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ABSTRACT

We study the near-field coupling of a pair of flux tubes embedded in a gravitationally stratified environment. The
mutual induction of the near-field jackets of the two flux tubes can considerably alter the scattering properties
of the system, resulting in sizable changes in the magnitudes of scattering coefficients and bizarre trends in the
phases. The dominant length scale governing the induction zone turns out to be approximately half the horizontal
wavelength of the incident mode, a result that fits in quite pleasantly with extant theories of scattering. Higher-
β flux tubes are more strongly coupled than weaker ones, a consequence of the greater role that the near-field
jacket modes play in such tubes. We also comment on the importance of incorporating the effects of multiple
scattering when studying the effects of mode absorption in plage and interpreting related scattering measurements.
That the near field plays such an important role in the scattering process lends encouragement to the eventual
goal of observationally resolving subwavelength features of flux tubes using techniques of helioseismology.
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1. INTRODUCTION

An outstanding issue in solar physics concerns the accurate
constraining of the internal constitution of sunspots. Since we
are unable directly image the interior, we study the solar acoustic
wave field in and around sunspots and attempt to comprehend
these observations through theories of wave interactions. An
example of such an effort is the first putative detection of
downflows underneath sunspots by Duvall et al. (1996), who
analyzed the solar wave field using methods of time–distance
helioseismology (Duvall et al. 1993). In the Sun, observations
have almost always been more plentiful than theory. Of late,
the importance of developing theoretical and computational
methods to aid the interpretation of observations of solar
magnetism has risen to the fore. A considerable body of
computational work has recently focused on understanding
the nature of wave interactions in magnetized environments
(e.g., Khomenko & Collados 2006; Cameron et al. 2007;
Hanasoge 2008). Complementary to such efforts, we attempt
here to develop further the theory of flux tube related multiple
scattering, probably ubiquitously present on the Sun but has,
for the most part, been studiously ignored in the past due to the
many challenges involved in modeling such interactions. On
another front, it is important to place bounds on the degree of
wave absorption and scattering by the plage for it tells us how
much energy is transmitted to the corona and could help explain
the complex frequency dependence of acoustic mode line widths
(e.g., Bogdan et al. 1996; Hindman & Jain 2008). Because plage
comprises ensembles of compactly packed thin flux tubes, the
interaction with waves possibly lies in the multiple scattering
regime.

In linear theory, when a wave encounters an anomaly of some
sort, it is scattered at constant frequency, with the resultant
wave field being broadly classified into near- and far-field
components. The far field consists of propagating modes that
transport some fraction of the incident mode energy away from
the scatterer. The near field is more complex, comprising a
number of nonpropagating horizontally evanescent waves, that
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arise when the displacements of the anomaly due to the external
wave buffetingü cannot be matched by the set of eigenfunctions
of the propagating modes. In the case of stratified flux tubes in
the Sun, the set of p-mode eigenfunctions at constant frequency
is an incomplete basis, requiring a supplementary set, an
uncountably infinite continuum in fact, of these evanescent near-
field functions to complete the basis. The problem is exacerbated
when the displacement eigenfunctions of the scatterer gain
complexity.

The mathematics required to address the near field in the
case of thin flux tubes was set down by Bogdan & Cally
(1995), who termed this nonpropagating sheath of waves as
an “acoustic jacket” that envelopes flux concentrations. The
uncountable continuum of jacket modes arises as a consequence
of an infinitely deep lower boundary, required in order to allow
the tube modes to disappear into the solar interior. Unfortunately,
numerically computing the near-field jacket in this scenario is
all but impossible because of various formidable integrals in the
equations. In order to arrive at an analogous but more tractable
problem, Barnes & Cally (2000) introduced an artificial lower
boundary, leading to a discrete and countably infinite number
of near-field modes. More recently, Hanasoge et al. (2008)
adopted the model of Barnes & Cally (2000) and estimated
the magnitude of the near-field jacket and the single scattering
by an isolated thin flux tube. They attempted to model the
observations of Duvall et al. (2006), who characterized the
scattering of f modes by magnetic flux elements. However,
magnetic elements are known to consist of a number of tightly
packed flux tubes, all likely within the near fields of each other.
Thus, the single scattering assumption may not be entirely
accurate when interpreting these measurements.

