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Abstract
This is the first in a series of papers which considers gauge-invariant and
covariant gravitational perturbations on arbitrary vacuum locally rotationally
symmetric (LRS) class II spacetimes. Ultimately, we derive four decoupled
equations governing four specific combinations of the gravito-electromagnetic
(GEM) 2-tensor harmonic amplitudes. We use the gauge-invariant and
covariant 1+1+2 formalism which Clarkson and Barrett (2003 Class. Quantum
Grav. 20 3855) developed for analysis of vacuum Schwarzschild perturbations.
In particular we focus on the first-order 1+1+2 GEM system and use linear
algebra techniques suitable for exploiting its structure. Consequently, we
express the GEM system new 1+1+2 complex form by choosing new complex
GEM tensors, which is conducive to decoupling. We then show how to derive
a gauge-invariant and covariant decoupled equation governing a newly defined
complex GEM 2-tensor. Finally, the GEM 2-tensor is expanded in terms of
arbitrary tensor harmonics and linear algebra is used once again to decouple
the system further into four real decoupled equations.

PACS numbers: 04.25.Nx, 04.20.−q, 04.40.−b, 03.50.De, 04.20.Cv

1. Introduction

The gauge-invariant and covariant 1+1+2 formalism was first developed by Clarkson and
Barrett [1] for an analysis of vacuum gravitational perturbations to a covariant Schwarzschild
spacetime. This was further developed in [2], who considered both scalar and electromagnetic
(EM) perturbations to arbitrary locally rotationally symmetric (LRS) class II spacetimes [3–5],
where they were able to derive generalized Regge–Wheeler [6] (RW) equations governing the
1+1+2 EM scalars, E and B. Subsequent to this, we also considered EM perturbations to
LRS class II spacetimes [7, 8]. Therein, we used linear algebra techniques to show that the
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first-order 1+1+2 Maxwell’s equations naturally decouple by choosing new complex variables.
Consequently, we expressed Maxwell’s equations in a new 1+1+2 complex form that is suited
to decoupling. We reproduced the generalized RW result in a new complex form and further
established that the EM 2-vectors, Eµ and Bµ, also decouple from the EM scalars. The EM
2-vectors were expanded into two polar perturbations {Ev, B̄v} and two axial perturbations
{Ēv,Bv} using the arbitrary vector harmonic expansion developed in [1, 2]. Finally, we once
again used linear algebra techniques, and derived four real decoupled equations governing the
four combinations of the 2-vector harmonic amplitudes [8]. The precise combinations which
decoupled were found to be, for the polar perturbations {Ev − B̄v,Ev + B̄v}, and for the axial
perturbations {Ēv − Bv, Ēv + Bv}.

In this paper, we consider both gravitational and energy–momentum perturbations to
arbitrary vacuum LRS class II spacetimes using the 1+1+2 formalism. The primary focus
is with the first-order GEM system as it is well established to have remarkably similar
mathematical structure to Maxwell’s equations [9, 10]. We use similar techniques as in
[8], which was successful in fully decoupling the EM 2-vector harmonic components, and
ultimately show that this is also successful for fully decoupling the GEM 2-tensor harmonic
components.

In section 2, we collate the important results arising from Clarkson and Barrett’s 1+1+2
formalism and the background LRS class II spacetime is reproduced from [2]. Also, the
scalar and 2-vector harmonic expansion formalism is taken from [2], and we provide a new
generalization of the spherical tensor harmonics developed in [1] for tensor harmonics. We use
precisely the same notation as in [1, 2, 8] as well as introducing some new quantities which
are well defined throughout. In section 3, we carefully define the first-order perturbations
(including the energy–momentum quantities) to be gauge-invariant according to the Sachs–
Stewart–Walker lemma [11, 12]. We proceed to write the first-order GEM system, conservation
equations and the Ricci identities. In section 5 we derive the decoupled equations and consider
tensor harmonic expansions.

2. Preliminaries

The purpose of this section is to present the necessary results for the current series of
papers on gravitational and energy–momentum perturbations to arbitrary vacuum LRS class
II spacetimes.

2.1. Clarkson and Barrett’s 1+1+2 formalism

The 1+3 formalism is very well-established (see, for example, [3, 9, 13]) whereby, a 4-velocity
uµ is defined such that it is both time-like and normalized (uαuα = −1). Consequently, all
quantities and governing equations are decomposed by projecting onto a 3-sheet which is
orthogonal to uµ, and hence they are called 3-tensors, and in the time-like direction. The
essential ingredient for Clarkson and Barrett’s 1+1+2 formalism is to further decompose
the 1+3 formalism by introducing a new ‘radial’ vector nµ which is space-like, normalized
(nαnα = 1) and orthogonal to uµ. In this way, all 3-tensors may be further decomposed into
2-tensors which have been projected onto the 2-sheet orthogonal to both nµ and uµ and in the
radial direction. The covariant derivative of the 4-velocity in standard 1+3 notation is

∇µuν = σµν + 1
3θhµν − uµu̇ν + εµναωα, (1)

where ∇µ is the covariant derivative operator, σµν and θ are the shear and expansion of the
3-sheets, hµν is a tensor that projects onto the 3-sheets, εµνσ is the Levi-Civita 3-tensor and
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ωµ is the vorticity. Finally, the acceleration vector is u̇µ where the ‘dot’ derivative is defined
as Ẋµ...ν := uα∇αXµ...ν and Xµ...ν represents any quantity. Clarkson and Barrett irreducibly
split these standard 1+3 quantities into 1+1+2 form according to

u̇µ = Anµ + Aµ, (2)

