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Abstract

The dynamo mechanism to generate magnetic fields of celestial bodies, including the
Earth, by conversion of kinetic into magnetic energy is on the way to be understood. Sev-
eral numerical simulations have shown the dynamo mechanism successfully. In recent
years dynamo mechanism could be brought down to the laboratory level, on which self-
sustained magnetic fields have been observed (fed by the kinetic energy of the fluid, as
predicted in the theory). One of these successful laboratory experiments has been per-
formed at Karlsruhe, Germany.
Even though the magnetic field is self-sustained in the experiment, certain magnetic field
oscillations around its mean value during saturation are still to be interpreted.
Simulations of the dynamo effect require the simultaneous integration of the Navier-
Stokes equation and of the induction equation of electrodynamics. We develop a hybrid
method in which the Navier-Stokes equation is solved with a Lattice-Boltzmann method
and the induction equation is treated with a spectral method.
Later, this hybrid code is used to simulate the Karlsruhe Dynamo experiment and in this
thesis we suggest a possible cause of the afore mentioned magnetic field oscillations.
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1 Introduction

Since their availability high performance computers have opened up a new branch of
science, with a particularly strong impact on physics. Until recently physics has divided
itself happily into theoretical physics and experimental physics. Theoretical physics con-
cerns itself with analytical solutions, expressing physical problems in terms of equations
and solving it analytically. Analytical solutions, obviously, are not free from limitations.
Complex equations, in the main, defy being solved analytically. Hence to solve them one
needs to go through many approximations, and often neglects, in the process, quite a num-
ber of real-life situations. There may exist problems, which have no analytical solution at
all. The second branch of physics, experimental physics in some difficult situation needs
very accurate laboratory conditions to gain success. No wonder that some experiments
turn out to be thwartingly expensive.

In the context of the advantages and disadvantages of these two branches of physics
numerical simulation has given a remarkably welcome thrust to the subject. Categorized
between theory and experiment, numerical simulation plays its role in overcoming the
difficulties in both fields.

In numerical simulation one starts with complex equations which are solved with
the aid of computers. Now that one is not called upon any longer to approximate these
equations, all the real life parameters are conserved. Discrete algorithms for the equations
must be provided , and then only the computer, comfortably reaches the solution, going
step by step.

Since 1960 computer simulation is in progress. As time marches on and computers
develop, computer simulation is becoming dominant almost in all branches of science.
In recent years improved technology has given us good competent computers with the
result that the demand for computer simulation is rising higher and higher. Nowadays
even laboratory experiments are concurrently simulated numerically. Simulations of this
kind, no doubt, come in useful to bring the experiments to perfection. Besides, many
side-effects, because of cost effectiveness or inconvenience, are not possibly sighted dur-
ing the experimental work. They can be easily and closely studied, however, with the help
of numerical simulations. Moreover, the great advantage is reaped in that the simulation
yields a trustworthy result because one is in a position to make a comparison between
the experimental and the simulation result. Numerical simulation, thus, bridges the gap
between theoretical physics and experimental physics.

This thesis targets on a laboratory experiment known as Karlsruhe Dynamo Experi-
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1 Introduction

ment and its numerical simulation. The Karlsruhe Dynamo Experiment, though a success
already, has some effects which were difficult to understand. But now they can be studied
numerically. Even before setting up the experiment, numerical simulations helped to op-
timize various parameters.

1.1 A Short Review of Dynamos

Magnetism was already known during the time of Aristotle (384-322 BC). The Chinese
are said to have built the first compass in the form of a loadstone spoon probably in the
first century BC. It was Gilbert (1600) who concluded from his experiment that the ter-
restrial globe is a magnet. Since then it was a matter of question about what could be
the origin of terrestrial magnetism. There were several theories to explain it. Meanwhile
the solar magnetic field was discovered during the beginning of the last century. But till
about 1950 there was no convincing theory which could explain the generation of this
field. Any convincing theory had to explain not only the origin of the solar or terrestrial
magnetic fields but also their dynamic behavior. Lamor (1919) was the first to suggest
that motions in conducting fluids in the interior of the Sun could give an explanation for
the observed magnetic field. He thus claimed the conversion of mechanical into elec-
tromagnetic energy as the basic mechanism for the solar magnetic field as in technical
dynamos. Later on this process became known as dynamo process. Elsasser (1946) and
Bullard (1949) among others were the first to investigate whether magnetic fields can be
generated by the fluid motion within the Earth. Around the same time Frankel (1945),
Gurevich and Lebedinskij (1945) had the idea that convective motions were responsible
for the existence of the magnetic fields of the Earth and in sunspots. Parker (1955) in his
famous paper first showed a generating mechanism of the magnetic field out of turbulence.

Celestial bodies which show magnetic field evolutions in time undergo the process of
convection. As an example, the Earth has a solid, hot (about 6000◦K) inner core (made of
nickel-iron alloy); above it lies a comparatively colder outer core (containing also a small
portion of lighter elements like sulphur). There may be a convection process going on in
the liquid outer core because it is heated from below by the solid inner core. There may
exist another kind of convection as well: Pure iron of the liquid core solidifies at the bot-
tom while the lighter constituents of the alloy are rejected, forming a buoyant alloy layer
richer in the lighter constituents, which give rise to compositional convection. Without
any rotation this would cause regular convection cells. However, under the influence of
the rapid rotational motion, the buoyant convection develops a columnar pattern with axes
parallel to the axis of rotation as in figure (1.1). Due to convection and rotation the net flow
is somewhat helical inside the above mentioned columnar pattern (Busse,1971,1977).

The Earth, stars and other celestial bodies which show dynamic magnetic fields should
go through the basic process named convection. In case of Sun-like stars there is an enor-
mous source of heat from inside, which drives the convection in the outer layer. Whether
it is the Sun or Earth, the convective fluid inside has to be sufficient electrically conduc-
tive to allow electric currents to flow. In magnetohydrodynamics there is a well-known
theory named after Alfvén, which says magnetic field lines move along with the attached
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1.1 A Short Review of Dynamos

Figure 1.1: Convection cells inside the planet Earth

conducting fluid or magnetic field lines are dragged along with the moving fluid. This
well-known theory is called Alfvéns frozen-in field. Following this and due to convec-
tive motion of the conducting fluid the magnetic field lines which are attached with it, get
stretched and twisted. Provided that the Earths magnetic field is generated and maintained
by a dynamo process, then the Alfv́en mechanism is essential for its realization.

Zeldovich Effect

Probably it will be worth mentioning here about Zeldovich’s idea of stretch-twist-fold
(STF) dynamos, (Vanishtein & Zeldovich; 1972; Zeldovich, Ruzmaikin & Sokoloff;
1983). Here an initial flux tube containing magnetic flux φ0 and energy E0 is first consid-
ered as in figure (1.2) . This flux tube is then stretched out, thus quadrupling the magnetic
energy. It is, again, twisted and folded, to give a doubled tube shape. This has the en-
ergy 4E0, and through a cross section of the doubled-up tube the flux is now 2φ0. If the
process is similarly repeated, then, after n reiterations, the energy will be 22nE0 and the
total flux through a cross section of the bundle of 2n tubes will be 2nφ0. Hence it is clear
that the growth rate is log2. This idea shows that STF can play a role for the evolution of
magnetic fields. In case of homogeneous dynamos, this STF dynamo is realized by the
fluid in motion.

The dynamical behavior of Earth’s magnetic field, which is dipole-dominated, has ap-
parently (from paleomagnetic data) reversed its polarity at irregular intervals between
10,000-100,000 years. Only in the last decade, numerical dynamo models, simulating
40,000 years in 2000 hrs of CPU time, have been able to reproduce reversal of the field
(Glatzmaier and Roberts 1995 a,b). Presently there are numerous geodynamo models
which show the global changes of the Earth’s magnetic field. For the Sun and other ce-
lestial bodies local evolutions can be seen using dynamo simulations. But before getting
a detailed simulation, one needs to wait till higher computation power is achieved.
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1 Introduction

Figure 1.2: Zeldovich effect

1.1.1 Dynamo Equations

The equation relating to the evolution of the magnetic field is the magnetic induction
equation which is non-linearly coupled to the Navier-Stokes equation, which describes
the evolution of the velocity. Solving this system of non-linear equations is a formidable
task.

In the kinematic dynamo problem it is assumed that the evolved magnetic field is so
small that the Lorentz force generated by it is too weak to influence the velocity field.
In this case the magnetic induction equation becomes decoupled from the fluid equation
(Navier-Stokes) and the problem reduces to solving a linear partial differential equation
for which we assume that the velocity field is fixed and known. In solving the magnetic
induction equation, we find that for the production of dynamos the fluid must move faster
in relation to the magnetic field than the field can diffuse away. A parameter which ex-
presses the relation of advection to diffusion is called magnetic Reynolds number (Rm).
It depends on the fluid conductivity , the size of the system and the characteristic speed
of the fluid. Dynamos typically have a critical magnetic Reynolds numbers above which
dynamos work.

In this connection it is worth mentioning mean-field electrodynamics(MFE). The con-
cept came from the turbulent fluctuation of the velocity field. MFE addresses the presence
of fluctuations which are small compared to some mean value and performing statistical
averages over the fluctuation quantities to determine the appropriate modifications to the
equations. This theory explains so called alpha and beta effects. The alpha effect arises
due to small-scale helical motions of turbulent flow and this effect produces currents an-
tiparallel to the direction of the magnetic field line. If the helical motions of the fluctua-
tions are correlated spatially, the net current generated can produce a large-scale magnetic
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1.2 Dynamo Experiments

field. The beta effect describes the increased transport of the magnetic flux due to turbu-
lent stirring.
Once the magnetic field has grown enough, the kinematic dynamo approach is no more
valid, leading to a non-linear dynamo problem. Because in that case the resulting Lorentz
force is strong enough to influence the fluid flow and in this case we need to solve the
full non-linear set of MHD equations. One anticipates that the flow will be modified in
such a way as to limit the growth of the magnetic field. This “quenching” of field growth,
a phenomenon also called “saturation”, can be understood only in the framework of the
nonlinear equations of MHD.

1.1.2 Energy Balance

The basic mechanism of the magnetic field generation in celestial bodies generally is
accepted- it be a dynamo process, in which the magnetic field is maintained by convec-
tion of a highly electrically conducting fluid. But the details are less clear. For example,
how much power is required to drive the dynamo process? The production of the magnetic
energy mainly depends on two factors: work done by the Lorentz force and the Ohmic
dissipation. Among these if the Ohmic dissipation term dominates the field is bound to
decay. One the other hand work done by the Lorentz force is responsible for the field
growth. In case of geodynamo it is still an enigma to predict quantitatively the power bal-
ance. Recently Christensen and Tilgner (2004) have shown a satisfying result to describe
the power balance in the special case of the geodynamo.

1.2 Dynamo Experiments
One good way to understand the dynamo process is to perform laboratory realizations,

with the need to generate a proper fluid geometry first of all. The next thing is to find out a
proper conductor, which should allow us to reach the critical magnetic Reynolds number.
Of course sufficiently high velocities of the liquid conductor also play a role to realize
this condition. During the second half of the past century there were several attempts to
produce dynamos in the laboratory. Some of them will be mentioned in chapter 2. Only
towards the end of the last century it became possible to produce self-sustained dynamos
in the laboratory. The Riga Dynamo Experiment (Gailitis et al.2003) in Latvia showed
this for the Ponomarenko (1973) type dynamo in 1999 and in the same year the Karlsruhe
Dynamo Experiment in Germany showed the same for G. O. Roberts (1972) dynamo.

The hydrodynamic Reynolds number (Re) for the Earth’s outer core is of the order
of 109 which is difficult to reproduce in the laboratory. But fortunately the magnetic
Reynolds number (Rm) is expected to assume a much smaller value of the order of 500.
Certainly, even achieving this magnetic Reynolds number in the laboratory is a difficult
job with the present-day technology. But even within these limitations self-sustained dy-
namos can be obtained and that is why the design of laboratory dynamos is an emerging
field at present. Several conductors were tried until it was found that liquid sodium is
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1 Introduction

much more advantageous than others. The conductivity of sodium suits well enough to
reach the critical magnetic Reynolds number (Rm). The Riga Dynamo Experiment fol-
lowed the design of Ponomarenko where liquid sodium is driven helically in a cylinder
and the resulting magnetic field showed an oscillatory growth as expected from theoreti-
cal calculations.

The Karlsruhe Dynamo Experiment is a bit different from the one in Riga. The mag-
netic field is dominated by its large-scale component, which extends throughout the entire
cylindrical box and beyond. Here the fluid is driven through pipes and complex mechan-
ical structures (it will be discussed in detail in Chapter 3), so that it can reproduce the G.
O. Roberts velocity profile. The advantage of this experiment is that turbulence cannot
change the overall velocity profile much as it is guided by the structures. In its saturation
the Karlsruhe Dynamo shows some kind of magnetic field oscillations around its mean
value. This in a strict sense is in conflict with G. O. Roberts dynamo solution. To get the
physical reasons for these oscillations, one is provoked to do further experiments which
can keep track of the velocity profile and the magnetic field together. One is encouraged
also to do numerical simulations for an idea about the sources of these oscillations.

1.3 Numerical Methods
Some differential equations are difficult to solve, that is true. Substituting then the con-

tinuous problem by a discrete problem, this is called discretization. In numerical analysis
errors are an important aspect to follow up, as for example discretization errors because
the solution of the discrete problem does not coincide with the solution of the continuous
problem. Discretization errors errors arise from deficiencies when a function of a con-
tinuous variable is replaced by a sequence of finite numbers in the computer, occupying
for example nodal points in a lattice. Such deficiencies can usually be reduced by using
a more finely spaced lattice, at the expense of increased computational costs. The mag-
nitude of the discretization error, en

j , at the (j, n)-th node typically is written in terms of
grid spacings, 4x and 4t, and on the values of the higher-order derivatives at that node.
In this thesis the Spectral Method and the Lattice Boltzmann Method (LBM) are used to
solve dynamo equations. The spectral method is well known method whereas the LBM
is a comparatively new one. We use the LBM to solve dynamo equations for the fact that
it is a method which can help to implement complex boundaries, not counting the other
advantage of this method that it is easy to implement.

1.3.1 Lattice Boltzmann Method

The lattice Boltzmann equation have a rather short history extending only over a decade
or so and it has attracted much attention among physicists in various disciplines as an al-
ternative and promising numerical scheme for simulating fluid flows and modelling physi-
cal processes in fluids. The reason is that the method has demonstrated its great potentials
to study various complex systems where the application of other methods would be diffi-
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1.3 Numerical Methods

cult or impractical.

It has been a challenge for turbulence computations to capture the geometrical com-
plexities of real life applications. Geometry is a major driver of complexity in these
problems, as it selects the morphology and energetics of coherent structures sustaining
the turbulence. LBM is well capable to tackle this kind of problems (Chen et al., 2003).
The fundamental idea of the LBM is to construct simplified kinetic models that incorpo-
rate the essential physics of macroscopic or mesoscopic processes so that the macroscopic
averaged properties obey the desired macroscopic equations. The basic premise for using
these simplified kinematic-type methods for macroscopic fluid flows is that the macro-
scopic dynamics of a fluid is the result of the collective behavior of many microscopic
particles in the system and that the macroscopic dynamics is not sensitive to the underly-
ing details in microscopic physics (Kadanoff, 1986).

