
1 Overview

This document describes the components of the mapping and tracking pipeline at
the MPS from seismo1 or seismo2. You can also refer to this website
www.mps.mpg.de/projects/seismo/Track%27n%27Map/Track%27n%27Map.html It
begins with an input file which defines all the non-fixed parameters. The fixed pa-
rameters are discussed in the relevant sections below. First set up the classpath for
the java file.
> export CLASSPATH=/opt/pegasus/default/lib/pegasus.jar:/opt/pegasus/

default/lib/vdl.jar:/data/seismo2/workflows/Assets/JAVA:/data/seismo2/

workflows/Assets/JAVA/postgresql-9.0-801.jdbc4.jar

Then run the java file to create the DAX file which is submitted to Pegasus.
> java -classpath $CLASSPATH CreateDAXva1p09 input parameter file

Then simply follow the online instructions to run the pipeline with Pegasus.

The input parameter file must follow this structure with each new parameter on
a new line:
version=1.05 —make sure this is the correct version number
daxfile=MapTrackDAX.dax — don’t touch this
in series=hmi test.m 45s — name of the input series you want to get data from
out series=mps schunker.m hmi lowres — the name of the output series (this
must exist - if not create one in step 1.)
t start=2010.11.11 00:00:00 TAI — the start time of the data you want to use
missing frames=b — fill any missing frames with blank (there is also an interpola-
tion option - not tested and not recommended)
workflowname=trackmap

namespace=MPS

mapping exec=drms mapping

cube exec=drms cube care

projection type=postel — type of projection. For now use only Postel.
n trac regions=1 — the total number of tracked regions in time
n spg=1 —- how many frames to overlap the cubes in time. Negative is overlap,
positive puts gaps in between (ignored if n trac regions=1)

n phi=1 — the number of longitudes of the centre of mapped regions
n lambda=1 — the number of latitudes of the centre of mapped regions
n map jobs=30 — the number of cpus to split this run over. No more than 30 is
recommended for now.
phi cen first box=2.5337940 — Carrington longitude of centre of map at central

1

www.mps.mpg.de/projects/seismo/Track%27n%27Map/Track%27n%27Map.html

time (radians)
lambda cen first box=-0.33161256 — Carrington latitude of centre of map at
central time (radians)
dx=0.001 — pixel size in the horizontal direction in units of radians
dy=0.001 — pixel size in the vertical direction in units of radians
a0=-0.02893 — constant of differential rotation profile (for more information on
tracking rates see here)
a2=-0.3441 — coefficient for sin2 of differential rotation profile
a4=-0.5037 — coefficient for sin4 of differential rotation profile
spec=norm — specified tracking, see below
ar number=11084 — active region number (if not applicable put NA)

We now describe the different components - tracking, mapping and creating the
datacube - in more detail.

2 Tracking

The tracking is dealt with in the java file CreateDAXva1p09.java, run by
> export CLASSPATH=/opt/pegasus/default/lib/pegasus.jar:/opt/pegasus/default/lib/vdl.jar:/data/seismo2/workflows/Assets/JAVA:/data/seismo2/workflows/Assets/JAVA/postgresql-9.0-801.jdbc4.jar

> java -classpath $CLASSPATH CreateDAXva1p09 input parameter file

The default tracking is latitudinally dependent at the Snodgrass rotation rate,
ω(λ) = a0 + a2 sin2 λ + a4 sin4 λ, where the coefficients are a0 = −0.02893, a2 =
−0.3441, a4 = −0.5037µrad/sec. Any other values of the coefficients can be set in
the input parameter file. There are four options that can be specified in the inpput
file for the tracking.

• centre: Tracks centred on the sub-observation point of HMI at the middle
time. Ignores the ”phi cen first box” and ”lambda cen first box” parameters.
Goes to the frame at the middle of the time range and gets OBS L0 and
OBS B0, it then tracks forward and backward in time to beginning and end
of the cube at the rate specified by the tracking coefficients (a0, a2, a4) at
OBS B0.

