
MAX–PLANCK–INSTITUT FÜR AERONOMIE
D–37191 Katlenburg-Lindau, Federal Republic of Germany

Graphics and Colour with LATEX

Patrick W. Daly

1998 June 4

[This document is also available in PostScript and HTML form.]

Contents

1 Introduction 2

2 Importing external graphics 2
2.1 Importing with the graphics package . 3
2.2 Scaling . 3
2.3 Reflection . 4
2.4 Rotation . 4
2.5 Importing, scaling, rotating with the graphicx package 4

3 Additional graphics packages 6
3.1 The epsfig package . 6
3.2 The lscape package . 6
3.3 The rotating package . 6

4 Troubleshooting 7
4.1 How importation works . 7
4.2 Problems with importation . 7

5 Configuring graphics importation 9
5.1 Default driver . 9
5.2 Search path for graphics files . 9
5.3 Default extensions . 9
5.4 Graphics types . 10
5.5 Compressing graphics files . 10

1

Source of text
This article is an extract from the 3rd edition of A Guide to LaTeX by Kopka and Daly

grf.ps
grf.htm

1 INTRODUCTION 2

6 Colours 10

7 The named colour model 12

1 Introduction

The advent of PostScript drivers for TEX has offered the opportunity to expand the
capabilities of LATEX to include a number of very useful features, such as the importa-
tion, scaling, and rotation of external graphics files, and colour. However, since each
driver tended to have its own packages and user interface commands, the resulting LATEX
document files threatened to become tied to one particular driver.

With LATEX 2ε, a standardized set of commands is made available for all drivers by
means of the packages graphics and color. The specialized coding to translate the user
commands into instructions for the specific drivers is placed in certain .def files which
are loaded by options to these packages. Thus one only needs to change the option to
switch to another driver; the main text remains unchanged.

The commands defined by these packages are the building blocks for other packages
that either emulate the older driver-specific ones or provide a more comfortable syntax
for these functions. As long as these other packages are based on graphics and color,
they should be equally compatible with all the supported drivers.

2 Importing external graphics

The problem is to have a graphics file produced by some other program included in the
document, most likely as a figure. It may be necessary to scale it or to rotate it by 90◦.
One wants to do by computer what used to be done with scissors and glue.

There are two packages available for importing and manipulating external graphics
files: the more basic graphics and the more extended graphicx. They both have iden-
tical functionality, differing only in syntax.

In addition to the driver names, there are some other options that may be invoked
when the packages graphics or graphicx are loaded:

draft does not import but places a framed box where the graphic would appear, with
the file name printed inside; this speeds up the processing considerably when one
is only working on the text;

final counteracts draft; needed when the draft option has been issued globally in
\documentclass;

hidescale

leaves blank space where scaled text should be;

hiderotate

leaves blank space where rotated text should be; this and the option hidescale

are useful if the previewer cannot handle scaling or rotation;

2 IMPORTING EXTERNAL GRAPHICS 3

hiresbb

look for bounding box values in %%HiResBoundingBox instead of the the normal
%%BoundingBox line.

2.1 Importing with the graphics package

The basic importing command with the graphics package is

\includegraphics[llx,lly][urx,ury]{file name}

where llx, lly are the coordinates of the lower left corner, and urx, ury those of the upper
right corner of the bounding box containing the part of the picture that is to be included.
In other words, they say where the scissors are to be applied. Units may be specified (like
[3cm, 2in]) but if they are omitted, big points (bp, 72 per inch, 28.3464. . . per cm) are
assumed. If only one optional argument is given, it is the upper right corner, and the
lower left is assumed to be [0,0].

If no bounding box coordinates are given, the driver will obtain them
some other way, depending on the type of graphics file. For example, for
the very common encapsulated PostScript files with extension .eps, the
bounding box information is extracted from the graphics file itself. The
figure at the right is stored in such a file and is included simply with the
command

\includegraphics{clock.eps}

With \includegraphics*, the figure is clipped, so that any drawing outside the
specified bounding box is suppressed. This is useful if only part of a figure is to be
reproduced. It is also vital with some perverse figures that paint the whole page white!

2.2 Scaling

The graphics file in the above commands is transferred to the document in its original
size. In order to rescale it, there are two commands available:

\scalebox{h scale}[v scale]{text}

which applies horizontal and vertical scale factors to the contents text ; if v scale is omit-
ted, it is the same as h scale;

\resizebox{h length}{v length}{text}

adjusts the figure to fit into the specified horizontal and vertical sizes; if either length is
given as !, the one scale factor is used for both dimensions. A *-form allows v length to
refer to the height + depth of the box, rather than just to the height. In both cases, the
contents text may be an \includegraphics command, but it may also be any arbitrary
text.

