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Abstract
We use the (covariant and gauge-invariant) 1+1+2 formalism developed by
Clarkson and Barrett (2003 Class. Quanum Grav. 20 3855–84), and develop
new techniques, to decouple electromagnetic (EM) perturbations on arbitrary
locally rotationally symmetric (LRS) spacetimes. Ultimately, we derive three
decoupled complex equations governing three complex scalars. One of these is
a new Regge–Wheeler (RW) equation generalized for LRS spacetimes, whereas
the remaining two are new generalizations of the Bardeen–Press (BP) equations.
This is achieved by first using linear algebra techniques to rewrite the first-
order Maxwell equations in a new complex 1+1+2 form which is conducive
to decoupling. This new complex system immediately yields the generalized
RW equation, and furthermore, we also derive a decoupled equation governing
a newly defined complex EM 2-vector. Subsequently, a further decomposition
of the 1+1+2 formalism into a 1+1+1+1 formalism is developed, allowing
us to decompose the complex EM 2-vector, and its governing equations, into
spin-weighted scalars, giving rise to the generalized BP equations.

PACS numbers: 04.25.Nx, 04.20.−q, 04.40.−b, 03.50.De, 04.20.Cv

1. Introduction

The 1+3 formalism is well established (for example, see [2–4]), whereby a 4-velocity, uµ,
is defined such that it is both time-like and normalized, uαuα := −1. Any tensor may then
be irreducibly decomposed into several parts; scalars by contracting with the four-velocity,
a spatial part (referred to as a 3-tensor) which is projected onto the instantaneous rest-space
(or 3-sheet) orthogonal to uµ, and parts which comprise combinations of both projections
and contractions in the time-like direction (also 3-tensors). Recently, Clarkson and Barrett
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developed a further decomposition of the 1+3 formalism into a 1+1+2 formalism for an analysis
of gravitational perturbations of a covariant description of the Schwarzschild spacetime [1].
They introduced a radial vector field, nµ, defined such that it is space-like and normalized,
nαnα := 1, and it is orthogonal to the time-like vector field, uαnα = 0. In this way, every
3-tensor may be further irreducibly decomposed into scalars by contracting with the radial
vector, a part which is projected onto a 2-sheet (called a 2-tensor) orthogonal to both uµ and
nµ, and parts which comprise combinations.

The 1+1+2 formalism is an ideal setting for describing electromagnetic (EM) perturbations
on locally rotationally symmetric (LRS) spacetimes [3, 5–7]. LRS spacetimes were first
classified by [3, 7] who used an orthonormal tetrad system in order to study dust and general
fluid spacetimes. A spacetime is said to be LRS if there exists a preferred spatial direction,
and furthermore, any 3-tensor must then lie parallel to this direction; a very simple example
is a Schwarzschild black hole where the preferred spatial direction would be parallel to the
radial direction. A covariant approach to LRS spacetimes using the 1+3 splitting was later
developed in [6]. They employed the 1+3 formalism and introduced a preferred spatial
3-vector, eµ, defined covariantly by eαeα = 1 and eαuα = 0. Therefore, since LRS implies
that any other 3-vector, vµ, must lie parallel to the preferred direction it may be expressed
as vµ = αeµ where α is some scalar function (and similar results hold true for 3-tensors
of greater type). Subsequently, the 1+3 equations reduced to partial differential equations
involving these scalar quantities only. Thus, the 1+1+2 formalism is ideally suited to study
LRS spacetimes by letting the preferred direction be given by the radial vector nµ defined in
[5]. Under these conditions, all the 2-tensors vanish and only the scalar quantities remain.
Furthermore, the 1+1+2 formalism has strong prospects to be as successful to learn about
astrophysical LRS spacetimes, as the 1+3 formalism was for understanding cosmological
models. EM perturbations via the 1+1+2 formalism were first considered in [5] for LRS
class II spacetimes, which comprise a sub-set of LRS spacetimes and this is discussed further
in section 3.1.1. In section 2, the necessary background constraint, evolution, propagation
and transportation equations are presented for arbitrary LRS spacetimes, including a full
description of energy–momentum sources.

