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Summary

In this thesis, numerical simulations on a spherical surface were carried out in order to
study the evolution of the photospheric large-scale magnetic field due to magnetic flux
transport processes.

• A numerical code has been developed in order to simulate the time evolution of
the global magnetic field under the influence of supergranular diffusion, differential
rotation and a meridional flow.

• An extensive parameter study has been done in order to investigate the influence
of a variety of solar cycle parameters on the solar magnetic field with focus on the
Sun’s total surface field and the polar field.

• The existing flux transport model has been extended by a term parametrising radial
decay processes. The necessity of this extension follows from comparing numer-
ical simulations with observations. The extended model improves especially the
modelling of long-term trends, like the polar field evolution.

• The Sun’s surface magnetic field has been simulated with the extended surface flux
transport model using the RGO/USAF sunspot data. The simulation is in good
agreement with the observed solar magnetic field.

• A source surface model is used in order to calculate the Sun’s open magnetic flux.
Attempts to model the historic IMF record on the basis of the Greenwich sunspot
database are unsatisfying because of insufficient open flux resulting from the low
latitudes during activity maximum. Adding the open flux contribution of ephemeral
regions improves the results.

• The size distribution of sunspot groups has been investigated. Both, the maximum
areas and the instantaneous areas are found to be log-normally distributed. This
result is confirmed by a simple decay model.
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1 Introduction

Activity phenomena on the Sun are known since a long time. The most striking indicators
of solar activity are sunspots, visible in brightness. Since the beginning of the last century
it is known that the dark spots on the solar disk are related to strong magnetic field con-
centrations. The cyclic behaviour of solar activity with a period of about 11 years was first
remarked by Heinrich Schwabe (1844). Later it was found that the magnetic field reverses
after 11 years and thus the duration of the magnetic activity cycle is 22 years (Hale et al.
1919). It is believed that the driver of the polarity reversal of the solar magnetic field is
the solar dynamo. Up to now, many theories in explaining the solar dynamo mechanism
have been developed, however, there are still a lot of unresolved questions (Ossendrijver
2003).

Dark sunspots and bright faculae can be observed in continuum light on the photo-
sphere (Fig. 1.1 a). The extended areas where spots, faculae, plages and filaments occur
are called active regions. Typically a well-developed active region has a single sunspot
group. The part of an active region outside sunspots, the facular region, usually contains a
mean magnetic field of a few hundred Gauss, resulting in a total magnetic flux of1022 Mx
for a medium size region (Priest 1982). The magnetic structure of an active region can
be derived from magnetograms (Fig. 1.1 b). Magnetic regions on the Sun have in general
bipolar structure, although the individual polarities can be fragmented. The orientation of
the magnetic polarities of the same activity complex follows on average Hales’ polarity
law (Hale and Nicholson 1925). In the layer above the photosphere, the chromosphere,
solar activity becomes evident in plages. These are chromospheric faculae and are best
observed in the Ca II K-line.

Besides the active regions with large magnetic flux concentrations, there’s a magnetic
background network, called the quiet Sun network. This network is formed by granu-
lar motions which confine the flux concentrations along the downflow boundaries of the
photospheric granules.

The solar cycle

The emergence of sunspots appears to happen in a systematic way in two latitudinal bands.
At the beginning of a cycle, sunspots emerge at mid-latitudes around±35◦ and at the
end of a cycle sunspots emerge closer to the equator at around±5◦. A time-latitude
plot representing this cyclic decline of the emergence latitudes is commonly denoted as
butterfly diagram(Fig. 1.2).

The daily sunspot presence is recorded in thesunspot numberR. The dailyBoulder
Sunspot Number, is computed by the NOAA Space Environment Center using a formula

3



1 Introduction

Figure 1.1: (a) White light image of the Sun showing several sunspot groups and (b) the
corresponding magnetogram. Source: Solar and Heliospheric Observatory, SOHO.

devised by Rudolph Wolf in 1848

R = k(10g + s) , (1.1)

whereg is the number of sunspot groups on the solar disk,s is the total number of individ-
ual spots in all the groups andk is a variable scaling factor (usually< 1) that accounts for
observing conditions and the type of telescope (binoculars, space telescopes, etc.). Today,
scientists combine data from lots of observatories – each with its ownk factor – to arrive
at a daily value. It was found only recently by extrapolating the sunspot number back
in time from radiocarbon concentrations, that the Sun is currently in a period of unusual
high activity (Solanki et al. 2004).

Active stars

The Sun is our nearest star and thus its activity phenomena are known much better than on
other stars. Activity phenomena similar to the ones observed on the Sun are also expected
to occur on other stars. Most of the stars appear only as point-like light sources which
makes it difficult or even impossible to observe starspots directly. The most common
technique used for detecting starspots is Doppler-Imaging. Brightness inhomogeneities
on the stellar disk, i.e. dark spots, deform the spectral line profiles of the star as they
rotate with the star. From a time-series of this deformed line profiles one can conclude
about the brightness distribution on the stellar surface.

All spotted stars are chromospherically active and show strong Ca II H and K emission
lines. Another characteristic of active stars is the strong X-ray emission of their coronae.

At present star spots have been indirectly detected on several tens of stars. In general,
stellar spots are much bigger than sunspots and emerge mainly in the polar regions, in
contrast to the Sun, where the spots emerge in an activity band around the equator.
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1 Introduction

Figure 1.2:Top: Sunspot butterfly diagram.Bottom:Average daily sunspot area. Source:
D. Hathaway, NASA, Marshall Space Flight Center.

The Sun-Earth connection

The Sun’s total irradiance has been found to vary slightly with the solar cycle (∼ 0.1%).
Although the dark sunspots block solar irradiance partly, the isochronic bright faculae and
plages enhance irradiance leading to a net effect of increased solar irradiance during high
solar activity (Foukal and Lean 1988). The Sun is by far the Earth’s main energy supplier
and thus any change in the solar radiative output affects the Earth’s energy budget.

Understanding the possible influence of solar activity on the Earth’s climate remains
an interesting and important scientific task. So far, the main mechanisms which have been
suggested are that the Sun’s varying total irradiance changes the total energy input into
the Earth’s atmosphere. The Sun‘s varying ultraviolet emissions affect the production of
ozone in the Earth‘s atmosphere, thus leading to a change of the ozone layer. A weak
solar wind and heliospheric magnetic field, as is the case during solar minimum, enables
galactic cosmic rays to enter the Earth‘s atmosphere which may enhance the formation of
low-altitude clouds. The solar wind affects the electrical properties of the Earth‘s upper
atmosphere which affects in a second step the lower atmospheric layers. The significance
of each of these mechanisms is yet unknown.

About this work

The main goal of this PhD project was to investigate theoretically the evolution of the
global solar magnetic field. To this aim a 2-dimensional numerical code has been devel-
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1 Introduction

oped in order to simulate the evolution of the surface magnetic field as it evolves owing
to photospheric transport processes.

A brief introduction to magnetohydrodynamics which forms the theoretical back-
ground of this work is presented in Chap. 2. The numerical treatment of the surface
flux transport code is given in Chap. 3. The influence of a variety of solar cycle parame-
ters on the Sun’s large-scale magnetic field is discussed in Chap. 4. In Chap. 5 we present
an extension of the flux transport model describing the surface magnetic field evolution
by including radial flux decay. In Chap. 6 we model the magnetic field of the historic Sun
on the basis of sunspot observations and discuss the relation of the surface magnetic field
and the Sun’s open flux. The work on the size distribution of sunspot groups grew out of
the use of RGO sunspot areas in Chap. 6 and is presented in Chap. 7.
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2 Basics of MHD

2.1 Magnetohydrodynamic approximation

MHD (Magnetohydrodynamics) describes the dynamics of a macroscopic plasma. The
MHD equations are based on two assumptions. The plasma motion is assumed to be
nonrelativistic, i.e. plasma velocities are small compared to the speed of light

v

c
� 1 , (2.1)

and the plasma is supposed to be quasineutral. The Maxwell equations in the cgs system
are

∇ ·B = 0 (2.2)

∇ · E = 4πρ (2.3)

∇× E = −1

c

∂B

∂t
(2.4)

∇×B =
4π

c
j +

1

c

∂E

∂t
, (2.5)

whereE is the electric field,B is the magnetic field,j is the current density andρ is the
charge density. WhenE andB are given in a coordinate systemK, then their transfor-
mation into a coordinate systemK ′ moving with a velocityv relative toK is

E′ = E +
1

c
v ×B (2.6)

B′ = B− 1

c
v × E (2.7)

Let L be a characteristic length scale andτ a characteristic time whereE andB change.
Then the spatial and temporal derivatives can be estimated as

|∇ ×B| ≈ B

L
(2.8)∣∣∣∣∂E∂t

∣∣∣∣ ≈ E

τ
(2.9)

It follows from

L/τ

c
≈ vph

c
� 1 (2.10)
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2 Basics of MHD

that the phase velocitiesvph of the field quantities are small compared to the speed of
light. This implies that no electromagnetic waves occur in this approximation.

From Eq. (2.4) we can estimate

E

L
≈ B

c τ
. (2.11)

Combining Eq. (2.11) with Eq. (2.10) one obtains

E

B
≈ L/τ

c
� 1 . (2.12)

This is especially true for the photospheric plasma, where the spatial and temporal scales
exceed the Debye lengthλD = (kT/8πnee

2)1/2 and the inverse plasma frequencyω−1
p =

(me/4πe
2ne)

1/2, respectively, by many orders of magnitude. Typical photospheric values
areT = 5 · 103 K andne = 1014 cm−3 leading toλD = 10−4 cm andω−1

p = 10−11 s. The

displacement current in the Maxwell equation Eq. (2.5) is negligible because∣∣∣Ė/c∣∣∣
|∇ ×B|

≈ E/τ

cB/L
≈ E

B

L

cτ
≈

(
E

B

)2

� 1 . (2.13)

With the MHD-approximations above, Eq. (2.5) becomes

∇×B =
4π

c
j , (2.14)

and the transformation Eq. (2.7)

B′ = B . (2.15)

The transformation of the electric field (Eq. 2.6) remains unchanged.
Equations (2.14) and (2.15) imply the transformation of the current density

j′ = j . (2.16)

2.2 Induction equation and frozen field lines

If the motion of the plasma in the frame of references is described by the velocity fieldv
and the conductivity of the plasma isσ then Ohm’s law becomes the form

j = σE′ = σ(E +
1

c
v ×B) . (2.17)

Combining Eq. (2.4) with the curl of Eqs. (2.5) and (2.17) leads to the induction equation

∂B

∂t
= ∇× (v ×B)︸ ︷︷ ︸

induction

−∇× (ηm ∇×B)︸ ︷︷ ︸
diffusion

(2.18)
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2.2 Induction equation and frozen field lines

where the magnetic diffusivity is defined as

ηm =
c2

4πσ
. (2.19)

The first term on the right side of (2.18) is the induction term and the second term is the
diffusion term. The induction term describes the temporal evolution of the magnetic field
due to the plasma motion, while the diffusion term describes the ohmic decay due to the
finite conductivity in the plasma. The ratio of the induction term to the diffusion term in
Eq. (2.18) is expressed by the dimensionless magnetic Reynolds number

Rm =
vL

ηm

. (2.20)

The quantitiesv andL are characteristic values of the flow velocity and the length scale.
For the solar plasma one has to deal with very big Reynolds numbersRm � 1. Typ-
ical values for granular convection cells on the solar photosphere areL ≈ 108 cm, v ≈
105 cm s−1 and a magnetic diffusivity ofηm ≈ 107 cm2 s−1 leading to a Reynolds number
of Rm ≈ 106.

For large Reynolds numbers, as is the case for the solar plasma, the flow term in
Eq. (2.18) dominates. Neglecting the diffusion term on the right side of Eq. (2.18) and
integrating over an arbitrary surface moving with the local fluid velocityv yields∫

∂B

∂t
· dS =

∫
∇× (v ×B) · dS =

∮
(v ×B) · d l , (2.21)

where on the right side Stokes’s theorem has been applied. It can be shown (e.g. Tannen-
baum 1967) that for a surface moving with velocityv follows

d

dt

(∫
B · dS

)
=

∫
∂B

∂t
· dS +

∮
B · (v × d l) (2.22)

and thus together with Eq. (2.21) and the vector identity(A×B) ·C = −B · (A×C)

d

dt

∫
B · dS = 0 . (2.23)

The flux passing through a moving surface stays constant, meaning that the field lines
move along with the fluid. The field lines behave as if beingfrozen in the fluid. This
result is known asAlfvén’s theorem.

9



2 Basics of MHD

2.3 MHD equations

The basic set of equations of ideal MHD results from combining the hydrodynamic con-
tinuity equation, the Navier-Stokes equation, the Maxwell equations in the MHD approx-
imation and the thermodynamic energy equation.

The continuity equation expresses the conservation of mass

∂ρ

∂t
+∇ · (ρv) = 0 , (2.24)

whereρ is the density andv is the flow velocity.
The equation of motion is given by the Navier-Stokes equation extended by the Lorentz
force

ρ
∂ v

∂t
+ ρ (v · ∇)v = −∇P +

1

c
j×B + ρg + ρ ν4v . (2.25)

Here,ν is the kinematic viscosity,g is the gravitational acceleration andB the magnetic
field.

The equation of state describes the dependence of the gas pressureP from the density
ρ and the temperatureT . For the Sun’s interior a reasonable approximation is the perfect
gas law (Stix 1989)

P =
ρRT

µ
. (2.26)

R is the gas constant andµ is the mean molecular weight.
The set of equations is completed by the induction equation (Eq. 2.18) and the energy

equation

ρT
ds

dt
= −L . (2.27)

In Eq. (2.27)s is the entropy per unit mass andL is the energy loss function which can
be written as

L = ∇ · q + Lr −
j2

σ
−H , (2.28)

whereq is the heat flux due to particle conduction,Lr is the net radiation,j2/σ is the
ohmic dissipation andH represents the sum of all other heating sources. For an ideal
polytropic gas Eq. (2.28) can be written as

L = − ργ

(γ − 1)

d

dt

(
P

ργ

)
(2.29)

with the adiabatic exponentγ. For a detailed derivation of the MHD equations see for
example Kippenhahn and M̈ollenhoff (1975) or Priest (1982).

Substitutingj in Eq. (2.25) by Eq. (2.14) and using the vector identity

(∇×B)×B = (B · ∇)B−∇
(
B2

2

)
(2.30)

one gets an additional pressure term resulting from the magnetic field called the magnetic
pressure

Pm =
B2

8π
. (2.31)
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2.4 Force-free fields

2.4 Force-free fields

In the magnetostatic case, i.e. when all quantities are time independent and no flows are
present, equation (2.25) simplifies to

∇P =
1

4π
(∇×B)×B + ρg . (2.32)

The ratio of gas pressure to magnetic pressure is called theplasmaβ

β =
P

B2/8π
. (2.33)

For strong magnetic fields and a dilute plasma the plasmaβ is very small and the gas
pressure as well as its gradient can be neglected. The weight of a dilute plasma can also
be neglected. Thus Eq. (2.32) reduces to

(∇×B)×B = 0 . (2.34)

A magnetic field satisfying Eq. (2.34) is calledforce-free. An example where the force-
free condition is applicable is the lower solar corona. Above the photosphere the plasma
density diminishes exponentially, i.e. very rapidly, while the magnetic field decreases
with a power-law (Schatten et al. 1969). This leads to a low plasmaβ in the solar corona
and thus the force-free approximation can be applied.

Eq. (2.34) implies that the curl of the magnetic field and thus the current density is in
the direction of the magnetic field

∇×B = αB , (2.35)

whereα is a scalar function of space.α cannot vary along a magnetic field line because
of

∇ · (αB) = B · ∇α = 0 . (2.36)

A second class of solutions of Eq. (2.34) arepotential fields. Potential fields describe the
situation of current free plasmas

∇×B = 0 . (2.37)

From Eq. (2.37) it follows that the magnetic field can be represented by a scalar potential

B = −∇ψ . (2.38)

Because of the solenoidality of magnetic fields, Eq. (2.2), the scalar potentialψ has to
satisfy the Laplace equation

∇2ψ = 0 . (2.39)

The current-free approximation is often applied in the Sun’s chromosphere and lower
corona (Sakurai 1982). In the case that significant electrical currents are present in the
solar atmosphere, the difference between potential field calculations and observed coronal
structures yields information about the coronal currents (Altschuler 1974).
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3 The surface flux transport code

Part of the thesis work was to develop a numerical code to solve the surface flux trans-
port equation for the radial magnetic field component in spherical coordinates. The
flux transport equation originates from the radial component of the induction equation
(Eq. 2.18) under the assumption that the magnetic field is purely radial at the surface, i.e.
Bθ(R�, θ, φ) = Bφ(R�, θ, φ) = 0

∂Br

∂t
= −ω(θ)

∂Br

∂φ
− 1

R� sin(θ)

∂

∂θ

[
v(θ)Br sin(θ)

]

+
ηh

R2
�

[
1

sin(θ)

∂

∂θ

(
sin(θ)

∂Br

∂θ

)
+

1

sin2(θ)

∂2Br

∂φ2

]
− Dr(η) + S(θ, φ, t) . (3.1)

In Eq. (3.1),ω(θ) is the differential rotation,v(θ) the meridional flow andηh the magnetic
surface diffusivity. S(θ, φ, t) is an additional source term describing the emergence of
new magnetic flux.Dr(η) is an additional decay term parametrising the radial loss of
magnetic flux (specified in detail in Chap. 5).

In the following, the numerical method of the surface flux transport code (SFTC) is
described.