2 IMPORTING EXTERNAL GRAPHICS 4

2.3 Reflection

The contents of a box may be reflected horizontally with

\reflectbox{text}

2.4 Rotation

Rotation of a box about the left-hand end of its baseline is done with

\rotatebox{angle}{text}

where angle is in degrees, and the rotation is counterclockwise.

To illustrate this, we have scaled the previous clock figure to a
height of 2 cm and then rotated it by 30◦, using the commands

\rotatebox{30}{\resizebox{!}{2cm}{%

\includegraphics{clock.eps}}}

For demonstration purposes, we have added framed boxes around the figure before and
after the rotation. It is the inner (tilted) box that is 2 cm high, while the overall outer
box is somewhat higher and broader due to its inclined contents. Without these frames
the figure seems to have extraneous space above and to the left, something that can be
very puzzling even to experienced users. (The frames would not normally appear with
the above commands.)

2.5 Importing, scaling, rotating with the graphicx package

If one selects the graphicx rather than the graphics package, a different interface is
available for both importing and rotation, one making use of keys and values:

\includegraphics[key=value,. . .]{file name}

The keys are of two types: those that take a numerical value, and those that are flags with
the values true or false. Simply giving the name of a flag without a value is equivalent
to setting it to true. Possible keys and their values are:

scale= number ; enters the number by which the figure size should be magnified over its
natural size;

width= length; specifies the width to which the figure should be scaled to; if height not
given, it is scaled with the same factor as the width;

height= length; specifies the height to which the figure should be scaled to; if width is
not given, it is scaled with the same factor as the height;

totalheight= length; like height but specifies the height plus depth of the figure; should
always be used in place of height if the figure has been rotated;

2 IMPORTING EXTERNAL GRAPHICS 5

keepaspectratio (= true/false); if both height and width are specified, this flag en-
sures that the original height/width ratio remains unchanged; the figure will not
exceed either of the given dimensions;

angle= number ; the angle by which the figure is to be rotated counterclockwise, in
degrees; any height or width specifications coming before this key are also rotated,
so that the height becomes the width, while the width becomes either the height
(positive angle) or depth (negative angle);

origin= loc; determines the point about which the rotation occurs; default is bl for
bottom left corner; also possible are c for center, t for top, r for right, and B for
baseline; any sensible combination, such as tr, is allowed;

draft (= true/false); like the draft package option but applied to the one graphics file;
the figure is not imported, but rather a framed box of the correct size is printed
containing the name of the file;

clip (= true/false); suppresses the printing of any graphic outside the bounding box;

bb= llx lly urx ury ; enters the coordinates of the bounding box manually, if they are miss-
ing or incorrect in the graphics file, or to be deliberately altered; the specifications
are four lengths separated by blanks; units may be given, but if omitted, big points
(bp) are assumed;

viewport= llx lly urx ury ; specifies the bounding box but relative to the lower left corner
of the existing one; useful for correcting the bounding box, or (with clip) to select
only a portion of the whole figure;

trim= dllx dlly durx dury ; reduces the existing bounding box by the amounts specified;

hiresbb (= true/false); like the hiresbb package option but applied to the one graphics
file; reads bounding box information from the %%HiResBoundingBox line in the
graphics file.

The keys are all optional; they are included as needed. Their order is not important
other than that angle can change previous height and width meanings. The sets of
key/values are separated from each other by commas.

With the key/value syntax, the tilted, scaled graphic on page 4 is produced with

\includegraphics[height=2cm,angle=30]{clock.eps}

For compatibility with the graphics package, there also exists an \includegraphics*

version that clips the imported figure; this is equivalent to including the key clip.
With the graphicx package, the \rotatebox command is similarly redefined to accept

the optional key origin.

3 ADDITIONAL GRAPHICS PACKAGES 6

3 Additional graphics packages

3.1 The epsfig package

Sebastian Rahtz has provided a package epsfig that not only updates the earlier (2.09)
version, but also re-implements Rokicki’s epsf package by means of the graphics com-
mands. This is helpful for users who are accustomed to those syntaxes. For epsf, this
is

\epsfysize=y size or \epsfxsize=x size
\epsf[llx lly urx ury]{file name}

The epsfig package also defines an importing command that makes use of the regular
keys and values to enter its parameters:

\epsfig{file=file name,key=value,. . . }

For compatibility with some older versions, there is a \psfig command which is synony-
mous with the above.