ωµ = �nµ + �µ, (3)

σµν = �µν − 1
2Nµν� + 2�(µnν) + �nµnν. (4)

The 1+3 GEM fields are also decomposed,

Eµν = Eµν − 1
2NµνE + 2E(µnν) + Enµnν, (5)

Hµν = Hµν − 1
2NµνH + 2H(µnν) + Hnµnν, (6)

where Eµν and Hµν are respectively the electric and magnetic parts of the Weyl tensor, Cµνστ .
In a similar fashion, the 3-covariant derivative (Dµ) of the radial vector is decomposed into
1+1+2 form according to

Dµnν = nµaν + 1
2φNµν + ξεµν + ζµν, (7)

where ζµν and φ are respectively the shear and expansion of the 2-sheets, Nµν is a tensor that
projects onto the 2-sheets, ξ represents the twisting of the sheet and εµν is the Levi-Civita
2-tensor. Also, the acceleration 2-vector is aµ := n̂µ where the ‘hat’ derivative is defined
as Ŵµ...ν := nαDαWµ...ν and Wµ...ν represents a 3-tensor. Finally, the ‘dot’ derivative of the
radial normal is also split according to

ṅµ = Auµ + αµ. (8)

Therefore, the irreducible set of 1+1+2 quantities, and in accord with standard terminology, is

scalars: {A, φ,�, θ, E,H,, ξ,�},
2-vectors: {aµ, αµ,�µ,Aµ,�µ, Eµ,Hµ},
2-tensors: {�µν, ζµν, Eµν,Hµν},

(9)

where the cosmological constant () has also been included. Furthermore, the energy–
momentum quantities, heat-flux and anisotropic pressure, become respectively [2],

qµ = Qnµ + Qµ, (10)

πµν = �µν − 1
2Nµν� + 2�(µnν) + �nµnν. (11)

Thus, the irreducible 1+1+2 energy–momentum quantities are

scalars: {µ,p,Q,�}, 2-vectors: {Qµ,�µ} and 2-tensor: {�µν}. (12)

where µ is the mass–energy density and p is the isotropic pressure.

2.2. Background vacuum LRS class II spacetime

The background comprises the most general vacuum LRS class II spacetime and is defined by
six non-vanishing LRS class II scalars

LRS class II: {A, φ,�, θ, E,}. (13)

Popular examples of LRS class II backgrounds include the Schwarzschild spacetime as
presented in [1] using a static coordinate system (diagonal metric) where (A, φ, E) �= 0
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and � = θ =  = 0. Furthermore, any other coordinate system (for example, a freely falling
observer) describing the Schwarzschild spacetime may also be implemented but the LRS class
II scalars will change for each case.

The background Ricci identities for both uµ and nµ and the Bianchi identities yield a set
of evolution and propagation equations governing these scalars. They were first presented
in [1] for a covariant Schwarzschild spacetime and generalized to non-vacuum LRS class II
spacetimes in [2] for which we reproduce them here for the vacuum case,

(
Ln + 1

2φ
)
φ +

(
� − 2

3θ
)(

� + 1
3θ

)
+ E + 2

3 = 0, (14)(
Ln + 3

2φ
)
� − 2

3Lnθ = 0, (15)(
Ln + 3

2φ
)
E = 0, (16)(

Lu − 1
2� + 1

3θ
)
φ + A

(
� − 2

3θ
) = 0, (17)(

Lu − 1
2� + 1

3θ
)(

� − 2
3θ

)
+ Aφ + E + 2

3 = 0, (18)(
Lu − 3

2� + θ
)
E = 0, (19)(

Ln + A − 1
2φ

)
A − 3

2

(
Lu + 1

2� + 2
3θ

)
� − 3

2E +  = 0, (20)(
Lu + � + 1

3θ
)(

� + 1
3θ

) − (Ln + A)A + E, (21)

δµE = δµφ = δµA = δµθ = δµ� = 0, (22)

where δµ is the covariant 2-derivative associated with the 2-sheet. Moreover, in addition to the
‘dot’ and ‘hat’ derivatives, we will also use the Lie derivative, Lu and Ln (where, for example,
the standard definition can be found in [14]). This allows us to neatly express the equations
using covariant differential operators. Since the system (14)–(22) considers only scalars, they
simply become usual directional derivatives in this case and are equivalent to the ‘dot’ and
‘hat’ derivatives,

Luψ = ψ̇ and Lnψ = ψ̂. (23)

Furthermore, for a 2-vector ψµ and 2-tensor ψµν , they are related as follows,
(
Ln − 1

2φ
)
ψµ̄ = ψ̂µ̄ and (Ln − φ)ψµ̄ν̄ = ψ̂µ̄ν̄ , (24)(

Lu + 1
2� − 1

3θ
)
ψµ̄ = ψ̇µ̄ and

(
Lu + � − 2

3θ
)
ψµ̄ν̄ = ψ̇µ̄ν̄ . (25)

It is also convenient to introduce five more definitions for the 2-gradients of the LRS class II
scalars that arise in (22). Three of these arise in [1],

Xµ := δµE, Yµ := δµφ and Zµ := δµA, (26)

and two new definitions are made to account for the additional complications of an arbitrary
LRS class II background,