Historically, the idea of LBM came from Lattice Gas Automata (LGA), a discrete
particle kinetics utilizing a discrete lattice and discrete time, where particle velocities are
discrete as well. In general, a LGA consists of a regular lattice with particles residing
on the nodes. A set of Boolean variables ni(x, t)(i = 1, ....., N) describing the particle
occupation is defined, where N is the number of directions of the particle velocities at
each node. These particles move from one node to the next over every time step. There
they meet other particles resulting in collision. In collision particles change their velocity
directions according to the collisional rules. To consider every individual particle is a
bit expensive. So, in the statistical evolution of the LBM, deterministic particle occupa-
tion variables ni (Boolean variables) are replaced by single particle distribution function
fi = 〈ni〉. This substitution eliminates noise due to the individual particle as well.

The key variable in LBM is the particle distribution function fi. The time evolution
of this function in the phase space (i.e. the space containing position, velocity and time)
can be described using the Boltzmann equation. Again by integrating this equation one
gets the hydrodynamic solution (as for example bulk velocity of the fluid, density etc.).
LBM is involved to discretize the Boltzmann equation and then to integrate so that one
arrives at the hydrodynamic solution. The collisional operator in the Boltzmann equation
is replaced by the BGK (Bhatnagar,Gross,Krook;1954) approximation in our calculations.

1.3.2 Spectral Method
Spectral representations have been used for analytical studies of differential equations

since the days of Fourier (1822). The idea of using them for numerical solutions of ordi-
nary differential equations goes back at least to Lancozos (1938). Some present spectral
methods can also be traced back to the “method of weighted residuals” (Finlayson and
Seriven; 1966). Their current popularity for partial differential equations (PDE) dates
back to the early 1970s. The major advance at that time was the pseudospectral approach
of Kreiss and Oliger (1972), which, like most other spectral methods benefited greatly
from the Fast Fourier Transformation (FFT) algorithm.
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1 Introduction

Generally, PDEs are governing the physical processes, initial and boundary values
are provided to the PDE. One then writes the input data (initial and boundary values) as
a superposition of the basic waves of the PDE. In this form, the solution of the PDE is
easily calculated. The Spectral method is based on this. The PDE is transformed into the
Fourier domain using FFT algorithm and is solved in this domain. This is relatively easier
than solving it in real space.

Previous dynamo simulations have mostly used spectral methods. There are three
reasons why spectral methods are favoured when computing magnetic fields. Firstly, the
boundary conditions at a conductor/insulator interface are nonlocal. They acquire sim-
ple expressions when the magnetic field is spectrally decomposed in a suitable set of
basis functions provided that the fluid is confined to plane layers, infinite cylinders, or
spheres. Secondly, the condition that there is no magnetic monopole can accurately be
implemented particularly in the spectral method. The third advantage is, in the spectral
mehod the numerical error is almost zero. Dynamo problems are basically dealing with
the stability problem where a small amount of numerical errors can lead to a strongly
divergent results. Experience suggests that it is important to use an accurate high order
scheme to simulate the magnetic field, and that is why the spectral method is used.

1.3.3 Our Hybrid Code

The dynamo experiments which are running or being planned at the moment have outer
boundaries which can be reasonably approximated by one of the geometries amenable to
spectral methods. Mechanical structures inside the experimental cell which serve to drive
or guide the flow of the liquid conductor are made of material of similar conductivity as
the fluid. They thus constrain the flow but not the currents. As mentioned above, magnetic
field simulation needs a high order scheme. But a low order scheme suffices for the ve-
locity field simulation. We are therefore prompted to develop methods which use spectral
methods for the equations of electrodynamics and the LBM for solving the Navier-Stokes
equation. The two codes are coupled to simulate complete dynamos.

1.4 Motivation and Outline
It is now understood that many cosmic bodies posses magnetic fields and that they un-

dergo a dynamic evolution. It is also understood that the behavior of the magnetic fields of
these bodies are controlled by the dynamo process. But some years ago bringing down the
dynamo into the laboratory was a great challenge. Now one sees magnetic field evolution
in the laboratory dynamo , which of course helps to give us a clearer understanding about
the physical process involved. Yet more is needed. Theory predicts that not a single, but
numerous arrangements are capable of producing dynamos. That is why around the world
different laboratories are making their efforts.

Once the basic phenomenon is understood we try to dig out more things, and find
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1.4 Motivation and Outline

out many more unknowns. As the Karlsruhe Dynamo magnetic field is evolving, we still
need to know the cause behind the evolution nature. There are two possibilities at present
to explore these kinds of things either by performing some more experiments or by using
numerical simulation. This thesis is concerned with the latter.

LBM has been a challenging numerical technique in recent years to simulate com-
plicated fluid flow. Recently it has been extended to magnetohydrodynamic problems as
well. So far the complete simulations of the Karlsruhe Dynamo experiments have ne-
glected the complex mechanical structures, which, in principle, can have some role in the
resulting magnetic field evolution by creating a boundary layer close to the wall. Small
scale turbulence can create interesting phenomena in the magnetic field evolution. In par-
ticular one sees unexpected oscillations of the magnetic field around its mean value in the
experiment. Our main aim is to numerically simulate the whole dynamo experiment with
walls by utilizing the LBM and spectral hybrid code and to explore the results which are
not yet understood from the experiment. In this thesis we mainly concentrate to simulate
the Karlsruhe Dynamo Experiment. Mostly all the simulations are non-linear dynamo
simulations. We try to see the Lorentz force back-reaction effect on the fluid flow. We try
to explore the possible reasons behind the magnetic field oscillation in the experiment.

So far all the numerical-simulations on the Karlsruhe dynamo were done neglecting
the complex mechanical structures. We develop a hybrid code using LBM and spectral
method which can implement any kind of geometry for the fluid flow. The Lattice Boltz-
mann part of the code acts as a Navier-Stokes solver which gives fluid velocity u as a
solution. This u is taken into the induction equation to solve it towards the magnetic field
B. Then the induction equation is solved using the spectral method. Once the output (B)
of the induction equation is obtained, we calculate the Lorentz force, which is added as
an external force in the Navier-Stokes equation. A flow-chart is given in the figure (1.3).

We simulate the dynamo in a 3-dimensional periodic box with four cells kept inside.
The grid resolution is varied as per requirement. We arrange our thesis in the following
way:
In Chapter 2 we describe the basics of the dynamo theory and the Karlsruhe Dynamo Ex-
periment. The results obtained from the experiment are also discussed in this chapter. In
Chapter 3 we discuss the Numerical Methods which are involved in this thesis. Specially
the LBM and the spectral method are also discussed in brief. In Chapter 4 we explain the
way in which we have evolved our LBM Navier-Stokes solver. Here we show some of
our test results. Later in this chapter we explain how the LBM code is coupled with the
Spectral code. Further we try to show the speed and accuracy of our hybrid code. Chapter
5 is devoted to explain our simulation results. The different simulations and their outputs
are tried to correlate with the experimental observations. In Chapter 6 we finish with a
summary and outlook.
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1 Introduction

Figure 1.3: A flowchart of the hybrid code
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2 The Karlsruhe Dynamo

2.1 Introduction
The mathematical problem describing the generation of magnetic fields by motions in

an electrically conducted fluid is called a dynamo problem. The magnetism of many
naturally occurring bodies is attributed to the motion of conducting fluids in their interiors.
These kinds of dynamo in general are called homogeneous dynamos. In the past decades
there were many attempts to develop the homogeneous dynamos in the laboratory to see,
what kinds of flow are exactly responsible for the dynamo action, and what happens when
the newly produced Lorentz force acts back on the fluid motion. In the following section
we shall try to describe the mathematical development of the dynamo problem and then
the experimental dynamo (specially the Karlsruhe Dynamo Experiment) which will be
later simulated numerically in this thesis.

2.2 Dynamo
The dynamo is the process which converts kinetic energy into magnetic energy. Most of
the cosmic bodies are filled with conducting fluids which undergo continuous convective
motion. As for example, the Earth has a solid inner iron core and a liquid core above it.
The solid inner core is thought to be hotter (at 6000◦K) than the outer liquid core which
helps the outer core to go through the convection process. There are however, materials
which also contribute to this convection, known as material convection. Convection in
general is a nonlinear phenomenon and eventually may give rise to turbulent motion in
the fluid. Again in many celestial bodies this turbulence is responsible for bending and
stretching any initial magnetic field in such a fashion that it grows in intensity. Altogether
convection is a process which provides kinetic energy to the system and turbulence helps
the energy to get transformed into the magnetic energy. In the case of the Sun the whole
process is happening in the solar convection zone. Sometimes it is also the differential
rotation of a cosmic body which contributes to the magnetic field modification, very com-
mon in the solar tachocline or, galactic disc.

2.2.1 Basics of Dynamo
To describe the idea of the dynamo theory qualitatively, it is important to introduce a
spherical coordinate (r, θ, φ) system. The φ component is called azimuthal coordinate, θ
colatitude and r radial distance.
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In this system the magnetic field can be split into polar and azimuthal parts (from the
fact that a magnetic field has zero divergence):

B(r, θ, φ) = Bp + Bφ.

Bp is the polar part and can be written as Bp = ∇×∇× (rP ), where P (r, θ, φ) is the
poloidal scaler. Bφ is the azimuthal or toroidal part and can be written as Bφ = ∇×(rT ),
where T (r, θ, φ) is the toroidal scaler. The azimuthal component Bφ has no radial com-
ponent whereas the polar component Bp can have all three components.

The production of both modes (Bp and Bφ) are important in the dynamo theory. The
initial poloidal field can easily be converted into the toroidal field by differential rotation,
which is frequently present in cosmic bodies. In the core of the Earth, it is speculated
that the Earth’s solid core rotates faster than the surrounding liquid core. This faster ro-
tating inner core can convert poloidal fields into toroidal fields. But this newly generated
toroidal field is not visible from outside for example on the Earth’s surface, where the
poloidal field is visible only. Now it needs regeneration of the poloidal field out of the
toroidal field to continue the process. To describe this Parker (1955) explained the turbu-
lent dynamo theory.

The convection in the liquid core can regenerate a small scale poloidal field locally out
of the toroidal field. This is called the α effect. The upward (or, downward) moving
plasma (conducting fluid) blobs in convection stretch out the toroidal field in the upward
(or, downward) direction due to flux-freezing. Taking rotation into account one would
expect the motion to be helically up (or, down). The toroidal field lines can be twisted by
such helical turbulent motions. Several such helical motions can give rise to the poloidal
field altogether. The dynamo, explained above, is called α − Ω dynamo. Ω term comes
from the differential rotation. The poloidal and toroidal fields can be maintained by α2

dynamo as well, where turbulent motion is only responsible to produce both the fields.

2.2.2 Dynamo equations
As it is seen, the dynamo works when magnetic fields interact with complex velocity

fields. So we need to formulate something which will couple these two fields . These
coupled equations are the key MHD equations. The magnetic field behaviour can be well
explained using Maxwell’s equations.

∇ ·E = ρ/ε, (2.1a)
∇×E = −∂tB, (2.1b)

∇ ·B = 0, (2.1c)
∇×B = µJ + µε∂tE. (2.1d)

Here E is the electric field, B the magnetic field, J the electric current density and ρ
the electric charge density. We will assume here and below that the magnetic permeability
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µ and the dielectric constant ε are constant, taking their free space values. The speed of
light c is defined by c−2 = εµ. From equation (2.1a) and (2.1d) one can have conservation
of charge

∂tρ+∇ · J = 0 (2.2)

We assume that velocities in the system under consideration should be much smaller than
the speed of light c. We suppose the system has spatial length scale L, temporal scale T ,
and velocity scale U with

U ≡ L/T � c (2.3)

In this case equation (2.1b) gives the estimate

E ∼ UB (2.4)

This approximation means displacement current µε∂tE = c−2∂tE may be dropped from
equation 2.1d as it is negligible with a factor U2/c2 smaller than ∇ ×B. This leaves us
with the reduced form of the Maxwell equations

∇ ·E = ρ/ε, (2.5a)

∇×E = −∂B
∂t

, (2.5b)

∇ ·B = 0, (2.5c)
∇×B = µJ . (2.5d)

(2.5e)

Using equation (2.1a) and (2.1d) gives the estimates

ρ ∼ εUB/L.
J ∼ B/µL,

(2.6)

which means equation (2.2) may be approximated by

∇ · J = 0. (2.7)

Ohms law in a moving medium can be written as

J = σ(E + u×B) (2.8)

where σ is the conductivity of the conductor and u is velocity. Combining (2.8), (2.5d)
and (2.5b) it can be written that the dynamic evolution of the magnetic field is

∂B

∂t
= ∇× (u×B) +

1

µσ
∇2B. (2.9)

This is known as induction equation. The first term on the right hand side is called ad-
vection term. For an incompressible flow (∇ · u = 0) one can write

∇× (u×B) = (B · ∇)u− (u · ∇)B.
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This indicates that the magnetic field is dragged in the fluid flow. The second term on
the right hand side is called diffusion term. As it has been noticed already for sufficiently
high conductivity magnetic field diffusion is negligible.

Along with the induction equation the Navier-Stokes equation is also required to de-
scribe the dynamo as a whole:

∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u + (∇×B)×B. (2.10)

This is basically a force balance equation, where u describes the fluid velocity, −∇p is
the pressure gradient force, (∇×B) ×B is another external force called Lorentz force
and ν∇2u is called viscous force, where ν is known as kinematic viscosity.

The solution of the Navier-Stokes equation u is an input for the induction equation, and
in the solution of the induction equation B calculates the Lorentz force which acts as
an external force in the Navier-Stokes equation. Altogether, equations (2.9), (2.10) and
∇ ·B = 0, ∇ ·u = 0 are known as basic dynamo equations and this set of equations will
be solved in the following part of the thesis.

It is better to mention that for a given velocity field, when the induction equation
is solved alone along with the equation ∇ · B = 0, the resulting dynamo is known as
kinematic dynamo. On the other hand when all four equations are solved together the
resulting dynamo is called a non-linear dynamo.

2.2.3 Dimensionless Numbers

Let us introduce a spatial scale length L, velocity scale length U and magnetic scale
length B. These are some typical dimensions of the system. Then the ratio of the inertial
term (u · ∇u) to the viscous term (ν∇2u) of equation (2.10) becomes

u · ∇u

ν∇2u
∼
U 1
LU

ν 1
L2U

=
UL
ν

= Re. (2.11)

This ratio introduces a dimensionless number, known as hydrodynamic Reynolds number
(Re). Similarly if we take the ratio of the advection term to the diffusion term of equation
(2.9), we get

∇× (u×B)
1

µσ
∇2B

=
1
LUB
1

µσ
1
L2B

= ULµσ = Rm, (2.12)

which introduces another dimensionless number named as magnetic Reynolds number
(Rm). These are the main key parameters in dynamo problems. Writing down the dynamo
equations in terms of Re and Rm one gets the following non-dimensional equations:

22



2.2 Dynamo

∂u

∂t
+ u · ∇u = −∇p+

1

Re

∇2u + (∇×B)×B, (2.13a)

∇ · u = 0, (2.13b)
∂B

∂t
= ∇× (u×B) +

1

Rm

∇2B, (2.13c)

∇ ·B = 0. (2.13d)

2.2.4 Dynamo Conditions
Let V be the volume confined by the surface S, containing the conducting fluid, with a

volume preserving flow field u(x, t), conductivity σ and diffusivity η. Suppose all space
outside this volume ,denoted by V̂ , is assumed to show the electromagnetic properties of
vacuum. In general the definition of dynamos says the flow u(x, t) is a dynamo if for
some initial condition and magnetic diffusivity λ > 0, the magnetic energy

Emag =
1

2µ

∫
V +V̂

|B|2dV

does not tend to zero as t→∞

There are two important conditions to complete the above mentioned definition.
First dynamo condition: All fields and currents must be created by fluid motion; none
must be supplied by other sources external or internal.
Second dynamo condition: The fields and currents must persist indefinitely. The dynamo
itself needs not be steady; B may be oscillatory, or even chaotic if v is chaotic.
The first dynamo condition demands that B̂ = O(r−3) as r → ∞, here r is the distance
from some origin in V , whereas B̂ denotes the magnetic field in the region V̂ . A com-
monly used idealisation is to assume space to be periodic in 1, 2 or 3 dimensions. In
this case the integral giving the total energy is taken over one fundamental domain V .
According to the second dynamo condition the total magnetic fluxes through the sides of
periodicity are constant under the induction equation.