The epsfig package is included in the bundle of graphics packages and drivers.

3.2 The lscape package

Another extra package in the graphics bundle is lscape, by David Carlisle. This defines
a landscape environment that prints its contents rotated 90◦on a page for itself. Head
and footlines remain as normal. This is intended primarily for inserting figures that are
in landscape mode, that is, wider than they are high.

3.3 The rotating package

The rotating package by Sebastian Rahtz and Leonor Barroca tries to make the interface
for rotation somewhat simpler. It defines

\begin{sideways} text \end{sideways}

\begin{turn}{angle} text \end{turn}

\begin{rotate}{angle} text \end{rotate}

\turnbox{angle}{text}

where sideways rotates text by 90◦, turn by an arbitrary angle. The environment rotate
and command turnbox are equivalent: they rotate but in a box of zero size, so that the
contents overlap the surroundings.

This package is not part of the graphics bundle and must be obtained separately.

4 TROUBLESHOOTING 7

4 Troubleshooting

4.1 How importation works

In order to understand better what can go wrong when a graphics file is imported, and
to know what to do about, it is important to realize how the interplay between LATEX
and the driver program functions.

LATEX has no idea what is in the graphics file; for it, the figure is simply a box of a
given height, width, and depth, as indeed are all the characters that LATEX processes. The
information on the graphic’s natural size is somehow obtained, by reading %%BoundingBox

line in the graphics file itself, or in some other file, or through the optional entries in the
\includegraphics command or equivalent. After scaling and rotating, LATEX knows the
final size that it must reserve in the output text for the figure.

What is then written to the .dvi file is the name of the graphics file and information
on how it should be transformed. Just how this information is coded depends on the
graphics driver selected. When the printer driver program processes the .dvi file, it
interprets these special instructions, reads in the specified graphics file, performs the
transformations, and places the result where LATEX has said it should go. The end result
is that the area inside the designated bounding box coincides with the box that LATEX
has reserved for it. If the bounding box information is incorrect, the figure is obviously
going to be misplaced.

The most common type of graphics file to be imported is encapsulated PostScript.
Files adhering to this standard are intended to be included within other PostScript files,
and so must not contain certain PostScript commands that reset the whole graphics page.
Most importantly, it must contain a comment line (ignored by PostScript itself) of the
form:

%%BoundingBox: llx lly urx ury

giving the coordinates of the lower left and upper right corners of the bounding box. The
units are never specified, always being big points.

Having pointed out how the importation takes place, we can now discuss what can
go wrong along this chain of processes.

4.2 Problems with importation

The most common problems encountered when importing encapsulated PostScript files
are listed here.

No bounding box. If the bounding box information is totally missing from the graphics
file, LATEX issues the error message

! LaTeX Error: Cannot determine size of graphic
in ... (no BoundingBox).

4 TROUBLESHOOTING 8

The solution is to determine the bounding box coordinates somehow (see next point)
and to include them, either in the \includegraphics command, or by editing the
graphics file itself. However, if there really is no bounding box information in the
file, it is unlikely to conform to the encapsulated standard and will cause other
problems.

The placement is incorrect. Both the LATEX and driver process without error mes-
sages, but the figure is either displaced from the expected position, or is far too
small.

Most likely the bounding box information is incorrect. Many applications that
produce PostScript files are too lazy to calculate the true bounding box, or they
think they are generating a whole page with a figure somewhere in the middle. In
either case, the bounding box corresponds to the full page even though the printed
figure occupies only a portion of it.

Find the true bounding box by one of the following methods:

1. Print the figure, mark the lower left and upper right corners of the box con-
taining the figure, and measure their distances from the left and bottom edges.
Enter these distances in the \includegraphics command, or edit the Post-
Script file. In the latter case, convert to big points.

Difficulties with this are that some encapsulated PostScript files cannot be
printed on their own, and that the left and bottom edges of the paper need
not be the exact lines from which the printer really measures.

2. Include the figure in a short LATEX file such as

\setlength{\fboxsep}{-\fboxrule}

\fbox{\includegraphics{test.eps}}

and print the output. The apparent bounding box appears as a framed box.
Measure the true bounding box relative to the left and bottom edges of the
apparent one, and enter the values in the \includegraphics command with
the viewport= key. If necessary, scale the figure down to fit on the page, but
then remember to increase the measurements by the same scale factor.

3. Use the GhostView program to fix up the bounding box, either automatically
or manually. This is the most convenient method if you have this utility for
viewing and manipulating PostScript files.