In section 3, EM perturbations on arbitrary LRS spacetimes are considered and the
corresponding first-order Maxwell equations in 1+1+2 form are reproduced from [8].
Subsequently, we use eigenvalue/eigenvector analysis to reveal that a very natural way to
decouple the 1+1+2 Maxwell equations is to construct new complex dependent variables.
Consequently, we display Maxwell’s equations in a new 1+1+2 complex form which is
conducive to decoupling. Then in section 3.1 we derive a Regge–Wheeler (RW) equation
[9], generalized towards arbitrary LRS spacetimes for a complex scalar. In section 3.2,
we derive a decoupled equation governing a complex 2-tensor. Subsequently, in order to
decouple the individual components, we again use linear algebra techniques to best exploit
the inherent structure of the equations. Consequently, a further decomposition of the 1+1+2
formalism into a new 1+1+1+1 formalism is developed and the complex 2-tensor �µ is
irreducibly decomposed into two spin-weighted scalars [10]. Ultimately, we arrive at a
generalization of the Bardeen–Press (BP) equations [10–12] for LRS spacetimes. Other
studies of EM perturbations include [13, 14] who analyzed four-dimensional charged black
holes and showed that specific combinations of the EM and metric perturbation quantities
decouple. Furthermore, this has been subsequently generalized by [15, 16] whereby
harmonic expansions, as defined in [17–19], were used to find decoupled quantities governing
perturbations to n dimensional charged black holes.

Finally, unless otherwise stated, we adhere to the notation employed in [1, 5].
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2. The background LRS spacetime

There is a set of 1+1+2 scalar quantities describing arbitrary LRS spacetimes (also noted in
[5]) which are given by

LRS: {A, θ, φ,�, ξ,�, E,H, µ, p,Q,�,	}. (1)

Here A is the radial acceleration of the 4-velocity, θ and φ are respectively the expansions
of the 3-sheets and 2-sheets, � is the radial part of the shear of the 3-sheet, ξ is the twisting
of the 2-sheet and � is the radial part of the vorticity of the 3-sheet. Also, the radial parts
of the gravito-electric and gravito-magnetic tensors are respectively, E and H. The energy–
momentum quantities, mass–energy density, pressure, radial heat flux and radial anisotropic
stress are denoted respectively µ,p,Q and �, and finally, 	 is the cosmological constant.
The 2-derivative associated with the 2-sheets is defined as

δµUν...σ := Nα
µNν

β . . . Nσ
γ ∇αUβ...γ , (2)

where Uν...σ is a 2-tensor and Nµν := gµν + uµuν − nµnν is the projection tensor which
projects onto the 2-sheets (gµν is the 4-metric), and by operating on any LRS scalar will
yield zero. The 1+1+2 coupled system which governs these scalars arises from the Ricci
identities for the vector fields, uµ and nµ and the Bianchi identities. They were presented
in [1] for the vacuum Schwarzschild case and in [5] for LRS class II spacetimes. Here, we
generalize them further for arbitrary LRS spacetimes and the system becomes significantly
more complicated. Furthermore, an independent study of these equations has been carried out
in a very recent paper [20]. Compared to LRS class II spacetimes, there is a combined total
of seven additional evolution, propagation and constraint equations arising which govern the
additional scalar quantities. First, the Ricci and Bianchi identities are defined according to

Qµνσ := 2∇[µ∇ν]uσ − Rµνστu
τ = 0, (3)

Rµνσ := 2∇[µ∇ν]nσ − Rµνστn
τ = 0, (4)

Bνστ := ∇µCµνστ − [∇[σ Tτ ]ν + 1
3gν[σ∇τ ]T

] = 0, (5)

where Cµνστ is the Weyl tensor, Rµνστ is the Riemann tensor, Tµν the energy–momentum
tensor and ∇µ the four-dimensional covariant derivative. The governing equations are then
categorized into specific groups according to

Constraint3

3ξ� − (2A − φ)� − H = 0 (6)