3.1 Decomposition in spherical harmonics

Since we wish to solve the flux transport equation (Eq. 3.1) on the surface of a sphere,
it is advantageous to express the radial magnetic field component in terms of spherical
harmonics

Br(θ, φ, t) =
∞∑
l=0

l∑
m=−l

alm(t)Ylm(θ, φ) . (3.2)

The spherical harmonics are defined as

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos(θ)) eimφ , (3.3)

wherePm
l (cos(θ)) are the associated Legendre polynomials of orderm and degreel. The

coefficients in (3.2) are given by

alm(t) =

∫ 2π

0

∫ 1

−1

Br(θ, φ, t) Y
∗
lm(θ, φ) dφ d(cos(θ)) . (3.4)
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3 The surface flux transport code

The asterisk in Eq. (3.4) denotes the complex conjugate. The decomposition of the mag-
netic field in the spherical transport equation into spherical harmonics simplifies the dif-
fusion term because the spherical harmonics are eigenfunctions of the diffusion operator

4h Ylm(θ, φ) = −l (l + 1) Ylm(θ, φ) (3.5)

where−l(l + 1) are the respective eigenvalues.4h is the angular part of the Laplace
operator. Eq. (3.1) transforms with the decomposition Eq. (3.2) into a system of first-
order differential equations where the spherical Laplacian is replaced by the eigenvalues
Eq. (3.5). Inserting Eqs. (3.2)− (3.5) in Eq. (3.1) leads to

∞∑
l=0

l∑
m=−l

ȧlm(t)Ylm(θ, φ) = −ω(θ)
∞∑
l=0

l∑
m=−l

alm(t)
∂ Ylm(θ, φ)

∂φ︸ ︷︷ ︸
differential rotation term

−
∞∑
l=0

l∑
m=−l

1

R� sin(θ)

∂

∂θ

[
v(θ) sin(θ) alm(t)Ylm(θ, φ)

]
︸ ︷︷ ︸

meridional flow term

−
∞∑
l=0

l∑
m=−l

ηh
l(l + 1)

R 2
�

alm(t)Ylm(θ, φ)︸ ︷︷ ︸
diffusion term

−
∞∑
l=0

l∑
m=−l

alm(t)

τl
Ylm(θ, φ)︸ ︷︷ ︸

global decay term

+
∞∑
l=0

l∑
m=−l

slm(t)Ylm(θ, φ)︸ ︷︷ ︸
newly emerging sources

(3.6)

In the global decay term in Eq. (3.6),τl are the individual decay times derived from
the decay modes in a spherical shell (see Chap. 5 for details). Newly emerging bipolar
magnetic regions are decomposed in its harmonic components,slm, which add then to the
coefficients of the total surface field,alm(t).

The task is now to determine the coefficientsalm(t). To this end, we use the orthogo-
nality relation of the Legendre polynomials∫ 1

−1

d(cos(θ))Pm
l (cos(θ))Pm

l′ (cos(θ)) =
2

2l + 1

(l +m)!

(l −m)!
δll′ (3.7)

and the relation ∫ 2π

0

ei(m−m′)φ dφ = 2πδmm′ . (3.8)
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3.1 Decomposition in spherical harmonics

Multiplying Eq. (3.6) withY ∗
l′m′(θ, φ), where the asterisk denotes the complex conjugate,

and integrating over
∫ 1

−1

∫ 2π

0
d(cos(θ)) dφ yields

ȧlm(t) = −
∞∑

l′=0

2π imal′m(t)Ql′mQlm

∫ π

0

ω(θ)Pm
l′ (cos(θ))Pm

l (cos(θ)) sin(θ) dθ︸ ︷︷ ︸
=:Dl′lm

− 2π

R�
Qlm

∞∑
l′=0

al′m(t)Ql′m

∫ π

0

[
(l′ + 1) v(θ) cos(θ)Pm

l′ (cos(θ))Pm
l (cos(θ))

+ sin(θ)
∂ v(θ)

∂ θ
Pm

l′ (cos(θ))Pm
l (cos(θ))

−(l′ +m) v(θ)Pm
l′−1(cos(θ))Pm

l (cos(θ))
]
dθ

−ηh
l(l + 1)

R 2
�

alm(t)− alm(t)

τl
+ slm(t) , (3.9)

where

Qlm =

√
2l + 1

4π

(l −m)!

(l +m)!
. (3.10)

In the following, we abbreviate the second integral in Eq. (3.9) withCl′lm

ȧlm(t) = −2π Qlm

∞∑
l′=0

Ql′m

[
1

R�
Cl′lm + imDl′lm

]
al′m(t)

− ηh

R 2
�
l(l + 1) alm(t)− alm(t)

τl
+ slm(t) . (3.11)

If the meridional flow profile is antisymmetric with respect to the equator, some elements
in Eq. (3.9) vanish

Cl′lm =

∫ π

0

[
(l′ + 1) v(θ) cos(θ)︸ ︷︷ ︸

sym.

Pm
l′ (cos(θ))Pm

l (cos(θ))

+ sin(θ)
∂v(θ)

∂ θ︸ ︷︷ ︸
sym.

Pm
l′ (cos(θ))Pm

l (cos(θ))

−(l′ +m) v(θ)︸︷︷︸
antisym.

Pm
l′−1(cos(θ))Pm

l (cos(θ))
]
dθ

(3.12)

Dl′lm =

∫ π

0

w(θ) sin(θ)︸ ︷︷ ︸
sym.

Pm
l′ (cos(θ))Pm

l (cos(θ)) dθ . (3.13)
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3 The surface flux transport code

It can be easily seen thatCl′lm andDl′lm vanish ifl + l′ is odd. Another simplification in
calculating the coefficientsalm are the relations

Cl′l(−m) =
(l′ −m)!

(l′ +m)!

(l −m)!

(l +m)!
Cl′lm (3.14)

Dl′l(−m) =
(l′ −m)!

(l′ +m)!

(l −m)!

(l +m)!
Dl′lm . (3.15)

The non-zero integralsCl′lm andDl′lm are time-independent and thus have to be cal-
culated only once. This is done using the composite Simpson rule (see for example
Pozrikidis 1998).

The evolution of the magnetic field in Eq. (3.1) has been reduced to the solution of a
system of

lmax+1∑
n=0

n =
(lmax + 1)(lmax + 2)

2
(3.16)

first-order differential equations for the coefficientsalm, wherelmax is the truncation of
the expansion in Eq. (3.2).

The contributionslm(t) in Eq. (3.11) results from the appearance of new magnetic
flux in the photosphere. The treatment of the new sources is described in Sect. 3.2. From
Eq. (3.11) the remaining system of differential equations can be written as

ȧlm = Mll′m al′m . (3.17)

Only coefficients with the same value ofm are coupled. The system Eq. (3.17) splits
into parts when a suitable ordering of the equations is applied. We illustrate this ordering
for the caselmax = 3 where the above described symmetries are taken into account.

Every block in the above matrix corresponding to a certain value ofm can be solved
separately. The largest system of differential equations that is left consists of2(lmax + 1)
equations, where the factor 2 originates from the complex nature of thealm. The above
system hast to be solved for the real and for the imaginary part ofalm. Owing to the
0-components in (3.17), the number of equations reduces by a factor of two.
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3.2 Treatment of new sources

Figure 3.1: Illustration of the geometry of a bipolar magnetic region.

The individual block matrices in Eq. (3.17) are integrated using the fourth-order Runge-
Kutta method. Here, the routinerk4 from Numerical Recipes (Press et al. 1992) has been
used.

3.2 Treatment of new sources

A new bipolar magnetic region (BMR) adds its magnetic flux to the surface field. The
initial distribution of the corresponding radial field is written

∆Br(R�, θ, φ) = B+
r (R�, θ, φ)−B−

r (R�, θ, φ) , (3.18)

whereB±
r (R�, θ, φ) are the unsigned distributions of the positive and negative polarity,

respectively. Following van Ballegooijen et al. (1998), we represent a new BMR by two
circular areas,

B±
r (R�, θ, φ) = Bmaxexp

{
−2[1− cos β±(θ, φ)]

δ 2
in

}
, (3.19)

whereβ±(θ, φ) are the heliocentric angles between(θ, φ) and the central coordinates of
the positive and negative polarity,(θ±, φ±), respectively (Fig.3.1). For small values ofβ±,
Eq. (3.19) approximates a Gaussian.δin is the initial angular width of the Gaussian, which
is assumed to be proportional to the angular separation,∆β, of the centers of the two
polarities:δin = 0.4 ∆β. The largest BMRs in our simulations have an angular separation
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3 The surface flux transport code

of ∆β = 10◦. Bmax is set to250 G. Note that in this way the only free parameters
describing a newborn BMR areθ± andφ±. They determine the size and hence the total
magnetic flux of the BMR. This description ensures that the fluxes in the positive and
negative polarities of the newly emerged active region are always balanced.

Owing to the limited spatial resolution given by the numerical treatment very small
BMRs cannot be resolved. We include the flux of such BMRs by considering them at
a later stage of their development when they have already diffused to a widthδ0 = 4◦.
This treatment means that we assume such regions not to cancel with magnetic flux from
other sources prior to this time. The final description of the two polarities in the flux
contribution of a newly emerged BMR to the photospheric magnetic field is therefore
given by

B±
r (R�, θ, φ) = Bmax

(
δin
δ0

)2

exp

{
−2[1− cos β±(θ, φ)]

δ 2
0

}
. (3.20)

The contribution Eq. (3.18) of a new magnetic source is decomposed into spherical har-
monics

∆Br =
∞∑
l=0

l∑
m=−l

slm Ylm(θ, φ) , (3.21)

and the coefficientsslm are added to the coefficients of the global magnetic field (Eq. 3.11)
at the time of emergence of the BMR.
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4 Evolution of the large-scale magnetic
field on the solar surface:
A parameter study

4.1 Introduction

The production and dissipation of the Sun’s magnetic field is a complex process spanning
the whole convection zone from the location of the solar dynamo at the tachocline near the
base of the convection zone, over the transport of flux to the surface through buoyancy, to
the evolution, dispersal and final cancellation of flux there. Of this combined problem we
only consider the final part here, the evolution of the magnetic field at the Sun’s surface.

New magnetic flux emerges at the solar photosphere in the form of bipolar magnetic
regions (BMR) spanning a wide range of sizes (Harvey 1993). Statistical studies of the
emergence patterns of BMRs show that new regions emerge at mid-latitudes at the begin-
ning of a solar cycle and at low latitudes at the end of the cycle, leading to time-latitude
plots that are commonly denoted asbutterfly diagrams.

The dispersal of the magnetic flux of active regions was first considered by Leighton
(1964) as a random-walk process of magnetic flux elements under the influence of the su-
pergranular flow pattern. Flux transport models including differential rotation, diffusion
(to account for this random walk) and a meridional flow have been developed by De-
Vore et al. (1985a), DeVore and Sheeley (1987) and Wang et al. (1989a) to describe the
large-scale magnetic field by using observed source regions. More recently, flux transport
models have been used to simulate the spreading of single bipoles (Mackay et al. 2002a,
Wang et al. 2000b) and whole activity cycles (Schrijver 2001, Mackay et al. 2002b). The
latter authors used synthetic records of active regions. In most of the simulations, the
model parameters, i.e. diffusivity, meridional flow and differential rotation rate, have
been adjusted in order to reproduce the observed surface magnetic field. Here we inves-
tigate the influence of the transport parameters and also of the parameters governing the
magnetic flux sources, i.e. location and strength of the emerging BMRs, on the evolution
of the surface magnetic field with particular emphasis on the resulting total unsigned mag-
netic flux and the polar flux. The aim of the investigation is to understand how various
parameters affect the transport of magnetic flux at the solar surface. This has applications
for reconstructions of solar magnetic flux distributions over many cycles and will provide
a guide for similar studies of surface fields on other late-type stars.

This chapter is structured as follows. In Sect. 4.2 the flux transport model and its nu-
merical realization is briefly described. In Sect. 4.3 the reference model (for the parameter
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4 Evolution of the large-scale magnetic field on the solar surface

study) and the analysing techniques for the large-scale magnetic field are presented. In
Sect. 4.4 a wide range of parameters governing the flux transport model and their influ-
ence on the photospheric large-scale magnetic field are discussed. Finally, in Sect. 4.5 the
conclusions drawn from the performed study are summarized.

4.2 Flux transport model

4.2.1 Transport equation

The magnetic field concentrated in the network and in active region plages is only weakly
inclined relative to the vertical (Solanki 1993, Martinez Pillet et al. 1997), so that the
photospheric magnetic field can be taken as radially oriented (Wang and Sheeley 1992).
Thus the flux transport of the large-scale magnetic field on the solar surface is described
by the induction equation for the radial magnetic field componentBr(θ, φ, t) (Leighton
1964, DeVore et al. 1984, Sheeley et al. 1985). In spherical coordinates we have

∂Br

∂t
= −ω(θ)

∂Br

∂φ
− 1

R� sin θ

∂

∂θ

(
v(θ)Br sin θ

)
+

ηh

R2
�

[
1

sin θ

∂

∂θ

(
sin θ

∂Br

∂θ

)
+

1

sin2 θ

∂2Br

∂φ2

]
+ S(θ, φ, t) . (4.1)

Hereθ is the colatitude,φ is the longitude,R� is the solar radius,ω(θ) is the angular
velocity of the photospheric plasma,v(θ) is the meridional flow velocity,ηh is the ef-
fective diffusion coefficient associated with the non-stationary supergranular motions and
S(θ, φ, t) is a source term describing the emergence of new BMRs.

4.2.2 Transport parameters

One of the key ingredients in models of the type considered here is the diffusion coef-
ficient. The model of Leighton (1964) required a diffusion coefficient in the range of
770 − 1540 km2 s−1 in order to reproduce the reversal of the polar fields during the
sunspot cycle. Later, Mosher (1977) estimated the diffusion coefficient to lie in the range
of 200 − 400 km2 s−1 by tracing the area covered by the magnetic field in active re-
gions. This is roughly three times lower than the rate determined by Leighton. DeVore
et al. (1985b) found the same range for the diffusion coefficient from simulations of the
evolution of several observed active regions. Applying an average meridional flow with
a flow amplitude of10 ± 3 ms−1 Wang et al. (1989b) constrained the diffusion coeffi-
cient to600 ± 200 km2 s−1 with the help of comparisons of numerical simulations with
low-resolution, synoptic magnetic data. As the meridional flow speed they included is
reasonable, the value of600 km2 s−1 is adopted as reference value for the diffusion rate
in the present study.
In the late 1970s first observational evidence for a poleward bulk flow was found. The
highly concentrated polar fields during solar minimum supported the presence of a large-
scale flow transporting magnetic field poleward. Duvall (1979) determined a flow ampli-
tude of20 ms−1 using observations of spectral line shifts. Topka et al. (1982) found an
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4.2 Flux transport model

amplitude of10 ms−1. Due to possible interference between magnetic and Doppler sig-
nals large uncertainties remain Bogart (1987). For our simulations we use the meridional
flow profile determined by Snodgrass and Dailey (1996) and Hathaway (1996),

v(λ) =

{
−v0 sin(πλ/λ0) : if |λ < λ0|

0 : otherwise,
(4.2)

whereλ is the latitude in degrees (λ ≡ π/2 − θ) andλ0 is the latitude above which the
meridional flow vanishes. We assumev0 = 11 ms−1 andλ0 = 75◦ as thestandard case.
This profile was also used by van Ballegooijen et al. (1998).

For the latitude-dependent differential rotation we assume the empirical profile of
Snodgrass (1983)

ω(θ) = 13.38− 2.30 cos2 θ − 1.62 cos4 θ (4.3)

in units ofdeg day−1.

4.2.3 Numerical treatment

For simulations of the photospheric magnetic field we have developed a two-dimensional
code, denoted as SFTC (Surface Flux Transport Code, for details see Chap. 3). In order
to integrate the flux transport equation (Eq. 4.1), the radial magnetic field is expressed
in terms of spherical harmonics. This simplifies the numerical treatment of the diffusion
term to the well-known eigenvalue problem of the spherical Laplace operator. Further-
more, this method gives direct information on the evolution of the magnetic multipoles,
especially the dipole component.

We consider all spherical harmonics betweenl = 0 andl = 63 for the expansion (l
is the order of the spherical harmonics). This corresponds to a spatial resolution element
roughly of the size of a supergranule (≈ 30 Mm). A higher spatial resolution would not
be consistent with the model of turbulent diffusion.

We validated our code by reproducing previous results in the literature, including the
evolution of a single bipole (Wang et al. 2000b, Mackay et al. 2002b) and whole cycle
simulations (Mackay et al. 2002b).

4.2.4 Simulating solar cycles

Simulations are carried out with a time step of one day. A weighted random number
generator determines after every time step whether new BMRs appear on the model solar
surface, where they appear, and which properties they have (see Sect. 4.3.1). The prob-
ability for a BMR to appear depends on the cycle parameters given as input and on the
phase of the cycle. The new BMR described by Eqs. (3.18) and (3.20) is then added to
the surface magnetic field and evolved according to Eq. (4.1).

The large-scale magnetic properties discussed below, i.e. the total unsigned photo-
spheric field and the polar field strength, are taken as averages over the calculated cycles.
Using this technique one has to be aware of the error resulting from statistical fluctuations.
Because of the numerous parameter combinations examined in the study and the extended
computing time needed we had to restrict the duration of the simulations to55 years (two
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Figure 4.1: The cycle activity for the reference parameter set. The number of BMRs
emerging per day are averaged over27 days.

and a half magnetic cycles). For test purposes averages of many cycles have been calcu-
lated for some cases to ensure that the obtained results are reliable. Typical fluctuations
of the large-scale magnetic field resulting from the random nature of the BMR properties
do not exceed a few percent.

4.2.5 Initial field configuration

To start a simulation, an appropriate initial flux distribution is needed. For a given set of
parameters, the initial field is chosen such that poleward meridional flow and equatorial
diffusion approximately balance (van Ballegooijen et al. 1998),

v0Br ≈
ηh

R�

∂Br

∂θ
. (4.4)

This configuration corresponds to the situation at cycle minimum when only few BMRs
emerge and the polar regions have maximal flux. The explicit form of the radial magnetic
field results from Eqs. (4.2) and (4.4):

Br (R�, λ) =

=

{
sign(λ)B0 exp[−a0(cos(πλ/λ0) + 1)] if |λ| < λ0

sign(λ)B0 otherwise ,

(4.5)
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Figure 4.2: Simulated butterfly diagram, latitudes of emerging active regions plotted vs.
time, for the reference parameter set.

whereλ is the latitude,λ0 = 75◦, a0 = v0R� λ0/(π ηh), sign(λ) is the sign of the latitude
andB0 is the initial polar magnetic field strength, which has to be adjusted for each actual
parameter set to avoid asymmetry of the global magnetic field with respect to the equator.
The initial field given by Eq. (4.5) represents a situation where a new cycle is just about
to start while the old decaying cycle is still ongoing due to an activity overlap set to two
years (see Sect. 4.3.1). Note that the initial radial field distribution is independent of
longitude, i.e. it is axisymmetric.

