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Introduction

Sunspots are the most readily manifestation of the solar magnetism. The main constituents of
a sunspot, as seen in continuum images (see e.g. Fig. 1) are a central dark core: umbra, which
is surrounded by a brighter region characterized by a well organized filamentary structure: the
penumbra or penumbrae. As the spatial resolution of the observations increases, more details
about the sunspot fine structure are revealed. The umbra possesses bright points called umbral
dots and the penumbral filaments can have very bright tails: penumbral grains. Sometimes the
penumbral structure seems to pour into the umbra forming light bridges that eventually can split
the umbral region into two parts.

FIGURE 1: Speckle reconstructed broad band continuum image of NOAA 9145 at 7090 Å taken with
the Göttingen Fabry Perot Interferometer attached at the German telescope VTT (Izaña observatory).
The achieved spatial resolution is about 0.3 arc sec. Many of the different constituents of the umbral
and penumbral fine structure can be distinguished: umbral dots, penumbral grains, filamentary penumbral
structure and light bridge. Courtesy of J. Hirzberger & F. Kneer.
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6 INTRODUCTION

Understanding the formation, evolution, dynamics and magnetic structure of sunspots is key
to disentangle the basic physical processes taking place in the solar photosphere. The intense
magnetic field in the umbra of sunspots inhibits convection, making it much cooler than the
surrounding granulation, and therefore appearing darker. The umbra is believed to be formed
when emerging magnetic flux tubes that, stored below the convective region of the Sun, rise
until the reach the solar surface. The magnetic field in the penumbra is less than a factor of
two smaller than in the umbra, however its brightness is at least four times larger. The physical
magnetoconvective mechanism that leads to its formation and explains its enhanced brightness,
despite its strong magnetic field, is still unknown. The origin of its filamentary structure and
nature of the ubiquitous outflow present in the penumbra (see below) are nowadays, after almost
a century since it was discovered, a matter of intense debate and study.

This thesis deals with the study of the fine structure of sunspot penumbrae and their relation
with its well known dynamical behaviour: the Evershed effect. It is observed as a shift and
asymmetry in spectral lines. The underlying flow is characterized by a blueshift or velocities
towards the observer when one looks at the center side of the penumbra (penumbral region closer
to the Sun’s disk center), but redshift or velocities away from the observer if we observe the limb
side (region closer to the solar limb; see Fig. 2).

The Evershed effect is believed to be produced by a plasma flow that is directed from the
inner penumbra towards the outer boundary with the quiet Sun. This flow is often explained as
siphon flow. If the gas pressure at the outer boundary is smaller than in the inner penumbra, a
flow is initiated from the point with larger gas pressure towards the outer penumbra, where the
gas pressure is smaller. According to this the flow will be directed outwards as it is observed.
However, from spectropolarimetric observations is also well known that the sunspots’ magnetic
field strength decreases rapidly from the umbra towards the quiet Sun (see Fig. 3). This induces
an inwards flow, in contradiction to observations.

In order to try to solve this controversy we shall study the magnetic structure of sunspot
penumbrae, taking into account its fine structure, to investigate whether the magnetic field really
decreases with radial distance or, as required by the siphon flow mechanism to work, increases.
This study has been carried out using spectropolarimetric observations (i.e the full Stokes vec-
tor) that, together with inversion techniques, allow the vertical stratification of the temperature,
velocity and magnetic field vector to be inferred with great accuracy.

Inversion of Stokes profiles is a powerful tool to investigate solar magnetism and the structure
of the solar atmosphere. The basic underlying idea is to produce synthetic profiles using an
atmospheric model (which is characterised by the stratifications with optical depth of temperature,
strength and direction of the magnetic field vector as well as line-of-sight velocity) by solving the
Radiative Transfer Equation. The synthetic profiles are then compared with the observed ones
and the original atmosphere is iteratively modified by means of a χ2 minimization algorithm until
a best fit to the observation is achieved. The retrieved atmosphere is then used as the basis of
further analyses and interpretations. The concepts and mathematical formulation of the forward
problem (synthesis) and the inverse one (inversion) are reviewed in Chapter 1.

The largest uncertainty in this form of analysis is introduced by the fact that the obtained
results must be interpreted in terms of the adopted geometrical model for the inversion. In prac-
tice the use of different models leads to different inferred properties for the atmosphere whose
polarized radiation we measure. This is particularly true for sunspot penumbrae. An exhaustive
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FIGURE 2: Cartoon representing the basic observational feature of the Evershed effect. The Wilson de-
pression of a sunspot is shown in the solid black line as the geometrical height where the continuum τc = 1
is formed. The depression achieves the largest values,∼−400 km in the umbra, where the magnetic field is
stronger and more vertical. At the center side of the penumbra the spectral lines are shifted towards shorter
wavelengths (blue profile on the top) indicating that there is a fl ow (blue arrow) towards the observer (in-
clined dashed lines). At the limb side of the penumbra the shift is towards larger wavelengths (red profile
at the top) and therefore the fl ow (red arrow) is directed away from the observer. This indicates that the
Evershed fl ow is directed radially outwards, from the umbra (where no wavelength shift is observed; see
black profile on the top) towards the quiet Sun.

description about the different, often contradictory, results of previous investigations of penum-
bral structure and dynamics is given in Chapter 2.

Therefore, one of the main aims of this thesis is to investigate sunspot penumbrae using
different geometrical models to describe its fine structure. Beyond testing the ability of these
models to reproduce the observed polarization signals, we carry out a thorough comparative study
of their physical properties and make use of other tools in order to decide which model comes
closest to reality. This is the main objective of Chapter 3. There, we conclude that the results
arising from different models could in fact be compatible with each other if we assume that
the structure of penumbrae is uncombed (i.e. two different magnetic structures with different
inclinations, along the vertical and horizontal directions, coexist in the resolution element, where
the most inclined one carries the Evershed flow). The term uncombed is chosen following a
similar model already proposed by Solanki & Montavon in the early nineties in order to explain
the asymmetry of the observed circular polarization signals (i.e. Stokes V ) emerging from sunspot
penumbrae.

Chapters 4 and 5 are entirely devoted to presenting the first results from the inversion of
spectropolarimetric data using the uncombed model, including force balance. In Chapter 4 the
uncombed model is applied to the widely used infrared neutral iron lines located at 1.56 µm,
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FIGURE 3: Cartoon representing the Wilson depression of a sunspot (black solid line) together with the
radial variation of the magnetic field strength (blue solid line). The two vertical dashed lines show the
position of two different radial positions on the limb side of the penumbra, r1 and r2, with r2 > r1. The
Evershed fl ow goes from the inner selected point r 1 towards the outer one, r2. The horizontal dashed
line indicates a selected geometrical height z0, where the gas and magnetic pressure are evaluated. If
the magnetic field strength decreases towards the quiet Sun and the total pressure (gas plus magnetic) is
equal at all radial distances for a given height, then the gas pressure at the outer point Pg(r2) is larger
than at the inner point Pg(r1). According to the siphon fl ow mechanism this initiates an inwards fl ow, in
disagreement with observations.

whereas in Chapter 5 we apply it to commonly used neutral iron spectral lines in the visible
spectral range. These two different and complementary studies have revealed the existence of
a radial gas pressure gradient along the magnetic structure with a nearly horizontal magnetic
field. This result provides the greatest piece of evidence ever reported, supporting the siphon
flow models as the physical mechanism that drives the Evershed flow. In particular, it removes a
major hurdle facing this otherwise promising model. Furthermore, we have been able, by means
of a careful interpretation of the observed polarization signals, to infer typical vertical sizes of
the horizontal magnetic structure of about 100-200 km, in close agreement with the horizontal
widths of penumbral fibrils deduced from observations with high angular resolution.

The presence of 100 km thick penumbral fibrils has important consequences, in particular
those associated with theoretical models and MHD simulations aiming to explain the Evershed
effect, since they have always considered fibrils whose diameter is much smaller than the pressure
scale height, in direct contradiction to our findings. To overcome the lack of theoretical work in
this issue, we have developed in Chapter 6 a simple magnetohydrostatic equilibrium for thick
penumbral fibrils that might help as a starting point for further and more complex theoretical
work.



Chapter 1

Spectropolarimetry

In this chapter we sketch the theory of spectral line formation in magnetized stellar
atmospheres, starting from the definition of the Stokes parameters and the Zeeman
effect. We will then write the Radiative Transfer Equation in the presence of a mag-
netic field, describing its mains constituents. Finally we will introduce the reader
to the concepts of inversion of spectral lines/Stokes profiles, describing the common
methods employed. In this chapter we will closely follow the approach (as well as
the notation) from Wittmann (1974), Rees et al. (1989), Landi Degl’Innocenti (1992)
and more recently, del Toro Iniesta (2003a).

1.1 Stokes parameters

1.1.1 Definition

Let us consider a quasi-monochromatic electromagnetic plane wave1 propagating along the Z-
axis. The electric field vector, E, rotates in the plane perpendicular to the direction of propagation.
The projections on the X and Y axis are:

Ex(t) = ax(t)exp i[φx(t)−2πνt +2πz/λ] (1.1)

Ey(t) = ay(t)exp i[φy(t)−2πνt +2πz/λ] (1.2)

Defining δ = φx− φy, the rotation of the electric field in the plane XY is said to be coun-
terclockwise if sinδ < 0 and clockwise if sinδ > 0. The Stokes parameters are defined as time
averages over an entire period:

1quasi-monochromatic wave is defined as a superposition of monochromatic waves with different amplitudes dis-
tributed over a frequency range ∆ν centered at ν0, where ν0� ∆ν

9



10 CHAPTER 1. SPECTROPOLARIMETRY

I = < a2
x > + < a2

y > (1.3)

Q = < a2
x >−< a2

y > (1.4)

U = 2 < axay cosδ > (1.5)

V = 2 < axay sinδ > (1.6)

These four parameters are often expressed in vectorial form as: S = (I,Q,U,V )T , where
superindex T means transposition. This is the so-called Stokes vector. An obvious condition is
that the amount of polarized light can not be larger than the total amount of light:

I2 > Q2 +U2 +V 2 (1.7)

where the equality is achieved only for a perfect monochromatic wave.

1.1.2 Measuring the Stokes parameters

Measuring the polarization state of the light means to measure the direction of motion of the
electric field vector (ax and ay), as well as the phase difference between the two Cartesian com-
ponents of the field. This can be successfully done by means of optical devices. The most widely
used components are the linear polarizer and linear retarder.

• The linear polarizer is an optical system that transmits all the light along a given direction
(i.e. optical axis), but reflects or absorbs all the light along its perpendicular direction. Let
us, for example assume that the incoming light beam has an electric field E = Exêx +Eyêy.
If the optical axis of the linear polarizer is inclined by an angle θ with respect to the X-axis,
the outgoing electric field, after passing such a device would be (see Fig 1.1; top panel):

E
′
= [Eêθ]êθ = [Ex cosθ+Ey sinθ]êθ (1.8)

• The linear retarder induces a retardance (i.e. a phase lag) δ to one of the Cartesian compo-
nents of the incoming light beam. In this case the outgoing electric field components are:
E
′
x = Ex and E

′
y = Eyeiδ (see Fig 1.1; bottom panel). The axis where no modification is

applied is said to be the fast axis, while the axis along which the retardance is imparted is
called the slow axis.

Let us now assume that we have an incoming light beam, characterized by Ex and Ey. We
make it pass through a linear retarder and afterwards through a linear polarizer (both working as
previously described). The beam properties after passing through these two optical devices can
be described as:

E
′
= Eθêθ = [Ex cosθ+Ey sinθeiδ]êθ (1.9)
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FIGURE 1.1: Top panel: linear polarizer with optical axis at angle θ. Bottom panel: linear retarder with
fast axis along the X-coordinate and slow axis along the Y-coordinate.

The intensity we measure in the output beam is

Imes(θ,δ) = < Eθ(θ,δ)E∗θ(θ,δ) > (1.10)

Imes(θ,δ) = < ExE∗x cos2 θ+EyE∗y sin2 θ
+ 1

2 ExE∗y sin2θe−iδ + 1
2 E∗x Ey sin2θeiδ > (1.11)

Employing Eq. 1.3-1.6 we can write:

< ExE∗x > =
1
2
(I +Q) (1.12)

< EyE∗y > =
1
2
(I−Q) (1.13)

< ExE∗y > =
1
2
(U + iV ) (1.14)

< E∗x Ey > =
1
2
(U− iV ) (1.15)

This allows us to rewrite Eq. 1.11 in the form:
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Imes(θ,δ) =
1
2
(I +Qcos2θ+U cosδsin2θ+V sinδsin2θ) (1.16)

The output intensity is a linear combination of the four Stokes parameters. Hence, by chang-
ing δ and θ we can determine I,Q,U and V in the following way:

I = Imes(0,0)+ Imes(π/2,0) (1.17)

Q = Imes(0,0)− Imes(π/2,0) (1.18)

U = Imes(π/4,0)− Imes(3π/4,0) (1.19)

V = Imes(π/4,π/2)− Imes(3π/4,π/2) (1.20)

• I represents the sum of the measured intensities transmitted through 2 linear polarizers
whose transmission axes are mutually orthogonal: θ = 0◦ and θ = 90◦.

• Q is the difference between the measured intensities transmitted through two linear polar-
izers at θ = 0◦ and θ = 90◦.

• U represents the difference between the measured intensities transmitted through two linear
polarizers at θ = 45◦ and θ = 135◦.

• V is the difference between the measured intensities transmitted through a quarter-wave
linear retarder, followed by two linear polarizers at θ = 45◦ and θ = 135◦, respectively.

1.2 Zeeman effect

The Hamiltonian of an electron in a atom is characterized by the kinetic and electrostatic inter-
action with the nuclear charge. If the atom is multi-electronic the Coulomb interactions with the
rest of the electronic cloud must be also considered. A general approach is to consider that the
electron is subject to an averaged electrostatic interaction (sum of the attraction with the nuclear
charge and the repulsions from the other electrons) that possesses spherical symmetry.

There are more interactions that must be taken into account. In particular the spin-orbit
interaction, which couples the spin angular momentum of the electron S with the orbital angular
momentum L into the total angular momentum of the electron J.

The application of an external agent along a given direction introduces a preferred direction
that breaks the spherical symmetry. If this external agent is the magnetic field, the new Hamil-
tonian of the system should include a new term to account for the interaction of the magnetic
moment of the electron with the magnetic field, H = HC + HLS + HB, where HC represents the
Hamiltonian of the electron only affected by the Coulomb interaction and HLS represents the cou-
pling between the spin angular momentum and the orbital angular momentum. The interaction
between the external magnetic field and the magnetic moment of the electron is denoted by HB
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HB = µB (1.21)

µ = µ0(J +S) (1.22)

µ0 =
e~

2mec
(1.23)

The terms HLS and HB are much smaller in magnitude than HC. Therefore a simple perturba-
tion analysis yields the new energy levels. Three possibilities can be distinguished:

1. HLS� HB (weak magnetic field): the energy associated with the spin-orbit interaction is
much greater. Therefore, the energy levels should be calculated, first, considering HLS as a
perturbation to HC, and later HB to HC +HLS. This is the Zeeman regime.

2. HB � HLS (strong magnetic field): the energy associated with the interaction with the
external magnetic field is much greater that the spin-orbit interaction. In this case we must
first consider HB as a perturbation to HC and later HLS to HC + HB. This is the so-called
Paschen-Back regime.

3. HB ∼HLS leads to consider directly HLS +HB as a perturbation to HC. This is the interme-
diate regime.

For intermediate/large nuclear charges, the spin-orbit interaction is dominant over the inter-
action with the external magnetic field. In this situation, the base {L2,S2,J2,Jk}, with Jk being
the projection of the total angular momentum along the direction of the magnetic field, forms
a complete set of observable quantities. The energy corrections, due to the interaction with the
magnetic field, can be written as:

HB|nlsjm〉= Mg
e~B
2mec

|nlsjm〉 (1.24)

Where e represent the electron charge and me its mass. B is the magnetic field strength, ~ is
the Planck’s constant divided by 2π and c is the speed of light. The quantum number M represents
the possible values for Jk. Finally, g is the so-called Landé factor, which in LS coupling has the
form,

g =

{
3
2 + S(S+1)−L(L+1)

2J(J+1) : if J 6= 0

0 : Otherwise
(1.25)

This energy correction turns out to depend on the quantum number M, which indicates the
projection of the total angular momentum on the direction where the magnetic field is applied.
The dependence of the energy on this quantum number degenerates the energy levels, which
in the unperturbed case depended only on J, into 2J + 1 sublevels with possible values for
M = −J, ...,+J. This phenomenon is known as the Zeeman effect. Classical electrodynamics
considerations (i.e. Lorentz’s theory of the electron) can account for the case of the normal Zee-
man effect, that is produced in a transition Ju = 0→ Jl = 1 or vice versa. For other quantum
numbers, anomalous Zeeman effect, the quantum mechanical approach is mandatory.
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FIGURE 1.2: Allowed transitions between the Zeeman split levels of two energy levels with Ju = 2 and
Jl = 1. σb components (∆M = 1) are indicated with blue colour. σr components (∆M =−1) are indicated
with red colour. π components (∆M = 0) are in green colour.

New transitions can appear between these new energy levels. For electric dipole transitions
the selection rules ∆J = Ju− Jl = 0,±1 and ∆M = Mu−Ml = 0,±1 apply. Transitions having
∆M = 0 are called π-components, while ∆M = ±1 transitions give rise to the σb and σr compo-
nents, respectively. The index r and b are used to indicate that the wavelength corresponding to
the transition is shifted towards longer or shorter values with respect to the unperturbed central π
transition (i.e. it has the same wavelength as the original one). This shift can be written as:

∆λ =
eλ2

0B
4πmec

(glMl−guMu) (1.26)

where indexes u and l stand for the upper and lower energy levels. Note that the classification in
σr and σb is done in the sense that, according to Eq. 1.26, the σr (Mu−Ml = −1)) is shifted to
the red (neglecting the Landé factors), while σb (Mu−Ml = +1) is shifted to the blue. In general
we have:

• Np = 2Jmin +1 π-transitions: ∆M = 0

• Nb = Ju + Jl σb-transitions: ∆M = +1

• Nr = Ju + Jl σr-transitions: ∆M =−1

Fig. 1.2 shows an example of the allowed transitions for an original transition J = 1→ J = 2.
Each possible transition corresponds to one component of the Zeeman pattern.

Let Np,b,r denote the number of Zeeman components of each type according to the ∆M value
of the transition. The strength of the various Zeeman components are normalized individually for
each kind of transition, according to their ∆M. The normalized strengths can be written as:

sij = Sij

(
Nj

∑
ij=1

Sij

)−1

(1.27)
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TABLE 1.1: Unnormalized strengths Sij for the different Zeeman components

∆M = +1 (σb) ∆M = 0 (π) ∆M =−1 (σb)
∆J = +1 (Ju +Mu)(Jl +Mu) 2(J2

u −M2
u) (Ju−Mu)(Jl−Mu)

∆J = 0 (Ju +Mu)(Ju−Mu +1) 2M2
u (Ju−Mu)(Ju +Mu +1)

∆J =−1 (Jl−Mu)(Ju−Mu +2) 2(J2
l −M2

u) (Jl +Mu)(Ju +Mu +2)

FIGURE 1.3: Zeeman patterns for the neutral iron lines (Fe I) at 5247.05 Å (left panel) and 6301.50
Å (right panel). The atomic configurations are5D2−7 D3 (geff=2) and 3P2−5 P1 (geff = 1.67) respectively.
Both patterns were calculated for a field strength of 1500 gauss. Colours are as in Fig. 1.2

where j = p,b,r; ip = 1, ...,Np; ib = 1, ...,Nb and ir = 1, ...,Nr. The unnormalized strengths Sij are
given in Table 1.1.

The simplest Zeeman pattern occurs when either Ju = 0, Jl = 0 or both Landé factors are
equal. In this case only one σr, one σb and one π component is present (i.e. a normal Zeeman
triplet). In general, the fine structure of the Zeeman pattern cannot be resolved. Therefore, in
some cases it is useful to treat them as effectives normal Zeeman triplets having an unshifted π
component and two symmetrical σ components shifted by

∆λ =
eλ0

4πmec
geffB (1.28)

where the effective Landé factor geff is independent of the coupling scheme used, and can be
written as follows:

geff =
1
2
(gl +gu)+

1
4
(gl−gu)[Jl(Jl +1)− Ju(Ju +1)] (1.29)

This approach is very useful whenever the Russell-Saunders coupling scheme (LS coupling)
is not valid. This is the case for heavy atoms (i.e. with very large nuclear charge) or transitions
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between highly excited levels, where the spin-orbit interactions become as strong as the interac-
tions between individual spins or orbital angular momenta. In these situations, intermediate or JJ
coupling should be used instead. Unfortunately there are no explicit derivations of the interaction
energy HB (Eq. 1.24) or the Landé factors for the upper and lower levels (Eq. 1.25) in these cases.
Then it is convenient to treat these cases as effective normal Zeeman triplets.

1.2.1 Molecular Zeeman effect

The Zeeman effect in molecular lines has been less investigated than its atomic counterparts
(Kroning 1928; Hill 1929; Crawford 1934; Schadee 1978). However, its great applicability to the
study of the solar surface, as well as cool stars, is beyond any question. Berdyugina & Solanki
(2002), Berdyugina et al. (2003) have offered a comprehensible compilation of the molecular
Zeeman effect for astrophysical purposes, improving and removing some errors in previous cal-
culations.

The basic idea is to consider the interaction of the total angular momentum J (composition of
the total electronic angular momentum and the nucleus rotational momentum) with the external
magnetic field. Depending whether the spin angular momentum of the electron, S, is coupled
strongly or not with the nuclear axis two cases (Hund’s cases a and b) can be distinguished.
Analogues formulas for the energy splitting (Eq. 1.26)), Landé factors (Eq. 1.25) and the strength
of the Zeeman components (Table 1.1) can be found for Hund’s pure cases a and b as well as
intermediate coupling cases in Berdyugina & Solanki (2002).

1.3 Radiative Transfer Equation

The Radiative Transfer Equation (RTE) in the presence of a magnetic field was first derived by
Unno (1956) using classical electrodynamics arguments. It was later extended by Rachkovsky
(1962a,1962b) to include magneto-optical effects and by Beckers (1969a,1969b) to treat arbitrary
Zeeman patterns. The first derivation using more general quantum mechanical principles is due
to Landi Degl’Innocenti (1983). The RTE describes how energy (i.e. a polarized light beam)
is transmitted through a medium where a magnetic field is present, taking into account how the
magnetic field modifies the polarization state of the light. A widely used expression for the RTE
is2

dI(z)
dz

=−K̂ [I(z)−S(z)] (1.30)

where I is the Stokes vector I = (I,Q,U,V ) emerging from the solar or stellar. The source
function vector S(z) is, under LTE, the Planck function with a temperature corresponding to a
local height z in the atmosphere, B(T(z)). Its radiation field is unpolarized: S(z) = (B(z),0,0,0).
The matrix K̂ , the so-called absorption matrix, can be decomposed into continuum and line
contributions

2We consider here the Z-axis, the direction of propagation of the light, to be perpendicular to the solar-stellar
surface.
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K̂ = χc1l+ χ̂lin (1.31)

where χc is the continuum absorption coefficient, 1l is the 4×4 unity matrix and χ̂lin is the line
absorption matrix. The last matrix can be redefined as:

χ̂lin = χlinφ̂ =
hν
4π

(nlBlu−nuBul)φ̂ (1.32)

where nl and nu denote the total populations of the lower and upper levels of the transition re-
spectively. h is Planck’s constant. Bij stands for the Einstein coefficient of the transition i→ j and
hν is its associated energy. With these definitions the RTE adopts a new form:

dI(z)
dz

=−χc

[

1l+
χlin

χc
φ̂
]

[I(z)−S(z)] (1.33)

Introducing the optical depth scale: dτc =−χcdz, and defining the line to continuum absorp-
tion coefficient: η0 = χlin

χc
, we can write:

dI(τc)

dτc
=
[
1l+η0φ̂

]
[I(τc)−S(τc)] (1.34)

To obtain the final form of the RTE, we will finally redefine the propagation matrix as:

K̂ = 1l+η0φ̂ (1.35)

This gives us

dI(z)
dτc

= K̂ [I(τc)−S(τc)] (1.36)

In vectorial form the RTE would be:

d
dτc







I
Q
U
V







=







ηI ηQ ηU ηV

ηQ ηI ρV −ρU

ηU −ρV ηI ρQ

ηV ρU −ρQ ηI













I−B
Q
U
V







(1.37)

The elements of the propagation matrix are expressed as:
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ηI = 1+
η0

2

(

φp sin2 γ+
1
2
[φb +φr](1+ cos2 γ)

)

(1.38)

ηQ =
η0

2

(

φp−
1
2
[φb +φr]

)

sin2 γcos2ϕ (1.39)

ηU =
η0

2

(

φp−
1
2
[φb +φr]

)

sin2 γsin2ϕ (1.40)

ηV =
η0

2
[φr−φb]cosγ (1.41)

ρQ = η0

(

ψp−
1
2
[ψb +ψr]

)

sin2 γcos2ϕ (1.42)

ρU = η0

(

ψp−
1
2
[ψb +ψr]

)

sin2 γsin2ϕ (1.43)

ρV =
η0

2
[ψr−ψb]cosγ (1.44)

The absorption and anomalous dispersion profiles are given by:

φ j =
N j

∑
i j=1

si j H(a,ν+νD +νi j) (1.45)

ψ j = 2
N j

∑
i j=1

si j F(a,ν+νD +νi j) (1.46)

In these two last equations the index j runs for r, p,b as in equations 1.38-1.44. The sum-
mation over i j = 1, ...,N j indicates that the absorption/profiles are calculated taking into account
all the the σr, π and σb components of the Zeeman pattern (Sect. 1.2). si j are the normalized
strength for each component as given by Eq. 1.27. H and F functions are the Voigt and Faraday
functions evaluated for a given damping a and at a given distance from line center, λ0, in units of
Doppler width, ν = λ−λ0

∆λD
. However it has to be taken into account that for each component of the

Zeeman pattern, the central position is shifted by two quantities: νD and νi j . The first quantity
affects all the Zeeman components equally and it denotes the wavelength shift produced by a net
macroscopic velocity along the vertical axis (i.e. Doppler effect).

νD =
vzλ0

c∆λD
(1.47)

The second quantity, νi j takes into account that for each component of the Zeeman pattern,

its absorption/dispersion profile is shifted, due to the Zeeman splitting by an amount: νi j =
∆λi j

∆λD
,

where ∆λi j is given by Eq. 1.26.

∆λi j =
eλ2

0B
4πmec

(glMl−guMu)i j (1.48)
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The damping a and the Doppler width ∆λD are expressed as follows:

a =
λ2

0

4πc∆λD
(Γrad +Γcol) (1.49)

∆λD =
λ0

c

(
2KT

M
+ v2

mic

)1/2

(1.50)

where Γrad and Γcol describe the line broadening parameters due to the radiative lifetime of the
energy levels and due to collisions with external perturbers. The Doppler width is evaluated for a
given temperature T and microturbulent velocity vmic.

The Voigt, H,and Faraday, F , functions are:

H(a,ν
′
) =

a
π

Z ∞

−∞

e−y2

(ν′− y)2 +a2 dy (1.51)

F(a,ν
′
) =

1
2π

Z ∞

−∞

(ν′− y)e−y2

(ν′− y)2 +a2 dy (1.52)

Finally, the angles γ and ϕ appearing in Eq. 1.38-1.44 indicate the orientation of the magnetic
field vector, with γ, the angle between the magnetic field vector and the observer, and ϕ the
angle of the projection the magnetic field vector onto the plane perpendicular to the observer (see
Fig 1.4). Note that when the observer’s viewing angle is not aligned with the vertical axis on the
surface (Z-axis; see footnote in page 10), the RTE has the form:

µ
dI(z)

dz
=−K̂ [I(z)−S(z)] (1.53)

where µ = cosθ, being θ the angle between the observer’s line of sight and the Z-axis (e.g.
heliocentric angle). In this case the RTE as presented in Eq. 1.36 keeps the same form by just
defining the optical depth scale along the line of sight as: dτlos

c =−(χc/µ)dz. In addition, Eq. 1.47
must be also modified as vz→ vlos.

1.4 Formal solution of the RTE

1.4.1 Symmetries

In the absence of gradients in the kinematic and magnetic properties of the atmosphere (namely
the propagation matrix K̂ in Eq. 1.30), i.e. in the line of sight velocities (Eq. 1.47), magnetic
field strength (Eq. 1.48) and orientation (Eq. 1.38-1.44), the solution of the RTE possesses the
following symmetries:

I(λ−λ0) = I(λ0−λ) (1.54)

Q(λ−λ0) = Q(λ0−λ) (1.55)

U(λ−λ0) = U(λ0−λ) (1.56)

V (λ−λ0) = −V (λ0−λ) (1.57)
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FIGURE 1.4: Schematic representation of the angles that define the magnetic field vector orientation in the
observer’s reference frame. Left panel: case when the observer is aligned with the vertical to the solar
surface (i.e. observations on the disk center). Right panel: case when the observer is inclined an angle θ
with respect to the vertical (i.e observations out of the disk center).

This means that the net circular polarization (NCP) is zero if no gradients are present:

Z ∞

−∞
V (λ−λ0)dλ = 0 (1.58)

As soon as the NCP is found not to be zero, gradients in the mentioned physical quantities
are known to be present in the atmosphere. This is a potentially powerful diagnostic tool (see
Sect. 2.2.2)

1.4.2 Evolution Operator

Let us introduce the evolution operator Ô(τc,τ
′
c). This operator has the ability to transform the

Stokes vector as seen at a given optical depth τc to another optical depth location τ′c in the absence
of emission processes along the path between these two points.

I∗(τc) = Ô(τc,τ
′
c)I
∗(τ

′
c) (1.59)

where the index ∗ denotes the solution for the homogeneous equation (i.e. the source function
in Eq. 1.36 is neglected and the differential equation becomes homogeneous). The evolution
operator fullfills the two following properties:

Ô(τc,τc) = 1l (1.60)

Ô(τc,τ
′′
c) = Ô(τc,τ

′
c)Ô(τ

′
c,τ

′′
c) (1.61)
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Ô(τc,τ
′
c) can be used as an integration factor of the non-homogeneous differential equation

1.36 to obtain:

I(τ1) = Ô(τ1,τ0)I(τ0)−
Z τ1

τ0

Ô(τ1,τc)K̂ (τc)S(τc)dτc (1.62)

where τ0 and τ1 are two optical depth points, indicating the bottom and top of the considered
medium. The observer is located at τ1 = 0. The first term in Eq. 1.62 indicates the radiation
entering the medium at the inner boundary τ0 evolves until it is observed in τ1. If this inner point
is chosen to be deep enough (τ0→ ∞), then the atmosphere is so optically thick that no photons
emitted at τ0 are able to reach the top of the medium:

lim
τ0→∞

Ô(0,τ0)I(τ0) = 0 (1.63)

The second term in Eq. 1.62 takes into account all possible emissions at each infinitesimally
thin layer between the inner and outermost boundaries, and how they evolve to the next one until
the observation point is reached. Applying Eq. 1.62 into 1.61 we obtain the final formal solution
of the RTE:

I(0) =
Z ∞

0
Ô(0,τc)K̂ (τc)S(τc)dτc (1.64)

The solution of the RTE as presented in Eq. 1.64 may look easy to evaluate, but in practice is
plagued with difficulties. First of all, for the evaluation of the absorption matrix K̂ (τc), we must
know the populations of the atomic levels participating in the transition (Eq. 1.32). These pop-
ulations depend, in the general case of Non Local Thermodynamic equilibrium (NLTE), on the
radiation field itself, because the atomic transitions are induced partially by the incident photons.
This self dependence implies that Eq. 1.64 needs to be solved iteratively. When the collisions
in the plasma are strong enough, the atomic populations are no longer coupled with the radia-
tion field, but with the local temperature (LTE). In this case Eq. 1.32 can be solved using the
Boltzmann equation, thus simplifying the problem to a large extend. Even now, there are no
analytical means to know the evolution operator Ô(0,τc), and therefore it must be evaluated nu-
merically. From its properties (Eq. 1.59-1.61) the following differential equation for Ô(τc,τ

′
c)

can be derived:

dÔ(τc,τ
′
c)

dτc
= K̂ (τc)Ô(τ

′
c,τc) (1.65)

Eq. 1.65 can not be readily integrated to obtain the evolution operator, namely because the
exponential of a matrix is given by its Taylor expansion and matrixes do not necessarily commute
(see del Toro Iniesta 2003a). Thus, in general we can not write

Ô(0,τc) = e−
R τc

0 K̂ (t)dt (1.66)
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Therefore, numerical approaches are needed. Numerical integrations of the RTE have been car-
ried out in the past using the fourth-order Runge-Kutta algorithm (Wittmann 1974). Other strate-
gies apply Feautrier’s method (1964). One of the most widely used algorithms is the Diagonal
Element Lambda Operator (DELO: Rees et al. 1989) that has the advantage to provide an ap-
proximation to the evolution operator with no extra cost when the RTE is solved. Improvements,
based on larger order Taylor expansions of the Stokes vector have been carried out by Auer (1976)
and Bellot Rubio et al. (1998).