Propagation4

φ̂ + 1
2φ2 +

(
� − 2

3θ
)(

� + 1
3θ

)
+ E − 2ξ 2 = − 2

3 (µ + 	) − 1
2�, (7)

�̂ − 3
2 θ̂ + 3

2φ� + 2ξ� = −Q, (8)

Ê + 3
2φE − 3H� = 1

3 µ̂ + 1
2

(
� − 2

3θ
)
Q − 1

2�̂ − 3
4φ�, (9)

Ĥ + 3
2φH + 3E� = −(

µ + p − 1
2�

)
� − Qξ, (10)

ξ̂ + φξ − (
� + 1

3θ
)
� = 0, (11)

�̂ − (A − φ)� = 0. (12)

3 They are derived as follows: (6) from εµνuσ Rµνσ = 0.
4 Derived as follows: (7) from nµNνσ Rµνσ = 0; (8) from nµNνσ Qµνσ = 0; (9) from uαuβnγ Bαβγ = 0; (10) from
εβγ uαBαβγ = 0; (11) from nµενσ Rµνσ = 0; (12) from εµνσ Qµνσ = 0.
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Evolution5

φ̇ +
(
� − 2

3θ
)(
A − 1

2φ
) − 2ξ� = Q, (13)

�̇ − 2
3 θ̇ − 1

2

(
� − 2

3θ
)2

+ Aφ + E + 2�2 = 1
3 (µ + 3p − 2	) + 1

2�, (14)

Ė − 3
2

(
� − 2

3θ
)
E − 3Hξ = 1

3 µ̇ − 1
2�̇ + 1

4

(
� − 2

3θ
)
� + 1

2φQ − 1
2 (µ + p)

(
� − 2

3θ
)
, (15)

Ḣ − 3
2

(
� − 2

3θ
)
H + 3Eξ = Q� + 3

2�ξ, (16)

ξ̇ − 2
(
� − 1

6θ
)
ξ = 0, (17)

�̇ − (
� − 2

3θ
)
� − Aξ = 0. (18)

Transportation6

Â + (A + φ)A − θ̇ − 1
3θ2 − 3

2�2 + 2�2 = 1
2 (µ + 3p − 2	), (19)

µ̇ + θµ + Q̂ + (2A + φ)Q + θp + 3
2�� = 0, (20)

Q̇ +
(
� + 4

3θ
)
Q + p̂ + Ap + �̂ +

(
A + 3

2φ
)
� + µA = 0. (21)

Moreover, it is possible to derive a transport equation for A by substituting the constraint (6)
into (16) and subsequently eliminating all other dot derivatives using (13), (14) and (17)–(19)
to achieve

�Ȧ − ξÂ = 0. (22)

Here, the ‘dot’ derivative is defined as Ẋµ...ν := uα∇αXµ...ν where Xµ...ν represents any
quantity. The ‘hat’ derivative is defined as Ŵµ...ν := nαDαWµ...ν , where Wµ...ν represents a
3-tensor and Dµ is the derivative associated with the 3-sheets, defined by

DµWν...σ := hµ
αhν

β . . . hσ
γ ∇αWβ...γ , (23)

where the tensor which projects onto the 3-sheets is defined as hµν := gµν + uµuν .

3. EM perturbations on LRS spacetimes

We now consider first-order EM perturbations to arbitrary LRS background spacetimes defined
by (1) and (6)–(21). The EM perturbations (Eµ and Bµ) and the current 3-vector (Jµ) are
covariant and are considered to be gauge-invariant according to the Sachs–Stewart–Walker
lemma [21, 22]. They are irreducibly split into 1+1+2 form according to

Eµ = E nµ + Eµ, Bµ = Bnµ + Bµ and Jµ = J nµ + Jµ. (24)

The fully nonlinear Maxwell equations were previously presented in 1+1+2 form [8]. The
corresponding, covariant and gauge-invariant, first-order equations become

B̂ + φB + δαBα + 2�E = 0, (25)

Ê + φE + δαEα − 2�B = ρe, (26)

Ḃ − (
� − 2

3θ
)
B + εαβδαEβ + 2E ξ = 0, (27)