4.3 Reference cycle model

4.3.1 Reference cycle parameters

In order to study the dependence of global magnetic properties on the cycle parameters,
a reference case based on solar cycle parameters closely resembling the observed large-
scale field evolution is defined. The length of each cycle is set to13 years with an overlap
time of two years between consecutive cycles. This overlap time is introduced on the basis
of the work of Harvey (1992, 1993) and Hathaway et al. (1994), who showed that BMRs
belonging to a new cycle start emerging while BMRs of the old cycle are still appearing.
Note that due to this overlap the interval between two peaks of flux emergence is11 years.

At the beginning of a cycle, BMRs emerge at a mean latitude of40◦, with a standard
deviation of10◦. Towards the end of a cycle, the mean emergence latitude decreases to
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Figure 4.3: Time-latitude plot of the surface magnetic field for the reference case. The
magnetic field is averaged over longitude and over a time period of27 days. The saturation
level of the colour shading is set to 5 G (see bar at top).

5◦, with a standard deviation of5◦. Emergence longitudes are assumed to be random, i.e.
we neglect possible active longitudes. Unlike the true solar cycle which rises faster than
it declines, the activity cycle in the simulation is represented by a Gaussian curve, i.e. it is
symmetric around the time of maximum, which is reached6.5 years after the beginning.
Asymmetric cycles are studied in Sect. 4.4.10, where we find that asymmetry does not
strongly affect the results. Fig. 4.1 shows the number of BMRs emerging per day as a
function of time. The corresponding butterfly diagram is plotted in Fig. 4.2. The angle of
the BMR, i.e. the angle between the line connecting the two centres of the polarities and
the east-west line, is taken according to Joy’s law,α = 0.5λ (λ is the latitude).

The polarity separations,∆β, of the simulated BMRs range from3.5◦ to 10◦ in he-
liographic latitude with a step width of0.1◦ . This corresponds to region sizes of30
to 250 square degrees. Smaller regions or even ephemeral regions cannot be simulated,
because of the limited numerical resolution. The assumed size distribution function is
n(A) ∼ A−2, whereA is the area. This relation was found by Schrijver and Harvey
(1994) through a power-law fit of the observed distribution of regions exceeding3.5
square degrees in area. The biggest observed active regions in their study do not ex-
ceed75 square degrees. For full-disk magnetograms excluding sunspots they yielded a
linear relationship between the region size and its magnetic flux. The modelling of the
active regions in the simulations as described above also leads to an almost linear relation
between region size and flux content. The modelled BMRs are bigger in size than the ones
emerging on the Sun. The larger areas in the simulations are necessary in order to account
for the additional flux emerging in the ephemeral active regions, which are neglected in
the current simulations. A value ofBmax = 250 G in Eq. (3.20) leads to a smaller slope in
the flux–area relation than found by Harvey, but ensures that the total number of roughly
2 100 BMRs per cycle leads to a total input flux of approximately1025 Mx. A similar flux
input of 8.9 · 1024 Mx per eleven-year cycle has been determined by Harvey and Zwaan
(1993).
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Figure 4.4: Evolution of the total photospheric field (Eq. 4.6) for the reference case. The
total field is calculated every27 days (red line). The black line represents a nonlinear
least-squares fit (Eq. 4.7).

Fig. 4.3 shows the magnetic butterfly diagram, i.e., a longitude-averaged time-latitude
plot for the surface magnetic field, for the reference parameter set.

4.3.2 Unsigned magnetic flux

The total unsigned photospheric flux is obtained by integrating the radial field over the
solar surface

Φtot = R2
�

∫
|Br(R�, θ, φ, t)|dS . (4.6)

Fig. 4.4 shows the unsigned average flux densityBtot ≡ Φtot/(4πR
2
�), for the reference

case. In the simulation, the field strength is calculated every27 days. The fluctuations of
the magnetic field make it hard to detect maxima and minima and compare them with the
results for other parameter sets. Therefore the flux density is fitted using the nonlinear
least-squares Marquardt-Levenberg algorithm (Press et al. 1992). A sum of Gaussians is
taken to start the fitting procedure

BFit(t) =
N∑
1

ai exp

(
−(t− bi)

2

ei

)
, (4.7)
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Figure 4.5: North and south polar field calculated for sizes of the polar caps from5◦

(largest field strength) to30◦ angular width (smallest field strength) in steps of5◦.

whereN is the number of maxima andai, bi andei are fitting parameters. The result
of this fitting procedure is shown as the solid line in Fig. 4.4. The cycle maxima and
minima given below are obtained by averaging over all extrema of the fitted curve for the
simulated time series.

4.3.3 Polar fields

During solar minima, the polar fields reach their maximum values. The cycle of the Sun’s
polar magnetic field is in antiphase to the Sunspot activity cycle. Svalgaard et al. (1978)
derived an average polar cap field of5 G during minimum and proposed an axisymmetric
distribution of the large-scale field of the formB = ±11.5 cos2 θ G. More recently, the
Ulysses mission confirmed a polar field strength of5 G (Smith and Balogh 1995). The
polar field contributes strongly to the interplanetary and heliospheric field (open flux).
Therefore, the evolution of the magnetic flux in the polar caps is an important quantity, but
no unique definition of what constitutes the polar caps exists. In the literature, definitions
for the solar polar caps range from the field within10◦ of the pole to that within30◦.
Fig. 4.5 shows the calculated polar fields of the reference case for caps ranging in angular
width from 5◦ to 30◦. Apparently, the exact choice of this width does not have a strong
effect on our results. We adopt a value of15◦ for the polar cap in the remainder of the
paper. In our analysis we are interested in the maximum values reached by the spatially
averaged fields in these polar caps.
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4.3 Reference cycle model

The maximum polar field strength is determined by averaging over the absolute values
of all maxima and minima of both polar caps obtained during a simulation. To get the
maximum values, the polar fields have been decomposed into their Fourier components.
A few components turn out to be sufficient to well approximate the field and to remove
noise. The different analysing technique compared with the fit procedure as used for the
total surface field is necessary because the shape of the polar field is a priori not known
in contrast to the total surface field, which follows approximately the shape of the cycle
activity.
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4.4 Parameter study: results and discussion

For the study of the influence of the model parameters, i.e. diffusion coefficient, merid-
ional flow amplitude and differential rotation rate, we use the same synthetic emergence
sequence of BMRs in all calculations, while for the study of the cycle parameters new
sequences of BMRs were created for each simulation.

Table 4.1 gives an overview of the parameters studied and the results of the corre-
sponding simulation runs. Besides the description of the parameter (column1), the value
adopted for the standard case (column2), and the range of values tested (column3), we
list the qualitative dependence ofBtot (column4) andBpole (column5), the section in
which this dependence is described as well as the number of the figure in which it is plot-
ted (last column). The three parameters listed above the horizontal line are parameters
of the model that enter into Eq. (4.1), while the remainder enters indirectly through the
source term.

4.4.1 Magnetic diffusivity

In order to obtain the dependence of the global magnetic field properties on the diffusion
rate, simulations with diffusion coefficients in the range50 − 1500 km2 s−1 have been
run (the value adopted for the reference model is600 km2 s−1). Fig. 4.6 a shows how the
maximum and minimum magnetic surface fields,Btot,max andBtot,min respectively, vary
with increasing diffusion coefficient. A higher diffusion rate leads to a faster spreading of
the BMRs. Neighbouring magnetic polarities approach each other faster than at a lower
diffusion rate, leading to enhanced cancellation of flux and thus to the decrease inBtot,max

seen in Fig. 4.6 a. This effect can be clearly seen in the magnetic butterfly diagrams
for low (50 km2 s−1) and high (1500 km2 s−1) diffusion rates shown in Fig. 4.7 a and
Fig. 4.7 b. In the first case meridional circulation dominates, carrying a large amount of
flux to the poles, whereby early in a cycle the following polarity contributes more to the
field being transported to high latitudes than later in the cycle. We expect that this is due
to Joy’s law, with the tilt angles of BMRs being larger at high latitudes (i.e. early in the
cycle).

The polar field shows a similar behaviour as the maximum of the total magnetic field
(Fig. 4.6 b). For a diffusion rate of50 km2 s−1,Bpole is 14.5 G. This amplitude decreases
rapidly with higher diffusion rates, and forηh ≈ 500 km2 s−1 a saturation level of about
6 G is reached.

At still higher diffusion rates the enhanced cancellation of magnetic flux in the activity
belts leaves less magnetic flux to migrate towards the poles. On the other side, a higher
diffusion rate leads to more cross-equatorial cancellation of mainly preceding polarity
flux. Both effects run contrary to each other and balance for highηh so thatBpole ≈ const.
Btot,min is mainly dominated by the polar field for high diffusion rates and thus shows a
similar behaviour asBpole for large values ofηh.

4.4.2 Poleward meridional flow

We consider meridional flow velocities in the range between0 and30 ms−1. In the ab-
sence of a meridional flow (v0 = 0), most of the magnetic flux remains at low latitudes

29



4 Evolution of the large-scale magnetic field on the solar surface

0

1

2

3

4

5

6

7

0 500 1000 1500

To
ta

l p
ho

to
sp

he
ric

 fi
el

d 
[G

]

η [km2/s]

(a)
Maximum
Minimum

0

2

4

6

8

10

12

14

0 500 1000 1500

M
ax

im
um

 p
ol

ar
 fi

el
d 

st
re

ng
th

 [G
]

η [km2/s]

(b)

Figure 4.6: (a) Total photospheric field at cycle maximum (Btot,max) and minimum
(Btot,min) vs. diffusion coefficient,ηh. The vertical line indicates the reference case. (b)
Polar field strengthBpole vs. diffusion constant,ηh. The plotted values are the averages
of the absolute values of all maxima or minima.
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Figure 4.7: Magnetic butterfly diagrams for the extreme values of the diffusivity:ηh =
50 km2 s−1 (a) andηh = 1500 km2 s−1 (b).
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Figure 4.8: (a)Btot,max andBtot,min vs. meridional flow amplitude,v0. The vertical line
indicates the reference case. (b) Polar field strengthBpole vs. flow amplitude.
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Figure 4.9: Magnetic butterfly diagrams for the extreme cases of absence of a poleward
meridional flow (a), and for a meridional flow amplitude ofv0 = 30 ms−1 (b).
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and the polar field extrema are about3 G (Fig. 4.8 b). However, magnetic flux transport
only by diffusion is sufficient to reverse weak polar fields, as is clearly visible in the cor-
responding magnetic butterfly diagram (Fig. 4.9 a), which shows rather diffuse fields at
high latitudes, in contrast to the corresponding diagrams for reduced diffusion (Fig. 4.7 a)
or enhancedv0 (Fig. 4.9 b). These latter show sharp stripes at high latitudes as flux from
individual BMRs is transported to the poles, with the following polarity dominating, but
also including distinct stripes of the preceding polarity.

Bpole as a function ofv0 initially increases as more following polarity flux is carried
to the poles. Also, an enhanced meridional flow reduces the diffusive dispersion of the
polar fields. Asv0 becomes even larger, cross-equatorial cancellation is reduced. Both
magnetic polarities are carried to the pole by the meridional flow and cancel there. This
leads to a reduction ofBpole. The strongest polar fields form for intermediate meridional
flow speeds ofv0 = 8 ms−1.

A higher poleward meridional flow transports the opposite polarities to the smaller
area in the polar regions, leading to more efficient cancellation and thus reduction of the
total flux (Fig. 4.8 a).

4.4.3 Differential rotation

In this section, we modify the differential rotation (Eq. 4.3) such that the rotation rate at
the equator becomesk times the solar value while the rotation rate at the poles remains at
the solar value,

ωk(θ) =
[
(k − 1)(sin θ + 1)− (k − 2)

]
· ω(θ) , (4.8)

whereω(θ) is given by Eq. (4.3). The resulting rotation profiles are plotted in Fig. 4.10 for
k = 1 . . . 10. The surface shearing due to differential rotation leads to flux cancellation
by bringing opposite polarities together (see Figs. 2-4 in Mackay et al., 2002a). This
effect is especially pronounced at mid latitudes and thus in the activity belts where a
mixture of both polarities is present. Fig. 4.11 shows howBtot decreases with increasing
k. During cycle maxima the influence of the differential rotation on the total unsigned flux
is significant. At minima, where only few BMRs are present and thus are more separated
in longitude, a stronger differential rotation has only a weak effect on the total field.

The polar field is not influenced by differential rotation, which can be explained ana-
lytically: integrating the flux transport equation (Eq. 4.1) over a circle of constant latitude
from 0 to 2π in longitude leads to a value independent ofω(θ). For fixed values of the
diffusion coefficient, the meridional flow and the source function, the average polar field
is therefore independent of the differential rotation with a value ofBpole = 6.2 G, for all
differential rotation profiles.

4.4.4 Activity level

Next we consider the influence of changing activity level, i.e. total amount of emerging
flux or cycle strength. This is relevant for solar cycles of varying strength and for stars
with different activity levels. We describe higher activity levels through a larger number
of emerging BMRs and thus a larger amount of emerging flux while keeping the size
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distribution of emerging BMRs unchanged. To this end, we multiply the standard values
N = 2 100 for the number of BMRs per cycle andΦem,tot = 1.25 · 1025 Mx for the total
emerging magnetic flux both by a factor,C, whereC = 1 corresponds to the reference
parameter set (solar case).

The simulation results are presented in Fig. 4.12 a. Power-law fits (dotted and dashed
lines in Fig. 4.12 a) reveal the following dependence of the total surface field on the activ-
ity level: Btot,max = 3.43C0.73 G for cycle maxima andBtot,min = 1.47C0.88 G for cycle
minima. Consequently, the total flux increases at a less than linear rate with increasing ac-
tivity or emerging flux. As more BMRs emerge on the surface, opposite polarities emerge
closer to each other, leading to more cancellation of magnetic flux. The larger exponent
for Btot,min probably arises from the fact that at activity minimum a significant fraction of
the field resides in the polar caps, where a single polarity dominates.

The polar fields evolve linearly with the activity amplitude (Fig. 4.12 b). Power-law
fits yield Bpole = 6.15C1.01 G. Similar results have been found by Schrijver and Title
(2001). This behaviour is probably due to the fact that cross-equator flux cancellation also
increases rapidly with activity level, so that the preferred transport of following-polarity
flux to the poles is correspondingly enhanced.

Within the wide parameter range considered here, the surface evolution of the field
does not lead to a saturation ofBtot orBpole. The saturation of activity on very rapidly ro-
tating stars (Vilhu and Rucinski 1983) is therefore probably not caused by cancellation of
the magnetic field at the stellar surface. The power-law exponent of0.73 betweenBtot,max

and emerging flux suggests that some contribution from this effect may be present, but it
is not likely to dominate.

4.4.5 Overlap time of successive cycles

In this section we study the influence of the overlap time of successive cycles, which is
set to two years in the reference model. The length of the individual cycle remains at
13 years.

The simulations show that the surface flux during maxima is not influenced by varying
the overlap time between0 and6 years (Fig. 4.13 a). In contrast, the field during activ-
ity minima grows rapidly with the overlap between consecutive cycles. This result is in
agreement with the predictions of the simple model describing the long-term evolution
of the Sun’s large-scale magnetic field by Solanki et al. (2000, 2002b) and with the sim-
ulations of Schrijver et al. (1997). The growth of the field during minima can easily be
understood by inspecting the butterfly diagram (Fig. 4.14 a and b). For a large overlap
(Fig. 4.14 b), the simultaneous presence of two activity belts at high and low latitudes is
clearly visible. In this extreme case for which the overlap time is half the cycle length,
one cycle ends during the maximum of the following cycle and the photospheric flux no
longer varies significantly with time (Fig. 4.13 a). Thus the build-up of a background field
by increasing the overlap time leads to a proportional decrease of the cycle amplitude.

For the polar fields, the effect of overlapping cycles corresponds to a decrease in the
cycle length. The time during which magnetic flux is transported to the poles is reduced.
The time between polar maxima decreases, with always the following-polarity flux from
the cycle with higher emergence latitudes being at an advantage in reaching the poles.
Therefore, the polar fields decrease with longer cycle overlaps (Fig. 4.13 b). Why do

35



4 Evolution of the large-scale magnetic field on the solar surface

0

1

2

3

4

5

0 1 2 3 4 5 6 7

To
ta

l p
ho

to
sp

he
ric

 fi
el

d 
[G

]

Overlap time of successive cycles [years]

(a)

Maximum
Minimum

0

2

4

6

8

10

0 1 2 3 4 5 6 7

M
ax

im
um

 p
ol

ar
 fi

el
d 

st
re

ng
th

 [G
]

Overlap time of successive cycles [years]

(b)

Figure 4.13: (a)Btot,max andBtot,min vs. overlap time of consecutive cycles. (b) Polar
field strength vs. overlap time.
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Figure 4.14: Magnetic butterfly diagrams for no overlap between successive cycles (a)
and for an overlap time of6 years (b).

cycles dominantly feed the polar flux during their early phases? We believe that this is
due to a combination of effects. The emergence latitudes are higher and thus the tilt angles
are larger during the initial phases. As we will see in Sects. 4.4.8 and 4.4.9, both of these
parameters have a large effect on the polar fields.
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Figure 4.15: (a)Btot,max andBtot,min vs. cycle length. (b)Bpole as a function of cycle
length.
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Figure 4.16: Magnetic butterfly diagram for a cycle length of5 years. The overlap time
between successive cycles is2 years.

4.4.6 Cycle length

The length of the cycle has been varied from4 to 20 years, keeping the overlap between
two successive cycles always at a value of two years. The cycle amplitude was main-
tained at a fixed level, so that the number of emerging BMRs varied linearly with the
cycle length. The simulations show that the maximum total surface flux remains roughly
constant (Fig. 4.15a) whileBtot,min displays a more complex behaviour. For short cycles
(length. 10 years)Btot,min decreases with increasing length, while for longer cycles
it increases gradually. The polar fields increase roughly linearly with the cycle period
(Fig. 4.15 b).

