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INTRODUCTION

The goal is to measure flows on the sun at the highest spatial resolution 
possible to learn about convection.  The f-mode wavelength is 5 Mm at a 
frequency of 3 mHz. To probe scales below this wavelength we need to 
perform a careful inversion of the traveltimes.

We perform a 2-D optimally localized averaging (OLA) inversion for flows using 
f-mode travel times.  The inversion procedure is fully-consistent, in that we use 
f-mode wave kernels, the model error-covariance matrix, and traveltimes that 
are measured using the same definition of traveltimes with which the kernels 
are calculated.  

Since this is a somewhat preliminary study, we only use kernels calculated for 
one separation distance, 5 Mm, and only measure traveltimes for this distance 
as well.  Even this truncation of the problem proves to be formidable 
computationally.

We present the various kernels, a discussion of the error matrix, and 
preliminary results of the inversion.
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Example of point-to-point kernels. F-mode sensitivity kernels for flows for a 
separation between the observation points of 5 Mm.  The observation points are 
given by the black dots. Kx is sensitive to flows in the x-direction, and Ky is sensitive 
to flows in the y-direction. These point-to-point kernels are then averaged over annuli 
and quadrants to produce the kernels used in the inversion. Units of the color scale 
are s2/Mm3. The relation between travel-time differences and the kernels is



ANNULI AVERAGING OF TRAVELTIMES

The travel-time differences for the inversion are averaged over annuli and 
quadrants (after Duvall):
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Since the traveltimes we use are 
averaged in this manner, we take the 
point to point kernels and average them 
in the same way.
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Averaged point-to-point kernels. These kernels are produced by taking the ptp kernels 
and averaging them over an annulus or a quadrant, as with the traveltimes. The kernels in 
the left column are sensitive to flows in the x-direction, and the ones in the right column 
are sensitive to flows in the y-direction. Only these 6 kernels are used for this inversion.
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Time-distance 2-D OLA inversion for flows

• Choose a target function that has a spatial scale and characteristics of the 
flows that are being inverted for. E.g., to invert for a flow in the x-direction, 
the target may be a Gaussian of width 3 Mm in the x-direction and of width 0 
in the y-direction.

• Search for a linear combination of the kernels which matches the target 
function.

• Calculate the error covariance matrix which describes the correlations in 
the travel-time measurements due to stochastic noise.

• Find the best set of weights that balances the trade-off between the misfit 
of the kernels and target, and the errors.

• Convolve the weights with the travel-time measurements to infer the flows.
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The final step is to then invert the matrix on the left hand side to 
find the weights, W.
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Schematic geometry for calculation 
of model error-covariance:

The circles denote combinations of the annuli and the quadrant traveltimes, and the 
centers are shifted around on an appropriate (n x n) grid to determine the 
correlations. In the full problem we would also correlate annuli over a range of 
different radii, but here the radii are equal. In this case we calculate a 3 x 3 x n2

matrix.
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Model error covariance matrix. Each panel represents the correlation of one type 
of averaged traveltime with another, given by the red labels, as they are shifted 
around on the grid. The full error covariance matrix is constructed from these panels.

annulus quadrant, cosφ quadrant, sinφ

annulus

quadrant 
cosφ term

quadrant 
sinφ term



10
−11

10
−10

10
−9

10
−8

10
−5

10
−4

10
−3

10
−2

10
−1

Error magnification

M
is

fit
 o

f m
od

el
 a

nd
 ta

rg
et

 −6 −4 −2 0 2 4 6
x [Mm]

 

 

Target
Averaging Kernel

WeightsK
x Averaging kernel

 

 

Target, FWHM=2.5 Mm

 

 

=

*

K
x

Target, FWHM=2.5 Mm

 

 

Weights Averaging kernel

 

 

−6 −4 −2 0 2 4 6
x [Mm]

 

 
Target
Averaging Kernel

*
=

K
x

Target, FWHM=2.5 Mm

 

 

Weights Averaging kernel

 

 

−6 −4 −2 0 2 4 6
x [Mm]

 

 

Target
Averaging Kernel

*
=

L-curve. Find the point where the trade-off 
between the misfit and the error magnification is 
optimal.

RESULTS

small misfit, but noisy weights

optimal trade-off

large misfit, smooth 
weights



• Do the inversion with annuli of many radii.

• Use the real data, which we have already.

• Add more freedom by considering the point-to-point traveltimes.
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