• eqcentre: Tracks centred on the meridian at the equator at the middle time.
Ignores the ”phi cen first box” and ”lambda cen first box” parameters. Goes
to the frame at the middle of the time range and gets OBS L0, it then tracks
forward and backward in time to beginning and end of the cube at the rate

2

specified by the tracking coefficients (a0, a2, a4) at the equator (ie. latitude
is 0 degrees).

• norm: this is ’normal’ tracking. It tracks at the latitude specified in ”lambda cen first box”
centred at the middle frame forward and backward in time to beginning and
end of the time series OF THE FIRST CUBE. It does NOT check if it is on
the visible side of the Sun.

• fixed: tracked at the Carrington rotation rate centred at the given co-ordinates.

The rotation rate is determined for the specified latitude given in the input
parameter file lambda cen firstbox which is the central latitude of the middle
frame of the first datacube.

The first file after the time given in the input parameter file for t start is the
first frame to be mapped.

The DRMS is queried for the cadence of the input series. The tracking is then
calculated for each time step at that cadence (60 or 45 seconds).

3 Defining the Time Computational Grid

– The coordinates that define the 3D spacetime are time, t, the latitude λ(t), and
the longitude, φ(t).

1) The input data for the tracking remapping consists of a long sequential time
series of fd MDI data. This already enforces the grid spacing in time to be approx-
imately 60s. We could also include other grid spacings, but this would involve a lot
of interpolation in time which is not the best for scientific analysis. The grid spacing
in time for MDI data also dictates that the points to be tracked around must also
lie on an MDI file and then the time at which this point is to be tracked forward
and backwards must also start/end on an MDI file.

So the grid must have a spacing of 60s (approximately MDI time, we can also
put a check to make sure it is 60 seconds as sometimes this may be out). We denote
T as the total duration for the MDI observations to be tracked/remapped and NT

is the number of MDI files. The user must input a start-time and end-time. It
is important that these times correspond precisely to the times in the MDI data
files. We will put a check to ensure this. Users can use the DRMS to search for
the data they are interested in and find this information. Thus, the total time is
automatically related to the number of points according to T = dt (NT − 1) where

3

for MDI data dt = 60s. In the future this will easily work for other data series such
as HMI and GONG. The computational time labels for each MDI file is denoted

ti = t0 + i dt where 0 ≤ i ≤ NT − 1 (1)

The user needs to specify the initial MDI time, t0, (or get this from the input
MDI file itself resulting from a DRMS search), the tracking duration δt, and the
time between each point to be tracked over, ∆t. These quantities automatically
determine the time-overlap (+ive i.e. there is overlap, 0 no overlap, and -ive there
is a gap). The precise end time depends heavily on all these quantities, thus this
is something the user cannot specify precisely. However, the user can specify an
approximate total time do perform the calculation and the code will search for the
nearest precise MDI time that can accommodate all the requirements.

From this we determine the number of grid points used for each individual
tracking, NTrac (will be odd). How many grid points in time each tracking cube
is overlapping with other cubes is denoted Nol. This can positive if they do not
overlap, 0 if they match perfectly, negative if they do overlap. It is given by

Nol =
∆t− δt
dt

= Nspg − 1− (Ntrac − 1)

= Nspg −Ntrac

3.1 Specifing mapping intervals

The times at which the Ntrac points will be tracked about are given by

Each tracking interval is defined by

m (Nspg +Ntrac) ≤ i ≤ m (Nspg +Ntrac) + (Ntrac − 1), where 0 ≤ m ≤ Ntrac − 1

Correspondingly the midpoint of each interval is

i = m (Nspg +Ntrac) + (Ntrac − 1)/2, where 0 ≤ m ≤ Ntrac − 1.

