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We suggest that the exchange fluctuations close to a Feshbach resonance in a
two-component Fermi gas can result in an effective p-wave attractive interaction.
On the BCS side of a Feshbach resonance, the magnitude of this effective
interaction is comparable to the s-wave interaction, therefore leading to a possible
spin-triplet superfluid in the range of temperatures of actual experiments. We also
show that the particle–hole exchange fluctuations introduce an effective scattering
length which does not diverge, as the standard mean-field one does. Finally, using
the effective interaction quantities we are able to model the molecular binding
energy on the BEC side of the resonance.

In the atomic Fermi gases such as 40K and 6Li, the use of Feshbach resonances has
opened the possibility of exploring the very interesting limit for which the mean-field
approximation predicts a smooth crossover from BEC to BCS pairing as one goes
through the resonance. At low energies, the interatomic interaction is very well
described by the s-wave scattering length, as. Moreover, no direct interactions are
possible in the triplet channel. In fact, higher-order expansions in the scattering
length are suppressed at very low temperatures and the symmetry of the wave
function, due to Pauli exclusion, does not allow s-wave scattering for fermionic
atoms in the same spin channel.�

Although the scattering length in the two-body problem is diverging, it is
instructive to consider the possibility of pairing in the higher-order scattering
channels due to exchange fluctuations. It is also not clear whether atomic systems
behave as Fermi liquids (FL), or how similar they are with high Tc superconductors
(HTSC) or any other strongly correlated systems.

In this Letter, we want to show two things. Firstly, that it is possible to
build a Fermi liquid theory (FLT) in the atomic Fermi gases, particularly in the

*Corresponding author. Email: sergio.gaudio@roma1.infn.it
�For the sake of clarity, throughout the paper, triplet pairing corresponds to pairing between
particles in the same spin channel and s-wave to pairing in different spin channels.
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BCS region. This formalism explains the basic features of these gases like the
scattering lengths, and possibly, the binding energies in the strongly interacting
regime, which is not accessible by simple perturbation theory. Secondly, we show
that important contributions can arise in higher-order momentum channels.
The resulting triplet pairing is comparable, in magnitude, to the s-wave one, and
the correspondent triplet superfluid transition temperature is within experimental
reach. Since the triplet interaction can only occur through the fluctuations induced
by the strong interactions with the other spin channel, we focus our discussion
primarily on the induced term. Its contribution may give an instability of the
Fermi sea for (quasi-)particles with equal spins, and leads to a possible transition to a
triplet superfluid. We will keep the discussion quite general, since our approach may
be of interest to other fields. Then, we specify to the cold atom physics case,
as we proceed.

In a Fermi liquid at sufficiently low temperatures (Tc<T�TF, where Tc is the
BCS transition temperature and TF is the Fermi temperature), it was shown in [1, 2]
that it is possible to separate the Fermi liquid parameters, fpp0 , which by construction
do not contain any zero sound terms [3, 4], into two sets of terms in the limit when
p� p0 (here, we assume the general notation q ¼ ðq; !Þ and q ¼ jqj). One term is the
direct interaction of the quasiparticles (QP), and the other is the crossed term of the
particle–hole contribution. Dropping for the moment the spin indices, the Fermi
liquid parameters are

�fpp0 ¼2�i Zp Zp0 lim
!!0

lim
q!0

�0 pþ
q

2
; p�

q

2
; p�p0

� �

þ
X
p1;p2

fpp1
�np1
�Up2

� �
fp2p0 ; ð1Þ

where Zpi
are the residues of the single particle Green’s functions at the pole of

the QP, np is the Fermi distribution function, U is some interaction, and �np1=�Up2

is related to the response function and can be obtained from the QP transport
equation [5, 6]. Restoring the spin indices, we denote the first term by d ��0

pp0 and the
second term by I ��

0

pp0 . The many-body effects in the QP interaction are therefore
separated into two contributions:

f ��
0

pp0 ¼ d ��0

pp0 þ I ��
0

pp0 ð2Þ

where d ��0

pp0 , the direct term, includes only the diagrams which are not particle–
hole reducible and is equivalent to the T-matrix in the particle–particle channel.
The induced term, I ��

0

pp0 , has contributions from the exchange of virtual collective
excitations among the quasiparticles, i.e. density, spin-density, current, spin-current
fluctuations to name a few (see [1, 2] for full details). The implicit assumption, as it
is for all Fermi liquid theories, is that all the relevant processes occur on the Fermi
surface. Consider, now, any quantity, say f s;a‘ . This is related to its counterpart
f ��

0

pp0 by the definition

F ��0

pp0 ¼ Nð0Þf ��
0

pp0 ¼
X
‘

ðF s
‘ þ � � �0F a

‘ ÞP‘ðp̂ � p̂
0Þ; ð3Þ

where F s;a
‘ ¼ Nð0Þf s;a‘ , N(0) is the density of states at the Fermi surface. The

superscript s(a) indicates the symmetric (antisymmetric) contribution with respect
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to the spin, the subscript ‘ indicates the Legendre component, and P‘ is the Legendre

polynomial. Then, by expanding the Bethe–Salpeter equation for the QP interactions

in the limit !=jqj ! 0 in a rotationally invariant system into Legendre polynomials,

it can be shown that [5, 6]

As;a
‘ ¼ Nð0Þas;a‘ ¼

F s;a
‘

1þ F s;a
‘ =ð2‘þ 1Þ

: ð4Þ

Here, A
sðaÞ
‘ ¼ Nð0Þa

sðaÞ
‘ is the symmetric (antisymmetric) Legendre components

of the scattering amplitudes of the quasiparticles. Note that these scattering

amplitudes differ from the bare scattering amplitudes, since they contain the many-

body effects of the theory through the QP interactions f. Given that equation (4)

is a non-perturbative result, it remains valid even when F‘ diverges, since the A‘

remain finite. The only approximation at this point has been in assuming a Fermi

liquid and the low energy and momenta limits. From [1, 2], it follows that

F s
pp0 ¼ Ds

pp0 þ
1

2

F s
0�0ðq

0ÞF s
0

1þ F s
0�0ðq0Þ

þ
3

2

F a
0�0ðq

0ÞF a
0

1þ F a
0�0ðq0Þ

; ð5Þ

Fa
pp0 ¼ Da

pp0 þ
1

2

Fs
0�0ðq

0ÞFs
0

1þ Fs
0�0ðq0Þ

�
1

2

Fa
0�0ðq

0ÞFa
0

1þ Fa
0�0ðq0Þ

, ð6Þ

where q02 ¼ jp� p0j2 ¼ k2Fð1� cos �LÞ and cos �L ¼ p̂ � p̂0 is the Landau angle, and

�0ðq
0Þ is the density–density correlation (Lindhard) functions (see [1, 2]). Including

‘� 1 terms is straightforward in this model, but only leads to small corrections

to the results. For the direct term D in the low temperature limit, the particle–

particle T-matrix is proportional to the bare s-wave scattering length as. Since

D is then angle independent, it contributes only in the ‘=0 momentum channel,

given by Ds
0 ¼ �Da

0 ¼ �Nð0ÞU=2, where U ¼ 4� �h2as=m is some on-site interac-

tion. The direct interaction is antisymmetric and obeys the Pauli principle

D
""ð##Þ

0 ¼ 0. We purposely neglect the remaining diagrams in the particle–particle

channel, since we are mostly interested in the induced interaction driven by the

exchange of collective excitations between the quasi-particles. In fact, at these

temperatures, this is the only way a triplet interaction can arise in the same spin

channel. We observe that the form of the direct term depends on the model used,

whereas the induced term does not. Still, we emphasize that the resulting

scattering lengths, calculated through the Bethe–Salpeter equation, have the

correct symmetries and conserve the Pauli principle through the Landau sum rule,

given by
P

‘ðA
s
‘ þ Aa

‘Þ ¼ 0. This is not the case for the random phase

approximation (RPA). Looking at the diagrams in figure 1 may help understand

the differences. The RPA lack of the exchange terms in the particle–hole channel

implies an inconsistent treatment of the QP interactions, since the scattering

amplitudes are not properly antisymmetrized. The consequences of this will

appear clear below.
We now apply the above Fermi-liquid formalism to the specific case of the cold

atomic Fermi gases, in particular to 40K. In these systems, the scattering length