Immovable graphic. It does not shift, nor scale nor rotate, no matter what is specified.
In this case, it violates the encapsulated PostScript rules and contains some global
plotting commands. Graphics produced by word processing programs are notorious
for this. Often the offending command is setpagedevice.

There is little that can be done to correct this, other than trying to regenerate
the graphics file with an option for encapsulated PostScript. Judicious editing can

5 CONFIGURING GRAPHICS IMPORTATION 9

remove the troublesome lines, but this could result in the file becoming totally
unreadable.

5 Configuring graphics importation

Although the graphics syntax has been standardized, and most of the driver-specific
coding hidden in the .def files, there are still a number of items that must be set up for
any particular installation and operating system. These are most conveniently placed in
the local configuration file graphics.cfg which is read in if it is present.

5.1 Default driver

The choice of driver option must always be specified, but a local default can be established
by placing the line

\ExecuteOptions{driver}

into the configuration file, where driver is one of the allowed driver options. This may
be overridden by any explicit driver option specified in the document file itself.

The rest of the configuring commands in this section can be issued either in the
graphics.cfg file, or in the document.

5.2 Search path for graphics files

One can specify the directories where LATEX is to look for graphics files with

\graphicspath{dir list}

where dir list is a list of directory names, separated by commas. The syntax of the local
operating system must be used. Without this command, LATEX searches for graphics files
in the same directories as for all other TEX files.

5.3 Default extensions

A list of default extensions for the graphics files can be defined with

\DeclareGraphicsExtensions{ext list}

This means that only the root name of the file must be given and LATEX will attempt
to find it by attaching all the possible extensions. For PostScript drivers, the ext list is
usually set to .eps,.ps. At our installation, we also include the non-standard extension
.psc. Note that the above command does not add to the list of extensions but rewrites
it anew; if you wish to add to the list, you must include all the allowed extensions in the
one declaration.

6 COLOURS 10

5.4 Graphics types

Defining the extensions is only part of the task: one must also associate each extension
with a graphics type so the LATEX knows how to process it. PostScript recognizes only
one type, eps, encapsulated PostScript, but there do exist other types such as bmp and
pcx for other drivers. For the non-standard .psc extension above, we must also give

\DeclareGraphicsRule{.psc}{eps}{}{}

to inform LATEX that this extension belongs to type eps. The other two (empty) argu-
ments specify that the bounding box information is to be read from the file itself, and
that no other program needs to be applied to the file.

5.5 Compressing graphics files

Since PostScript files are often extremely large, it makes sense to try to compress them
with either the zip or gzip programs. In such a case, the .eps file is replaced by a
file with extension .zip, or .eps.gz, or .eps-gz. Two problems now arise: first, LATEX
cannot read such files to obtain the bounding box information, and secondly, the driver
needs to unpack such a file to include it in the final output. This can be accomplished
with, for example,

\DeclareGraphicsRule{.eps.gz}{eps}{.eps.bb}{‘gunzip -c #1}

which establishes the graphics type as eps, with the bounding box information in the
file of the same name and extension .eps.bb, and that the operating system command
gunzip -c must be applied to the file (represented as #1). The single quote ‘ is required
to indicate a system command. The %%BoundingBox line of the original file must be
copied and stored in the .eps.bb file.

Such decompression rules are system dependent and thus need to be configured for
the local installation. For example, under the VMS operating system, the gzip program
produces files with extension .eps-gz and decompression is performed with gzip -d

rather than with gunzip. The corresponding rule becomes

\DeclareGraphicsRule{.eps-gz}{eps}{.bb}{‘gzip -d -c #1}

6 Colours

The color package recognizes the options:

monochrome

to convert all colour commands to black and white, for previewers that cannot
handle colour;

dvipsnames

makes the named colour model of dvips (Section 7) available to other drivers;

6 COLOURS 11

nodvipsnames

disables the named model for dvips, to save memory;

usenames

loads all the named colours as defined ones; again, see Section 7 for details.

A local configuration file color.cfg can be set up in the same way as for the graphics
package. The default driver option is specified in exactly the same way as in Section 5.

Colours are specified either by a defined name, or by the form

[model]{specs}

where model is one of rgb (red, green, blue), cmyk (cyan, magenta, yellow, black), gray, or
named. The specs is a list of numbers from 0 to 1 giving the strengths of the components in
the model. Thus [rgb]{1,0,0} defines red, [cmyk]{0,0,1,0} yellow. The gray model
takes only one number. The named model accesses colours by internal names that were
originally built into the dvips driver, but which may now be used by some other drivers
too. This model is described in Section 7.