The presence of a large body of theory to draw upon makes it
easier to proceed toward an understanding of the importance of
multiple scattering. When a pair of flux tubes lie in the proximity
of each other, their near fields communicate and depending on
the separation, can dramatically alter the nature of the scatter.
Thus, accounting for the mutual induction of near fields is
rather important when studying plage or other closely spaced
scatterers. Bogdan & Fox (1991), when considering a pair of
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flux tubes at a series of separations in an unstratified medium,
found evidence for three different scattering regimes that they
termed multiple, coherent, and incoherent. The nomenclature
points to differences in the degree of coupling between the
two flux tubes, with the incoherent regime no different from
isolated body scattering and the multiple regime, substantially
different. Subsequently, Keppens et al. (1994) studied ensembles
of flux tubes and found that the degree of absorption was greater
in “spaghetti” models than monoliths, pointing to a way of
discerning the differences between the two.

These efforts have been restricted to unstratified media,
mainly due to the considerable mathematical complexity that
stratification injects. With the addition of gravity, the external
driver and the flux tube displacement eigenfunctions assume
distinct and more complicated forms, possibly destroying a
number of resonances hitherto possible in the unstratified
case. Furthermore, purely analytical techniques cease to be
of utility, even when considering single scattering, let alone
its multiple counterpart. When studying mode mixing due to
thin flux tubes, Hanasoge et al. (2008) were forced to apply
a number of methods of linear algebra in order to reliably
estimate scattering coefficients and the near-field jacket. On
the other hand, multiple scattering is a bit more of a challenge
since one must simultaneously determine the wave fields of a
number of disparate scatterers, all the while keeping in mind that
each scattering coefficient is defined according to a coordinate
system centered on that specific scatterer. Fortunately, the
theoretical machinery to study these sorts of problems has been
developed decades ago, in the context of fluid mechanics by,
e.g., Kagemoto & Yue (1986) and Linton & Evans (1990). We
adopt these methods in our calculations in order to determine the
degree of mode mixing and scattering from a two-tube system.
Please note that in the discussions below, the terms “near field,”
“acoustic jacket,” and “envelope of evanescent modes” are used
interchangeably. This paper is organized as follows. We describe
the stratification and basic aspects of the flux tube model in
Section 2. The method of Kagemoto & Yue (1986) in the context
of interacting thin flux tubes is discussed in Section 3. The
scattering coefficients derived through the application of these
techniques for the two-tube system for different incident modes
are presented in Section 4. Finally, we summarize and conclude
in Section 5.

2. MODEL

The background structure in this calculation, adapted from
Bogdan et al. (1996) and Hanasoge et al. (2008), is an adia-
batically stratified, truncated polytrope with index m = 1.5,
gravity g = −2.775 × 104 cm s−2 ẑ, reference pressure p0 =
1.21 × 105 g cm−1 s−2, and reference density ρ0 = 2.78 ×
10−7 g cm−3, such that the pressure and density variations are
given by,

p(z) = p0

(
− z

z0

)m+1

, (1)

and

ρ(z) = ρ0

(
− z

z0

)m

. (2)

We utilize a right-handed cylindrical coordinate system in our
calculations, with coordinates x = (r, θ, z) and corresponding
unit vectors (r̂, θ̂ , ẑ). The photospheric level of the background
model is at z = 0, with the upper boundary placed at a depth of
z0 = 392 km. Following Barnes & Cally (2000), we introduce

a lower boundary at a depth of 98 Mm. The displacement
potential Ψ(x, t) describing the oscillation modes (t is time)
is required to enforce zero Lagrangian pressure perturbation
boundary conditions at both boundaries. This upper boundary
condition is reflective in nature and therefore, possibly not
very realistic. The incoming pn-mode, a plane wave, which
expanded in cylindrical coordinates (e.g., Gizon et al. 2006)
has a displacement eigenfunction, Ψinc, of the form