5 Derived as follows: (13) from uµNνσ Rµνσ = 0; (14) from uµNνσ Qµνσ = 0; (15) from uαnβnγ Bβγα = 0 and
(20); (16) from εαβnγ Bγαβ = 0; (17) from uµενσ Rµνσ = 0 and (6); (18) from uµενσ Qµνσ = 0.
6 Derived as follows: (19) from uµnνuσ Rµνσ .
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Ė − (
� − 2

3θ
)
E − εαβδαBβ − 2Bξ = −J , (28)

Ḃµ̄ +
(

1
2� + 2

3θ
)
Bµ − εµ

α
[
Êα +

(
A + 1

2φ
)
Eα

]
+ εµ

αδαE + �εµ
αBα + ξEµ = 0, (29)

Ėµ̄ +
(

1
2� + 2

3θ
)
Eµ + εµ

α
[
B̂α +

(
A + 1

2φ)Bα

] − εµ
αδαB + �εµ

αEα − ξBµ = −Jµ, (30)

where in accord with standard notation, a ‘bar’ over an index implies that the index has
been projected onto the 2-sheets. Also, ρe is the electric charge density and εµν is the anti-
symmetric pseudo-2-tensor defined with respect to the four-dimensional Levi-Civita pseudo-
tensor according to εµν := εσµντu

σnτ .
It has long been established that by constructing a complex combination of the EM fields,

the system of equations is greatly simplified [23]. This is due to the inherent structure of
Maxwell’s equations, and this is also true for the fully nonlinear equations. They are invariant
(in the absence of sources) under the simultaneous transformation Eµ → Bµ and Bµ → −Eµ,
which corresponds to {E → B,Eµ → Bµ} and {B → −E ,Bµ → −Eµ}. Therefore, the
appendix uses linear algebra techniques to show that a natural decoupling of the equations is
achieved by choosing new dynamical complex quantities according to

� := E + i B and �µ := Eµ + i Bµ, (31)

where i is the complex number7. Thus, without loss of generality, the six real Maxwell
equations (26)–(30) are expressed in a new 1+1+2 complex form,

�̂ + φ� + δα�α + i 2�� = ρe, (32)

�̇ − (
� − 2

3θ
)
� + i εαβδα�β + i 2ξ� = −J , (33)

�̇µ̄ +
(

1
2� + 2

3θ
)
�µ − i εµ

α
[
�̂α +

(
A + 1

2φ
)
�α

]
+ i εµ

αδα� + �εµ
α�α + i ξ�µ = −Jµ.

(34)

Before proceeding with decoupling the 1+1+2 complex system, we write down the
commutation relationships between the various derivatives defined throughout. These are
very important for the forthcoming analysis and furthermore, it is also vital to perform an
integrability check with each and every equation. For any first-order scalar �, they were
presented previously in [1]

ˆ̇� − (
� + 1

3θ
)
�̂ − ˙̂� + A�̇ = 0, (35)

δµ�̇ − (δµ̄�)̇ + 1
2

(
� − 2

3θ
)
δµ� − �εµ

αδα� = 0, (36)

δµ�̂ − (δµ̄�)̂ − 1
2φδµ� − ξεµ

αδα� = 0, (37)

δ[µδν]� − εµν(��̇ − ξ�̂) = 0. (38)

For a first-order 2-vector, �µ, they were given in [5] for LRS class II spacetimes, and here
they are generalized for arbitrary LRS spacetimes (and they may also be found in the very
recent independent study of Clarkson [20]),

ˆ̇�µ̄ − (
� + 1

3θ
)
�̂µ̄ − ˙̂�µ̄ + A�̇µ̄ − Hεµ

α�α = 0, (39)

δµ�̇ν − (δµ̄�ν̄ )̇ + 1
2

(
� − 2

3θ
)
δµ�ν − �εµ

αδα�ν = 0, (40)

7 It is also possible to alternatively choose the complex conjugates, �∗ := E − i B and �∗
µ := Eµ − i Bµ.

Furthermore, any equations governing �∗ and �∗
µ may be found by simply taking the complex conjugate of the

equations governing � and �µ.
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δµ�̂ν − (δµ̄�ν̄ )̂ − 1
2φδµ�ν − ξεµ