A colour can be defined with

\definecolor{name}{model}{specs}

and then the name may be used in all the following colour commands. Certain colours
are automatically predefined for all drivers: red, green, blue, yellow, cyan, magenta,
black, white.

In the following colour commands, col spec is either the name of a defined colour, like
{blue}, or [model]{spec}, like [rgb]{0,1,0}.

\pagecolor col spec sets the background colour for the current and following pages;

\color col spec is a declaration to switch to setting text in the given colour;

\textcolor col spec{text} sets the text of its argument in the given colour;

\colorbox col spec{text} sets its argument in a box with the given colour as background;

\fcolorbox col spec1 col spec2{text} is like \colorbox, with a frame of col spec1 around
a box of background colour col spec2 ; the two specifications must either both be
defined ones, or both use the same model, which is given only once; for example,
\fcolorbox{red}{green}{Text} sets ‘Text’ in the current text colour on a green
background with a red frame;

\normalcolor switches to the colour that was active at the end of the preamble. Thus
placing a \color command in the preamble can change the standard colour for the
whole document. This is the equivalent to \normalfont for font selection.

Normally one would try to define all the colours needed as names for the col spec
entries. This simplifies changing the colour definition everywhere should fine tuning be
required after the initial printed results are seen. The same colour definition can produce
quite different effects on different printers. Even the display on the monitor is no reliable
guide as to how the output will appear on paper.

7 THE NAMED COLOUR MODEL 12

7 The named colour model

One very useful colour model is called named and is based on the 68 predefined internal
colours of the dvips PostScript driver. Sample names are BurntOrange or DarkOrchid.
This model can be activated for other drivers with the option dvipsnames, in which case
one can define colours as, for example

\definecolor{titlecol}[named]{DarkOrchid}

The colour titlecol can then be used as col spec in the various colour commands.
The named colours can be defined with their own names if one invokes the option

usenames, which effectively declares

\definecolor{BurntOrange}[named]{BurntOrange}

and so on, for all 68 colours.
It is possible to generate a palette of the named colours by processing the following

short LATEX file and sending the output to the desired printer.

\documentclass[12pt,a4paper]{article}

\usepackage[dvips]{color}

\usepackage{multicol}

\pagestyle{empty}

\setlength{\oddsidemargin}{0pt}

\setlength{\textwidth}{16cm}

\setlength{\textheight}{22cm}

\setlength{\parindent}{0pt}

\setlength{\parskip}{0pt}

\begin{document}

\renewcommand*{\DefineNamedColor}[4]{%

\textcolor[named]{#2}{\rule{7mm}{7mm}}\quad

\texttt{#2}\strut\\}

\begin{center}\Large Named colours in \texttt{dvipsnam.def}

\end{center}

\begin{multicols}{3}

\input{dvipsnam.def}

\end{multicols}

\end{document}

Remember, each printer can reproduce the colours differently, so it is important to
test this table with every colour printer that might be used. The output of this job is
shown in the next page.

7 THE NAMED COLOUR MODEL 13

Named colours in dvipsnam.def

GreenYellow

Yellow

Goldenrod

Dandelion

Apricot

Peach

Melon

YellowOrange

Orange

BurntOrange

Bittersweet

RedOrange

Mahogany

Maroon

BrickRed

Red

OrangeRed

RubineRed

WildStrawberry

Salmon

CarnationPink

Magenta

VioletRed

Rhodamine

Mulberry

RedViolet

Fuchsia

Lavender

Thistle

Orchid

DarkOrchid

Purple

Plum

Violet

RoyalPurple

BlueViolet

Periwinkle

CadetBlue

CornflowerBlue

MidnightBlue

NavyBlue

RoyalBlue

Blue

Cerulean

Cyan

ProcessBlue

SkyBlue

Turquoise

TealBlue

Aquamarine

BlueGreen

Emerald

JungleGreen

SeaGreen

Green

ForestGreen

PineGreen

LimeGreen

YellowGreen

SpringGreen

OliveGreen

RawSienna

Sepia

Brown

Tan

Gray

Black

White

	Introduction
	Importing external graphics
	Importing with the texttt {graphics} package
	Scaling
	Reflection
	Rotation
	Importing, scaling, rotating with the texttt {graphicx} package

	Additional graphics packages
	The texttt {epsfig} package
	The texttt {lscape} package
	The texttt {rotating} package

	Troubleshooting
	How importation works
	Problems with importation

	Configuring graphics importation
	Default driver
	Search path for graphics files
	Default extensions
	Graphics types
	Compressing graphics files

	Colours
	The texttt {named} colour model