1.4.3 Milne-Eddington approximation

There are few exceptions when the solution of Eq. 1.65 is given by Eq. 1.66. A well known one
is the unidimensional case when no polarization is considered (Q = U = V = 0). As soon as a
magnetic field is present, things become more complicated. However, if the absorption matrix
can be written as:

K̂ (τc) = K̂0 f (τc) (1.67)

Eq. 1.66 holds and Eq. 1.65 can be integrated to obtain.

Ô(0,τc) = e−
R τc

0 K̂ (t)dt (1.68)

The simplest case when this can be done is when:

K̂ (τc) = K̂0 (1.69)

This is the so-called Milne-Eddington approximation. It requires the absorption matrix to
be constant throughout the atmosphere. In other words: inclination angles of the magnetic field
vector (γ and ϕ) that enter into Eq. 1.38-1.44, as well as damping parameter a, line of sight
velocity Vlos, and magnetic field strength B, that enter into Eq. 1.45-1.46, must be constant with
optical depth. In addition, the line-to-continuum absorption coefficient η0 must be also constant
with optical depth.

A further assumption is to consider that the source function varies linearly with optical depth:3

S(τc) = (S0 +S1τc,0,0,0)T (1.70)

With this, Eq. 1.64 is reduced to:

I(0) =
Z ∞

0
e−K̂0τc K̂0(S0 +S1τc)dτc (1.71)

3As pointed out in Sec. 1.3, the source function in LTE approximation is the Planck function with a local tempera-
ture T , S(τc) = (B(τc),0,0,0).
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FIGURE 1.5: Milne-Eddington synthesis of the Fe I 15648.5 Å line. The employed parameters are:
η0 = 2, ∆λD = 0.23, a = 0.1 and S1/S0 = 0.01, γ = 0, ϕ = 0, B = 500 G. Stokes Q and U are zero because
the magnetic field is parallel to the observer. The magnetic field is not strong enough to make the σr and σb

components to be fully split: there is only a broadening of the line.

This last form of the RTE in the Milne-Eddington approximation has the advantage that can
be solved by parts analytically (Landi Degl’Innocenti 1992), finally yielding:

I(0) = S0 +
ηI

∆
[η2

I +ρ2
Q +ρ2

U +ρ2
V]S1 (1.72)

Q(0) = −S1

∆
[η2

I ηQ +ηI(ηVρU−ηUρV)+ρQΠ] (1.73)

U(0) = −S1

∆
[η2

I ηU +ηI(ηQρV−ηVρQ)+ρUΠ] (1.74)

V (0) = −S1

∆
[η2

I ηV +ηI(ηUρQ−ηQρU)+ρVΠ] (1.75)

where

∆ = η2
I (η

2
I −η2

Q−η2
U−η2

V +ρ2
Q +ρ2

U +ρ2
V)−Π2 (1.76)

Π = ηQρQ +ηUρU +ηVρV (1.77)

For visualization purposes we have synthetized the Fe I line at 15648.5 Å (7D1−7 D1; geff =
3) with different values of the magnetic field strength and inclination angles (see Fig. 1.5,1.6,1.7
and 1.8). The very different polarization profiles obtained should be understood as a powerful
tool, to unequivocally determine the magnetic field vector from the observation of the Stokes
parameters (see Sect. 1.5).
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FIGURE 1.6: Milne-Eddington synthesis of the Fe I 15648.5 Å line. The employed parameters are:
η0 = 2, ∆λD = 0.23, a = 0.1 and S1/S0 = 0.01, γ = 0, ϕ = 0, B = 1500 G. Stokes Q and U are zero
because the magnetic field is parallel to the observer. The magnetic field is now strong enough to make the
σr and σb components to be completely split in Stokes I. Note that in Stokes I the central π component
does not appear because γ = 0, hence, in Eq. 1.38, φp sin2 γ = 0 and therefore it does not contribute in ηI

or Stokes I (Eq. 1.72; compare with Fig. 1.5).

FIGURE 1.7: Milne-Eddington synthesis of the Fe I 15648.5 Å line. The employed parameters are:
η0 = 2, ∆λD = 0.23, a = 0.1 and S1/S0 = 0.01, γ = 90, ϕ = 0, B = 2000 G. Stokes V is zero because
the magnetic field is perpendicular to the observer. In addition, Stokes U is zero because ϕ = 0 and thus,
ηU also vanishes (see Eq. 1.40). The magnetic field is strong enough to make the σr and σb components
to be completely split from the central π component in Stokes I, which now appears because in Eq. 1.38,
φp sin2 γ 6= 0 and therefore having a net contribution in Stokes I (see Eq. 1.72; compare with Fig. 1.6).
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FIGURE 1.8: Milne-Eddington synthesis of the Fe I 15648.5 Å line. The employed parameters are:
η0 = 2, ∆λD = 0.23, a = 0.1 and S1/S0 = 0.01, γ = 90, ϕ = 45, B = 2000 G. Stokes V is zero because
the magnetic field is perpendicular to the observer. In addition, Stokes Q is zero because ϕ = 45 and thus,
ηQ also vanishes (see Eq. 1.39). The magnetic field is strong enough to make the σr and σb components
to be completely split from the central π component in Stokes I, which now appears because in Eq. 1.38,
φp sin2 γ 6= 0 and therefore having a net contribution in Stokes I (see Eq. 1.72; compare with Fig. 1.6 and
Fig. 1.7).

1.4.4 General case

It is important to notice that the Milne-Eddington approximation is reliable as long as no net
circular polarizaton is observed (see Sect. 1.4.1), since this is an indicator that no gradients along
the line of sight are present (condition for the absorption matrix to be constant along the ray
path). Another important point is that the Milne-Eddington approximation neglects much of
the thermodynamics of the atmosphere: first assuming that the level populations and continuum
opacity are such that η0 is constant, and constraining the real temperature stratification of the
atmosphere assuming that the source function changes linearly with optical depth.

In the general case, the RTE has to be solved numerically because the absorption matrix
is no longer constant. The continuum absorption coefficient (Eq. 1.31) has to be calculated
for each wavelength taking into account contributions from the bound-free and free-free tran-
sitions: mainly the opacity due to the negative hydrogen ion H− and Thompson scattering by free
electrons. The electron pressure and partial pressures of the different elements needed for this
purpose are derived using the Saha equation (LTE approximation), partition functions, element
abundances and the hydrostatic equilibrium equation. The line absorption coefficient (Eq. 1.32)
is calculated by means of the Boltzmann equation. This has to be done for each atmospheric
layer since the temperature changes continously from the τc = 1 level (not necessarily following
a linear trend).

In addition the damping parameter (Eq. 1.49) changes with depth in the atmosphere. This is
produced by changes in the temperature itself and by changes in the collisional damping, which
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depends on the density (or partial pressures) of neutral species such as hydrogen and helium 4. A
possible strategy can be simplified as:

1. The physical quantities T(τ), B(τ), γ(τ), φ(τ), Vlos(τ), Vmic(τ) as well as an estimate of the
gas pressure (boundary condition) on top of the atmosphere, Pgas(τmax), must be known.

2. T(τ) and Pgas(τmax) can provide us with Pgas(τ), Pelec(τ), ρ(τ), χc(τ). This is done by
means of iterative strategies (as in Wittmann 1974; Mihalas 1978; Gray 1992; solving the
Saha equation for a number of important electron donors and a given set of element abun-
dances), integrating the hydrostatic equilibrium equation and calculating the continuum
opacity at each atmospheric layer: χc(T(τ),Pelec(τ)) (Gustaffson 1973; Wittman 1974). In
general χc (exceptions: i.e. Balmer jumps) does not change much in small wavelengths
rages, therefore it is sufficient to evaluate it for a single wavelength near each transition
considered.

3. The level populations (Eq. 1.32) are calculated in LTE with the Boltzmann equation, and
correcting the line absorption coefficient by the oscillator strength of the considered tran-
sition.

4. The components of the Zeeman pattern must be calculated for each layer knowing the
electronic configuration of the transition and the magnetic field strength (Eq. 1.25-1.26-
1.27 and Table 1.1).

5. The damping parameter (Eq. 1.49) is calculated by knowing the radiative lifetime of the
atomic transition Γrad (e.g. damped harmonic oscillator; Mihalas 1978) and the broadening
by collisions with neutral perturbers Γcol (e.g. by van der Waals interaction potential;
Unsöld 1955)

6. We have now all the required elements to evaluate the absorption matrix for each atmo-
spheric layer. And therefore the RTE (Eq. 1.64) is now integrated using any appropriate
method that yields a good approximation for the evolution operator (Eq. 1.65) (e.g. DELO)

1.5 Inversion of Stokes profiles

The term Inversion of Stokes profiles applies to any method used to, by knowing the emergent
radiation field (i.e. Stokes vector I(λ)) or any other quantity related (e.g. net circular polarization)
from a given source, derive the physical parameters: temperature stratification, magnetic field
strength and orientation and line-of-sight velocity (in the the general case, also stratifications
with optical depth) of the source (star, sun etc.).

Many methods rely on some kind of approximation that helps to derive analytical solutions of
the RTE (e.g. weak field approximation, longitudinal field approximation etc.). Others are more
phenomenological and directly ignore the radiative transfer to calculate a particular quantity of
interest: measurements of the velocity by calculating the central position in Stokes I or velocity

4In the photosphere of the sun and of cool stars the main contribution to the collisional broadening are neutral
species. Other contributions, such as linear or quadratic Stark effect can be neglected
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stratifications using bisector analysis, measurements of the field strength from the separation of
the blue and red peaks in Stokes V etc. Although these methods provide a good first look into the
data and are reliable as long as the assumptions on which they rely are fulfilled, they are not to
be trusted in general cases because they do not solve the full radiative transfer problem (see del
Toro Iniesta & Ruiz Cobo 1996;1997).

1.5.1 Iterative and non-iterative methods

In the following we shall assume that we address the full problem of the line formation in presence
of a magnetic field by self-consistently solving the RTE (Eq. 1.64) by means of some numerical
approach (as sketched in Sect. 1.4.4 for instance). The question is now how the synthetic profiles
are compared to observed ones in order to obtain reliable values for the physical parameters:
temperature, magnetic field vector and line-of-sight velocity and its stratifications with optical
depth. According to del Toro Iniesta (2003b) we will classify these methods into iterative and
non-iterative algorithms.

Iterative algorithms modify an initial guess atmosphere, characterized by a given set of pa-
rameters defining the relevant physical quantities, by means of a least-squares minimization algo-
rithm, until the synthetic profiles match the observed ones. The atmosphere retrieved is assumed
to be the real one. Among the advantages of the iterative algorithms we shall highlight the pos-
sibility to deal (in principle) with any possible stratification with optical depth in the physical
parameters. Non-linear iteration algorithms can make use of the derivatives of the merit func-
tion with respect to the free parameters (Steepest descent, Levenberg-Marquardt etc.; Press et al.
1986; Ruiz Cobo & del Toro Iniesta 1992) or use more complex and reliable (at cost of speed)
genetic algorithms (e.g. Pikaia; Lagg et al. 2004).

Non-iterative algorithms are basically based on the idea of building a huge database, where
synthetic profiles along with the physical quantities that produce them are stored. The observed
Stokes vector is compared with the profiles in the data base and by just finding the closest one,
the parameters defining the atmosphere are recovered. In order to get a reliable inversion the
database must be as complete as possible.

Non-iterative algorithms are orders of magnitude faster than iterative ones. The most time
consuming process is to build up a sufficiently large database, but once it is available, the in-
version process takes just some few seconds. In principle it is also possible to create a huge
database where all possible stratifications are contained, but in reality this is unachievable. Just
building a database for a Milne-Eddington model (which uses only 10 free parameters) needs up
to 1010 profiles (see Socas-Navarro et al. 2001). If the Milne-Eddington approximation is re-
laxed and one tries to use a model containing more generic stratifications, the number of needed
profiles becomes virtually unpractical. Some methods are used to reduce the dimension of the
problem in non-iterative algorithms, like the Principal Component Analysis method (PCA; Rees
et al. 2000), which tries to classify the profiles in terms of a smaller set of eigenprofiles (coef-
ficients of an expansion of the profiles in a given orthogonal base) and therefore requiring less
amount of parameters in the database. Skumanich & López Ariste (2002) has investigated this
issue and they have found that almost all coefficients of the expansion posses a physical counter-
part (velocity, magnetic field strength etc.). Socas-Navarro & Sánchez Almeida (2002) have used
the PCA technique to build a database with profiles rising from MISMA (Sánchez Almeida &
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Degl’Innocenti 1996) atmospheres. Artificial Neural Networks have been also used for inversion
purposes (Carroll & Staude 2001). Like the PCA strategy, it is very time consuming to train the
network for a given model atmosphere and for a given spectral line, but once this is done the
inversion is performed even faster than with PCA.

Each method has its advantages and shortcomings. In particular, iterative methods suffer from
the all the problems associated with least squares fitting: the possibility that the minimization
stops at a local minimum, thus retrieving an incorrect atmosphere. Of course several ways can be
worked out to avoid this problem: e.g. using very different initial guess models and check whether
the retrieved atmosphere is the same for all cases (unique). Non-iterative methods always find a
global minimum within the database but of course this is no proof that the atmosphere is unique,
since the database can be incomplete. Furthermore, all inversion techniques, iterative and non-
iterative, are ill-posed in the sense that two different set of parameters (atmospheres) can yield
identical observed polarization signal. This is a mayor problem in all inversion issues and the
user has to learn how to live with this. In general, once two different models are proved to be able
to reproduce the observed profiles, one must rely on theoretical considerations or other kinds of
observations in order to decide which model comes closer to reality.

In general, it is accepted that, for large amounts of data and to get a first idea of the spatial
distribution of the magnetic field, velocities etc. non-iterative algorithms are preferred due to its
much larger speed. However, for a more thorough extraction of information from the observed
profiles iterative methods, which can very easy handle general stratifications with optical depth,
are more suitable. In the following we shall study in more detail the latter strategy.

1.5.2 The merit χ2 function

Least squares fitting algorithms are based on the minimization of the so-called merit function,
defined as:

χ2 =
1
L

4

∑
k=1

M

∑
i=1

[Iobs
k (λi)− Isyn

k (x,λi)]
2 w2

k

σ2
k

(1.78)

where L is the total number of free parameters, the index k = 1,2,3,4 refers to the 4 components
of the Stokes vector: I1 = I, I2 = Q etc. Index i = 1, ...,M samples the full wavelength range of
the observations. Iobs

k (λi) are the observed profiles, while: Isyn
k (x,λi) are the synthetic profiles

produced by an atmosphere which is characterized by the set of L free parameters x = [x1, ...,xL].
The noise in the observations (different for each Stokes profile) comes into the equation through
σ2

k . Finally each component of the Stokes vector is weighted with w2
k in order to ensure that each

of them has the same relative weight on χ2 independent of their amplitudes.
Note that the parameters defining the atmosphere are, in the case of the Milne-Eddington

approximation: x = [S0,S1,η0,a,∆λD,Vlos,B,γ,ϕ], with a total number of free parameters L = 9.
However in the general case, where quantities are functions of the optical depth τc we would
have:

x = [T (τ1), ...,T (τF),Vlos(τ1), ...,Vlos(τF),B(τ1), ...,B(τF), ...] (1.79)
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where F is the total number of points in which the atmosphere is discretized. If we have Q depth-
dependent variables and R depth independent, the total amount of free parameters would then be:
L = Q×F + R. In this general case, if the temperature T (τ) is known, the Doppler width and
damping parameters can be derived by thermodynamics means (see Sect. 1.4.4), and therefore
they are no longer free parameters as in the case of the Milne-Eddington approximation.

1.5.3 Linearization of the RTE and Response functions

Let us now consider the case when we apply small perturbations to all the atmospheric parameters
in the form:

δxp(τc) = δxpδ(τc− τ∗) (1.80)

where δ(τc− τ∗) denotes the delta Dirac function centered at an optical depth point τ∗. Index
p = 1, ...,F +R, that is, we perturb both height dependent and independent quantities at a single
optical depth point. These small perturbations will induce small changes in the absorption matrix
as well as the source function:

δK̂ (τc) =
F+R

∑
p=1

δK̂
δxp

δxpδ(τc− τ∗) (1.81)

δS(τc) =
F+R

∑
p=1

δS
δxp

δxpδ(τc− τ∗) (1.82)

When these perturbations are introduced into the RTE (Eq. 1.36) we obtain:

d(I+δI)
dτc

= (K̂ +δK̂ )[I+δI−S−δS] (1.83)

By expanding these terms, taking into account that some terms cancel out because they form
the RTE itself and neglecting terms in second order of perturbations (linearization), we obtain:

d(δI)
dτc

= K̂ [δI−δS]+δK̂ [I−S] (1.84)

Assuming that the inverse of the absorption matrix exists (its determinant is different from
zero) we can now define a new source function,

S̃ = δS− K̂ −1δK̂ [I−S] (1.85)

With this definition Eq. 1.84 can be expressed as

d(δI)
dτc

= K̂ [δI− S̃] (1.86)



30 CHAPTER 1. SPECTROPOLARIMETRY

which is formally the same as the general RTE (Eq.1.36) but for the perturbations in the radiation
field instead of the radiation field itself. Therefore the solution can be written also as in Eq. 1.64
as follows:

δI(0) =
Z ∞

0
Ô(0,τc)K̂ (τc)S̃(τc)dτc (1.87)

with the definition of S̃, we can insert the perturbations as in Eq. 1.81 and 1.82. Taking into
account the properties of the Dirac function, Eq. 1.87 can be integrated directly by just evaluating
the integrand at the optical depth point where the perturbation was performed, τ∗,

δI(0) = Ô(0,τ∗)K̂ (τ∗)

[
F+R

∑
p=1

δS
δxp

δxp− [I(τ∗)−S(τ∗)]K̂ −1(τ∗)
F+R

∑
p=1

δK̂
δxp

δxp

]

(1.88)

or in a more compact form,

δI(0) =
F+R

∑
p=1

Ô(0,τ∗)
[

K̂ (τ∗)
δS
δxp
− [I(τ∗)−S(τ∗)]

δK̂
δxp

]

︸ ︷︷ ︸

Rp(τ∗)

δxp (1.89)

where Rp(τ∗) is called the response function vector to perturbations in the parameter xp at τ∗. It
is a four component vector, where each component refers to one of the Stokes parameters,

Rp(τc) = (R I
p ,R Q

p ,R U
p ,R V

p ) (1.90)

With this definition, the perturbation in the emergent spectrum (Eq. 1.86) can be written as

δI(0) =
F+R

∑
p=1

Rp(τ∗)δxp (1.91)

1.5.4 Derivatives of χ2

Let us now consider the merit function (Eq. 1.78) and study how it changes when a parameter xp

is slightly changed at a single optical depth point.

∂χ2

∂xp
= − 2

L

4

∑
k=1

M

∑
i=1

[Iobs
k (λi)− Isyn

k (x,λi)]
w2

k

σ2
k

∂Isyn
k (x,λi)

∂xp
(1.92)

Considering now another perturbation in another parameter xq we have
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∂2χ2

∂xp∂xq
=− 2

L
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M

∑
i=1

[
∂Isyn
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∂Isyn
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k (x,λi)
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k (x,λi)
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]
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k

σ2
k

(1.93)

Ignoring second derivatives of the synthetic profiles, we realize that the derivatives of the
merit function with respect to the atmospheric parameters can be written in terms of the response
functions as follows:

∂χ2

∂xp
= − 2

L

4

∑
k=1

M

∑
i=1

[Iobs
k (λi)− Isyn

k (x,λi)]
w2

k

σ2
k

R k
p (λi) (1.94)

∂2χ2

∂xp∂xq
' − 2

L

4

∑
k=1

M

∑
i=1

R k
p (λi)R k

q (λi)
w2

k

σ2
k

(1.95)

Therefore, the derivatives of the merit function can be written as combinations of the response
functions. An important advantage of this approach is that all response functions can be evaluated
analytically at the same time that the RTE is solved (Eq. 1.89), therefore significantly reducing
the computing time. A clear example is found if we again consider the Milne-Eddington approx-
imation, where the integration of the RTE does not even need to be performed. In this case, the
free parameters to be determined from the inversion are:

x = [S0,S1,η0,a,∆λD,vlos,B,γ,ϕ] (1.96)

As can be seen in Eq. 1.72-1.77, the emergent spectrum can be easily derived with respect
to S0 and S1. Derivatives with respect to the rest of the parameters are to be evaluated through
the derivatives of the elements of the absorption matrix. Among them, response functions to
perturbations in η0, γ and ϕ are easy to calculate, as they can be obtained through Eq. 1.38-
1.44. Perturbations in a, ∆λD, vlos and B imply the derivation of the Voigt and Faraday functions
(Eq. 1.45 and 1.46). This is somewhat more complicated, but can be worked out by applying the
chain rule:

∂H(a,ν′)
∂vlos

=
∂H(a,ν′)

∂ν′
∂ν′

∂vlos
(1.97)

∂H(a,ν′)
∂∆λD

=
∂H(a,ν′)

∂ν′
∂ν′

∂∆λD
(1.98)

∂H(a,ν′)
∂B

=
∂H(a,ν′)

∂ν′
∂ν′

∂B
(1.99)

and the same for the Faraday function F(a,ν′). Here we just need to take into account that
ν′ = ν+νD(∆λD,vlos)+νi j(B). In addition,
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∂H(a,ν′)
∂ν′

= 2aF(a,ν
′
)−2ν

′
H(a,ν

′
) (1.100)

∂F(a,ν′)
∂ν′

=

√

4
π
−2aH(a,ν

′
)−2ν

′
F(a,ν

′
) (1.101)

∂H(a,ν′)
∂a

= −∂F(a,ν′)
∂ν′

(1.102)

∂F(a,ν′)
∂a

=
∂H(a,ν′)

∂ν′
(1.103)

In a more general case, the derivatives with respect to S0, S1, a, η0 and ∆λD are to be substi-
tuted by derivatives with respect to the temperature T . This introduces new complications, since
the derivative with respect to the temperature of the line-to-continuum absorption coefficient ra-
dio, η0, implies the derivation of the Boltzmann equation and partition functions. Furthermore,
derivatives of the damping parameter a, and in particular of the collisional damping Γcol are not
easy to handle. In addition, in this case we do not have an analytical expression for the emergent
spectrum, as happens in the Milne-Eddington atmosphere. Therefore the response functions must
be evaluated through Eq. 1.89. There we notice that I(τ∗) must be known, and therefore we must
integrate the RTE in order to evaluate the response function. Fortunately, these two processes can
be carried out simultaneously, and as already mentioned, a single integration of the RTE provides
us with all the needed response functions.

1.5.5 Inversion procedure

We now have all the tools available to introduce the analytical derivatives of the merit function
into a minimization algorithm, that will iteratively look for the optimum values in the atmospheric
parameters that fit the observed profiles. Classical methods are, for instance, the steepest descent
method and the Hessian method.

The steepest descent method is reliable when the initial guess parameters are far from the final
solution. In this case a first order Taylor expansion of Isyn(λi,x) suffices when a δxp perturbation
is performed. According to Eq. 1.91 we have

Isyn(x+δxp,λi) ' Isyn(x,λi)+Rp(λi)δxp (1.104)

The new merit function is then given by

χ2(x+δxp)'
1
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4
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=
1
L

4

∑
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2 w2
k

σ2
k

(1.105)

Looking for a minimum it must be verified that the first derivative of χ2(x+δxp) with respect
to δxp vanishes.
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(Eq. 1.94)
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This expression provides us with the needed perturbation in the atmospheric parameters that
decreases χ2.

δxp = −L
2

∂χ2

∂xp

[
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∑
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]−1

(1.107)

Near the minimum ∂χ2

∂xp
rapidly vanishes, and therefore the perturbations δxp produced by the

steepest descent method are far too small. Here a new method, that considers second derivatives
of the merit function is preferred. A common one is the Hessian method, that considers a second
order Taylor expansion of the merit function after a perturbation δx has been introduced.

χ2(x+δx) ' χ2(x)+∇χ2(x)δx+
1
2

δxT Ĥ δx (1.108)

where Ĥ is the Hessian matrix, whose elements contain the second derivatives of the merit func-
tion with respect to the free parameters, or according to Eq. 1.95

Hi j =
∂2χ2

∂xi∂x j
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(1.109)

Here δx minimizes the merit function if the partial derivatives of χ2(x + δx) with respect to
δx are zero. This leads to the expression

∇χ2(x)+ Ĥ δx = 0 (1.110)

δx =−Ĥ −1∇χ2(x) (1.111)

The technique that combines both methods, in order to deal with situations both far away and
near the minimum, is the so-called Levenberg-Marquardt algorithm. The idea is to use the same
formalism as in the Hessian method, but using a modified Hessian matrix, Ĥ

′
, whose elements

are:
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H
′

i j =

{
Hi j(1+ ε) if i = j
Hi j Otherwise

(1.112)

being the required perturbations to produce a minimization in the merit function, in the form

∇χ2(x)+ Ĥ ′δx = 0 (1.113)

δx =−Ĥ ′−1
∇χ2(x) (1.114)

Note that when the parameter ε� 1 the modified Hessian matrix is quasi-diagonal and the
perturbations can be expressed as in Eq. 1.107. We are therefore in the limit where the steepest
descent method is recovered. On the other hand, when ε = 0 the Hessian method is obtained.
By varying the weight of ε we can switch from one method to the other according to the our
requirements. For instance:

1. Try with an initial guess atmosphere characterized by x with ε� 1.

2. Calculate the perturbations δx by solving the set of linear equations Eq. 1.112.

3. Check whether χ2(x + δx) < χ2(x). If so, update the new atmosphere to x
′
= x + δx and

repeat step 2 decreasing ε by an order of magnitude. If not, we are far from the minimum,
therefore we keep the original trial atmosphere x and repeat step 2 increasing ε by an order
of magnitude in order to approach the steepest descent method.

4. The procedure is stopped if χ2 ' 1 or χ2 does not decrease significantly after 3-4 iterations.

The calculation of the inverse of the modified Hessian matrix in order to solve the system
of equations that yield the needed perturbations to minimize the merit function (Eq. 1.110) is
noteworthy. For the inverse matrix to exist, its determinant must be different from zero. The fact
that the Stokes vector is much more sensitive to some parameters (e.g. temperature) than to other
can make one or several response functions, and hence some matrix elements of the modified
Hessian, to be much larger than the rest. This implies that Ĥ

′
is usually numerically quasi-

singular. A classical way to work out the problem is the use of the Singular Value Decomposition
(SVD). The basic idea would then be to factorize the modified Hessian as:

Ĥ ′ = ÛŴ V̂ T (1.115)

where Ŵ is a diagonal matrix with elements W j j, and where the vectors Û and V̂ are orthogonal

ÛT Û = V̂ T V̂ = 1l (1.116)

Note that Ĥ ′ is an L×L matrix, being L = Q×F + R the total amount of free parameters,
where R are height independent, Q height dependent and F the total amount of optical depth
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points in the atmosphere (see Sect. 1.5.2). Note that according to the SVD formulation, Û, V̂
and Ŵ are also L×L matrices. The inverse of the matrix Ĥ ′ can be written as:

Ĥ ′−1
= V̂ [diag(

1
W j j

)]ÛT (1.117)

If Ĥ ′ is singular or numerically singular, some of the W j j elements are zero and the inverse
matrix is no longer defined. SVD method makes 1/W j j = 0 whenever the diagonal element is
below a given threshold W j j ≤ ξ, with typically ξ ' 10−3−10−5. Making this, implies that the
linear system of equations 1.113 will not be verified. However the SVD technique provides an
optimum solution to the problem in the sense that it minimizes the quantity ||∇χ2(x)+ Ĥ ′δx||.

As already mentioned above, the response functions to some perturbations can be very small
as compared to others. If SVD is applied to avoid singularities, very small response functions will
be ignored, and thus the associated free parameter will not be taken into account in the inversion.
To avoid this, Ruiz Cobo & del Toro Iniesta (1992) have proposed a clever modification of the
SVD method in which the matrix Ŵ is decomposed in a sum of Q + R matrices, where each of
them contains information about one single physical parameter. SVD is then applied separately
to each of those matrices. Therefore at least one diagonal element of each matrix is preserved,
and the solution accounts for all physical quantities at each iteration step.

1.5.6 SPINOR

SPINOR (Stokes-Profiles-INversion-O-Routines; Frutiger et al. 1999) is an inversion code (IC)
developed at the ETH Zürich and Max Planck Institut für Aeronomie by Cristoph Frutiger, Sami
K. Solanki and Svetlana Berdyugina, with important contributions from Jo Bruls and Marcel
Fligge. It is based on a synthesis code (STOPRO) previously written by Sami Solanki.

SPINOR’s synthesis package (STOPRO) perform spectral line (atomic and molecular) syn-
thesis under local thermodynamic equilibrium (LTE). The radiative transfer equation can be
solved, either using the Hermitian approach by Bellot Rubio et al. (1998) or DELO (Rees et
al. 1989), although the former is normally used due to its more rapid convergence. Unlike the
original Hermitian method, modifications have been introduced to perform such integration in
the optical depth scale. The Hermitian strategy is based in a fourth order Taylor expansion of
the Stokes vector in order to evaluate the spectrum at each atmospheric layer as a function of the
previous one. An advantage is that it yields an approximation of the evolution operator at each
atmospheric layer at the same time that the RTE is solved.

The continuum absorption coefficient is calculated for a given wavelength, temperature and
electron pressure using the MULTI opacity package by Mats Carlson (based on the previous
Uppsala opacity package by Gustaffson 1973), which takes into account contributions from H,
He, H−, He−, H+

2 , H−2 and other electron donor species, as well as Rayleigh scattering by H and
H2 and Thompson scattering by free electrons.

Several broadening mechanisms are considered: microturbulent and macroturbulent veloci-
ties are used to account for velocity fields below the resolution element. In addition, radiative
broadening (in the classical damped oscillator approximation) and broadening by collisions with
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neutral perturbers (for which the ABO theory is employed in substitution of the van der Waals
interaction potential; see Barklem & O’Mara 1997 and Barklem et al. 1998) are considered.

SPINOR is able to deal with any number of atmospheric components. In the synthesis mode
the RTE must be solved for each of them, being the final emergent polarized spectrum a linear
combination of the individual rays as follows

I(λ) =
N

∑
k=1

αkIk(λ) (1.118)

where N is the total number of components. An obvious normalization condition that must be
verified is

N

∑
k=1

αk = 1 (1.119)

defining thus αk as the area of the resolution element covered by the atmospheric component
k. This feature is important when modelling structures smaller than the resolution element of
the observations: granulation (downflows and upflows present in the same resolution element),
scattered light in observations with a spectrograph, etc.

SPINOR’s inversion routines (INVERT) perform the inversion of the RTE using the modi-
fied singular value decomposition scheme described in Sect. 1.5.5, although for testing purposes
other methods are implemented. In the inversion, a number of optical depth points, called nodes,
are specified. At these points analytical equivalent Response Functions are calculated by linear
combination of the response functions at each atmospheric layer of the discretized atmosphere.
In this way, the number of free parameters is significantly reduced, since the calculated pertur-
bations, that improve the fit on the observed data, are evaluated in a coarser grid, rather than the
whole atmospheric grid. After each iteration step the new atmospheric parameters at the nodes
are updated. The new full stratification is obtained through a smooth spline interpolation through
the nodes. Therefore the free parameters shown in Eq. 1.79 are to be changed to:

x = [T(τ1), ...,T(τH),Vlos(τ1), ...,Vlos(τH), ...] (1.120)

where H represents the number of nodes. The total number of free parameters is now: L =
Q×H + R, with Q and R being the depth-dependent and depth independent physical quantities
respectively.

Unlike other inversion codes (e.g. SIR; see Ruiz Cobo & del Toro Iniesta 1992), where the
nodes are placed equally-spaced along the atmospheric grid, SPINOR allows for the possibility
to choose the location of the nodes. This feature is very useful in practice, since it permits to
concentrate the nodes on those layers where the observed spectral lines are more sensitive.

Another important feature of SPINOR is the possibility to switch the calculation of the re-
sponse functions to numerical means

Rp(τm) =
1

2δxp(τm)
[I(x+δxp(τm))− I(x−δxp(τm))] (1.121)
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where Rp(τm) is the response function to perturbations of the free parameter xp (p = 1, ...,L) at
a given node τm (m = 1, ...,H). This results in a significant increase of the computing time since
the RTE must be solved twice for each free parameter (one with +δxp and another for −δxp).
Nevertheless, it is convenient when complex geometrical models, for which analytical response
functions do not exist, are to be implemented.

1.5.7 Should we believe inversions ?

Let us now address the question of whether spectropolarimetric inversion techniques, as described
in previous sections, retrieve results that can be considered unique (i.e. global minimum of the
merit function in the space spanned by the free parameters). In this section, we propose a test
on the numerical performance of the inversion code SPINOR (Sect. 1.5.6) that will allow us to
introduce the reader on the practical problems one faces when using ICs.

Fig.1.9 (top panel) shows a two-dimensional continuum intensity image (at a reference wave-
length of 5000 Å) taken from a radiative MHD simulation of the solar granulation (Shelyag &
Vögler, private communication) at µ = 1 (i.e. center of the Solar disk) with a pixel size of 20 Km.
These simulations solve self-consistently the MHD equations coupled with the radiative transfer
equation, which is the dominant energy transfer mechanism in the solar photosphere.