Ψinc =
∞∑

m=−∞
imJm

(
kp
n r

)
Φp

(
κp

n ; s
)
ei[mθ−ωt], (3)

where,

Φp

(
κp

n ; s
) = s−1/2−μNn

[
Cp

n Mκ
p
n ,μ

(
sν2

κ
p
n

)
+ Mκ

p
n ,−μ

(
sν2

κ
p
n

)]
.

(4)
The various symbols in Equations (3) and (4) are

μ = m − 1

2
, ν2 = mω2z0

g
, kp

n = ν2

2κ
p
n z0

, (5)

ω the angular frequency of oscillation, s = −z/z0, Jm(w),
the Bessel function of order m and argument ω, and Mκ,μ(w),
the Whittaker function (e.g., Whittaker & Watson 1963) with
indices κ, μ, and argument ω. The eigenvalue κ

p
n > 0 and

constant C
p
n characterizing the mode are obtained through the

procedure described in Appendix A of Hanasoge et al. (2008).
The n = 0 mode corresponds to the surface gravity or the f
mode, while n > 0 represents the acoustic pn mode. Note that
the lower boundary results in a finite sized box and hence places
a restriction on the number of p modes that can fit in this domain.
The term Nn is the normalization constant for the mode, defined
as
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(6)
The near-field eigenfunctions are also solutions to the same

differential equation that governs the propagating modes:
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(7)
As can be seen, the only difference between the form of the
propagating and evanescent mode eigenfunctions is the fact
that the roots are now imaginary. In order to determine the
roots, we perform a high-resolution search for eigenvalues
κ

p,J
n and constants C

p,J
n ; the task is relatively easy for the

propagating mode parameters but is reasonably difficult for
the jacket modes because the eigenvalues may be very finely
spaced (Appendix A of Hanasoge et al. 2008). Subsequently,
tables of the propagating and jacket modes are precomputed at a
range of frequencies. Computations of Whittaker functions over
large parameter spaces are fairly nontrivial; we use a number of
CERNLIB routines to accomplish all these tasks.

2.1. Flux Tube

Applying the approximations listed in Section 2 of Bogdan
et al. (1996), a thin flux tube carrying a magnetic flux of
Φf = 3.88 × 1017 Mx, with constant plasma-β everywhere
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inside the tube is embedded in the polytrope. The thin flux tube
approximation,

b(s) ≈
√

8πp(s)

1 + β
, πR2(s) ≈ Φf

b(s)
, (8)

where b(s) and R(s) are the magnetic field and the radius of the
tube at depth s, is shown to be accurate to better than a percent
in the truncated polytrope situated below z = −z0 or s = 1
(Bogdan et al. 1996). Note that the magnetic flux associated
with the tube is held constant—different values of β therefore
result in different b(s) and R(s). The constant-β property of the
tube follows from the assumption that thin flux tubes are for all
practical purposes in thermal and radiative equilibrium with the
external medium.

2.2. Oscillations of the Tube

For the cases addressed here, we treat only horizontal kink
motions of the flux tube (ξ⊥(ω, s)), caused by impinging
m = ±1 modes (e.g., Bogdan et al. 1996). The m = ±1 modes
affect the tube oscillations according to the differential equation[
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∂2
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g
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∂
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]
ξ⊥
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∂Ψinc
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, (9)

where x = r cos θ . The scattered wave field is computed by
matching the horizontal components of the motion of the flux
tube to the external oscillation velocities. The manner in which
this is accomplished is detailed in the following section.