(tracking region must have odd number of points in time)

4

4 Grid in Space

1) Let the mid-point of the first tracking interval be the reference time, tref, at which
a uniform reference grid is defined. The reference grid is sliced into regions in both
latitude Nλ, and longitude Nφ, which are both specified by the user. The latitude
runs from -90 to 90, whereas the longitude runs from 0 to 360. The overlap in
both longitude and latitude are also specified by the user. This must be given in
percentage (of area or length?). The distance between each latitude and longitude
center points respectively are

∆λ = π/Nλ

∆φ = 2π/Nφ.

Thus, the lat/long centers of each region of this reference frame are given by

λrefk = −π/2 + ∆λ/2 + k∆λ where 0 ≤ k ≤ Nλ − 1

φref
j = ∆φ/2 + j∆φ where 0 ≤ j ≤ Nφ − 1

The tracking code will generate a file to be later passed to the mapmdi code.
Each line of this file is of the form

xxx.FITS, L0, B0, dx, dy, nx, ny

where L0 and B0 are the lat/long to be mapped about. dx and dy are user input
and must be an input to the tracking code. nx and ny are usually a user input for
the mapmdi code. However, here the tracking code calculates these quantities based
on the number of regions specified in lat/long.

input from the user to the tracking code must therefore be

• dx: degrees/pixel in the resultant mapped region, in the longitudinal direction;
user input for tracking code then passed directly to mapmdi

• dy: degrees/pixel in the resultant mapped region, in the latitudinal direction;
user input for tracking code then passed directly to mapmdi

• nx: integer number of full pixels in the resultant mapped region, in the longi-
tudinal direction (does this account for rotations in SOHO for example, done
so using the header)

• ny: integer number of full pixels in the resultant mapped region, in the latitu-
dinal direction.

5

• overlap: the percentage in length (ox and oy in the x and y directions respec-
tively) that the regions overlap with respect to total length

• zx/y: in percentage, it is the extension (in both x/y directions respectively)
required to the non-overlapping regions where zx/y = 0.

• nx = ∆φ
dx

(1 + 2 zx)

• ny = ∆λ
dy

(1 + 2 zy)

The relationship between zx/y and the overlap is

zx/y =
ox/y

2 (1− ox/y)
where ox/y 6= 1 (2)

for x and y directions respectively.

For example, a user can specify a dy of 1 degree per pixel in the resultant
mapped file. Then if the user also specified tracking input as three regions for
the latitudinal region, then each region has 60 degrees each and are separated by
∆λ = 60. Thus, the tracking code will calculate that 60 pixels are needed to
accomplish this. According to the formula above we have

ny =
∆λ

dy
= 60/1 = 60 (3)

In the case where this is not a perfect integer, we should round this up to the
nearest integer (we could also check that if a square is requested, then it remains
a square). So, following on from the last example, a user could choose a high
resolution of dy=0.5 degrees per pixel and since the number of regions is still 3,
then it would take ny of 120 pixels to achieve this. We need to also give a blank file
with dimensions nx ny and also with dx/dy information in its header.

The overlap factor must also be an input to the tracking code

If there is zero overlapping (in space), then the boundaries of all regions will
align perfectly. If negative overlapping is requested (i.e. space between each region)
we just need to create the corresponding parameters and pass these to Charlie’s
code. However, if positive overlapping is requested, i.e. regions overlap in some way,
then this needs a careful treatment. dy and dx are the scaling (degrees/pixel) of the
final mapped observations., the overlap is given by ox and oy in percent.

6

5 Mapping

Code name: drms mapping.c

Call sequence: drms mapping [-gdcmv] inlist=... outlist=...