In this way, they provide the full thermal, magnetic, kinematics and dynamics properties at
each point of the simulation box (X,Y,Z). Let us now take a point in this two-dimensional map at
a given position X0 = 84 and Y0 = 242 (marked with the red circle in Fig. 1.9) and extract the
depth dependence of the physical parameters: T(z), vlos(z), B(z), γ(z), φ(z) etc. With these we are
ready to produce synthetic Stokes profiles for any spectral line of our choice. Our aim is to invert
these synthetic lines and compare the retrieved stratifications with the original ones.

Selection of lines

We have selected the widely used neutral iron lines Fe I 6302.5 Å and 15648.5 Å. The first
of these lines is formed in the mid-high photosphere, logτ5 = [−1,−4], and is one of the most
magnetic sensitive spectral lines in the visible range (geff=2.5). In addition it is also reasonably
sensitive to variations in the temperature due to its small excitation energy of the lower level of
the transition χl = 3.68 eV. The second line is formed in deeper layers, logτ5 = [0,−2], partly due
to the fact that the continuum opacity of the negative hydrogen ion presents a minimum around
16400 Å (thus allowing to sample deeper layers near this wavelength) and because of its large
excitation potential, χl = 5.25 eV (which at the same time makes it be somewhat insensitive to
the temperature). However this is perhaps one of the most magnetic sensitive spectral lines in
the whole solar spectrum, because of the joint effect that the Zeeman splitting scales as ∼ λ2

0 and
because of its high Landé factor of geff=3. Note that the Doppler width, Eq. 1.50, scales as ∼ λ0.
But the net effect still makes this line roughly 3 times more sensitive to the magnetic field than Fe
I 6302.5 Å. The synthetic lines produced by the atmosphere corresponding to the selected pixel
in the simulation are shown with filled circles in Fig. 1.9 (bottom panels).
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Selection of model for the inversion and nodes

We must now select a proper model to describe the stratifications: T(z), vlos(z), etc. In this
case, we know that all physical quantities depend only on the vertical coordinate Z, therefore
we should use a model where this feature is included. Attending to Sect. 1.5.6 (Eq. 1.118 and
1.119) the most obvious one is a 1-Component model, where no horizonal inhomogeneities are
allowed, because only one atmosphere is present in the resolution element (N = 1 and α = 1 in
Eq. 1.118-1.119).

Once this is done we must specify some optical depth points where response functions will
be calculated (i.e nodes or free parameters) and hence where the different physical quantities
(temperature, velocity, magnetic field etc) will be inferred. This step must be done carefully
because a large number of nodes will certainly improve the quality of the fits to the observed
profiles but it can also yield unrealistic stratifications. The common procedure is to start test
inversions with a small number of nodes per physical quantity and increase them only if the
profiles can not be fitted. For our test we have chosen 3 nodes (i.e. geometrical height or Z
coordinate) at the following optical depth locations: logτ5 = [0,−1.75,−3.5]. Since we are
interested to infer the temperature, line-of-sight velocity, magnetic field strength, inclination and
azimuth, this results in a total of 15 free parameters.

The initial guess model also deserves some attention. In order to prevent us from falling into
a local minima in the χ2 surface we will employ a total of 12 different initial guess models. For
each of them we carry out 50 iterations steps and compare the achieve χ2. Eight out of 12 of these
initial guess models provide a final χ2 ∼ 9, whereas the rest retrieve much larger values: χ2 ∼ 250
(clear signature that they stopped at a local minimum) and therefore we will not consider them
for the final solution. In Fig. 1.9 (bottom panels) we plot in solid red lines the best fit profiles
obtained from all the initial guess models.

Inversion results

Prior to comparing the retrieved atmospheres to the original ones it is a good exercise to make
a more detailed study of the observed profiles and see what kind of atmosphere can be expected
from the inversion. With a first glance on the Stokes profiles we realize that Stokes I shows the
σr and σb but no central π component, indicating thus that the magnetic field is mainly aligned,
towards or way from, with the observer. This conclusion is confirmed when one realizes that
V � Q,U and therefore the projection of the magnetic field vector in the plane perpendicular to
the observer is very small. In addition, it can be seen that the profiles are highly shifted towards
larger wavelengths (e.g. center of gravity in Stokes I, Stokes V zero-crossing etc.) indicating that
the plasma is essentially moving away from the observer.

Fig. 1.10 shows the original atmosphere coming from the MHD simulation in black solid
lines, together with the average atmosphere retrieved by the inversion with the initial models
whose χ2 value was sufficiently small (red dashed lines). The node positions are indicated with
vertical dotted lines. As can be seen the retrieved values at the nodes for the temperature, line-of-
sight velocity and magnetic field matches almost perfectly the original values, except perhaps at
the highest node in the atmosphere, where the sensitivity of the spectral lines is far too small. For
the inclination of the magnetic field the inferred stratifications might look much worse. However
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we must take into account that the real error is of the order of 1 deg when compared with the
original atmosphere (whose values are very close to zero). Indeed, the inversion is even able
to retrieve the real trend, that is, a magnetic field inclination that increases at the beginning and
decreasing later on. Also for the azimuthal angle it seems that the code retrieves a wrong solu-
tion. This can be understood if we take into account that the magnetic field inclination is very
close to zero and therefore the azimuthal angle is not really defined, since, as already mentioned,
the projection of the magnetic field vector on the plane perpendicular to the observer is far too
small: V � Q,U . Nonetheless, although with larger uncertainties than in the case of the mag-
netic field inclination, the correct trend (increasing azimuthal angle with increasing depth in the
photosphere) is obtained. Logically, in order to be able to reproduce the original discontinuity
in the azimuthal angle in the MHD simulation, the number of nodes should have been increased,
but this is something that a priori was unknown.

Problems in practice

The example shown in this section illustrates some of the problems that one can find when using
iterative inversion codes to retrieve the original physical properties of the atmosphere. We shall
mention here the most important ones:

• Noise in the observations: here we have carried out an inversion of synthetic spectral lines
coming from a MHD simulation. In real observing conditions, the Stokes vector is always
affected, to some extend, by noise. One must always handle it carefully. Playing around
with the different weights for the components of the Stokes vector in the merit function is
often a good idea. This is done in order to find a good balance between the information we
are really interested in and the information that the profiles really contain. A clear example
can be given if we introduce a noise level of 5×10−4IC (common one in solar polarimetry)
in the synthetic profiles in Fig. 1.9. Under these conditions, the linear polarization profiles,
Stokes Q and U , would be heavily affected by it, and therefore we should try to decrease
their weights in the χ2 function. Fortunately, in this case, this is not critical, because the
result from the inversion would then be a magnetic field inclination of 0 deg, which is still
not too far from reality.

• Height coverage: very important to increase the reliability of the inferred atmospheres,
is to include lines which are formed at different atmospheric layers. In addition, data
redundancy (i.e. lines whose forming regions are partially overlapped) is highly desirable
in order to obtain more accurate values at the nodes. If for example, in addition to the Fe I
lines 6302.5 and 15648.5 Å we would have included the Fe I lines 6301.5 and 15652.8 Å,
it is very likely that all 12 initial guess models would have resulted in an equally small χ2

value.

• Atomic data: the availability of accurate atomic parameters for the line transitions is, be-
yond any question, a very important point, not only the quantum numbers of the transitions
(that define the Zeeman pattern) but also transition probabilities and excitation potentials
(that change the height of formation of the spectral lines) as well as laboratory wavelength
positions. In our example, we can rule out any uncertainty arising from them as we have
used the same atomic parameters to produce the synthetic profiles as for the inversion.
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FIGURE 1.9: Top panel: continuum intensity image for a radiative MHD simulation (Courtesy of Shelyag
& Vögler). Red circles indicates the point in the simulation box whose profiles are analyzed. Bottom panel:
Observed (filled circles) and best-fit profiles from the inversion (solid red lines) Stokes profiles for the Fe I
lines at 6302.5 and 15648.5 Å.
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FIGURE 1.10: Temperature (top left),
line-of-sight velocity (top right), mag-
netic field strength (middle left), mag-
netic field inclination (middle right) and
magnetic field azimuth (bottom left)
stratifications with optical depth for the
selected point in the MHD simulation
(black solid lines) and as inferred from
the inversion (red dashed lines). Grey
shaded areas represent the standard de-
viation with respect to the average value
as obtained from 8 different initial guess
models.
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• Discontinuities in the physical parameters: discontinuities along the line of sight in
the physical parameters should be understood as strong variations over a small optical
depth range. These are easy to detect if enough node points are given to inversion, so that
jumps are allowed to be present. However we must keep in mind that large number of free
parameters should be avoided unless the observed profiles can not be successfully fitted
with simpler models.

• Unresolved structure: the effect of the unresolved structure is perhaps the main reason
why the scientific community, and among them, Solar physicist are still dubious about the
potential of inversion techniques. The problem of the unresolved structure appears due
to the limited spatial resolution that real observations can achieve. Let us for a moment
consider the MHD simulation box used in this section as the ’real’ Sun. If we were able
to observe it with a 20 Km resolution it would be clear that all physical quantities could
be considered as dependent only of the vertical coordinate (i.e. optical or geometrical
depth). Since real spectropolarimetric observations rarely achieve resolutions better than
1 arc sec (about 700 Kilometres on the solar surface) many different features (granules,
intergranules, bright points etc.) can be simultaneously present in the resolution element,
each of them having different properties and hence, producing different observed profiles,
from which we can only see an average. In almost all real situations we can be sure that, to
some degree, we are dealing with unresolved structures. The key point here is to evaluate
whether the vertical or horizontal variations play a major role in the observed spectral lines.

Although plagued with problems, the Net Circular Polarization (see Sect. 1.4.1) is a widely
used tool to check if vertical gradients, or on the other hand, horizontal inhomogeneities
should be included (N > 1 in Eq. 1.118, 1.119). There are many situations when it is de-
sirable to include both features (i.e. several components present in the resolution element
together with gradients along the line-of-sight). Needless to say, including several com-
ponents in the inversion can be only carried out in very favourable circumstances because
the separate inference of the properties of each atmosphere is a very difficult task. This is
due to the fact that spatially averaged profiles tend to lose the information of the individual
components. Some examples can be given: granules produce a blueshift on the observed
spectral line but the opposite occurs for intergranules. If we take an observation that con-
tains both of structures, the averaged profile would show, either little or no net wavelength
shift at all, and therefore we would not be able to infer any velocity, although we know it is
present. The same happens for example when there are mixed polarities in the same reso-
lution element (γ1 < 90◦ and γ2 > 90◦). The first one produces Stokes V profiles that have
a positive blue lobe but negative red lobe, while the opposite happens for the γ2. Therefore
in the averaged profile we would observed no signal and hence no magnetic field would
be inferred. This loss of information is basically the reason why the solar community be-
lieves that inversion codes are not robust and depend strongly on the initial guess model.
As shown in this section, as well as demonstrated many times in the past (Ruiz Cobo & del
Toro Iniesta 1994; Sánchez Almeida et al. 1996; del Toro Iniesta & Ruiz Cobo 1996,1997;
Westendorp Plaza et al. 1998) this is not the case. As soon as one geometrical scheme
(one component with gradients, two components without gradients, etc.) is chosen, IC’s
are extremely robust and retrieve the same atmosphere independently of the initial guess.
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The real question is how to interpret the different results when different geometries are as-
sumed. This will be one of the main subjects of this thesis, in particular the use of different
models to study the fine structure of the sunspot penumbra.



44 CHAPTER 1. SPECTROPOLARIMETRY



Chapter 2

Sunspot Penumbra

In this chapter we introduce the reader to the most prominent photospheric manifes-
tation of the solar magnetic field: sunspots. We briefly describe the main aspects of
its magnetic and thermal structure as well as its best known dynamical aspect: the
Evershed effect. For an exhaustive, detailed and up-to-date description of the cur-
rent level of knowledge about Sunspots the reader is prompted to read the excellent
review by Solanki 2003 and references therein.

2.1 Sunspots

Sunspots are the most readily observable manifestation of solar magnetism. Their existence was
known already in ancient China . However, for Western culture they were discovered by Fabricus,
Harriot, Galilei, Scheiner and others around 1610, when their newly-invented telescopes were
turned to the Sun. At those times their main constituents were already distinguished: a dark
core called umbra, surrounded by a brighter halo, the penumbra. The newest generation of solar
telescopes, post focus instruments , image reconstruction techniques such as phase diversity or
speckle reconstruction and the use of adaptive optics to get rid of the blurring effect introduced
by the Earth’s atmosphere, allow us to observe sunspots with an angular resolution of 0.12-0.20
arc sec (about 90-150 kilometres). At this level sunspots appear as an almost living entity, with
prominent and highly dynamical fine structure (both in the umbra and in the penumbra; see
Fig. 2.1).

Sunspots were the first astronomical objects to be known to harbour a magnetic field (Hale
1908). Nowadays it is accepted that they are formed after magnetic flux tubes (stored in the so-
called overshoot region 1) rise through the convective zone until they appear at the solar surface
(i.e. photosphere). The intersection of such flux tubes and the solar surface constitutes the sunspot
(see Schüssler 2002 for a review).

1i.e. transition layer located between the Solar radiative core and the convective zone

45



46 CHAPTER 2. SUNSPOT PENUMBRA

FIGURE 2.1: Left panel: Continuum image of NOAA AR 8704 taken with the Dutch Open Telescope
(DOT) operating at the Spanish observatory of Roque de los Muchachos (La Palma, Teneriffe). The image
was taken in the G-band (around 4305 Å). It was reconstructed using speckle technique developed at
Göttingen Sternwarte. The achieved angular resolution is about 0.2 arc sec. Courtesy of P. Sütterlin. Right
panel: G-Band continuum image of NOAA AR 10030. It was recorded using the adaptive optics system
at the 1 meter Swedish Solar Telescope (SST) at the Spanish observatory of Roque de los Muchachos (La
Palma, Teneriffe). Post image reconstruction was performed using the phase diversity technique. Spatial
resolution is about 0.12 arc sec. Courtesy of G. Scharmer.

2.1.1 Umbra

In the umbra, the large magnetic field and its almost vertical inclination inhibits the convective
energy transport, lowering its temperature to Tumb(τ = 1) = 3500−5000 K and making it appear
darker than the quiet photosphere, where Tpho(τ = 1) = 6000−6500 K. In the umbra the average
magnetic field is orientated vertically with respect to the solar surface, becoming slightly inclined
as we approach the umbral-penumbral boundary (ζumb = 20−40◦)2. The magnetic field strength
ranges from Bumb = 2000− 3500 Gauss, achieving the largest values for big sunspots. Except
for some oscillatory phenomena, the umbra is commonly found to be at rest (no red-blue shift
is found in spectral lines measured in the umbra). Fig. 2.3 shows the magnetic and kinematic
structure of a regular sunspot obtained through the analysis of infrared spectropolarimetric data
(Mathew et al. 2003).

The umbral fine structure is mainly composed of the so-called umbral dots, that appear as
rounded bright features with typical sizes between 0.2-0.5 arc sec. They are believed to be hotter
than the average umbral background, but the exact amount is still unknown. In general they are
considered as being some sort of convective phenomena and many attempts, with controversial
results, have been made to establish whether they carry any kind of flow or not. According to
their relative position in the umbra, umbral dots are usually classified into central and peripheral.
It is known that central dots remain stationary whereas peripheral ones seem to migrate from the
outer towards the inner umbra. Their relation with the penumbra grains (see Sect. 2.1.2) is not
yet clear.

2In the following we will distinguish between the magnetic field inclinations with respect to the solar surface or
zenith angle (i.e. local reference frame where the vertical axis is perpendicular to the surface) ζ, and inclinations with
respect to the observer or LOS angle (i.e. reference frame where the vertical axis is defined as the line connecting the
observed point and the observer) γ. See also Sect 1.3 and Fig. 1.4 for further details.
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2.1.2 Penumbra

If many phenomena observed in the umbra remain unknown, the penumbra overtakes its darker
brother by a large amount. Even the question of why sunspots have a penumbra and how does it
form remains unanswered. Our ability to offer a plausible explanation for its structure, brightness
and dynamics is continuously being challenged by new features and fine structure revealed by the
improvements in spatial resolution of the observations.

The penumbral fine structure, as seen in the continuum images (Fig. 2.1) is mainly character-
ized by a well organized radial distribution of, somewhat randomly alternating, bright and dark
filaments. When their horizontal extension is under study one faces the difficulty of whether fil-
aments are to be considered as bright features on a dark background or the other way around. In
Fig. 2.2 we can see three examples of penumbral filaments taken at extremely high spatial reso-
lution (0.12 arc sec; van der Voort et al. 2004). From these images it looks as if what we consider
a filament is composed by a dark core escorted by a bright halo on both sides. At the birth of the
filament the dark core is not present and the lateral brightening merge into a larger and brighter
structure. If only the dark core is considered to be a penumbral filament then its horizontal ex-
tension is below 100 kilometres. According to van der Voort et al. (2004) it is likely that there
is more unseen fine structure inside it. However the temporal evolution of these filaments seem
to show that the whole structure (including the lateral brightening) move together, indicating that
perhaps they are one single entity (Scharmer et al. 2002). These examples were taken near the
umbra, where the density of filaments is small enough to distinguish individual filaments. Some
of them can be traced to be as long as 5-9 arc sec (3600-6600 km; van der Voort et al. 2004).
In the middle penumbra there are already so many of them that they become difficult to follow
due to their fading and reappearing. Their vertical extension can not be derived from continuum
images, but rather from methods involving the area asymmetry or Stokes profile inversions (see
Sect. 3.2.3).

The initial, comet-shaped bright structure corresponds to the so-called penumbral grains.
They are seen to move radially in the penumbra. A number of studies have tried to quantify their
proper motions, finding basically that those in the inner penumbra move radially inwards (to-
wards the umbra), whereas those located at large radial distances move predominantly outwards
(Sobotka et al. 1999; Sobotka & Sütterlin 2001). Typical speeds for such motions are found to
be of the order of 0.5-1 km s−1.

It is important to remark that the information we can extract from continuum images is very
limited, as they provide only partial information about the temperature. Nevertheless, the penum-
bral brightness (even neglecting its small scale variations) already arises a fundamental question.
According to the penumbral magnetic field, convection should be heavily inhibited. However it
is seen that its brightness is very much enhanced with respect to the umbra (where the magnetic
field is only slightly stronger), being as much as 75 % of the quiet sun brightness. This is still one
of the major unsolved problems (Schlichenmaier & Solanki 2003).

The definition of penumbral filament is more consistent when related to the magnetic field
configuration of the penumbra and in particular its relation to the Evershed effect (Sect. 2.2.1).
To investigate these issues a different kind of observations are required. Namely the most suit-
able ones are those where the full Stokes vector (I,Q,U,V) was measured in one/several magnetic
sensitive lines (geff 6= 0). Unfortunately these kind of observations lack from the high spatial
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FIGURE 2.2: Three examples of penumbral filaments harbouring dark cores taken with the SST. Vertical
and horizontal tickmarks are separated by 0.1 arc sec. Courtesy of L. Rouppe van der Voort.

resolution of the continuum images shown in Fig. 2.1 and 2.2. Typically, spectropolarimetric ob-
servations with 1 arc sec resolution are already catalogued as high resolution. This is an important
point to be borne in mind when trying to extrapolate and compare the magnetic and kinematic
structure with the brightness distribution.

In its simplest description (i.e. ignoring its fine structure) the penumbra appears as a smooth
radially structured region where the magnetic field is smaller than in the umbra and more inclined
(see Fig. 2.3): the magnetic field strength decreases radially from Bpen = 2000− 2500 gauss in
the umbral-penumbral boundary, up to Bpen = 500−1000 at the penumbral-quiet sun boundary;
inclinations angles from ζpen = 40◦ to ζpen = 70− 80◦. The temperature is close to that of the
quiet sun: Tpen = 5800−6200 K. The vertical and horizontal magnetic structure of the penumbra
will be discussed in detail in Sect. 2.2.

2.1.3 The Evershed effect

In 1909, Evershed observed several spectral lines for a wide sample of sunspots at different
positions on the solar disk (i.e. different heliocentric angles). From the observed Doppler shift
he was able to establish that there is an outwards flow in the sunspot penumbra: producing red
shifts in the spectral lines when looking in the limbward side of the penumbra, and a blue shift
when looking at the diskward side. He also detected that the absolute magnitude of the shift was
larger for sunspots located neat the limb, concluding that the outflow has primally parallel to the
solar surface ( see Fig. 2.3; bottom panel).

One year before this discovery, Hale (1908) detected the presence of a magnetic field in the
sunspots and had ascribed it to vortex motions within the spot. Because of this, Evershed’s first
thought was to interpret such wavelengths shifts to azimuthal flows rather than radial. However,
he finally abandoned this idea as he detected that the magnitude of the wavelength shift was
maximum when the slit of his spectrograph lay along the line connecting the spot with the center
of the solar disk (line of symmetry), but disappears when the slit his perpendicular to this line.

Moreover, Evershed already realized that the magnitude of the velocity related to the Ev-
ershed effect increases radially in the penumbra, achieving its largest values just at the outer
boundary and suddenly disappearing after it. In his words: This seems to imply an accelerating
movement from the center of the spot outwards; yet at the limits of the penumbra the motion
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apparently ceases abruptly.
Although the radial dependence of the magnetic field strength and inclination seems to be

well established, in the case of the Evershed effect the situation is very different. In particular
whether the velocity continues beyond the visible limit of the penumbra or, as initially proposed
by Evershed, disappears. A large number of studies have tried to settle the problem by means of
different observations and analysis techniques: measuring the core/wing wavelength shifts in the
intensity profiles in non-magnetic lines (geff = 0), zero crossing in Stokes V , using lines formed
at different heights etc. The literature is crowded with results favouring both pictures. Examples
of works favouring the abrupt disappearance we shall cite: Maltby 1964; Beckers 1969a; Wiehr
et al. 1986; Wiehr & Degenhardt 1992). Others, like Küveler & Wiehr 1985, Dialetis et al. 1985,
Alissandrakis et al. 1988, Dere et al. 1990 found a continuity of the Evershed flow. A major
contribution came in 1994, when Solanki and coworkers, analyzing the full Stokes vector of two
neutral iron lines at 1.56 µm, were able to follow the Evershed effect well beyond the outer limit
of the penumbra. However, through mass conservation considerations they argued that the flow
they detected as a continuation of the Evershed flow beyond the penumbra, carries only a small
fraction of the original mass flux. They therefore concluded that most of the flow had already
disappeared within the penumbra.

Here we have explicitly mentioned that the Evershed effect implies a net mass transport (it
is due to a plasma flow). However, it is important to recall that some attempts were made to
explain the Evershed effect in terms of waves, that would not imply any net mass transport. This
mechanism was first introduced by Maltby & Eriksen (1967). They considered isothermal sound
waves propagating radially outwards where the density, pressure and velocity were oscillating in
phase. In this case the opacity increases with increasing density and as a result there is a greater
contribution to the average absorption coefficient when the particle velocity is directed toward the
observer than when it is away from the observer, thus producing a net shift on the spectral lines
and a line asymmetry. A difficulty with the sound-wave mechanism was noticed by Bünte et al.
(1993). They pointed out that the propagation of such waves would have no preferred direction.
Thus, this mechanism should produce an Evershed effect along the line of sight, including one
perpendicular to the solar surface with the sunspot at disk center, contradicting observations.
This problem with the sound wave mechanism led Bünte et al. (1993) to consider another kind
of wave which would have a preferred horizonal direction of propagation: magneto acoustic
surface gravity waves. Surprisingly they found that these surface waves should propagate radially
inwards (towards the umbra) in order to reproduce the correct line asymmetry and shifts. This
study was carried out for Fe I lines. Bünte & Solanki (1995) realized that the very same waves
would produce the opposite shifts and line asymmetries for Fe II lines. Therefore, the wave
mechanism seemed untenable and nowadays it is accepted that the Evershed effect is produced
by flows, although very important questions related to the flow mechanism are still unanswered
(see Sect 2.3).

2.2 Penumbral structure

In this section we will look at the penumbral structure by separating its vertical and horizontal
features. Although this approach have several disadvantages, we deem it necessary in order to



50 CHAPTER 2. SUNSPOT PENUMBRA

FIGURE 2.3: Two-dimensional map of the magnetic field strength B (top panel), magnetic field zenith
angle ζ (middle panel) and line-of-sight-velocity VLOS (bottom panel). Physical quantities correspond
to the layers between optical depth: logτ5 = [0,−0.5]. The black arrow in bottom panel indicates the
direction of the center of the solar disk (i.e., direction of the observer). VLOS shows a clear asymmetry
between the limbward penumbra (redshifted velocities: VLOS > 0) and the diskward side (blue shifted
velocities: VLOS > 0). The velocity goes away from the observer at the limb side but towards him at the
center side, indicating therefore that the fl ow is directed radially outwards. These maps were obtained
using a 1-component model applied to the pair of magnetic sensitive neutral iron lines at 1.56 µm (from
Mathew et al. 2003).
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clarify several aspects that will be the main topics of this thesis. In contrast to the previous
section, where a more historical approach was followed, here we will mainly focus on those
results that seem robust enough to be accepted, yet challenging to draw serious shortcomings to
the theoretical models aiming to explain the nature of the Evershed flow (discussed in Sect. 2.3).
Reviews about the penumbral structure are available in the literature, in particular we benefit from
the excellent works by Martínez Pillet (1997) and Bellot Rubio (2003).

2.2.1 Penumbral horizontal structure

The penumbral horizonal structure is better seen when inversion methods that assume that all
quantities are constant with depth are used (e.g. Milne-Eddington-like inversions, Sect. 1.4.3).
Of course, when this is done the obtained results will be biased due to the fact that the vertical
structure is not being taken into account, and therefore they should be considered as an average
over the height range of formation of the studied lines. Nonetheless we will take this approach
assuming that, if some correlations between the different physical parameters appear when this
kind of inversion is carried out, they will be also clearly discernible at some optical depth when
an inversion, that takes into account the depth dependence of the physical quantities, is used.

We shall therefore refer in this section mainly to those studies that consider all quanti-
ties depth independent. Hence, not only Milne-Eddington inversion applies, but also any other
method that retrieves one single value of the magnetic field (peak-to-peak separation in Stokes
V ), velocity (line core shift) etc. at each pixel.

Azimuthal fluctuations in the magnetic field

During the early and mid 90’s there was an intense debate over whether the magnetic field strength
and/or inclination fluctuate azimuthally in the penumbra3. Schmidt et al. (1992) and Rimmele
(1995) argued, from the investigation of Stokes I and V of Fe I lines at 6302.5 Å (geff = 2.5) and
5250 Å (geff = 3) respectively, that only the magnetic field inclination changes azimuthally by an
rms fluctuation of ∆γ = 10−15◦. The investigation of these authors is, however, subject to several
drawbacks. First of all, the lack of knowledge of the other Stokes parameters (linear polarization:
Q,U) prevent them from applying a reliable instrumental cross-talk correction. Secondly their
values of the total magnetic field strength were obtained through the separation between the two
σ components in the total intensity profiles. For typical penumbral field strengths, these two
components almost overlap with the central π component in the lines they used, making their
inference difficult.

Stronger support was given by Title et al. (1993) who found that the signal in their longitu-
dinal magnetogram showed rapid azimuthal fluctuations. By using a simple geometrical model
they conclude that fluctuations in the magnetic field strength could not explain such a behaviour.
Thus, they ascribed such fluctuations to the magnetic field inclination (see Fig. 2.4; top panel).
However, Lites et al. (1993) deduced, by means of a Milne-Eddington inversion of the full Stokes
vector, that both the magnetic field strength and inclination were changing by rms values as large
as ∆γ = 10◦ and ∆B = 100 G (see Fig. 2.4; bottom panel). The controversy was finally resolved

3Azimuthal fluctuation indicates its variation with the position angle along an azimuthal cut of a constant radius in
the penumbra
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by Martínez Pillet (1997) who noticed that, although ∆B was not able to produce the observed
fluctuations in the circular polarization (a fact that led Title and co-workers to ascribe it to ∆γ),
it was able to change the linear polarization, explaining therefore why Lites et al. (1993), who
measured the full Stokes vector, obtained fluctuations both in B and γ (see Fig. 2.5).

These fluctuations found by Lites et al. (1993) and later by Stanchfield et al. (1997), Westen-
dorp Plaza et al. (2001b) and Mathew et al. (2003) were anticorrelated in the sense that stronger
magnetic fields correspond to more vertical ones, the more inclined (with respect to the vertical)
being weaker. This gave rise to what is known as the fluted penumbra.

Magnetic field-Evershed flow correlation

More clear seems to be the correlation between the magnetic field vector and the Evershed flow.
Almost all authors have found that the Evershed flow is seen better at those locations where
the magnetic field is stronger and more vertical (i.e. spines), being mainly concentrated in the
regions where the magnetic field is weaker and more inclined (i.e. intraspines). Among others:
Rimmele 1995, Stanchfield et al. 1997, Westendorp Plaza et al. 2001b, Mathew et al. 2003.
See for example Fig. 2.6. Note that what it is measured are line-of-sight velocities, therefore this
difference in the velocities cannot be explained in terms of projection effects. In particular, if
v ‖ B is assumed and it is measure that vlos,spines < vlos,intra and γspines < γintra, then this means that
in fact the absolute magnitude of the Evershed flow in the intraspines is much larger that in the
spines: vintra� vspines.

The assumption of parallelism between the velocity and the magnetic field vector has been
repeatedly tested in the past (Kinman 1952, Maltby 1964, Schröter 1965, Title 1993, Rimmele
1995, Schlichenmaier & Schmidt 2000) with the surprising result that the magnetic field vector
seemed to be less inclined (with respect to the vertical) than the velocity vector by roughly 10◦.
Only very recently Bellot Rubio et al. (2003) have demonstrated that in fact v ‖ B.

Penumbral brightness-Evershed flow correlation

The relation between the penumbral brightness and the Evershed flow (and hence with the mag-
netic field) is one of the most elusive features of the sunspot penumbra. Most investigations
conclude that the Evershed flow is mainly located along the dark radial structures: Wiehr & De-
genhardt (1992), Lites et al. (1993), Rimmele (1995), Stanchfield et al. (1997), Tritschler et
al. (2004). However, others find small correlation or no correlation at all: Wiehr & Stellmacher
(1989), Lites et al. (1990), Schlichenmaier & Schmidt (2000), Hirzberger & Kneer (2001). In
general it is accepted that the correlation increases with increasing spatial resolution (Wiehr &
Degenhardt 1992) or when brightness and velocity are measured roughly at the same depths in the
photosphere (Rimmele 1995; Fig. 2.7). However, as pointed out by Bellot Rubio et al. (2004a)
the line asymmetries, and consequently the intensities in a spectral line, are dominated by the
Evershed flow. Therefore, in this particular case intensity or brightness are to be associated more
with the velocity field rather than with temperatures, explaining thus the very good correlation
found by Rimmele (1995; see Fig. 2.7).

Spectropolarimetric observations achieve rarely resolutions better than 1 arc sec. Despite
this, some authors have found a correlation between the penumbral brightness and the Evershed
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FIGURE 2.4: Top panel: azimuthal fl uctuations in the longitudinal signal of the magnetic field (Stokes
V ) found by Title et al. 1993. They concluded that the quantity that undergoes these fl uctuations is the
magnetic field inclination. Bottom panels: azimuthal fl uctuation of the continuum intensity (top solid
line), magnetic field strength (dashed line) and magnetic field inclination (bottom solid line) found by Lites
et al. (1993). Note that ∆γ and ∆B are anticorrelated.
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FIGURE 2.5: Top panel: azimuthal fl uctuations in the longitudinal and transversal magnetogram signals
(Stokes V and

√

Q2 +U2 respectively) induced by ∆B. Only the transverse signal shows a variation.
Middle panel: the same but for ∆γ. Now only the longitudinal signal fl uctuates. Note that Title et al.
(1993; Fig. 2.4 top panel) only measured the longitudinal component of the magnetic field (Stokes V ),
hence deducing that the fl uctuations are due to ∆γ rather than ∆B. Bottom panel: the same but for joint
and anticorrelated fl uctuations in ∆γ and ∆B. Now both signals undergo rapid azimuthal variations. Note
that in order to be able to distinguish between variations in the magnetic field strength and/or inclination
the linear polarization (Stokes Q and U) must be also measured as done by Lites et al. (1993; see Fig. 2.4
bottom panel). From Martínez Pillet (1997).
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FIGURE 2.6: Azimuthal variations in the different physical quantities (from top to bottom: continuum
intensity, core intensity, line of sight velocity, magnetic field strength and inclination) obtained from a
Milne-Eddington inversion of the visible Fe I lines at 6300 Å . Note that in the limb side penumbra
(position angles between 0 and 180 deg) there is a clear correlation between the line of sight velocity and
magnetic field strength and inclination. Larger red shift velocities are located at the same places where the
magnetic field is weak and more inclined. From Stanchfield et al. 1997.

FIGURE 2.7: Intensity (dotted line) and line-of-sight velocity (solid) measured in the wings of the non-
magnetic Fe I 5576 Å line. There is a clear anticorrelation: the larger the speed, the darker the structure.
The spatial resolution of this observation is about 0.5 arc sec. From Rimmele 1995. Intensities are corre-
lated with the measured line-of-sight velocities because the line asymmetries are induced by the Evershed
fl ow.
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flow (e.g. Stanchfield et al. 1997; Westendorp Plaza et al. 2001a) with such observations. Two-
dimensional spectroscopy, in particular when combined with image reconstruction techniques,
seem to yield better correlations between dark filaments and the Evershed flow (van der Oort
2002; Tritschler et al. 2004). Most of these studies have been carried out for non-magnetic
spectral lines (geff = 0), in order to avoid influences from the magnetic field. Nevertheless it is
important to recall that those studies lack, in most cases, a very important source of information
for the velocity field, such as Stokes V shift and asymmetry.