Vµ := δµ

(
� + 1

3θ
)

and Wµ := δµ

(
� − 2

3θ
)
. (27)

Finally, as in [2] we also find it useful to work with the extrinsic curvature and it also
comes with evolution and propagation equations,

K = 1
4φ2 − 1

4

(
� − 2

3θ
)2 − E + 1

3, (28)

(Ln + φ)K = 0 and
(
Lu − � + 2

3θ
)
K = 0. (29)
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2.3. Harmonic expansions

The approach to perturbation problems by expanding first-order quantities into harmonic
components is very common and a good review on spherical harmonics is presented in
[15]. Harmonic expansions were also used by [16, 17], defined according to [18–20], who
analyzed both EM and gravitational perturbations of charged black holes in n dimensions.
They showed that only specific combinations of the first-order EM and gravitational quantities
satisfy decoupled equations, as was demonstrated for the traditional four-dimensional case
[21, 22]. The spherical harmonic expansions for 1+1+2 scalars, 2-vectors and 2-tensors were
first presented in [1] for the specific Schwarzschild case. This was subsequently generalized
to harmonic expansions for both scalars and 2-vectors in [2]. In this section, we reproduce
the necessary results from [2] as well as include a new generalization of the 2-tensor spherical
harmonics in [1] to 2-tensor harmonics. Dimensionless sheet harmonic functions Q (defined
on the background) are defined as

δ2Q := −k2

r2
Q and Q̂ = Q̇ = 0, (30)

where k2 is real and the 2-Laplacian is defined as δ2 := δαδα . The scalar function r is defined
by the following covariant equations:(

Ln − 1
2φ

)
r = 0,

(
Lu + 1

2� − 1
3θ

)
r = 0 and δµr = 0. (31)

Now any first-order scalar function can be expanded as

ψ =
∑

k

ψ
(k)
s Q(k) = ψsQ, (32)

where ψs is the scalar harmonic amplitude and the summation over k is implicit in the last
equality. Similarly, all vectors are expanded in terms of even (Qµ) and odd (Q̄µ) parity vector
harmonics which are defined respectively,

Qµ = rδµQ → δ2Qµ =
(

K − k2

r2

)
Qµ, (33)

Q̄µ = rεµ
αδαQ → δ2Q̄µ =

(
K − k2

r2

)
Q̄µ. (34)

The vector harmonics are orthogonal (QαQ̄α = 0) and they have the following properties:
Q̄µ = εµ

αQα and Qµ = −εµ
αQ̄α . Thus any first-order vector may be expanded according to

ψµ =
∑

k

ψ
(k)
v Q(k)

µ + ψ̄
(k)
v Q̄(k)

µ = ψvQµ + ψ̄vQ̄µ, (35)

where similarly ψv and ψ̄v are the vector harmonic amplitudes and the summation in the last
quantity is implicit. Also note that the 2-Laplacian acting on the vector harmonics in (33)–(34)
is written in terms of the Gaussian curvature here, whereas in [2] they use a further constraint
of K = 1/r2 which amounts to choosing a particular normalization that was convenient for
their analysis.

We now present a generalization of the spherical tensor harmonics presented in [1] to
tensor harmonics in arbitrary LRS class II spacetimes. The even and odd tensor harmonics
are defined respectively,

Qµν = r2δ{µδν}Q, δ2Qµν =
(

4K − k2

r2

)
Qµν, (36)

Q̄µν = r2εα{µδαδν}Q, δ2Q̄µν =
(

4K − k2

r2

)
Q̄µν, (37)
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where the ‘curly’ brackets indicate the part that is symmetric and trace-free with respect
to the 2-sheet. These are orthogonal (QαβQ̄αβ = 0) and have the following properties:
Qµν = ε(µ

αQ̄ν)α and Q̄µν = −ε(µ
αQν)α . Therefore, all first-order tensors may now be

expanded in terms of tensor harmonics according to

ψµν =
∑

k

ψ(k)
T Q(k)

µν + ψ̄(k)
T Q̄(k)

µν = ψTQµν + ψ̄TQ̄µν, (38)

where in accord with usual terminology, ψT and ψ̄T are the tensor harmonic amplitudes and
again the summation in the last equality is implicit. We also have the following relationships
which also generalize those presented in [1],

δαψµα = r

2

(
2K − k2

r2

)
(ψTQµ − ψ̄TQ̄µ), (39)

ε{µαδβψβ}α = r

2

(
2K − k2

r2

)
(ψ̄TQµ + ψTQ̄µ). (40)

3. The gravitational and energy–momentum perturbations

We now consider both gravitational and energy–momentum perturbations to the background
LRS class II spacetime defined in section 2.2. In agreement with traditional practice we let
all gravitational and energy–momentum quantities that vanish on the background LRS class
II spacetime simply become quantities of first order (ε), i.e.

first-order scalars: {H, ξ,�,µ, p,Q,�} = O(ε), (41)

first-order 2-vectors: {aµ, αµ,�µ,Aµ,�µ, Eµ,Hµ,Qµ,�µ} = O(ε), (42)

first-order 2-tensors: {�µν, ζµν, Eµν,Hµν,�µν} = O(ε). (43)

The first-order quantities given in (41)–(43) are all gauge-invariant under infinitesimal
coordinate transformations, or more formally due to the Sachs–Stewart–Walker lemma
[11, 12], as their corresponding background terms vanish. Furthermore, there is also the
issue of choosing a particular frame in the perturbed spacetime (i.e. choosing the first-order
4-velocity and radial vector) as also discussed in [1]. In general, the first-order gauge-invariant
1+1+2 quantities will not be frame invariant as they naturally depend on this choice since their
underlying definitions are typically just projections and contractions with the 4-velocity and
radial vector.