-g: geometry flag

-d: doppler flag

-c: continuum flag

-m: magnetogram flag

-v: verbose

inlist (string): input list containing files to be mapped

(no default)

outlist (string): output list containing sequential filenames of the mapped

patches

default value: cube.list

The ‘inlist’ contains the DRMS series; T REC of the data frame; the segment name;
the id of the datacube this map will belong to; the central longitude of the map; the
central latitude of the map; offset of the x-centre of the postel map in pixels; offset
of the y-centre of the postel map in pixels; number of pixels in the x-direction for
the resulting map; number of pixels in the y-direction for the resulting map; x-axis
scale (radians per pixel); y-axis scale (radians per pixel); name of the output file;
type of mapping.
e.g.
hmi.v 45s[2011.05.04 11:23:15 TAI] Dopplergram 1

67.47873934450685 0.0 0.0 0.0 256 256 5.0E-4 5.0E-4 map0 mj14 cube0 wfid1.fits

-postel

The ’outlist’ at this stage is the name of the file that the names of the mapped
fits files are written to.

• Opens input list containing all relevant mapping details and output list (see
above). If either does not exists, exists.

• Reads in keywords from the header of the file (can deal with either MDI or
HMI). XX list necessary keywords XX

• Reads in the full data array.

• Measures the solar rotation from this array.

7

• Removes the solar rotation by fitting a two-dimensional plane to the array.

• Magnify the array if desired (this is not implemented in the pipeline as it
takes up significant memory) onto a finer grid, using Fourier interpolation.
This reduces the effects of aliasing and the Moire effect.

• The array is then padded reducing the effects of truncating at the limb when
the Fourier interpolator is used.

• Loops over the number of patches to be mapped in one array.

• Compute the Postel projected maps (perpendicular and line-of-sight projec-
tions are available but not tested) for each central latitude and longitude, and
write out.

• If Carrington longitude and latitude of each point in the Postel map is required
(given by the -g parameter) it is computed and written out.

5.1 Postel projection

The function postel in drms mapping computes the Postel projection.
First the array is rotated so that the specified central latitude and longitude of the
resulting Postel map is at the centre (see Appendix A). This takes into account the
P-angle and the B-angle.

Then the array is mapped from the CCD coordinates to the Postel map coordi-
nates (see Appenidx C).

6 Creating the datacube

This reads the header information from the first mapped input file and writes this
information to the header for the datacube. XX This should be corrected, so that
it takes data from the middle frame XX.

A Define the rotation matrices.

The co-ordinates are defined with the x and y axis in the plane of the image (x
horizontal and to the right and y vertically upwards) with the z-axis coming out of

8

the plane. We want to rotate the axis so that a point C with longitudinal distance
from the meridian and latitude co-ordinates given by l and b respectively (i.e. l =
L0− lc where lc is the actual Carrington longitude of point C).

First rotate about the z-axis to correct for the P-angle:

Rz(P) =

 cosP sinP 0
− sinP cosP 0

0 0 1

 (4)

Then rotate by angle of π/2−B0 about the x-axis to align the solar North pole
with the z-axis using:

Rx(π/2−B0) =

 1 0 0
0 cos(π/2−B0) sin(π/2−B0)
0 − sin(π/2−B0) cos(π/2−B0)

 (5)

to get

Rz(P)Rx(π/2−B0) =

 cosP sinP cos(π/2−B0) sinP sin(π/2−B0)
− sinP cosP cos(π/2−B0) cosP sin(π/2−B0)

0 − sin(π/2−B0) cos(π/2−B0)

 .
(6)

Then rotate about the z-axis to align with the longitudinal distance of the point
C from the meridian (which lies along the zy-plane), l using:

Rz(l) =

 cos l sin l 0
− sin l cos l 0

0 0 1

 (7)

to get

Then rotate about the x-axis to align with the latitude of point C using:

Rx(b− π/2) =

 1 0 0
0 cos(b− π/2)) sin(b− π/2))
0 − sin(b− π/2)) cos(b− π/2))

 (8)

to get
R = Rz(P)Rx(π/2−B0)Rz(l)Rx(b− π/2) (9)

9

where the components of R are

Rxx = cos l cosP − sin l sinP cos(π/2−B0)
Rxy = cos(b− π/2) (sin l cosP + cos l sinP cos(π/2−B0))