The evolution of the magnetic field in equation (2.9) is governed by the competition
between diffusion and advection of the field. For vanishing velocity the magnetic field
will disappear within a typical decay time T = µ0σL2, with L being a typical length
scale of the system. On the other hand, the advection can lead to an increase of B within
a kinematic time Tk = L

U , with U being a typical velocity scale. If the kinematic time be-
comes smaller than the diffusion time, the net effect of the evolution can become positive,
and hence the field will grow. The dimensionless number which compares the diffusion
time scale with the kinematic time scale has been named before as magnetic Reynolds
number (Rm). Certainly this number has to be above its critical value to get a growth in
the magnetic energy.

23
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The competition between field dissipation and production can also be understood in
terms of the energy balance.

d

dt

∫
B2

2µ
dx = −

∫
v

j2

σ
dx−

∫
v

u · (j ×B)dx. (2.14)

This equation says that magnetic energy density B2/2µ is balanced by Ohmic heat pro-
duction (j2/2σ) in a unit volume and the work done by the Lorentz force is (u · (j ×B))
in a unit volume in a unit time. The second term on the right hand side is actually respon-
sible for the dynamo action. It shows the conversion of mechanical energy into magnetic
energy by deforming the conducting medium, which is always connected to the deforma-
tion of the magnetic field lines. If there is no motion of the conducting fluid, the magnetic
energy eventually goes down to zero by Ohmic dissipation.

Flow condition for Dynamo

It is not that any sufficiently vigorous flow will result in dynamo action. There are cer-
tain restrictions which never allow magnetic fields to grow. In that connection Cowling’s
theorem should be first mentioned. Cowling’s (1934) work has been extended by Backus
& Chandrasekhar (1956) and by Lortz (1968):

Cowling’s Antidynamo Theorem:- A steady axisymmetric magnetic field cannot be
maintained by dynamo action.
Toroidal Theorem:- Magnetic field can‘not be maintained by solenoidal motions without
radial components. In other words any solution B of the induction equation will decay if
the velocity field can be written in the form

u = ∇× rψ

and if the diffusivity η is a function of the radial co-ordinate, r ≡ |r| only.
This theorem has been proposed by Elsasser (1946), which has been proven rigorously by
Bullard & Gellman (1954).

2.2.5 Mean-field model
The mean-field concept starts with the basic dynamo equations (2.13a)-(2.13d) discussed
earlier. In a turbulent medium, velocity and magnetic field vary irregularly. Basically
because of the irregularity in the velocity field, the magnetic field also becomes irregular
following the frozen-in field concept. Parker(1955)’s mathematical treatment on this was
mostly based on intuitive arguments, but more formal and systematic approach was de-
veloped by Steenbeck, Krause & Rädler (1966), Krause & Rädler (1980). Let F be any
fluctuating random field, the corresponding mean field F̄ is then defined to be the expec-
tation value of F in an ensemble of identical systems, and F ′ = F − F̄ , is the fluctuating
part. Here these hold the following relations:
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F = F̄ + F ′, F̄ = F̄ , F̄ ′ = 0,

F +G = F̄ + Ḡ, F̄ Ḡ = F̄ + Ḡ, F̄G′ = 0,
where G is another fluctuating field. The averaging operator commutes with the differen-
tiation and integration operators in both space and time.

In a turbulent medium fluid velocity u can be split into two parts, 1. Mean velocity (ū),
2. Turbulent velocity (u′) and in the same way the magnetic field can also be split into
two parts.
Hence,

u = ū + u′ B = B̄ + B′ (2.15)

The turbulent motion u′ is assumed to possess a correlation time τ and length λ small
compared with the time scale T and length scale L of variation of ū and B̄; τ is a mean
time after which u′ has ceased to be correlated with its initial value, and λ is a length
comparable with the mean eddy size.

Substituting (2.15) into the induction equation (2.9) we get

∂B̄

∂t
+
∂B′

∂t
= ∇× (ū× B̄ + u′× B̄ + ū×B′ + u′×B′) +

1

µσ
∇2(B̄ + B′), (2.16)

∂B̄

∂t
= ∇× (ū× B̄) +∇× ε +

1

µσ
∇2B̄, (2.17)

where ε = u′ ×B′ is known as turbulent electromotiveforce (Krause, Rädler;1980). The
equation (2.17) is almost like the induction equation except the term involving ε, which is
responsible for the mean field evolution. One thing to be pointed out here is that ε comes
out in the induction just as Reynolds stresses appear in the averaged momentum equation.

Our prime interest is to see the evolution of B̄, having initial information of B̄, ū and
u′. To do so the right hand side of equation (2.17) has to be expressed in terms of B̄, u′

and ū, hence ε can only be a functional of these properties. The initial step to be followed
here is to evaluate B′ in terms of the above three quantities, and after subtracting (2.17)
from (2.16) we get

∂B′

∂t
= ∇× (u′ × B̄ + ū×B′ + u′ ×B′ − ε) +

1

µσ
∇2B′. (2.18)

The equation for B′ (2.18) is linear, with a source term involving B̄. Plainly B′ and so
the e.m.f. ε are linear functionals of B̄. Then the Taylor expansion of B̄ gives

εi = (u′ ×B′)i = αijB̄j +βijk
∂B̄j

∂xk

+γijkl
∂2B̄j

∂xk∂xk

+ ........+aij
∂B̄j

∂t
+bijk

∂2B̄j

∂xk∂t
+ .......;

(2.19)

here all quantities like αij, βijk, aij, bijk, ....... are pseudo tensors depending on ū and u′.
If the back-reaction of the magnetic field is taken into account, the velocity fields ū and
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u′ depend on B̄. It is worth noting that in this case the validity of (2.19) is not affected,
whereas the tensors αij, βijk, ..... are now functionals of ū and u′ and B̄.
If in equation (2.19) only the spatial derivatives up to the first order are taken into account,

then an error of the order O{(λ
L

)2,
τ

T
} must be expected. Hence

εi ' αijB̄j − βijk
∂B̄k

∂xj

(2.20)

is a sufficiently accurate description of the turbulent e.m.f. εi.

Often the turbulent velocity field is assumed to be isotropic. For an isotropic tur-
bulence all mean quantities derived from it remain unchanged if undergoing a rotation.
Tensors with this property are called isotropic tensors. Expressing αij and βijk of equa-
tion (2.20) in terms of isotropic tensors, one gets

αij = αδij βijk = βεijk. (2.21)

Hence the turbulent e.m.f. in case of isotropic turbulence is

ε = u′ ×B′ = αB̄ − β∇× B̄; (2.22)

here α and β are constant mean quantities determined by the turbulent velocity field
u′:

α = −1

3
τu′ · (∇× u′), (2.23a)

β =
1

3
τu′2. (2.23b)

The quantity u′ · (∇× u′) is called the helicity of the flow u′ (Moffatt 1969,1970). To
have non-zero α, overall helicity of the turbulent velocity field has to be non-zero.

At the end combining equations (2.17) and (2.22) we get the evolution equation of
the mean field

∂B̄

∂t
= ∇× (ū× B̄) +∇× (αB̄) + (β + λ)∇2B̄ (2.24)

where λ = 1
µσ

is called magnetic diffusivity. The term αB̄, representing an electric field
parallel to B̄, enables the dynamo theory to escape from the antidynamo theorem. The
quantity β is an eddy diffusivity similar in its effects to the Ohmic diffusivity λ. It operates
by mixing magnetic fields transported from neighboring regions; it does not destroy the
resulting small-scale field inhomogeneities which have ultimately to be smoothed out by
Ohmic diffusion. Its effect is to replace λ by a total diffusivity λT = λ+ β.
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2.3 Experimental Dynamos
Since 1960 there were several attempts to see dynamos in the laboratory, and in the past

few years such dynamos have seen tremendous success. At the end of the last century
there had been two laboratory dynamos which had shown the self sustained magnetic
field. To be historically precise the work on experimental dynamos started from 1958,
when Lenhart(1958) could observe the conversion of an applied polidal magnetic field
component into a toroidal field, which is an important ingredient of the dynamo process.
In the 1960s Willem Malkus and his co-workers pursued the possibility of magnetic field
generation in a rotating cylinder filled with liquid sodium; but they did not succeed be-
cause of the unachievable magnetic Reynolds number required for the magnetic field to
grow. Lowes & Wilkinson (1963,1968) avoided that problem but the properties of their
dynamo differ significantly from the natural one. There were several other attempts after
these to make the dynamo work in the laboratory. Two more past works resembling the
content of this thesis also should also be mentioned here. Steenbeck et al.(1967) showed
that sodium flow through two helically linked copper ducts can produce an e.m.f par-
allel to the applied magnetic field,and this e.m.f is proportional to the energy by which
sodium is driven. In the same year Gailitis(1967) proposed an experiment with 12×12
spin-generators with the intention of simulating the α2 dynamo. It is seen that in most of
these cases liquid sodium was used as conducting liquid.

Liquid Sodium has advantages over other liquid metals:
? It is an excellent conductor of heat.
? It has smallest diffusivity with 1

µσ
= 0.1m2/sec at 120◦ compared to other liquid con-

ductors (mercury 0.8 m2/sec, gallium 0.3 m2/sec).
? Sodium is available in large quantities at low cost.
? Technology exists to pump and safely handle volumes of several cubic meters of liquid
sodium.

The present generation of dynamos that worked successfully are the Karlsruhe Dy-
namo (Germany) and the Riga Dynamo (Latvia). The former is based on the theoretical
work by G. O. Roberts (1972) and the latter on Ponomarenko’s work (1973). The latest
dynamo experiments are more closely to the natural dynamos, where dynamo actions will
be created by convection in combination with rotation (eg. Madison Dynamo, Grenoble
Dynamo).

2.3.1 Towards the laboratory implementation
The existing theoretical models (G. O. Roberts 1972, Ponomarenko 1973) could produce
dynamos. But there was a problem implementing them in the laboratory. Even though
magnetic diffusivity λ = 1

µσ
was low enough for sodium, it was difficult to reach mag-

netic Reynolds numbers (Rm) of the order of 10 or even 100, which are expected to be
required for a functioning dynamo. From the definition Rm = µσUL, it is clear that the
velocity scale U or the length scale L are solely responsible for the value of this quantity
for a particular material (as µ and σ are material properties). So it needs quite a volumi-
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nous apparatus for the fluid to be driven with high velocity. Modern technology provides
supports to achieve such critical magnetic Reynolds (Rm) number.

2.3.2 Karlsruhe Experiment
The Karlsruhe Dynamo experiment reproduces qualitatively a simple spatially periodic
velocity profile studied by G. O. Roberts (1972). G. O. Roberts showed analytically
that this velocity structure can maintain dynamo action if certain conditions are fulfilled.
Later Busse(1975, 1992) modified this profile, and thus brought the experiment into its
final shape. These kinds of dynamos are called two-scale dynamos, the velocity field is
a small-scale one whereas the magnetic field is dominated by its large scale component
which extends throughout the experiment.

2.3.3 G. O. Roberts Velocity
G. O. Roberts velocity profile is a spatially periodic motion, which in principle can model
convective cells. The flow field is a member of ABC flows (Beltrami,1889,Arnold,1965,
Childress,1970).

u = (C sin z + B cos y,A sin x+ C cos z,B sin y + A cosx) (2.25)

A,B ,C are constants, which have Beltrami property that ∇ × u = ku, where k is a
constant. Making this flow z-independent i.e., assuming C = 0 and taking A = B =1,
one gets

u = (cos y, sin x, sin y + cosx) = (−∂yψ, ∂xψ, ψ), (2.26)

ψ = sin y + cosx.

This flow and flows similar to it are considered numerically by G. O. Roberts(1970) and
analytically by Childress(1967,1970) and G. O. Roberts(1972).

For the sake of convenience , the flow can be written in the form (after rotating axes,
and rescaling)

u = ∇ψ × k + kw, (2.27a)
with, ψ = A sin ax sin ay = w(x, y)A/C. (2.27b)

Here k is the unit vector along z axis of the Cartesian co-ordinate, A and C being
constants. Looking like figure (2.1), this kind of flow can be considered as a combination
of several Ponomarenko flows (one in each cell), but every dynamo will be affected by
all surrounding dynamos. The helicity of the flow is non-zero (h 6= 0) in this kind of
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Figure 2.1: G. O. Roberts velocity profile: Projection of the streamlines in (x,y)-plane
with the symbols ⊗ (down) and � (up) for the z component of the velocity.

flow. Since the velocity field (2.27) is z-independent and steady in time, the solution of
equation (2.13c) can be obtained in the form

B = B(x, y)exp(iγz + pt), (2.28)

where γ is the real wave number of the magnetic field in z direction and p is the growth
rate. The z-dependent solution is according to Cowling’s theorem.

Bringing back the mean field concept here and assuming the mean flow is equal to
zero, i.e. ū = 0 and u′ = u, we get

B = B̄ + B′. (2.29)

Following (2.29) and putting (2.28) into (2.9)we can derive the following two equations:

(p+ γ2λ)B̄ = iγk × (u×B′), (2.30a)

(p− λ∇2)B′ = B̄ · ∇u− wiγB̄ +∇× (u×B′)− iγk(u×B′). (2.30b)

Assuming that the fluctuating field B′ is small in comparison with the mean field,
|B′| � |B̄|, one can neglect terms involving B′ on the right-hand side of (2.30b). This
assumption is justified in the limit γ2 � a2, p ≈ γ2. Hence from (2.30b) neglecting all
other terms except the first (after first approximation) we get

B′ = B̄ · ∇u/2a2λ. (2.31)
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Using this in equation (2.30a) to eliminate B′ ,

(p+ γ2λ) = −iγAC
4λ

k × B̄, (2.32)

which is solved by

B̄ = B0(i−
γAC

|γAC|
ij), (2.33a)

p = −γ2λ+
|γAC|

4λ
. (2.33b)

Here i and j are the unit vectors along x and y direction, respectively. If we define
a toroidal magnetic Reynolds number RmA and a poloidal magnetic Reynolds number
RmB as

RmA =
|A|
λ

RmB =
|B|
γλ

,

respectively, then the necessary condition for the dynamo to work is (p ≥ 0)

RmARmB ≥ 4. (2.34)

The dynamo action depends on the interaction between two modes of the velocity: the
toroidal modes of length scale a as expressed by ψ(x, y),and the poloidal modes of length
scale γ as expressed by w(x, y). The necessary condition for the dynamo to work holds
the product of two magnetic Reynolds numbers.

The helical distortion of the original straight field line in the plane z = 0 gives rise to
an amplification of the field line in the planes above and below the plane z = 0. Concur-
rently the distortions of the field lines in the plane z = π/2γ, which are orthogonal to the
field in the plane z = 0, give rise to a component in the x-direction wherever it is pushed
downward. Thus the field at the lower level is enhanced. This is shown in figure(2.5).