In a longer cycle, more BMRs emerge and contribute to the polar fields by preferential
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poleward transport of following-polarity. Since the cancellation of flux in the BMRs and
between BMRs takes place on a timescale much shorter than the cycle length, the total
flux is hardly affected by cycle length, at least at cycle maximum. The meridional flow
becomes particularly important to keep the polar caps from diffusing away over longer
cycles. Diffusion of polar flux could be one reason why in the case of the Sun, longer
cycles tend to be followed by weaker cycles (Solanki et al. 2002a, Makarov et al. 2003).

The strong decrease of the polar field strength for short cycle periods is partly also due
to the two-year overlap of successive cycles. The magnetic butterfly diagram (Fig. 4.16)
reveals that this enhances the decrease in the polar field at very short cycles (see Sect.
4.4.5). The poleward flux transport is dominated by diffusion which results in weak polar
fields (see Sect. 4.4.2). The very short duration of the phase in which one dominant
polarity is being transported to the pole (stripes of one colour in Fig. 4.16), means that over
a considerable fraction of time opposite polarities are moving to the pole. Cancellation
due to diffusion then reduces the polar flux. The decrease inBtot,min with cycle period
seen for short cycles is probably caused by the decreasing relative overlap between cycles
as they get longer (compare Sect. 4.4.5). This effect is important for short cycles since
the overlap in fraction of the cycle length is largest then.

4.4.7 Size distribution of BMRs

Schrijver and Harvey (1994) determined the size distribution of solar active regions dur-
ing cycle 21 asn(A) = 4.7A−2. An exponent of−2 is a critical value, since for less
negative exponents the new flux brought to the solar surface is dominated by the large
active regions, while for more negative exponents it is the small ephemeral regions that
dominate. We applied size distribution functions of the formn(A) ∼ A−p wherep was
varied between1 and4. In order to isolate the effect of the size distribution from other
dependences, the total input flux from new regions was kept constant over the cycle by
adjusting the total number of BMRs emerging over the cycle. For a higher value ofp the
probability of smaller regions increases and thus more regions have to emerge in order to
reach a fixed amount of flux (Fig. 4.19).

The effect of the diffusion of the magnetic field and cancellation of magnetic flux is
stronger in smaller active regions than in bigger ones. Therefore, the total surface flux
is reduced when the distribution function is such that small regions are preferred (larger
values ofp in Fig. 4.17 a). This effect is most pronounced at activity maxima when the
largest number of active regions are present. At cycle minima a fair fraction of the flux is
concentrated at the poles and thus less affected by the size distribution (see Fig. 4.17 b),
so that the total flux at minimum exhibits a weaker dependence onp. Field from bigger
regions has a larger chance of reaching the polar caps owing to its longer lifetime (less
cancellation due to diffusion) and thus the polar fields become stronger for lower values
of p (Fig. 4.17 b). The weak dependence of the polar fields onp can be explained by the
same argument as for the dependence on the diffusion coefficient: more cancellation of
flux in the activity belts is counterbalanced by increased cross-equatorial cancellation.
The dominance of the large BMRs forp = 1 and of the small BMRs forp = 4 is seen
in the magnetic butterfly diagrams (Fig. 4.18 a and b, respectively). The graininess of the
field at both the emergence and higher (sub-polar) latitudes forp = 1 contrasts with the
smoothness (produced by averaging in the plot over many smaller regions) forp = 4.
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Figure 4.17: (a)Btot,max andBtot,min vs. exponentp in the size distribution function
n(A, t) ∼ A−p. (b) Polar field strength vs. exponentp.
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Figure 4.18: Magnetic butterfly diagrams for size distributions of active regions∼ A−4

(a) and∼ A−1 (b).
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Figure 4.19: Number of emerging BMRs per cycle and total emerging flux per cycle
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of emerging BMRs in the individual simulations is set such that the total emerging flux
remains roughly constant.

The upper panel looks more diffuse than the lower. The diffusion timeτd depends on the
scaleτd = l2/ηh, wherel is a typical length andηh is the diffusion coefficient, while the
timescale for the meridional transportτv does not (τv = R�/v0). If l decreases, i.e. when
smaller BMRs are preferred, the diffusion becomes more important than the meridional
flow.

AlthoughBpole, i.e. the maximal polar field strength, does not vary much with the
size distribution, the temporal evolution of the polar fields changes as can be seen on the
magnetic butterfly diagrams.

4.4.8 Tilt angle

The tilt angle of a BMR,α(λ), is a result of the Coriolis force acting on the underlying
toroidal magnetic flux tube as it rises to the surface. Starting from Joy’s law,α = 0.5λ, we
generalize the relation between tilt angle and latitude toα = b λ and vary the parameter
b between0.1 and2. Differences in the average tilt angle are expected to occur on stars
of different spectral type, evolutionary status and rotation rate (activity level), since the
strength of the Coriolis force relative to other forces acting on the rising flux tube depends
on these parameters (Schüssler and Solanki 1992, Schüssler et al. 1996).

Btot,max shows a linear increase withb (Fig. 4.20 a). For larger tilt angles, opposite
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Figure 4.20: (a)Btot,max andBtot,min vs. parameterb = α/λ (α is the tilt angle andλ is
the emergence latitude). (b) Polar field strength vs.b. The linear fits are also indicated.
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Figure 4.21: Sketch of the variation of the mean activity line in the butterfly diagram.
Left: The mean line is shifted, with starting latitudes ranging from35 to 60◦ (case 1).
Right: Variation of the slope of the mean activity line (case 2). The solid line represents
the reference case.

polarities from neighbouring BMRs are more separated in longitude and thus diffusion is
less effective in flux cancellation. For larger tilt angles, cross-equatorial cancellation of
preceding flux is enhanced (see the evolution of a single bipole described in Mackay et al.,
2002a), leading to more flux on the solar surface and at the same time also to the accumu-
lation of more flux at the poles. Thus the polar fields become stronger for higher values
of b (Fig. 4.20 b). In the investigated range ofb, the polar field strength is approximately
BPole ≈ 12 b,Btot,max ≈ 1.8 b+ 2.6 andBtot,min ≈ 1.6 b+ 0.7 (all values in G).

We have also considered the influence of a scatter in the tilt angles. The standard
deviation of the tilts of individual BMRs around the mean is∼ 19◦ (Wang and Sheeley
1989). We have considered random distributions of tilt angles with standard deviations
ranging from1◦ to 30◦. It turned out that this had no significant effect on both the total
magnetic field and the polar field as long as average tilt angles were kept constant. The
total fluxes at activity maximum and minimum varied by less than10 % over the consid-
ered parameter range, while the polar field varies by less than30 %. Both quantities did
not show a clear trend.

4.4.9 Emergence latitudes

A quantitative analysis of the influence of the emergence latitudes of the BMRs on the
global field properties has been performed for two cases (see Fig. 4.21). In the first
case, we have shifted the entire activity belt in latitude, while in the second case we
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have changed the range of emergence latitudes while keeping the average emergence lat-
itude of all BMRs in a cycle fixed. This corresponds to changing the slope of the mean
emergence line in the butterfly diagram. In order to obtain clear trends, the width of the
distribution around the mean emergence line has been set toσ = 1◦. Subsequently, the
spreadσ around the mean latitudes has also been varied.

Shift of the emergence latitudes (case 1)

A poleward shift of the activity belt in general leads to higher polar field strengths
(Fig. 4.22 b). The BMRs emerge closer to the pole and thus the time for reaching it by dif-
fusion and meridional advection is shorter and therefore cancellation through diffusion is
reduced. Also, higher emergence latitudes result in higher tilt angles of the BMRs which
lead to a higherBpole (see Sect. 4.4.8). A slight increase in the polar field is given when
the activity belt is shifted equatorward relative to the standard case. In this case, diffusion
over the equator enhances cancellation of leading polarity, and increasing distance from
the equator decreases this cancellation.

The total surface field exhibits a stronger contrast between cycle maximum and mini-
mum with increasing emergence latitude (Fig. 4.22 a). At cycle maximum increasing lati-
tude of emergence decreases the amount of cross-equatorial cancellation between leading
polarities, leading to a larger amount of flux at maximum. This effect is most important
as long as emergence latitudes are small. But why is there less field at minimum? Pos-
sibly: With less cross-equator cancellation more cancellation between fluxes in the same
hemisphere takes place (Btot,min is like a mirror ofBtot,max).

Range of emergence latitudes (case 2)

Changing the slope of the wings of the butterfly diagram leaves the average tilt angle of
the BMRs unchanged, thus not having a strong effect on the surface field (Fig. 4.23 a)
and also not on the polar fields (Fig. 4.23 b). The difference in the field strength between
the extreme cases, i.e. constant emerging latitudes over the cycle and a strong decrease
from θin = 45◦ at the beginning toθfi = 0◦ at the end of the cycle, is only about3 G for
the polar field. This indicates that the two effects described in the previous paragraph,
i.e. fast approach of the poles for polarities emerging at high latitudes and high diffusion
across the equator for flux emerging at low latitudes, roughly compensate. Cancellation
in the polar region reduces the polar field, while cancellation across the equator supports
a higher polar field.

Spread around the mean (case 3)

Both the total surface field and the polar fields are remarkably independent of the statisti-
cal spread of BMRs around the mean. There is no noteworthy change in the field strengths
(< 10%) if the standard deviation is increased from0 to 20◦.

4.4.10 Asymmetric activity cycles

In the previous sections, the simulated activity cycle was always symmetric in time with
respect to the cycle maximum. However, the sunspot record shows that the solar maxi-
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Figure 4.22: (a)Btot,max andBtot,min vs. starting mean emergence latitude. (b) Polar field
strength vs. starting latitude.
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Figure 4.23: (a)Btot,max andBtot,min vs. slopeθin − θfi of the mean activity line at cycle
maximum and minimum. (b) Polar field strength vs. slope of the mean activity.
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4 Evolution of the large-scale magnetic field on the solar surface

mum is reached already well in the first half of most cycles. In order to study asymmetric
cycles we have considered the following class of time profiles of flux emergence: a linear
increase until the maximum followed by a linear decrease to zero. The corresponding
emergence rates of BMRs have been adjusted such that the total number of BMRs during
a cycle remains constant and equal to the previously used Gaussian profile. The times of
activity maxima can now be varied between1 and12 years after the beginning of a cycle.
It turns out that the total surface field as well as the maximum value of the polar field do
not depend significantly on the time of the cycle maximum. Both quantities vary by less
than15%. Fig. 4.24 shows the polar field strength for the case when the activity maxi-
mum is reached after2 and after11 years, respectively. In the first case, the high initial
emergence rate coupled with the large tilt and high emergence latitude of the BMRs early
in the cycle leads to an early polar reversal and a fast build-up of the polar fields. The
new maximum ofBpole is built up within3 years. After the maximum of the emergence
rate, the amount of net flux reaching the poles decreases rapidly as both the emergence
rate and the tilt angles of the BMRs decrease. It appears to be just sufficient to maintain
the polar field, which leads to a roughly rectangular time profile of the polar fields. In
contrast, when the activity peaks very late in the cycle, i.e. at low latitudes, the polar field
reversal takes place over a longer period of time resulting in a sharp maximum of polar
field strength.

4.4.11 Shape of activity profile

Except for the last section, the activity profile was taken to be Gaussian in shape. Here
we consider the influence of the functional form on the global field by comparing three
different types of activity profiles. Alternatively to the Gaussian profile we apply a linear
form of activity as described in the preceding section with the maximum in the middle of
the cycle as well as a sinusoidal one. The total amount of BMRs per cycle, i.e. the amount
of emerging flux integrated over the activity curve for one cycle, is held constant. Table
4.2 showsBtot andBpole for the three cases.

A linear increase and decrease of the activity leads to smallerBtot,max and higher
Btot,min compared with the Gaussian profile. In the latter case, the cycle maximum is
wider than in the linear case, which explains the higherBtot,max. In contrary, during cycle
minimum, where an overlap of two cycles is present, the superposition of two linear cycle
activities is larger for the linear profile than for the Gaussian profile, for which the overlap
of two cycles nearly vanishes.

The sinusoidal profile gives an emergence pattern in between the two other discussed
cases, so thatBtot,max andBtot,min have intermediate values. The polar field does not vary
significantly with the shape of the profile in all three cases.

4.4.12 Phase relation between the activity cycle and polar fields

The polar fields reverse around cycle maximum. A more precise determination of the time
lag between BMR emergence rate and polar field reversal can be obtained by shifting and
cross-correlating both time series. The maximum correlation coefficient indicates the
phase difference. This method has been applied to all of the above discussed parameter
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Figure 4.24: Time evolution of the polar fields when the evolution of the emergence rate
is described by2 straight lines. The activity maximum, marked by the vertical lines, is
reached after (a)2 years and after (b)11 years, respectively.
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Table 4.2: Dependence of the total field and the polar field on the functional form of the
activity cycle.

activity profile Btot,max Btot,min Bpole

[G] [G] [G]

Gaussian 3.4 1.5 6.2
linear 2.6 1.9 5.5
sinusoidal 2.9 1.8 5.0

sets. It turns out that for all cases the polar fields reverse within±0.5 years of cycle
maximum.

4.5 Conclusion

We have considered the large-scale evolution of the magnetic field arising from the flux
transport model for a variety of parameters. Two types of parameters can be distin-
guished: model parameters, i.e. diffusion coefficient, meridional flow and differential
rotation, which influence the flux transport, and parameters that influence the source term
in Eq. (4.1). The latter control the emergence rate, emergence latitudes and emergence
time of new BMRs. We have carried out a detailed study of the dependence of relevant
properties on the large-scale surface field on these parameters. This has helped us to dis-
tinguish the parameters having a large influence on global magnetic properties from those
playing a smaller role. The average tilt angle of the BMRs, the diffusion coefficient and
the level of activity, i.e. the total emergent flux, have a particularly large effect on the
polar field and the total unsigned flux. The meridional flow velocity and the cycle length
have a large influence on the formation of the polar field. The overlap time of consecutive
cycles leads to the formation of a background field (field during cycle minimum).

The parameter study should help in particular to get a better understanding of the be-
haviour of the large-scale field on the Sun at different times and at different activity levels.
We also expect it to provide a guide for future studies of the magnetic field evolution on
cool stars.
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flux transport model

5.1 Introduction

Flux transport models aim at describing the evolution of the solar surface flux distribu-
tion. Bipolar magnetic regions emerge from the solar interior and the transport of the
corresponding radial magnetic flux by horizontal flows due to convection, differential ro-
tation and meridional flow is followed in time, e.g. (Leighton 1964, DeVore et al. 1984,
Wang et al. 1989b, van Ballegooijen et al. 1998, Schrijver 2001, Baumann et al. 2004).
Despite the success of flux transport models in explaining the Sun’s large-scale magnetic
field pattern, they fail in reproducing the correct polar flux and the Sun’s open magnetic
flux of the last cycles. The conceptual deficiency in flux transport models arises from
ignoring diffusion in radial direction. The consequence is an artificial dynamo effect.
For example, a dipolar axisymmetric magnetic field can be maintained permanently by
a balance between advection through a meridional flow and horizontal diffusion. As a
consequence, a standard flux transport model fails to reproduce the evolution of the polar
flux when applied to many cycles.

Missing processes in flux transport models are flux loss from the surface by (1) retrac-
tion of∩-loops, (2) the emergence of∪-loops and (3) radial diffusion. (1) and (2) involve
radial velocities which are not included in surface flux transport models, but can at least
crudely be described by radial diffusion.

Dikpati and Choudhuri (1994) have avoided these problems with the surface flux
transport model by considering flux transport of an axisymmetric field in the meridional
plane by a meridional circulation and turbulent diffusion. However, this comes at the
price of ignoring the longitudinal structure of the magnetic field. Key properties like the
tilt angle of bipolar magnetic regions have therefore to be introduced in an ad-hoc fashion
in their model (Choudhuri and Dikpati 1999).

In order to obtain a better reproduction of the historical records, Schrijver et al. (2002)
proposed an additional exponential decay term in the surface flux transport model. Wang
et al. (2002) varied the meridional flow in their simulations by increasing the poleward
flow amplitude during the more active cycles in order to obtain stable oscillations of the
Sun’s polar field.

In this chapter we derive a term parametrising the radial diffusion processes in the
surface flux transport model. To this end, we consider the diffusion problem in a spherical
shell and determine the decay term from the decay modes. The calibration of the new
parameter is then done by comparing the simulations with observations.
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5 A necessary extension of the surface flux transport model

The outline of the chapter is as follows. In Sect. 5.2 we discuss the decay modes in
a spherical shell for appropriate boundary conditions for the solar convection zone. In
Sect. 5.3 we derive a decay term for the surface flux transport model based on the decay
modes. In Sect. 5.4 we present first applications of the radial decay term. Finally, in
Sect. 5.5 we summarize our results.

5.2 Decay modes of a poloidal field in a spherical shell

The time evolution of the magnetic field is described by the induction equation which
reduces in the absence of flows to the diffusion equation

∂B

∂t
= −η∇× (∇×B) , (5.1)

whereη is the magnetic diffusivity. The magnetic fieldBtot can be split into a poloidal
part and a toroidal part. The flux transport model assumes a purely radial magnetic field at
the solar surface, which is supported by observations (Martinez Pillet et al. 1997). There-
fore, the surface field is purely poloidal. Any toroidal field in the Sun’s interior affects the
surface only through flux emergence, whereby it is assumed to be instantaneously trans-
formed into a poloidal field at the surface. Therefore, only the evolution of the poloidal
magnetic field in a spherical shell (representing the convection zone) needs to be consid-
ered.