3. METHOD

Consider a system of randomly distributed flux tubes. The
scattered wave field around tube i with the origin of the
coordinate system located at the center of the upper boundary
of the tube is given by

φS
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where ζn are near-field eigenfunctions, Φn describe the propa-
gating p-modes, H (1)

m (x) and Km(x) are Hankel and K-Bessel
functions of order m acting on argument x, respectively. nP de-
notes the number of propagating mode eigenfunctions (a finite
number due to the presence of the lower boundary) and the rest
corresponding to the evanescent jacket modes. Also note that
the m summation is truncated, since thin flux tube theory applies
only to interactions with |m| � 1 waves. Following Kagemoto
& Yue (1986), we write this in matrix form:

φS
i =

∑
n

AT
inΨS

in, (11)

where Ain is a vector (of size 3×1) of scattering coefficients for
tube i and mode n. The matrix Ψin (size 3 × nz, with nz being

the number of points in the z grid) contains the partial wave
expansions in terms of H (1)

m ,Km. In particular, the elements of
A, Ψ are
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where sd is the dth point along the s-axis, and the indices c, d
run from [1, 3] and [1, nz], respectively. As described in the
introductory section, the challenge in computing the wave field
interactions lies in simultaneously solving for the scattering
coefficients of all the tubes. Tubes that are placed sufficiently
far from each other can only interact via the far-field propagating
modes since the evanescent jacket has a spatial decay scale of a
wavelength or so. Thus, the coupling is reasonably weak since
the amplitude of the expanding far-field modal ring falls rapidly
with distance from the scatterer. Stronger interactions occur
when tubes lie within each other’s near-field induction zones,
for the evanescent modes of one influence the tube oscillations
on the other and vice-versa. Fairly significant changes in the
scattering cross-sections are a consequence of this phenomenon.
Thus, to capture this effect, we must compute the wave field
around each tube and project its influence on the neighboring
flux elements. Since the wave field around each tube is written in
a coordinate system centered along its axis, suitable coordinate
transformations must be performed. For this purpose, we employ
Graf’s addition formulae, which transform cylindrical wave
functions between coordinate systems (e.g., Abramowitz &
Stegun 1964):
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where Im(x) is a Bessel-I function of order m acting on argument
x. These equations show how to expand an outgoing scattered
wave function from tube i in terms of the incident mode waves
of tube l. Here, Ril is the distance between the centers and γil is
the angle that the line between the centers of the tubes subtends
at the x-axis of the tube i (shown graphically in Figure 1). This
relation shows how the scattered wave field from i acts as an
incident wave on l.

Written in matrix form

ΨS
in = Tn

ilΨ
I
ln, (17)

where T is the transformation operator that relates the scattered
wave field of tube i to the resultant incident field on l. We use
Equations (15) and (16) to build T; the precise distribution of
elements is listed in Appendix A. Note that the index n that
appears in Equation (17) denotes a specific modal order, while
the superscripts I and S represent the incident and scattered
wave expansions, respectively. Recalling that Equation (11)
contains the contributions of various near- and far-field waves
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Figure 1. Transformation parameters of Equations (15) and (16) shown
graphically. The tubes i, l are separated by a distance Ril, with the line joining
their centers inclined at angle γil to the x-axis of tube i. Note that γli = π − γil .

and collecting all the n’s, we have

φi |l =
∑

n

AT
inTn

ilΨ
I
ln. (18)

Equation (18) tells us how much the scattered wave field of tube
i acts as an incident field on l. Summing up the contributions
from the scattered wave fields of all the other flux tubes (except
itself, of course) and the zeroth order incident wave, the total
incident wave field at l is given by
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and φ0|ln = aT
lnΨI

ln, where aT
ln is a vector of coefficients

representing the zeroth order incident wave mode of order n,
acting on tube l. The determination of the amplitudes of the
off-axis incident modes is described in Appendix B. Note that
aln and Aln have the same matrix sizes; the former refers to
the zeroth order incident wave whereas the latter contains the
net scattering terms. Finally, to close the equations, we use the
diffraction transfer matrix approach of, e.g., Kagemoto & Yue
(1986) to relate the total incident coefficients to the scattered
ones. In effect, we generate a matrix Bl that acts on the incident
wave field at l and produces the scattering coefficients. We know
the total incident wave field at l: it is given by Equation (20).
And since Al is the vector of scattering coefficients as seen by
the coordinate system centered on l, the following relation must
hold:

Al = Blφ
I
l , (21)

or,
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where we have the following relations:
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(26)

The matrix Bl is constructed as follows. The scattering into
all other modes is computed for each incident mode (m, n).
This includes both propagating pn modes and near-field-type
incident waves (the Bessel-I functions). Thus, Bl contains a
full description of the scattering of any given incident mode
(m, n) into any (m′, n′) for tube l. More details are described in
Appendix A.

Finally, we discuss the means applied to study the simple
case of two interacting thin flux tubes 1, 2. Proceeding from
Equation (22) we have

A1 = B1
(
a1 + TT

21A2
)
, (27)

A2 = B2
(
a2 + TT

12A1
)
, (28)

A1 = B1
(
a1 + TT

21B2
[
a2 + TT

12A1
])

, (29)

[
I − B1TT

21B2TT
12

]
A1 = B1a1 + B1TT

21B2a2. (30)

We precompute the B matrices for a number of different
incident mode frequencies and plasma-β values. Finally, having
constructed the transformation matrices T at a series of tube
separations, we apply the standard MATLAB least-squares
algorithm (backslash command) to solve Equation (30) for A1
and then for A2.

4. DISCUSSION

There are two important issues that must be dealt with before
presenting the results. The first concerns the noninclusion of the
m = 0 scattering mode. In an isolated body case, the scattering
in each m mode can be cleanly separated, and there is no
mechanism by which different m modes can communicate. This
may be attributed to the identification of one primary cylindrical
coordinate system (presumably centered around the tube). With
multiple closely spaced tubes, this uniqueness is lost and there
is now unrestricted modal mixing, among wave numbers and
indirectly, between the m. For example, consider the following
chain of events: an m = 1 wave strikes tube 1. According to
the axis around tube 1, only a scattered m = 1 wave has been
released. However, seen by the coordinate system centered on
tube 2 is a mixture of scattered and incident m = ±1, 0 waves,
setting off tube displacements and scattering in all three modes.
These scattered waves are then seen by tube 1 as a mixture of
m = 0,±1, resulting in the excitation of the three components.
Thus, having started with an m = 1 mode, we now have
oscillations and scattering in the m = ±1, 0 modes. Moreover,
a spatially asymmetric positioning of the tubes destroys the
m = ±1 scattering equality for a given tube. Symmetries once
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Figure 2. Example of an incident m = 1 wave: Ψinc = iJ1(kp

0 r)eiθ . Tube 1
always sees the incident wave, whereas with increasing separation, tube 2 sees
less and less of it. Note that the presence of the second tube kills the m = ±1
symmetry when the tubes are close to each other. The symmetry is restored for
wide tube separations, at which point, both tubes are practically isolated bodies.

prevalent in the case of an isolated body are now broken, and the
degrees of scattering freedom have multiplied. The implication
derived from this argument is that by just modeling the m = ±1
scattering, we are probably significantly underestimating the
degree of scatter. The m = 0 scattering has not been modeled
because of difficulties faced in setting up satisfactory boundary
conditions.

The second issue relates to the replacement of a discrete
countably infinite set of jacket modes to a small, finite subset.
What physics have we lost in forcing the problem into this zone
of tractability? Although we have verified that the jacket modes
used in the calculations are able to fully capture the displacement
eigenfunctions of the flux tube, it is not apparent that this form
of partial basis completeness (partial because the full basis of
jacket modes is countably infinite) is a sufficient criterion. This
is certainly an issue that affects the believability of the scattering
coefficients although precisely how the coefficients are altered is
entirely unclear. Perhaps we must wait for a numerical solution
to the partial differential equations in order to verify these
results.