αδα�ν = 0, (41)

δ[µδν]�σ + K�[µNν]σ − εµν

(
��̇σ̄ − ξ�̂σ̄

) = 0. (42)

Here, the scalar function K has been defined as

K := 1
3 (µ + 	) − E − 1

2� + 1
4φ2 − 1

4

(
� − 2

3θ
)2

+ ξ 2 − �2, (43)

and this is a natural generalization of the Gaussian curvature scalar defined in [5] for LRS
class II spacetimes. In the LRS class II case where ξ = � = H = 0, the sheets mesh to form
surfaces for which the Gaussian curvature then has its standard definition [5].

3.1. Regge–Wheeler equation for LRS spacetimes

The (gauge-invariant and covariant) decoupled equation governing � is derived by taking the
‘dot’ derivative of (33) and it is important to use the Ricci/Bianchi identities (7)–(21), the
scalar function K (43), and the commutation relationships for the various derivatives (35)–(42).
It is also necessary to substitute (32)–(34) for further simplifications and after some arduous
manipulation, we arrive at

�̈ − (
� − 5

3θ − i 2ξ
)
�̇ − ˆ̂� − (A + 2φ + i 2�)�̂ − V � = S. (44)

The potential and energy–momentum source have been defined,

V := δ2 + 2K − µ + p + � − 2	 + i 4
[
�A − ξ

(
� + 1

3θ
)]

, (45)

S := −ρ̂e − (φ + A)ρe − J̇ − θJ + i εαβδαJβ, (46)

where the 2-Laplacian is δ2 := δαδα . This is a new complex RW equation generalized for EM
perturbations on arbitrary LRS spacetimes, and this generalizes the RW equation derived in
[5] for LRS class II spacetimes.

By inspecting (44), this clearly demonstrates that for arbitrary LRS spacetimes, the
complex EM scalar, �, decouples from the complex EM 2-vector, �µ. It also indicates that
the radial electric field (E ) and radial magnetic field (B) do not decouple from each other and
instead they must be treated as a single complex radial electromagnetic field (�). We show in
the next section that further decoupling can be achieved in specific sub-cases.

It is also noted that it is convenient to introduce a scalar function, r, according to

r̂

r
= 1

2
φ,

ṙ

r
= −1

2

(
� − 2

3
θ

)
and δµr = 0, (47)

as defined in [1]. In this way a new scaled variable may be chosen, ϒ = r2�, such that the
scaled RW equation becomes

ϔ +
(
� + 1

3θ + i 2ξ
)
ϒ̇ − ˆ̂ϒ − (A + i 2�)ϒ̂ − Uϒ = r2S (48)

and the primary advantage is that the potential scales to a much simpler form,

U := δ2 − i 2[�(φ − 2A) + 3ξ�]. (49)

3.1.1. LRS class II spacetimes. A closer inspection of the coefficients in the complex RW
equation (44) reveals that the imaginary components are always associated with either ξ or �.
Therefore, further decoupling is achieved in the case when they vanish and by (6) this implies
H will also vanish, and this is precisely LRS class II defined by

LRS class II: {A, θ, φ,�, E, µ, p,Q,�,	}. (50)

6
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Thus, for LRS class II the complex RW equation (44) reduces to

�̈ − (
� − 5

3θ
)
�̇ − ˆ̂� − (A + 2φ)�̂ − V � = S, (51)

where the potential is now

V := δ2 + 2K − µ + p + � − 2	, (52)

which is a remarkably simple form; for example, in vacuum spacetimes whereby the
cosmological constant vanishes, the potential is purely in terms of the Gaussian curvature
of the 2-sheets (and the 2-Laplacian). Furthermore, the scaled LRS class II RW equation
reduces to

ϔ +
(
� + 1

3θ
)
ϒ̇ − ˆ̂ϒ − Aϒ̂ − δ2ϒ = r2S, (53)

and the potential is purely in terms of the 2-Laplacian only.
Now since all differential operators (along with their coefficients) acting on � in (51) are

purely real, there are two independent decoupled equations here; one for each of the real and
imaginary components of � (i.e. E and B),

