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1 Introduction

The purpose of this document is to provide an outline for some of my ray tracing
codes as well a brief review of the underlying equations. In section 2 I give, with
minimal description, the basic equations describing rays. These equations are
all standard in the literature. In section 3 I describe the numerical approach to
integrating over the singularities that occur at the ray turning points. Section 4
describes the main codes in this package. Finally, section 5 describes some
simple tests of these codes that I have done. I would to like to emphasize,
however, that these codes are far from 100% reliable and could use a lot more
testing, in particular with regard to the numerical approximations that have
been employed.

2 Equations

One approach to computing rays is described by D’Silva & Duvall (1995), the
equations in this section are for the most part taken from that paper. With the



neglect of the buoyancy frequency the group velocity along a ray is
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In the above equations k, is the radial component of the wavevector, kg the
horizontal component of the wave vector, ¢ the sound speed, and w(k) gives the
dispersion relation. The dispersion relation is given by
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where w, is the acoustic cutoff frequency. The horizontal wavenumber is related
to the angular degree by

k2 = : (4)

D’Silva & Duvall (1995) show that the first-skip distance and group time are
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where 7y, is the lower turning point and ry the upper turning point. Using
equations (1) and (2) to replace v, and vy in the above equations we obtain
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If we want to compute the ray path, not merely first-skip group time and
distance, we can use, again neglecting the buoyancy frequency,
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The change in heliocentric angle along the ray is thus given by
T k‘h dr
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(Giles, 1999).



3 Numerics

We use the same basic approach as Christensen-Dalsgaard et al. (1989) to deal
with integration over the singularities. Consider the calculation of equation (7).
Away from the turning points the integrand is finite and the integration scheme
is not important. The integrand is singular, however, at the turning points,
where k. goes to zero. We need to figure out how to integrate over a small
region around a turning point. Say the lower turning point is at r, and that we
have done the integral up to some point r; very near ri,. Very near the turning
point k2¢* is nearly linear and can be written as

E2c* ~ar+b. (11)

The turning point is at r, = —b/a. To do the integral from ri, to r1 use this
linear approximation for k2c* to write
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The upper turning point can be done in the same fashion. The computation of
A and 6 can be done in much the same manner.

For the remainder of this section we use r; and ry to denote the limits of
where we are using a conventional integration scheme, r, < r1 < ro < ry. In
the following equations a and b are obtained from linear fits to k2c* near the
appropriate turning point:

4

tL = Fw\/arl +0b, (13)
—4

ty = Tw\/ ary +0b, (14)

"2 dr

t=t t 2 .
U+ i + 2w o2

T1

(15)

A similar set of equations can be derived for A by using a linear approximation
for k2r? /k} near the turning points. The result is
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The equations for 6(r) are very similar.



4 Codes

There are three main codes, run_tau, run raypath, and ray kernel. run tau is
the code for computing group time as a function of distance. run_raypath is for
computing ray paths, as well as the phase and group times along the ray path.
Finally, ray kernel computes ray kernels for the square of sound speed. The
basic operation of these three codes is described in the following subsections.

4.1 run_tau.m

This script sets up the inputs for tau and calls that function. The user sets the
value of frequency and angular degree to compute for by editing the first fews
lines in run_tau.m. An important point is that you can’t specify the distance
range that you are interested in directly. Instead you have to specify the angular
degree range. A useful little project would be to automate the determination of
the angular degree corresponding to a particular distance and frequency.

4.2 run_raypath.m

This script sets up the input for raypath and then calls that function. The user
sets the value of frequency and angular degree to compute for by editing the
first fews lines in run_raypath.m. Like with run_tau you cannot directly specify
a distance to compute for. The function raypath does the main calculation and
returns the radius, heliocentric angle, phase time, and group time along the
ray path. Then run raypath calls ray kernel to compute the ray-based travel
time-kernel for the given angular degree and frequency.

4.3 ray kernel.m

The function ray kernel does the calculation of the ray kernel, which is very
simple and described by Birch (2002). Ray kernels are singular at both the
upper and lower turning points, so the value of the kernel at those points is not
well defined. Also, the kernel is very large near the surface where the sound
gets very small.

5 Tests of the Code

The following figures show some aspects of the ray codes described in this doc-
ument. The first three figures show the solar model that we used to obtain the
results in this section. That particular model was given to the author by R.
Nigam. The remaining figures shows some results from running run_tau and
run_raypath. I will leave a description of these results to the figure captions.
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Figure 1: Acoustic cutoff frequency as a function of fractional radius. The
cutoff frequency is only really important near the surface. As you go up into the
atmosphere the cutoff frequency goes to 5 mHz. The bump around r/R = 0.999
can cause some trouble with low frequency rays, as it splits the acoustic cavity
into two pieces. It is not at all clear what to do about this. The cutoff frequency
shown here was given to the author by R. Nigam.
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Figure 2: Acoustic cutoff frequency at the base of the convection zone. The
oscillations are due to rapidly changing density. For rays with lower turning
points at the base of the convection zone these might be important. For all
other modes they are pretty irrelevant.
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Figure 3: Sound speed as a function of depth.
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Figure 4: A time-distance plot. The different curves are for different frequencies,
the slowest rays are those with low frequencies. The top line of this plot is for
2.4 mHz, the bottom is for 4.5 mHz. The weirdness of the low frequency rays
for high [ is due to the bump in acoustic cutoff frequency near the surface.



comparison with sasha result
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Figure 5: A time-distance plot. The lines are for calculations described here for
2.5,3.0 and 3.5 mHz rays. The dots were calculated by A. Kosovichev (private
communication) for the same rays. They agree up to about 30 seconds. The
best agreement is at small distances and high frequencies.
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Figure 6: The effect of the parameter N in tau.m on the calculation of first-
bounce times and distances. The fractional change from N =1 to N =5 in
group time (dot-dash curve) and distance (solid curve) is shown as a function
of first-bounce distance. Changing N can give almost a one percent effect.
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Figure 7: Fractional differences in group times (bottom panel) and first-bounce
distances (top panel) from the raypath.m and tau.m codes. The horizontal
axis in both cases is distance in degrees. The two codes give the same result to
within 0.1 percent.
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Figure 8: Comparison of the phase and group times for four different frequencies,
2.5, 2.833, 3.166, and 3.5 mHz. The solid line is where the phase time equals
the group time. Notice that the phase time is always less than the group time.
As the frequency increases the phase time increases up to the group time. The
acoustic cutoff frequency becomes less important as the frequency increases.
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