Having stated these caveats, we are ready to view the outcome
of the two-tube scattering calculations. First, we consider the
interaction of a pair of identical flux tubes at different separations
with incident waves. The angle between the tubes is set to
γ12 = 0, meaning that the tubes lie on the x-axes of the
coordinate systems of each other (see Figure 1). Undoubtedly,
there will be large changes in the scattering coefficients at
different angles; for now we stick to this simple case, and leave
further exploration of the parameter space to future endeavors.
A pictorial representation of an incoming f-mode with respect
to the flux tubes 1, 2 is shown in Figure 2. The results of these
interactions are shown in Figure 3. A number of conclusions
may be drawn. (1) The strongest coupling is between the f
mode and the flux tube; there is a rapid fall off with increasing
radial order. The f–f scattering coefficients are almost an order
of magnitude larger than the p1–f counterparts, as seen in
Figure 3. This implies that the scattering matrix is diagonally
dominant. However, although not shown here, the scattering

coefficient for pn–pn also falls very rapidly with increasing n,
meaning that the dominant interactions are restricted to the f
mode. (2) The length scale of the region occupied by the near-
field region is well approximated by π/k

p
n , where 2π/k

p
n is

the horizontal wavelength of the incident pn mode. This is
hardly a surprising result, since it is well known that the far-
field imaging limit is bounded from below by half the imaging
wavelength (e.g., Gizon & Birch 2004); it serves however as a
sanity check and indicates that the calculations are not entirely
incorrect. Thus, to resolve the structure of the flux tube at finer
scales, we must somehow utilize the information present in the
near field. (3) The scattering coefficients attain large values
at small flux tube separations (Figure 3); this has a number
of consequences for wave absorption in plage. A system of N
closely spaced flux tubes thus turns into a glutinous mass of
scatterers and can no longer be interpreted as a collection of N
isolated bodies. (4) The phases of the scattered waves exhibit
highly unpredictable trends, even more so than the magnitudes
of the scattering coefficient (Figure 4). (5) Higher-β flux tubes
have more extended jackets than their lower-β counterparts;
this may be attributed to the fact that when matching tube
displacement eigenfunctions to the external waves, the jacket
modes play a more significant role in the former case. The last
point is further illustrated by the upper two panels of Figure 5
which show the isolated body displacements ξ⊥ of the tubes
at plasma-β = 0.1, 1. The fact that a larger number of kinks
are seen in the higher-β tube means a larger number of jacket
modes must crowd the near-field region, resulting in stronger
coupling between the tubes. The lower two panels of Figure 5
demonstrate the stark differences between the isolated body
and near-field coupled tube displacements; the structure, the
number of nodes, and the amplitude of the eigenfunction are
seen to greatly increase when the jackets of the tubes are able to
communicate. This is the very premise of multiple scattering.

We also briefly investigate the interactional behavior of a
pair of nonidentical flux tubes in Figure 6. Because the mag-
netic flux in each tube is held constant (see Section 2.1), the
two tubes which have differing plasma-β of 0.1, 1 also are of
different radii, commensurate with Equation (8). The scatter-
ing coefficient trends are unremarkable, showing differences in
structure from those of Figure 3 but not possessing any notice-
able features. Despite the differences in the flux tube geome-
tries, the coupling remains strong and continues to adhere to
the half-wavelength rule-of-thumb near-field dimension. Lastly,
in Figure 7, we graph the components of the wave field with
the upper panels showing the tubes strongly interacting (a sep-
aration distance of 1.085 Mm) while the isolated body case is
displayed in the lower panel. In the strong interaction case, the
near-field lobes of the two tubes are seen to be in communica-
tion, the scattering in one tube significantly influencing the other
through this medium. The far fields in both cases are outward
spirals, transporting some of the incident mode energy away
from the scene of scattering.