Ë − (
� − 5

3θ
)
Ė − ˆ̂E − (A + 2φ)Ê − V E = −ρ̂e − (φ + A)ρe − J̇ − θJ , (54)

B̈ − (
� − 5

3θ
)
Ḃ − ˆ̂B − (A + 2φ)B̂ − V B = εαβδαJβ (55)

and these correspond to those derived in [5]. However, these equations correct an error that
resides in the potential of the work presented by [5], for which we now elucidate. For better
comparison with [5], we can substitute (43) into the potential (52) to reveal,

V = δ2 + 1
2φ2 − 2E +

(
2
9θ − 1

3�
)(

3
2� − θ

) − 1
3 (µ − 3p + 4	). (56)

We will denote their incorrect potential as VBC and reproduce this from [5],

VBC = δ2 + 1
2φ2 − 2E +

(
1
3θ + �

)(
3
2� − θ

)
︸ ︷︷ ︸

incorrect term

− 1
3 (µ − 3p + 4	). (57)

However, it is strongly emphasized here that this in no way affects the way in which the
equations decouple in [5]. Furthermore, [5] presents an informative and interesting analysis
of various applications for which the ‘incorrect term’ vanishes, and thus those results remain
intact.

3.2. Bardeen–Press equations for LRS spacetimes

We now show that since we are exploiting the inherent structure of the equations, we can
derive a new decoupled equation for the complex EM 2-vector, �µ. The derivation is similar
to how the generalized RW equation was constructed. First take the dot derivative of (34) and
use (7)–(42), and substitute (32)–(34), to simplify further. Ultimately, we find a decoupled,
covariant and gauge-invariant, equation given by

�̈µ̄ − (
� − 5

3θ − i 2ξ
)
�̇µ̄ − ˆ̂�µ̄ − (A + 2φ + i 2�)�̂µ̄ − V(1)�µ

− i εµ
α[(2A − φ + i 2�)�̇α − (3� + i 2ξ)�̂α − V(2)�α] = Sµ, (58)

where two terms related to the potentials have been defined,

V(1) := δ2 + E + 1
4φ2 − A2 + φA + 7

4�2 − 2
9θ2 + 2

3θ� − 1
3µ + p − 4

3	 + ξ 2 − �2

+ i
[
�

(
2A + φ

) − ξ
(
� + 4

3θ
) − H

]
, (59)

7
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V(2) := −Ȧ + θ̂ + 2
3θ(φ − 2A) + 1

2�(φ + 4A) − 2ξ� − Q + i
[
2�

(
� + 1

3θ
) − 2ξA

]
, (60)

and the energy–momentum source

Sµ := −J̇µ̄ + 3
2

(
� − 2

3θ
)
Jµ − δµρe + �εµ

αJα + i εµ
α
(
δαJ − Ĵα − 3

2φJα

) − i ξJµ.

(61)

It is now clear that the complex EM 2-tensor also decouples from the complex EM scalar
�. Thus analogous to the radial case, the electric 2-vector (Eµ) and the magnetic 2-vector
(Bµ) do not decouple from each other; however, they combine to form a single complex
electromagnetic 2-vector (�µ). It is difficult to eliminate all the derivative terms in part of
the potential, V(2), given by (60). Although, it is possible to simplify it slightly by using the
transportation equation for A (22) to eliminate Ȧ. However, this would be a restricted case as
careful consideration would be needed to ensure that the ratio, ξÂ/�, is well defined.

In the next section we show how to further decompose (58) to find two new BP equations
generalized for EM perturbations to LRS spacetimes.