2.3.4 Implementation in the experiment
Busse (1992) derived an approximate solution for the kinematic dynamo problem for a

periodic velocity field ( as of G. O. Roberts) in a cylindrical confinement. In this analysis
the periodic length L = 2a is much smaller than the cylinder radius r0 and its height D.
Based on this calculation the Karlsruhe Dynamo Experiment was modeled. Later Tilgner
( 1997,2002) and Rädler et al. (1998, 2002a) improved Busse’s original model decisively
with regard to conditions in the laboratory. They solved (2.13) with appropriate boundary
conditions for current density and magnetic field.

In the Karlsruhe Experiment, liquid sodium is driven with three MHD pumps deliv-
ering flow rates up to 150m3/h each through an array of 52 cells with square sections

30



2.3 Experimental Dynamos

0.21 × 0.21m2 in which sodium is forced to flow along helical streamlines. The outer
dimensions of the cylinder containing the flow are approximately 0.94 m in radius and
0.9m in height. All helices are right-handed, but up and down flows are alternating in
neighbouring cells. Each cell contains two co-axial stainless-steel pipes and a bent metal
sheet in the space between the two pipes in order to enforce the desired flow. A schematic
view of the experimental setup is given in the figure (2.2).

The module is placed in a room in which the average magnetic field strength is less than

Figure 2.2: Experimental setup of the Karlsruhe Dynamo Experiment

0.5 Gauss. The dynamo’s magnetic field is measured by six hall probes resolving less than
0.5 Gauss, two of them are fixed near to the equator of the cylinder , separated by 120◦.
The remaining are at variable positions along the cylinder axis between the center and the
‘north pole’. Arrays of mobile compass needles are attached to a vertical wooden board,
in order to obtain a qualitative impression of the structure of the generated magnetic field.
Writing down the Roberts flow in the experimental condition we have ux = −u⊥ π

2
sin(πx

a
)cos(πy

a
)

uy = u⊥
π
2
cos(πx

a
)sin(πy

a
)

uz = −u‖(π
2
)2sin(πx

a
)sin(πy

a
).

 (2.35)

Here u⊥ is the average of the modulus of the velocity component in the xy plane per-
pendicular to a line running from the center of a cell to its boundary taken over this line,
eg. u⊥ is the average of −ux at x = a/2 over 0 ≤ y ≤ a/2, or, of uy at y = a/2 over
0 ≤ x ≤ a/2, and u‖ is the average of the modulus of uz over the cross section of a cell,
eg. 0 ≤ x, y ≤ a, that is,

u⊥ = −2

a

∫ a/2

0

ux(a/2, y)dy,

u‖ = − 1

a2

∫ a

0

∫ a

0

uz(x, y)dxdy.

(2.36)
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2 The Karlsruhe Dynamo

Using u⊥ and u‖ we define magnetic Reynolds numbers

Rm⊥ =
u⊥a

λ
Rm‖ =

u‖a

λ
.

Finally we introduce volumetric flow rates

V⊥ =
ab

2
u⊥; V‖ = a2u‖,

where b is a length characterising the pitches of the stream line. It is suggested that for
the self excitation of the field the condition is

Rm⊥ ·Rm‖ ≥
32

π
[1 + (

3.83

π

d

r0
)2]. (2.37)

2.3.5 Experimental Results

Figure 2.3: A sample time series showing the evolution of the By component for a volu-
metric flow rate 115m3s−1

Although the experimental results are explained elaborately by Müller & Stieglitz
(2002) and Müller, Stieglitz & Horanyl (2004), we try to brief them here for the purpose
of this thesis. The magnetic field evolution was observed for different volumetric flow-
rates V̇ = 95, 102, 106, 111, and 115m3h−1. Here the flow rates 95 and 102 m3h−1 are
subcritical for the onset of the dynamo, the flow rate V̇ = 106m3h−1 is about critical and
the flow rates V̇ = 111m3h−1 and 115m3h−1 are supercritical. The saturated dynamo
states are steady in the time average, but fluctuate about a mean value of the magnetic
field. In figure (2.3) we show the time series data of the By component recorded by one
of the hall probes. This figure clearly indicates an oscillation of a time period around
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2.3 Experimental Dynamos

Figure 2.4: Power Spectral density (PSD) for the y component of the magnetic field for
five different volumetric flow rates

0.4sec. which corresponds a frequency of 2.5Hz. The power spectral density of the By

component is shown in the figure (2.4). This in the two supercritical states shows the
characteristic spectral peak in the range f ∼ 2 − 3Hz. In the lower frequency range
power shows a dependence on the frequency proportional to v f−1 and the higher fre-
quency range 3 < f < 20Hz spectral power decays nearly proportional to v f−3; and
beyond this range the power decays more rapidly. The other power spikes toward higher
frequency (f > 30Hz) are due to experimental noise. The center frequency of the power
peak (fp) seems to shift to lower frequencies for lower supercritical flow rates. It becomes
broader and less pronounced when critical conditions are approached and finally disap-
pears in the subcritical state. For the subcritical condition a broadband spectrum occurs
without particular features.

The f−1 relationship in the low frequency range seems to support the theoretical
findings of Pouquet et al. (1976), who discovered a reverse energy cascade for a dynamo
driven by an injection of helicity into the system at a particular frequency fin which is be-
yond the reverse cascade range. Some other dynamo experiments (Marie et al. 2002;Pef-
fley et al. 2000) have noticed also the spectrum falling of as f−1, but did not observed a
subsequent spectral peak.

The spectral decay of the field intensity in the frequency range f > fp may be at-
tributed to the interaction between the magnetic field and the local or non-local MHD
wave. The spectral peak fp of the supercritical dynamo is not understood well yet. This
peak in the PSD has not been seen in any other experiment. One doubts that the peak is
due to the resonant interaction between the MHD wave and the smallest possible wave-
length associated with the smallest structural length scale. It is not clear enough what kind
of MHD wave can play a role in the PSD. Primarily one can think of the Alfvén wave, but
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2 The Karlsruhe Dynamo

this wave is damped in the liquid sodium on the length scale of about 0.1m., so the play
of Alfvén wave is doubtful here. For clearer picture it is needed to perform some more
experiments. Perhaps the numerical simulation of the whole dynamo experiment can give
us some light as well. Later in this thesis we perform several numerical simulations in
search of this power peak and its generation mechanism.

Figure 2.5: Magnetic field deformation in the G. O. Roberts Dynamo (Courtesy:
Busse,2000)
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3 Numerical Methods

3.1 Introduction
Numerical methods are the key parts of the intended computer simulations to solve

the underlying partial differential equations (PDE) in a discrete way, which means there
should be some method to discretize the original PDE. In our simulation we use the Lat-
tice Boltzmann Method (LBM) and the Spectral Method to get the solution of Navier
Stokes (NS) equation and induction equation respectively. Later these two methods are
coupled to simulate complete non-linear dynamos. In the following section we first de-
scribe the LBM and then the Spectral Method along with their limitations and accuracies.

3.2 Lattice Boltzmann Method
In this thesis LBM is used to get the solution of the NS equation. Unlike other common

methods (Finite Difference, Finite Volume etc.) it involves a discrete model concept. We
start with the discrete Boltzmann equation more elaborately and after integration we ar-
rive at the solution of the NS. The solution obtained in this way is almost incompressible,
in the sense that the Mach-number (Ma), which is a ratio of the bulk velocity of the fluid
to the sound velocity is limited up to 0.1.

3.2.1 Recovery of the Navier Stokes Equation
The idea of the LBM originates from the kinetic theory of an ideal gas and the variable to
be considered will be the probability distribution function (PDF) in the phase space. The
notation of the PDF in general is f(r,v, t), where r represents the space co-ordinate, v
represents velocity and t is time. One tries to see the evolution of the gas particles with
the help of this PDF where f(r,v, t) signifies the number of particles in a phase space
(drdv) at time t. The transport equation of this PDF can be expressed as

∂tf + v · ∇rf +
F

m
· ∇vf = (∂tf)coll (3.1)

where ∂tf signifies the time derivative,∇r signifies derivative over space and∇v deriva-
tive over individual particle velocity. F

m
is the acceleration of particles, as given by the

ratio of external force (F ) to mass (m). The non-linear term on the right hand side repre-
sents the collision which will be expressed explicitely as follows:
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3 Numerical Methods

BGK approximation : In the simplest case, binary collision assumption can be made for
the collisional term on the right hand side of equation (3.1). To consider multi-particle in-
teraction one can replace the right hand side with the BGK (Bhatnagar,Gross,Krook;1954)
approximation. In order to explain this approximation in simple language, if we start from
any distribution function (near equilibrium), we expect it to relax to the Maxwellian distri-
bution. Suppose f is the initial distribution function and f 0 is the Maxwellian distribution
function. Assuming τ as the relaxation time for f to become f 0, according to BGK ap-
proximation the collisional term can be written as,

(∂tf)coll ≈ −f − f 0

τ
(3.2)

where,

f 0 = n(
m

2πθ
)

3
2 exp(−m

2θ
(v − u)2)

Here n is the particle density and θ = kT with k as Boltzmann constant and T as tem-
perature. v is the velocity of a single particle and u is the macroscopic velocity. Hence
u = 〈v〉. Inserting (3.2) in (3.1) we get the Boltzmann equation with the BGK approxi-
mation

∂tf + v · ∇rf +
F

m
· ∇vf = −f − f 0

τ
. (3.3)

External forces : For F 6= 0 it needs the knowledge of ∇vf . Following He et
al.(1998) we set

∇vf ≈ ∇vf
0 (3.4)

assuming that f and f 0 are chosen sufficiently close to eachother. In (3.4) if one modifies
the equilibrium distribution function with

f̃ 0 = f 0(v − F

m
τ) (3.5)

which already involves the external forcing term, the modified version of the Boltzmann
equation becomes

∂tf + v · ∇rf = −f − f̃ 0

τ
(3.6)

This approximation introduces an error in the Boltzmann equation, which is of order
( |F |

m
τ
|v|)

2. Hence,

f̃ 0 = f 0(v − F

m
τ) = f 0 − F

m
τ∇vf

0 +O(
|F |
m

τ

|v|
)2, (3.7)

where

F

m

τ

|v|
.
vτ

L
=
λ

L
(3.8)
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3.2 Lattice Boltzmann Method

after dimensional analysis.

Equation (3.8) says the error is of the order of the Knudsen Number (Kn) as given by
the ratio of the molecular mean free path length (λ) to a respective physical length scale
(L).
So the modified Boltzmann equation gets the form

∂tf + v∇rf +
F

m
· ∇vf = −f − f 0

τ
+O(Kn). (3.9)

Now after integrating one arrives at the hydrodynamic solution∫
fdv =

∫
f 0dv =

∫
f̃ 0dv =

∫
f 0d(v − F

m
τ) = n, (3.10)∫

vfdv =

∫
vf 0dv =

∫
vf̃ 0dv =

∫
vf 0d(v − F

m
τ) = nu + n

F

m
τ ; (3.11)

here n is the particle density and u is the bulk velocity of the fluid.

Figure 3.1: Discrete Velocities vi of the Lattice Boltzmann Method, D2Q9 & D3Q19

3.2.2 Velocity Discretization

LBM is initiated by the Lattice-Gas Cellular Automata, where the physical space is grid-
ded and every grid point is populated by discrete particles. Each particle can have discrete
possible velocities as in figure(3.1). For rectangular grids there are 9 possible velocities
in two-dimensional cases and 19 possible velocities in three-dimensional cases. It is seen
that these are the optimized number of velocities from the computational cost of view and
to reproduce the fluid behavior . Particles hop from one grid point to the next over every
time step; on the new grid point they meet other particles and following normal elastic
collisional rules they choose their next destination.

Exactly the same kind of velocity discretization is adopted in LBM. In effect, the
LBM corresponds to the following formal discretization in phase space of the Boltzmann
equation:
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3 Numerical Methods

f −→ fi

v −→ vi

f 0 −→ f 0
i

Discretization of f 0 is inspired by the following isothermal and low Mach-number ap-
proximation.

f 0 = n(
m

2πθ
)

3
2 exp(−m

2θ
(v − u)2)

= n(
m

2πθ
)

3
2 exp(−m

2θ
v2)exp(−m

2θ
− 2vu + u2)

= n(
m

2πθ
)

3
2 exp(−m

2θ
v2){1 +

m

θ
vu− m

2θ
u2 +

m2

2θ2
(vu)2 +O(Ma3)}

(3.12)

with Mach number Ma = |u|
c

and isothermal sound-speed c =
√

3kT
m

; k is the Boltz-
mann constant.

Equation (3.12) indicates that hydrodynamic equations can be recovered up to O(Ma2)
using this discretization. From (3.10) and (3.11) it is clear that the general integration to
be done to derive the Navier-Stokes from Boltzmann equation is∫

dvPn(v)n(
m

2πθ
)

3
2 exp(−m

2θ
)v2). (3.13)

Here Pn(v) is a polynomial of order n in the components of v. The above integral can
be evaluated, if Pn(v) is known for a finite number of vectors v, and in that case all the
integrals are replaced by sums:

∫
dvf 0Pn(v)

≈ n(
m

2πθ
)

3
2

∫
d3vexp(−m

2θ
v2){1 +

m

θ
vu− m

2θ
u2 +

m2

2θ2
(vu)2}Pn(v)

≈ n(
m

2πθ
)

3
2

∑
i

wi{1 +
m

θ
viu−

m

2θ
u2 +

m2

2θ2
(viu)2}Pn(vi)

=
∑

i

f 0
i Pn(vi)

(3.14)

Here vi are the velocity vectors for which the Boltzmann equation is integrated, wi are
the quadrature weights and f 0

i is a discretized equilibrium distribution function for the
LBM. Now our task is to properly specify the abscissas of the quadrature (3.14), or, in
other words, the ‘structure’ or ‘symmetry’ of the lattice.
For that we take help of Gauss quadrature and determine the velocities vis and wis for the
2D case:
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3.2 Lattice Boltzmann Method

vi = c ·


(0, 0), i = 0

(sin( i−1
2

)π, cos( i−1
2

)π), i = 1, 2, 3, 4√
2(sin(2i−1

4
)π, cos(2i−1

4
)π), i = 5, 6, 7, 8

(3.15)

wi =


4
9
, i = 0

1
9
, i = 1, 2, 3, 4

4
9
, i = 5, 6, 7, 8

(3.16)

In case of 3D Gauss quadrature the number of 33 = 27 velocities is overestimated, while
the optimized number which can reproduce Navier-Stokes with stability is a model with
19 velocities. They can be written down as

vi = c ·


(0, 0, 0), i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1....6
(0,±1,±1), (±1, 0,±1), (±1,±1, 0), i = 7....18

(3.17)

wi =


1
3
, i = 0

1
18
, i = 1....6

1
36
, i = 7....18

(3.18)

3.2.3 Time Discretization

Assuming, again, the external forcing term to be implicit in f 0, we now want to discretize
the equation

D

Dt
fi = ∂tfi + vi∂rfi = −f − f̃ 0

i

τ
.