Based on these results, how are we to interpret the Hankel
measurements of phase shifts and absorption in plage and
around active regions? From this simplified model, it is evident
that mode mixing between the m and wave numbers, and
multiple scattering are not effects easily swept aside or ignored.
However, one aspect that must be borne in mind is that due
to stochastic wave excitation in the Sun, the theoretically
predicted stark symmetry breaking between the ±m seen in the
scattering coefficients will probably be significantly moderated.
Essentially, the measurements can only retrieve the properties
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Figure 3. Mode-mixing and scattering computed for f and p1 incident waves at two different frequencies and azimuthal orders m = ±1 for a pair of flux tubes at a
number of separations. These are the coefficients written according to the coordinate system centered around tube 1, the tube that encounters the untransformed zeroth
order incident mode. Note that the symmetry of the m = ±1 scattering coefficients are destroyed due to the presence of tube 2; this symmetry is regained when the
separation becomes large enough that tube 1 can be considered an isolated body. Clear signs of multiple scattering are observed for separations comparable to about
half the horizontal wavelength at the surface (∼π/k

p
n ) of the incident waves, which are 11.04 and 2.76 Mm for the f modes and 25.76 and 6.44 Mm for the p1 modes

at 2 and 4 mHz, respectively. The degree of scatter exhibits a complex behavior at small separations and more importantly, shows rather large deviations from the
isolated body values. Note also the differences between the m = ±1 modes; the presence of the second flux tube destroys any symmetries with respect to these two m
waves. Also of interest is the fact that the β = 1 flux tubes couple via the near field more strongly than the low-β tubes; this is presumably because the displacement
eigenfunction exhibits more depth structure in the former, requiring a greater participation of the near-field modes, and thereby resulting in stronger coupling (see
Figure 5).

Figure 4. Phases of the scattered f mode. The parameter space is similar to that explored in Figure 3. No clear pattern is seen, indicating that interpreting the phases in
a multiply scattered wave field is quite a nontrivial affair.

of the interactions between waves propagating in random
directions and the tubes, resulting in an azimuthal average.
Furthermore, flux tubes in the Sun are in constant motion due
to the jostling by the dynamic granulation field; this may result
in another form of averaging in the scatter.

When contemplating the sticky issue of understanding the
observations, it is first important to acknowledge that the
theory presented here is likely not directly applicable to
the solar situation because it is unable to account for the
effects of rapidly flaring flux tubes (with radii larger than a
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Figure 5. Real parts of the normalized tube displacement eigenfunction (ξ⊥/k
p
n ) for flux tube 1 for β = 0.1, 1, and separations, Δ = 1.20, 3.25 Mm. At this frequency,

tubes at a separation distance of 3.25 Mm can be considered§ isolated bodies. The first aspect take note of is that the displacement eigenfunction of the isolated body
β = 0.1 tube has fewer nodes and therefore less structure in depth than the β = 1 tube (upper two panels). Consequently, a greater near-field participation is required
to successfully match the β = 1 tube displacements with the external wave eigenfunctions, resulting in a more diverse near field than the β = 0.1 case. Second, the
lower two panels show how complicated the tube displacement eigenfunction becomes when the near fields of the two tubes are in communication. Also, it is important
to note that the displacement amplitudes in the strong interaction case are larger by a factor of 10 or more than the isolated body counterpart. This aspect underscores
the very premise of multiple scattering.
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Figure 6. Scattering coefficients of the β = 1 tube for an interacting pair of nonidentical β = 0.1, 1 tubes. The behavior is unremarkable, not greatly differing from
that in Figure 3. Note that because the magnetic flux in the tube is held constant, changes in β necessarily imply a change in flux tube radius. The incident f and p1
modes have horizontal wavelengths of 2.76 and 6.44 Mm, respectively.

scale height), tube merging, differences in the radiative transfer,
etc. Moreover, it is a nontrivial task to compute the near field;
this is further compounded by the uncertainties discussed in the
first two paragraphs of this section. Solving the ideal magneto-
hydrodynamic equations numerically may be the only way to
study this problem in its full complexity.