In this sense the visible Fe II 6149 Å line represents a step towards the resolution of the
dilemma. Its Zeeman pattern does not produce linear polarization, making the cross talk correc-
tion between the components of the Stokes vector very reliable. Measurements of this line in
Stokes I and V , combined with speckle reconstruction (Bello González & Kneer, private com-
munication) and adaptive optics (Bellot Rubio, L.R., private communication) have already been
carried out by the Göttingen and Freiburg groups, and very likely their results will throw some
light on this question.

Last but not least, when we observe the penumbra at extremely high spatial resolution (Fig. 2.1
and 2.2) we do realize that the intensity fluctuations occur at scales (0.1 arc sec) much smaller
than our ability to measure velocities (0.5 arc sec at best). Obviously a reliable determination
of the relation between the azimuthal intensity fluctuations and the Evershed flow will be only
achieved when high spatial resolution spectropolarimetric observations will become available.

2.2.2 Penumbral vertical structure

The vertical structure of the penumbra is far less understood. Traditionally, employed methods
have been restricted to study Stokes I only, and therefore limited to investigate the depth de-
pendence of the Evershed flow (measuring line core shifts of lines formed at different heights,
Doppler shifts in the bisectors at different intensity levels, etc.). With this, it has been quite well
established that the magnitude of the Evershed flow increases with increasing depth in the photo-
sphere (Börner & Kneer 1992; Wiehr & Degenhardt 1992; cf. Rimmele 1995). At the temperature
minimum (around 500 km above the continuum level) the signature of the flow disappears and
becomes opposite further up (inverse chromospheric Evershed flow, which is characterized by
blue shifts in the limb side penumbra and red shifted velocities in the center side; compare with
Fig. 2.3).

To study the depth dependence of the magnetic field vector, it is not trivial (as in the case of
Stokes I) to ascribe different heights to different wavelength positions (deep layers-wings, high
layers-core etc.). In addition, Milne-Eddington inversions are not suitable to study the vertical
stratification, as they neglect the dependence of the physical magnitudes with height. Therefore,
only when the RTE is solved self-consistently (i.e. taking into account the different range of for-
mation of the spectral lines, the different atmospheric layers which contribute to the polarization
signals at each wavelength position etc.) this problem can be addressed (Ruiz Cobo & del Toro
Iniesta 1992,1994; Collados et al. 1994, Sánchez Almeida et al. 1996).
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FIGURE 2.8: Radial variations of the magnetic field strength and inclination (left panels) and line of
sight velocity (right panels) for three different optical depths: logτ5 = [0,−1.5,−2.8]. The magnetic field
strength increases with increasing height, whereas the opposite happens for the magnetic field inclination
and the line-of-sight velocity. From Westendorp Plaza et al. 2001a,2001b.

Visible Stokes profile inversion

Westendorp Plaza and co-workers (1997; 2001a,2001b) have presented the first tomography of
a sunspot penumbra with the pair of visible Fe I lines at 6300 Å recorded with the Advance
Stokes Polarimeter (ASP, Elmore et al. 1992). They used a Stokes inversion technique based
on Response functions (SIR; Ruiz Cobo & del Toro Iniesta 1992) to characterize for the first
time the magnetic field strength and orientation as well as the line-of-sight velocity at different
layers in the photosphere. Their study was based on a 1 magnetic component inversion, where
physical magnitudes where allowed to change in the vertical direction, but not in the horizontal
(e.g. Sect. 1.5.7).

Their results show (see Fig. 2.8) that, in most of the outer penumbra, the magnetic field
strength increases towards higher layers, but the opposite occurs for the line of sight velocity
and magnetic field inclination (they increase towards deeper layers). In terms of derivatives with
respect to geometrical height we can therefore write that:

dB
dz

> 0 ,
dγ
dz

< 0 ,
dvlos

dz
< 0 (2.1)

Perhaps, their most striking result concerns the finding that in the deep layers of the outer
penumbra (around logτ = 0) the magnetic field inclination (with respect to the vertical on the
solar surface) reaches values larger than 90◦, thus indicating that the magnetic field lines return
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into the solar surface (see solid lines in right bottom panels in Fig. 2.8). The importance of this
result lies in that fact that it solves the problem about the sudden disappearance of the Evershed
flow at the outer penumbral edge (see Sect. 2.1.3) and offers a plausible explanation for the lack
of mass conservation (Solanki et al. 1994).

Infrared Stokes profile inversion

Inversions in the infrared band, mainly for the pair of Fe I lines at 1.56 µm have been presented
by Bellot Rubio et al. (2002) and, in a more detailed work, by Mathew et al. (2003). Using a
very similar model to that used by Westendorp Plaza et al. they found that, although the same
azimuthal correlations (Sect. 2.2.1) are detected, the stratifications with optical depth of the kine-
matic and magnetic properties of the sunspot penumbra differ significantly from those obtained
with visible data (see Fig. 2.9). In particular a decreasing magnetic field, but increasing line-of-
sight velocity and field inclination, with increasing height are found throughout almost the whole
penumbra. As a function of the derivatives with respect to the geometrical height it can be written
as:

dB
dz

< 0 ,
dγ
dz

> 0 ,
dvlos

dz
> 0 (2.2)

Note that these are exactly the opposite behaviours than those obtained through the inversion
of the pair of Fe I lines at 6300 Å (Eq. 2.1). This apparent contradiction between the results from
the inversion (1-component including gradients) of visible and infrared lines provides, as already
pointed out by Mathew et al. (2003), a possible explanation if we assume that the penumbral
structure is composed by horizontal flux tubes (that carry the Evershed flow) that are embedded
in more vertical magnetic surroundings (i.e. uncombed penumbral model proposed by Solanki &
Montavon 1993; see Fig. 2.10).

Fig. 2.11 shows an example of the inferred stratifications when profiles, that have been syn-
thesized using an atmosphere whose stratifications are based on the uncombed model (dot-dashed
line), are inverted with a 1 component model (such as those use by Westendorp et al. and Mathew
et al.) separately for the visible Fe I lines at 6300 Å (dashed lines) and the infrared Fe I lines
at 1.56 µm (solid lines). The synthetic profiles are shown with solid lines in the bottom panels,
while the fits achieved by the inversion are represented by filled circles. This test was carried out,
as in Sect. 1.5.7, using several different initial guess models. The retrieved stratifications show
the opposite gradients for the visible and infrared lines (cf. Eqs. 2.1-2.2). This can be interpreted
as if the visible lines were formed at a height were they are mainly affected by the upper discon-
tinuity produced by the presence of a horizontal flux tube, whereas the infrared lines would be
affected mainly by the lower discontinuity (see Fig. 2.10; right panel).

Stokes V area asymmetry

Stokes V area asymmetry, denoted as

δA =

R

V (λ)dλ
R |V (λ)|dλ

(2.3)
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FIGURE 2.9: Radial variations of the magnetic field strength (top left panel) , magnetic field zenith an-
gle (bottom left panel) and line of sight velocity (bottom right panels) for three different optical depths:
logτ5 ' [0,−0.75,−1.25]. The magnetic field strength decreases with increasing height, whereas the op-
posite happens for the magnetic field inclination and the line-of-sight velocity (i.e. the increase towards
high layers). From Mathew et al. 2003.
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FIGURE 2.10: Left panel: Sketch of the uncombed penumbral model. The penumbral structure is assumed
to be composed by horizontal fl ux tubes carrying the Evershed fl ow embedded in a magnetic surrounding,
where the magnetic field is more vertical. Right panel: scheme of an observer whose line of sight crosses
the surrounding atmosphere, pierces through a fl ux tube (with a diameter d) and sees again the surrounding
atmosphere beneath it. From Solanki & Montavon (1993).

was first observed in sunspots by Illing et al. (1974a,1975b) and later by Kemp & Henson (1983),
Henson & Kemp (1984), Makita (1986), Makita & Ohki (1986)4. These works established a num-
ber of empirical rules for the magnitude of the area asymmetry, as well as its spatial distribution in
the sunspot (e.g. Fig. 2.12), that have long remained without explanation. Solar physicists were
well aware that, in order to produce a net area asymmetry in the circular polarization, gradients
along the line of sight in the magnetic field vector and line-of-sight velocity were needed 5 (e.g.
Landolfi & Landi Degl’Innocenti 1982,1996; Landolfi 1987), but it was not until the remarkable
paper by Sáchez Almeida & Lites (1992) that the magnitude of these gradients was evaluated.
These authors found that, in order to reproduce the huge amount of area asymmetry observed
in the penumbra of Sunspots in the Fe I lines at 6300 Å , gradients as large as dvlos

dτ ∼ 1.5 km

s−1 and dγ
dτ ∼ 45◦ for the line-of-sight velocity and magnetic field inclination respectively, were

needed. Soon it was realized that such large variations over a small vertical extension would, very
likely produce far too large curvature forces for a Sunspot to stay in mechanical equilibrium (see
Solanki et al. 1993).

A major step towards the understanding of the NCP, was made by Solanki & Montavon
(1993) when they proposed their uncombed penumbral model: a three layered model consisting
of a central layer of horizonal field sandwiched between two layers of inclined field (Fig. 2.10).
With the help of the following relation for the area of the blue, Ab, and red, Ar, lobes in Stokes V

4In fact, all these authors refer to the Net Circular Polarization (NCP; see Sect. 1.4.1). The area asymmetry is the
NCP normalized to the total area of Stokes V .

5If gradients in these quantitates are not present the area of the blue lobe of Stokes V is equal and with opposite
sign than that of the red lobe (see e.g. Fig. 1.6) and therefore δA = 0.
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FIGURE 2.11: Top panels (from left to right): magnetic field strength, magnetic field inclination and line-
of sight velocity. Original stratifications used to produce the synthetic profiles according to the uncombed
model (dot-dashed lines), stratifications obtained after inverting the visible lines only (dashed lines) and the
infrared lines alone (solid lines). Bottom panels: synthetic (solid lines) and best-fit profiles (filled circles)
with the individual 1 component inversions. The stratifications used to simulate an uncombed penumbra
can be understood in terms of Fig. 2.10, where we have made: B2 = 1750 G, γ2 = 45◦, vlos,2 = 0, B1 = 1250
G, γ1 = 80◦, vlos,1 = 0. The fl ux tube is located at a central position z 0 = 150 km above the continuum
level and its radius was taken to be d = 100 km. From Mathew et al. 2003.
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FIGURE 2.12: Left Panel: Net Circular Polarization (NCP) for the Fe I 6302.5 Å line in a sunspot, NOAA
8545, at an heliocentric angle µ = cosθ = 0.79. The arrow points towards the Sun’s disk center (this arrow
also defines the line of symmetry of the spot). The sign of the NCP on the limb-side penumbra is positive,
but negative for the center side. Right panel: NCP for the Fe I 15648.5 Å line in a sunspot, NOAA
8706, at an heliocentric angle µ = cosθ = 0.59. The arrow points towards the Sun’s disk center. Here, the
azimuthal distribution of the NCP follows a different behaviour, with respect to the line of symmetry, than
in the case of the visible Fe I line (left panel).

(see e.g. Solanki & Pahlke 1988; Sánchez Almeida et al. 1989),

sign(|Ab|− |Ar|) =−sign

(
dvlos

dτ
d|cosγ|

dτ

)

(2.4)

they were able to prove that this three layered model reproduces always Stokes V profiles such
that the total area of the red lobe was larger than of the blue lobe: |Ar| > |Ab| (see Fig. 2.13 and
Table 2.1). Now, in the center-side penumbra, the average magnetic field is pointing towards
the observer, so that γ < 90◦ and therefore: Ar < 0, while Ab > 0 (and the opposite happens
in the limb-side penumbra since the average magnetic field is larger than 90 deg, so that the
corresponding Stokes V profiles show the opposite polarity). This implies that the Net Circular
Polarization, defined as

R

V (λ)dλ , changes it sign from the center-side, where it is negative, to
the limb-side, where it becomes positive. This quantitatively reproduces the observed behaviour
observer in the Fe I lines at 6300 Å (see Fig. 2.12; left panel). Note that the same behaviour
would have been obtained by including only a two layers atmosphere: a or c for the limb-side
and b or d for the center side. Indeed, the amount of NCP generated by a single boundary (i.e.
jump in the physical quantities) is not sufficient to explain the observed one (e.g. considering
only case a). However, in three layers atmosphere, that includes two of such jumps, the NCP
generated at each discontinuity is not cancelled out but added (even though the sign of the jumps
are opposite; see Table 2.1). We also note that, in the three layered model, there is no net jump
in the physical parameters. In particular, for the magnetic field inclination (γ2 → γ1 → γ2) this
has the advantage that the equilibrium configuration of the penumbra is not affected. Last but not
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FIGURE 2.13: Geometrical scheme for the uncombed model. As the line-of-sight crosses the atmosphere,
it finds first a magnetic field with an inclination γ2 and velocity v2 (a or b depending whether we look in the
limb -side or center-side penumbra respectively). At a given position the properties of the atmosphere suf-
fer a jump as the line-of-sight penetrates into the central layer, which is characterized by a field inclination
γ1 and a velocity v1. Further down, another jump occurs from the horizontal field layer to the initial in-
clined field layer (c and d for the limb and center-side of the penumbra respectively). According to Eq. 2.4
one can work out the sign of the difference between the area harboured by the blue and red lobes in the
circular polarization profiles (see Table 2.1). From Solanki & Montavon (1993).

least it is important to remark that in order to reproduce the correct center-to-limb variation of the
NCP6, Solanki & Montavon deduced that most of the plasma velocity should be concentrated in
the intermediate layer where the field is essentially horizontal, that is, |v1| � |v2|7. Note that this
is exactly what was later obtained from more complex Stokes profiles inversions (see Fig. 2.11),
and at the same time, it is consistent with the correlation between the Evershed flow and the
magnetic field inclination found by other authors (see Sect. 2.2.1).

So far, we have discussed only the case of the visible Fe I lines at 6300 Å . For other wave-
lengths, the situation might significantly differ from what has been presented here. When infrared
measurements became available, in particular for the Fe I lines at 1.56 µm (see Schlichenmaier
& Collados 2002), different NCP azimuthal distributions appeared (see Fig. 2.12; right panel).

6The center-to-limb variation refers to the different viewing angles on the solar disk, that is, µ = cosθ ranging from
0 (Solar disk center) to 1 (Solar Limb).

7We use the absolute values in order to make this relation valid for the center-side penumbra, where velocities are
negative (i.e. blue shift) and for the limb-side, where velocities are positive (i.e. red shift)
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TABLE 2.1: Signs for the variations with optical depth in the line-of-sight velocity and magnetic field
inclination, as well as the sign of |Ab| − |Ar| (given by Eq. 2.4) corresponding to the geometries a-d in
Fig. 2.13.

dvlos
dτ

d|cosγ|
dτ sign(|Ab|− |Ar|)

a >0 >0 <0
b <0 <0 <0
c <0 <0 <0
d >0 >0 <0

The mechanism invoked in the uncombed model, in order to reproduce the azimuthal behaviour
of the NCP (jump in the line-of-sight velocity and magnetic field inclination), does not provide
a satisfactory explanation for the observed NCP in the 1.56 µm lines. However, another very
important contribution towards the understanding of the penumbral fine structure was made by
Schlichenmaier et al. (2002) and Müller et al. (2002). They realized that, in the uncombed model,
although the penumbral flux tubes and the magnetic surrounding have the same azimuthal angle
in the local reference frame (l.r.f.), this is not the case for the observer’s reference frame (o.r.f.).
Let us, for example, consider a magnetic field vector such as that plotted in Fig. 1.4 (left panel).
Let us also assume that the Y-axis in that plot corresponds to the line of symmetry of the spot
in the limb-side penumbra (i.e. −Y points towards the direction of the Solar disk center). This
defines the l.r.f., where of course the Z-axis is perpendicular to the solar surface. In this frame,
the magnetic field vector B can be written as

B = Bsinγcosϕex +Bsinγsinϕey +Bcosγez (2.5)

Now we carry out a rotation of angle θ along the X-axis. Such a rotation yields the magnetic
field vector in the o.r.f.,

B = B
(

sinγcosϕe
′
x +[sinγsinϕcosθ+ cosγsinθ]e

′
y +[cosγcosθ− sinγsinϕsinθ]e

′
z

)

(2.6)

Note that these would be the components of the vector magnetic field as seeing in Fig. 1.4
(right panel) with X = X ′. We have added the superindex

′
to the angles γ and ϕ from Fig.1.4

(right panel) in order to distinguish from the l.r.f. (same figure; left panel). Finally, γ′ and ϕ′ have
the form

cosγ
′

=
B
′
z

B
= cosγcosθ− sinγsinϕsinθ (2.7)

tanϕ
′

=
B
′
y

B′x
=

sinγsinϕ+ cosγsinθ
sinγcosϕ

= cosθ tanϕ+
sinθ

cosϕ tanγ
(2.8)

Consider now, in the l.r.f., a radial penumbral fibril, whose inclination is γt at an azimuthal
position on the penumbra ϕl . The magnetic atmosphere, surrouding the penumbral flux tube,
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FIGURE 2.14: Variation, with respect to the line of symmetry, around a sunspot of the azimuhtal angle (in
the observer’s reference frame) for the penumbral fl ux tubes (black solid line), its magnetic surrounding
(purple solid line) and difference between them (red solid line). For this example we have taken horizontal
(in the local frame) fl ux tubes, γ t = 90◦, and somewhat more vertical magnetic background, γs = 55◦. The
obsever’s viewing angle was taken to be θ = 45◦. Note that the sign of ϕ′t −ϕ′s changes from the left to
the right side of the line of symmetry (denoted as LS).

possesses a more vertical magnetic field γs < γt but the same azimuthal angle ϕs = ϕt (i.e. it is
also radially orientated). From the observer’s point of view (o.r.f.), the azimuthal angle of the
flux tube and its surroundings would be, however, different: ϕ′t 6= ϕ′s. This introduces a new
discontinuity along the line of sight: ∆ϕ that must be taken into account, in addition to ∆γ and
∆vlos in order to compute the NCP. Müller et al. (2002) have thoroughly investigated this issue,
and realized that, according to the theoretical work of Landolfi & Landi Degl’Innocenti (1996),
the NCP of visible Fe I lines at 6300 Å is mainly affected by the ∆γ mechanism (in agreement
with Sánchez Almeida & Lites 1992). Interestingly, for the infrared Fe I lines at 1.56 µm the
discontinuity that plays the more important role in the generation of the NCP turns out to be
∆ϕ. With this finding, and taking into account the distribution around the penumbra of ∆ϕ (see
Fig. 2.14), Müller et al. (2002) and Schlichenmaier et al. (2002) have been able to succesfully
reproduce the NCP maps in the infrared (e.g. Fig. 2.12; right panel) with a model based on the
uncombed penumbra. Note that ∆ϕ = ϕ′t −ϕ′s is positive in the region of the sunspot located to
the left side of the line of symmetry, whereas it becomes negative of the region located on the
right side (red solid line in Fig. 2.14).

Therefore we must conclude that the uncombed model provides a very satisfactory description
of the penumbral vertical stratification in terms of horizontal flux tubes carrying the Evershed
flow, embedded in a surrouding atmosphere with a more vertical magnetic field. It allows to
understand, by means of discontinuities along the line of sight in the velocity and magnetic field
vector, the NCP maps observed with very different spectral lines (i.e. different temperature and
magnetic sesitivity, saturation etc.). Indeed it is also capable of reproducing NCP distributions for
other lines, not mentioned here, such as the Fe I and Si I lines located at 1.07 µm (Schlichenmaier



66 CHAPTER 2. SUNSPOT PENUMBRA

1 2
Pg(1) Pg(2)>

FIGURE 2.15: Cartoon representing a penumbral fl ux tube carrying the Evershed fl ow as in siphon fl ow
models. The plasma will fl ow from the point where the gas pressure, P g,is larger towards the point where
the gas pressure is smaller. Arrows indicate the direction of the fl ow (radially outwards). Dashed lines
corresponds to the case when the fl ux tube does not be back into the solar interior.

& Balthasar, private communication). Note that the aforementioned discontinuities are also seen
from the inversion of Stokes profiles (Fig. 2.8,2.9,2.11).

2.3 Theoretical understanding of the Evershed fl ow

The theoretical understanding for the Evershed flow has evolved as our knowledge about the
magnetic configuration of the penumbra has increased. The most successful models are those that
explain the ubiquitous outwards flow found in the penumbra in terms of a gas pressure difference
between the two footpoints of an arched loop that crosses it in the radial direction (see Fig. 2.15).

This is the basic idea of the so-called siphon flow models, as initially proposed by Meyer &
Schmidt (1968). For the plasma to flow radially outwards in the penumbra, the gas pressure in the
inner footpoint (referred to as 1 in Fig. 2.15) must be larger than at the outer footpoint (labelled
as 2 in Fig. 2.15): Pg,1 > Pg,2. If both footpoints are at the same geometrical height they must be
in total pressure balance:

Pg,1 +
B2

1

8π
= Pg,1 +

B2
2

8π
(2.9)

which basically means that for the plasma to flow outwards, as required from the observations,
the magnetic field strength must be larger in the outer footpoint than in the inner one: B2 > B1.

Siphon flows have been modelled with increasing complexity and realism (Degenhardt 1989,
1991; Thomas 1988, Thomas & Montesinos 1990, 1993; Montesinos & Thomas 1989, 1997)
including the effects of the flux tube geometry, radiative exchange with the surrounding atmo-
sphere, etc. According to them, the outer footpoint would be situated outside the sunspot, in
magnetic elements where the magnetic field is enhanced to values around 1500 Gauss (i.e. mag-
netic knots). This leaves some freedom to chose any inner footpoints within the penumbra (2)
such that the magnetic field strength was smaller than in the external magnetic element. Siphon
flow make use of the stationary MHD equations, in the thin flux tube approximation, to solve the
equilibrium equations, deriving with this a flow speed that increases from the inner footpoint (1)
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to the highest level of the arch and decreasing afterwards towards the outer footpoint. Note that
if the top of the arch is located near the outer penumbral edged this can easily explain the sudden
disappearance of the Evershed flow (see Sect. 2.1.3). According to the values of the magnetic
field at the footpoints, different kinds of siphon flows can develop along the tube: subcritical
(v < vt), supercritical (v > vt) and critical, where vt is the characteristic tube’s velocity:

vt =
vsva

√

v2
s + v2

a

(2.10)

va =
B√
4πρ

→ Alven speed (2.11)

vs =
√

γRT → Adiabatic sound speed (2.12)

The critical flow occurs whenever the flow speed becomes larger than the tube’s velocity v > vt ,
and a standing shock front is formed at the downstream loop. This shock front dissipates the
kinetic energy of the flow by transforming it into thermal energy. Hence, after the shock the
plasma speed becomes subcritical again v < vt .

Improvements, including the time dependent behaviour of the penumbral flux tubes, on the
classical siphon flow model have been carried out by Schlichenmaier et al. (1998a, 1998b).
Their simulations start with a thin flux tube which lies along the magnetopause (i.e. current
sheet separating the penumbra and the quiet sun). After a perturbation the flux tube tube rises
through the convectively unstable subsurface layers. Due to the superadiabatic stratification a hot
plasma upflow develops along the tube. When the tube reaches the τ = 1 level the atmosphere is
transparent to radiation and therefore the hot plasma gradually cools down (Schlichenmaier et al.
1999). This is the ingredient that produces the gas pressure gradient along the tube and sustains
it in time. In addition, the flux tube does not bend back into the solar photosphere but rather
continues horizontally along the canopy. This is sketched with dashed lines in Fig. 2.15. In this
case, since the two footpoints are not located at the same geometrical height the magnetic field in
the outer footpoint (2) does not necessarily need to be stronger than at the inner footpoint (1).

Siphon flow models, including the moving flux tube simulations from Schlichenmaier et al,
had to be revised after the investigations from Solanki et al. (1994) and in particular, from Wes-
tendorp Plaza et al. (1997; see also Sect. 2.2.2), who demonstrated that the magnetic field lines
return to the solar surface still within the penumbra, meaning that the outer footpoint of the
loop, as described by the siphon flow mechanism, should be located inside the penumbra (see
Fig. 2.15). If we now take into account that the strength of the penumbral magnetic field de-
creases with radial distance (see Sect. 2.1.2 and Fig. 2.3) this means that B2 < B1, and therefore
the plasma should flow inwards: (1)← (2), in clear disagreement with observations.

Montesinos & Thomas (1997) revised their calculations to account for penumbral flux tubes
that lie completely within the penumbra. They argued that the Wilson depression of the sunspot
penumbra makes the observations refer to different heights when the inner and outer penumbra
are compared, thus making the the magnetic field in the outer penumbra appear smaller than in
the inner penumbra, while in fact it is larger. This hypothesis, although physically valid must
still be able to explain how a Wilson depression of about 100 Km can explain a drop in the
observed magnetic field strength of about 1000 Gauss from the inner to the outer boundary of the
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penumbra. In parallel, Schlichenmaier (2002) have presented new simulations of the moving flux
tube where the flux tube is allowed to bend back into the photosphere while it is still within the
penumbra. In this case, a quasi-stationary situation is reached in which, as in stationary siphon
flows, the magnetic field strength is larger in the outer footpoint than in the inner one whenever
both are taken at the same geometrical height.



Chapter 3

Comparison of two semiempirical
models

Different interpretations of spectropolarimetric observations suggest different, some-
times contradictory, properties of the penumbral fine structure. In this chapter we
show that the results of inversions of penumbral infrared profiles based on one-
component models with gradients of the atmospheric parameters and two-component
models without gradients are compatible with each other. Our analysis reconciles
the results of previous investigations and provides further support for the picture that
sunspot penumbrae are composed of penumbral flux tubes embedded in a magnetic
background. The magnetic field in the tubes is more horizontal and weaker than that
of the background atmosphere. While the tubes carry most of the Evershed flow,
the background is essentially at rest. We notice also that the magnetic field strength
in the flux tubes drops much more slowly with radial distance than the background
field. This finding is discussed as a possible driver for the Evershed flow.†

3.1 Introduction

The fine structure of the penumbra has been the subject of many investigations (see Solanki 2003,
Bellot Rubio 2003 for recent reviews) . Most of these involve high resolution imaging, allow-
ing the horizontal distribution of brightness (and partly of the magnetic field if magnetograms
were obtained), and its evolution to be deduced. Spectra and in particular spectropolarimetric
measurements, i.e. the full polarization profiles of spectral lines, provide additional, largely com-
plementary information. The full potential of spectropolarimetry is realized when combined with
non–linear inversion techniques. This combination allows the line of sight velocity, magnetic
field vector and temperature to be determined with high precision and in three dimensions, at the
cost of temporal and spatial resolution.

†This chapter has been submitted for publication to Astronomy & Astrophysics: Borrero, J.M., Solanki, S.K.,
Bellot Rubio, L.R., Lagg, A. & Mathew, S.K. A&A (in press)

69



70 CHAPTER 3. COMPARISON OF TWO SEMIEMPIRICAL MODELS

Inversion techniques have played a key role in the interpretation of observations. The first
inversion of a complete sunspot was presented by Lites & Skumanich (1990) based on polariza-
tion profiles of the Fe I 630.25 nm line obtained with the Stokes II instrument. Subsequently,
further inversions of sunspots have been carried out, mostly using the pair of Fe I lines at 630 nm
observed by the Advanced Stokes Polarimeter (ASP, Elmore et al. 1992). The degree of sophis-
tication of the physical models used in the inversions has increased with time. Until 1997, most
inversions of penumbral profiles relied on one-component Milne-Eddington (ME) atmospheres.
The ME inversion code of the High Altitude Observatory (Skumanich & Lites 1987) has been
successfully used to study the structure of sunspot penumbrae by, among others, Lites & Sku-
manich (1990), Lites et al. (1993), Stanchfield et al. (1997), and Lites et al. (2002). The first
inversion of a penumbra in terms of one-component models with gradients of the atmospheric pa-
rameters was carried out by Westendorp Plaza et al. (1997) using the SIR code (Stokes Inversion
based on Response functions, Ruiz Cobo & del Toro Iniesta 1992). This code made it possible
to investigate the structure of the penumbra in different layers of the photosphere (Westendorp
Plaza et al. 2001a, 2001b).

The availability of infrared measurements, mainly the Fe I lines at 1565 nm recorded with
the Tenerife Infrared Polarimeter (TIP, Martínez Pillet et al. 1999), made the deeper layers of the
sunspot atmosphere accessible. Solanki et al. (1992a; 1994) presented the first inversions in this
spectral window using numerical solutions of the Radiative Transfer Equation, which allowed
the characterization of the magnetic canopy and the Evershed effect. This work was followed by
one-component inversions allowing for gradients in the physical parameters (Bellot Rubio et al.
2002; Mathew et al. 2003). Finally, more complex inversions based on two–component models
have been carried out (del Toro Iniesta et al. 2001; Bellot Rubio 2003; Bellot Rubio et al. 2003)
which have the potential to partly overcome the problem of the limited spatial resolution.

The results of these investigations of the visible and infrared data support the idea that sunspot
penumbrae consist of penumbral flux tubes embedded in a magnetic background (see Bellot Ru-
bio 2003), as proposed by Solanki & Montavon (1993) in their uncombed penumbral model.
However, inversions based on visible and infrared lines do not always agree on the properties of
the fine structure, and the same is true for inversions based on one-component and two-component
models (see Sect. 2.2.2). In extreme cases, opposite tendencies are deduced from visible and in-
frared lines. The one-component inversions of visible lines performed by Westendorp Plaza et al.
(2001a), for example, revealed magnetic field strengths increasing with height in most of the outer
penumbra, whereas a similar one-component model applied to infrared measurements results in
field strengths decreasing with height (Mathew et al. 2003).

Here we show that the results of one component models with gradients of the atmospheric
parameters and of two-component models without gradients are compatible with each other, and
that differences between them are more apparent than real. The results of both models provide a
possible explanation why the Evershed flow is directed outward in spite of the rapidly decreasing
penumbral magnetic field strength. We also offer an explanation for the different behaviors in-
ferred from visible and infrared lines based on the different sensitivity of these lines to the various
atmospheric layers. To this end, we invert the same infrared observations (described in Sect. 3.2)
with the same code (described in Sect. 3.3) in terms of one and two-component models (Sect.
3.4). The results of these inversions are compared in Sect. 3.5. A discussion of the reliability
of the different physical models is presented in Sect. 3.6. We address the implications of our
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results in Sect. 3.7 and offer a picture for the penumbral fine structure in Sect. 3.8 that attempts
to reconcile the various observations. Finally, Sect. 3.9 summarizes our findings.

3.2 Observations

On 27th September 1999, a rather symmetric spot, NOAA 8706, was observed with the Tenerife
Infrared Polarimeter (Martínez Pillet et al. 1999) attached to the 70cm German VTT of Teide
Observatory. The spot was located at a heliocentric angle of 24◦ (µ = 0.91). The recorded spectral
region contained the line pair Fe I 15648 Å and Fe I 15652 Å, with effective Landé factors of
ge f f = 3 and ge f f = 1.53 , respectively. The seeing conditions were rather good during the
observations, with the granulation being clearly discernible in the reconstructed continuum image
(Figure 3.1). The spatial resolution can be estimated to be about 1 arcsec by calculating the power
spectrum of the continuum intensity in the neighbouring granulation. The absolute wavelength
scale of the observations was determined using the line core position of the average quiet sun
intensity profile of Fe I 15648 Å and shifting it by 400 m s−1. This value corresponds to the
convective blueshift of the line as deduced from the two-component model of Borrero & Bellot
Rubio (2002). The telluric blend affecting the red wing of Fe I 15648 Å was removed by inverting
the quiet sun profile of the line and using the fit to determine its shape, which is subsequently
extracted from the remaining profiles. The atomic parameters of the observed lines, taken from
Borrero et al. (2003a), are summarized in Table 3.1. Recently, Mathew et al. (2003,2004) have
used the same data set to study the global structure of this sunspot.

3.3 Inversion procedure

The inversions presented in this work were carried out with the code SPINOR (Frutiger et al.
1999; Frutiger 2000). SPINOR iteratively modifies an initial guess model atmosphere by means
of response functions (Ruiz Cobo & del Toro Iniesta 1992) until the synthetic spectrum matches
the observed one. The radiative transfer equation is solved in local thermodynamic equilibrium
using the Hermitian algorithm of Bellot Rubio et al. (1998). The continuum absorption coeffi-
cient is calculated for a given wavelength, temperature, and electron pressure using the code of
Gustaffson (1973) which takes into account contributions from H, He, H−, He−, H+

2 , H−2 and
other electron donor species, as well as Rayleigh scattering by H and H2, and Thompson scatter-
ing by free electrons. Several broadening mechanisms are considered: microturbulence, radiative
broadening (in the classical damped oscillator approximation), and collisions with neutral hydro-
gen atoms (for which the ABO theory is employed; see Barklem & O’Mara 1997 and Barklem et
al. 1998).

