LRQT S T O T QJU V (A.25)
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A.5 Wigner symbols

while an odd permutation is equivalent to multiplication by ���`�4�B�;�����B�B���7� . The replace-
ment of the bottom row by the negative of all its arguments is also equivalent to multipli-
cation by ���`�4� � � ��� � ��� � .

The 3-� symbol can be calculated by� �P� �R� �R�� � � � � ���}� �;�q�4� ���B�P�B�;���g�I� � �P�7�R���R���2  ¢¡ � �P�9£ � ����¤)� �P�5� � �(��¤)� �R�5£ � ����¤��z�R��� � ����¤��z�R�$£ � ����¤)� �R��� � ����¤&  H¥&¦ ���`�b� ¦§ �©¨(��ª (A.26)

where the triangular coefficient, � , is� ��«X¬�%� � �7«.£w¬®�¯%��¤)�7«`�¯¬°£w%��¤)�;�#«¢£�¬$£w%��¤�7«.£w¬°£�°£[�b��¤ ª (A.27)

and § �©¨(� � ¨�¤)� �P��£u�R���±�R���²¨(��¤��z�P�$� � �5�²¨(��¤��z�R�°£ � �³�W¨(��¤D  .�z�R�®�´�R�5£ � ��£<¨(��¤��z�R���±�P�5� � �g£<¨(��¤ µ (A.28)

The sum in (A.26) is over all integers ¨ for which the factorials in
§ �©¨(� all have non-

negative arguments.

A.5.2 Wigner 6-¶ symbol

Three angular momenta ·�� , ·�� , and ·/� may be coupled to a resultant angular momentum· in three ways:

1. ·=�9£u·/� � ·���� , ·����g£u·1� � · ;

2. ·/�g£u·/� � ·���� , ·��9£u·���� � · ;

3. ·=�9£u·/� � ·���� , ·����g£u·1� � · .

The Wigner 6-� symbol, ¸ �P�¹�R�º�P����R� � �R���±» ª (A.29)

describes the coupling of three angular momenta and can be given through the Clebsch-
Gordan coefficients:¥ ¼ �;½ ��;� �;½ �³� �(½ �D�(½ �g� ¼ �;� �;½ �³� ��;�D½ ���B½ �D�;½ �$� ¼ ��¾z½ ��¾�;�B½ �³�B½ �B����½ �5��� ¼ �D���(½ �$����B�;½ �5�;½ �D�(½ �g� ��À¿ �D� ¾ ¿ ��� ¾ �;�q�4� �;�3���B�B���D����� ¡ �7Á��P���$£Â�4���7Á��R���5£[�4� ¸ �P�¹�R�º�P����R� � �R����» µ (A.30)

Here the sum is over � � , � � , � � , � ��� , and � ��� , while � and �HÃ are fixed. The symbol¿ is a Kronecker delta-symbol.
The coefficients in the 6-� symbol (A.29) are either integers or half-integers. Their

triads, � �P� ª �R� ª �P����� , �z�b��� ª �P� ª �X� , � �R� ª �R� ª �R����� , and �z����� ª �R� ª �X� , must satisfy the following con-
ditions:
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A AppendixÄ Each triad satisfies the triangular inequality.Ä The sum of the elements of each triad is an integer.

If these conditions are not satisfied, then the 6-Å symbol (A.29) is zero.
The 6-Å symbol is invariant under permutation of their columns and under interchange

of the upper and lower elements in any two columns.
The 6-Å symbol can be calculated using the Racah formula:ÆxÇ È ÉÊ Ë Ì]ÍWÎ}ÏÑÐ Ç�È�É�Ò ÏÑÐ Ç Ë4Ì Ò ÏÑÐ Ê È Ì Ò ÏÑÐ Ê�Ë É�Ò*ÓÓHÔ&Õ Ð�Ö`× Ò Õ Ð3Ø9Ù[× Ò�ÚÌ Ð3Ø Ò Û (A.31)

where Ï is a triangle coefficient (A.27), andÌ Ð3Ø Ò Î]Ð©Ø$Ö Ç Ö È Ö É�Ò�Ú Ð©Ø5Ö Ç Ö Ë Ö Ì Ò�Ú Ð3Ø5Ö Ê Ö È Ö Ì Ò�Ú Ð3ØgÖ Ê Ö Ë Ö É%Ò�Ú7ÓÓ Ð Ç Ù È Ù Ê Ù Ë ÖWØ Ò�Ú Ð È Ù É Ù Ë Ù Ì ÖuØ Ò�Ú Ð Ç Ù É Ù Ê Ù Ì Ö²Ø Ò�ÚzÜ (A.32)

The sum in (A.31) is over all integers Ø for which the factorials in
Ì Ð©Ø Ò all have non-

negative arguments.