Now consider some perturbed quantity, ψ̃ , this is expanded to first-order according to

ψ̃ = ψ + δψ, (44)

where ψ is the corresponding background value and δψ is the corresponding first-order part
(and δ is not to be confused with the covariant 2-derivative δµ). Therefore, there are five
LRS class II scalars which do not vanish on the background, and thus, they will experience
first-order increments given by

{δA, δφ, δ�, δθ, δE} = O(ε). (45)

Furthermore, these five first-order scalars (45) are not gauge-invariant under the Sachs–
Stewart–Walker lemma. However, as initiated in [1], the 2-gradient of these scalars does
vanish on the background according to (22) and therefore, they become gauge-invariant
quantities of first order,

first-order 2-vectors : {Vµ,Wµ,Xµ, Yµ, Zµ} = O(ε). (46)
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Throughout the remainder of this paper, every equation is written in a purely gauge-invariant
way. This is predominately achieved by writing everything explicitly in terms of the quantities
defined in (41)–(42) and (46), otherwise, it is ensured that particular combinations of gauge-
variant quantities are written as one combined gauge-invariant quantity.

4. The first-order Bianchi and Ricci identities

The equations governing the first-order gauge-invariant 1+1+2 variables are found by
decomposing the Ricci identities for both uµ and nµ, the once contracted Bianchi identities
(GEM system) and the twice contracted Bianchi identities.

4.1. Twice-contracted Bianchi identities

In this paper we consider the first-order energy–momentum quantities as a known source
that is capable of physically perturbing the background spacetime giving rise to first-order
gravitational fields. Therefore, we begin with the conservation of mass equations as they will
indicate how these first-order energy–momentum quantities propagate and evolve1,

(Lu + θ)µ + (Ln + 2A + φ)Q + δαQα + pθ + 3
2�� = 0, (47)(

Lu + � + 4
3θ

)
Q + (Ln + A)p + µA + δα�α +

(
Ln + A + 3

2φ
)
� = 0, (48)

(Lu + θ)Qµ̄ + (Ln + A + φ)�µ̄ + δµ

(
p − 1

2�
)

+ δα�µα = 0. (49)

4.2. Gravito-electromagnetism

The 1+1+2 GEM system is of prime importance as this paper is predominately focused on
decoupling the GEM 2-tensor harmonic amplitudes. The once contracted Bianchi identities
may be written in terms of the Weyl and energy–momentum tensor according to

Bνστ := ∇µCµνστ − [∇[σ Tτ ]ν + 1
3gν[σ∇τ ]T

] = 0. (50)

Before proceeding with the linearized system, we momentarily discuss the fully non-linear
1+3 GEM system, for which it is important to note that it is invariant under the simultaneous
transformation Eµν → Hµν and Hµν → −Eµν (in the absence of sources).

In a recent paper [7], we used linear algebra techniques to show that the most natural way
to decouple a system with these particular invariance properties is to choose new complex
dynamical variables. This has also been discussed elsewhere; for example, see [10] where they
introduce a complex tensor defined as Iµν := Eµν ± iHµν (where i is the complex number).
It was also this reason why we successfully decoupled the EM 2-vector harmonic amplitudes
in [8].

We now turn the attention to the first-order 1+1+2 GEM system which reduces to2

δ
[(
Ln + 3

2φ
)
E
]

+ δαEα = �[G], (51)(
Ln + 3

2φ
)
H + δαHα + 3E� = �[G], (52)

δ
[(
Lu − 3

2� + θ
)
E
] − εαβδαHβ = �[F], (53)

1 These are derived as follows, (47) from uα∇βTαβ = 0; (48) from nα∇βTαβ = 0 and (49) from ∇αTµ̄α = 0.
2 These are derived as follows: (51) from uαuβnγ Bαβγ = 0; (52) from εβγ uαBαβγ = 0; (53) from
uαnβnγ Bβγα = 0; (54) from εαβnγ Bγαβ = 0; (55) from uβuγ Bµ̄βγ = 0; (56) from εµ̄

βγ uαBαβγ = 0; (57)
from nνuγ B(µ̄ν)γ = 0; (58) from nνε(µ̄

αβBν)αβ = 0; (59) from uαB(µ̄ν̄)α = 0 and (60) from ε(µ̄
αβBν̄)αβ = 0.
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(
Lu − 3

2� + θ
)
H + εαβδαEβ + 3Eξ = �[F], (54)

(Ln + φ)Eµ̄ + δαEµα − 1
2Xµ + 3

2�εµ
αHα + 3

2Eaµ = �[Gµ], (55)

(Ln + φ)Hµ̄ + δαHµα − 1
2δµH − 3

2�εµ
αEα + 3

2Eεµ
α
(
�α + εα

β�β

) = �[Gµ], (56)(
Lu − � + 2

3θ
)
Eµ̄ − εµ

αδβHαβ − 1
2εµ

α [δαH − (2A − φ)Hα] + 3
2Eαµ = �[Fµ], (57)(

Lu − � + 2
3θ

)
Hµ̄ + εµ

αδβEαβ + 1
2εµ

α [Xα − (2A − φ)Eα] + 3
2Eεµ

αAα = �[Fµ], (58)(
Lu + 5

2� + 1
3θ

)
Eµ̄ν̄ + ε(µ

α
(
Ln + 2A − 1

2φ
)
Hν)α − ε{µαδ|α|Hν} + 3

2E�µν = �[Fµν], (59)(
Lu + 5

2� + 1
3θ

)
Hµ̄ν̄ − ε(µ

α
(
Ln + 2A − 1

2φ
)
Eν)α + ε{µαδ|α|Eν} + 3

2Eε(µ
αζν)α = �[Fµν]. (60)