− sin(b− π/2) sinP sin(π/2−B0)
Rxz = sin(b− π/2) (− sin l cosP + cos l sinP cos(π/2−B0))

+ cos(b− π/2) sinP sin(π/2−B0)
Ryx = − sinP cos l − sin l cosP cos(π/2−B0)
Ryy = cos(b− π/2) (− sin l sinP + cos l cosP cos(π/2−B0))

− sin(b− π/2) cosP sin(π/2−B0)
Ryz = sin(b− π/2) (− sin l sin p+ cos l cosP cos(π/2−B0))

+ cos(b− π/2) cosP sin(π/2−B0)
Rzx = sin l sin(π/2−B0)
Rzy = − cos(b− π/2) cos l sin(π/2−B0)− sin(b− π/2) cos(π/2−B0)
Rzz = − sin(b− π/2) cos l sin(π/2−B0) + cos(π/2−B0) cos(b− π/2)

(10)

which simplifies to

Rxx = cos l cosP − sin l sinP sinB0
Rxy = sin b (sin l cosP + cos l sinP sinB0)

+ cos b sinP cosB0
Rxz = − cos b (− sin l cosP + cos l sinP sinB0)

+ sin b sinP cosB0
Ryx = − sinP cos l − sin l cosP sinB0
Ryy = sin b (− sin l sinP + cos l cosP sinB0)

+ cos b cosP cosB0
Ryz = − cos b (− sin l sin p+ cos l cosP sinB0)

+ sin b cosP cosB0
Rzx = sin l cosB0
Rzy = − sin b cos l cosB0 + cos b sinB0
Rzz = cos b cos l cosB0 + sinB0 sin b

(11)

10

and can be re-written as

Rxx = cos l cosP− sin l sinP sinB0
Rxy = sin b sin l cosP + sinP (cos b cosB0+ cos l sinB0 sin b)
Rxz = + cos b sin l cosP + sinP (sin b cosB0− cos b cos l sinB0)
Ryx = − sinP cos l− sin l cosP sinB0
Ryy = − sin b sin l sinP + cosP (cos b cosB0+ cos l sinB0 sin b)
Ryz = cos b sin l sin p+ cosP (sin b cosB0− cos b cos l sinB0)
Rzx = sin l cosB0
Rzy = − sin b cos l cosB0+ cos b sinB0
Rzz = cos b cos l cosB0+ sinB0 sin b

(12)

where the red symbols indicate a different sign to “map mdi.c”. The Eqns. 12 (other
than the incorrect signs) appear in the postel function in the drms mapping code.

B The oblate Sun

There is also some scaling to account for the Sun not being a perfect sphere using
the semi-major and semi-minor axis. Let the semi-major axis of the Sun be Rmajor

(and ψ in radians) and the semi-minor axis be Rminor in pixels. These are given in
the header of the images.

Sxx = 0.5 ((Rmajor +Rminor)− (Rmajor −Rminor) cos(2ψ)) (13)

Sxy = 0.5 ((Rmajor −Rminor) sin(2ψ)) (14)

Syx = 0.5 ((Rmajor −Rminor) sin(2ψ)) (15)

Syy = 0.5 ((Rmajor +Rminor) + (Rmajor −Rminor) cos(2ψ)) (16)

(17)

C Postel to CCD equations

We begin with the Postel map we want to create. The horizontal and vertical
coordinates on in the Postel projection are ξ and η in units of heliocentric radians.
The pixel scale is P in units of radians per pixel. Use ρ as the distance from the
center of the map (again heliocentric radians) and φ as the angle counter-clockwise

11

from the ξ axis:

ρ =
√
η2 + ξ2, (18)

φ = arctan(η/ξ). (19)

Let m = ρ/P be ρ in units of pixels.