This is a first-order partial-differential equation and for the solution it needs local infor-
mation. The most natural method to do this is the finite volume method. Since only the
difference v − u occurs in the continuous equilibrium distribution function, f̃ 0(r,v, t)

has the same expression as f 0(r,v, t) if u is replaced by u + F
m
τ , and hence also in the

discrete case. Integrating the above equation over a time interval 4t,

L.H.S =
∫ t+4t

t

D

Dt
fidt = fi(r + vi 4 t, t+4t)− fi(r, t)

R.H.S =
∫ t+4t

t
−fi − f̃ 0

i

τ
= − 1

τ

∫ t+4t

t
{fi(r + vis, t+ s)− f̃ 0(r + vis, t+ s)}ds

≈ − 1
τ
4t
2
{fi(r + vi 4 t, t+4t)− f̃ 0

i (r + vi 4 t, t+4t) + fi(r, t)− f̃ 0
i (r, t)}

Following (Dellar,2001) this implicit scheme is made explicit by a change of variables.
Let us use the modified distribution function

f̄i(r, t) = fi(r, t) +
4t
2τ
{fi(r, t)− f 0

i (r, t)}. (3.19)
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Since, f 0
i = f̄ 0

i and
∑

i f̄i =
∑

i fi = n, where n is the particle density, along with∑
i

vif̄i =
∑

i

vifi +
4t
2τ

[
∑

i

vifi −
∑

i

vif̃ 0
i ]

= nu +
4t
2τ

[nu− n(u +
F

m
τ)]

= nu− n
4t
2

F

m
.

We finally arrive at the following algorithm for the integration of the velocity field:

f̄i(r + vi 4 t, t+4t)− f̄i(r, t) = − 4t
τ + 4t

2

[f̄i(r, t)− f̄ 0
i (r, t)], i = 0....., 18 (3.20a)

1

n
f̄ 0

i = wi[1 + 3
viũ

c2
− 3

2
(
ũ

c
)2 +

9

2
(
viũ

c2
)2] (3.20b)

n =
∑

i

f̄i (3.20c)

u =
1

n

∑
i

vif̄i +
1

2
4 t

F

m
(3.20d)

with, ũ = u + τ F
m

. On a macroscopic scale n is known as fluid density and u is known
as bulk velocity of the fluid. The sound velocity c is fixed by c = 4x

4t
, where 4x and 4t

are the mesh size and the time step, respectively. Relaxation time is fixed by τ = 3 ν
c2

,
where ν is the kinematic viscosity of the fluid.

3.2.4 Stability and Accuracy
The method is Mach number limited, in other words it is stable for low Mach number,

Ma =
|u|
c
< 0.115 (3.21)

according to Lallemand & Luo (2003).
The second and relatively unusual limit is that the time step should be small enough com-
pared to the relaxation time

τ + 4t
2

4t
>

1

1.93

⇒ τ

4t
>

1

1.93
− 1

2
⇒ 1

3

τ

4t
>

1

3
(

1

1.93
− 1

2
)

⇒ ν 4 t

4x2
> 6.04× 10−3

(3.22)

The maximum Reynolds number on the grid scale can be derived from (3.21) and (3.22)

Regrid =
u4 x

ν
=
u

c

4x2

ν 4 t
< 0.115 ∗ 6 ∗ 10−3 (3.23)
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3.2 Lattice Boltzmann Method

Accuracy requires that the truncation in Knudsen Number should be tolerable. For 10%
accuracy, it is necessary that (Dellar 2001)

0.1 ≥ Ma

Re
. (3.24)

which means

Ma

Re
=
u

c

ν

uL
=
u

c

1
3
c2τ

uL
=

1

3

cτ

L
=

1

3

λ

L
.

Since λ represents the mean-free path and L represents the characteristic scale length,
the above equation suggests their ratio should be less than or equal to 1

30
.

3.2.5 Boundary Condition

Figure 3.2: A pictorial view of the bounce back rule, where vi = −vj; small circles
denote the nodal points

No-slip boundary conditions can be realized by a ‘bounce back’ scheme: a particle col-
liding with the wall reverses its momentum normal to the wall and maintains its tangen-
tial momentum unchanged. It is well understood now that the bounce-back scheme can
achieve second order accuracy (Ginzbourg,d’Humières; 1996) if one is careful about the
location of the boundary. The ease of handling boundary conditions with complicated
geometries is an important feature of the LBM.

No-Slip Boundary: Fixed In general at no-slip fixed boundaries the vertical and hori-
zontal components of the fluid are equal to zero, that means u = 0 all together:

If u = 0 ⇒
∑

i fivi = 0 at the boundary.

A convenient way to fulfill this criterion is to use the ‘Bounce Back’ rule. The rule is
again adopted from the theory of Lattice Gas Automata. According to the rule, if moving
particles face the boundary and at that time if vi = −vj as in the figure (3.2), fi has to be
equal to fj and in that case the u = 0 condition is maintained. This has to happen over
a time step. Physically this implies the wall has to lie halfway between two nodal points,
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Figure 3.3: A is the fluid node and B is the solid node. The wall is situated exactly in
between two nodes. The particle bounces back to A, but it covers the same distance as it
would do while going from A to B.

one on solid and one on the fluid side. Particles with binary velocities are restricted to
move the distance between two neighboring grid points over one time step. While follow-
ing the bounce back rule this kind of movement is only maintained if the wall is situated
exactly in-between two grid points as in fig. 3.3. Otherwise one needs to use an interpo-
lation scheme. Following the bounce back rule one can write

f̄j(t+4t) = f̄i(t)−
4t

τ + 4t
2

(f̄i(t)− f̄ 0
i (t)) (3.25)

No-slip: Moving Even for a moving boundary, the no-slip condition should be satisfied,
to incorporate realistic situations. In order to have such situation we set vi = −vj and
now fi and fj will hold some special relation to give the full form of the moving no-slip
boundary (A.J.C.Ladd;1974):

fj(t+4t) = f̄i(t)− 6win
vi

c

ũb

c
− 4t
τ + 4t

2

(f̄i(t)− f̄ 0
i (t)), (3.26)

where, ũb = ub + F
m
τ ub is the velocity of the wall and wi is the weight which occurs in

f̄ 0
i .

3.3 Spectral Method

The spectral method is very popular in the field of hydrodynamics and magnetohydrody-
namics. For dynamo simulations its use is very common in view of its high accuracy.
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3.3.1 The Spectral Method to Solve Navier Stokes Equation
The Navier Stokes equations for incompressible fluid flow may be written as

∂u(r, t)

∂t
+ u(r, t) · ∇u(r, t) = −∇p(r, t) +

1

Re
∇2v(r, t), (3.27a)

∇ · u(r, t) = 0, (3.27b)

where u(r, t) the velocity, p(r, t) pressure and Re the hydrodynamic Reynolds number.
To implement a periodic boundary condition in a cubical box of length L we assume

u(r + 2π
L

n, t) = u(r, t)

where, n = (n1, n2, n3), ni = 0,±1,±2, ....

With the above assumption of periodicity the velocity field can be written as

u(r, t) =
∑
k

ukexp(ik · r) (3.28)

where, k = (
2π

L
)n and the pressure as

p(r, t) =
∑
k

pkexp(ik · r). (3.29)

Using (3.28) & (3.29) in (3.27a) & (3.27b) one can write the Navier Stokes in the spectral
space

(
d

dt
+

1

Re
k2)ûk = −ikp̂k − ̂(u · ∇u)k (3.30a)

ik · ûk = 0 (3.30b)

Let us consider, f̂k = − ̂(u · ∇u)k. This non-linear term is mostly responsible for the
complexity of the problem. Now taking ik dotted into (3.30a) and using (3.30b) we get

p̂k = − 1

|k|2
ik · f̂k,

(
d

dt
+

1

Re
k2)ûk = f̂k −

k(k · f̂k)

|k|
.

Now the Adams-Bashforth method is employed for time differencing of the non-
linear term f̂k and Crank-Nicolson for the viscous term. If tn denotes the time at which
the unknowns are computed, then the time marching scheme can be represented as

ûk(tn+1) =
(1− h

2
|k|

2

Re
)ûk(tn) + ikh

2
{−3f̂k(tn) + f̂k(tn−1)}

1 + h
2
|k|

2

Re

. (3.31)

In case of external forcing, the forcing term is also implicit inside f̂k.
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3.3.2 The Spectral Method to Solve the Induction Equation
The dimensionless induction equation in real space can be written as

∂tB +∇× (B × u) =
1

Rm

∇2B,∇ ·B = 0 (3.32)

whereRm is a dimensionless number, known as magnetic Reynolds number. The solution
is obtained in the same manner as in the Navier-Stokes equation. The Fourier decompo-
sition for the magnetic field B is

B(r, t) =
∑

k

B̂k(t)exp(ik · r) (3.33)

where the sum is over all wave numbers, and k is compatible with the boundary condi-
tions. From here follows the induction equation in spectral space:

d

dt
B̂k + ik × ̂(B × u)k =

1

Rm

|k|2B̂k. (3.34)

For time marching again a second-order Adams-Bashforth scheme is used for the B×u
term coupled to a Crank-Nicolson scheme for the diffusion term. If tn denotes the times
at which the unknowns are computed, the time marching scheme is in the formula:

(1 +
h

2

|k|2

Rm

)B̂k(tn+1) = (1− h

2

|k|2

Rm

)B̂k(tn) + ik
h

2
(−3 ̂(B × u)k)(tn)+

̂(B × u)k(tn−1)).

(3.35)

3.4 Advantages and Disadvantages of LBM and Spectral
Method

Every numerical scheme has its own advantages and disadvantages. The method to be
chosen depends on the physical problems encountered. In this thesis the main physical
aim is to simulate the Karlsruhe dynamo. The spectral method is so far an established
method to solve dynamo problems for its accuracy. It is a fast algorithm as well. Several
geodynamo models and astrophysical dynamo models are based on the spectral method.
But in all these cases the geometry was simple enough: either a simple spherical or a
cylindrical domain was enough for this kind of simulation. On the other hand, the Karl-
sruhe dynamo is constrained by several complex geometries, the guided pipes and blades
having made the situation difficult for simulation. So far several simulations exist (eg.
Tilgner,1997;Tilgner,2002), neglecting these complexities.

But simulation including complex walls are also important and cannot be ignored.
Hence, a proper numerical scheme needs to be evolved. LBM is quite convenient for this
situation, the method itself is easy to implement. So far the method was mainly famous
because of its capability to handle complex walls. Definitely this is a second order accu-
rate method for the solution of the induction equation which may bring up artefacts. So
here mainly LBM is used to simulate the Navier-Stokes equation, and the spectral method
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is used to simulate the induction equation. They are coupled together so that the output
of one can go smoothly with the other. In the next chapter the methods of coupling will
be discussed in detail.
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4 Numerical Experiments and code
coupling

4.1 Introduction

In this chapter we describe mainly the way we have developed the lattice-Boltzmann code,
which ultimately solves the 3-dimensional Navier-Stokes equation. When describing its
development we will speak about the various tests we went through. Some of them with
linear solutions will be verified analytically. The non-linear tests are verified with estab-
lished results.
Once we complete the Navier-Stokes solver development we want to couple that with the
spectral code, which solves the induction equation. The coupling is described in the sec-
ond half of this chapter.

4.2 Numerical Experiments

4.2.1 Flow through a channel

The initial simulation is done for a simple laminar flow through a channel. This is a two
dimensional problem. The simulation is done in a square box of unite length. Particularly
this problem is chosen because there exists an analytical solution. We define a Cartesian
co-ordinate system. The x axis is along the horizontal direction of the box and y axis is
along its vertical direction. An arrangement of this kind is shown in figure (4.1). The fluid
is driven by a constant force field, which acts in x direction. The upper and lower ends of
the box is bounded by no-slip walls.

In general, the dimensionless equation of motion can be written as

∂v

∂t
+ (v · ∇)v = −∇p+

1

Re

∇2v + f (4.1)

where v is the velocity of the fluid, p is the pressure, f is the applied force to drive

the flow and Re is the Reynolds number of the flow. Now in the steady state
∂v

∂t
= 0;

the (v · ∇)v term is also zero for the here considered flow along x direction. Hence, if
we neglect the pressure gradient force (pressure is constant throughout the channel), the
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Figure 4.1: Flow through a channel:Schema of the simulation arrangement

Figure 4.2: Flow through a channel: the simulation result is different from the theoretical
one near to the wall, this is just because the wall lies between two nodal points

equation (4.1) turns into

0 =
1

Re

∇2v + f . (4.2)

Assuming the x component of the velocity vx is driven by the x component of the force
fx we have

0 =
1

Re

d2vx

dy2
+ fx. (4.3)
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After integrating the above equation we get

vx = −Refx

2
y2 + C1y + C2, (4.4)

where C1 and C2 are constants, which are to be determined using boundary conditions.
Now since the boundary wall is no-slip the velocity of the fluid must be zero at the wall.
To be compatible with the numerical simulation we take the boundary condition as

vx = 0 at y = 0.046875,

vx = 0 at y = 0.984375,

and after taking fx = 0.08, Re = 20 we obtain C1 = 0.8245 and C2 = −0.0366.
So the overall velocity profile across the box becomes

vx = −0.8y2 + 0.8245y − 0.0366. (4.5)

The simulation has been run for the time and spatial resolution dt = 0.001 dx = dy = 1
32

,
which keeps the Mach number within 0.1. This is to be followed while the Lattice Boltz-
mann Method (LBM) simulation is carried out. It has been run until the kinematic energy
became saturated. In figure (4.2) the simulation result for the middle of the box at x = 0.5
is plotted against the analytical solution. The simulation result agrees with the theoretical
prediction within the error limit of LBM (second order). Near the wall the discrepancy is
due to the fact that the wall lies in-between two grid points.

4.2.2 Flow past a circlular object
Flow past a circular object is a very common numerical experiment, and is done using

various numerical methods. The basic equation is same as equation (4.1). As a test case
we use it in order to have a wide choice of published results for comparison. At high
Reynolds number (of, say, Re = 1000) any flow becomes turbulent, but the presence of
obstacles makes it turbulent at lower Reynolds number. At what Re the flow will be-
come turbulent, of course, depends on the size of the obstacle and the size of the channel
through which the fluid is flowing.

For our simulation we have used a rectangular box of width 2 and length 5, a circular
object of radius 0.25 placed at co-ordinate (1.00,1.05)(assuming the origin at the lower
left corner of the box). The box is periodic along the length i.e. left and right sides of the
box have periodic boundaries, whereas the top and bottom walls are no-slip.
It is seen in this kind of flow at very low Re, the flow divides ahead of the obstacle only
to reunite immediately behind it, and the flow becomes steady after a certain time. Above
Re = 60 the flow loses the symmetry and above Re = 130 the flow becomes turbulent
and starts producing a Kármán vortex street.
In our simulation the spatial resolution has been taken dx = dy = 0.1 and the temporal
resolution dt = 0.005. We start the simulation with zero velocity, over which a constant
force-field along the horizontal direction (fx = 0.08) is applied throughout the box. In
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4 Numerical Experiments and code coupling

Figure 4.3: Flow past a circular object : Two figures show different time snapshots of the
velocity field. Initially the flow looks like the top figure; with time it becomes turbulent
and takes the shape of the bottom figure. The circular object is centered at (1,1.05) with
radius 0.25. The simulation is done for Re = 140.

the figure (4.3) two snapshots of the simulation are presented. The arrows indicate the
velocity vector. Initially the flow is laminar because of the low velocity, but later with
increasing velocity the flow shows a turbulent nature. This simulation has been carried
out with Re = 140.