In the following,B symbolizes the poloidal field. Because of the separation of the
field, the diffusion equation (Eq. 5.1) is valid for the poloidal field alone. As a result of
the solenoidality, any poloidal magnetic field can be represented by a scalar functionS
(Bullard and Gellman 1954, Krause and Rädler 1980)

B = −∇× (r×∇S) = −r4 S +∇ ∂

∂r
(rS) , (5.2)

where4 is the Laplace-operator in spherical coordinates. Inserting this field representa-
tion in the diffusion equation for the poloidal field, Eq. (5.1), leads to

−∇×
(
r×∇ ∂S

∂t

)
= η ∇×∇×∇× (r×∇S)

= η ∇×∇× (r×4S)

= −η ∇× (r×∇4S) , (5.3)

where we have used∇× r = 0. From Eq. (5.3) it follows that

r×∇
[
η4S − ∂S

∂t

]
= 0 . (5.4)

We introduce a spherical polar coordinate system with the coordinatesr, θ andφ
whose origin is located in the center of a conducting sphere with radiusR. The vector
potential,−r × ∇S, is invariant under gauge transformations, so thatS can be chosen
such that the normalization condition

1∫
−1

2π∫
0

S d(cos θ) dφ = 0 (5.5)
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is fulfilled for anyr. Let Ω be the angular part of the spherical Laplace-operator,

4S =
1

r2

[
∂

∂r

(
r2∂S

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂S

∂θ

)
+

1

sin θ

∂2S

∂φ2

]
≡ 1

r2

[
∂

∂r

(
r2∂S

∂r

)
+ ΩS

]
, (5.6)

then it follows for anyS

1∫
−1

2π∫
0

ΩS d(cos θ) dφ = 0 . (5.7)

From Eqs. (5.5)−(5.7) we have

1∫
−1

2π∫
0

4S d(cos θ) dφ = 0 . (5.8)

Using Eq. (5.8), it follows from Eq. (5.4) that

η4S − ∂S

∂t
= 0 . (5.9)

Eq. (5.9) can be uniquely solved by introducing appropriate boundary conditions. As
discussed above, the field is assumed to be radial at the surface of the considered sphere.
Thus the upper boundary condition isBθ = 0, or

∂(rS)

∂r
= 0 at r = R� . (5.10)

The bottom of the convection zone borders to the radiative core, which is assumed to be
an ideal conductor. The boundary condition therefore is

∂S

∂θ
= 0 at r = rb ·R� , (5.11)

with rb = 0.7.
The solution of Eq. (5.9) with the boundary conditions Eqs. (5.10) and (5.11) is given by

S(r, θ, φ, t) =
∞∑

n=0

∞∑
l=1

l∑
m=−l

Rn
l (r) Ylm(θ, φ) T n

l (t) , (5.12)

where we have omitted the monopole term and also separated the time dependence. The
solution Eq. (5.12) corresponds to a decomposition into orthogonal decay modes (Elsasser
1946). The field lines for some low order decay modes are shown in Fig. 5.1.
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Mode
l=1

Mode
l=3

Mode
l=5

Figure 5.1: Meridional cut through the convection zone showing the fieldlines of the
decay modes withl = 1, l = 3 andl = 5.

The time dependent part of Eq. (5.12) can be solved by assuming an exponential decay

T n
l (t) = e−η k2

lnt/R2
� . (5.13)

The eigenvalues of the spherical harmonics are

4h Ylm(θ, φ) = − l (l + 1)

R2
�

Ylm(θ, φ) , (5.14)

so that for the radial part remains

r2∂
2Rn

l

∂r2
+ 2r

∂Rn
l

∂r
+

[
k2

lnr
2 − l(l + 1)

]
Rn

l = 0 , (5.15)

which is the spherical Bessel differential equation whose general solution is

Rn
l (r) = aln jl(klnr) + bln yl(klnr) . (5.16)

jl andyl are the spherical Bessel functions of the first and second kind, respectively, of
order l. aln andbln can be determined using the lower boundary condition Eq. (5.11).
Without loss of generality one can setaln = 1 and then findbln = −jl(klnrb)/yl(klnrb).
Combining this with the upper boundary condition Eq. (5.10) leads to

l
[
jl(kln) yl(klnrb)− jl(klnrb) yl(kln)

]
−kln

[
jl−1(kln) yl(klnrb)− jl(klnrb) yl−1(kln)

]
= 0 (5.17)

from which the eigenvalueskln can be determined. The indexn represents the number of
nodes in radial direction,l is the total number of nodes on a sphere andm is the number
of nodes passing through the poles of a sphere. It should be noted, that the eigenvalues of
the time dependence,kln, do not depend on the indexm.
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5.3 Extension of the surface flux transport model

We use the results obtained in Sect. 5.2 to extend the surface transport model (DeVore
et al. 1985a, Wang et al. 1989a) by a decay term aimed at describing the radial derivatives
in the diffusion term. We write the extended surface transport equation as

∂Br

∂t
= −ω(θ)

∂Br

∂φ
− 1

R� sin θ

∂

∂θ

(
v(θ)Br sin θ

)
+ S ′(θ, φ, t)

+
ηh

R2
�

[
1

sin θ

∂

∂θ

(
sin θ

∂Br

∂θ

)
+

1

sin2 θ

∂2Br

∂φ2

]
−D(η) , (5.18)

whereω(θ) is the angular velocity of the photospheric plasma,v(θ) is the meridional
flow velocity on the solar surface,S ′(θ, φ, t) is a source term describing the emergence
of new magnetic flux,ηh is the effective diffusion coefficient associated with the non-
stationary supergranular motions on the surface andD(η) is the added term, which is
further specified below.

Our aim is to determine the value ofη in the surface transport model by considering
the decay of the eigenmodes in a spherical shell (Sect. 5.2). To this end, we expand the
surface magnetic field into spherical harmonics

Br (R�, θ, φ, t) =
∞∑
l=1

m=+l∑
m=−l

alm(t) Ylm (θ, φ) . (5.19)

We now consider a pure diffusion problem and defineD(η) as

D(η) =
∞∑
l=1

m=+l∑
m=−l

Dlm(η)

=
∞∑
l=1

m=+l∑
m=−l

alm(t)

τl
Ylm (θ, φ) . (5.20)

whereτl are the decay times of the individual modes. The decay times are degenerated
with respect to the azimuthal numberm. From Eqs. (5.18) to (5.20) we then have

∂

∂t

[
alm(t) Ylm

]
= −alm(t)

τl
Ylm (θ, φ) . (5.21)

The solution foralm(t) is an exponential function

alm(t) = e−t/τl . (5.22)

In the meridional transport equation the time dependence is given by Eq. (5.13), where
we have also used an expansion into spherical harmonics. The indexl is in both models
the same, so that the decay timesτl can be related toη by equating Eqs. (5.22) and (5.13)

τl(η) = R 2
�

[
η k2

l0

]−1
. (5.23)

53



5 A necessary extension of the surface flux transport model

1

10

10 100

τ l 
[y

ea
rs

]

η  [km2 s-1]

l=1
l=2
l=3
l=4
l=5
l=6
l=7
l=8
l=9

Figure 5.2: Dependence of the decay timesτl of the harmonic components of the surface
field on the radial diffusivityη. Shown are the modes froml = 1 to l = 9 for a physically
reasonable range ofη (n=0).

We consider only modes withn = 0, since the surface transport model has no information
about the detailed depth structure. Therefore, the diffusivityη enteringτl is taken as a free
parameter, which has to be adjusted according to observations.

Fig. (5.2) shows the dependence ofτl onη for severall. For a givenη, the decay time
τl becomes shorter for increasingl. The higher modes represent the small scale features
which decay faster than the large-scale pattern, represented by modes with smalll values.
A value ofη = 100 km2 s−1 corresponds to a decay time of∼ 5 years for the model = 1,
i.e. the dipole component. Schrijver et al. (2002) also used an exponential decay term
in order to extend the flux transport model, however, we are able to refer this term to the
horizontal structure of the eigenmodes.
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Figure 5.3: Evolution of the north (red line) and south polar fields (blue line) for asym-
metric cycle strengths for four different values ofη. The vertical lines indicate the activity
minima.

5.4 Applications

5.4.1 Cycles of varying strength

In the previous section we have derived a decay term which extends the surface flux trans-
port model and leads to modified decay rates of the harmonic components of the surface
field. As an example of the effect of the new parameterη, we consider simulations of
an artificial set of solar cycles which differ in strength. We generate a synthetic butterfly
diagram similar to the reference case described in Baumann et al. (2004) but with a sys-
tematic difference in strength between odd and even cycles. To this aim we reduce the
amount of new emerging bipolar magnetic regions per cycle, i.e. the activity, in every
second cycle by a factor of2. The new decay term in the transport model should lead to a
stabilization of the polar cap field oscillations.

The results for the polar fields for the unmodified model, i.e.η = 0, and for several
values ofη are shown in Fig. 5.3. The polar field,Bpole, is the averaged field over the polar
cap down to15◦ pole distance. Without the additional field decay due to radial diffusion,
the polar fields diverge (Fig. 5.3 a). During the weaker cycles the flux supply is insufficient
to cancel the existing polar field, to reverse it and to build up a new polar field of opposite
polarity and of the same strength as before. The strength of the polar field scales linearly
with the total amount of emerged flux (Baumann et al. 2004). After a few cycles, the
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5 A necessary extension of the surface flux transport model

odd-even asymmetry leads to a runaway of the polar fields because the weaker cycles are
not able to counter-balance the flux remaining from the stronger cycles. Switching on
radial diffusion cures that problem (Fig. 5.3 b - d). A diffusion rateη = 50 km2 s−1 is
too small to counter-act the strong cycle asymmetries and the runaway effect of the polar
fields is still present, however much weaker than before. Settingη = 100 km2 s−1 results
in stable oscillations of the polar fields around0, whereas the polar field strength is larger
for stronger cycles and smaller for smaller cycles. A value ofη = 200 km2 s−1 shows the
same qualitative behaviour as in the case ofη = 100 km2 s−1, but the absolute values of
the polar field is reduced owing to the stronger damping.

The fact that the diffusivity for the surface transport is larger than the diffusivity pa-
rameterη for the volume diffusion reflects the difference in length scales between the
radial and the horizontal directions.

5.4.2 Polar reversal times

We now consider cycles of equal strength and investigate the reversal times of the polar
field in dependence on the parameterη. Fig. 5.4 a shows the dependence of the total
surface field reached during activity maximum and minimum, respectively, onη. The
total surface field is obtained by integrating the absolute value of the field strength over
the solar surface

Btot =
1

4π

∫
|Br(R�, θ, φ)|dΩ . (5.24)

During activity maximum, the total field,Btot,max, remains roughly constant asη varies,
while the field during activity minimum,Btot,min, slightly decreases. During activity min-
imum, the field is dominated by the dipole mode.η leads to a decay of this dipole and so
the polar field is weakened (Fig. 5.4 b). The enhanced decay of the existing polar fields as
η increases and less new flux reaching the pole, balance, so thatBtot,max remains roughly
unchanged. It is interesting to consider the reversal times of the polar field which are
shifted relative to the activity cycle by the new diffusion term (Fig. 5.4 c). Makarov et al.
(2003) found that the reversals of the magnetic dipole configuration occurs on average
3.3 years after sunspot minimum. We analysed the reversal time lag by cross-correlating
the polar field with the total surface field. The parameterη leads to a shorter time until the
maximum polar field is reached, which can be explained by the enhanced dipole decay.
A valueη = 100 km2 s−1 reproduces well the observed time lag between cycle minimum
and polar reversal. However, care must be taken because we are analysing a synthetic
dataset which does not include cycle fluctuations as is the case for real data. In summary,
we can say thatBpole is decreased and reaches its maximum earlier, i.e. a few years after
activity minimum, by applying the new decay term.

5.4.3 Comparison with observations

Direct observations of the Sun’s surface magnetic field are available from NSO/KP syn-
optic maps since 1976. The longitude averaged magnetic field from this observations
is shown in Fig. 5.5 a. We modelled the evolution of the surface field for the same pe-
riod using the USAF/NOAA sunspot database. A detailed explanation how we trans-
formed the sunspot record into magnetic input sources for our simulations is given in
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5.4 Applications
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Figure 5.4: Dependence of the (a) total surface fieldBtot during activity maximum and
minimum, respectively, and the (b) maximal reached polar fieldBpole,max on η. (c) Polar
reversal times after activity minimum derived from cross-correlating the polar field and
the total field.
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5 A necessary extension of the surface flux transport model

Figure 5.5: Longitude averaged magnetic butterfly diagrams. (a) Observation (NSO/KP),
Courtesy D. Hathaway, NASA, Marshall Space Flight Center, (b) simulation withη = 0
and (c)η = 100 km2 s−1.
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5.5 Conclusion

Sect. 6.6.1. The resulting model magnetic butterfly diagrams for the case whenη = 0 and
η = 100 km2 s−1 are shown in Fig. (5.5 b and c). Both simulations model the observed di-
agram rather well. However, there are differences especially in the polar fields. The rever-
sal times of the polar fields are better represented by the extended model (η = 100). The
direct comparison of the surface field calculations with the observations of the same time
period gives further evidence supporting the improvement of the flux transport model.

5.5 Conclusion

We have investigated the decay of the eigenmodes of the diffusion equation. The boundary
condition, that the field becomes radial at the surface, allows us to connect the spherical
shell model with the surface flux transport model quantitatively. We can assign realistic
radial diffusion rates to an additional decay term in the surface transport model. The ex-
ponential decay of magnetic flux on the Sun on a timescale of5 − 10 years was already
proposed by Schrijver et al. (2002). The additional decay of magnetic flux is necessary to
model realistically long-term trends of solar activity, like the polar field evolution or the
open flux over several cycles. Based on our work we can now assign physical processes,
i.e. radial diffusion, to the decay of the magnetic field on the photosphere. The sur-
face flux transport model is, except for new emerging magnetic sources, a closed system
within the photosphere. Interactions of magnetic flux between different layers of the solar
convection zone or of the heliosphere, are not included. We now have a tool which helps
us to include the vectorial character of the magnetic field in the transport model using a
single parameter,η. Surely, this will not be enough to account for all the complicated
reconnection processes occurring in the solar atmosphere, however, we expect the new
term in the transport model to improve modeling the observed large-scale magnetic field
evolution.
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6 Modelling the open magnetic flux
from the Greenwich sunspot group
record

6.1 Introduction

The interplanetary magnetic field (IMF) has its origin in the so-called coronal holes, which
are magnetically open regions on the Sun. In these open regions the solar wind, consisting
of electrically well conducting plasma, drags the magnetic field lines into the heliosphere.
During sunspot minimum, the open magnetic flux has its origin in the polar regions, while
during cycle maximum the coronal holes form at low latitudes with rather small areas but
high field strengths.

Wang et al. (2000a) extrapolated NSO Carrington maps out to a source surface and
found that the open flux lags the sunspot cycle by 1-2 years while its amplitude varies by
a factor of 2 only between sunspot minimum and maximum in contrast to the much larger
variations (factor of∼ 3 − 4) of the Sun’s total flux (Wang and Sheeley 2002, Krivova
and Solanki 2004). The same result was found earlier by Slavin et al. (1986) analysing
IMF observations for cycle 21.

Measurements from theUlyssesspace craft have shown that the strength of the radial
IMF component|Br| is independent of heliospheric latitude (Smith and Balogh 1995).
Thus the heliospheric currents are confined to a thin current sheet in the equatorial plane
during solar activity minimum (Hoeksema et al. 1983). During maximum the current
sheet can extend up to 60◦.
At a distance of 1 AU, the radial IMF component is a few nT and it has been found that
the interplanetary magnetic field strength has doubled on average over the last century
(Lockwood et al. 1999). The magnetic field transported by the solar wind reconnects with
the Earth’s magnetic field. The interaction of protons and electrons with molecules in
the Earth’s upper atmosphere leads to phenomena like aurorae. The IMF represents one
potential link of solar activity with the Earth’s climate and thus its variation is believed to
have important terrestrial effects.

Simulations using a flux transport model were not able to reproduce the right phase
relation between the surface magnetic field and the open flux. In these simulations the
open flux is closely related to the low-order multipoles, mainly the dipole component,
of the surface field (Wang et al. 2000a, Mackay et al. 2002b). This relation leads to a
maximum amount of open flux during sunspot minimum. However, this evolution of
the open flux in antiphase with the solar cycle is inconsistent with observations. Our
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6 Modelling the open magnetic flux from the Greenwich sunspot group record

aim is to improve the model in order to obtain a better match between model and the
observations. This concerns specifically the relationship between open flux and surface
flux (phase relation and absolute values).

6.2 The source surface model

The solution of the Laplace equation (2.39) for the domainr ≥ R� with the boundary
conditionψ(r →∞, θ, φ) = 0 in spherical coordinates is

ψ(r, θ, φ) = R�

∞∑
l=0

l∑
m=−l

(
R�

r

)l+1

alm Ylm(θ, φ) , (6.1)

whereYlm(θ, φ) are the spherical harmonics andalm are complex expansion coefficients
which have to be determined from the photospheric magnetic field. At some distance
above the photosphere, the magnetic field is stretched radially away from the solar surface.
The region where the heliospheric magnetic field becomes radially oriented is called the
source surface(Schatten et al. 1969). The source surface is considered to be the origin
of the interplanetary magnetic field (IMF). In this approximation all field lines which
penetrate through the source surface, i.e. are not closed in the regionR� < r < Rss (Rss

is the source surface radius), contribute to the open flux.
Requiring thatBθ(Rss, θ, φ) andBφ(Rss, θ, φ) vanish at the source surface, the poten-

tial Eq. (6.1) has to be replaced by (Altschuler and Newkirk 1969, Nash et al. 1988)

ψ(r, θ, φ) = R�

∞∑
l=0

l∑
m=−l

(
R�

r

)l+1
[

(r/Rss)
2l+1 − 1

l + 1 + l (R�/Rss)
2l+1

]
alm Ylm(θ, φ) . (6.2)

From the solution Eq. (6.2) it follows that the radial magnetic field component outside the
source surface (r ≥ Rss) is

Br(r, θ, φ) =
∂ψ

∂r
=

∞∑
l=0

m=l∑
m=−l

cl(r) alm Ylm(θ, φ) , (6.3)

where

cl(r) =

(
R�

r

)l+2 [
l + 1 + l(r/Rss)

2l+1

l + 1 + l(R�/Rss)2l+1

]
. (6.4)

The total open flux is calculated by integrating the unsigned field over the whole source
surface

Φopen = R 2
ss

∫
|Br(Rss, θ, φ)|dΩ . (6.5)

In order to compare the results from the source surface model with the measured radial
IMF component near earth, we express the open flux as a field strength atrE = 1 AU

BE
open =

Φopen

4π r2
E

. (6.6)

62



6.2 The source surface model

0

5

0 5 10 15 20 25 30 35 40 45 50 55

F
ie

ld
 s

tr
en

gt
h 

at
 r

E
 [n

T
] (a)

Total Surface Flux [G]
Open Flux [nT]

0

5

0 5 10 15 20 25 30 35 40 45 50 55

F
ie

ld
 s

tr
en

gt
h 

at
 r

E
 [n

T
]

Time [years]

(b)
Total Surface Flux [G]

Open Flux [nT]

Figure 6.1: Time variation of total surface flux and open flux for a constant source surface
location (Rss = 2.5R�) for (a)η = 0 and (b)η = 100 km2 s−1.