The first-order energy–momentum source terms have been suitably defined in a complex form
for later convenience as

F := − 1
2 (µ + p)� − 1

3

(
Ln + 2A − 1

2φ
)
Q + 1

6δαQα − 1
2

(
Lu + 1

2� + 1
3θ

)
�

+ i 1
2εαβδα�β, (61)

G := 1
3Lnµ + 1

2Q
(
� − 2

3θ
) − 1

2δα�α − 1
2

(
Ln + 3

2φ
)
� − i 1

2εαβδαQβ, (62)

Fµ := − 1
2

[
Lu�µ̄ +

(
A − 1

2φ
)
Qµ̄ + δµQ

]
+ i 1

2εµ
α
[

1
3δα(µ + 3�) − (

� + 1
3θ

)
Qα − (

Ln + 1
2φ

)
�α

]
, (63)

Gµ := 1
3δµ

(
µ + 3

4�
) − 1

4

(
� + 4

3θ
)
Qµ − 1

2 (Ln + φ)�µ̄ − 1
2δα�µα

+ i 1
2εµ

α
(
LnQα − δαQ + 3

2��α

)
, (64)

Fµν := − 1
2δ{µQν} − 1

2

(
Lu + 1

2� − 1
3θ

)
�µ̄ν̄

+ i 1
2

[
ε{µαδ|α|�ν} − ε(µ

α
(
Ln − 1

2φ
)
�ν̄)α

]
. (65)

The first-order GEM system (51)–(60) generalizes those given in [1] in two significant ways;
they generalize from the Schwarzschild perturbations towards an arbitrary vacuum LRS class II
spacetime and they also generalize from the vacuum energy–momentum perturbations towards
a full energy–momentum perturbation. Furthermore, a very recent independent study of these
equations for LRS spacetimes has been carried out in [23]. We have also taken a lot of care
to ensure that all quantities are gauge-invariant; for example, the first-order term in (51),
δ
[(
Ln + 3

2φ
)
E
]
, is gauge-invariant as its corresponding background term vanishes according

to (16), i.e.
(
Ln + 3

2φ
)
E = 0. However, we now choose to rewrite (51)–(54) in terms of the

2-gradient quantity Xµ defined in (26). Thus, new complex variables are chosen according
to the invariance properties of the 1+3 GEM system discussed above and, without loss of
generality, we write the GEM system in a new 1+1+2 complex form,
(
Ln + 3

2φ
)
Cµ + δµδα�α + 3

2E
[
Yµ − φaµ − 2

(
� − 2

3θ
)
εµ

α�α + i 2δµ�
] = δµG, (66)

(
Lu − 3

2� + θ
)
Cµ̄ + i δµ(εαβδα�β)

− 3
2E

[
Aµ

(
� − 2

3θ
)

+ φ(�µ − εµ
α�α + αµ) + Wµ − i 2δµξ

] = δµF, (67)

(Ln + φ)�µ̄ + δα�µα − 1
2δ(δµ�) − i 3

2�εµ
α�α + 3

2Eµ = Gµ, (68)(
Lu − � + 2

3θ
)
�µ̄ + iεµ

αδβ�αβ + i 1
2εµ

α [Cα − (2A − φ)�α] + 3
2Eϒµ = Fµ, (69)
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(
Lu + 5

2� + 1
3θ

)
�µ̄ν̄ − iε(µ

α
(
Ln + 2A − 1

2φ
)
�ν)α + iε{µαδ|α|�ν} + 3

2Eµν = Fµν, (70)

where

Cµ := Xµ + i δµH, �µ := Eµ + iHµ and �µν := Eµν + iHµν. (71)
3 Furthermore, whilst constructing these complex equations, several other terms naturally
combine and therefore, three new complex definitions are

ϒµ := αµ + iεµ
αAα, µ := aµ + iεµ

α
(
�α + εα

β�β

)
and µν := �µν + iε(µ

αζν)α.

(72)

In section 5 we will use the complex GEM system (66)–(70) to fully decouple the complex
GEM 2-tensor, �µν , from all the remaining 1+1+2 quantities.

4.3. The 1+1+2 Ricci identities

The Ricci identities for both uµ and nµ are defined conveniently as

Qµνσ := 2∇[µ∇ν]uσ − Rµνστu
τ = 0, (73)

Rµνσ := 2∇[µ∇ν]nσ − Rµνστn
τ = 0, (74)

where Rµνστ is the Riemann tensor. We now linearize these, reduce them to 1+1+2 form and
categorize them into constraint, propagation, transportation and evolution equations. We also
make two new definitions for combinations that arise quite frequently,

λµ := �µ − εµ
α�µ and υµ := �µ + εµ

α�µ, (75)

such that the following system can be written in a more readable form.