4.2.3 Taylor-Couette Flow
The Taylor-Couette (TC) experiment was one of the famous hydrodynamic experiments

in the last century. The basic arrangement was to see the fluid instability in the space be-
tween two coaxial rotating cylinders and its main purpose was to investigate a potentially
unstable arrangement of flow resulting from a prevailing adverse gradient of angular mo-
mentum. The experiment is well documented and later there were numerical simulations
as well to reproduce the original experiment. Recently also the magneto-hydrodynamic
effect on the TC experiment has been studied (Rüdiger,Shalybkov, 2001). In this context
the TC-experiment is particularly appropriate to verify the applicability of our 3D code.
The implementation of the rotating cylindrical wall is also a crucial point of our numerical
simulation.
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In our simulation we consider the case when the outer cylinder is fixed and the inner
cylinder rotating, i.e. angular velocity of the fluid (situated between the two concentric
cylinders) decreases outwards with the radius. Assuming that the radius of the inner cylin-
der is ri and the radius of the outer cylinder r0 = 1, the dimensionless velocity of the inner
cylinder is

vi(ri) = φ̂

where φ̂ is the unit vector in the azimuthal direction. The dimensionless velocity of the
outer cylinder having unit radius is

v0(r0 = 1) = 0.

The horizontal cut of the simulation box is shown in figure (4.5). Now from the definition
of the Taylor number we get

Ta =
Ω2ria

3

ν2
,

where Ω is the rotational velocity of the inner cylinder, ν is the kinematic viscosity of the
fluid, a is the distance between two cylinders. We can then write down, as per our notation,

Ta = R2
e

r0
ri

(1− ri

r0
)3. (4.6)

Here Re = Ωr2
i ν is the hydrodynamic Reynolds number. With the aid of equation (4.6)

we can express the Taylor number (Ta) in terms of the hydrodynamic Reynolds number,
once the inner and outer cylinder radii are known. Hence the critical Taylor number (Tac)
also corresponds to critical hydrodynamic Reynolds number (Rec).

Above the critical number, flow becomes unstable and shows Taylor instability. Ini-
tially, the flow is axisymmetric; but for high Ta, it loses the axisymmetric pattern and
eventually becomes turbulent. The Taylor-instability pattern is characterized by its wave-
length. While the flow is unstable, it looks like figure (4.4) which shows the meridional
cut through the cylinders. Even though the inner-cylinder is rotating in φ direction, flow
gets a vertical component when it is unstable (above critical Ta or Re numbers), which
forms a toroidal pattern around the cylindrical axis. This pattern is periodic along z di-
rection. The height of each cell is H = π(r0 − ri)/3.1. The schemata of these cells are
shown in figure (4.4).

In our simulation we do the experiment within a box of length and width 2.2 and
height 1.2. This fits two cylinders well. r0 = 1 demands a box of length and width
2, the excess dimension is due to the wall thickness. The height of the box can hold at
least two periodic cells of the instability pattern. The simulation is periodic in horizon-
tal and vertical direction. In this simulation we take ri = 0.5, the spatial resolution is
dx = dy = 0.034 and the time resolution is dt = 0.0015, we take Re = 155 which is well
above the Rec . The z component of the velocity field starts growing from zero and shows
a periodic cell-like pattern (figure (4.6)), which eventually becomes stationary with time.
The height of each cell agrees with the previously mentioned cell height
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Figure 4.4: Schema of the meridional cut through the cylinders show the instability cells
of height H when the inner cylinder is rotating with angular velocity Ω and the outer
cylinder is static.

H =
π(1− 0.5)

3.1
= 0.508.

ri

ro

Vi

Figure 4.5: A horizontal cross section of the simulation box, showing two co-axial cylin-
ders having radii ri & r0, the inner cylinder rotates with velocity vi.
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Figure 4.6: A meridional cut of the original simulation: color contour shows the z compo-
nent of velocity, in a box of length 1 there are two cells when r0− ri = 0.5, which agrees
with the theoretical prediction as well as with the experiment.

4.3 Coupling of Spectral and LBM codes

Both the design and data analysis of the laboratory dynamo experiments require heavy
numerical computation (Tilgner, 1997; Tilgner, 2002). These simulations are complicated
by the fact that unlike the real Earth, the experiment always contains some mechanical
structure of complex geometry. That is why flow simulations accompanying such exper-
iments are best done with a flexible method like the LBM. Previous dynamo simulations
have mostly used spectral methods. There are three reasons why spectral methods are
favored when computing magnetic fields. First, the boundary conditions at a conduc-
tor/insulator interface are nonlocal. They acquire simple expressions when the magnetic
field is spectrally decomposed in a suitable base function provided that the fluid is con-
fined to plane layers, infinite cylinders, or spheres. Second, the condition that there be no
magnetic monopoles can be implemented, particularly accurately in a spectral method.
Only recently was an LBM able to keep the magnetic field solenoidal down to round-
off errors in a magnetohydrodynamic simulation (Dellar,2002; Breyiannis, Valougeorgis,
2004). Related to this point is the third reason in favor of spectral methods, which is
their convergence properties. When dealing with dynamos one is first faced with a binary
question: is a given flow capable of generating a magnetic field, yes or no? Because of
this dividing line between dynamos and non-dynamos, small numerical errors can lead to
qualitatively wrong results, e.g. a zero magnetic field even though the flow is capable of
dynamo action or vice versa. In order to prevent catastrophes of this type, it is better to
use an accurate high order scheme to simulate the magnetic field.

The experiments which are running or being planned at the moment have outer bound-
aries which can be reasonably approximated by one of the geometries amenable to spec-
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tral methods. Mechanical structures inside the experimental cell, which serve to drive or
guide the flow of the liquid conductor, are made of material of similar electrical conduc-
tivity as the fluid. They thus constrain the flow but not the electrical currents. We are,
therefore, prompted to develop methods which use spectral methods for the equations of
electrodynamics and the LBM for solving the Navier-Stokes equation. We demonstrate
this coupling strategy here for a case in which fully spectral method can also be used for
validation (Sarkar, Tilgner;2005).
In the present case it is convenient to use identical grids for the LBM and the spectral
method. This is not possible when using adaptive grids or Non-Cartesian geometries. It
will then be necessary to interpolate the velocity field computed by the LBM onto the
grid of the spectral method. Since the typical LBM yields second order accurate results, a
quadratic interpolation will suffice to maintain the overall order of the method. An inter-
polation step, therefore, should not be a major obstacle when coupling LBM and spectral
methods for other problems than the one treated here.
We consider the model (G. O. Roberts,1971) which has inspired the so called “Karlsruhe
dynamo experiment” as explained before in equation (2.35). An infinite expanse of liquid
conductor is set into motion so that the velocity field consists of a periodic array of right
handed helices. A box with periodic boundary conditions has the appropriate geometry
to deal with this problem.

We solve here the coupled non-dimensional equations

∂u

∂t
+ u · ∇u = −∇p+

1

Re

∇2u + (∇×B)×B + f (4.7a)

∇ · u = 0 (4.7b)
∂B

∂t
= ∇× (u×B) +

1

Rm

∇2B (4.7c)

∇ ·B = 0, (4.7d)

in which two control parameters appear: The Reynolds number Re and the magnetic
Reynolds number Rm. Here p is the pressure, u(r, t) is the non-dimensional velocity and
B(r, t) is the non-dimensional magnetic field. f(r) is a forcing which maintains the flow
against viscous dissipation and the magnetic force (∇×B)×B. f is chosen to be

f =
2

Re

(
2π

a
)2u0 (4.8)

with

u0 =

 √
2sin(2π

a
x)cos(2π

a
y)

−
√

2cos(2π
a
x)sin(2π

a
y)

2sin(2π
a
x)sin(2π

a
y)

 . (4.9)

The equations are solved subject to periodic boundary conditions in the domain 0 ≤ x ≤
a, 0 ≤ y ≤ a, 0 ≤ z ≤ a. As long as B = 0, u0 is a steady state solution of equation
(4.7a). At large enoughRe, this solution becomes unsteady. Any magnetic field generated
by the dynamo effect will also distort the velocity field.
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We give here a validation of the method presented in the previous section by compar-
ing it to a purely spectral method in which Navier-Stokes is solved by Fourier decompo-
sition, too. For an easy comparison, parameters are chosen so that a stationary state rather
than a time dependent state is reached after a sufficiently long integration. The results are
listed in table(4.1). All runs are for Re = 1, Rm = 30, a = 1 and they have been started
from the initial conditions u(r, t = 0) = 0 and B(r, t = 0) = 0.5x̂ where x̂ is the
unit vector in x-direction. The time evolution has been integrated up to t=20. Table 4.1
compares kinetic and magnetic energies, Ekin and EB, defined by

Ekin =

∫ a

0

dx

∫ a

0

dy

∫ a

0

dzu2/2 and EB =

∫ a

0

dx

∫ a

0

dy

∫ a

0

dzB2/2 (4.10)

The energies are computed with the trapezoidal rule in all codes. For stability reasons,
the time step had to be chosen smaller for the LBM than for the spectral method. At
higher Re, the stability limits for both methods become identical. The execution time per
time step is larger for the hybrid code by roughly a factor of 2. As expected, the results
in table (4.1) become independent of spatial resolution already at lower resolution for the
purely spectral method than for the hybrid code. This is a manifestation of the better
convergence properties of the spectral method and of the fact that this particular problem
is well suited for Fourier expansions. At large resolutions, both methods yield results in
reasonable agreement which validates the hybrid code.

In the following chapter we use the above mentioned code to simulate the Karlsruhe
dynamo; in some cases only the spectral code is also used in the simulation process, when
the presence of complex boundaries is not critical.

method resolution 4t Ekin EB

SPECTRAL 83 2× 10−3 0.7737 2.1568
1× 10−3 0.7737 2.1568

163 2× 10−3 0.8482 1.4271
1× 10−3 0.8482 1.4271

323 2× 10−3 0.8482 1.4268
LBM 83 1× 10−3 0.6805 1.586

2.5× 10−4 0.668 1.598
163 2.5× 10−4 0.819 1.312
323 1× 10−4 0.842 1.401

Table(4.1): Compares kinematic and magnetic energies of various time and spatial
resolutions in spectral method and LBM runs
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Karlsruhe Dynamo

In order to simulate the Karlsruhe Dynamo we solve the previously mentioned coupled
dimensionless equations (4.7). The translation between the non-dimensional variables
and physical variables relating to the experiment involves a length scale ls, a time scale
ts and a magnetic field strength Bs. ls is fixed by identifying a length in the simulation
with a length in the experiment, eg., the size of two periodic cells together, which leads to
ls ≈ 0.42m. In order to recover a dimensional induction equation from (4.7c) one has to
choose for the time scale ts = l2s

λRm
, where λ is the magnetic diffusivity of the fluid. (4.7a)

is consistent with the dimensional Navier-Stokes equation for Bs =
√
ρµ0λRm/ls, where

ρ is the density of the fluid and µ0 the vacuum permeability. Bs thus depends on Rm.

The values used for the magnetic Reynolds number Rm in the simulation are realistic but
the hydrodynamic Reynolds number Re is far smaller than any realistic estimate in the
order of 106. This is because of two reasons: (I) It is too expensive to computationally
reach such a high value. (II) The flow becomes unstable when Re assumes such a high
value and then bears little resemblance to the flow realized in the Karlsruhe Dynamo. In
this chapter most of the quantities are dimensionless unless mentioned otherwise.

5.1 Some previous calculations
As mentioned earlier, Busse (1992) suggested the feasibility of this two-scale homoge-

neous dynamo. Busse’s calculation and later numerical result of Tilgner (1997) showed
that the detailed flow structure (involving for instance a boundary layer) of individual
cylinder is not very important to produce a dynamo. Later Tilgner (1997, 2002) using
the spectral method and Rädler et al. (1998, 2002a) using the mean-field model showed
that the non-symmetric mode with an azimuthal wave number m = 1 shows the largest
amplification for all magnetic Reynolds numbers. The mean magnetic field has a ‘spiral
staircase’ structure in the near field and dipolar orientation perpendicular to the cylinder
axis.

Later, the saturation mechanism of the dynamo also became of interest. A characteristic
feature of the observed dynamo action is the measured significant increase of the pressure
losses in the flow channels of the test module after the onset of self-excitation. The in-
crease is caused by the occurrence of the Lorentz force which gives rise to an additional
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pressure. There were some numerical simulations (Tilgner 2001, Tilgner & Busse 2002,
Brandenburg & Rädler 2003) considering the back-reaction of the Lorentz force on the
fluid flow. Rädler et al. (2002b) showed the effect of the back-reaction using the mean-
field theory.

It is important to see the effect of the Lorentz force on the overall flow structure, how the
flow structure is affected by the Lorentz force when the magnetic field is strong enough.
Tilgner & Busse (2001) in their analytical calculation showed that for very low hydro-
dynamic Reynolds number (Re) (i.e. neglecting the inertial term ) and at the saturation
of dynamo, Roberts velocity profile gets modified by the Lorentz force. Since the alpha
effect is solely a functional of the flow field u0, the modified velocity profile will mod-
ify the alpha effect, which will now be also a function of the mean magnetic field B̄.
This phenomenon can be termed as ‘alpha quenching’. It starts with the simple Roberts
velocity profile u0 and arrive finally (under above mentioned conditions) at a profile

u = (1− γ)u0 + 2γ
B̄xB̄y

B̄x
2
+ B̄y

2 ũ

where

u0 = v0

√2cos(πx
a

)sin(πy
a

)√
2sin(πx

a
)cos(πy

a
)

2cos(πx
a

)cos(πy
a

)



ũ = v0

√2sin(πx
a

)cos(πy
a

)√
2cos(πx

a
)sin(πy

a
)

2sin(πx
a

)sin(πy
a

)


γ =

ReRm

4
(
a

π
)2(B̄2

x + B̄2
y)

This calculation shows firstly that to sustain the amplitude of the original velocity distri-
bution u0, the forcing must be increased by 1 + γ +O(γ2) and secondly that the original
velocity field is modified by the effect alpha quenching, which is shown in figure (5.1).

They showed that if the modified velocity pattern is put into the induction equation the
mean field evolution looks like

∂tB̄ +∇× A

B̄x

B̄y

0

−∇× C B̄xB̄y

B̄y

B̄x

0

 =
1

Rm

∇2B̄ (5.1)

with

A = v2
0

a√
2π
Rm,C = A(

a

π
)2RmRe

2
.

5.2 An analytical derivation of the wave
Equation (5.1) supports waves if an external uniform magnetic field is applied. These

waves are magnetic in nature but different from the Alfvén waves, because to arrive at
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Figure 5.1: Modified velocity by Lorentz force: From Tilgner & Busse (2001)

Figure 5.2: Modified velocity by Lorentz force resulting from the numerical simulation:
A horizontal cross-section through z = 0.5

this equation one has to neglect the fluid inertial term of the Navier-Stokes equation. The
Alfvén wave is specially created by this inertia of the fluid. Let us assume an external
field in x direction so that

B̄ = Bex̂ + b̃,
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where b̃ is the wave, and it evolves like

∂tb̃ +∇× A

b̃xb̃y
0

−∇× CB2
e b̃y

0
1
0

 =
1

Rm

∇2b̃. (5.2)

In the simplest case, b̃ depends only on z, and it is enough to consider only the x and y
components. In that case the solution must be of the form(

b̃x
b̃y

)
=

(
b̃x0

b̃y0

)
eikze(−

k2

Rm
±st) (5.3)

which leads to

s = kA

√
1− (

a

π
)2
ReRm

2
B2

e . (5.4)

In equation (5.4) if the radicand is negative there is an oscillatory solution with a
damping rate − 1

Rm
k 2. As is noticed for large magnetic fields the frequency is propor-

tional to the magnetic field, as it is in the case of Alfvén waves. But the difference lies in
the direction of propagation, which is perpendicular to the applied field in the case of this
newly derived wave. Later in this chapter we verify the presence of this wave in the real
experiment.