Many body exchange effects close to the s-wave Feshbach 715
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can be varied by tuning the system close to a magnetic Feshbach resonance [7].
The s-wave scattering length as (denoted in the figures as abares ) varies as

as ¼ abg 1�
�B

B� B0

� �
; ð7Þ

where B0 denotes the magnetic field value of the Feshbach resonance, �B is the
width of the resonance, and abg is the background scattering length. Since most of
the experimental systems deal with broad resonances only, the contribution of the
molecules from the closed channel can be neglected [8].

We solve self-consistently equations (5) and (6) by varying the direct interaction
as and use equation (4) to obtain the scattering amplitudes As;a

‘ for ‘=0, 1. We then
use these scattering amplitudes to construct the singlet and triplet pairing amplitudes
in the well-known s-p approximation [5, 6], and call this the effective singlet
scattering length aeffs . In figure 2 we show the results for the bare (equation 7, dashed
line) and effective (thick line) s-wave scattering lengths calculated in this model for
40K on both sides of the Feshbach resonance B=B0. The most important feature is
that the effective scattering length does not diverge as the resonance is approached,
while as does diverge. Our results are very close in slope and magnitude to the
experimental values. On the other end, far from B0, the effective and mean-field
scattering lengths are comparable. We note that the presence of a strong p-wave
interaction would influence the background scattering length abg. However, since in
that channel there is no resonance, the many-body effects will give a negligible
contribution and we can safely assume the background scattering length to be
constant.

Also shown in figure 2 is the result predicted by RPA (thin line), which clearly
fails to capture the correct physics as the resonance is approached. The divergence
of the RPA scattering length implies the emergence of two new ground states
on either side of the Feshbach resonance. On the BEC side, this would correspond to
the Stoner instability or the onset of ferromagnetism. On the BCS side, this would
correspond to phase separation. We note that neither of these two instabilities has
been observed experimentally.

Figure 1. Schematic diagrammatic relation between the Landau parameters and the
scattering amplitudes defined in equations (2), (4), (5) and (6). The first term on the RHS
of f is the direct interaction d, and the second is the induced term I. Notice that when
neglecting the induced terms, this description reduces to the RPA.

716 S. Gaudio et al.
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We now turn to the BCS side of the resonance where the scattering lengths are
negative, and compare the effective triplet (aefft ) and effective singlet scattering
lengths scaled by the Fermi momentum kF. For magnetic fields near the resonance,
the strength of the triplet and the singlet potentials are actually comparable in
magnitude, as shown in figure 3. Therefore, although direct (triplet) pairing in the
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Figure 2. S-wave scattering lengths (units of Bohr radii) as a function of the magnetic field
on both sides of the Feshbach resonance B0, in

40K, using data from [9, 10]. The particular
scattering length is denoted in the legend. The 50% error bars in the experimental data have
been removed for clarity. We also plot the RPA scattering length for comparison.
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Figure 3. Scattering amplitudes on the (attractive) BCS side of the resonance B0. In our
model, the effective (unitless) s-wave singlet kFa

eff
s ¼ Aeff

s and triplet kFa
eff
t ¼ Aeff

t amplitudes
are finite and of similar magnitude at the resonance, while the bare interaction kFas ¼ Abare

s

diverges, according to equation (7).
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same hyperfine state is suppressed initially at these low temperatures, the exchange
of collective excitations upon approaching the resonance drives a substantial
attractive interaction in the triplet channel through the induced interactions.
Note that there is always attraction in the triplet channel on both sides of the
resonance, independent of the sign of the bare interaction U. At low enough
temperatures, it is not obvious that one can disregard the possibility of having a
triplet superfluid near resonance (on the BCS side). In fact, below the triplet
transition point, it seems quite reasonable that these two many body states will
compete, as figure 3 suggests.