Once the emergent spectrum has been computed for a given set of parameters which define
the atmosphere, analytical equivalent Response Functions (RFs) are evaluated for the physical
stratifications of the model (temperature, line-of-sight velocity, strength, inclination, and azimuth
of the magnetic field vector, etc) at a number of optical depth points called nodes. These RFs
enter into a Levenberg-Marquardt nonlinear least-squares algorithm (Press et al. 1986) and a new
set of parameters at the nodes, able to provide a better fit to the observed profiles, is obtained.
New stratifications of the physical parameters along the whole atmosphere are obtained by inter-
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FIGURE 3.1: Continuum intensity image of NOAA 8706 at 1.56 µm. The black box indicates the region
in the limb side of the penumbra considered in this work. It is centered on the line connecting the center
of the solar disk and of the sunspot (line of symmetry) and spans an interval of 45◦ in azimuth. Inside
it, examples of two radial cuts are plotted in white. The points labeled A, B, and C are three pixels at
different radial positions in the penumbra. Points E and D are two consecutive pixels on a different radial
cut. The white arrow in the umbra marks the direction to disk center. The two contours indicate the
umbra–penumbra and quiet sun–penumbra boundaries. The reference value taken for the sunspot’s radius,
r = R, corresponds to the outer contour at each position angle.

TABLE 3.1: Atomic parameters of the observed lines. λ0 represents the laboratory central wavelength, χl

the excitation potential of the lower energy level, and logg f the logarithm of the oscillator strength times
the multiplicity of the level. The parameters α and σ (in units of Bohr’s radius, a0) are used to calculate
the broadening of the lines by collisions with neutral hydrogen atoms as resulting from the ABO theory.
The last column gives the effective Landé factor of the transition, ge f f .

Species λ0 χl log gf α σ ge f f

(Å ) (eV) (dex) (a2
0)

Fe I 15648.515 5.426 −0.675 0.229 977 3.00
Fe I 15652.874 6.246 −0.043 0.330 1444 1.53
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polating the perturbations at the nodes using splines under tension. These steps are repeated until
the best fit is achieved. The synthesis and inversion are performed in an optical depth scale, but
during each iteration step, the atmospheres are put in hydrostatic equilibrium using the ideal gas
law as equation of state. More details on the code are given in Sect. 1.5.6.

Inversion techniques (ITs) have been used to investigate many structures of the solar pho-
tosphere and chromosphere (for recent reviews see Ruiz Cobo 1998; Socas-Navarro 2001; del
Toro Iniesta 2003b). The reliability of inversion techniques has been repeatedly demonstrated in
the past and we will not discuss this point further (e.g. Westendorp Plaza et al. 1998). How-
ever, some words about uniqueness are appropriate at this point. The retrieved results are unique
only for the particular geometrical model adopted for the inversion. As long as this model is not
changed and is appropriate to the data being inverted (e.g. one could not expect to obtain unique
results for the magnetic field vector if only Stokes I is inverted), ITs have proven to be extremely
robust and to retrieve the same stratifications of the atmospheric quantities independently of the
initial guess. However, the question remains how to understand the results of ITs when different
models are adopted to interpret the polarization profiles emerging from sunspot penumbrae. Bel-
lot Rubio (2003) and Leka & Socas-Navarro (2000) have investigated this issue by concentrating
on the global properties of the penumbra from the inversion of infrared and visible data respec-
tively. Here we extend this work by focusing our attention on the properties of the penumbral
fine structure that result when different geometries are adopted.

3.4 Geometrical models adopted for the inversion

We have selected two different models for the analysis of the observed penumbral profiles. The
first model assumes that in each pixel the fine structure is spatially resolved, so that the shape of
the line profiles are due to the height dependence of the thermal, magnetic and kinematic proper-
ties of the atmosphere, i.e. temperature T , magnetic field strength B, magnetic field inclination γ
and azimuth φ (relative to the observer’s reference frame) as well as line of sight velocity vLOS. In
addition, height independent macro- and microturbulent velocities are also obtained through the
inversion in order to model those velocities which occur at scales smaller than the resolution ele-
ment. For each height-dependent physical quantity we have selected four nodes at the following
optical depths: logτ5 = [1,0,−1,−2]1 . This results in a total of 23 free parameters. Hereafter,
this model will be referred to as the one-component (1C) model. Similar models have been used
to study the structure of sunspots by inverting the polarization signals of Zeeman sensitive spec-
tral lines in the visible (e.g., Westendorp Plaza et al. 1997; 2001a; 2001b) and the infrared (e.g.,
Bellot Rubio et al. 2002; Mathew et al. 2003).

The second model considers two independent atmospheric components for each spatial pixel,
thereby allowing for the possibility that there are horizontal inhomogeneities at scales below the
spatial resolution. In order to keep the number of free parameters within reasonable limits, the
physical quantities describing each component are assumed to be height independent, except for
the temperature. In addition to the kinematic and magnetic parameters mentioned above, a filling

1The assignment of the number and position of the nodes was done by concentrating on those layers to which these
lines are sensitive (i.e. calculating the Response Functions). Examples of RF’s for these lines can be found in Mathew
et al. 2003.
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factor αt (fractional area of the resolution element covered by the second component) is obtained
from the inversion. Here we have a total number of 18 free parameters. In the following this
model will be referred to as the two-component (2C) model. Bellot Rubio et al. (2003) have used
the same physical description of the penumbra to confirm that the Evershed flow is aligned with
the magnetic field vector in deep photospheric layers.

In all inversions we use a stray light correction. The stray light intensity profile, Iq, is taken
to be that emerging from the quiet sun according to the two-component model of Borrero &
Bellot Rubio (2002). A stray light factor αq is used to combine the stray light profile with the
polarization profiles emerging from the 1C and 2C models. αq is a free parameter of the inversion
and is included in the total number of free parameters given above. In this way, the synthetic
profiles used to fit the observations can be expressed as

~S1C(λ) = αq~Sq(λ)+(1−αq)~Sp(λ) (3.1)
~S2C(λ) = αq~Sq(λ)+(1−αq)[(1−αt)~Sp1(λ)+αt~Sp2(λ)]

where the Stokes vector is defined as~S = (I,Q,U,V ). ~Sp stands for the synthetic profiles emerging
from the penumbral atmosphere of the 1C model, ~Sp1 and ~Sp2 refer to the two magnetic compo-
nents of the 2C model. The quiet sun contribution (stray light) is assumed to be unpolarized:
~Sq = (Iq,0,0,0).

3.5 Results

We have inverted all 750 pixels in the region bounded by the thick black lines in Figure 3.1,
covering r/R values roughly between 0.4 and 0.8, where R denotes the radius of the sunspot
in the continuum map. The inverted pixels lie on the limbside penumbra close to the line of
symmetry of the spot, i.e., the line connecting the sunspot center with the center of the solar disk.
In Figure 3.2 we plot three examples of observed Stokes V profiles along with the best-fit profiles
resulting from the 1C and 2C inversions. These examples correspond to points A, B, and C in
Figure 3.1. Near the magnetic neutral line, the observed circular polarization profiles show three
or more lobes. The fits, although not perfect, are reasonably successful given the simplicity of the
two models. Residuals are always below 0.5 % (compared to an approximate noise level of 0.05
%). Although in general the 1C model leads to slightly better fits in terms of the final χ2 values,
the difference is not sufficiently large to declare this model more realistic, in particular since the
2C model uses fewer free parameters. The fits to the other Stokes parameters are equally good
(not shown).

In Figure 3.3 we present the kinematic and magnetic stratifications as a function of the optical
depth (for a wavelength reference of 5000 Å : τ5) of the atmospheres inferred from the inversion
of the profiles shown in Fig. 3.2. The atmospheres corresponding to the 1C model (dashed lines)
consistently show large red shifted velocities in high layers (around logτ5 ' −1), while in deep
layers velocities are negligible or even directed towards the observer, although comparatively
weak in magnitude. Both, the magnetic field strength and its vertical gradient decrease from the
inner to the outer penumbra. Large values (γ ∼ 110◦) of the magnetic field inclination in high
layers along with smaller ones (γ ∼ 60− 80◦) in deep layers are inferred. The parameters of
the two penumbral components returned by the 2C inversion are also indicated in Fig. 3.3 by
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FIGURE 3.2: Top six panels: results from the inversions based on the 1C model. Bottom six panels: as
before but for the 2C model. We each separate model we plot, from top to bottom: observed Stokes V
profiles (filled circles) corresponding to the points marked as A, B and C in Fig. 1. The best-fit profiles
resulting from the inversions are represented by the solid lines. Beneath each panel showing the V/IC

profile is plotted the difference between observed and best fit profiles (residuals). The χ2 value is given for
each fit. More weight was given during the inversion to the circular polarization than to the total intensity
and linear polarizaion. Relative weights were the same in the 1C and 2C inversion.



76 CHAPTER 3. COMPARISON OF TWO SEMIEMPIRICAL MODELS

horizontal solid lines. It can be seen that one of these atmospheres (#2) has moderate magnetic
fields (B ∼ 1200 G), high inclination angles (γ ∼ 100− 110◦) and large redshifted velocities
(vLOS ∼ 1.5−2 km s−1), while the other component (#1) is characterized by stronger (B∼ 1500−
2000 G) and less inclined (γ ∼ 60− 70◦) magnetic fields. In component #1, the line-of-sight
velocity is nearly zero. This figure also indicates a similarity between the values returned by
the 1C inversion at logτ5 = −1 and 0 and the 2C inversion results for component #2 and #1,
respectively.

Next we test these hints in a statistically more robust fashion. For all the pixels we have se-
lected the optical depths marked in Fig. 3.3 with vertical dotted lines (logτ5 = 0 and logτ5 =−1),
extracted the values of the atmospheric parameters from the 1C inversion there and plotted them
as a function of radial distance in the penumbra in Figure 3.4 (left panels) . The corresponding
values for the two atmospheres of the 2C inversions are shown as well (right panels). In this fig-
ure, the magnetic field inclination is expressed in the local reference frame. Thus, instead of γ we
plot the zenith angle ζ. A zenith angle of zero indicates fields pointing outwards perpendicularly
to the solar surface.

At logτ5 = −1 the magnetic field returned by the 1C model becomes more horizontal in
the middle penumbra and eventually reaches values slightly larger than 90◦, implying that the
magnetic field returns to the solar surface. The field strength decreases only slowly with radial
distance, whereas the LOS velocities are redshifted and increase radially. At logτ5 = 0 we see
a rather vertical magnetic field in the inner penumbra which gradually becomes more inclined,
although it is never completely horizontal. In this layer, the magnetic field is stronger than at
logτ5 = −1 in the inner penumbra, but rapidly decreases to similar values at the outer part of
the penumbra. The velocity here is almost zero, indicating that the Evershed flow is mostly
concentrated in the upper part of the atmosphere.

The 2C inversions show a strikingly similar overall picture. In particular, one of the compo-
nents (#2) possesses more horizontal, weaker fields whose strength remains more or less constant
with radial distance. This component also carries a large flow, whose magnitude increases ra-
dially, although by only a small amount. Component #1 is characterized by more vertical and
stronger magnetic fields and small LOS velocities. The field strength in this atmospheric compo-
nent decreases quickly with radial distance.

These two components or layers can be identified with horizontal magnetic flux tubes (car-
rying the Evershed flow) embedded in a more vertical background (e.g., Solanki & Montavon
1993, Schlichenmaier et al. 1998a,1998b; Martínez Pillet 2000; Bellot Rubio et al. 2002, 2003;
Mathew et al. 2003). Thus, the atmosphere represented by dashed lines in Fig. 3.4 corresponds
to the flux tubes and the atmosphere indicated by solid lines to the background. The correspon-
dence between 1C and 2C inversions is not always perfect. For example, the inclination of the
background in the 1C model increases by roughly 20–30◦ as r/R increases, while it remains un-
changed in the 2C inversions. However, these differences do not detract from the remarkable
similarity of the behaviors deduced from both models.

One peculiarity of the 1C inversions is a sudden change of the sign of the gradients of LOS
velocity and magnetic field inclination at a given radial position. In Figure 3.5 this behavior is
illustrated for the two consecutive points along the same radial cut marked D and E in Fig. 3.1.
Whereas in point D the flux tube is better identified with logτ5 = −1 this is no longer the case
in point E, where it seems appropriate to identify the background with this optical depth position
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FIGURE 3.3: Examples of atmospheric stratifications resulting from the 1C and 2C inversions (dashed
and solid lines, respectively). The numbers next to the solid lines indicate the corresponding magnetic
component. From top to bottom: results for pixels A, B, and C (see text and caption of Fig. 3.1 for details).
From left to right: line-of-sight velocity, magnetic field strength, and magnetic field inclination. The two
vertical dotted lines mark the optical depth points selected for further analysis (logτ5 = 0 and logτ5 =−1).
Positive velocities indicate redshifts.
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FIGURE 3.4: Radial variation of the inferred physical quantities. Top panels: magnetic field strength.
Middle panels: magnetic zenith angle. Bottom panels: line-of-sight velocity. The results of the 1C inver-
sions are shown in the left panels. For these inversions we extract the values at logτ5 = 0 (solid lines) and
logτ5 =−1 (dashed lines). The 2C results are plotted in the right panels. Component #1 (the background)
is represented by solid lines, whereas dashed lines correspond to component #2 (fl ux–tube atmosphere).
Solid and dashed lines are averages over all the points at the same radial distance, while the shaded areas
correspond to the maximum individual deviations. The 1C results have been corrected (for r/R & 0.75) by
interchanging the values at logτ5 =−1 and logτ5 = 0 where necessary (see text for details).
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FIGURE 3.5: Atmospheric stratifications derived from the 1C inversion (dashed lines) and 2C inversion
(solid lines) of two consecutive radial points referred to as D and E in Figure 3.1. Note the sudden change
in the gradient of the LOS velocity and field inclination from point D to E.

and to shift the flux tube to logτ5 = 0, where the horizontal Evershed flow would now be located.
All considered radial cuts show this tendency in the outer penumbra. We have corrected for this
shift in Fig. 3.4 by simply interchanging the values of the atmospheric parameters at logτ5 = 0
and logτ5 =−1 where necessary. One may speculate that the shift is due to the flux tubes sinking
back into the photosphere at large radial distances, so that they should be observed in deeper
layers as the outer penumbral boundary is approached. Such an explanation is consistent with the
retrieved zenith angles which, for the flux tubes, increase radially and finally become larger than
90◦. We note here that Mathew et al. (2003) found a similar behavior. They detected large LOS
velocities in high layers and small velocities in the deep photosphere for the inner penumbra,
but the opposite behavior in the outer penumbra. The uncombed-like inversions of Bellot Rubio
(2003) (see footnote 4 in pag 83) also suggest that the flux tubes are located at increasingly lower
layers in the outer penumbra (from r/R ∼ 0.75 outwards), although this tendency is not well
marked.

Before discussing the results and their implications in the next sections, we need to address
why the results presented in Fig. 3.4 are based on the inversion of a region restricted to the
limb-side penumbra. The reason for this is the greater coherence and reliability of the results
obtained from the profiles observed in this region when compared with those at the center side. A
possible explanation for the smaller reliability of the 2C inversion results in the center side could
be that, in this region, the magnetic field vector in both flux tubes and magnetic background
has the same polarity with respect to the line of sight (γ < 90◦), so that both atmospheres give
a similar signature and the resulting Stokes V profiles are two lobed. The information carried
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FIGURE 3.6: Stratifications of LOS velocity (upper panels) and magnetic field inclination (lower panel)
for two hypothetical points in the outer (r/R > 0.7) limb side (left panels) and center side (right panels) of
the penumbra. Dotted and dashed lines are the results obtained by applying a 2C inversion to the profiles
synthesized with the uncombed model (solid lines; see also Table 3.2). The shaded areas represent the
standard deviations corresponding to 10 random initializations.

by the two different components in the circular polarization is then mixed together, making its
separate inference more difficult.

To test this idea we have created synthetic data and inverted them for different positions in
a hypothetical sunspot. The model underlying the calculation of the synthetic profiles is basi-
cally the uncombed model of Solanki & Montavon (1993; see also Borrero et al. 2003b), with
the parameters indicated in Table 3.2. These profiles are then inverted using 10 random initial
2C models (as described in Sec. 3.4) whose results are presented in Figure 3.6. In the limb side
we have mixed polarities: flux tube with γ > 90◦ (dashed lines) and background with γ < 90◦

(dotted lines). The 2C inversion recovers both structures almost perfectly in this case. How-
ever, in the center side the polarities are the same (γ < 90◦) and the 2C inversion recovers the
original stratifications with larger uncertainties. This supports the explanation proposed above.
Note that this conclusion is based on the behavior showed by the circular polarization profiles
in different regions of the spot. It could well be that, under the appropriate viewing angles, the
different signature of the two components in the center-side penumbra appear mostly in the lin-
ear polarization (Stokes Q and U) profiles. For example, if a sunspot is observed near the limb
(θ ' 40◦), the background magnetic field in the center side of the penumbra would be aligned
with the observer (γB = 0◦) and would not produce any linear polarization signal; thus, allowing
for a better distinction of the different components when inverted with a 2C model. This idea
must be confirmed by inverting a wider sample of sunspots at different heliocentric angles (see
also Sect. 2.2.2; unresolved structure).
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TABLE 3.2: Physical parameters of the uncombed field model used for the numerical test. Index T refers
to a fl ux tube which is embedded in a background (index B). B and γ are the strength and inclination of
the magnetic field vector (with respect to the observer) respectively. VLOS is the line of sight velocity. αT

and αQ have the same meaning as in Eq. 3.1. RT is the fl ux tube’s radius and z 0 is its central position. The
uncombed model is basically a modified 2C model where the B component is a pure penumbral background
field with no height variation is the physical parameters. The component T has the same stratifications than
the latter except between z0−RT and z0 + RT where the tube is located and where physical parameter
suffer a jump (from index B to T, e.g., solid line in Fig. 3.6). . In the local reference frame ζB = 60◦ and
ζT = 90◦ are chosen. However in the observer’s frame we have γ = ζ+θ on the limb side or γ = ζ−θ on
the center side, where θ = 25◦ as in our observations.

Parameter Units Outer Center Side Outer Limb Side

BB Gauss 1000 1000
γB deg 35 85
VLOS,B kms−1 0 0
BT Gauss 1000 1000
γT deg 55 115
VLOS,T kms−1 −2.75 2.00
αT 0.65 0.65
RT km 150 150
z0 km 100 100
αQ 0.15 0.15
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FIGURE 3.7: Area asymmetry, δA, of the best-fit Stokes V profiles vs. the observed δA. The mean δA
is around 3% and 7% for the observed and best-fit profiles, respectively. The solid line represents the
expectation value, while the dashed line is a linear fit to the points.

3.6 Stokes V area asymmetry

A potentially powerful diagnostic of the penumbral fine structure that has not been considered in
the previous section is the Stokes V area asymmetry, δA (see Sect. 1.4.1 and 2.2.2). Observations
show thatδA, defined as

δA =

R

V (λ)dλ
R |V (λ)|dλ

, (3.2)

is non-zero in the penumbra for both visible and infrared spectral lines (Illing et al. 1974a,
1974b; Makita 1986; Sánchez Almeida & Lites 1992; Schlichenmaier & Collados 2002; Schlichen-
maier et al. 2002; Müller et al. 2002). While the 2C model used here possesses height independent
quantities (e.g., B, γ, VLOS) , so that it is unable to produce asymmetric profiles, the 1C model
incorporates such height variations (i.e. gradients). To test how well the 1C inversion reproduces
the observed area asymmetries we plot in Figure 3.7 the Stokes V area asymmetry of the best-fit
Fe I 15648 and 15652 Å profiles resulting from the 1C inversion versus the observed values. Fig-
ure 3.7 shows that the observed δA is small, with values never exceeding 20% 2 , in contrast to the
visible lines at 6300 Å where larger values are quite common (Westendorp Plaza et al. 2001a).
This figure also shows that the 1C model tends to overestimate the observed area asymmetry (see
linear fit). The reason for the large scatter is basically the small sensitivity of these infrared lines
to line-of-sight gradients in the atmospheric parameters together with the oversimplified picture
of the real penumbral structure represented by the 1C model. To demonstrate this we construct a
magnetic atmosphere similar to those obtained from the 1C inversion (see Fig. 3.3) but where the
gradients are substituted by a step–like jump in the stratifications of the physical parameters at a

2We estimate that a noise level of 5×10−4IC in the observed circular polarization can introduce a maximum bias
of ±1% in the observed δA, so that this cannot be the cause of the relatively poor correspondence.



3.7. MAGNETIC FL UX TUBES AND THE EVERSHED FL OW 83

prescribed level τ0. This jump is similar to the one present at the lower boundary of a horizontal
flux tube carrying the Evershed flow (see Fig. 3.8a). A constant magnetic field with B = 1500
G, γ = 70◦, φ = 0◦ and no flows are assumed below τ0 to simulate a background with properties
similar to those in Fig. 3.3. For the flux tube (layers above τ0) we adopt the following values:
B = 1000 G, γ = 115◦, φ = 0◦ and VLOS = 1.75 km s−1. The temperature stratification is taken
from the penumbral model by del Toro Iniesta et al. (1994). Stokes V profiles and δA values
are computed for the two analyzed infrared lines 15648 and 15652 Å as well as the widely used
pair of lines Fe I 6301 and 6302 Å . This is done for τ0 values ranging between 10−5 and 10.
Obviously, for a line formed in the height range τ = [τu,τ`], a non-zero δA will be obtained only
when the discontinuity τ0 is located between τu and τ` (see Fig. 3.8a). The results are presented
in Figure 3.8b. The δA of the visible lines is much more sensitive to discontinuities along the line
of sight than that of the infrared lines. Indeed, the lines used in this work are almost insensitive to
such discontinuities, exhibiting some area asymmetry (δAmax ∼ 10%) only in a very narrow range
of optical depths (from logτ5 ∼ −1 to logτ5 ∼ 0, with a maximum around logτ5 ∼ −0.2). As
explained by Landolfi & Landi degl’Innocenti (1996) and Grossmann-Doerth et al. (1989) this
results follows directly from the properties of the lines (Landé factors, saturation). From these
results we draw the following conclusions:

• The formation of the Fe I 15648 and 15652 Å lines is dominated by the presence of two
opposite polarities in the resolution element. Successful fits can be achieved with the help
of the 2C model because the lines are only slightly influenced by discontinuities.3.

• The visible Fe I 6301 and 6302 Å lines are strongly influenced by discontinuities, which
gives rise to large δA values. Successful fits to those kind of profiles can only be achieved
by means of models including gradients (e.g. our 1C model), or discontinuities.

• The stratifications inferred from the 1C inversions, the observed Stokes V area asymmetry
of the iron lines at 1.56 µm, and the results from the numerical experiment suggest that
at least in the inner penumbra these lines detect the lower boundary of the horizontal flux
tube. This needs to be confirmed by inversions with a more realistic model.

• The wider formation height range of visible lines may allow to detect both tube’s bound-
aries if its width does not exceed 250–300 km and if it lies entirely above τ5 = 1 in the
photosphere.

3.7 Magnetic fl ux tubes and the Evershed fl ow

One of the most interesting result of our analysis concerns the radial variation of the magnetic
field strength (top panels in Fig. 3.4). Whereas the strength in the more vertical component
(component #1 in the 2C inversion or logτ5 = 0 level in the 1C inversion) drops rapidly from the

3As pointed out by Müller et al. (2002) and Schlichenmaier et al. (2002), δA for Fe I 1.56 µm lines is dominated
by the jump in azimuths between the flux tube and background. Assuming ∆φ = 0 is justified as long as our studied
region is near the line of symmetry of the sunspot (see Sect. 2.2.2). We have checked that, as expected, δA for the
infrared lines changes when ∆φ 6= 0, but remains smaller than in the visible lines.
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FIGURE 3.8: A: illustration of the method employed to determine the sensitivity of the Stokes V area
asymmetry to discontinuities of the physical parameters along the line of sight. The thick solid line corre-
sponds to a possible stratification including a fl ux tube. The vertical dashed line marks the position of the
boundary τ0 which is displaced following the arrow. The vertical dotted lines limit the formation region
for a generic spectral line. B: Stokes V area asymmetries resulting from the calculations of two visible
and two infrared neutral iron lines. For the infrared lines, δAmax ' 10% and the range of sensitivity is
logτ ∈ [0,−1]. Visible lines are much more affected by the discontinuity in a wider optical depth range.
The maximum area asymmetry of the visible lines occurs when the discontinuity is placed at higher layers
than in the case of the infrared lines.
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inner to the outer penumbra, the field strength of the flux tube component decreases very slowly
(component #2 of the 2C model or logτ5 = −1.0 level in the 1C model). Roughly speaking, B
changes only from ∼ 1300 G in the inner penumbra (where upflows are present) to ∼ 1000 G
in the outer penumbra (where downflows dominate; ζ > 90◦). A small radial decrease of the
field strength in the flux tube was also obtained by Bellot Rubio (2003) from both 2C inversions
and uncombed-like inversions of another spot 4. However, this effect has passed unnoticed in
previous 1C analyses.

To understand why, it is important to recall the limitations of the empirical models typically
employed to analyze sunspot spectropolarimetric data. Generally only one atmosphere is as-
sumed to be present in the resolution element and all atmospheric parameters are taken to be
constant with height. Such models provide a horizontal and vertical average (over the resolution
element and the height range of formation of the lines, respectively) of the magnetic and kine-
matic properties of the different penumbral structures. Thus, deduced field strengths generally
drop from ∼ 2000 G in the inner penumbra to ∼ 1000 G at the outer penumbral boundary (Lites
& Skumanich 1990; Solanki et al. 1992; McPherson et al. 1992; Lites et al. 1993; Keppens &
Martínez Pillet 1996; cf. Solanki & Schmidt 1993).

This large decrease of the magnetic field strength has long been considered to present a major
difficulty for explaining the Evershed effect in terms of a siphon flow whose downflowing foot-
point lies within the penumbra (see Sect. 2.3). In the last decade it has become clear that most of
the mass carried by the Evershed flow emerges first in the inner part of the penumbra and returns
below the solar surface at the outer penumbral boundary (Solanki et al. 1994,1999; Westendorp
Plaza et al. 1997).

Siphon flow models, according to which the Evershed flow is driven by the gas pressure
difference between the two footpoints (Meyer & Schmidt 1968; Degenhardt 1989; Thomas 1988;
Thomas & Montesinos 1990, 1991; Montesinos & Thomas 1993, 1997) , require the opposite
behavior, that is, larger magnetic fields in the (outer) downflowing footpoint than in the (inner)
upflowing footpoint. In fully dynamic models a similar behavior is found (Schlichenmaier 2002;
c.f. Schlichenmaier et al. 1998a,1998b) if mass return is to be present within the penumbra.
Montesinos & Thomas (1997) have argued that differences in the geometrical height at which the
magnetic field is measured in the inner and outer penumbra can make the observed field in the
downflowing footpoint appear smaller, while in reality it is larger. This hypothesis remains to be
proven for realistic sunspot models (Solanki 2003).

In agreement with the results obtained from Ti I 2.2 µm lines by Rüedi et al. (1998,1999), our
inversions show a slowly decreasing (almost constant) field strength inside the (almost) horizontal
magnetic component carrying the Evershed flow (flux tube). This result removes one of the
main hurdles facing the siphon flow mechanism and reduces the need to invoke changes in the
height of the observed layers within the penumbra (Montesinos & Thomas 1997). Thus, most
of the magnetic flux in the penumbra exhibits the strong reduction in field strength with radial
distance required to attain a magnetohydrostatic equilibrium. The small part of the magnetic flux
supporting the Evershed flow is almost independent of radial distance, however. An investigation

4The term uncombed-like inversions refer to a two component model where a Gaussian function is used to represent
the discontinuities along the line of sight in the physical quantities. This mimics the step function used in Fig. 3.6.
The central position and width of the Gaussian would be equivalent to the central position Z0 and radius RT of the
penumbral flux tubes as in the uncombed model from Solanki & Montavon (1993) in Table 3.2.
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involving a more realistic geometry of the penumbral magnetic field, including constraints on the
pressure gradients within the flux tubes will be carried out in Chapters 4-5.

3.8 A picture of the penumbral fine structure

In Sect. 3.5 we have seen that the atmospheric parameters resulting from the 1C and 2C inversion
show essentially the same behavior: a weaker, more horizontal field supporting the Evershed
flow (flux tubes) coexists with a stronger, more vertical field containing gas that is essentially at
rest (background). From a geometrical point of view, however, the two models are significantly
different. In the 1C model the flux tube lies on top of the background, while in the 2C model,
both structures coexist next to each other, without any vertical interlacing. It is not straight
forward to decide, on the basis of the present data, which model comes closer to reality. On the
one hand, the 1C model is able to provide slightly better fits to the observed profiles while the
inversions based on the 2C model show smoother radial variations (see Fig. 3.4). However, it is
important to recall that, for comparison purposes, we have defined two (somewhat arbitrary) fixed
optical depths in the 1C model to extract the atmospheric parameters. It is likely that a different
or more dynamic selection of these two points produces smoother radial variations for the 1C
model. On the other hand, an advantage of the 2C inversions is that the physical meaning of the
two components is very intuitive, whereas in the 1C inversions the two structures are described
by the same atmosphere. In addition, the 1C model presents large gradients in the magnetic field
inclination with height which are likely to produce unrealistically large magnetic curvature forces
(Solanki et al. 1993). However, these gradients are an essential ingredient of the model, needed
to produce asymmetric Stokes V profiles. Nevertheless, the observed Stokes V area asymmetry
of the 1.56 µm lines is so small that it does not by itself completely rule out the 2C model.

Westendorp Plaza et al. (2001a, 2001b) used a 1C model applied to visible 630 nm Fe I
lines and found LOS velocities and magnetic field inclinations decreasing with height, but field
strengths increasing with height. From the application of a similar 1C inversion, but applied to
the infrared 1.56 µm Fe I lines, we have obtained (see also Bellot Rubio et al. 2002 and Mathew
et al. 2003) field strengths that decrease and velocities and magnetic field inclination angles that
increase with height As discussed in Mathew et al. (2003) all these results are consistent if
visible lines are assumed to sample the upper boundary of the penumbral flux tubes (arrow labeled
1C-VISIBLE in Fig. 3.9) while infrared lines, more sensitive to deep layers, sample the lower
boundary (arrow 1C-INFRARED in Fig. 3.9). In addition, the results returned by the 2C model
in this work (see also del Toro Iniesta et al. 2001, Bellot Rubio 2003, and Bellot Rubio et al. 2003)
provide information on the flux tubes and the background fields (2C-no.1 and 2C-no.2 arrows).
Note, however, that this picture needs to be tested using a more realistic model incorporating a
magnetic flux tube.

Another very remarkable result from the 2C model concerns the difference in the azimuthal
angle of the magnetic field vector for the flux tube and the magnetic surrounding. After carrying
out a 2C inversion for the whole penumbral region (not restricted now to the selected region in
Fig. 3.1) we can plot this azimuth difference ϕt−ϕs as a function of the position in the penumbra.
This result is presented in Fig. 3.10 (cf Fig.2.14). As we can see, this difference is positive of the
left side of the line of symmetry but negative on the right side. This behaviour was already pre-



3.9. SUMMARY 87

FIGURE 3.9: Sketch of the fine structure of the penumbra. A vertical slice through the penumbra in a
direction perpendicular to the fibrils is shown. The oval structure is a cross-section of the fl ux tube (its
shape is of no consequence for the present discussion). The different arrows mark the structures and layers
to which the results of 1C inversions with gradients of the atmospheric parameters (right arrows) and 2C
inversions without gradients (left arrows) of visible and infrared lines should be ascribed. See text for
details.

dicted by Müller et al. (2002) and Schlichenmaier et al. (2002) from the NCP shown by the 1.56
µm lines (see Sect. 2.2.2). Note however, that our 2C model is unable to produce any Net Circu-
lar Polarization (Eq. 3.2), and therefore we must conclude that the information on the azimuthal
angles comes mainly from the linear polarization profiles (Stokes Q and U). This result provides
strong evidence supporting the picture of a flux tube and magnetic background atmosphere that,
in the local reference frame, have the same azimuthal angle. This result, althought with a much
smaller correlation and only for some radial distances, is also seen in the 1C inversion.

3.9 Summary

We have studied the structure of sunspot penumbrae by means of spectral line inversions con-
sidering two different geometries. The first model assumes a one-component atmosphere where
all physical parameters are allowed to change with height, while the second model consists of
two independent, horizontally interlaced magnetic components whose velocities and magnetic
vectors are constant with height. We have shown that both models provide very similar results
featuring an almost horizontal magnetic field with a strength of about 1200 G which remains
almost constant with radial distance and carries the Evershed flow. This field is inclined slightly
upwards in the inner penumbra, is horizontal in the middle penumbra and is inclined downwards
at large radial distances. This relatively weak field neighbours a strong (up to ' 2000 G) and
more vertical one (zenith angle, ζ ' 40◦). The strength of the stronger field decreases rapidly
with radial distance, becoming almost identical to that of the weaker field in the outer penumbra.
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FIGURE 3.10: Difference in the azimuthal angle between component 2 and component 1 retrieved from
the 2C inversion as a function of the position around the spot for a radial position at r/R = 0.65. Compare
with Figure 2.14. Good correlations are also obtained at small-intermediate radial distances from the
sunspot center. For the 1C inversion this correlation is also found in ϕ(−1)−ϕ(0), where the number in
brackets indicate the optical depth points from where the azimuthal is taken.