A.5.3 Wigner 9-Ý symbol

Four angular momenta, Þ�ß , Þ�à , Þ/á , Þ�â , can be coupled to give a resultant angular momen-
tum Þ in the ways:

1. Þ=ß Ù Þ/à Î Þ�ß�à , Þ/á Ù Þ&â Î Þ�áBâ , Þ=ß�à Ù Þ�áBâ Î Þ ;

2. Þ=ß Ù Þ/á Î Þ�ß�á , Þ/à Ù Þ&â Î Þ�àBâ , Þ=ß�á Ù Þ�àBâ Î Þ ;

3. Þ=ß Ù Þ�â Î Þ�ß3â , Þ/à Ù Þ�á Î Þ�à�á , Þ=ß3â Ù Þ�à�á Î Þ .

The Wigner 9-Å symbol, ãäæå ÅPß ÅRá ÅPß�áÅRà Å�â ÅRàBâÅPß�àçÅRáBâ Å èæéê Û (A.33)

is associated with the coefficients of unitary transformations which connect state vectors
corresponding to different coupling schemes of four angular momenta, and can be defined
through the 3-Å symbols: ãäæå ÅPß ÅRá ÅPß�áÅRà Å�â ÅRàBâÅPß�àºÅRáBâ Å èæéê ÎÎ Ô

All ë>ì ÅPß ÅRá ÅPß�áí ß í á í ß�ásî ì ÅRà Å�â ÅRàBâí à í â í àBâsî ì ÅPß�à ÅRáBâ Åí ß�à í áBâ í î ÓÓ ì ÅPß ÅRà ÅPß�àí ß í à í ß�à�î ì ÅRá Å�â ÅRáBâí á í â í áBâïî ì ÅPß�á ÅRàBâ Åí ß�á í àBâ í î Û (A.34)
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A.5 Wigner symbols

where symbols ðHñ are the eigenvalues of the projections on the ò -axis of the related an-
gular momenta ó�ñ .

The 9-ô symbol is invariant under an even permutation of rows or columns but is
multiplied by õ�ö`÷4øIù ú;û7ü�úBýBü�úDþBü�úDÿ�ü�ú;û ýBü�ú�ûzþ�ü�úBý�ÿ�ü�úDþ©ÿ�ü�ú�� , under an odd permutation of rows or
columns, and under transposing operation.
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A.6 List of analyzed reconstructions

Notation Type of reconstruction Regularization
parameter, �

Number of
iterations

Z1
Reconstruction based on the Zeeman-effect data
and optimized for the whole corona. The poten-
tial field approximation is used as an initial con-
dition.

�����	� 
��

Z2
Reconstruction based on the Zeeman-effect data
and optimized for the perturbed region only. The
potential field approximation is used as initial
condition.

�����	� ��

H1
Reconstruction based on the Hanle-effect data
and optimized for the whole corona. The poten-
tial field approximation is used as initial condi-
tion.

�����	� �

H2
Reconstruction based on the Hanle-effect data
and optimized for the perturbed region only. The
potential field approximation is used as initial
condition.

�����	� ���

H3
Reconstruction based on the Hanle-effect data
and optimized for the perturbed region only. The
potential field approximation is used as initial
condition.

��� �	� � �

ZH1
Reconstruction based on the Hanle-effect data
and optimized for the whole corona. The Z1-
solution is used as initial condition.

��� �	� �

ZH2
Reconstruction based on the Hanle-effect data
and optimized for the perturbed region only. The
Z1-solution is used as initial condition.

��� �	� ���

ZH3
Reconstruction based on the Hanle-effect data
and optimized for the perturbed region only. The
Z1-solution is used as initial condition.

�����	� ��

Table A.2: Notations for the performed reconstructions
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A.7 Cross sections of the reconstructed field

A.7 Cross sections of the reconstructed field

�

�

Figure A.2: (a) The model field configuration: the cross section defined by the ������������� "! plane. The red circle represents the projection of the perturbing circular current
on the section plane. It should be noted that the current lies in the plane �#� � . The green
horizontal lines bound the analyzed perturbed region.
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Figure A.2: (b) The model field configuration: the cross section defined by the &(')*,++�-/.
plane. The green box bounds the analyzed perturbed region.
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A.7 Cross sections of the reconstructed field

0

1

Figure A.2: The model field configuration: the cross section defined by the 24365�798;:�<>=
plane. The two green lines bound the analyzed perturbed region.
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Figure A.3: (a) The potential field reconstruction: the cross section defined by theACB6D/EGF,E�HJI"K plane.
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L
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Figure A.3: (b) The potential field reconstruction: the cross section defined by theNPORQS,TT�U"V plane.
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W