It is important to compute the critical temperatures expected for the various
pairing instabilities. The expression is very similar to the BCS one (see [11, 12]).
The singlet transition temperatures with our effective scattering amplitude could
be as large as T sing

c � 0:7TF, while the triplet T trip
c � 0:2TF, if we use TF as the

cut-off scale. Note that these critical temperatures are quite high and that this is
due to the use of the high-energy cut off. Also, there are numerous indications
that singlet transition temperatures are of the order of 0.2TF. This introduces
a proportionality relation which gives an (upper bound of the) triplet transition
temperature, within our framework, of� 0.05TF. These temperatures are already
obtainable in current experiments. We also mention that in the limit when the partial
waves get very large, i.e., far away from the resonance, our approach gives the
Gorkov and Melik-Barkhudarov critical temperature [13], since the particle–hole
corrections become unimportant in this regime.

Lastly, we should remark that the present calculations hold for both equal
populations or for very small polarizations, m ¼ ðn" � n#Þ=n, where n"ð#Þ is the
majority (minority) particle density, and n is the total density. For m� n, the
corrections to the Fermi liquid parameters, which are quadratic in m, are, in fact,
negligible. Recent experiments [14, 15] have opened up the possibility of exploring
the triplet interactions of the system. Since the singlet BCS state is still stronger than
the triplet one, in order to see the triplet transition, it is probably necessary to
suppress the singlet superfluid. Indeed, even small polarizations, at low enough
temperatures, might create the possibility of a triplet superfluid in that channel.
More likely, the presence of an external field can establish a preferential direction
and favour the triplet pairing, similar to the A1 phase in

3He. We emphasize, though,
that the triplet pairing is not only interesting in the superfluid phase, but also in
the normal one, as it will contribute to the properties of the system. In fact, its
thermodynamic properties, which we will discuss somewhere else, can be largely
affected and therefore provide the experimental tools to verify the Fermi liquid
behaviour of the system close to resonance.

Up to this point, we have assumed that the corrections due to the particle–
particle contribution are not relevant. In the normal phase, this assumption is
plausible on the BCS side [3, 4], but on the BEC side can be justified only very close
to the resonance and/or for temperatures kBT>Eb (the experimental data are taken
at T/TF� 0.4, although in this paper we are considering only the corrections due
to the quantum fluctuations T�TF), where Eb is the binding energy. Thus, deep into
the BEC regime, our theory breaks down. On the other hand, we recover the bare
scattering length as soon as we get far away from the resonance and therefore any
FLT assumption is irrelevant.

718 S. Gaudio et al.
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Thus, we might expect the theory to give a rough estimate of the scattering
lengths in the intermediate region as well. We therefore compute the binding energy
of the bound state in the open channel. It is calculated using the standard mean-field
formula Eb ¼ ��h2=ma2s , where as is the bare s-wave scattering length. Since we lack
a better estimate of the corrections to this formula due to the many-body effects,
we simply replace as with aeffs and m with m� ¼ 1þ F s

1=3, the effective mass in FL
theory. The results are shown in figure 4. The agreement with the experimental data
is quite surprising, but can be explained in terms of an effective Hamiltonian, which,
in the spirit of Landau’s theory, progressively transforms the bare particles
into quasiparticles and the bare scattering length becomes the effective one as the
interaction increases. In this sense, one can adopt the same mean-field formula of
the binding energy, and indeed, the effective binding energy profile reduces to the
mean-field one in the weakly interacting regime. We also note that the Fermi liquid
parameters represent only a part of the mean-field shift, since they do not contain
the zero sound channel contribution. The full contribution is instead given by the full
effective scattering length.