• Constraint equations4

Wµ + φλµ + 2δα�µα + 2εµ
αHα + 2εµ

αδα� = −Qµ, (76)

Yµ − 2εµ
αδαξ − 2δαζµα + 2Eµ +

(
� − 2

3θ
)
λµ = −�µ, (77)

εαβδαλβ − (2A − φ)� + 3ξ� − H = 0. (78)

• Propagation equations5

δ
{(
Ln + 1

2φ
)
φ +

(
� + 1

3θ
)(

� − 2
3θ

)
+ E

} − δαaα = − 2
3µ − 1

2�, (79)

δ
{
Ln

(
� − 2

3θ
)

+ 3
2φ�

}
+ δαυα = −Q, (80)

(Ln + φ)ξ − (
� + 1

3θ
)
� − 1

2εαβδαaβ = 0, (81)

(Ln − A + φ)� + δα�α = 0, (82)

Lnλµ̄ + 1
2φυµ − 2Aεµ

α�α − δµ

(
� + 1

3θ
)

+ 3
2�aµ − εµ

αHα = − 1
2Qµ, (83)(

Ln − 1
2φ

)
�µ̄ν̄ − 3

2�ζµν − ε(µ
αHν)α − δ{µυν} = 0, (84)

Lnζµ̄ν̄ − (
� + 1

3θ
)
�µν + Eµν − δ{µaν} = − 1

2�µν. (85)

3 It is also possible to choose the complex conjugates, i.e. �∗
µν,�

∗
µ and �∗ and the corresponding governing

equations are simply found by taking the complex conjugate of the equations governing �µν,�µ and �.
4 (76) from a combination of nµuσ Rµν̄σ = 0, Nµσ Qµν̄σ = 0 and nµnσ Qµν̄σ = 0; (77) from Nνσ Rµ̄νσ = 0 and
(78) from εµνuσ Rµνσ = 0.
5 (79) from nµNνσ Rµνσ = 0; (80) from nµNνσ Qµνσ = 0; (81) from nµενσ Rµνσ = 0 ; (82) from εµνσ Qµνσ = 0;
(83) from Dασµα equation and nµuσ Rµν̄σ = 0; (84) from nµQµ(ν̄σ̄ ) = 0 and (85) from nµRµ(ν̄σ̄ ) = 0.
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• Transportation6

δ
{(
Lu + � + 1

3θ
)(

� + 1
3θ

) − (Ln + A)A + E
} = − 1

6 (µ + 3p − 3�), (86)(
Lu + � + 1

3θ
)
υµ̄ − (

Ln + A − 1
2φ

)
Aµ̄ − Aaµ + 3

2�αµ + Eµ = 1
2�µ, (87)(

Lu + 3
2�

)
aµ̄−(Ln + A)αµ̄ − (

A − 1
2φ

)
υµ+

(
� + 1

3θ
)
Aµ − εµ

αHα = − 1
2Qµ. (88)

• Evolution equations7

δ
{(
Lu − 1

2� + 1
3θ

)
φ + A

(
� − 2

3θ
)} − δγ αγ = Q, (89)

δ
{(
Lu − 1

2� + 1
3θ

)(
� − 2

3θ
)

+ Aφ + E
}

+ δαAα = 1
3

(
µ + 3p + 3

2�
)
, (90)(

Lu − 1
2� + 1

3θ
)
ξ − 1

2εαβδααβ − (
A − 1

2φ
)
� − 1

2H = 0, (91)(
Lu − � − 2

3θ
)
� − Aξ − 1

2εαβδαAβ = 0, (92)

(Lu + θ)λµ̄ − Zµ − (
A − 1

2φ
)
Aµ + 3

2�αµ + Eµ = 1
2�µ, (93)(

Lu + 1
2� − 1

3θ
)
ζµ̄ν̄ − (

A − 1
2φ

)
�µν − ε(µ

αHν)α − δ{µαν} = 0, (94)

Lu�µ̄ν̄ − Aζµν − δ{µAν} + Eµν = 1
2�µν. (95)

Similarly, these 1+1+2 Ricci identities (76)–(95) are again a significant generalization of the
results in [1]. They now include full energy–momentum sources and moreover, they are for
arbitrary vacuum LRS class II spacetimes. Moreover, the very recent independent study by
Clarkson [23] presents the equations for LRS spacetimes. For the subsequent decoupling of
the complex GEM 2-tensor, we require evolution, transportation and propagation equations
for the complex variables defined in (72)8

(
Lu + 3

2�
)
µ̄ − (Ln + A)ϒµ̄ + iεµ

α�α − iAεµ
αα + 1

2φ
(
υµ + iεµ

αAα

)
+

(
� + 1

3θ
)
Aµ − i 1

2

(
� − 2

3θ
)
εµ

αυα + i 3
2�εµ

ααα = − 1
2

(
Qµ − iεµ

α�α

)
, (96)

Luµ̄ν̄ + �µν − iAε(µ
αν)α + i 1

2φε(µ
α�ν)α

+ i 1
2

(
� − 2

3θ
)
ε(µ

αζν)α − iε{µαδν}ϒα = 1
2�µν, (97)

Lnµ̄ν̄ + iε(µ
α�ν)α − i

(
� + 1

3θ
)
ε(µ

α�ν)α − 3
2�ζµν

− 1
2φ�µν − iε{µαδν}α = −i 1

2ε(µ
α�ν)α. (98)

4.4. Commutation relationships

Finally, we present how the various derivatives defined in this paper commute and generalize
the results from [2],(

Lu + � + 1
3θ

)
Ln�µ̄...ν̄ − (Ln + A)Lu�µ̄...ν̄ = 0, (99)

Luδσ�µ̄...ν̄ − δσLu�µ̄...ν̄ = 0, (100)

Lnδσ�µ̄...ν̄ − δσLn�µ̄...ν̄ = 0, (101)

6 (86) from uµnνuσ Rµνσ ; (87) from nµuνNσ
γ Qµνγ = 0 and (88) from uαnβRαβµ̄ = 0.