3.2.1. 1+1+1+1 decomposition. In order to decouple the two components residing in (58),
we consider a further projection along two more vectors. The natural decoupling methodology
in the appendix is employed again, and this allows these vectors to be a complex-conjugate
pair (mµ,m∗µ) which satisfies the following relationships:

m∗αmα = 1, mαmα = 0, m∗αm∗
α = 0, Nµν = 2m(µm∗ν), (62)

where Nµν is the projection tensor for the 2-sheets and these complex-conjugate vectors are
orthogonal to both uµ and nµ. Consider the arbitrary 2-vector, �µ, and 2-tensor, �µν , then by
subsequently using (62), a new irreducible decomposition into 1+1+1+1 form is given by,

�µ = (�αmα)m∗
µ + (�αm∗α)mµ, (63)

�µν = (�αβm∗αm∗β)mµmν + (�αβmαmβ)m∗
µm∗

ν + 2m(µm∗
ν)(�αβm∗(αmβ))

+ 2m[µm∗
ν](�αβm∗[αmβ]), (64)

where the individual components are scalars with a specific spin-weight [10] that has a standard
definition as follows. Let the complex vector, mµ, undergo a transformation on the 2-sheet
according to mµ → CC∗−1mµ where C is an arbitrary complex scalar field and C∗ its complex
conjugate. Then any quantity, ζµ...ν

σ ...τ , which has a corresponding transformation of

ζµ...ν
σ ...τ → CpC∗qζµ...ν

σ ...τ , (65)

is said to have a spin-weight s defined,

s := 1
2 (p − q). (66)

We now derive the new and important quantities which arise from the further decomposition of
the 1+1+2 formalism into the 1+1+1+1 formalism. All the subsequent equations will naturally
occur in complex-conjugate pairs. However, we only display one of the pairs and note that
the other is found by taking the complex conjugate. Thus we have

δµmν = −mµmνm
∗αχα − 1

2Nµνm
αχα − i 1

2σmαχαεµν, (67)

where

χµ := mαδµm∗
α = −χ∗

µ (68)

is purely imaginary and has zero spin-weight, and

σ := i mαm∗
βεαβ from which it follows σ 2 = 1, (69)

8
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therefore, σ has zero spin-weight and is purely real. Thus, (67) depends only on the complex-
conjugate pair (mαχα,m∗αχ∗

α) which have a spin weight of 1 and −1 respectively. We also
have a constraint and a relationship for the divergence, which are respectively

(δα + χα)mα = 0 and εαβδαmβ = i σδαmα, (70)

and finally, by using (64), the Levi-Civita pseudo-2-tensor is decomposed as

εµν = i 2σm[µm∗
ν]. (71)

3.2.2. Bardeen–Press equations for spin weighted scalars. We now have developed the
necessary mathematical tools to irreducibly decompose the complex 2-vector as

�µ = M⊕m∗
µ + M⊗mµ, (72)

where M⊕ := mα�α has a spin-weight of s = 1 and M⊗ := m∗α�α has a spin-weight of
s = −1. Finally, by substituting (72) into (58) and contracting separately with mµ and m∗µ,
we find the components naturally decouple into two spin-weighted equations of the form,

M̈⊕ +
[
2γ − � + 5

3θ + i 2ξ − sσ (2A − φ − i 2�)
]
Ṁ⊕ − ˆ̂M⊕

− [2λ + A + 2φ − sσ (3� − i 2ξ)]M̂⊕ − 2χαδαM⊕ − VBM⊕ = S⊕, (73)

M̈⊗ +
[
2γ ∗ − � + 5

3θ + i 2ξ − sσ (2A − φ − i 2�)
]
Ṁ⊗ − ˆ̂M⊗

− [2λ∗ + A + 2φ − sσ (3� − i 2ξ)]M̂⊗ − 2χ∗αδαM⊗ − VPM⊗ = S⊗. (74)

where the energy–momentum source has similarly been decomposed as Sµ := S⊕m∗
µ +S⊗mµ.

Furthermore, some new definitions involving various combinations of mµ and m∗µ are,

γ := mαṁ∗
α, λ := mαm̂∗

α, χµ := mαδµm∗
α

and χ := (δαmβ)(δαm∗
β), (75)

and the terms related to the potentials are now

VB := −γ̇ − γ
[
γ − � + 5

3θ − sσ (2A − φ)
]

+ λ̂ + λ(λ + A + 2φ − 3sσ�)

−χ + δαχα + V(1) − σV(2), (76)

VP := −γ̇ ∗ − γ ∗[γ ∗ − � + 5
3θ − sσ (2A − φ)

]
+ λ̂∗ + λ∗(λ∗ + A + 2φ − 3sσ�)

− χ̄ + δαχ∗
α + V(1) + σV(2). (77)

The decoupled equations, (73)–(74), are new generalizations of the BP equations for arbitrary
LRS spacetimes.