No clear signature of the Evershed flow is found in this stronger, more vertical field. The small
radial decrease of the magnetic field strength in the component carrying the Evershed flow sig-
nificantly reduces a major hurdle facing the siphon flow mechanism as the driver of the Evershed
effect.

Although the two models lead to the same basic results, they are significantly different from a
geometrical point of view. While in the 1C model the weaker field overlies the stronger one, in the
2C model they lie side by side. Consequently, the 1C model includes gradients along the line of
sight. In the second model, no gradients are present because the two components do not interlace
vertically. Such gradients or discontinuities along the line of sight are needed to reproduce the
area asymmetry observed in the circular polarization profiles. In order to understand why both
assumed geometries lead to similar properties for the penumbral fine structure, we have studied
the sensitivity of the area asymmetry of selected spectral lines to discontinuities along the line
of sight. The infrared lines used in this paper turn out to be almost insensitive to such gradients.
This explains why the two-component model is able to provide a good fit to the observations
and why inversions based on it reveal a very similar penumbral structure as the one-component
model with gradients. The same sensitivity analysis carried out for visible lines commonly used in
spectropolarimetry (Fe I 6301 and 6302 Å) indicates that the corresponding Stokes V profiles are
much more asymmetric than their infrared counterparts. Therefore, it is very likely that models
including gradients/discontinuities will be necessary to reproduce these lines (see Chapter 5).

We also point out that the results obtained from both assumed geometries can be naturally in-
terpreted in terms of nearly horizontal flux tubes with a lower field strength containing outflowing
gas that are embedded in a more vertical, stronger field in which gas is essentially at rest. This
picture is in line with that proposed by Solanki & Montavon (1993) and Martínez Pillet (2000).
The obvious next step is to carry out an inversion based on such a model (see Chapter 4).
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The current work cannot contribute to the intense debate over the last years about the width
of the flux tubes, in particular whether they are optically thick or thin (Sánchez Almeida 1998,
2001; Martínez Pillet 2000, 2001; Sütterlin 2001; Scharmer et al. 2002). The same observable
effects would result from either one single thick tube (such as depicted in Fig. 3.9) or a bundle
of smaller flux tubes of similar total optical thickness concentrated around z' 150 km above the
continuum layers. Recent observations of the penumbra at very high spatial resolution (Scharmer
et al. 2002) show individual filaments 100–200 km thick (depending on whether only the inner
dark core is considered to be a flux tube or the lateral bright features are also included). This
strongly suggests that at our spatial resolution we deal with a situation where more than one fibril
is present in the resolution element.
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Chapter 4

The nature of the Evershed fl ow

The next step in the modelling of the penumbral fine structure will be to employ a
model such as that sketched in Sect 3.8. This model allows for a flux tube embedded
in a magnetic background, and requires horizontal pressure balance between the two
magnetic components. We apply our model to spectropolarimetric observations of
two neutral iron lines at 1.56 µm and invert several radial cuts in the penumbra of the
same sunspot at two different heliocentric angles. In the inner part of the penumbra
we find hot flux tubes that are somewhat inclined to the horizontal. They become
gradually more horizontal and cooler with increasing radial distance. This is accom-
panied by an increase in the velocity of the plasma and a decrease of the gas pressure
difference between flux tube and background components. At large radial distances
the flow speed seems to experiment a super-subcritical transition leading to a possi-
ble formation of a shock front. These results are in good agreement with simulations
of the penumbral fine structure and so far provide the strongest evidence supporting
the siphon flow as the physical mechanism driving the Evershed Flow.†

4.1 Introduction

The picture of the fine structure of the penumbra has strongly evolved over the last decade (e.g.,
Degenhardt & Wiehr 1991; Title et al. 1993; Solanki & Montavon 1993; Westendorp Plaza
et al. 1997; Schlichenmaier et al. 1998a; Scharmer et al. 2002; see Solanki 2003 and Bellot
Rubio 2003 for an overview). Consequently it is now accepted that the penumbral magnetic field
is uncombed, i.e. inclined at least in two different directions on a small scale. There is also
considerable evidence that the more horizontal component must be in the form of flux tubes, but
the diameter of these flux tubes is still a matter of debate (Sánchez Almeida 1998,2001; Martínez
Pillet 2000,2001). These flux tubes carry the Evershed flow (Evershed 1909; Title et al. 1993;
Westendorp Plaza et al. 2001a,2001b; Bellot Rubio et al. 2003; Borrero et al. 2004; see also
Chapter 3). Many of the tubes return to the solar interior within the penumbra (Westendorp Plaza

†This chapter has been submitted for publication to Astronomy & Astrophysics: Borrero, J.M., Solanki, S.K.,
Lagg, A. & Collados, M. A&A (submitted)
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et al. 1997; del Toro Iniesta et al. 2001; Mathew et al. 2003; Borrero et al. 2004) and along
with the magnetic flux a large fraction of the mass flux carried by the Evershed flow returns also
to the solar interior within the penumbra or just outside it (Börner & Kneer 1992; Solanki et al.
1994,1999).

The combination of these results raises questions regarding the commonly considered phys-
ical mechanism for driving the Evershed flow. Since the wave hypothesis is ruled out (Bünte &
Solanki 1995) and episodic Evershed flow produced when a flux tube falls and drains (Wentzel
1992) faces difficulties due to the relative immutability of the penumbral magnetic pattern (Solanki
& Rüedi 2003), the most widely accepted mechanism is that the flow is caused by a gas pres-
sure gradient between the upflowing and the downflowing footpoints (Meyer & Schmidt 1968).
Commonly, this pressure gradient is thought to be produced by a difference in the field strength
between the footpoints, which, due to horizontal pressure balance leads to a gas pressure differ-
ence (e.g. Degenhardt 1991; Montesinos & Thomas 1993,1997). All else being equal, the gas
flows from the footpoint with lower field strength to the footpoint with the higher field strength.
However, if most of the gas flows only within the penumbra, then due to the roughly factor of 2
larger magnetic field strength at the inner boundary of the penumbra than at the outer edge, one
would mainly expect the gas to flow inwards, contradicting observations. Montesinos & Thomas
(1997) have argued that this radial decrease of the field strength is only apparent, being caused
by different τ = 1 levels at the footpoints. However, the global magnetic structure of a sunspot is
close to potential, which implies a field strength decreasing towards the edges of the sunspot at a
given geometrical height.

A possible resolution of this dilema was noticed by Borrero et al (2004; see Chapter 3), who
found that whereas the strength of the inclined magnetic component indeed drops very rapidly in
the radial direction, the horizontal component carrying the Evershed flow shows far less variation
(cf. Rüedi et al. 1998,1999). The analysis of Borrero et al. was incomplete in the sense that the
two components were independent of each other. Here we overcome this shortcoming and take
into account the flux-tube structure of the field. We apply a powerful inversion technique (de-
scribed in Section 4.2) to spectropolarimetric observations of infrared Zeeman sensitive spectral
lines (Section 4.3). General results are presented and discussed in Section 4.4. In Section 4.5 we
discuss the generation of Net Circular Polarization by the uncombed model and the implications
for the typical size of the penumbral flux tubes. Section 4.6 is entirely devoted to explain our
results in the frame of the theoretical models employed to explain the Evershed effect in terms of
gas pressure differences. Our main findings and conclusions are summarized in Section 4.7.

4.2 Description of the employed model and inversion process

The analysis of spectropolarimetric observations of the sunspot penumbra by means of Stokes
profile inversion has, so far, either considered 2 distinct components (assuming the physical quan-
tities to be constant with depth: Bellot Rubio et al. 2003) or 1 component (allowing gradients
to be present; Westendorp Plaza et al. 1997a, 2001a, 2001b; Bellot Rubio et al. 2002; Mathew
et al. 2003). In Chapter 3 we have suggested that the uncombed penumbral model described
by Solanki & Montavon (1993) provides a picture for the penumbral fine structure that is able
to embrace the results of these investigations. This conclusion was based on the application of
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FIGURE 4.1: Example of the geometrical scheme used in the inversion. The radiative transfer equation
is solved along the 2 rays (dashed and dot-dashed lines) representing the fl ux tube and surrounding at-
mospheres respectively. γs and γt refer to the inclination of the magnetic field vector with respect to the
observer. In this picture for simplicity the heliocentric angle is θ = 0 and γt = 90.

a Stokes profiles inversion technique assuming the two different geometries mentioned above,
together with considerations on how the area asymmetry of the circular polarization profiles is
influenced by gradients in the magnetic and kinematic stratifications.

In this chapter we carry out Stokes profile inversions based on the uncombed model. This
basically consists of a flux tube embedded in magnetic surroundings. Although restricted to
Stokes V , the foward modelling has already been addressed in the past (see e.g. Degenhardt &
Kneer 1992) The basic geometry is illustrated in Figure 4.1. The simplest representation of the
uncombed model is in terms of two rays: the first ray passes along the surrounding atmosphere
(vertical dot-dashed line pointing towards the observer) and rays cutting both surrounding atmo-
sphere and the flux tube (vertical dashed line). Let us denote with χs any of the magnetic and
kinematic physical quantities for the surrounding atmosphere1. For the flux tube component we
adopt the following form for χt(z):

χt(z) =

{
χt if z ∈ [z0−Rt,z0 +Rt]
χs otherwise

(4.1)

where χt on the right hand side of Eq. 1 is height independent, z0 is the height where the axis of the
flux tube is located and Rt is its radius. Note that Eq. 4.1 implies that physical stratifications along
the flux tube atmosphere (vertical dot-dashed line in Fig. 4.1) are the same as in the surrounding
atmosphere above and beneath the flux tube: z < zo−Rt and z > zo + Rt. At the flux tube lower
and upper boundaries (z∗ = z0±Rt) the physical quantities suffer a jump whose magnitude is
∆χ = χt−χs. These jumps/gradients are the essential ingredients to explain the NCP observed in
the sunspot penumbra (Solanki & Montavon 1993; cf. Martínez Pillet 2000; see also Sect. 2.2.2).

The inversions based on this geometry have been carried out using the inversion code SPINOR
(see Frutiger 1999; Frutiger et al. 2000; see also Sect. 1.5.6). The code performs spectral line syn-

1χs is assumed to be height independent.
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thesis in Local Thermodynamic Equilibrium (LTE) and employs a Levenberg-Marquart nonlinear
least-squares algorithm (Press et al. 1986) whereby derivatives are calculated through numerical
response functions (RF’s; see Ruiz Cobo & del Toro Iniesta 1992; see also Sect. 1.5.3). The free
parameters allowed in the inversion are, for the surrounding atmosphere: VLOS,s (line of sight ve-
locity), Bs (magnetic field strength), γs (magnetic field inclination with respect to the observer),
φs (magnetic field azimuth) and Ts(τ5 = 1) for temperature. The height dependence of Ts(τ) is
taken from the penumbral model by del Toro Iniesta et al. 1994). For the flux tube: VLOS,t, Bt,
γt, φt, macro and microturbulent velocities, vmac,t and vmic,t, and Tt(τ5 = 1) (where again Tt(τ) is
taken from the mean penumbra model of del Toro Iniesta et al.). In addition z0, Rt and αt (frac-
tional area covered by the flux tube component with respect to the total area) are also allowed to
change. Finally we employ a stray light correction to model the contribution of light from the
neighbouring granulation that enters into the spectrograph’s slit. To this end we have used the
two component model for the quiet sun from Borrero & Bellot Rubio (2002) to produce synthetic
intensity profiles, Iq of the observed spectral lines (see Sect. 4.3) and combined it with the emer-
gent spectrum of the pure penumbral profiles using a filling factor αq which is also retrieved from
the inversion. This results in a total of 16 free parameters. Note that inversions carried out in
chapter 3 used a total number of 23 and 18 free parameters for the 1 component and 2 component
inversions respectively.

The radiative transfer equation is integrated using the Hermitian Approach (see Bellot Rubio
et al. 1998) for each ray separately. The Stokes profiles from quiet sun, flux tube and surrouding
atmosphere are finally combined using the filling factors αt and αq:

S(λ) = αqSq(λ)+(1−αq)[(1−αt)Ss(λ)+αtSt(λ)] , (4.2)

where S represents Stokes vector (I,Q,U,V) as calculated along the surrounding atmosphere
(dashed ray in Fig. 1) Ss , the ray cutting the flux tube (dot dashed ray in Fig. 1) St as well
as the quiet sun contribution Sq = (Iq,0,0,0) which is a non polarized contribution and only af-
fects the total intensity profiles. These synthetic profiles are now compared with the observations
and the free parameters are changed according to the RF’s until the minimum is reached. A
detailed study of the numerical performance of this procedure as well as the uniqueness of the
retrieved atmosphere under different levels of noise in the observations is presented by Borrero
et al. (2003b).

The radiative transfer is always performed in optical depth scale, but the flux tube and its
force balance with its surroundings are more naturally described in geometrical depth scale. This
interplay requires a sufficiently complex procedure that we deem it neccesary to detail. First, a
geometrical height scale is assigned to the surrounding atmosphere following the strategy out-
lined in Gray (1992) and integrating the hydrostatic equilibrium equation (assuming a force free
situation ∇×B ‖ B)).

∂Pg,s

∂τs
=

g
κc,s

(4.3)

where g is the solar surface gravitational acceleration and τ is the optical depth computed using
the continuum opacity at 5000 Å: κc. This requires an estimate of the the gas pressure at the
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top of the tabulated atmosphere: Pg,s(τs,max). With this, the gas pressure stratification Pg,s(τs)
is obtained in the surrounding atmosphere, and since the temperature had been obtained from
the inversion, the equation of state (ideal gas law including a variable mean molecular weight to
account for the ionization of the different species) provides us the density: ρs(τs). The relation
dτs = −ρsκc,sdz is now integrated setting z = 0 at logτ5 = 0 and thus defining the geometrical
height scale.

The gas pressure in the tube component is obtained under the assumption of total pressure
balance with the surroundings at the height of the axis of the flux tube.

Pg,t(z) =

{

Pg,s(z)+ B2
s−B2

t
8π if z ∈ [z0−Rt,z0 +Rt]

Pg,s(z) otherwise
(4.4)

This assumption is valid as long as the magnetic field of the external atmosphere does not
penetrate into the flux tube and vice versa (Kippenhahn & Möllenhof 1975, Chap.3). Since Pg,t(z)
is now known and Tt(z) was obtained from the inversion, the density ρt(z) can be evaluated, and
thus a new optical depth scale for the atmosphere containing the flux tube can be obtained through
the relation: dτt =−ρtκc,tdz. For the integration of this last equation a boundary condition which
implies that for z > z0 +Rt the surrounding and flux tube components must have the same z values:
z(τt) = z(τs)

4.3 Observations and data reduction

The active region NOAA AR 8706 was observed in Sep 21st, 1999 and Sep 27th, 1999 at two
different positions on the solar disk: µ = 0.51 and µ = 0.91 respectively, using TIP (Tenerife In-
frared Polarimeter, Martínez Pillet et al. 1999) attached to the spectrograph of the 70cm German
VTT of the Observatorio del Teide. The recorded spectral region contains the full polarization
profiles of the pair of lines Fe I (ge f f = 3) 15648.5 Å and Fe I (ge f f = 1.53) 15652.8 Å. The
wavelength sampling is about 29 mÅ. The diagnostic properties of these lines have been dis-
cussed by Solanki et al. (1992b). They are formed in the deep photosphere as a result of their
high excitation potentials and the low continuum opacity at this wavelength. These lines sample a
relatively narrow layer not wider than logτ5 = [0.5,−2] (see Bellot Rubio et al. 2000; Mathew et
al. 2003), where τ5 is the optical depth at a reference wavelength of 5000 Å. The second neutral
iron line is heavily blended by two molecular OH lines in the umbra (15651.9 and 15653.5 Å).
These lines belong to the Meinel system (3,1; see Berdyugina & Solanki 2002 for details). Their
equivalent widths greatly decreases towards the penumbra, however they can still be seen clearly
at umbra-penumbra boundary. The atomic parameters for the observed Fe I lines were taken from
Borrero et al. (2003a), while for the OH lines the values given by Abrams et al. (1994) and Mies
(1974) were used (see Table 4.1).

The usual data reduction procedures for TIP were in general followed; we proceeded carefully
at several points, however. Firstly the neutral iron line, Fe I 15648.5, appears to be blended by
a telluric line in its red wing. This complication was overcome by fitting the average quiet Sun
profile of the second line with an appropriate model atmosphere. This model was then used to
synthetize the first iron line. The ratio between the average observed and computed line allowed
us to recover the shape of the telluric blend, which was subsequently eliminated from the rest of
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TABLE 4.1: Atomic and molecular parameters of the observed spectral lines. λ0 represents the laboratory
central wavelength, χl the excitation potential of the lower energy level, and logg f the logarithm of the
oscillator strength times the multiplicity of the level. The parameters α and σ (in units of Bohr’s radius,
a0) are used to calculate the broadening of the lines by collisions with neutral hydrogen atoms as resulting
from the ABO theory (Barklem & O’Mara 1997). The last column gives the effective Landé factor of the
transition, geff. For the molecular lines IU, IL, VU and VL represent the upper/low multiplets sublevels and
vibrational levels respectively. JL stands for the rotational number of the lower level. Finally, the oscillator
strength is given.

Atom λ0 χl log gf α σ geff

(Å ) (eV) (dex) (a2
0)

Fe I 15648.515 5.426 −0.675 0.229 977 3.00
Fe I 15652.874 6.246 −0.043 0.330 1444 1.53

Molecule λ0 Branch IU-IL VU-VL JL f
OH 15651.895 P 1-1 3-1 6.5 0.8×10−6

OH 15653.478 P 1-1 3-1 6.5 0.8×10−6

the profiles. This procedure, although not perfect, does not introduce modifications to the original
profile (equivalent width and line core intensity) larger than ∼3 %.

Secondly, the continuum correction posed a considerable problem. The four quadrants con-
figuration of TIP’s camera produce small gradients in the continuum intensity that remain after
applying the flat field correction. To account for this we compared our spatially averaged flat
field with the infrared FTS atlas from Livingston & Wallace (1991) and define several wave-
length positions where the continuum should be reached. A smooth second order polynomial is
interpolated over those selected points and used to bring the continuum in the flat field image to
the same level as the FTS continuum. Thirdly, the polarization signals were corrected for residual
cross talk using the statistical approach described in Collados 2001 (see also Schlichenmaier &
Collados 2002). Finally, the wavelength was calibrated by assigning the laboratory wavelengths
to the cores of the Fe I lines in the average quiet Sun profiles. To account for the effects of the
granulation we shifted this wavelength scale by −400 m s−1, which is the approximate value for
the convective blueshift as deduced from the quiet sun model of Borrero & Bellot Rubio (2002).

The seeing conditions were rather good during the observations, with the granulation being
clearly discernible in the reconstructed continuum images (see Figure 4.2; left panels). By calcu-
lating the power spectrum of the continuum intensity in the neighbouring quiet Sun we estimate
the spatial resolution to be about 1 arc sec. In Fig. 4.2 (right panels) the maps of the total circular
polarization are also shown. Due to projection effects the polarity inversion line (region in the
limb side of the penumbra where the Stokes V signal changes its sign, i.e.: where the average
magnetic field is perpendicular to the observer) appears in the outer penumbra when the sunspot
is observed near disk center (µ = 0.91) but approaches the umbra as the spot moves towards the
limb (µ = 0.51). Part of this data set has been analyzed earlier by Mathew et al. (2003) and
Borrero et al. (2004).
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FIGURE 4.2: Top panels: NOAA 8706 observed in 21 September 1999 at a heliocentric angle µ = 0.51
(left: continuum intensity map at 1.56 µm; right: total circular polarization map for Fe I 15648.5 Å).
Bottom panels: NOAA 8706 observed in 27 September 1999 at a heliocentric angle µ=0.91 (left: con-
tinuum intensity map at 1.56 µm; right: total circular polarization map for Fe I 15648.5 Å). The arrows
point towards the direction of the solar disk center. The two inner-most contours enclose between them
the umbral-penumbral boundary. The external contour defines the sunspot radius r = R, at each position
angle. These three contours have been defined as 0.45Ic,0.65Ic and 0.85Ic, where Ic represents the average
continuum intensity of the quiet Sun. The radial cuts selected for our analisys are also shown.
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4.4 Results and discussion

We have inverted individually all the pixels along the radial cuts shown in Fig. 4.2 (5 for each
heliocentric angle). Each cut contains approximatively 20 pixels and ranges roughly from r/R =
0.4 to r/R = 0.9 (where R is the penumbral radius, indicated by the external contour in Fig. 4.2).
As in chapter 3 we have chosen the cuts such that they all lie on the limbward side of the penumbra
and near the line of symmetry (i.e. the line connecting the sunspot’s center and the center of the
solar disk), since this is where the the flux tubes leave the most distinctive fingerprints on the
observed profiles, thus allowing for a reliable determination of their properties.

4.4.1 Example

In Fig. 4.3 we present an example of the observed (filled circles) and fitted (solid lines) circular
polarization profiles for a penumbral point. These multi-lobed profiles can be successfully fitted
by means of two different Stokes V profiles. The profile from the flux tube surroundings, Vs, is
produced by a positive polarity magnetic field (γ < 90◦; dot-dashed line) with zero line-of-sight
velocity (zero crossing is at λ0), and the Stokes V profile from the flux tube itself, Vt, which is
produced by a negative polarity magnetic field (γ > 90◦; dashed line) carrying a flow directed
away from the observer (zero crossing is red shifted with respect to λ0). The filling factor of the
flux tube atmosphere αt and of the stray light contribution αq are applied to Vs and Vt to obtain
the final emergent profile (solid line) according to Eq. 4.2.

In Fig. 4.4 we present the atmospheric stratifications resulting from the inversion of the pro-
files shown in Fig. 4.3 using the uncombed model. The surrounding atmosphere (dot-dashed
lines) possesses height independent parameters (except for the temperature), while the flux tube
atmosphere (dashed) has the same stratifications except between z0 ∈ [z0−Rt,z0 +Rt] where the
line of sight crosses the tube and therefore the physical parameters suffer a jump. Outside the
flux tube the magnetic field strength is about 2000 Gauss and is inclined with respect to the ob-
server by about 75◦. Inside the flux tube the magnetic field is weaker (' 1300 Gauss) and is more
inclined γ ' 100◦. While the surrounding atmosphere is basically at rest, VLOS,s ' 0.2 km s−1,
inside the flux tube we detect red shifts of VLOS,t ' 1.1 km s−1. In addition, the results from the
inversion indicate that the flux tube is hotter, by roughly 500 K, than the surrounding atmosphere.
The presence of the discontinuity along the flux tube atmosphere produces the area asymmetry in
Stokes V , δAFIT, as shown in Fig. 4.3.

4.4.2 General properties

We have taken the individual results for the inversions of the considered radial cuts (separately
for each heliocentric angle) at the geometrical height z = z0 (i.e. at the location of the tube
axis), and calculated the averages at each radial position in the sunspot. This is done individually
for the flux tube component and the surrounding magnetic field. The results are presented for
the temperature (Fig. 4.5; top panels), line-of-sight velocity (Fig. 4.5; middle panels), the flux
tube’s filling factor αt (Fig. 4.5; bottom panels), magnetic field zenith angle (Fig. 4.6; top panels)
and magnetic field strength (Fig. 4.6; bottom panels). For the temperature we plot the difference
between the flux tube and the surrounding atmosphere at z = z0. In order to compare the magnetic
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FIGURE 4.3: Example of the observed (filled circles) and fitted (solid lines) Stokes V profiles (left: 15648.5
Å; right: 15652.5 Å) for a penumbral point. The fitted profile is obtained after a linear combination of
the profile emerging from the surrounding component (dot-dashed line; see also Fig. 4.1) and the profile
emerging from the ray piercing the fl ux tube (dashed line; see also Fig. 4.1). The used filling factors αt

and αq, as well as the area asymmetry of the observed and fitted profiles are also shown.

field inclination deduced for sunspots located at different heliocentric positions we have converted
from the observer’s reference frame, γ, to the local reference frame. Therefore, we plot now the
zenith angle, ζ (Fig. 4.5; top panels). A zenith angle smaller than, equal to or larger than
90 degrees indicates that the magnetic field is inclined upwards, lies parallel to or is inclined
downwards with respect to the solar surface. All in all, the results for the two sets of observations
are remarkably similar in spite of the different viewing angles.

In the inner penumbra, we detect nearly, but not completely horizontal flux tubes (ζt ' 70−
80◦) that are hotter than their surroundings by about 500-1000 K. These flux tubes carry almost
the whole fraction Evershed flow, with LOS velocities in the inner penumbra ranging between
0.5 and 3 km s−1. The magnetic field strength in the flux tubes is around 1500 Gauss. The
atmosphere surrounding these flux tubes possesses a more vertical ζs ' 20− 40◦ and stronger
magnetic field B' 2300-2500. No signatures of the Eveshed flow are detected here.

As the radial distance increases, the flux tubes cool down to temperatures similar to those of
the surroundings. At large radial distances r/R≥ 0.7 the temperature in the flux tube component
decreases even below the surrounding temperature, although only slightly (' 200-300 K). At the
same time the tubes become more horizontal, reaching ζt ' 90◦, and points slightly downwards
with respect to the solar surface, ζt ' 95− 100◦, near the outer edge of the penumbra, i.e. at
r/R ≥ 0.8. In addition, their magnetic field strength decreases slowly to 800-1000 Gauss at
r/R = 0.9 while the LOS velocity increases monotonically in both spots, although for µ = 0.51
it suffers sudden drop near the outer penumbral boundary. The filling factor of the flux tubes
(Fig. 4.5; bottom panels) increases continuously from very small values at the inner penumbra
αt ' 0.2−0.3 until they cover almost all the resolution element at the outer boundary αt ' 0.9.
This can be interpretated either as an increase in the horizontal cross section of the flux tubes or
as an increase in the number of flux tubes per resolution element.

The surrounding atmosphere exhibits quite a different behaviour. The magnetic field strength



100 CHAPTER 4. THE NATURE OF THE EVERSHED FL OW

FIGURE 4.4: Temperature (top-left panel), magnetic field strength (top-right panel), magnetic field inclina-
tion (bottom-left) and line-of-sight velocity (bottom-right) for the fl ux tube atmosphere (dashed lines) and
its surroundings (dashed-dotted lines) as a function of the geometrical depth, obtained from the inversion
of the profiles in Fig. 3. The fl ux tube’s radius is 125 km and its central position is z0 = 150 km.



4.5. SIZE OF THE PENUMBRAL FILAMENTS AND AREA ASYMMETRY 101

decreases very rapidly towards the outer penumbra, reaching similar values to those of the flux
tube’s magnetic field strength (' 800-1000 Gauss). The inclination of the magnetic field in-
creases slightly with radial distance up to ζs ' 40− 50◦. The LOS velocities remain small
throughout the penumbra.

Before discussing in more detail the individual results there are several points which need
to be clarified. First of all, we want to stress that the results obtained from the inversions of the
radial cuts when the spot is near the disk center (Figs. 4.5 and 4.6; left panels) are more reliable at
intermediate to large radial distances, while results inferred from the sunspot at large heliocentric
angles (Figs. 4.5 and 4.6; right panels) are more reliable in the inner penumbra. The reason for
this is that the magnetic neutral line is located in the outer penumbral for sunspots near the disk
center, µ = 0.91, but it shifts towards the umbra as the sunspot is located closer to the limb (µ =
0.51). The magnetic neutral line is where multi-lobed Stokes V profiles are commonly observed
(Sánchez & Lites 1992; Schlichenmaier & Collados 2002). As already mentioned in Chapter
3 inferred parameters from the inversion are more reliable for exactly such complex profiles,
since the signature of the two unresolved components (flux tubes and magnetic surrounding)
can be better distinguished there (e.g. Fig. 4.3), allowing for a more reliable inference of their
properties. In general, however, larger and more accurate line-of-sight velocities are obtained
from the sunspot near the limb are to be given more confidence (at all radial distances) since the
Evershed flow is here more aligned with the line of sight, giving rise to larger and more accurate
line-of-sight velocities.

We note that if we take into account that the possible size of the flux tubes is much smaller
than our spatial resolution of 1 arc sec (Sütterlin 2001; Scharmer et al. 2002; Van der Oort et al.
2004) the deduced properties are unlikely to correspond to one single flux tube but rather to some
average over all the possible penumbral fibrils contained in the resolution element. However, as
one can see from Fig. 4.5 and 4.6, the inferred properties are similar to those expected for a single
flux tube which crosses the penumbra from its inner to the outer boundary.

4.5 Size of the penumbral filaments and area asymmetry

The area asymmetry, δA, of the circular polarization is defined as:

δA =

R

V (λ)dλ
R |V (λ)|dλ

, (4.5)

It is different from zero whenever gradients along the line-of-sight of the magnetic field vector and
LOS velocity are present (Landolfi & Landi degl’Innocenti 1996). Solanki & Montavon (1993)
realized that the huge gradients needed to reproduce the area asymmetry observed in the sunspot
penumbra with the visible Fe I lines at 6301.5 and 6302.5 Å (Sánchez Almeida & Lites 1992)
could be interpretated as a horizonal flux tube embedded in a more vertical background. As the
line of sight crosses the tube’s boundaries the physical stratifications describing the atmosphere
suffer a jump that is directly responsible for the generation of the area asymmetry in Stokes V .
Schlichenmaier at al. (2002) and Müller et al. (2002) further investigated this issue and pointed
out that the area asymmetry observed in the visible Fe I 6301 Å lines is dominated by jumps in
the magnetic field inclination, while the area asymmetry observed in the infrared 1.56 µm lines
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FIGURE 4.5: Top panels: temperature difference between the fl ux tube atmosphere and its surroundings
as a function of radial distance from the spot center. Middle panels: radial variation of the line-of-sight
velocities inside the fl ux tubes (dashed lines) and outside them (dashed-dotted lines). Bottom panels:
radial variation of the fl ux tube’s filling factor, αt. Left panels: sunspot at µ = 0.91. Right Panels: sunspot
at µ = 0.51. All quantities refer to the central position of the tube, z = z0. Shaded areas denote the
maximum deviations from the average at each radial position, obtained from the individual inversions of
all the radial cuts. The arrow indicates the appoximate radial position where the fl ux tube experiments a
final temperature enhacement (see Sect. 4.6.4).
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FIGURE 4.6: Top panels: radial variation of the magnetic zenith angle. Bottom panels: radial variation of
the magnetic field strength. Left panels: sunspot at µ = 0.91. Right Panels: sunspot atµ = 0.51. Dashed
lines correspond to the fl ux tube atmosphere and dashed-dotted to its surroundings. All magnitudes have
been taken from the atmospheric stratifications at a height which corresponds to the central position of the
tube, z = z0. Shaded areas are as in Fig. 4.5.
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can be explained in terms of jumps in the magnetic field azimuth. Both cases are compatible with
the uncombed penumbra proposed by Solanki & Montavon (1993; see also Sect. 2.2.2).

As already described in Sect. 4.2, in the uncombed model, the discontinuities needed to pro-
duce asymmetric circular polarization profiles are located at the tube’s boundaries: z∗ = z0±Rt,
with Rt and z0 (the tube’s radius and central position) being free parameters of the inversion. The
radius we obtain from the inversion of all the pixels contained in the 10 radial cuts in Fig. 1 in
the same sunspot at two different heliocentric angles is, consistently, 125 Kilometres, which is
precisely the maximum value we allow for Rt

2. This means that the inversion tries to make the
flux tube as thick as possible. The area asymmetry of the synthetic profiles, δAFIT only poorly
reproduces the observed one: δAOBS (see Fig. 4.7; top panels). In most cases the uncombed
model produces an area asymmetry which is very little or almost zero, and varies over a smaller
range than δAOBS.

The small observed area asymmetries (average of δAOBS ∼ 3 %) clearly indicate that δA is a
parameter which plays a minor role in the inversion since the shape of the circular polarization
profiles can be successfully fitted by means of profiles showing little or no area asymmetry at
all (as the 2C model in Fig. 3.2 in Chapter 3). Even extremely strange profiles, such as those
presented in Fig. 4.3 can be reasonably fitted. This is because the circular polarization profiles
of the spectral lines used in this work are mainly affected by the presence of two different po-
larities in the resolution element (background with γ < 90◦ and flux tube with γ > 90◦) rather by
discontinuities along the line of sight in the physical parameters. Note that Borrero et al. (2004)
also reached the same conclusion and suggested that using the visible iron lines at Fe I 6301 Å ,
whose area asymmetry is far more sensitive to such discontinuities, might help to further con-
strain the size of the penumbral filaments. For the case of the infrared Fe I lines at 1.56 µm they
constrained a small region where the area asymmetry of these lines is sensitive to gradients along
the line of sight: logτ5 ∈ [0,−0.5].

In Fig. 4.7 (middle panels) the position (in the optical depth scale) of the tube’s lower bound-
ary is plotted as a function of r/R. At r/R < 0.7 the lower boundary is located at logτ5 > 0. At
the outer penumbra, however, the lower boundary shifts to higher layers: logτ5 ∼−0.25, where
the discontinuity is effective in generating area asymmetry (see Chapter 3). For comparison we
plot in Fig. 4.7 (bottom panel) the observed, δAOBS (solid line), and fitted (dashed line), δAFIT,
area asymmetry for all the considered radial cuts versus r/R. δAOBS increases radially in the
penumbra, from small negative values (∼−2 %) up to larger positive ones: ∼ 7 % . Interestingly
the fitted area asymmetry displays a similar behaviour, specially in the outer penumbra, where
observed and fitted values become similar.