7 (89) from uµNνσ Rµνσ = 0; (90) from uµNνσ Qµνσ = 0; (91) from uµενσ Rµνσ = 0; (92) from uµενσ Qµνσ = 0;
(93) from uµnσ Nν

αQµασ = 0 ;(94) from uµRµ(ν̄σ̄ ) = 0; (95) from uµQµ(ν̄σ̄ ) = 0.
8 (96) from (87) and (88); (97) from (94), (95); (98) from (84) and (85).
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where �µ...ν represents a first-order scalar, first-order 2-vector and a first-order 2-tensor. The
commutators not only play a vital role in decoupling the equations at hand, they also provide a
rigorous test that the equations present here are correct and accurate. Every equation (61)–(70)
and (76)–(98) has been checked to satisfy all of the commutator relationships (99)–(100) and
this is inclusive of careful checks of all energy–momentum source terms (61)–(65).

5. Decoupling the complex GEM 2-tensor and its tensor harmonic amplitudes

We use the complex 1+1+2 Bianchi identities (66)–(70) to construct a new, covariant and
gauge-invariant equation governing the first-order complex GEM 2-tensor �µν . This is with
a complete description of the covariant and gauge-invariant, first-order energy–momentum
sources. It begins by taking the Lie derivative with respect to uµ of (70). It is then required
to use the commutation relationships (99)–(100) followed by substitutions of (68) through to
(70). Finally, (97) and (98) are used for further simplifications to obtain

[(Lu + θ)Lu − (Ln + A + φ)Ln − V ]�µν

− iε(µ
α [(4A − 2φ)Lu − 6�Ln + U ] �ν)α = Mµν. (102)

The two background scalars related to the potential, and the first-order energy–momentum
source, have been defined respectively,

V := δ2 + 8E − 4A2 + 4Aφ − φ2 + 9�2 − 3, (103)

U := 2
(
Lu − � + 2

3θ
)
A − 3

(
Ln + 7

6φ
)
� − 2

3θφ − 2, (104)

Mµν := (
Lu − 5

2� + 2
3θ

)
Fµ̄ν̄ + iε(µ

α
(
Ln − A + 3

2φ
)
Fν)α − iε{µαδ|α|Fν} − δ{µGν}. (105)

It was possible to eliminate all Lie derivatives in V and write it explicitly as algebraic
combinations of the background LRS class II scalars. However, the Lie derivatives in the
other potential term, U, cannot be reduced any further because there is no evolution equation
for A.

Thus (102) demonstrates that, for arbitrary vacuum LRS class II spacetimes, the complex
GEM 2-tensor decouples from the remaining GEM and 1+1+2 quantities. We next show how
this 2-tensor decouples further by using a tensor harmonic expansion, but we first take a closer
inspection of the energy–momentum source, Mµν ,

Mµν = − 1
2

{(
Lu − 2� + 1

3θ
)
Lu�µν + (Ln − A + φ)Ln�µν − M�µν − 2δ{µδα�ν}α

}
+ 2(Ln + φ)δ{µ�ν} + 2

(
� + 1

3θ
)
δ{µQν} + 1

2δ{µδν}(p + 2�),

+ iε{µα
{−(

Lu − 1
2� + 1

3θ
)
Ln�ν}α +

(
A − 1

2φ
)
Lu�ν}α + φ

(
� − 2

3θ
)
�ν}α

+
(
Lu − 2� + 1

3θ
)
δν}�α − (Ln − A + φ)δν}Qα + δν}δαQ

}
, (106)

where

M = 1
2

(
� − 2

3θ
)2

+ 1
2Aφ + 1

2φ2 − 1
2E . (107)

It is interesting to see which energy–momentum terms play an important role in the evolution
and propagation of the complex GEM 2-tensor. By considering the ‘principle part’, or the
parts which involve second-order Lie derivatives, it seems that the first-order anisotropic stress
may have a predominate influence here.
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5.1. Decoupling the complex GEM 2-tensor harmonic amplitudes

The complex GEM tensor, �µν , and the energy–momentum source, Mµν , are expanded using
tensor harmonics according to

�µν = �TQµν + �̄TQ̄µν and Mµν = MTQµν + M̄TQ̄µν.

Consequently, (102) results in two coupled equations of the form

[(
Lu − 2� + 7

3θ
)
Lu − (Ln + A + 3φ)Ln − Ṽ

]
�T

+ i [6�Ln − (4A − 2φ)Lu − Ũ ]�̄T = MT, (108)

[(
Lu − 2� + 7

3θ
)
Lu − (Ln + A + 3φ)Ln − Ṽ

]
�̄T

− i [6�Ln − (4A − 2φ)Lu − Ũ ]�T = M̄T, (109)

where new potential terms are defined,

Ṽ := −k2

r2
+ 2E − 4A2 + 4Aφ +

3

2
φ2 +

13

2
�2 − 10

9
θ2 +

10

3
�θ,

Ũ := 2(Lu − 3� + 2θ)A − 3

(
Ln +

5

2
φ

)
� − 2θφ.