We need to find the where a point with Postel coordinates ρ and φ is located on
the CCD. On the CCD let the horizontal direction be x and the vertical direction
be y.

r =
√
x2 + y2, (20)

φ = arctan(y/x). (21)

The angle φ is the same on the CCD as the Postel. Need to determine where ρ is
on the CCD i.e. r(ρ).

r

f
= tanα =

R� sin ρ

D −R� cos ρ
(22)

r = f
R� sin ρ

D −R� cos ρ
, (23)

where α is the angle between the sub-observation point, the observer and the coor-
dinate to be mapped. Notice that we haven’t yet said what the focal length f is.
We will come back to this.

Thus the point on the Sun given by ρ and φ is located on the CCD at the point:

x = r(ρ) cosφ (24)

y = r(ρ) sinφ. (25)

Define αmax as the angle between the sub-observation point, the centre of the
CCD and the observed limb (see Figure 3). Use r� as the distance to limb on the
CCD. From looking at the figure, we see sinαmax = R�/D. The size of the Sun on
the CCD is r� = f tanαmax. Use Y and Z is the dimensionless coordinates from
Figure 3.

Then put into above equations:

r/r� =
cosαmax

sinαmax

Y

1/ sinαmax − Z
(26)

r/r� =
Y
(
1− sin2 αmax

)1/2

1− sinαmaxZ
(27)

r/r� = p(Z)Y . (28)

12

Figure 1: Defining the coordinates on the Postel map and the CCD.

13

Figure 2: To illustrate the three-dimensional coordinates for the Postel projected
map.

14

Figure 3: The geometry involved in deriving the scaling factor (Charlie calls it
parallax) due to the finite distance from the Sun. The similar triangles with which
we equate the ratio of the sides are outlined in blue.

15

Define “parallax” factor p(Z) =
(
1− sin2 αmax

)1/2
/(1− sinαmaxZ).

C.1 Postel projection

Insert the Postel equations here and more derivation.
Define the Postel map coordinates, η, ξ, φ and ρ as before in units of radians (see
Figure 1) i.e. φ = arctan(η/ξ) and ρ =

√
ξ2 + η2.

Then

ζ = cos ρ (29)

ρ = sin ρ (30)

notice that ρ is redefined! So that

ξnew = ρ cosφ (31)

ηnew = ρ sinφ (32)

which is exactly taken from the drms mapping code.

C.2 Final equations

What appears in the code are as follows. Rotate about the z-axis.

z = (Rzxξnew +Rzyηnew +Rzzζ) (33)

Then rotate about the x and y axis and scale for the parallax.

xt = (Rxxξnew +Rxyηnew +Rxzζ)
(1− sin2 αmax)1/2

(1− sinαmaxz)
(34)

yt = (Ryxξnew +Ryyηnew +Ryzζ)
(1− sin2 αmax)1/2

(1− sinαmaxz)
(35)

and then account for any oblateness

x = x0 + Sxxxt + Sxyyt (36)

y = y0 + Syxxt + Syyyt (37)

where x0 and y0 are where the centre of the CCD is defined in pixels. These equations
are what appear in the postel function in the drms mapping code.

16

Intermediate results for rotation matrices, for debugging:

Rz(P)Rx(π/2−B0)Rz(l)

=

 cos l cosP − sin l sin p cos(π/2−B0) sin l cosP + cos l sinP cos(π/2−B0) sinP sin(π/2−B0)
− sinP cos l − sin l cosP cos(π/2−B0) − sin l sinP + cos l cosP cos(π/2−B0) cosP sin(π/2−B0)

sin l sin(π/2−B0) − cos l sin(π/2−B0) cos(π/2−B0)

 .
(38)

17

	Overview
	Tracking
	Defining the Time Computational Grid
	Specifing mapping intervals

	Grid in Space
	Mapping
	Postel projection

	Creating the datacube
	Define the rotation matrices.
	The oblate Sun
	Postel to CCD equations
	Postel projection
	Final equations