Furthermore, the total and the equatorial dipole components at the source surface are
defined as

Dtot(Rss) =
1

4π

1∑
m=−1

∫
|c1(Rss) a1m Y1m| dΩ , (6.7)

and

Deq(Rss) =
1

4π

∫
c1(Rss)

[ ∣∣a1,−1 Y1,−1

∣∣ +
∣∣a1,1 Y1,1

∣∣ ]
dΩ , (6.8)

respectively. The total quadrupole component at the source surface is given by

H(Rss) =
1

4π

2∑
m=−2

∫
|c2(Rss) a2m Y2m| dΩ . (6.9)

The described model for calculating the heliospheric magnetic field is referred to as the
potential field source surface (PFSS) model in literature.
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Figure 6.2: Time variation of open flux, total dipole, equatorial dipole and quadrupole for
(a)η = 0 and (b)η = 100 km2 s−1.

6.3 Results for synthetic data

In order to understand qualitatively how the open flux (Eq. 6.5) depends on the surface
magnetic field and thus on the flux transport parameters, we use the synthetic butterfly
diagram resulting from the reference parameter set (Sect. 4.3.1) and calculate the related
open flux. In this section, we investigate two modifications of the model. On the one
hand, we perform calculations with and without the decay term derived in Sect. 5.3, and
on the other hand we make the source surface radius,Rss, in Eq. (6.4) time-dependent.

6.3.1 Influence ofη on the open flux

Fig. 6.1 shows the calculated total surface field and the open flux for the case without
the additional decay term (Sect. 5.3) in comparison with the caseη = 100 km2 s−1. A
part of the polar flux is removed due to radial diffusion in the latter case and thus less
new magnetic flux is needed to cancel the existing polar fields. This leads to a shift of
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Figure 6.3: Time variation of total surface flux and open flux when the source surface
is varying betweenRss,max = 2.5R� andRss,min = 5.0R� for (a) η = 0 and (b)η =
100 km2 s−1 . The sinusoidal variation of the source surface radius is also shown.

the oscillation of the polar field and thus the dipole component towards cycle maximum
(Fig. 6.1 b). However, this shift is not sufficient to bring the open flux in the correct phase
with the activity cycle as observed. The ratio of maximum to minimum open flux be-
comes larger whenη is set to100 km2 s−1 than forη = 0. The open flux variation is
rather smooth compared to the surface magnetic field, which undergoes a strong modu-
lation due to fluctuations in the flux emergence. The open flux is almost not affected by
these fluctuations. Only during minima of the open flux, can fluctuations be seen. This
smoothness is a result of the damping coefficientscl(r) in the model. The higher mul-
tipoles, which represent smaller magnetic flux elements, are strongly damped and thus
small flux contributions of the surface field are filtered out in the open flux calculation.

When comparing Figs. 6.2 a and 6.2 b it can be seen that only the total dipole com-
ponent is shifted byη 6= 0 while the equatorial dipole and the quadrupole component are
almost unaffected byη. Fig. 6.2 shows also that the total open flux is very closely related
to the total dipole component.
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Figure 6.4: Time variation of open flux, total dipole, equatorial dipole and quadrupole
when the source surface is varying betweenRss,max = 2.5R� andRss,min = 5.0R� for
(a)η = 0 and (b)η = 100 km2 s−1.

6.3.2 Time-dependent source surface

The results for the open flux calculated from the source surface model show that a sig-
nificant fraction of the open flux is missing, especially during sunspot maximum and the
rise of a new cycle. Not included in the source surface model are for example coronal
mass ejections (CMEs), which carry away magnetic field from the Sun into interplane-
tary space and occur more frequent during activity maximum than during minimum. In
order to include these contributions, we let the source surface radius,Rss, vary with time.
During activity maximum, the source surface is assumed to be closer to the photosphere
than during activity minimum. We letRss(t) vary with a sine function in antiphase with
activity. We leave the source surface radius during activity maximum,Rss,max, at a value
2.5R�, whereas the source surface radius during activity minimum,Rss,min, is set to
5R�. The resulting open flux for the varying source surface and the reference parameter
set is shown in Fig. 6.3. Without including radial decay in our model, i.e.η = 0, the
open flux remains roughly constant during a longer period around activity minimum and
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only varies by a noteworthy amount during activity maximum (Fig. 6.3 a). The increase
of the dipole component and thus the open flux during activity minimum as obtained
by the simulations with a constant source surface radius is now counter-balanced by the
receding source surface. As a result of the larger distance of the source surface during
cycle minimum, less magnetic flux penetrates through the source surface and contributes
to the open flux. The source surface variation has only a minor effect on the equatorial
dipole and the quadrupole components which have significant values only during activity
maxima (Fig. 6.4).

The combination of a varying source surface and a radial diffusion coefficient ofη =
100 km2 s−1 in the transport model (Fig. 6.3 b) cancels the effect of damping the open flux
during cycle minimum as yielded from the source surface variation alone. The reason for
this is that the radial diffusion coefficientη alone leads to a shift of the dipole component
towards activity maximum. As a consequence of this shift, the dipole component is no
longer in anti-phase withRss(t). However, the maximum of the open flux is now almost
in phase with the level of activity.

6.3.3 High- and low-latitude open flux

In order to investigate separately the contributions to the open flux resulting from po-
lar coronal holes and equatorial coronal holes, we plot the open flux resulting from high
latitudes (above45◦) and low latitudes (below45◦) in Fig. 6.5 for the four previously
discussed cases. In none of the cases is the expected anti-correlation between high-
and low-latitude open flux present. In the unmodified model, i.e.η = 0 and constant
Rss (Fig. 6.5 a), the open flux from the equatorial region reaches its maximum roughly
1 − 2 years after the open flux from the polar regions. However, the amplitude varia-
tion between maximum and minimum is less for the low-latitude open flux than for the
high-latitude open flux.

In the case whenη = 100 km2 s−1 the high and low-latitude fractions of the open flux
are brought more into phase (Fig. 6.5 b). The situation is different when applying a time
variation of the source surface radius (Fig. 6.5 c). The flattening of the dipole component
as discussed in Sect. 6.3.2 is also reflected in the high- and low-latitude component of
the open flux. During activity maximum, due to the combined effect of strong equatorial
coronal holes and the closeness of the source surface, the low-latitude open flux shows
strong variation and becomes sometimes higher than during activity minimum, while the
high-latitude open flux drops towards zero. The combination of a variable source surface
andη = 100 km2 s−1 brings both, high- and low-latitude component, in close relation
(Fig. 6.5 d). Both curves contribute almost the same amount to the total open flux, they
are almost in phase and also their amplitudes are of comparable strength.

6.3.4 Variation ofRss

Unlike before, where we let the source surface radius vary with time, we now vary the
constant distance of the source surface from the photosphere. A value ofRss = 2.5R� for
the source surface radius is widely accepted in literature (Altschuler and Newkirk 1969,
Mackay et al. 2002a, Wang and Sheeley 2002). For this choice of the source surface ra-
dius, the field line structure of the calculated coronal magnetic field is in good agreement
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Figure 6.5: High-latitude (above45◦) and low-latitude (below45◦) contributions to the
open flux. (a)η = 0 and constantRss,min = 2.5R�, (b) η = 100 km2 s−1 and
constantRss,min = 2.5R�, (c) η = 0 and variable source surfaceRss,max = 5.0 and
Rss,min = 2.5R� and (d)η = 100 km2 s−1 and variable source surfaceRss,max = 5.0R�
andRss,min = 2.5R�
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with observations of the corona during eclipses. However, Schatten et al. (1969) found
that a source surface radius ofRss = 1.6R� leads to a good agreement of the calcu-
lated open flux with the observed IMF. The validity of the source surface model becomes
questionable when the source surface is placed too close above the photosphere because
actually closed field lines then penetrate through the source surface and are misleadingly
counted to the open flux.

The resulting open flux from the synthetic reference parameter set for four differ-
ent source surface radii is shown in Fig. 6.6. ForRss = 1.75R� andRss = 2.0R�,
respectively, there is no big change in the behaviour of the open flux compared to the
caseRss = 2.5R� (Fig. 6.1 b). Only the amplitude increases slightly due to more mag-
netic flux reaching the source surface asRss decreases. By reducingRss from 1.75R�
to 1.5R�, the amount of open flux increases by almost30% and the maximum open flux
is reached around 1 year earlier. This temporal shift results from the low-latitude flux
that is now increased and out of phase with the high-latitude flux. The open flux from
low latitudes shows more fluctuations than the open flux from the polar regions. This is
due to the fact that in the low latitudes individual large active regions contribute to the
open flux which cause these fluctuations, whereas the more uniform polar fields lead to a
smooth high-latitude open flux. When the source surface radius is decreased even more
(Rss = 1.25R�), the amplitude of the low-latitude open flux exceeds the high-latitude
open flux. However, having such a small source surface radius the physical aspects of the
source surface model become questionable.
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Figure 6.6: Total, high- and low-latitude open flux for four different source surface radii.
(a)Rss = 1.25R�, (b)Rss = 1.5R�, (c)Rss = 1.75R� and (d)Rss = 2.0R�.
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Figure 6.7: Dipole tilt angle for the reference parameter set forη = 0 (red line) and
η = 100 km2 s−1 (blue line).

6.4 Dipole tilt angle

The cyclic polar field reversal can be interpreted as a rotation of the dipole axis. During
activity minima, the heliospheric current sheet is located in the equatorial plane. With
increasing activity the current sheet becomes distorted and more inclined with respect to
the equatorial plane (Balogh and Smith 2001). Fisk and Schwadron (2001) presented a
model of a rotating heliospheric current sheet (which lies perpendicular to the dipole axis)
as the origin of the polar field reversal.

The dipole tilt angle with respect to the axis of rotation is

δ = arcsin

(
Deq

Dtot

)
. (6.10)

The time behaviour of the dipole tilt angle for the reference parameter set forη = 0 and
η = 100 km2 s−1 is shown in Fig. 6.7. During activity minima, the dipole axis is roughly
parallel to the axis of rotation, i.e. the dipole tilt angle is close to0. This configuration
is maintained roughly during half a cycle. Around cycle maximum, the dipole tilt angle
increases rapidly and leads to a reversal of the dipole. The time of the reversal takes also
about half a cycle. From Fig. 6.7 the advanced dipole reversal by about2 years when
η = 100 km2 s−1 can be clearly seen.
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Figure 6.8: Geometry of the current sheet source surface model.

6.5 The current-sheet source surface model

The PFSS model is a crude way to derive the interplanetary magnetic field from the pho-
tospheric field. A major deficit is that it underestimates the open flux originating from the
activity belts. The forcing of the magnetic field into radial direction at the source surface
leads to a wrong topology of the coronal field, especially in the equatorial region. For
example, helmet streamers or polar plumes tend to bend towards the equator. In order to
improve the source surface model, which includes only volume currents, Schatten (1972)
suggested the potential field-current sheet (PFCS) model, which includes the effect of
current sheets.

In a first step, a potential field solution is derived for the region between the pho-
tosphere and a source surface. Then the magnetic field is calculated on the source sur-
face. If the radial magnetic field component on the source surface points inwards, i.e.
Br(Rss, θ, φ) < 0, thenB(Rss, θ, φ) is replaced by−B(Rss, θ, φ). After having done so,
the magnetic field points outward everywhere on the source surface. However, the magni-
tude of the field remains unchanged. At this point, this procedure violates∇ ·B, but this
error is corrected in a later step. The magnetic stresses beyond the source surface are not
affected by this procedure, so that the field lines still form a minimum energy configura-
tion. The physical aspect of this treatment is, that the field lines now cannot form closed
loops beyond the source surface. In the second step, the original orientation of the field
lines is restored. As a result, appropriate current sheets must form in order not to violate
∇×B = (4π/c) j.

Zhao and Hoeksema (1994) presented a model based on a magnetostatic atmosphere
instead of a potential field. In principle, this model (called horizontal current-current
sheet (HCCS) model) builds on the current-sheet technique of Schatten (1972). It also
includes horizontal electric currents in addition to the streamer currents. The concept
of the HCCS model is to introduce acusp surfaceat a distanceRcusp above the solar
surface.Rcusp is assumed to be the location of the cusp points of coronal helmet streamers.
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6.5 The current-sheet source surface model

Thus the magnetic field at the cusp surface is determined in a similar way as Schatten
(1972) calculated the source surface field in the PFCS model. A further development of
modelling the coronal field structure is the current sheet-source surface (CSSS) model
(Zhao and Hoeksema 1995). This is a composite model that uses the streamer current
sheet technique at a cusp surface (like in the HCCS model) and combines it with the PFSS
model that forces the field lines in radial direction at an outer source surface. To this aim,
the heliosphere is separated into 3 regions (Fig. 6.8). In a magnetostatic atmosphere with
only horizontal electric currents, the analytical solution for the magnetic field is (Bogdan
and Low 1986)

B = −
(
1 +

a

r

)2 ∂Φ

∂r
r̂ − 1

r

∂Φ

∂θ
θ̂ − 1

r sin θ

∂Φ

∂φ
φ̂ , (6.11)

where the parametera represents the length scale of horizontal electric currents in the
corona.

The inner region (region I) is bordered by the photosphere and the cusp surface. The
potential in this inner region is

Φin =

N�∑
l=1

l∑
m=0

R�
l (r) Pm

l (cos θ) (g�lm cosmφ+ h�lm sinmφ) , (6.12)

whereN� is the maximum principal index andg�lm andh�lm are the harmonic expansion
coefficients which have to be determined from the photospheric field. The radial part of
Eq. (6.12) is given by

R�
l (r) =

R�(1 + a)l

(l + 1)(r + a)l+1
. (6.13)

In the middle region (region II), between the cusp surface and the source surface, the
solution for the potential is

Φmid =

N�∑
l=0

l∑
m=0

Rc
l (r) P

m
l (cos θ) (gc

lm cosmφ+ hc
lm sinmφ) , (6.14)

with the radial part

Rc
l (r) = R�

[
l + 1

R2
cusp(Rcusp + a)l

+
l(Rcusp + a)l+1

R2
cusp(Rss + a)2l+1

]−1

×
[

1

(r + a)l+1
− (r + a)l

(Rss + a)2l+1

]
. (6.15)

The coefficientsgc
lm andhc

lm have to be determined by a least squares matching proce-
dure. For a detailed mathematical treatment see Schatten (1972) and Zhao and Hoeksema
(1995).

In the outer region (region III), beyond the source surface, the field is supposed to be
radial and the radial component is extrapolated into interplanetary space by

Br(r ≥ Rss, θ, φ) = Br(Rss, θss, φss)

(
Rss

r

)2

. (6.16)
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6 Modelling the open magnetic flux from the Greenwich sunspot group record

Comparison of the CSSS model and the PFSS model

We investigate to what extent the more complex CSSS model leads to results for the open
flux which are in better agreement with the observations. Therefore, we calculate the open
flux from both models for our reference parameter set (Sect. 4.3) withη = 100 km2 s−1.
Zhao and Hoeksema (1995) found that the parameter seta = 0.2, Rcusp = 1.4R� and
Rss = 3.25R� matches the observed radial IMF component quite well when extrapolating
WSO photospheric field observations. Here, we use the parametersa = 0.2, Rcusp =
1.6R� and set the source surface in both models (CSSS and PFSS) toRss = 2.5R�.

In order to understand qualitatively the differences between the two models, we inves-
tigate the latitudinal variation of the magnetic flux on the source surface. To this aim, we
choose4 different cycle minima and cycle maxima where we calculate the source surface
flux.

During solar minimum, the open flux determined with the PFSS model at high lati-
tudes varies approximately as the sine of latitude (Fig. 6.9 a). This behaviour comes from
the fact that the open flux calculated with the PFSS model follows closely the dipole
configuration of the photospheric field, which is especially pronounced during activity
minimum. The CSSS model differs from the PFSS model in the equatorial region. Flux
loops in the low latitudes that extend beyond the cusp surface are opened by the CSSS
model and thus contribute to the open flux. This opening of flux by introducing a current
sheet leads to a jump of the open flux at the equator from one polarity to the opposite
polarity. This behaviour at the equator (’split monopole’) is qualitatively in better agree-
ment with observations (e.g. by the Ulysses spacecraft) than the continuous latitudinal
variation of open flux obtained by the PFSS model.

During solar maximum, the PFSS open flux resembles the quadrupolar structure of the
photospheric field (Fig. 6.9 b). The open flux from the CSSS model shows a completely
different behaviour. It remains almost constant over the whole range of latitudes with a
switching of polarities at the equator.

The time evolution of the integrated open flux obtained by both models is shown in
Fig. 6.10. At high latitudes (Fig. 6.10 b), the results from the two models show no big
difference which becomes clear already from inspecting the latitudinal variation of the
open fluxes (Fig. 6.9). The low latitude open flux from the CSSS model is higher than
the one from the PFSS model (Fig. 6.10 c). This is due to the abrupt polarity reversal at
the equator in the CSSS model which leads to a higher value of the open flux (which is
the integral over the unsigned field atRss, Eq. 6.5). Also, there is a phase lag of about
1 year. The open flux from the CSSS model is ahead of the PFSS open flux. This might
be a result of the cusp surface (beyond which all flux is already open) in the CSSS model
being closer to the solar surface than the source surface in the PFSS model. This time lag
has already been discussed in Sect. 6.3.4 where we found that a smaller source surface
radius leads to a shift of the total open flux.