The combination of these results lead us to conclude that, in the inner-intermediate penumbra,
where the observed area asymmetry in the circular polarization profiles of the Fe I 1.56 µm lines
is small, discontinuities are not important to reproduce the profiles and therefore the tube radius
is a parameter which is not well constrained from the inversion. However, in the outer penumbra,
the observed area asymmetry becomes large enough, so that it turns out to be an important ingre-
dient if the circular polarization profiles are to be successfully fitted. In these regions, the lower
boundary of the flux tube is located at heights where it is effective in generating area asymmetry.

2This maximum value is set in the inversion code so that the upper boundary of the flux tube lies below the top of
the tabulated atmosphere. This ensures that the condition z(τt) = z(τs) for z > z0 +Rt (see Sect. 4.2) can be applied.
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As the upper boundary remains unseen we still cannot draw any reliable conclusion on the actual
size of the penumbral filaments.

At this point it is important to note that, given the fact that Fe I lines at 1.56 µm do not see
much of the tube’s boundaries, our uncombed model could be, in principle simplified into a two
component model where all physical quantities are constant with height (e.g., making the tube’s
radius infinite in Fig. 4.4). Such models have been previously used to study the fine structure
of the penumbra (Bellot Rubio et al. 2003; Borrero et al. 2004; see also Chapter 3). However
a feature, which is included in the uncombed model but has been neglected by previous two
component models, remains. The use of the total pressure balance between the fux tube and its
surroudings. As we shall discuss in Sect. 4.6.2, this has important consequences.

4.6 Nature of the Evershed Flow

4.6.1 General considerations

The physical mechanism that drives the Evershed flow is still poorly understood. In the last
decades many attempts have been made using falling flux tubes (Wentzel 1992), wave mod-
els (Erikson & Maltby 1967; Maltby & Erikson 1967; Bünte et al. 1993), buoyant flux tubes
(Schlichenmaier et al. 1998a,1998b), siphon flows (Meyer & Schmidt 1968; Montesinos &
Thomas 1993,1997; Degenhardt 1989,1991). In general, none of them is able to provide a
fully consistent scenario where all observational features are reproduced satisfactorily. How-
ever, among the most successful models we shall cite stationary siphon flow models (Thomas &
Montesinos 1993, Montesinos & Thomas 1997) and time-dependent simulations of a thin flux
tube embedded in the penumbra (Schlichenmaier et al. 1998a,1998b; cf. Schlichenmaier 2002).
Regardless of their differences, in both models the plasma is accelerated outwards due to a larger
gas pressure in the inner footpoint as compared to the outer footpoint of an arched loop that
crosses the penumbra. If the two footpoints are at the same geometrical height the total pressure
(gas + magnetic) must be equal in both footpoints. Being the gas pressure larger at the inner
one this readly implies that the magnetic field must be smaller here as compared to the outer
footpoint.

However, observationally such a pressure gradient or increasing magnetic field strength with
increasing radial distance has never been found. Previous observational analysis has not consid-
ered the fact that in our resolution element we have mixed signals coming from the flux tubes and
the magnetic surroundings. They obtained that the magnetic field strength showed a strong radial
decrease from Binner ' 2500 G to Bouter ' 1000 G (Beckers & Schröter 1969; Wittmann 1974;
Lites & Skumanich 1990; McPherson et al. 1992; Lites et al. 1993; Keppens & Martínez Pillet
1996; Stanchfield et al. 1997). This implies that the magnetic field is larger at the inner footpoint
than in the outer one, contradicting theoretical predictions based on gas pressure differences.

If the fine structure of the penumbra is taken into account (Rüedi et al. 1998,1999, Borrero et
al. 2004) a more favourable situation appears: an inclined magnetic field whose strength rapidly
decreases with radial distance and an almost horizontal magnetic field carrying the Evershed flow
with a far smaller radial drop in field strength are inferred. The small decrease in the field strength
for the component carrying the Evershed flow still implies a stronger inner magnetic field, but
now the difference is significantly reduced to ' 300− 500 G. Although this finding on its own
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FIGURE 4.7: Top panel: area asymmetry from the best-fit Stokes V profiles, δAFIT, versus area asymmetry
of the observed Stokes V for both Fe I lines for the case µ = 0.91. For µ = 0.51 (not shown) the result is
very similar. Filled circles are for Fe I 15648.5 Å and open circles for 15652.8 Å . Middle panel: average
position, in the optical depth scale, of the lower boundary of the fl ux tube (solid line). Maximum and
minimum individual deviations of the 10 radial cuts considered are indicated by the shaded area. Bottom
panel: radial variation of the fitted (dashed line) and observed area asymmetry (solid line) of Fe I 15648.5
Å .
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is unsufficient to produce an outwards accelerated flow it certainly represents a much favourable
situation, specially if we take into account that, as noticed by Montesinos & Thomas (1997) the
inner and outer footpoints, as measured by observations, are not necessarily at exactly the same
height.

In this work, by considering a flux tube embedded in a magnetic surrounding we obtain a
very similar picture (see Fig. 4.5 middle panels and Fig. 4.6 bottom panels). Dot-dashed lines in
those figures show an atmosphere (that we have identified with magnetic surroundings) carrying
no velocities, with a magnetic field inclined (with respect to the vertical) by about 45◦ and where
the strength decreases from Bs(r/R = 0.4) = 2500 G to Bs(r/R = 0.9) = 1000 G. The other atmo-
sphere (flux tubes) has a magnetic field almost horizontal at all radial distances (although small
upflows and downflows are present at the inner and outer penumbra respectively), carries large
redshifted velocities (Evershed flow) and the magnetic field strength decreases radially much
more slowly from Bt(r/R = 0.4) = 1500 G to Bt(r/R = 0.9) = 1000 G.

4.6.2 Gas pressure gradient

Note that in Chapter 3 we have reached this same conclusion from the application of two different
geometrical models to spectropolarimetric data. In particular the model referred to by those
authors as the 2C model contains many of the features of our flux tube model. The main difference
is due to the inclusion of the line of sight gradients needed to produce area asymmetry in the
observed circular polarization (see Sect. 4.5). There, we have already pointed out (see Sect. 5)
that the infrared lines we have used in this work do not see the flux tube’s boundaries in most
of the penumbra, therefore our model becomes very similar to the 2C model in Chapter 3 (see
also Bellot Rubio et al. 2003). However a major difference still exists. This has to do with the
horizontal force balance between the flux tube and its surroundings. While in previous works this
point has been neglected, we explicitely make use of it.

According to Fig. 4.6 (bottom panels) the magnetic field strength of the flux tubes is much
smaller than that of the surrounding atmosphere in the inner penumbra at a geometrical height
z = z0 (central position of the tube). By requiring total pressure balance between the flux tube
interior and the external atmosphere, Eq. 4.4, one can easily deduce that Pgas,t(z0)� Pgas,s(z0).
At large radial distances the situation is such that the magnetic field strength in the flux tube and
its surrounding atmosphere becomes very similar and therefore: Pgas,t(z0)' Pgas,s(z0). In Fig. 4.8
we plot the actual ∆Pgas = Pgas,t(z0)−Pgas,s(z0) as a function of radial distance in the penumbra
(top panel for µ = 0.91 and bottom panel for µ = 0.51). As can be seen the difference almost
linearly with r/R, reaching values close to zero near the outer penumbral boundary.

Unfortunately, this effect does not imply a radial decrease in the gas pressure inside the flux
tube, because of the unknown radial behaviour of external pressure Pgas,s(z0). In particular, its
calculation is ill-posed by the boundary condition described in Sect. 4.2, where a value of the gas
pressure at the highest photospheric layers is prescribed for the surrounding atmosphere. This is
done for all pixels independently of its position on the spot: Pgas,s(τmax) = P0. Consequently, the
geometrical height scale zs(τs) in the surrounding atmosphere does not to take into account pixel
to pixel variations of the absolute geometrical height scale (Wilson depression). Nevertheless
the radial variation of the difference in gas pressure between the flux tube and the surrounding
atmosphere is a robust result. It only depends on the difference in the magnetic field strength be-
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FIGURE 4.8: Radial variation of the gas pressure difference, ∆Pgas, between the fl ux tube and its sur-
rounding atmosphere at z = z0. Top panel: for NOAA 8706 at an heliocentric angle of µ = 0.91. Bottom
panel: the same for µ =0.51.

tween them and it is calculated under the condition of total pressure balance (magnetohydrostatic
constraint). Although it can not directly prove that there is a radial decrease in the gas pressure
along the flux tube axis, it does provide a strong indication that this is indeed the case. This is
to our knowledge one of the strongest piece of evidence in favour of the siphon flow model as a
driver of the Evershed effect.

4.6.3 Cooling fl ux tubes

Our results show that in the inner penumbra the atmosphere describing the flux tubes is hotter (by
roughly 500-1000 K) than its surroundings. As we move to larger radial distances the temperature
becomes very similar inside and outside the flux tube. This is in very good agreement with the
theoretical predictions of the moving flux tube model (Schlichenmaier et al. 1998a, 1998b). The
result that at a given point, r/R' 0.7, the flux tube becomes cooler than its surroundings can be
explained if we assume that the flow becomes adiabatic due to a less efficient radiative exchange
in the higher parts of the anchored flux tube (Montesinos & Thomas 1997). The heating seen at
larger radial distances is explained in terms of a shock front (see Sect. 4.6.4).
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In order to clarify this result we shall describe in some detail how the spectral lines are formed
in the inner penumbra. To this end we have selected a point located at a short radial distance,
r/R ' 0.45 in the spot at µ = 0.51. The total intensity and circular polarization profiles, Stokes
I and V , respectively, are plotted in Fig. 4.9 (left panels) for the observed profiles (filled circles),
along with the fitted profile (solid line). In the middle panels the fitted profile is again shown in
solid lines but now we plot it together with the contribution from the flux tube (dashed line) and
the surrounding atmosphere (dot-dashed line). In the right panels we do the same but now the
profiles have been weightened with their corresponding filling factors. This example will allow
us to deduce qualitatively that the flux tubes are hotter than the surrounding atmosphere in the
inner penumbra.

Observed Stokes I for the Fe I 15625 Å line shows the two σ and the π components of
the Zeeman pattern and therefore it is mainly produced by a magnetic field inclination which is
close to 90 deg. In addition the total intensity profiles show no signature of the Evershed flow,
neither in the OH line nor in the neutral iron line: the central positions of the lines are at the
laboratory wavelengths (indicated by the vertical dotted lines). This features suggest that the
Stokes I profiles are mainly affected by the atmosphere surrounding the flux tubes: no velocities
seem to be present and they are almost horizontal in the observer’s reference frame, γs ' 80◦

(almost vertical in the local reference frame, ζs ' 20◦). This conclusion can also be made by
comparing the observed or fitted Stokes I profiles (Fig. 4.9; left panels) with those produced by
the surrounding atmosphere (Fig. 4.9; dot-dashed lines in middle and right panels). In addition,
the surrounding atmosphere must be sufficiently cold for the OH line to appear clearly in the
spectrum. The fact that the flux tube does not affect the formation of the total intensity profiles is
explained by its small filling factor, αt ' 0.15. This is clear when one looks at Stokes I produced
by the flux tube before (dashed line in middle panel of Fig. 4.9) and after (dashed line in right
panel of Fig. 4.9) multiplying by its filling factor.

On the other hand, the observed circular polarization profiles, Stokes V , show for the Fe I
line, the common multi-lobed shape produced by the coexistence of two different polarities in the
resolution element: surrounding field with γs < 90◦ (dot-dashed line in middle bottom panel of
Fig. 4.9) and flux tube with γt > 90◦ (dashed line in middle bottom panel of Fig. 4.9) , the flux
tube signal being displaced towards the red due to the Evershed effect. The fact that the flux tube
signal contributes significantly to Stokes V , regardless of its small filling factor, is because the
surrounding field has an inclination close to 90 deg and therefore producing a very weak Stokes
V signal (see dashed dotted lines in middle and right bottom panels in Fig. 4.9). This, together
with the large inclination of the flux tube’s magnetic field (γt ' 150◦), produces strong Stokes
V profiles that after being weighted with the filling factor, becomes comparable to the circular
polarization signal from the surroundings (see dashed lines in middle and right bottom panels of
Fig. 4.9).

Interestingly, the circular polarization signal in the molecular line shows a common, positive
polarity shape, whose zero crossing is almost at the laboratory wavelength. This indicates that its
signal comes from a cold component carrying no velocities (the surrounding). The flux tube must
be therefore hotter than its surroundings, otherwise it would produce a significant signal in the
observed circular polarization of the OH line that we do not observe (as happens in the Fe I line).
This combination of effects allows us to distinguish with great accuracy between the properties of
the flux tube and the surrounding magnetic field, specially in the inner penumbra of the sunspot
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at large heliocentric angles, where the neutral line is located near the umbra and the molecular
lines are still clearly observed3.

The molecular lines therefore trace a cold and vertical (in the local reference frame but highly
inclined in the observer’s reference frame) magnetic field that carries no velocities. This closely
resembles a pure umbral atmosphere. At the umbral-penumbral boundary, a first set of hot flux
tubes (small ones or a small number of them according to the tiny filling factor inferred) carrying
high velocities is mixed with this umbral field producing multi-lobed Stokes V profiles in the
Fe I lines, but not affecting the formation of the molecular lines which are dissociated at large
temperatures. Remarkably, these flux tubes that have just emerged already carry strong velocities,
perhaps as an indication that most parf of the plasma acceleration has already occurred. Again
this is in very good agreement with the moving flux tube simulations (see Schlichenmaier et al.
1998a,1998b) where the acceleration takes place in the inner penumbra, where hot flux tubes
carrying plasma at about 8000-10000 K rapidly cool down. The opacity in such extremely hot
tubes would be too large to make them observable; therefore what we see is perhaps, the latest
stages of this cooling process. Needless to say, hotter flux tubes in the inner penumbra were
already expected considering that at small radial distances, the magnetic field strength in the
flux tubes is much smaller than in the surrounding atmosphere, and therefore, in order to keep
horizontal total pressure balance between these two atmosphere the gas pressure in the flux tube
component has to increase.

4.6.4 Shock front

Another point of special interest concerns the magnitude of the Evershed flow. Theoretical mod-
els predict different values for the speed of the flow inside penumbral flux tubes. Stationary
siphon flow models (Thomas & Montesinos 1993; Montesinos & Thomas 1997) distinguish be-
tween subcritical and supercritical velocities with respect to the characteristic critical tube’s speed
(Ferriz Mas 1988). Transitions between both regimes can be present within the flux tube, leading
to shock fronts. Time dependent simulations of thin flux tubes in the penumbra predict super-
critical flows in most of the penumbra regardless of whether the flux tubes remains horizontal
beyond the visible limit of the sunspot (Schlichenmaier et al. 1998a,1998b) or bend back within
the penumbra (Schlichenmaier 2002).

Observationally all kinds of velocities have been observed. Interestingly, when the fine struc-
ture of the penumbra is taken into account large velocities, > 4 km s−1, are favoured (Wiehr 1995,
del Toro Iniesta et al. 2001; Bellot Rubio et al. 2003; Bellot Rubio et al. 2004b). Most of these
values have been obtained under the assumption that the magnetic field and the velocity vectors
are mutually parallel.

According to Bellot Rubio et al. (2003) it is justified to assume also that the magnetic field
is parallel to the velocity vector inside the flux tube, so the absolute flux tube velocity is: vt =

3The fact that we see molecular lines in the inner penumbra can not be explained in terms of scattered light from
the umbra. Although this possibility seems pausible, specially in the infrared, where the brightness contrast between
umbra and penumbra is smaller than in the visible range, it is ruled out because in this case Stokes V would also be
affected. As we do not observe a strong signal for the OH lines in the circular polarization profiles, we deem this
effect neligible and we therefore conclude that the OH lines do appear becuase the temperature in the atmosphere that
surrounds the flux tubes in the penumbra is sufficiently cold.
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FIGURE 4.9: Top panels: Stokes I for a point in the inner penumbra in the sunspot at µ = 0.51. Bottom
panels: the same for Stokes V . Left panels: observed profile (filled circles) and fitted profiles (solid line).
Middle panels: spectrum emerging from the fl ux tube component alone S T (dashed line) and spectrum
from the surrounding atmosphere only SS (dashed dotted lines). Right panels: the same but considering
the filling factors of each component (different areas covered by each atmosphere in the resolution ele-
ment) . In all panels solid line represents the total emergent profile produced by the inferred atmosphere
(fitted profile). Vertical dotted lines indicate the laboratory (unshifted) wavelength for one of the OH lines:
λ0 = 15651.895 Å and for one of the Fe I lines: λ0 = 15652.874 Å . Fitted profiles are produced by
an atmosphere with the following parameters: γs = 86◦, vlos,s = 0.14 km s−1 (surrounding), γt = 146◦,
vlos,t = 3.81 km s−1, αt = 0.14. The contribution from stray light is αq = 0.09. Note that inclination
angles are given with respect to the observer. In the local reference frame (with the vertical axis being
perpendicular to the solar surface) the inclinations would be: ζt ' 87◦ and ζs ' 27◦ for the fl ux tube and
the surrounding atmosphere respectively. For a better visualization, the intensity profiles emerging from
the fl ux tube and the surrounding atmosphere have been shifted vertically by an arbitrary amount.
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vlos,t/cosγt, where γt is the inclination of the tube’s magnetic field vector with respect to the
observer (both vlos,t and γt are obtained from the inversion). vt is plotted in Fig. 4.10 (top left
panel) for the sunspot at an heliocentric angle of µ = 0.514. Also plotted are the local sound
speed cs ∼ T 1/2 and the tube’s critical speed ct = csca/

√

c2
s + c2

a , with ca ∼ Bρ−1/2 being the
Alvén speed. The velocity in the flux tube always remains subsonic, although we cannot rule
out the possibility for supersonic values (del Toro Iniesta et al. 2001; Penn et al. 2003) in the
penumbra given the limited amount of radial cuts we are considering.

At almost all radial distances, vt < ct as well, except for a few regions in the inner (r/R' 0.4),
and the outer penumbra (r/R ' 0.78). Given the error bars, we do not deem the first case to
be reliable. However, for large radial distances (arrow in Fig. 4.10; top left panel) it seems
plausible that the velocity becomes supercritical. Remarkably, after this happens, the velocity
suddenly drops again to subcritical values at larger distances: r/R > 0.85 by roughly 2 km s−1.
This is accompained by an increase in the flux tube temperature of about 300-400 K at these
locations (see arrow in Fig. 4.5; top right panel). Indeed, this is the behaviour expected from
a transition between supercritical to subcritical velocities in penumbral flux tubes (Montesinos
& Thomas 1997) produced by a shock front that dissipates kinetic energy and heats the gas.
The presence of shocks in the siphon flows has been predicted by numerous authors (Meyer
& Schmidt 1968; Degenhardt 1989,1992; Thomas & Montesinos 1993; Montesinos & Thomas
1997; Schlichenmaier et al. 1998a, 1998b; Schlichenmaier 2002), but this is the first time such a
shock front is observed.

Shock fronts, if present, are likely to produce an enhancement both in the line width (e.g.
FWHM) and in the equivalent width (see Degenhardt et al. 1993; Solanki et al. 1996). In the
penumbra, the radial variation of the line width is dominated by the Zeeman splitting (magnetic
field). However, the magnetic field affects the equivalent widths of the comparatively weak (i.e.
unsaturated) lines considered here only very slightly. In Fig 4.10 (top right panels) we plot the
radial variation of the equivalent width for Fe I 15648.5 Å . It clearly shows an enhancement
(' 10%) at roughly the same radial distance as the flow speed becomes supercritical (see vertical
arrow). Three different radial positions, corresponding to locations before, during and after the
shock have been marked with open circles. Intensity profiles for Fe I 15648.5 Å at those locations
has been extracted and plotted together in Fig. 10 (bottom left panel). Intensity profile before the
shock (dashed line) shows an enhancement in the red wing which is produced by the strongly
red shifted flux tube contribution (i.e. satellite line; see Stellmacher & Wiehr 1980; Wiehr et
al. 1984; Wiehr 1995,1997). During the shock (solid line) the equivalent width of the redshifted
component is enhanced. This broadening is likely to be produced by a new structure in our
resolution element that out model does not account for. Therefore, the only way that the inversion
code has to make the profile broader (within the constraints of the chosen model) is to increase
the micro and macroturbulent velocities. In Fig. 4.10 (bottom right panel) the tube’s broadening

velocity, defined as: vbroad =
√

v2
mic,t + v2

mac,t is plotted. It shows a peak exactly at the radial

positions at which the flow speed becomes supercritical. This provides a strong indication that
this spectral signature really corresponds to a shock front in the flux tube at large radial distances
in the penumbra.

4Results for µ = 0.91 are not considered as dividing by cosine of the small heliocentric angle enhances any error
in line-of-sight velocities
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In our observations the shock seems to occupy up to three consecutive radial pixels, corre-
sponding to roughly 1.2-1.6 arc sec. The fact that we do not observe a jump over a smaller radial
range can be due to smearing effects introduced by seeing.

Finally, it is important to recall that this result is based on some assumptions that must be
considered carefully. In particular the density inside the flux tube, ρt, is obtained through the
gas pressure and temperature by applying the ideal gas equation (see Sect. 4.2). Note that this
density does not necessarily imply that vertical hydrostatic equilibrium is satisfied inside the tube.
The Alven speed, and therefore, the tube’s critical speed are affected by this uncertainty, making
this an important shortcoming for our results.

4.7 Summary and conclusions

We have presented the first full inversions of infrared penumbral spectropolarimetric data with a
model that accounts for the vertical and horizontal inhomoneities of the penumbral fine structure.
This model is a slightly modified version of the uncombed model of Solanki & Montavon (1993;
cf Martínez Pillet 2000) and allows for the presence of a randomly orientated flux tube embedded
in a magnetic surrounding atmosphere. The main advantages of this model, as compared with
those used in Chapter 3 (see also Borrero et al. 2004) are: a -it contains two different atmospheres
in the direction perpendicular to the observer (flux tube and magnetic surrounding) that allows
the observed multilobed Stokes V profiles to be easily reproduced; b -these two atmospheres are
also present in the direction parallel to the observer line-of-sight and therefore the model includes
gradients along the line of sight (in the form of sharp jumps in the physical quantities at the flux
tube’s boundaries) needed to produce asymmetric Stokes V profiles (δA 6= 0); c -flux tubes and
their magnetic surroundings are coupled to each other using total pressure balance at every height.

Feature b is suitable to investigate the vertical size of the penumbral filaments, since the radius
of the flux tube Rt , which is ultimately linked to the amount of area asymmetry generated, is also
obtained from the inversion. The small amount of δA shown by the Fe I lines at 1.56 µm is not
enough to constrain the position of the flux tubes’ upper and lower boundaries, except at the outer
penumbra where δA is sufficiently large, allowing us to set a rather accurate position for the lower
flux tube’s boundary at around logτ5 ∈ [−0.5,0], while the upper boundary remains undetected.
Although for individual profiles the produced area asymmetry by the uncombed model fails to
reproduce the observed one, general trends, such as the radial behaviour are fairly reproduced. In
agreement with Chapter 3 (see Sect. 3.6) the use of visible lines, that show in general much larger
δA should help in this matter (see Chapter 5).

Feature c has allowed us to detect, for the first time, a strong radial decrease in the pressure
difference between the flux tube and its surroudings, that is likely to induce an outward directed
flow. This is to our mind the strongest evidence so far supporting siphon flows (Montesinos &
Thomas 1993,1997) as the physical mechanism driving of the Evershed effect.

In addition, we have seen that the Evershed flow already carries velocities as large as v ∼ 4
km s−1 in the inner penumbra. This has passed unnoticed in previous works (see Schmidt &
Schlichenmaier 2000; Tritschler et al. 2004) where only Stokes I was considered. A possible
explanation is found in the small filling factor and inclinations, larger than 90 deg with respect to
the observer, of the magnetic field vector in the flow channels at the inner penumbra, that produces
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FIGURE 4.10: Top left panel: Radial variation of the absolute plasma velocity inside the fl ux tube or fl ow
velocity (solid line). Local sound speed and tube’s critical speed are also plotted (dashed and dashed-dotted
lines respectively). The vertical arrow marks the position where the fl ow speed becomes supercritical,
r/R ' 0.78. Top right panel: radial variation of the equivalent width for Fe I 15648.5 Å line. The open
circles are three selected radial positions before, during and after the shock occurs. Bottom left panels:
Intensity profiles corresponding to the 3 selected radial positions (top right panel in this Figure) before
(dashed line), during (solid line) and after the shock (dotted line). Bottom right panels: radial variation of
√

v2
mic,t + v2

mac,t.
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small line asymmetries in Stokes I but large Stokes V zero crossing shifts. At the inner penumbra
these fast flows are also associated with hot gas and flux tubes that are somewhat inclined with
respect to the horizontal, in agreement with Schmidt & Schlichenmaier (2000). These results are
in close agreement with the dynamical simulations of penumbral flux tubes by Schlichenmaier
et al. (1998a,1998b) and Schlichenmaier (2002). The tubes reach the same temperature as theirs
surroundings very rapidly in the radial direction, and at the same time the flow speed increases
smoothly (up to v∼ 5 km s−1) as the pressure drops (Montesinos & Thomas 1993, 1997).

At large radial distances the flow speed suffers a sudden decrease that is associated with
positions where the tubes return back to the solar interior (Westendorp Plaza et al. 1997). In
addition to this well estabished result, we have also detected a possible transition between critical
and subcritical velocities (as predicted by Montesinos & Thomas) that is co-spatial with a rise in
temperature and equivalent width at the outer penumbra, and seems to indicate that part of the
kinetic energy is being dissipated into thermal energy. Therefore, part of the sudden drop in the
velocity at the outer penumbra could be adscribed to the development of shock fronts.



116 CHAPTER 4. THE NATURE OF THE EVERSHED FL OW



Chapter 5

Size of the penumbral filaments

In this Chapter we study the fine structure of the penumbra as inferred from the
uncombed model when applied to penumbral spectropolarimetric data for the neu-
tral iron lines at 6300 Å. The inversion deduces very similar radial dependences in
the physical quantities (LOS velocity, magnetic field strength etc) as those obtained
from the inversion of the Fe I 1.56 µm lines (see Chapter 4). In addition, the large
Stokes V area asymmetry exhibited by the visible lines helps to constrain the size of
the penumbral flux tubes. As we will demonstrate, the uncombed model is able to
reproduce the area asymmetry with striking accuracy, returning flux tubes as thick
as 100-200 kilometres in the vertical direction, in good agreement with previous
investigations.

5.1 Introduction

In Chapter 4 we attempted, without success, to infer the thickness of the penumbral flux tubes
by inverting penumbral spectropolarimetry data of the Fe I lines at 1.56 µm. The small Stokes
V area asymmetry present in those lines led us to conclude that the discontinuities along the
line of sight in the velocity and magnetic field vector play a minor role in the line formation
and therefore the flux tube’s diameter, which is ultimately responsible of those discontinuities,
could not be constrained. Already in Chapter 3 (see Sect. 3.6) we pointed out that the visible
Fe I lines at 6300 Å are far more sensitive to such discontinuities and therefore they might be
a useful tool to infer the typical sizes of the penumbral flux tubes. In this Chapter we shall
investigate in more detail this conjecture by inverting penumbral spectropolarimetric data of the
aforementioned lines. Sect. 5.2 briefly describes the observations ; Sect. 5.3 presents the radial
behaviour of the inferred physical parameters; in Sect. 5.4 the inferred size of the penumbral flux
tubes and its implications are discussed. Finally, in Sect. 5.5 we study whether the uncombed
model satisfies the null divergence condition for the magnetic field vector.

117
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TABLE 5.1: Atomic parameters of the observed lines. λ0 represents the laboratory central wavelength, χl

the excitation potential of the lower energy level, and logg f the logarithm of the oscillator strength times
the multiplicity of the level. The parameters α and σ (in units of Bohr’s radius, a0) are used to calculate the
broadening of the lines by collisions with neutral hydrogen atoms as resulting from the ABO theory. The
seventh column gives the effective Landé factor of the transition, ge f f . The values of the relatives weights
given in the inversion w j are indicated, for each Stokes parameters, in the last four columns.

Species λ0 χl log gf α σ ge f f wI wV wQ wU

(Å ) (eV) (dex) (a2
0)

Fe I 6301.5012 3.654 −0.718 0.243 832 1.67 20 100 35 35
Fe I 6302.4916 3.686 −1.235 0.240 847 2.50 20 100 35 35
Fe I 6303.4600 4.320 −2.550 0.276 712 1.50 1 1 1 1
Ti I 6303.7560 1.443 −1.611 0.236 357 0.92 50 1 1 1

5.2 Observations

The active region NOAA 8545 was observed in May 21st, 1999 at an heliocentric angle of µ =
cosθ = 0.79 using the ASP (Advance Stokes Polarimeter; Elmore et al. 1992) instrument. The
recorded spectral region ranges about 3.2 Å with a wavelength sampling of 12.8 mÅ. It contains
the full Stokes vector of 4 Zeeman sensitive spectral lines: Fe I (ge f f =1.67) 6301.5 Å , Fe I
(ge f f =2.5) 6302.5 Å , Fe I (ge f f =1.5) 6303.4 Å and Ti I (ge f f =0.92) 6303.7 Å. Note that the first
two neutral iron lines are blended by two telluric H20 lines in the red wing of Stokes I.

The data reduction was performed by usual means (see Skumanich et al. 1996). As always,
special care was taken in the wavelength calibration, for which we first proceeded to assume that
the average umbral profile of 6301.5 and 6302.5 Å is at rest (i.e. the core positions in Stokes I
correspond to the central laboratory wavelengths) and later a minor correction was done at each
pixel using the telluric lines. The laboratory wavelength for the Ti I line, as well as the oscillator
strengths of Fe I 6303.4 Å and Ti I 6303.7 Å are very inaccurate, and therefore we recalculated
them using the two component model for the quiet Sun by Borrero & Bellot (2002) using the
procedure described in Borrero et al. (2003a). The relevant atomic parameters for the four lines
are presented in Table 5.1. Fig. 5.1 shows the active region as seen in the continuum intensity,
total circular polarization and Stokes V area asymmetry.

Although these lines are less sensitive to the magnetic field than their infrared counterparts
(see Chapter 3 and 4), they present a number of advantages that makes them very suitable for
our purposes. The visible lines provide a better height coverage, as they are formed over a wider
range of optical depth layers in the solar photosphere: logτ5 ∈ [−4,0]. In addition, as already
pointed out in Sect. 3.6 the visible Fe I lines are far more sensitive to gradients along the line
of sight in the physical quantities. Finally, the visible lines are in principle more affected by
changes in the temperature stratification than the Fe I lines at 1.56 µm, but if we take into account
the OH lines that blend the Fe I 15652 Å line, this situation is compensated, at least in the inner
penumbra.
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FIGURE 5.1: Continuum intensity map of NOAA 8545 (top panel). Total circular polarization map (mid-
dle panel) and area asymmetry map (bottom panel). The contours correspond to the levels 0.45, 0.6 and
0.85 in units of the quiet sun intensity IC. The outermost boundary defines the sunspot radius r = R. The
arrow points towards the direction of the disk center. The 5 radial cuts indicated by the white lines lie
on the limb side of the penumbra, somewhat out of the line of symmetry of the sunspot, where the area
asymmetry reaches the largest values. A map of the Net Circular polarization for the Fe I 6302.5 Å line
can be found in Fig. 2.12 (left panel).
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5.3 Inversion results

We have selected for the inversion the five radial cuts shown in Fig. 5.1. They lie on the limb
side of the penumbra at around 30 degrees clockwise from the line of symmetry of the spot. This
region was selected, because, as can be seen in Fig. 5.1 (bottom panel), there is a maximum
in the area asymmetry of the circular polarization profiles, and hence it seems very suitable to
test whether we can obtain accurate values for the flux tube radius. Each radial cut contains
approximately 25 pixels ranging from r/R' 0.4 up to r/R' 0.9. As in Chapter 4, the uncombed
model (Sect. 2.2.2-4.2) was used to describe the fine structure of the penumbra. Since the spectral
lines we are using now are sensitive to a much wider range of heights than those used in Chapter
4 (see also Sect. 3.6) we fix a maximum value for the thickness of the penumbral flux tube Dt

of 500 kilometres (cf. Sect. 4.5). The number of free parameters, physical quantities and their
stratifications with optical depth are the same as in Chapter 4 (Sect. 4.2).

During the inversion process all pixels were inverted individually giving more relative weight
to the polarization profiles (V , Q and U) of Fe I 6301.5 Å and Fe I 6302.5 Å than to Stokes I. The
other two lines, Fe I 6303.5 Å and Ti I 6303.8 Å are comparatively weaker. Therefore they are of
minor importance in the inversion, except for Stokes I of the Ti I line, whose weight was similar
to the weights in Stokes V ,Q and U in the first two iron lines in Table 5.1. The reason is that
the combination of the very small excitation energy of this line and the relatively low ionization
energy of Titanium, makes it quite sensitive to variations in the temperature stratification. In fact,
the Ti I line behaves similarly to the OH lines that blend the Fe I 15652.5 Å line (see Chapter 4).
Its equivalent width, being rather large in the umbra and inner penumbra, is significantly reduced
towards the middle and outer penumbra. More details about the employed weights are given in
Table 5.1.