To reduce the generalized BP equations for a particular application involving a specific
LRS metric, one can first determine the two frame vectors uµ and nµ and the two complex-
conjugate vectors mµ and m∗µ. With these four vectors known, it is then possible to calculate
every other required quantity, including all background LRS scalars, from original definitions
(see [1] for the LRS class II scalars arising from the Schwarzschild metric). The BP equations
were checked for accuracy by using this approach to write them in coordinate form and then
comparing them with those derived using the Newman–Penrose (NP) formalism [24] also
expressed in coordinate form according to [12]. They were cross-checked using Maple 9.5 and
they correspond precisely. In order to achieve this, the NP null vectors were expressed in terms
of the 1+1+2 frame vectors according to kµ = (uµ + nµ)f/

√
2 and �µ = (uµ − nµ)/(f

√
2),

where f is a scalar function, and the 1+1+1+1 complex-conjugate vectors were chosen to
align with the NP complex-conjugate vectors.

9
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4. Summary and conclusions

We have successfully decoupled (gauge-invariant and covariant) EM perturbations on arbitrary
LRS spacetimes. We used an eigenvector/eigenvalue analysis to take advantage of the inherent
mathematical characteristics of Maxwell’s equations and express them in a complex 1+1+2
form that facilitates decoupling. This new complex system was then used to demonstrate the
decoupling of the complex EM scalar (�) and the complex EM 2-vector (�µ). The governing
equation for � is a RW equation generalized towards arbitrary LRS spacetimes. Furthermore,
we also derived a new decoupled equation governing the complex EM 2-vector. We then
developed a further decomposition of the 1+1+2 formalism into a 1+1+1+1 formalism and
ultimately derived a pair of decoupled spin-weighted scalars. The governing equations are the
BP equations generalized for arbitrary LRS spacetimes. Finally, we also noted that additional
decoupling could be achieved between the EM scalars, E and B, by reducing the RW equation
to the LRS class II sub-case.

This process presented here is also highly useful as a mathematical guide for decoupling
the analogous case of gravitational perturbations to LRS spacetimes using the 1+1+2 gravito-
electromagnetic (GEM) formalism. We have already shown how to decouple complex GEM
spin-weighted scalars for the covariant Schwarzschild case [25] and we will show in a future
paper that this can be extended for general LRS spacetimes.

Acknowledgments

RBB thanks the Australian Research Council Large Research Grants (A69927166) for financial
support. We thank P Lasky for critical reading of this manuscript and acknowledge the
usefulness of Maple for cross-checking results.

Appendix. Linear algebra: decoupling systems of differential equations

Consider the system given by,

L1E + L2B = 0 and L1B − L2E = 0, (A.1)

where L1 and L2 represent differential operators and E and B are any scalar fields. This
system has the property that it is invariant under the simultaneous transformation of E → B

and B → −E. This system can be expressed in a matrix form as(
L1E

L1B

)
+ M

(
L2E

L2B

)
=

(
0
0

)
, where M :=

(
0 1

−1 0

)
(A.2)

is the matrix responsible for coupling E to B. M can be written in terms of its eigenvalues,
diag(D), and corresponding eigenvectors, col(P), according to M = PDP −1. Therefore,
since D is diagonal, it is clear that by multiplying (A.2) by −2i P −1 results in the decoupled
system,

L1(E + i B) + i L2(E + i B) = 0 and L1(E − i B) − i L2(E − i B) = 0. (A.3)

Thus a complex-conjugate pair of equations arise. This result can be generalized to tensors of
any type without loss of generality provided the invariance is satisfied. The matrix M needs
to be written in block form with blocks of zeros or the identity matrix to compensate for the
number of dimensions.
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