In summary, we can say that the CSSS model leads to more realistic results than the
PFSS model when considering the heliospheric structure, especially for the low-latitude
open flux by including the effect of horizontal currents and volume currents.
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Figure 6.9: Latitudinal variation of the longitude averaged magnetic field on the source
surface obtained with the PFSS model (red lines) and the CSSS model (blue lines) for
4 different times during solar minimum (a) and solar maximum (b). In the plot, the
polarities are changed such that the field on the northern hemisphere is always positive.
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Figure 6.10: Comparison of the simulated open flux from the PFSS model and the CSSS
model (Rss = 2.5R� andRcusp = 1.6R�). (a) Total open flux, (b) high-latitude open
flux (> 45◦) and (c) low-latitude open flux (< 45◦) obtained from the synthetic reference
butterfly diagram (η = 100 km2 s−1). The vertical black lines indicate the times of activity
maxima.
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6.6 Simulation of the open flux on the basis of the RGO sunspot data

6.6 Simulation of the open flux on the basis of the RGO
sunspot data

6.6.1 Method of transforming the sunspot record into an active re-
gion sequence

When modelling the magnetic field of the historical Sun, the relative sunspot number
can be used as a proxy for flux emergence, because of the observed linear relationship
between magnetic flux and the corresponding sunspot area (Schrijver and Harvey 1994).
Here, we take the sunspot group areas from the digitized version of the Royal Greenwich
Observatory (RGO) photographic results, which are available for the time period 1874-
1976. After the Royal Greenwich Observatory concluded the sunspot dataset in 1976, the
US Air Force (USAF) started compiling data from the Solar Optical Observing Network
(SOON). This continued the RGO dataset with the help of the US National Oceanic and
Atmospheric Administration (NOAA). However, care must be taken when using these
extended data (from 1976 until present), because they are less uniformly compiled than
the previous RGO collection and there may be systematic differences between the sunspot
areas in the two records. We combine both datasets and transform them into a sequence
of active regions as described below, in order to model the historical IMF record on this
basis.

Our basic assumption is that every sunspot group can be related to one active region
and thus also to one facular area. The relation of facular to sunspot area has been de-
rived by Chapman et al. (1997) using a7.5 year data set obtained at the San Fernando
Observatory

Af = 414 + 21As − 0.0036A2
s , (6.17)

whereAf is the facular area seen in Ca II K line (393.4 nm) andAs is the sunspot area.
In an attempt to simulate the open flux starting from the RGO sunspot group record, we
assume the total area of an active region to beAtot = As +Af , whereAs is the area of the
sunspots from the RGO/SOON data andAf is the facular area derived from Eq. (6.17).

A problem of the RGO sunspot observations is that only spots on the visible solar
disk are recorded, while there is no information about activity on the far side of the Sun.
The observations thus miss about50% of the small sunspots. For larger sunspot groups,
this fraction is smaller because big spot groups emerging on the back side of the Sun are
brought to the visible disk by the Sun’s rotation. The estimation of the correct number of
missing spot groups in the observation is a difficult task, as one has to take into account
visibility problems near the solar limb, different decay stages of the spot groups, and the
recurrence of sunspot groups (Kopecký et al. 1985). For our aims we restrict ourselves
to a rough estimation of the missing spot groups. We extract all sunspot groups from
the RGO database at the time of their maximum area development. This ensures that
every spot group is considered only once. Furthermore, we take only sunspot groups
which reach their maximum area within±45◦ of the central meridian. Owing to the large
number of observations, we expect this90◦ window to be representative for the whole Sun
(Note that by doing this, we neglect the possible presence of active longitudes and their
flip-flop (Berdyugina and Usoskin 2003)). We construct now our butterfly diagram for the
whole Sun by copying this90◦ window 4 times to the remaining longitudes. Therefore,
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Figure 6.11: Simulated magnetic butterfly diagram. The input sources are derived from
the extended RGO sunspot database. The vertical white line indicates the transition of the
RGO observation period and the USAF sunspot database.

an observed sunspot group at a longitudeφ is assumed to emerge at the same time with
equal size at longitudesφ+ 90◦, φ+ 180◦ andφ+ 270◦.

Having constructed a butterfly diagram in the above described way, we assign a bipo-
lar magnetic region (BMR) to each sunspot group. The polarities of the BMRs are deter-
mined according to Hales’ polarity rule (Hale et al. 1919) and the tilt angle is given by
Joy’s law, i.e.α = 0.5λ, whereλ is the latitude. The size of the BMR is determined by
Eq. (6.17). For details of the treatment of BMRs in the code see Sect. 3.2. The number of
BMRs for each cycle is given in Table 6.1; it is in general3 − 5 times higher than in the
reference parameter set (∼ 2 000 BMRs per cycle).

Owing to the linearity of the flux transport equation, the amplitude of emerging bipolar
magnetic regions, i.e.Bmax in Eq. (3.19), is a free parameter that can be adjusted in order
to match the simulation with the observations. We calibrateBmax by comparing our result
for the total surface field with the field strength given by the Mt. Wilson magnetic plage
strength index (MPSI). The maximal polar field strengths for the cycles 21 and 22 are
between7−10 G according to Dikpati et al. (2004) who analysed the polar fields measured
at three different observatories (MWO, WSO and NSO). We find good agreement with our
simulations for this time period using a valueBmax = 50 G.
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Figure 6.12: Field strengths obtained by integrating the absolute value of the longitude
averaged surface field over the latitude range±45◦ (note that this integral is not equivalent
to the total unsigned surface flux). Observation corresponds to the magnetic butterfly dia-
gram Fig. 5.5 a, the simulation (η = 0) to Fig. 5.5 b and the simulation (η = 100 km2 s−1)
to Fig. 5.5 c. Plotted is the 3 month average.

6.6.2 Surface magnetic field

We use the extended flux transport model (withη = 100 km2 s−1) in order to simulate the
evolution of the solar surface magnetic field. The simulated longitude-averaged surface
magnetic field for the time period 1874-2002 is shown in Fig. 6.11. The obtained magnetic
butterfly diagram for the period after 1976 is discussed in connection with the effect ofη in
the extended flux transport model in Sect. 5.4.3. In order to compare the simulated surface
magnetic field with the observation quantitatively, we integrate the longitude averaged
surface field over the magnetic butterfly diagrams (i.e. Figs. 5.5 a - c). The integration
is done over the latitude range±45◦, i.e. over the activity belts, in order to exclude the
large uncertainties of the observed polar fields. The results are shown in Fig. 6.12. The
curves of the simulations agree well with the observation. Especially the phase relation is
in good agreement. The curve of the simulation withη = 0 lies slightly above the curve
with η = 100 km2 s−1. However, the differences are not very big, indicating that the
parameterη has not a big effect on the field in the activity belts.

The field strengths of the first5 cycles, i.e. cycles12 − 16, are of comparable mag-
nitude as can be seen from the total unsigned surface flux (Fig. 6.13). This is contrary to
what one would expect when looking at the sunspot numbers for the same cycles which
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Figure 6.13: Annual means of simulated total surface field and sunspot number. The cycle
numbers are also given.

alternate remarkably. This indicates that although a smaller amount of active regions
emerges during cycles 12, 14 and 16, the total flux emergence in this cycles is similar to
cycles 13 and 15. The similar strength of the cycles 12-15 can also be seen in the the
evolution of the polar fields, defined as the average field over caps within 15◦ of the pole
(Fig. 6.14). After a short initialization period of the simulation, the first 5 cycles (cycles
12 to 16) show rather regular oscillation with a maximum amplitude of∼ 6 G. The situ-
ation is different for the cycles 17-19. Here, a continuous increase in the sunspot number
also leads to an increase in the total surface field and in the polar field. This is interesting
because the total amount of emerging BMRs per cycle in our simulation is lower for cycle
18 than for cycle 17. A drop of a factor of about 2 in sunspot number, total surface field
and polar field appears from cycle 19 to cycle 20, although the total number of emerging
BMRs in both cycles is almost the same.

6.6.3 Comparison with IMF observations

We use the extended flux transport model (η = 100 km2 s−1) in order to simulate the
evolution of the surface magnetic field on the basis of the RGO sunspot group data. From
the simulated surface field we then calculate the open flux using the CSSS model with
Rcusp = 1.6R� andRss = 2.5R�. Direct IMF measurements are available since 1969.
A longer time series for the radial IMF component has been reconstructed by Lockwood
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Figure 6.14: Simulated north and south polar field strength. The vertical black lines
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et al. (1999) from the geomagneticaa index. The comparison of the calculated open flux
with the IMF measurements/reconstruction is shown in Fig. 6.15 a.

The simulation matches the reconstructed IMF rather poorly. The most striking dif-
ference is the long-term trend of the minimum open flux. The reconstructed minima of
the open flux increase steadily from∼ 0.7nT at 1900 up to∼ 3nT at 1990 whereas the
simulated open flux does not show this trend. This indicates that significant sources of
the open flux are missing in the model. As we use sunspot group data as a proxy for
flux emergence we have not included ephemeral regions (i.e. small active regions without
sunspots) in our model. The contribution of ephemeral regions (ERs) to the open flux is
rather uncertain while their contribution to the surface magnetic field is significant. ER
show a more random orientation, so that their contribution to the Sun’s total dipole mo-
ment is much smaller than the contribution from the large active regions (Schrijver and
Harvey 1994). In contrast to sunspot cycles, ERs of consecutive cycles strongly overlap
(Harvey 1992). This might contribute to the secular variation of the open flux (Solanki
et al. 2002b). We found in Sect. 4.4.5 that an overlap of successive cycles leads to a
build-up of a background magnetic field. In Fig. 6.15 a we have included the fraction of
open flux originating from ERs obtained from the model of Solanki et al. (2002b). In this
model it is assumed that the ER cycles are longer and shifted forward in time by2.5 years
with respect to the active region cycle. The modeled ER open flux is of the order of10%
of the total open flux. We try to improve our simulation of the open flux by simply adding
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6 Modelling the open magnetic flux from the Greenwich sunspot group record

Table 6.1: Number of emerging BMRs per cycle, the accumulated BMR area per cycle
and the total amount of magnetic flux emerging during a cycle as obtained from the pro-
cedure described in Sect. 6.6.1. Note that the first and the last cycle are incomplete in the
dataset.

Cycle BMRs Area Flux
[deg2] [1025Mx]

11 492 9 470 0.122
12 3 172 55 737 0.699
13 5 452 73 461 0.835
14 5 236 61 488 0.653
15 8 488 79 031 0.720
16 6 924 76 157 0.779
17 7 796 107 806 1.239

Cycle BMRs Area Flux
[deg2] [1025Mx]

18 7 060 113 668 1.385
19 9 995 151 264 1.802
20 9 665 108 851 1.129
21 6 084 100 808 1.240
22 7 676 107 297 1.239
23 6 236 85 007 0.971

the ER open flux of Solanki et al. (2002b). The result is shown in Fig. 6.15 b. The combi-
nation of the two models matches the reconstructed IMF better than the open flux derived
from active regions alone. The secular trend of the open flux minima is now present in the
combined model, however, still not that strong as observed. A small phase shift between
the reconstructed IMF and the modelled open flux is still present. Furthermore, it is sur-
prising that the largest discrepancies between model and observation occur during the last
two cycles. This might be due to a systematic error between the RGO dataset (concluded
in 1976) and the USAF data, which underly the simulations.

The amplitudes of the cycles17−19 happen to be too large. The reason for this could
be that our method of transforming the sunspot group data into an active region sequence
(Sect. 6.6.1) overestimates the total cycle flux for these cycles. These three cycles were
particularly strong with large sunspot groups so that the magnetic flux associated with
these large sunspot groups in our simulations might be too large.

6.7 Conclusion

Our aim was to model the historical solar surface magnetic field, the polar fields and the
open flux on the basis of the RGO/USAF sunspot data. The simulation of the surface
field with the extended flux transport model yields rather good results which shows the
comparison with observations where available.

In order to understand the dependence and evolution of the open flux on the surface
magnetic field, we investigated the open flux obtained from the PFSS model for different
constant and time-varying source surface radii. It turned out that for a source surface
radius ofRss = 2.5R�, as is generally accepted, not enough magnetic flux originating
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Figure 6.15: (a) Open flux simulated on the basis of the RGO sunspot database using
the CSSS model withRcusp = 1.6R� andRss = 2.5R�. The yearly averaged radial
IMF component for 1969-2002 is obtained from the NSSDC OmniWeb database and the
reconstruction of the IMF is taken from Lockwood et al. (1999). The fraction of open flux
originating from ephemeral regions obtained from the model of Solanki et al. (2002b) is
also shown. (b) Open flux obtained from the simulation combined with the ER open flux
together with the reconstruction of Lockwood et al. (1999) and the measured IMF.
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from low latitudes penetrates through the source surface and thus contributes to the open
flux. In this case the open flux is mainly dominated by the flux originating from the polar
regions. Better agreement with the observed open flux distribution is yielded by reducing
the source surface to∼ 1.6R�. The more complex CSSS model leads to similar results for
the total open flux as the PFSS model, however, the heliospheric topology is reproduced
better in this model.

The attempt to model the historical open flux on the basis of the RGO data yields
rather poor results. The simulated open flux is shifted backward in time and the open
flux minima are much too low with respect to the reconstructed IMF. An improvement is
achieved when we add the open flux contribution of ephemeral regions. By doing so, the
phase difference between simulation and observation is reduced and the secular increase
of the open flux minima is obtained.
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7 On the size distribution of sunspot
groups in the Greenwich sunspot
record 1874-1976

7.1 Introduction

Sunspots appear dark on the solar surface and typically last for several days, although very
large ones may live for several weeks. Sunspots are concentrations of magnetic flux, with
magnetic field strengths of the order of kG. Usually, sunspots come in groups containing
two sets of spots of opposite magnetic polarity. The field is strongest in the darker parts
of the sunspots, the umbra. In the lighter part, the penumbra, the field is weaker and more
horizontal.

The size spectrum of sunspots ranges from 3 MSH (micro solar hemispheres) for the
smallest (Bray and Loughhead 1964) to more than 3 000 MSH for very large sunspots.
Smaller sunspots are more common than larger ones. A quantitative study of the size
distribution of sunspot umbrae has been presented by Bogdan et al. (1988). They found
a log-normal size distribution by analysing a dataset of more than 24 000 Sunspots from
Mt. Wilson white-light images. The ratio of umbral to penumbral area depends only very
slightly on the sunspot size (see the references and discussion in Solanki (2003)) so that
such a distribution can be expected to be valid for sunspots as a whole. Since Bogdan et al.
(1988) used all sunspot observations in their sample to determine their size distribution
and many sunspots live multiple days, the same sunspot appears multiple times in their
statistics. Furthermore, in the course of its evolution, the size of a sunspot changes. Hence
the method of Bogdan et al. (1988) provides the instantaneous distribution of sunspot
sizes at any given time (let us call it the snapshot distribution). This, however, does not
in general correspond to the initial size distribution of sunspots, i.e. the distribution of
the maximum sizes of sunspots, given that sunspots grow very fast and decay very slow.
For many purposes, however, the latter distribution is the more useful one. An example
is when the total amount of magnetic flux appearing on the solar surface in the form of
sunspots needs to be estimated (since the field strength averaged over a full sunspot is
remarkably constant, Solanki and Schmidt (1993), the sunspot area is a good measure of
the total magnetic flux.)

The purpose of this chapter is to determine the distributions of both, the instantaneous
sizes and the maximum sizes, and to compare these with each other. We determine the
size distribution function of sunspot umbrae and of total sunspot areas from the digitized
version of the daily sunspot observations of the Royal Greenwich Observatory (RGO).
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7.2 Dataset and analysis procedure

The GPR (Greenwich Photoheliographic Results) provide the longest and most complete
record of sunspot areas, spanning observations from May 1874 to the end of 1976. How-
ever, only the areas of complete sunspot groups and not of individual sunspots have been
regarded. The area covered by the sunspots of a group is measured every time it is ob-
served, i.e. at every development stage of its sunspots accessed by observations. In ad-
dition, the sunspot group is followed until it has reached its maximum area. This area is
stored separately. We employ in all cases true areas corrected for projection effects.

These stored areas can now be used to derive two different distributions of sunspot
area. If we simply form the distribution obtained from all the measured areas, we obtain
the average distribution of sunspot sizes at any random instance. We call this thesnapshot
method. The snapshot method also underlies the study of Bogdan et al. (1988). In general,
this instantaneous size of a sunspot group will be smaller than the size of the sunspot group
at its full development. The maximum size is usually reached early in the development of
a sunspot or sunspot group. It is followed by a steady decay (McIntosh 1981).

In the second method, hereafter calledmaximum development method, the area of a
sunspot group is taken at the time when the group has reached its maximum area.
The maximum group areaA0 determined from the Greenwich data is in general too small.
Since only one observation per day is available and thus the maximum area of the spot
group can be reached several hours before or after the measurement. As we consider spot
groups, the different spots in the group may reach their maximum area at different times.
ThereforeA0 is in general somewhat smaller than the sum of the maximum areas of all the
sunspots in the group. The area distribution of individual sunspots can be partly estimated
by considering separately just groups of type 0, i.e. those containing just a single spot.

Also, visibility and projection effects lead to too small areas in the observations
(Kopecḱy et al. 1985) affecting both distributions. The RGO dataset that we use is al-
ready corrected for foreshortening. Nevertheless, in order to minimize the errors result-
ing from visibility corrections we use only spot groups measured within±30 ◦ from the
central meridian. When determining the maximum area of a sunspot group, we make sure
that the maximum extent is reached within±30 ◦ although the sunspot group does not
necessarily have to be born within this angle.

We divide the dataset into bins. Our criteria for the bin width is 20 % of the geometric
mean area of the bin. We replace the continuous size distribution function dN/dA by the
discrete approximation∆N/∆A, where∆A is the bin width and∆N is the raw count of
the bin.

We include in our analysis only sunspot groups whose areas exceed a lower cut-off
limit Amin. For umbral areas we set the limit toAumb

min = 15 MSH (similar to Mart́ınez
Pillet et al. (1993)) and for total spot areas toAtot

min = 60 MSH. Smaller areas thanAmin

are not taken into account in this study, as they are falsified from enhanced intrinsic mea-
surement errors as well as from distortions due to atmospheric seeing.

In order to make the size distributions for different datasets comparable, we divide
∆N/∆A by the total number of spots exceedingAmin. This corresponds to a normaliza-
tion ∫ ∞

Amin

dN
dA

dA = 1 . (7.1)
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7.2 Dataset and analysis procedure
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Figure 7.1: Size distribution function of umbral areas obtained from the maximum de-
velopment method (circles) and snapshot method (crosses). The log-normal fits are over-
plotted (blue line:Fit to maximum area distribution,red line: Fit to snapshot distribution).
The vertical line indicates the lower area cut-off.