5.3.1 Fitting examples

In Fig. 5.2 we present some examples of the observed and fitted Stokes V profiles for three
pixels located at increasing distance from the sunspot center. The fits to the observational data
are reasonably successful, with differences always below 1% of the continuum intensity. Even
Stokes V profiles, with typical shapes of Stokes Q and U (see Sánchez Almeida & Lites 1992),
are almost perfectly reproduced (Fig. 5.2; middle panels). Furthermore, single-lobed Stokes V
profiles (Fig. 5.2; bottom panels) are also nicely fitted. Note that, in contrast to the Fe I lines at
1.56 µm, these fits can not be achieved by simple 2C models as in Chapter 3, because if gradients
along the line-of-sight in the velocity and magnetic field vector are neglected the produced area
asymmetry will be zero, giving rise to Stokes V profiles that, although they may have several
lobes (cross-over effect), will have equal positive and negative areas in strong contrast to the
observed profiles.

5.3.2 Radial dependences

From the retrieved stratifications with geometrical height, both for the ray crossing the surround-
ing atmosphere only and the ray crossing through the surrounding and the flux tube atmosphere
(see Fig. 4.1 and Fig. 4.4), we have extracted, for all inverted pixels, the values of the physical
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FIGURE 5.2: Three examples of observed (filled circles) and fitted (solid lines) Stokes V profiles for Fe I
6301.5 (left panels) and Fe I 6302.5 Å (right panels) lines. These profiles have been taken from the same
radial cut in Fig. 5.1 at three locations with increasing radial distance: r/R = 0.45,0.65,0.85, such that
the upper panel corresponds to the inner penumbra and the bottom panel lies at the outer boundary of the
sunspot. The observed and fitted Stokes V area asymmetry, δA are also indicated.
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parameters (temperature, LOS velocity, magnetic field strength and inclination, gas pressure etc.)
at z = z0 and plotted them, as a function of the radial distance in the penumbra, in Fig. 5.3. For
the temperature and gas pressure we plot, instead of the separate values for the flux tube and the
surrounding atmosphere, the difference between them. The filling factor of the flux tube compo-
nent, αt (Fig. 5.1; bottom left panel) corresponds, obviously to the flux tube alone, with being
1−αt the area covered by the surrounding atmosphere (Eq. 4.2). As in previous chapters, we
have transformed the magnetic field inclination, that is always obtained in the observer’s refer-
ence frame from the inversion, into the local reference frame. Therefore in the following we
discuss about zenith angles ζ instead of γ, ζ = 0◦ meaning that the magnetic field is perpendicular
to the solar surface.

A comparison of the results obtained with the Fe I 1.56 µm lines by means of the uncombed
model (see Fig. 4.5, 4.6 and 4.8) shows that very similar radial trends are obtained when the un-
combed model is applied to a set of spectral lines with very different atomic and thermodynamic
properties. In particular, the flux tubes also appear hotter than the surrounding atmosphere in the
inner penumbra, supporting our arguments in Sect. 4.6.3. In addition, the flux tube magnetic field
strength remains fairly constant with radial distance, while the external magnetic field strength
drops rapidly towards the outer penumbra. This, together with the radial decrease in the gas
pressure difference between the flux tube and the surrounding atmosphere, provides additional
evidence supporting siphon flows as the physical mechanism responsible for the Evershed flow
(see Sect. 3.7 and Sect. 4.6.2).

An obvious difference to the results from the infrared lines is, however, worth mentioning.
The values of the flux tube filling factor at small radial distances from the inversion of the infrared
lines were αt ∼ 0.2 in the inner penumbra, whereas the visible lines show αt ∼ 0.5. We believe
this effect is due to the lack of information that the visible profiles carry about the flux tube atmo-
sphere in the inner penumbra. In fact, the filling factor here partially loses its significance, as the
inferred properties, like the magnetic field zenith angle (middle left panel) and LOS velocity (top
right panel) are very similar for the flux tube and its surroundings 1. A qualitative example can be
found in Fig. 4.9 and Fig. 3.2 (top panel) where the contribution from the flux tube component to
the Stokes V profiles of the Fe I 1.56 µm lines at the inner penumbra is clearly visible. In contrast,
this contribution is not evident at all in the visible lines (e.g. Fig. 5.2; top panels). This can also
explain the fact that the errors bars in the flux tube component are not only much larger than those
in the surrounding atmosphere (except perhaps for the outer penumbra, r/R > 0.8), but also much
larger than in the case of the 1.56 µm lines. This indicates that it would be highly desirable to use
simultaneous observations in both spectral windows, using the infrared lines to characterize the
horizontal properties of the penumbral fine structure and the diagnostic capabilities of the visible
lines to infer the vertical stratification (i.e. gradients along the line-of-sight).

5.4 Size of the Penumbral Flux tubes

In order to produce a non vanishing Net Circular Polarization an atmospheric model must in-
clude gradients along the line-of-sight in the velocity and magnetic field vector (Landolfi & Landi
Degl’Innocenti 1996). In the case of the penumbra of sunspots, the Net Circular Polarization is

1Note that this is not the case for the magnetic field strength (middle right panel in Fig. 5.3).
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FIGURE 5.3: Radial variation of properties of the magnetic surrounding (dashed lines) and the penumbral
fl ux tube (solid lines). Shaded areas represent the scatter around the mean obtained from the inversion of
each of the 5 radial cuts considered. From left to right and top to bottom: temperature difference between
the fl ux tube and its surroundings, LOS velocity, magnetic zenith angle ζ, magnetic field strength B, fl ux
tube filling factor αt , and gas pressure difference between the fl ux tube and its surroundings. All quantities
have been taken at a geometrical depth that corresponds to the central position of the fl ux tube: z = z 0.
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of the Fe I lines at 6300 Å is so large that gradients in the inclination of the magnetic field and
in the line-of-sight velocity as large as ∆γ ' 45◦ and ∆vlos ' 1.5 km s−1 must be introduced
(Sánchez Almeida & Lites 1992). Such gradients would certainly produce large curvature forces
and electric currents that are difficult to match with the idea of a sunspot in hydrostatic equilib-
rium (Solanki et al. 1993). A way out of this problem was proposed by Solanki & Montavon
(1993) who realized that including a three layered atmospheric model (see Sect. 2.2.2) where the
middle one would have larger velocities and a more horizontal magnetic field could reproduce
the observed NCP without invoking to net (i.e. large scale) gradients along the line of sight, but
rather strong gradients on a small scale that are compensated as the line-of-sight crosses the three
atmospheric layers. This is the basic idea of the uncombed model. In Sect. 2.2.2 we had already
identified the intermediate layer as a horizontal flux tube (carrying the Evershed flow) which is
embedded in a magnetic surrounding where the magnetic field is more vertical and essentially at
rest. Except for the addition of a pure surrounding atmosphere (Sect. 4.2; see also Martínez Pillet
2000) , the model for the fine structure of the penumbra that we have used in Chapters 4 and 5 of
this thesis, is essentially the uncombed model as proposed by Solanki & Montavon (1993).

This model has been applied in Chapter 4 to penumbral spectropolarimetric data observed
in the Fe I lines at 1.56 µm. This allowed us to characterize the horizontal inhomogeneities
of the penumbral fine structure, but we were not able to model the vertical inhomogeneities.
The reason given was that the used spectral lines showed only some NCP (with typical values
for the area asymmetry of δA ∼ 3− 5 %) and therefore the positions of the boundary layers,
where the gradients along the line of sight are produced, and thus the thickness of the inner
layer or penumbral flux tube, were not constrained in the inversion process. The result was that
the uncombed model tends to retrieve flux tubes of infinite thickness, because in those lines the
horizonal fine structure of the magnetic field plays a more important role than the vertical one
(see Sect. 1.5.7; unresolved structure).

A different situation appears when the uncombed model is applied to the Fe I lines at 6300 Å.
The area asymmetry in these lines is so large that the vertical structure (i.e. discontinuities along
the line-of-sight produced at the flux tube boundaries) of the magnetic field and velocity vectors
play now the leading role. Fig. 5.4 (top panels) demonstrates that the uncombed model now
reproduces almost perfectly the observed area asymmetry of the visible Fe I lines (cf. Fig. 4.7;
top panel). As a function of the radial distance (Fig. 5.4; middle and bottom panels) we see
that the observed area asymmetry (solid lines) increases radially up to δA ∼ 60 % in the middle
penumbra (r/R ∼ 0.6) and remains fairly constant hereafter. The fitted area asymmetry (dashed
lines) presents an almost identical behaviour, although for the Fe I 6302.5 Å line it seems to
slightly underestimate the observed values. Note that the small δA observed in the inner penumbra
(r/R < 0.5) can either indicate that the flux tube is very thick here (so that its boundaries will
fall out of the region where these lines are formed) or that the properties of the flux tube and
its magnetic surrounding are very similar (so that there is no jump is the physical quantities
along the line of sight). In fact we see indications of both effects. On the one hand, as already
mentioned, in the inner penumbra flux tube and magnetic surrounding atmosphere have very
similar zenith angles and LOS velocities (see Fig. 5.3) which obviously means that little NCP will
be produced. On the other hand, the magnetic field in the flux tube is much smaller than in the
external atmosphere at small radial distances. This, through total pressure balance considerations
as shown in Fig. 5.3 (bottom right panel), implies that the gas pressure in the flux tube must be
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FIGURE 5.4: Top panel: fitted Stokes V area asymmetry versus observed one. Straight line indicates the
expectation values. Middle panel: radial variation of the observed (solid line) and fitted (dashed line) area
asymmetry of Fe I 6301.5 Å. Shaded areas corresponds to the maximum and minimum deviations for the
five radial cuts considered. Bottom panel: same but for Fe I 6302.5 Å.
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FIGURE 5.5: Top panel: locations, in the optical depth scale, of the lower (solid line) and upper (dashed
line) boundaries of the fl ux tube as a function of the radial distance in the penumbra. Bottom panel:
inferred fl ux tube diameter as a function of r/R.

much larger: ∆Pg ∼ ∆B2. In addition, the higher temperature in the flux tubes also increases the
opacity. As a consequence the flux tube is very opaque in the inner penumbra and the continuum
level, logτ5 = 0, is formed within the tube, making its lower discontinuity invisible (see Fig. 5.5;
top panel). Again, the simultaneous inversion of the visible and infrared lines will allow for a
better distinction between these two possibilities in the inner penumbra.

For the rest of the penumbra, r/R > 0.5, the lower and upper flux tube boundaries are consis-
tently located at logτ5 ∼ 0.2 and logτ5 ∼−1.7 respectively (see Fig. 5.5; top panel), right in the
region where the discontinuities are more effective in generating NCP (see Fig. 3.8). This corre-
sponds to a thickness of roughly 100-200 Km (see Fig. 5.5; bottom panel). This is in agreement
with previous investigations based on the Net Circular Polarization (Solanki & Montavon 1993;
Martínez Pillet 2000,2001).
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5.5 Discussion

Flux tubes of 100-200 km diameter have been also inferred from continuum images at very high
spatial resolution (Sütterlin 2001; Scharmer et al. 2002; Sütterlin et al. 2004; cf. van der Oort
et al. 2004; see also Fig.2.2). However, any comparison with our results must be made carefully
as we must bear in mind that our definition of flux tubes refers to the different magnetic field in-
clinations and velocities found within the resolution element, whereas the other authors consider
the brightness structuring. Therefore measurements of the full Stokes vector at resolutions of 0.1
arc sec would be desirable to study the magnetic and kinematic fine structure of the dark core
penumbral filaments seen by Scharmer et al. (2002).

Another point of special interest concerns the null divergence condition of the magnetic field
vector. Sánchez Almeida (1998, 2001) have argued that any penumbral model, compatible with
the ∇B = 0 condition and able to fit the Stokes V area asymmetry must be based in flux tubes with
typical diameters of only several kilometres. As we have demonstrated the uncombed model is
able to reproduce, with striking accuracy, the area asymmetry in the circular polarization profiles.
It is therefore also necessary to check whether the model also satisfies ∇B = 0. Taking cylindrical
coordinates where the vectors ez and er point perpendicular to the solar surface and radially
outwards in the sunspot respectively,

∇B =
1
r

∂
∂r

(rBr)+
1
r�

�
��7

0
∂Bφ

∂φ
+

�
�

�7
0

∂Bz

∂z
(5.1)

Note that the derivatives with respect to φ and z vanish as a consequence of the model con-
struction 2 (see Sect. 4.2 and Fig. 4.4 and footnote in page 93). Therefore it is sufficient to use

∇B =
1
r

∂
∂r

(rBr) (5.2)

From our results in Fig. 5.3 (middle panels) we have interpolate third order polynomials
in order to obtain analytical expressions for B(r) and ζ(r). Taking into account that Br(r) =
B(r)sinζ(r) we can easily compute Eq. 5.2 as a function of the radial distance in the penum-
bra. The result is presented in Fig. 5.6. The magnetic field configuration for the penumbral fine
structure, as deduced from the application of the uncombed model, clearly verifies, with an error
of half a Gauss per kilometre in the inner penumbra, the null divergence condition of the mag-
netic field vector for both the external and flux tube magnetic field, showing that optically thin
flux tubes are not necessary to verify the afore mentioned conditions (see Martínez Pillet 2001,
Sánchez Almeida 2004; cf. Sánchez Almeida 2001).

2Although we have not checked it, we are assuming that the magnetic field vector (in the local reference frame)
is oriented radially in the penumbra and therefore it has no azimuthal component. This has been demonstrated in
Sect. 3.8 for the 2C model.



128 CHAPTER 5. SIZE OF THE PENUMBRAL FILAMENTS

FIGURE 5.6: ∇B as a function of the radial distance in the penumbra, for the external magnetic field (solid
line) and the fl ux tube magnetic field (dashed line).

5.6 Conclusions

The uncombed model is able to satisfactorily reproduce the polarization signals emerging from
the sunspot penumbra both for the Fe I lines at 6300 Åand at 1.56 µm. The area asymmetry in
the circular polarization profiles, Stokes V , as well as its behaviour with radial distance in the
penumbra are also reproduced. The deduced magnetic topology verifies very consistently the
null divergence condition for the magnetic field vector.

It is important to note that the inferred vertical sizes for the penumbral flux tubes (around 100-
200 km) have been obtained from the interpretation of the polarized spectrum, and in particular,
of the net circular polarization, within the assumptions on the geometry of the penumbral fine
structure included in the uncombed model. Therefore we can not rule out other models, that
offering a consistent explanation of the observed profiles, consider flux tubes with smaller sizes.

Thick flux tubes would imply that simulations of penumbral flux tubes embedded in the
penumbra (e.g Montesinos & Thomas 1997, Schlichenmaier et al. 1998a,1998b) would need
to be revisited, since they all rely on the thin flux tube approximation and therefore they neglect
any variation in the physical quantities in the plane perpendicular to the tube’s axis. In Chapter 6
we will address this point in some more detail.



Chapter 6

MHS equilibrium of thick penumbral
filaments

In this chapter we study in some detail the magnetohydrostatic equilibrium of penum-
bral flux tubes. We will show that for typical penumbral conditions the magnetic field
vector can not be completely aligned with the axis of the flux tube, but rather there
must exist a non-vanishing component on the plane perpendicular to it.

6.1 Introduction

The equilibrium configuration of penumbral fibrils has been usually studied under the thin-flux
tube approximation (Thomas & Montesinos 1993; Montesinos & Thomas 1997). This approxi-
mation has the advantage that the equations governing the dynamical evolution of the flux tube
become a set of spatially one-dimensional equations, allowing for a fast and less complicated in-
tegration. However, the thin-flux tube approximation can be questioned in the solar photosphere,
where the radius of the penumbral fibrils becomes comparable to the pressure scale height. The
flux tubes are then said to be thick. In this case the flow must be considered two dimensional
due to the fact that there will be a velocity, pressure, density and temperature distribution in its
interior.
In this chapter we will present a equilibrium configuration for thick penumbral fibrils, trying to
keep as much as possible of the features of the sunspot penumbra we have determined in the
previous chapters. Our aim is to set up a basic formulation of the problem that might allow for a
more general treatment.

6.2 Basic equations and boundary conditions

Let us consider the case of a horizontal flux tube that carries the Evershed flow and is embedded
in a static plasma with and inclined magnetic field. The flux tube’s radius is denoted as R and its
central position in the vertical direction will be for simplicity at z = 0. The stationary momentum
equation can be written in cgs units as (see Priest 1971)

129
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ρv(∇v) = −∇p+
1
c

j×B+ρg (6.1)
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FIGURE 6.1: Left panel: scheme of a horizontal penumbral filament embedded in a magnetic atmosphere
with a more vertical magnetic field. Right panel: coordinate system in the plane perpendicular to the tube’s
axis (X-axis).

This equation describes the force balance between the inertial force, the pressure gradient, the
Lorentz force and the gravity force. We set up a reference and coordinate system in order to
project this vector equation. We shall use cylindrical coordinates, where the axis of symmetry
will be along the tube’s axis (see Fig. 6.1). We have already seen in Chapter 3 and 4, that the
properties of the flux tubes and the background atmosphere change rather smoothly radially in
the penumbra, being quantitatively smaller than the variations in the plane perpendicular to the
tube axis, where large gradients can be present at very small scales. We will therefore neglect
any variation of all quantities along the tube’s axis (X-coordinate, Fig. 6.1). This simplifies our
problem to a large extent, since now we can restrict ourselves to consider only polar coordinates
in the selected plane. We can therefore write, separately for the flux tube interior (index ’t’, tube)
and exterior (index ’s’, surroundings)

B =

{
Bs = Brs(r,θ)er +Bθs(r,θ)eθ +Bxs(r,θ)ex r > R
Bt = Brt(r,θ)er +Bθt(r,θ)eθ +Bxt(r,θ)ex r < R

(6.2)

v =

{
vs = 0 r > R
vt = vt0ex r < R → Evershed flow

(6.3)

The normal component of the external and the internal magnetic field are assumed to vanish at
the tube’s boundary r = R. This is important in order to keep a clear distinction between the flux
tube and the surrounding atmosphere:
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Brs(R,θ) = Brt(R,θ) = 0 (6.4)

This boundary condition satisfies the continuity of the normal component of the magnetic field
vector across the interface. The jump in the azimuthal component will lead to an azimuthal
surface current. We can now project our generic magnetic and velocity fields (Eq. 6.2 and 6.3) in
order to obtain







er : 0 =− ∂p
∂r + 1

c ( jθBx− jxBθ)−ρgsinθ

eθ : 0 =− 1
r

∂p
∂θ + 1

c ( jxBr− jrBx)−ρgcosθ
(6.5)

These equations that are valid for both the exterior and for the flux tube interior. In addition we
can make use of the relation ∇×B = 4π

c j, in order to obtain

1
r

∂Bx

∂θ
=

4π
c

jr (6.6)

6.3 Pressure and density balance

The fact that both the radial component of external and internal magnetic field vanishes in the
vicinity of the flux tube’s boundary (Eq. 6.4) leads to continuity of the normal stress across the
interface (Kippenhahn & Möllenhoff 1975). Therefore, by integrating the Maxwell stress tensor
across the interface we find total pressure balance (thermal plus magnetic) between the flux tube’s
interior and its surroundings:

Pgs(R,θ)+
B2

s (R,θ)

8π
= Pgt(R,θ)+

B2
t (R,θ)

8π
(6.7)

Taking derivatives with respect to θ and regrouping, we obtain: terms,
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}

(6.8)

Both terms labelled as 1 or 2 in Eq. 6.8 can be written as a function of the density using Eq. 6.5
and 6.6,

∂Pg(R,θ)

∂θ
=

R
c

{

jx�����:0
Br(R,θ)− jr(R,θ)Bx(R,θ)

}

−ρ(R,θ)Rgcosθ (6.9)

∂Pg(R,θ)

∂θ
=−ρ(R,θ)Rgcosθ− 1

8π
∂B2

x(R,θ)

∂θ
(6.10)

Now, by plugging Eq. 6.10 into 6.8 one obtains
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ρt(R,θ)−ρs(R,θ) =
1

8πRgcosθ
∂

∂θ
{

B2
θt(R,θ)−B2

θs(R,θ)
}

(6.11)

Note that Eq. 6.7 and 6.11 link the gas pressure and density of the flux tube and the surrounding
atmosphere across the interface. They have been obtained with a number of assumptions: the
radial component of the flux tube and surrounding magnetic field has to vanish at the boundary
r = R, velocity and magnetic field vectors are constant along the tube’s axis and the velocity fields
are given by Eq. 6.3. Indeed, Eq. 6.11 is valid whatever the external or internal magnetic field
configuration is, as long as the boundary conditions, given by Eq. 6.4, are satisfied.

6.4 Potential external field

We shall now consider a very simple case that will permit an analytical treatment of the equilib-
rium equations and, at the same time, will highlight the difficulties to find a MHS equilibrium for
the penumbral flux tubes. The simplest configuration we can choose for the external magnetic
field is a potential field: ∇2Φs = 0, with Bs = −∇Φs. This problem can be solved by variable
separation. In addition, boundary conditions given by Eq. 6.4 must be satisfied

Bsr(R,θ) = 0 (6.12)

We also know (see Chapters 3-4-5) that the external atmosphere it is at rest, and possesses a
magnetic field that it is somewhat inclined with respect to the vertical axis. We therefore, assume
that Bs has the following form far away form the tube

lim
r→∞

Bs = B0 cosγ0ez +B0 sinγ0ex

= B0 cosγ0 sinθer +B0 cosγ0 cosθeθ +B0 sinγ0ex

(6.13)

This yields the following solution for Bs(R,θ)

Bs = B0 sinγ0ex +B0 sinθcosγ0(1−
R2

r2 )er +B0 cosθcosγ0(1+
R2

r2 )eθ (6.14)

For the flux tube we will assume that both the magnetic field and Evershed flow are constant and
parallel to its axis: Bt = Bt0ex and vt = vt0ex. We now insert the magnetic fields into Eq. 6.11 and
thus, we obtain a relation between the external and internal densities required for the flux tube to
be in force equilibrium

ρt(R,θ)−ρs(R,θ) =
B2

0 sinθcos2 γ0

πRg
(6.15)

The physical significance of this equation is clear from the point of view that, in the middle
half above the tube (i.e. θ ∈ [0,π]) the external magnetic field lines close around the flux tube,
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resulting in a net tension force that pushes up the tube. In order to stay stationary the internal
density of in such layers has to be larger than the surrounding so it will compensate this force.
Opposite situation happens in the middle half beneath the tube, where the external magnetic field
lines are opening around the tube, pushing it down. To compensate this effect the tube’s density
has to become larger as compared to the surrounding, so the flux tube will become buoyant.

Typical values, obtained from spectropolarimetric analysis (see Chapter 3-4) indicate: B0 '
1500 G, γ0 ' 45◦, R ' 100 km. Taking also g = 2.74× 104 cm s2, we can estimate an order of
magnitude for the density difference

ρt(R,θ)−ρs(R,θ)∼ 2×10−6 sinθ gcm−3 (6.16)

Typical photospheric densities, at a height slightly above the continuum layers, are of the order
of ρs ∼ 2−3×10−7 g cm−3. This means that at a given point, the modulation factor (right hand
side in Eq. 6.16) becomes larger than the external density itself, resulting in negative densities
inside the middle bottom part of the tube. The presence of the flux tube acts as an obstacle for
the external magnetic field (Eq. 6.4), and forces it around tube. Thus, a smaller area is available,
and in order to keep a constant flux, the strength of the magnetic field has to increase in the
neighbourhood of the flux tube. This local enhancement of the external magnetic field makes the
azimuthal component of the external magnetic field, Bθs, to change dramatically along the tube’s
boundary: from Bθs = 0 at (r = R,θ =−π/2) to Bθs = 2B0 at (r = R,θ = 0).

It is not clear whether the presence of electric currents in the external atmosphere can produce
Ohmic dissipation large enough to avoid such an enormous enhancement of the magnetic field.
Indeed, there will be always field amplification to some extent, as it is a direct consequence of
the null divergence of the magnetic field vector.

6.5 Non-uniform flux tube field

Inspection of Eq. 6.11 reveals that if the flux tube magnetic field possesses an azimuthal compo-
nent such that

Bθt(R,θ) =
√

αF (θ)+B2
θs(R,θ) =

√

αF (θ)+4B2
0 cos2 θcos2 γ0 (6.17)

the density difference that follows from Eq. 6.11 is

ρs(R,θ)−ρt(R,θ) =
α

8πRg
1

cosθ
dF (θ)

dθ
(6.18)

so that we have freedom to choose α and F (θ) in such a way that the right hand side term of
Eq. 6.18 is very small, ensuring with this that the flux tube density will not become negative. For
instance: α� 8πRgρs(R,θ)∼ 1×106 and F (θ) = sinθ.

Considering now ∇Bt = 0 we can write
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∂(rBrt)

∂r
=−∂Bθt

∂θ
(6.19)

Assuming again separation of variables in the following form

Brt(r,θ) = H (θ)M (r) (6.20)

Bθt(r,θ) = G(θ)N (r) (6.21)

with the following boundary conditions, that are used in order to satisfy Eq. 6.18 and Eq. 6.4

M (0) = 0 M (R) = 0 N (0) = 0 (6.22)

N (R) = 1 G(θ) =
√

αF (θ)+B2
θs(R,θ) (6.23)

Using Eq. 6.20 and after some algebra, it can be shown that a possible magnetic field configura-
tion is given by

Brt(θ,r) =
r

2R2 (R− r)
1

√

αF (θ)+B2
θs(R,θ)

[

α
dF (θ)

dθ
+2Bθs(R,θ)

dBθs(R,θ)

dθ

]

(6.24)

Bθt(θ,r) =
r

R2 (3r−2R)
√

αF (θ)+B2
θs(R,θ) (6.25)

For illustrate purposes we have chosen an example that we will describe in some detail,
α = 0. This situation implies that the azimuthal component of the flux tube at r = R is equal,
for all angles, to the azimuthal component of the external magnetic field at the tube’s boundary
(which is taken from the potential field, Sect. 6.4). Hence this make ρs(R,θ) = ρt(R,θ). With
this, the components of the magnetic field are as follows

Brt(θ,r) =− 2r
R2 (R− r)B0 sinθcosγ0 (6.26)

Bθt(θ,r) =
2r
R2 (3r−2R)B0 cosθcosγ0 (6.27)

Fig. 6.2 shows the 2 dimensional distribution inside the flux tube of the radial component
of the magnetic field strength (top panel), azimuthal component (middle panel), as well as the
total perpendicular component ((B2

θ + B2
r )

1/2). Note that we have also included the potential
solution for the external field, Bs(R,θ), as given by Eq. 6.15. Looking at the magnitude and
distribution of the flux tube magnetic field two important questions arise. Firstly, we have learnt,
from the inversion of spectropolarimetric data, that the magnetic field inside the flux tube is
mainly parallel to its axis and possesses a strength of about 1200 Gauss: Bxt ' 1200 Gauss.
However, we can not rule out the existence of a small, but non-vanishing, component of the
magnetic field perpendicular to the tube’s axis: Brt ,Bθt � Bxt . The perpendicular magnetic field,
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(B2
θ +B2

r )
1/2, inside the flux tube reaches, except for it outermost part, values smaller that ' 400

Gauss (see Fig. 6.2), which can be considered to be within the mentioned limits. This means
that the total magnetic field vector, once the X-component is added, is still mainly parallel to the
tube’s axis, in agreement with observations.

Secondly, we must acknowledge that the magnetic configuration for the flux tube interior
described here, that leads to an equilibrium configuration, is unlikely to be present in the flux
tubes as soon as they appear in the penumbra, but rather it should be a consequence of a dy-
namical behaviour. Moreover, this study, although it is beyond the scope of this work, should be
accompanied by an stability analysis in order to check whether this is a stable equilibrium.

Finally we shall remark that, although in the external atmosphere there are no currents (obvi-
ously because Bs is potential), they can exist at the interface layer: j = er× [Bs(R,θ)−Bt(R,θ)] 6=
0 as well as inside the flux tube, j = c

4π ∇×Bt. The presence of these currents will transform the
energy stored in the magnetic field into thermal energy, that will be ultimately, via ohmic dissi-
pation, radiated away.

FIGURE 6.2: Left panel: vector field representation of the flux tube magnetic field given by Eq. 6.26-6.27.
Right panel: color plot of perpendicular component (B2

θ(r,θ)+ B2
r (r,θ))1/2 of the magnetic field. Now an

external field as in Eq. 6.14, is also included. In this example we have used B0 = 1000 Gauss and γ0 = 45◦.
Note everywhere there is a component of the magnetic field parallel to the tube’s axis: Bxs = B0 sinγ0 ' 700
Gauss and Bxt ' 1000 Gauss.
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Conclusions

In this thesis we have presented a picture of the fine structure of the penumbra that explains,
in a natural way, the polarization signals emerging from the sunspot penumbra and embraces
many of the different, sometimes contradictory, results obtained from the application of different
geometrical models to interpret the Stokes profiles observed in different spectral lines.

This picture consists in magnetic flux tubes that carry the Evershed flow and are embedded
in a surrounding magnetic atmosphere. From the application of such a model to interpret the
polarization signals of several sunspots observed with different viewing angles (i.e. heliocen-
tric angles) at different spectral regions we have been able to characterize the properties of the
penumbral fine structure:

1. The magnetic field vector in the flux tubes is almost horizontal with respect to the vertical
direction in the solar surface, being slightly inclined upwards in the inner penumbra but
downwards in its outer boundary. The surrounding atmosphere possesses a magnetic field
which is less inclined (with respect to the vertical) than that in the flux tubes.

2. The strength (modulus) of the magnetic field vector in the flux tube remains fairly constant
radially in the penumbra B ∼ 1200 Gauss, whereas the strength in the surrounding atmo-
sphere decreases very rapidly towards the outer penumbra: from B ∼ 2500 to B ∼ 1200
Gauss.

3. In the local reference frame, the azimuthal angle of the magnetic field vector is the same
for the flux tubes and their magnetic surroundings, being both of them almost perfectly
aligned with the radial direction. However it turns out to be different in the observer’s
reference frame. In this case, the difference between the azimuthal angle in the flux tubes
and their surroundings has opposite signs on the regions divided by the line of symmetry
of the sunspot.

4. While the plasma in the surrounding is essentially at rest, rapid flows with velocities up to
4 km s−1 are detected in the flux tubes at the inner penumbra. The speed increases radially
slightly up to 5 km s−1, corresponding to almost supercritical velocities. Sometimes it is
seen to suffer a sudden drop at the outer penumbra that could be explained through a shock
front or due to the fact that the flux tubes are returning back into the solar interior (see item
1)

5. Flux tubes are hotter than their surroundings in the inner penumbra, but they rapidly reach
similar temperatures. This, together with items 1 and 4 indicates the presence of fast hot
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upflows in the inner penumbra.

6. The gas pressure inside the flux tubes is likely to decrease radially, leading to larger gas
pressures in the inner footpoints than in the outer ones, as required by the siphon flow
mechanism to explain the Evershed effect.

7. The excess of gas pressure in the flux tubes, as compared with their surroundings, in
the inner penumbra leads to an enhanced opacity that prevents the observer to detect the
flux tubes boundaries and therefore no Net Circular Polarization is observed in Stokes
V (i.e. there are no discontinuities along the line of sight in the physical parameters). At
intermediate-large radial distances the flux tubes become optically thinner because the tem-
perature and gas pressure decreases. This makes the flux tubes boundaries visible. From
the amount of NCP generated at the flux tubes’ boundaries we have been able to study their
vertical extension, finding diameters of about 100-200 kilometres. Nevertheless we can not
rule out the possibility of smaller flux tubes because these values have been obtained within
the constraints imposed by our model of the penumbra.

There is much yet to be done to fully understand the penumbral dynamics and magnetic
and thermal structure. In science, the fact that a model is able to consistently explain what we
observe, is no proof of its validity. There are other scenarios, far less investigated, that might
also give a consistent explanation of the observations. In order to be able to distinguish among
them, further developments in the instruments and analysis techniques are mandatory. In the case
of the penumbra, the combination of simultaneous observations in the Fe I lines at 6300 Åand
1.56 µm will certainly allow for a better characterization of the vertical and horizontal penumbral
structure. In addition, the improvement in the spatial resolution of the observations will be most
useful to distinguish between the different scenarios. In fact this is already possible with the
new instrumental set up of the infrared (TIP) and visible (POLIS) polarimeters and adaptive
optic system (KAOS) installed in the German Vacuum Tower Telescope located at the Spanish
observatory of Izaña. In the near future we hope to have access to such instruments in order to
further investigate this challenging and exciting feature of the solar magnetism.

Another point of special interest concerns the fate of the penumbral flux tubes that submerge
into the deep layers of the solar photosphere at the outer boundary of the penumbra. They are
believed to reappear again further away of the visible limit of the spot, as bright features seen
in the G-band (moving magnetic features; MMF), that move away from the spot with similar
velocities to that of the moat flow. These MMFs are seen sometimes to merge with magnetic
flux concentrations at the edge of the moat, leading to emission peaks in the core of the Ca II
K line, which is formed in the chromosphere. These features seem to indicate the possibility
of flux cancellation due to magnetic reconnection of magnetic fluxes of opposite polarity in the
photosphere. If so, these processes would be extremely relevant, not only to explain the decay
of active regions, but also to understand the coupling between the different layers of the solar
atmosphere.
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