X

Figure A.3: The potential field reconstruction: the cross section defined by the YRZ[�\9];^�_/`
plane.
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A.7 Cross sections of the reconstructed field

a

b

Figure A.4: (a) The Zeeman-effect reconstruction for ced f�gih	j after 47 iteration
(Z1): the cross section defined by the k#dRl�g�m�g�n�oqp plane.
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s

Figure A.4: (b) The Zeeman-effect reconstruction for teu v�wix	y after 47 iteration
(Z1): the cross section defined by the z{u6v|,}}�~�� plane.
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A.7 Cross sections of the reconstructed field

�

�

Figure A.4: (c) The Zeeman-effect reconstruction for �������i�	� after 47 iteration (Z1):
the cross section defined by the �C���G���;�J�q� plane.
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Figure A.5: (a) The Zeeman-effect reconstruction for �e� ���i�	� after 99 iteration
(Z2): the cross section defined by the �#�R�����������q  plane.
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A.7 Cross sections of the reconstructed field

¡

¢

Figure A.5: (b) The Zeeman-effect reconstruction for £e¤ ¥�¦i§	¨ after 99 iteration
(Z2): the cross section defined by the ©{¤6¥ª,««�¬� plane.
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®

¯

Figure A.5: (c) The Zeeman-effect reconstruction for °�±�²�³i´	µ after 99 iteration (Z2):
the cross section defined by the ¶C±�³G·�²;¸J¹qº plane.
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A.7 Cross sections of the reconstructed field

»

¼

Figure A.6: (c) The Hanle-effect reconstruction for ½¿¾ÁÀ�ÂiÃ	Ä after 7 iteration (H1): the
cross section defined by the Å#¾RÆ�Â�Ç�Â�È�É�Ê plane.
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Ë

Ì

Figure A.6: (b) The Hanle-effect reconstruction for Í¿ÎÐÏ�Ñ�Ò	Ó after 7 iteration (H1):
the cross section defined by the ÔÕÎRÏÖ,××�Ø�Ù plane.
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A.7 Cross sections of the reconstructed field

Ú

Û

Figure A.6: (c) The Hanle-effect reconstruction for ÜÞÝàß�áiâ	ã after 7 iteration (H1):
the cross section defined by the äCÝ�áGå�ß;æJçqè plane.
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é

ê

Figure A.7: (a) The Hanle-effect reconstruction for ëíìïî�ðiñ	ò after 20 iteration (H2):
the cross section defined by the ó#ì6ô�ð�õ,ðö�÷qø plane.
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A.7 Cross sections of the reconstructed field

ù

ú

Figure A.7: (b) The Hanle-effect reconstruction for ûíüïý�þiÿ�� after 20 iteration (H2):
the cross section defined by the �ÕüRý�� �����	� plane.
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�

Figure A.7: (c) The Hanle-effect reconstruction for ���������� after 20 iteration (H2): the
cross section defined by the ������������! plane.
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A.7 Cross sections of the reconstructed field

"

#

Figure A.8: (a) The Hanle-effect reconstruction for $&%('*)�+�, after 59 iteration (H3):
the cross section defined by the -.%0/1)324)�5�6!7 plane.
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Figure A.8: (b) The Hanle-effect reconstruction for :&;(<*=�>�? after 59 iteration (H3):
the cross section defined by the @A;B<�C4D�D�E	F plane.
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G

H

Figure A.8: (c) The Hanle-effect reconstruction for I�J�K�L�M�N after 59 iteration (H3): the
cross section defined by the O�J�L�P�K�Q�R!S plane.
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T
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Figure A.9: (a) The Hanle-effect reconstruction for VXW Y*Z3[�\ after 13 iterations
(ZH2). Here the Zeeman-effect solution Z1 depicted in the Figs. A.4 was used as initial
field in the iterations. It is shown the cross section defined by the ].WB^1Z3_`Zba�ced plane.
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f
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Figure A.9: (b) The Hanle-effect reconstruction for hXi j*k3l�m after 13 iterations
(ZH2). Here the Zeeman-effect solution Z1 depicted in the Figs. A.4 was used as initial
field in the iterations. It is shown the cross section defined by the noiBj�prq�q�sut plane.
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v

w

Figure A.9: (c) The Hanle-effect reconstruction for xzyX{*|�}�~ after 13 iterations (ZH2).
Here the Zeeman-effect solution Z1 depicted in the Figs. A.4 was used as initial field in
the iterations. It is shown the cross section defined by the ��y�|3��{����e� plane.
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