5.3 Simulation of the modified velocity profile
In our first simulation we try to simulate the non-linear dynamo using the spectral method.
The result is checked with the Spectral-LBM coupled code as well. Both of them have
shown the same result except that the CPU time taken by the coupled code is longer (as
was mentioned in the previous chapter).

We consider a liquid conductor in a periodic box 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.
The equations for the non-dimensional velocity u(r, t) and magnetic field, B(r, t) are in
exact agreement with (4.7). In order to have the same approximation as Tilgner & Busse
(2001) where fluid inertia is neglected, we keep the hydrodynamic Reynolds number (Re)
at a very low value like 0.01. Afterwards the magnetic Reynolds number Rm is varied. In
equation (4.7) p is the non-dimensional pressure and f(r) is a force which maintains the
flow against viscous dissipation and the magnetic force (∇×B)×B. Here f is chosen
to be

f =
8

Re

π2u0 (5.5)

with

u0 =

 √
2sin(2πx)cos(2πy)

−
√

2cos(2πx)sin(2πy)
2sin(2πx)sin(2πy)

 . (5.6)
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This drives u0 .The flow, generated in this way, resembles the flow in the Karlsruhe Dy-
namo and the flow predicted by the above mentioned theoretical work.

In the simulation initially the Lorentz force was kept out i.e., the magnetic field was al-
lowed to grow kinematically; but since the flow is not affected by any other force than the
force f(r), it saturate after a certain time and so does the kinematic energy as well.
Once the Lorentz force is switched on, the dynamo becomes non-linear. The Lorentz
force starts acting on the fluid flow and it changes the velocity profile and decreases the
kinetic energy. Eventually, kinetic energy as well as magnetic energy saturates. The final
velocity profile is shown in the figure (5.2) which has resemblances to the one in figure
(5.1). Hence we can conclude that our simulation result supports the above mentioned
theoretical conclusion.

5.4 Magnetic field oscillation in simulations
As mentioned before, the Karlsruhe Dynamo Experiment showed magnetic field oscil-

lations about its mean value when it saturates. The mechanical structure was not im-
plemented so far in any of the simulations. We use the lattice Boltzmann method to
implement some structures in our simulation to see their effect.

Figure 5.3: Velocity profile with walls: a horizontal cut through the middle of the box
(z = 0.5)

In the following simulation (Sarkar,Tilgner;2005b) we consider liquid sodium in a peri-
odic box 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1. We introduce four cylinders with axes at
(x,y) co-ordinates (0.25,0.25), (0.75,0.25), (0.75,0.25) and (0.75,0.75). Each cylindrical
wall has an inner radius of 0.2 and an outer radius of 0.25. The boundaries are assumed
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to be no-slip and the wall material is supposed to have the same electrical conductivity as
the fluid. The horizontal cross-section of the wall including the flow profile is shown in
figure (5.3). Here the walls do not look like perfect cylinders, because nodal points of the
simulation box are used to define the walls.

Figure 5.4: Growth rate of the magnetic energy as a function of Rm

The equations are the same as equation (4.7). We fix the hydrodynamic Reynolds
numberRe at 100 and the magnetic Reynolds numberRm is varied. f(r) is a force which
maintains the flow against viscous dissipation and the magnetic force (∇×B)×B. f is
chosen in such a way that it maintains the flow u0 (in the absence of walls), which gives
us in correspondence to equations (5.7) and (5.6)

f =
8

Re

π2u0 (5.7)

with

u0 =

 4sin(2πx)cos(2πy)
−4cos(2πx)sin(2πy)
2sin(2πx)sin(2πy)

 . (5.8)

The force f is set to zero at grid points inside the cylindrical walls and the interstitials
between the cylinders.

The flow thus generated, resembles the Karlsruhe dynamo in that it consists of an
array of eddies with circular cross section. The fluid in between these eddies is not forced
in the simulation or pumped in the experiment, but it can be set into motion by the Lorentz
force once a magnetic field appears. The walls keep the eddies in place so that they cannot
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Figure 5.5: Kinematic growth of the magnetic field energy for Rm = 175. The dashed
line is the best exponential fit

bend or distort considerably as they do in simulations without any walls. Obvious discrep-
ancies remain between this model and the real experiment. There is still less mechanical
structure included in the simulation than is present in the experiment, and the experiment
contains only 52 eddies instead of an infinity of them. The aspect ratio chosen in the
simulation is not realistic in the sense that the ratio of the cell height to eddy diameter is
approximately 5 in the experiment.

The simulations have been started from fluid at rest and a weak uniform magnetic field
in x direction. The spatial resolution was 1

32
. Let us then first consider the kinematic

problem in which the (∇ × B) × B is dropped from equation (4.7c). There is then no
back-reaction of the magnetic field on the flow and the magnetic field either decays to
zero or grows indefinitely. In these simulations, the magnetic energy was monitored as a
function of time. The time dependence of this energy was fitted to an exponential at times
greater than the time the velocity field needs to reach equilibrium. It is concluded from the
growth rate as a function of Rm that the critical magnetic Reynolds number, Rmc is equal
to 142 (fig. 5.4). The time dependence of the magnetic energy is not strictly exponential
but there are oscillations with a well defined period around the average exponential growth
or decay (fig. 5.5). The period of these oscillations is shown as a function of Rm in figure
(5.6).

Large portions of the fluid are stagnant so thatRmc is much higher than in simulations
in which the force (5.7) is used in the entire computational volume and in the absence of
walls. In that case (the previous simulation), the critical magnetic Reynolds number is
16 and there are no oscillations. However, the oscillations are not simply due to a high
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Figure 5.6: Dimensionless period of the magnetic energy oscillations vs. magnetic
Reynolds numbers

Figure 5.7: The four plots cover one complete period of the oscillation, starting in the up-
per left panel and continuing clockwise. The arrows indicate the x− and y−components
of the magnetic field at z = 0.5

64
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Figure 5.8: The magnetic field evolution keeping one single vortex alive. The first picture
is the upper left panel and subsequent plots are ordered in clockwise sense. The arrows
indicate the x− and y−components of the magnetic field at z = 0.5

Rm. The simulations without walls did not show oscillations at Rm = 180 either, so that
the velocity profile must be responsible for the appearance of the oscillations. In another
simulation, the full equations (4.7c) and (4.7a) have been integrated for Re = 100 and
Rm = 175. Figure (5.7) shows snapshots of the magnetic field separated by equal time
intervals covering half a period of the oscillation of the magnetic field energy. It is seen
that the field pattern inside each of the cylinders rotates about the axis of the cylinder.

Kinematic simulations of comparable velocity fields have so far only yielded purely real
growth rates, i.e. no oscillations (G. O. Roberts 1972; Tilgner & Busse 1995). Traveling
waves occurred only in examples where the z−component of u0 is shifted with respect to
the in-plane components or otherwise modified so that the flow does not have an α−effect.
A homogeneous α2−dynamo, on the other hand, must produce non-oscillatory magnetic
fields. It is thus surprising that oscillations are introduced by the inclusion of walls in
the simulation which at first sight merely changes the velocity profile within every helical
eddy but does not destroy periodicity, helicity and other general features.

Figure (5.7) has shown that the oscillations are due to a rotation of the magnetic field.
This rotation is not simple advection of the magnetic field lines because the apparent sense
of rotation in figure (5.7) is exactly opposed to the rotation of the fluid in each eddy. It
is also noteworthy that the local field in the eddies is larger than the mean field one ob-
tains by averaging the magnetic field over planes z = const.. It seems therefore that this
dynamo does not operate as an α2−dynamo, but instead consists of four nearly indepen-
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5 Numerical Simulations of the Karlsruhe Dynamo

Figure 5.9: The left panel shows the subtracted (velocity modified by the Lorentz force
minus velocity without magnetic field) velocity profile and the right panel shows the vor-
tex at the junction of the four cylinders

dent Ponomarenko dynamos (Ponomarenko 1973). Indeed, an isolated helical vortex in
an infinite volume of otherwise quiescent fluid is also a dynamo. A possible numerical
approach to such a dynamo would be to put one helical vortex in a periodic box as long as
the periodicity length is large compared with the diameter of the vortex. It must thus be
possible to go from an α2−dynamo to isolated Ponomarenko dynamos by continuously
decreasing the eddy size and concomitantly increasing the interstitial volume which is
filled with fluid at rest. Comparing the velocity field u0 originally considered by G. O.
Roberts and the velocity field obtained in the present simulations when the cylindrical
walls are included, one sees that the latter case is closer to four independent vortices than
the former. A cursory look at the velocity field suggests that it still should behave like an
α2−dynamo because the volumetric fraction of stagnant fluid is fairly small, but the sim-
ulations show that it is already large enough to magnetically decouple the four vortices.

Probably there is still very little connection between four individual vortices. But af-
ter the dynamo saturates we see a feeble vortex (fig. 5.9) at the junction of these vortices
where the fluid was stagnant initially. This is be expected if the dynamo were a real G. O.
Roberts dynamo. But in the G. O. Roberts dynamo this vortex is much stronger.

The question that arises in this case is- what is the effect of the magnetic field satura-
tion on the overall velocity profile? In figure (5.9) we present the subtracted velocity pro-
file (velocity without magnetic field minus the velocity resulted from the back-reaction)
which shows that every vortex gets an oval shape.

So far it is believed here that in our domain there are four individual Ponomarenko
dynamos which give rise to the oscillation. To confirm the idea we keep only one vortex
alive and make others to zero in the same simulation setup. This kind of simulation also
shows the rotation of the magnetic field (fig. 5.8) as is expected from the Ponomarenko
dynamo. At Rm = 175 the rotation period of the magnetic field structure is 7.4, which is
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5.5 Rotating wall simulation

also observed when all four vortices are active.

5.5 Rotating wall simulation
In the previous simulation, because of wall friction the fluid was slow enough near to

the wall, which made the onset of the dynamo at much higher Rm. In the experiment, of
course, the wall is present, but the wall thickness is much smaller than the one in our pre-
vious simulation. Thinner walls could be implemented, but that makes the computational
cost too high. To bring down the onset of the dynamo, we implement rotating walls in this
simulation. This keeps some part of the fluid static (outside vortices) initially. Our main
aim is to see the back-reaction effect on this static part of the fluid. We do this simulation
in a 323 box, keeping four cylinders inside so that each cylinder can generate one single
vortex. There is no external horizontal force to drive the fluid. The inner walls of these
cylinders are given rotation, leaving the outer ones static, so that the fluid attached to the
inner part of each cylinder gets a rotational motion while the outer part does not. There
is an external uniform forcing in vertical direction over every cylinder to get the helical
motion of the fluid inside. The rotation of the cylinders and the vertical forcings are man-
aged in such a fashion that the overall velocity profile gets close to the G. O. Roberts one.

The simulations have been started from fluid at rest and a weak uniform magnetic
field (along x direction). But soon a large part of the fluid can be in motion due to the
rotating walls, and simultaneously the onset of the dynamo can be brought down from
Rm = 142 in the previous simulation to Rm = 66.2 kinematically. In figure (5.11) we
plot the growth rate vs. Rm of this simulation.

5.5.1 Subcritical onset
Usually the critical magnetic Reynolds number (Rmc) for the onset of the dynamo is

independent of whether the dynamo simulations are without or with Lorentz forces. But
in this simulation the Rmc is different in the non-linear case from that for the kinematic
dynamo simulation.

We start the simulation in the kinematic supercritical domain i.e. Rm > 66.2, keeping
the Lorentz force on. This allows the Lorentz force to act on the velocity field. This
changes the overall velocity profile (fig. 5.10) in such a way that the magnetic field
saturates eventually. During saturation the induction equation looks like

0 = ∇× (v ×B) +
1

Rm

∇2B. (5.9)

Now, if the output of the supercritical Rm simulation is used as an initial condition for
the simulation with subcritical Rm, the magnetic field decays initially and then saturates
again above a certain Rm. We vary Rm in the subcritical domain until the saturated mag-
netic field goes down to zero. This happens atRm = 47, and we name it subcritical onset.
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5 Numerical Simulations of the Karlsruhe Dynamo

Figure 5.10: Rotating wall simulation: Velocity field before (left) and after (right) affected
by the Lorentz force. In the bottom panel the subtracted (left minus right) velocity profile
is shown

Between kinematic onset and subcritical onset we run the simulation kinematically as well
with the saturated velocity profile modified by the Lorentz force. This shows zero growth
rate of the magnetic field. This is also expected from the equation (5.9). This equation
is satisfied for v = vsat, so when one takes vsat as an input of the equation the growth
rate remains zero. In figure (5.12) we plot the saturated magnetic energy (EBsat) vs. Rm

which shows that the magnetic energy decreases with decreasing Rm and below Rm = 48
it is zero. Here magnetic energies are calculated using trapezoidal rule for integration.
The formula for the magnetic energy (EB) is the same as equation (4.10).

5.6 On the MHD instability of the G. O. Roberts flow

The motivation of this simulation is to find the origin of the magnetic field oscillation as
observed in the Karlsruhe Dynamo Experiment. We take the simple G. O. Roberts flow
as is mentioned in equation (5.6). and try to see the back-reaction effect on the flow. For
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5.6 On the MHD instability of the G. O. Roberts flow

Figure 5.11: Growth rate of the magnetic energy as a function of Rm for the rotating wall
simulations

Figure 5.12: Subcritical onset: Saturated magnetic energy is plotted against Rm
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5 Numerical Simulations of the Karlsruhe Dynamo

Figure 5.13: The mean field structure of the simulated magnetic field: The upper panel
shows the x component of the mean magnetic field and the bottom panel shows the y
component of the mean magnetic field. Both are plotted against z axis (The mean is taken
over x and y co-ordinates)

this simulation we use the spectral method to simulate a whole dynamo as there is no
wall required. The prime question which appears first is whether the quenching effect
mentioned above provokes the oscillation.

This simulation is exactly the same as for our very first dynamo simulation but in a box
of 643. Initially, for low Rm the flow is steady and does not show any oscillation even
after saturation. There is a kind of oscillation which starts at higher Rm; the onset of this
is at Rm = 80. Initially, the oscillation is periodic with increasing period (i.e, decreas-
ing frequency), when Rm increases. But later at still higher Rm the oscillation becomes
chaotic. This fact is clearly against the experimental observation. Interpreting the figure
(2.5) one concludes the experimental oscillation frequency increases with increasing Rm,
i.e, from 1.2Hz forRm = 8.96 to 2.7Hz forRm = 11.4. The mean field of the simulation
is calculated by taking the time averages over a period of oscillation and then this mean
magnetic field is plotted by taking spatial average over x and y components. In figure
(5.13) the z dependence of the mean field (B̄) is shown. The fluctuating part (B′) shows
movement but is not regular as evidenced in figure (5.14).