(110)

By inspecting the coupled system (108) and (109), it is clear that they are invariant under
the simultaneous transformation of �T → �̄T and �̄T → −�T, and similarly for the sources,
MT → M̄T and M̄T → −MT. Thus, the coupled system (108)–(109) is precisely of the form
as discussed at the beginning of section 4.2. Therefore, they will decouple quite naturally by
constructing two new complex dependent variables,

�+ := �T + i �̄T and �− := �T − i �̄T. (111)

We also define a new complex energy–momentum source M± := MT ± iM̄T and potential
V± := Ṽ ± Ũ , where the ‘±’ is relative. Therefore, by taking complex combinations of (108)
and (109), we find two new decoupled equations given by
{[

Lu − 2� +
7

3
θ + (2φ − 4A)

]
Lu − (Ln + A + 3φ − 6�)Ln − V+

}
�+ = M+, (112)

{[
Lu − 2� +

7

3
θ − (2φ − 4A)

]
Lu − (Ln + A + 3φ + 6�)Ln − V−

}
�− = M−. (113)

It is vital to point out here that, since the covariant differential operators in (112)–(113) are
purely real, by taking the real and imaginary parts separately there are actually four real
decoupled quantities. It is now of interest to see how �± relates back to the real GEM 2-tensor
harmonic amplitudes. The GEM 2-tensors are expanded according to

Eµν = ETQµν + ĒTQ̄µν and Hµν = HTQµν + H̄TQ̄µν. (114)

Here, the polar perturbations are ET and H̄T whereas the axial perturbations are ĒT and HT.
Moreover, a full categorization of all the harmonic amplitudes of the 1+1+2 dependent variables
into polar and axial perturbations is presented in [1]. The definition (71) now implies

�T := ET + iHT and �̄T := ĒT + i H̄T, (115)

and by subsequently using (111) we find

�+ = (ET − H̄T) + i(ĒT + HT) and �− = (ET + H̄T) − i(ĒT − HT). (116)

12
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Thus, the four precise combinations of the four real GEM 2-tensor harmonic amplitudes which
decouple are

decoupled polar perturbations: {ET + H̄T, ET − H̄T}, (117)

decoupled axial perturbations: {HT + ĒT,HT − ĒT}. (118)

Moreover, it is clear that if the four decoupled quantities are known, then simple linear
combinations will reveal each of ET, H̄T,HT and ĒT.

6. Summary

This paper is the first in a series of papers to discuss (covariant and gauge-invariant)
gravitational and energy–momentum perturbations on arbitrary vacuum LRS class II
spacetimes. We showed how particular combinations of the first-order GEM quantities
decouple at two different levels. The first was a complex tensorial equation governing the
complex GEM 2-tensor �µν (102). The second involved a tensor harmonic expansion of
the GEM 2-tensors and resulted in four real equations (112)–(113). Of particular interest
is that we have found the precise combinations of the GEM 2-tensor harmonic amplitudes
that decouple, and these were separated out into polar and axial perturbations according to
(117)–(118). It is also important to note that each individual GEM 2-tensor amplitude on its
own does not satisfy a decoupled wave equation. This property was also demonstrated for the
Schwarzschild spacetime in [1] where they chose a special frame and derived second-order
differential equations for each of Eµν and Hµν which were both clearly coupled to the GEM
2-vectors and shear 2-tensors.

The next paper in this series focuses on decoupling the GEM 2-vector amplitudes. In
fact, immediate difficulties arise if we attempt to follow the same procedure as presented
here to try and derive a decoupled equation governing the 1+1+2 complex GEM 2-vector,
�µ. Consider taking the Lie derivative with respect to uµ of (69), then it follows that you
must have an evolution equation for ϒµ which then implies you need an evolution equation
for the first-order quantity Aµ, for which there is none. Thus, we show that only when the
complex GEM 2-vector is combined with other 1+1+2 2-tensors do they decouple. Therefore,
we modify the complex GEM system and ultimately a vector harmonic expansion results in
another four real decoupled quantities. The following paper will then focus on decoupling
the GEM scalar harmonic amplitudes into 3 RW equations for LRS class II spacetimes and
when reduced to the Schwarzschild case, 2 of these are indirectly related to the RW equation
derived in [1]. It will be here that we present a summary of the 11 decoupled quantities
arising from the 1+1+2 complex GEM system. Furthermore, we will show that there are
only two dynamical quantities and once known, the remaining 1+1+2 GEM system can be
found without further integration. Finally, in the last paper we will show how to use the
information calculated from the complex 1+1+2 GEM system to solve the remaining 1+1+2
Ricci identities and consider gravitational radiation applications. Of particular interest is to
perturb the background spacetime with a specific first-order energy–momentum distribution.
Furthermore, there is a close relationship between the 1+1+2 formalism and the Newman–
Penrose (NP) formalism [24], as it is always possible to express the 1+1+2 frame vectors in
terms of the NP null vectors. Thus, the following question will be addressed: in LRS class II
spacetimes of astrophysical interest, can the 1+1+2 approach lead to genuine new physics that
the NP approach fails to achieve? The expectations are promising as there will be a total of 11
decoupled quantities, each giving different information regarding the physics. Moreover, the
1+3 splitting enjoyed significant success for our understanding of cosmological applications,
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and based on this success, it is perhaps reasonable to also have strong prospects for the 1+1+2
formalism to be successful.
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