Engelbrecht et al. [16] calculated the energy gap equation in the weakly
interacting limit. They correctly pointed out that a comparison of the gap with
the full solution should show roughly the extent of the strongly interacting regime.
It is also interesting to note that the BEC-BCS crossover behaviour is lost by
using the weak-limit gap solution. In figure 5 we plot the energy gap correspond-
ing to the weakly interacting BEC and BCS limits, but with our effective
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Figure 4. Binding energies on the BEC side in 40K, compared with data taken from [9, 10].
The density used here is n=5.8� 1013cm�3, with �B=9.7 G and the Feshbach resonance,
marked above with the vertical line, occurs at B0=224.21 G. Eeff

b is the binding energy
calculated from the effective scattering length in our theory, and Eb is the bare (mean-field)
binding energy.
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scattering lengths and masses. It is clearly seen that the crossover is re-established in

terms of the quasiparticles. This shows that although the bare particles

are strongly interacting, the quasiparticles may not, and hints that the gas in

the normal phase is probably behaving as a Fermi liquid, even very close to the

resonance.
In conclusion, we have built a theory which takes into account the many body

exchange effects in the quasiparticle–quasihole channel. This theory, contrary to

the RPA, respects the Pauli principle and does not give spurious ground states.

Inclusion of the exchange effects is therefore fundamental in obtaining the correct

physics. We obtain a finite scattering amplitude as seen experimentally. We have

also shown that a triplet superfluid is possible within the temperatures today

achievable in cold atom traps and that triplet paring should be taken into account

when discussing the properties of the system close to resonance. Furthermore, it

seems possible in this formulation to derive the basic properties on the BEC side,

although one should include properly the presence of the bound state, which we

have not. The strong agreement with experiments indicates that quasiparticles,

not bare particles, are binding in the open channel. The good interpolation of the

intermediate interacting region between the BCS and BEC sides is probably due to

a careful account of the particle–hole contributions in the theory. Finally, we remark

that this approach, since it is not restricted to the dilute gases, can be applied to

other systems.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

100

U−1

Γ 
or

 ∆
2

∆2 with the effective mass

Figure 5. Gap squared using the weakly interacting limit equations as derived in [16],
but replacing the effective mass and effective interaction from our theory to the bare ones.
U is the bare interaction strength as defined in the text. � is related to the gap squared as in [8],
although our units do not correspond to those of the reference.
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[4] P. Noziéres, Theory of Interacting Fermi Systems (Addison-Wesley, Reading, MA, 1997).
[5] G. Baym and C. Pethick, Landau-Fermi Liquid Theory (John Wiley, New York, 1991).
[6] P. Nozieres and D. Pines, The Theory of Quantum Liquids (Perseus Books, Cambridge,

MA, 1999).
[7] C.J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge

University Press, Cambridge, 2002).
[8] G.B. Partridge, K.E. Strecker and R.I. Kamar, et al., cond-mat/0505353.
[9] P.W. Anderson and W.F. Brinkman, Basic Notions of Condensed Matter Physics edited by

P.W. Anderson (Perseus Books, 1997).
[10] A.J. Leggett, Rev. Mod. Phys. 47(2) 331 (1975).
[11] L.P. Gorkov and T.K. Melik-Barkhudarov, Sov. Phys. JETP 13 1018 (1961).
[12] G.B. Partridge, W. Li, R.I. Kamar, et al., Science 311 503 (2006).
[13] M.W. Zwierlein, A. Schirotzek, C.H. Schunck, et al., Science 311 492 (2006).
[14] C.A. Regal and D.S. Jin, Phys. Rev. Lett. 90 230404 (2003).
[15] C.A. Regal, C. Ticknor, J.L. Bohn, et al., Nature 424 47 (2003).
[16] J.R. Engelbrecht, M. Randeria and C.A.R. Sà de Melo, Phys. Rev. B 55 15153 (1997).
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