Finally, we fit each empirical distribution with an analytical function. Following Bogdan
et al. (1988) we employ a log-normal function, i.e. a continuous distribution in which
the logarithm of a variable has a normal distribution. The general form of a log-normal
distribution is

ln

(
dN
dA

)
= −(lnA− ln〈A〉)2

2 lnσA

+ ln

(
dN
dA

)
max

, (7.2)

where(dN/dA)max is the maximum value reached by the distribution,〈A〉 is the mean
area andσA is a measure for the width of the log-normal distribution. Note that a log-
normal function appears as a parabola in a log-log plot.

Log-normal distributions have been found in various fields of natural sciences. Ex-
amples of variates which are log-normally distributed are the size of silver particles in a
photographic emulsion, the survival time of bacteria in disinfectants or aerosols in indus-
trial atmospheres (Crow and Shimizu 1988), or, within solar physics, the distribution of
radiances in the quiet Sun (Pauluhn et al. 2000).
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7 On the size distribution of sunspot groups in the Greenwich sunspot record
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Figure 7.2: Size distribution function of the total spot group areas (umbra+penumbra)
obtained from the maximum development method (circles) and the snapshot method
(crosses). Overplotted are the log-normal fits forA > 60 MSH (blue line: Maximum
development method,red line: Snapshot method).

7.3 Results for RGO spot group areas

7.3.1 Umbrae

The size distributions for the umbral area obtained from both, the snapshot method and
the maximum development method, are shown in Fig. 7.1. For both methods, the resulting
size distribution is well described by a log-normal function above the lower cut-offAmin.
As one would expect, the curve of the maximum areas lies above the snapshot curve
for large sunspots. For smaller areas, the snapshot distribution is higher, resulting from
the fact that the areas obtained with the snapshot method are smaller (since they include
sunspots at different stages of decay), thus leading to more counts for smaller areas. The
fit parameters are listed in Table 7.1. It is surprising that the size distributions obtained by
both methods do not differ by a larger amount than suggested by Fig. 7.1. In general, the
two distributions are expected to be more similar to each other if the lifetime of sunspots
approaches the sampling time of the data, i.e. 1 day. For sunspots with shorter lifetimes
both methods should give identical results. Therefore, the small difference between the
two distributions is consistent with relatively short average lifetimes of sunspots.

The sunspot area measurements are not uniform across datasets. The umbral areas for
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Figure 7.3: Maximum area distribution (circles) and snapshot distribution (crosses) of
total spot areas for single spots. Fits to the data forA > 60 MSH: maximum development
method (blue line), snapshot method (red line).

single spots from RGO are roughly a factor of 2-3 larger than the corresponding areas
from the Mt. Wilson white light plate collection. This difference combined with the
fact that the RGO areas are sunspot group areas leads to a shift of the area distribution
towards higher values of〈A〉 and smaller values ofσA (Table 7.1) than derived from the
Mt. Wilson dataset. The smaller value ofσA results from the logarithmic nature of the
distribution.

7.3.2 Total areas

Fig. 7.2 shows the distributions for the total spot areas, i.e. the sum of umbral and penum-
bral area. The log-normal fit matches both distributions rather well above the cut-off.
However, both distributions differ even less than for the case where only the umbrae are
considered (Fig. 7.1). Especially in the large area regime, the fits for both distributions
are almost indistinguishable. Since every sunspot must have an umbra, it is not clear why
the difference between the two distributions in Fig. 7.2 is smaller than in Fig. 7.1, unless
it is an indication of the limits of the accuracy of the data. It may also be indicating that
the decay law may be different for umbrae and sunspots.
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7 On the size distribution of sunspot groups in the Greenwich sunspot record
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Figure 7.4: Snapshot distribution of umbral spot areas for single spots (crosses), fit to the
data (red line) and the curve from Bogdan et al. (1988) (grey line).

7.3.3 Total area of single spots

In this part of the study, we have extracted only Greenwich sunspot groups of type0, i.e.
single spots (Fig. 7.3). In order to get a statistically significant dataset, we have to extend
our longitudinal constraints to±60◦ around disk center.

The difference between the snapshot and the maximum area distribution is more pro-
nounced for total areas of single spots than for total areas of all sunspot groups. The differ-
ence in the two distributions can be explained by a similar argumentation as in Sect. 7.3.1.
The maximum distribution dominates for large areas, whereas the snapshot distribution
shows more counts for smaller areas due to the inclusion of different decay stages of the
sunspots. The similarity between Figs. 7.3 and 7.1 suggests that the problem lies with
Fig. 7.2. It may be that when determining the total area of sunspot groups, areas of the
generally short-lived pores were included.

7.3.4 Umbral areas of single spots

Of special interest is the snapshot distribution of umbral areas of single spots (Fig. 7.4)
because this can directly be compared to the results from Bogdan et al. (1988). The RGO
dataset displays a significant flatter distribution than the Mt. Wilson data, i.e. the ratio
of large umbrae to small umbrae is bigger for the RGO data. This systematic difference
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7.3 Results for RGO spot group areas

Table 7.1: Overview of the log-normal fit parameters. Due to the normalization (7.1) there
are only two free parameters〈A〉 andσA.

Data Set Method 〈A〉 σA Sunspots Fig.
or Groups

Mt. Wilson Um-
brae

Bogdan et al. 0.62 3.80 24 615 7.4

Umbrae Max. developement 11.8 2.55 3 966 7.1
Umbrae Snapshot 12.0 2.24 31 411 7.1

Total area Max. developement 62.2 2.45 3 926 7.2
Total area Snapshot 58.6 2.49 34 562 7.2

Total area Max. developement 45.5 2.11 939 7.3
single spots

Total area Snapshot 30.2 2.14 15203 7.3
single spots

Umbral area Snapshot 0.27 6.19 11312 7.4
single spots

Model Max. developement 11.8 2.55 807 771 7.5 a
Model Snapshot

hourly 7.77 2.80 21 352 828 7.5 a
daily 8.67 2.73 1 092 295 7.5 a
3 days 9.89 2.69 525 605 7.5 a

between the data sets is an indication of a systematic difference between sunspots in
groups of type 0 and other spots. The parameter〈A〉 is roughly a factor of 2 smaller than
in the corresponding Mt. Wilson data, while the width of the distribution is larger.
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7 On the size distribution of sunspot groups in the Greenwich sunspot record

7.4 Modelling the snapshot distribution

7.4.1 Model description

We have developed a simple sunspot decay model that simulates the snapshot distribution
resulting from a given maximum area distribution. One aim of this modelling effort is to
find out to what extend it is possible to distinguish between decay laws from the difference
between the maximum area and the snapshot area distributions. Another aim is to test
if, with decay laws as published in the literature, both the maximum and snapshot area
distributions must have the same functional form.

We consider two kinds of maximum development distributions: a lognormal distribu-
tion (7.2) and a power-law distribution of the general form

h(A) = v · Aw . (7.3)

The maximum area distributions are provided by a random number generator for the de-
sired parametersv, w or (dN/dA)max, 〈A〉 andσA, respectively. We assume an emergence
rate of 10 000 spots per day. The absolute number of emerging spots does not influence
the results as they are normalized and this high number is chosen in order to obtain statisti-
cally significant distributions. The constant emergence rate is a reasonable approximation
of the solar case during a small period of time, i.e a few months, which is the length of
time over which we let the model run.

Once the spots have emerged they begin to decay immediately (the formation time of
spots is short, i.e. hours (Solanki 2003), and is thus neglected in the model). Petrovay
and van Driel-Gesztelyi (1997) showed that the decay rate of a sunspot is related to its ra-
diusrS and thus is parabolic and not linear as was proposed in earlier works (e.g. Bumba,
1963). The quadratic decay is also favored by models that explain the erosion of a sunspot
as magnetic flux loss at the spot boundary (Meyer et al. 1974). A universal decay law de-
scribing the erosion of a large sample of spots does not exist. Howard (1992) and Martı́nez
Pillet et al. (1993) found that the sunspot decay rates are log-normally distributed. Com-
bining the latter results, we implement a parabolic decay law of the form

A(t) =

(√
A0 −

D√
A0

(t− t0)

)2

(7.4)

andA(t − t0 > A0/D) = 0. The decay ratesD are obtained from a random number
generator providing a log-normal distribution with a meanµ = 1.75 and a varianceσ2 =
2.

Combining the maximum area distribution with the decay law (Eq. 7.4) we can de-
termine the resulting snapshot distribution. We simulate an interval of 100 days after an
initialization time of 100 days in order to make sure that a reasonable mix of old, partly
decayed spots and newly emerged spots is present. We take the fit parameters for the
umbral maximum development distribution from Sect. 7.3 as the starting distribution of
our model.

7.4.2 Results from the model

The resulting snapshot distributions for a quadratic decay law of the form Eq. (7.4) with
log-normally distributed decay rates are derived for 3 different sampling times (Fig. 7.5 a).
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Figure 7.5: Results from the model for a quadratic decay-law for (a) log-normally dis-
tributed decay rates and sampling times of 1 hour, 1 day and 3 days and (b) for constant
decay ratesD = 5 MSH/day,D = 20 MSH/day andD = 50 MSH/day and a sampling
time of 1 day.
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Figure 7.6: Results from the model for a linear decay-law for (a) log-normally distributed
decay rates and sampling times of 1 hour, 1 day and 3 days and (b) for constant decay
ratesD = 5 MSH/day,D = 20 MSH/day andD = 50 MSH/day and a sampling time of
1 day
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7.4 Modelling the snapshot distribution

It is striking that the snapshot distributions can be fitted well by log-normal functions. A
sampling rate of1 day corresponds to the RGO dataset and thus can be compared with the
results for umbral areas in Fig. 7.1. The modelled snapshot distribution matches quite well
the observed snapshot distribution above the cut-off limit. Changing the sampling rate to
3 days, both distributions, maximum development and snapshot, merge closer together
and become almost identical. The explanation therefore is, that the observing intervals
become comparable to the lifetime of the spots which makes it at some stage impossible to
distinguish between the two distributions. If, however, we were to increase the observing
frequency to 1 hour, a sampling frequency provided by the MDI dataset, both distributions
differ more from each other as more decay stages of the spots are included in the snapshot
data. When considering such a short sampling interval the formation time of the spot
group becomes important and has to be taken into account, which is not included in our
model.

In the next step, we replace the log-normally distributed decay-rates in Eq. (7.4) by
constant decay rates (Fig. 7.5 b). It is interesting that for all constant decay rates the
snapshot distribution curves lie above the maximum area distribution for large areas. For
a high decay rate (i.e. 50 MSH/day) both distribution curves merge closer together than
for small decay rates (i.e. 5 MSH/day). This is understandable because a small decay
rate affects more the smaller spots than the larger spots. A variability of the decay rates
(log-normal distribution) thus seems necessary to yield the generally observed behaviour
that the maximum area curve in general lies above the snapshot curve.

In order to see how the decay law affects the results, we replace (7.4) by a linear decay
law of the form

A(t) = A0 −D (t− t0) (7.5)

andA(t − t0 > A0/D) = 0. As for the case of the quadratic decay law, we once use
log-normally distributed decay rates in Eq. (7.5) and investigate different sampling times
(Fig. 7.6 a) and once we use different constant decay rates (Fig. 7.6 b). Qualitatively, a
similar behaviour for both cases can be observed as in the case of a quadratic decay-
law, i.e. for constant decay rates the snapshot distributions lie above the maximum area
curve. When using log-normally distributed decay rates in the linear decay law (Eq. 7.5),
the resulting snapshot curves for the three different sampling times are almost not distin-
guishable. We conclude from our model that it is not possible to distinguish between a
linear and a quadratic decay-law by this analysis.

Of interest is to see if a power-law distribution of the maximum development areas
would also lead to a log-normal snapshot distribution. A power-law size distribution with
an exponent−2 has been found by Harvey (1993) for active regions using Kitt Peak
magnetograms. Since active regions harbour sunspots, it might be worth testing if the
maximum area distribution is similar to or very different from that of the host active
regions. To this purpose we insert a maximum size distribution dN/dA ∼ A−2 in our
model. This does not yield a log-normal snapshot distribution but rather something very
close to a power-law. To make sure that this result is not an artefact of the special choice
of the exponent of the power-law, we ran the same simulations with powers between−1.0
and−3.0. In all cases we can exclude a transformation of the power-law distribution for
the maximum areas into a log-normal snapshot distribution.
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7 On the size distribution of sunspot groups in the Greenwich sunspot record

7.5 Conclusion

The size distribution for both, umbral and total spot area, obtained from the snapshot
method and the maximum area distribution have a pronounced, smooth log-normal shape
above our lower cut-off limit. The results for the maximum development method show
clearly that neither the umbral areas nor the total spot areas have a power-law distribution
as one might expect from similar studies of active regions. Harvey and Zwaan (1993)
found a size distribution of bipolar active regions∼ A−2 where their study is equivalent
to our maximum development method. When modelling the snapshot distribution from
a given maximum development distribution via a quadratic decay of the spot areas, both
distributions become more distinct with higher sampling frequencies. Log-normally dis-
tributed decay-rates seem to be necessary to model qualitatively the observed snapshot
distributions. A linear decay law in our model yields qualitatively similar results as a
quadratic decay-law making it impossible to distinguish between them by this analysis.
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8 Comments and outlook

• In general, flux transport models assume a one-cell meridional flow. However,
reports about a possible multi-cell meridional circulation, at least temporally, come
from helioseismology (Haber et al. 2002). The influence of a two-cell meridional
circulation in the flux transport model on the evolution of the large-scale magnetic
field was investigated by McDonald and Dikpati (2004). As a result of the second
meridional flow cell flux is advected away from the pole and flux from the active
region belts is prevented from reaching the poles leading to a strong decrease of the
polar fields.

• The parameter study (Sect. 4) provides a good understanding of the influence of so-
lar cycle parameters on the global magnetic field. It would be of interest to simulate
the evolution of the surface magnetic field for specific active stars using realistic
parameters in the flux transport model. An attempt to simulate the magnetic field
evolution of AB Dor has been made by Mackay et al. (2004).

• A potential field extrapolation from the surface field calculated with the flux trans-
port model does not reproduce the historic open flux record when using only active
regions as sources of new magnetic flux. A combination with the open flux of
ephemeral regions improves the IMF modeling. In this thesis, we did this simply
by adding the ER open flux obtained by a different model. It would be interesting
to include ER as additional sources in the flux transport model in order to see if this
also leads to an improved open flux simulation.

• Potential field methods need to be improved in order to yield a better agreement
of the calculated open flux and the observed IMF. Once, when this is achieved, the
sunspot record underlying the reconstruction could be extended even further back
in time on the basis of the sunspot number, e.g. back to∼ 1650.
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Solanki, S. K., Scḧussler, M., Fligge, M., 2002b, Secular variation of the Sun’s magnetic
flux, A&A, 383, 706–712

Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., Beer, J., 2004, Unusual activity
of the Sun during recent decades compared to the previous 11,000 years, Nature, 431,
1084–1087

Stix, M., 1989, The Sun - An Introduction, Astronomy and Astrophysics Library
(Springer Verlag), first edn.

Svalgaard, L., Duvall, T. L., Scherrer, P. H., 1978, The strength of the Sun’s polar fields,
Sol. Phys., 58, 225–239

Tannenbaum, B. S., 1967, Plasma Physics, McGraw-Hill Book Company, first edn.

103



Bibliography

Topka, K., Moore, R., Labonte, B. J., Howard, R., 1982, Evidence for a poleward merid-
ional flow on the Sun, Sol. Phys., 79, 231–245

van Ballegooijen, A. A., Cartledge, N. P., Priest, E. R., 1998, Magnetic Flux Transport
and the Formation of Filament Channels on the Sun, ApJ, 501, 866–881

Vilhu, O., Rucinski, S. M., 1983, Period-activity relations in close binaries, A&A, 127,
5–14

Wang, Y.-M., Sheeley, N. R., 1989, Average properties of bipolar magnetic regions during
sunspot cycle 21, Sol. Phys., 124, 81–100

Wang, Y.-M., Sheeley, N. R., 1992, On potential field models of the solar corona, ApJ,
392, 310–319

Wang, Y.-M., Sheeley, N. R., 2002, Sunspot activity and the long-term variation of the
Sun’s open magnetic flux, Journal of Geophysical Research (Space Physics), 107, 10–1

Wang, Y.-M., Nash, A. G., Sheeley, N. R., 1989a, Evolution of the Sun’s polar fields
during sunspot cycle 21 - Poleward surges and long-term behavior, ApJ, 347, 529–539

Wang, Y.-M., Nash, A. G., Sheeley, N. R., 1989b, Magnetic flux transport on the Sun,
Science, 245, 712–718

Wang, Y.-M., Lean, J., Sheeley, N. R., 2000a, The long-term variation of the Sun’s open
magnetic flux, Geophys. Res. Lett., 27, 505–508

Wang, Y.-M., Sheeley, N. R., J., Lean, J., 2000b, Understanding the evolution of the Sun’s
open magnetic flux, Geophys. Res. Lett., 27, 621–624

Wang, Y.-M., Lean, J., Sheeley, N. R., 2002, Role of a Variable Meridional Flow in the
Secular Evolution of the Sun’s Polar Fields and Open Flux, ApJ, 577, L53–L57

Zhao, X., Hoeksema, J. T., 1994, A coronal magnetic field model with horizontal volume
and sheet currents, Sol. Phys., 151, 91–105

Zhao, X., Hoeksema, J. T., 1995, Prediction of the interplanetary magnetic field strength,
J. Geophys. Res., 100, 19–33

104



Acknowledgements

Die vorliegende Arbeit wurde am Max-Planck-Institut für Sonnensystemforschung in
Kaltenburg-Lindau angefertigt.

Mein besonderer Dank gilt Herrn Prof. Dr. Sami K. Solanki für die Erm̈oglichung dieser
Arbeit und der Bereitstellung eines sehr interessanten Forschungsthemas.

Bedanken m̈ochte ich mich bei Herrn Prof. Dr. Franz Kneer für die Übernahme der Be-
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