Rm Dimensionless Dimensionless
oscillation period amplitude

65 7.892 2.4
75 9.08 12.065
80 10.05 18.15
100 30.49 36.7

Table (5.1): Oscillation characteristics

It seems that the oscillation of the magnetic field is initial-condition-dependent. This
could not be observed at comparatively low Rm (eg. Rm = 60), but at higher Rm (say,
150) it is clearly visible when the magnetic energy is plotted. Once the output of the
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5.6 On the MHD instability of the G. O. Roberts flow

Figure 5.14: Evolution of the fluctuating magnetic field over a period of oscillation: B′
x

and B′
y are the x and y components of the fluctuating magnetic field B′; both are plotted

against the z axis (average is taken over x and y co-ordinates)

higher Rm simulation is brought to the lower Rm simulation as initial condition, the in-
stability is observed at low Rm as well. From the table (5.1) it is seen that amplitude of
the magnetic field oscillation at Rm = 65 is 2.4, and it goes to zero at Rm ∼ 60 if extrap-
olated. It is checked as well that there is no hysteresis once the instability sets in, i.e. if
the output of one simulation is taken into the subsequent simulation of different Rm, the
oscillation remains unchanged.

5.6.1 G. O. Roberts dynamo with changing superimposed perturba-
tions

Since the above mentioned oscillation has no agreement with the experimental oscilla-
tion, one has to generate a new way to discover the latter. It is believed that the experi-
mental oscillation is due to the fact that there is some kind of interaction of the magnetic
field and local eddies. These local eddies might be the result of the high Re flow through
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5 Numerical Simulations of the Karlsruhe Dynamo

Figure 5.15: Amplitude vs. Frequency : for two different Rm, 60 (left) and 70 (right)

complicated mechanical structure. Thus one is provoked to introduce some local eddies
in the simulation box. Keeping this in mind we start our simulation with the G. O. Roberts
velocity profile but along with that a time-harmonic velocity perturbation function g(r, t),

g(r, t) = f(r)sin(2πf t) (5.10)

with

f(r) =

Asin(2πx/b)cos(2πy/b)
Acos(2πx/b)sin(2πy/b)
Asin(2πx/c)sin(2πz/c).

 (5.11)

This represents local eddies of scale length b and c. A = 0.3 in this case and b, c were
varied during simulation, which will be discussed soon.

Since the grid resolution is not affecting the result much, we choose a spatial resolu-
tion dx = 1

16
. But our aspect ratio in this simulation is 1 : 1 : 2, which brings down the

onset of the dynamo at lower Rm. So this simulation is done in a box 16 : 16 : 32.
The time component of the perturbation is implemented keeping in mind that if there
is some kind of oscillation which is invisible and if the frequency of that oscillation is
matched with the frequency of the time perturbation f , it will probably show up as res-
onance. To find out the oscillation frequency we try our simulation for several f . The
spatial and the time perturbation are repeated over every time step. Since the dynamo
becomes unstable by itself at high Rm we try to concentrate in the lower Rm region with
Rm below 80, where the dynamo is stable otherwise. The time component of the pertur-
bation disturbs the flow from the beginning and hence the kinetic energy and the magnetic
energy both show the oscillation with the same frequency f . The Re of the flow is kept
sufficiently low (within 10), and we shall discuss the Re dependence later.

In figure (5.15) we plot amplitude vs. frequency, f of the oscillation for two different
Rm (70 & 60). This clearly shows that there is a peak at f = 0.19 for Rm = 70 and
f = 0.17 at Rm = 60 . But for smaller Rm the peak almost vanishes. This is probably
because the oscillation is very weak at lowRm. We try to plot in figure (5.16) frequency f
in Hertz vs. Rm and once it is extrapolated it can be noticed that the onset of the oscillation
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5.6 On the MHD instability of the G. O. Roberts flow

Figure 5.16: Oscillation Onset: frequency vs. Rm of the oscillation, pink squares denote
the simulated oscillation frequency, the dashed line is used to extrapolate the simulated
oscillation frequency

Figure 5.17: Amplitude of oscillation at different Re for a fixed Rm

is at around Rm = 25. This is far above the dynamo onset, which is at Rm = 8.

In one sense this result agrees with the experimental oscillation for which the spectral
peak fp decreases along with the decreasing Rm or flow rate. In figure (5.16) one sees
that at Rm = 40 the frequency of this oscillation is 2.27Hz., and thus close to the spectral
peak position in the real experiment. It should be mentioned that the value of b and c in
equation (5.11) matters much to influence the amplitude of the resulting oscillation. The
nature of f(r) is also an influencing agent to play a role here. Keeping in mind that larger
eddies have lower dissipation rates we take b = 0.5 and c = 1.0. The nature of f(r) has
also been tried with various combinations of x,y,z dependences. But (5.11) has proved to
be the best of all to produce resonances of higher amplitudes.

To see the effect of the Re on the oscillation, we conduct our simulations for Re =
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5 Numerical Simulations of the Karlsruhe Dynamo

Figure 5.18: Plot showing the characteristics of two kind of oscillations: The red curve
shows the region where the dynamo is stable, whereas the blue part shows the nature of
the magnetic field oscillation in the unstable region of the dynamo

0.01, 1 and 10, keeping the Rm fixed, which shows that amplitudes of the resulting oscil-
lation are varying by 24 percent. In figure (5.17) we plot the amplitude of the oscillation
at Rm = 50 for these three combinations of Re, when the imposing oscillation period is
7.0. From equation (5.4) one expects the wave generated through alpha quenching would
have a frequency proportional to the saturated dynamo magnetic field (Be) and this wave
would be independent of the hydromagnetic Reynolds number (Re). From table (5.2) one
sees that the frequency of the simulated oscillation is not proportional to the saturated
magnetic field (Be). Hence the origin of this wave is not the same as that derived from
the analytical calculation.

Rm Re Be f =
1

T

Be

f

40 1 6.35 0.1 63.5
50 1 6.23 0.14 44.5
60 1 6.15 0.17 36.17

Table (5.2): Table to show that the ratio
Be

f
varies significantly for different Rm

5.6.2 Discussion
Finally one has to be sure about the source of the magnetic field oscillation in the real

experiment. We explore a possibility for the origin of the magnetic field oscillation using
our analytical calculation. The frequency of the oscillation can be derived from equation
(5.4). It is also mentioned earlier that the magnetic field oscillates only if the radicand of
equation (5.4) is negative. To explore more about this oscillation we take the dimensional
form of equation (5.4) which is

ŝ = −λk̂ 2 + k̂Â

√
1− (

â

π
)2

1

λν

B̂
2

ρµ0

. (5.12)
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5.6 On the MHD instability of the G. O. Roberts flow

Here all 〈̂.〉 quantities are dimensional variables, with B̂ being the dimensional magnetic
field and considering ν being the turbulent viscosity. Choosing all parameters close to
the experimental values, as for example, when we take a = 0.21m., λ = ν = 0.1m2s−1,
ρ = 927kg.m−3, B = 3 × 10−3T , µ0 = 1.2566 × 10−6Hm−1 we find the radicand is
coming out to be 0.99, which is a positive quantity and hence we can conclude that the
presence of such oscillation is impossible in the real experiment.

At the end of section (5.6.1) we have concluded that the oscillation in our last simu-
lation is not related to the wave resulting from the analytical calculation, but has a similar
nature in the sense that its frequency decreases with decreasing Rm as it does in the ex-
periment. On the other hand when at higher Rm the magnetic field oscillates around its
mean value, then the oscillation frequency decreases with increasingRm. One could have
doubt that these two oscillations are part of the same mechanism. Therefore we plot in
figure (5.18) the frequency in Hertz of both oscillations vs. Rm and we do not find any
merging point between them. Following this we classify two distinct regions, one where
frequency increases with increasing Rm, the other where it decreases with increasing Rm.
In this region for very high Rm the fluctuation of the magnetic field becomes chaotic and
does not hold any regular pattern, so we can consider it to be magnetohydrodynamically
unstable. This unstable region can be brought down to the stable region ofRm if the initial
velocity field is taken from the higher Rm where the dynamo is already unstable, that is
why we notice in figure (5.18) at Rm = 65 even the instability is still continuing. Hence
one can conclude that most probably the spectral peak of the experiment can show its
observed character only up to certain Rm, above that the magnetic field becomes unstable
by itself. There is a discrepancy between the experimental magnetic field oscillation and
the oscillation in the stable dynamo region: the oscillation in the experiment starts close
to the dynamo onset, whereas in the simulation the oscillation is non-existing close to the
dynamo onset. So one is still not sure whether both oscillations have the same or different
origins.

The simulated oscillation is initiated by a perturbation in space and time. These per-
turbations are continued over every time step. The time perturbation is used to find the
frequency of the oscillation. It seems the spatial perturbation initiates the oscillation, but
in our simulation we have introduced only some combinations of the spatial perturbations.
If eddies of all scale lengths would be included altogether in the simulation domain, one
might expect a more prominent oscillation, because out of these scale lengths some could
be more efficient to initiate the oscillation than others.
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6 Summary and Outlook

In this thesis we concentrate to explain the magnetic field oscillation mechanism in the
Karlsruhe Dynamo which is basically a G. O. Roberts dynamo. In our various simula-
tions we try to reproduce G. O. Roberts velocity profile, sometimes keeping walls in the
simulation box and sometimes without them.
To introduce walls in our simulation box we use a relatively new method for flow simu-
lation, the Lattice Boltzmann Method (LBM). We show here that LBM can work well as
Navier-Stokes solver, and we have been able to reproduce the Taylor-Couette instability
using this method.
Later the LBM code is coupled with the spectral code to have a complete non-linear
dynamo code. The spectral part of this coupled code is utilized mainly to simulate the
induction equation, whereas the LBM part works as a Navier-Stokes solver.
In an analytical calculation we show that the modified velocity profile due to alpha
quenching can give rise to a wave whose frequency depends on the magnetic field as
Alfvén wave but propagates perpendicular to the magnetic field. This calculation is based
on an approximation where inertia of the fluid is neglected.
In one of our simulations we show the presence of subcritical dynamo onset for a dynamo
which is non-linear, in contrast to the kinematic simulations.
Finally we show with our simulations that turbulence gives rise to a magnetic field os-
cillation. This newly developed oscillation has the same kind of Rm-dependencies as is
observed in the real experiment, but the origin of this oscillation is again different from
the wave we found using our analytical calculations.
The complex mechanical structures of the experiment can give rise to many interesting
things, as for example the boundary layer near to the wall can behave differently. Our
present simulations are done on rather coarse grids, which is still unable to resolve this
boundary layer. Future fine-grid simulations can help us to study the complicated flow
structure near to the wall-boundary and walls can also be made thinner which will be
more realistic.
The energy dissipation calculation has still to be done. Variation of energy dissipation
with magnetic Reynolds number (Rm) can be checked with the experimental results.
As the LBM code has verified the Taylor-Couette instability it can be further extended to
see the magnetic field effect on this kind of flow structure. Specially this flow is spatially
periodic in nature. Hence it could give rise to the dynamo effect too.
At the end, the hybrid code can be used to simulate various kinds of MHD problems
where specially developed complex boundaries are needed to be implemented for fluid
flow. We hope that opens up new horizons in science.
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A Appendix: A Mean field view of the
Karlsruhe Dynamo

To apply the mean-field concept in the G. O. Roberts kind of dynamo one assumes for
each given field F that there is a mean field F̄ by taking an average over an area corre-
sponding to the cross-section of four cells (each having length and width a) in the xy-
plane,

F̄ (x, y, z) =
1

4a2

∫ a

−a

∫ a

−a

F (x+ χ, y + κ)dχdκ (A.1)

Splitting the magnetic flux density B and the fluid velocity u into mean fields B̄ , ū and
remaining fields B′ and u′ one gets

B = B̄ + B′, u = ū + u′ (A.2)

But for the flow corresponding G. O. Roberts one has ū = 0 and hence u = u′. Follow-
ing this one has

∂B̄

∂t
= ∇× ε +

1

η
∇2B̄ (A.3)

∂B′

∂t
= ∇× (u′ × B̄ + u′ ×B′ − ε) +

1

η
∇2B′ (A.4)

with η = µσ and ε can be represented in the form

εi = αijB̄j − βijk
∂B̄k

∂xj

. (A.5)

Due to the definition of averages and the periodicity of the flow pattern αij and βijk

are independent of x and y. αij and βijk are axisymmetric tensors with respect to the
z-axis. Primarily u is independent of z (unless one considers the boundary effect of the
real experiment). Hence one arrives at

ε = −α⊥(B̄−(e·B̄)e)−β⊥∇×B̄−(β‖−β⊥)(e·(∇×B̄))e−β3e×(∇(e·B̄)+(e·∇)B̄);
(A.6)

with α⊥, β⊥, β‖, β3 are averaged quantities determined by u and independent of x,y
and z.
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The term α⊥ describes an alpha effect, which is extremely anisotropic. It is able to drive
electric currents in the x and y direction. β⊥ and β‖ are also anisotropic and give rise to the
mean field diffusivity of the fluid, but β3 cannot be interpreted as mean-field diffusivity
since it is not the term connected with ∇× B̄.
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[32] Krause, F. and Rädler, K. -H , 1980, Mean-Field Magnetohydrodynamics and Dy-
namo Theory, Aksdemie-Verlag, Berlin

82



Bibliography

[33] Kreiss, H. O., Oliger, J. , 1972, Comparison of accurate methods for the integration
of hyperbolic equations, Tellus, 24, 199

[34] Ladd, A. J. C. , 1994, Numerical simulations of particulate suspensions via a dis-
cretized Boltzmann equation, Part 1. Theoretical foundation, j. Fluid. Mech., 271,
285-309

[35] Lallemand, P., Luo, L.-S. , 2003, Theory of the lattice Boltzmann method: Acoustic
and thermal properties in two and three dimensions, Phys. Rev. E 68(3): 036706

[36] Lamor, J. , 1919, How could a rotating body such as the sun become a magnet?, Br.
Assoc. Adc. Sci. Rep., 159-160

[37] Lehnert, B. , 1958, Ark. Fys. 13, 10, 109

[38] Lortz, D. , 1968, Impossibility of steady dynamos with certain symmetries, Phys.
Fluids, 11, 913-915

[39] Lowes, F. J. and Wilkinson, I. , 1963, Geomagnetic dynamo: a laboratory model,
Nature, 198, 1158-1160

[40] Lowes, F. J. and Wilkinson, I. , 1968, Geomagnetic dynamo: an improved laboratory
model, Nature, 219, 717-718

[41] Luo, L.-S. , 1998, A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models,
Phys. Rev. Lett., 81, 1618-1621

[42] Marie, L., Burguette, J., Chiffaudel, A., Daviaud, F., Ericher, D., et al. , 2001, MHD
in von Karman swirling flows, Dynamo and Dynamics, a Mathematical challenge
(ed. D. Armbruster & J. Opera), Nato Science Series, 26

[43] Müller, U. and Stieglitz, R. , 2002, The Karlsruhe Dynamo Experiment, nonlin.
Proc. in Geophys., 9, 165-170

[44] Müller, U., Stieglitz, R., Horanyi, S. , 2004, A two-scale hydromagnetic dynamo
experiment, 498, 31-71

[45] Parker, E. N. , 1955, Hydromagnetic dynamo models, Astrophys. J., 122, 293-314

[46] Peffley, N. L., Cawthorne, A. B. and Lathrop, D. P. , 2000, Toward a self generating
dynamo: The role of turbulence. Phys. Rev. E, 61, 5287-5296

[47] Ponomarenko, Yu. B. , 1973 Zh. Prikl. Mekh. Tekhn. Fiz., 6, 47-51

[48] Pouquet, J., Frisch, U., Leorat, J. , 1976, Strong MHD helical turbulence and the
non-linear dynamo effect, J. Fluid Mech., 77, 321-354
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[57] Steenbeck, M., Krause, F., Rädler, K. -H , 1966, Berechnung der mittleren Lorentz-
Feldstärke v ×B für ein elektrich leitendes Medium in turbulenter, durch Coriolis-
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