5. CONCLUSIONS

The work of Bogdan & Zweibel (1987) was among the first
efforts to characterize and study the multiple scattering of waves
by flux tubes. Since then, further activity in this area was re-
stricted to the study of multiple scattering by unstratified flux
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Figure 7. Real parts of the near and far scattered wave fields shown pictorially for a pair of β = 1 flux tubes (upper panels) and the isolated body case (lower panels),
both systems lit up by an incident 4 mHz f mode. The axes are x/λh, y/λh, where λh is the horizontal wavelength of the incident f mode, 2.76 Mm. The far field is
seen to spiral out whereas the near field is bound to within a distance of λh/2 of the scatter. Both fields pulsate with a period of 4.16 minutes (4 mHz wave). The
tubes are separated by a distance of 1.085 Mm in the upper panels. There may be hope of observationally deducing the near-field modes by studying the zero-time-lag
wave-field autocorrelations and using this information to determine properties of the scatterer.

tubes (e.g., Bogdan & Fox 1991; Keppens et al. 1994) and
subsequently, single scattering by gravitationally stratified tubes
(e.g., Bogdan et al. 1996; Hanasoge et al. 2008). Including strat-
ification when attempting to solve the full multiple scattering
problem introduces manifold difficulties, especially without the
right set of techniques. However, much progress in this regard
and the availability of the technique of Kagemoto & Yue (e.g.,
1986) have allowed us to attempt this problem.

There has been the general thinking that not only does gravity
inhibit resonant absorption but may in fact prevent strong inter-
actions between closely spaced flux tubes. The reason for this is
the disparity in the depth structure between the eigenfunctions
of external modes and the tube displacement; gravity introduces
strong structural differences between these two quantities, al-
most certainly ruling out a strong and direct matching between
the two. Thus, resonant absorption in stratified magnetized en-
vironments may be largely ruled out; but what about multiple
scattering and spikes in scattering cross-sections and phases? Is
the theory of single scattering sufficient to describe the inter-
action of waves with clustered magnetic elements in the Sun?
Certainly not, as demonstrated in Section 4. Fairly dramatic
changes in the scattering coefficients are observed at close sep-
arations, on the order of several hundred kilometers, not unlike
the distances between flux tubes in plage. The fact that scatter
by a pair nonidentical flux tubes also exhibits a similar trend
(Figure 6) demonstrates the robustness of multiple scattering
type interactions. The scattering coefficient is a proxy for the
degree of absorption and mode mixing exhibited by the system;
if nothing else, the jumps in the coefficients point to a loss of

coherence of the incident modes, introducing a mechanism for
wave damping.

The coefficients behave in a quirky manner, rather similar
to those obtained by Bogdan & Fox (1991). Thus, drawing
out larger behavioral properties from these interactions is
somewhat difficult without a more detailed search of the
parameter space. Part of this quirkiness may be attributed
to the interference between the sizable numbers of modes
competing in the excitation of the flux tubes. Through analyses
of observations of thousands of small magnetic elements, Duvall
et al. (2006) succeeded in estimating the detailed scattering
properties of these features, concluding that the m = ±1 waves
couple quite strongly with the magnetic tubes. Subsequently,
Hanasoge et al. (2008) modeled these measurements in the
single scattering limit in an attempt to constrain properties of
the average magnetic element. However, these elements consist
of a number of thin flux tubes, the scattering presumably in the
strongly interacting regime due to their proximity. Merely with
two tubes at a sequence of separations, the scattering coefficients
and phases display remarkably intricate behavior; extending this
to a number of flux tubes at various random locations is arguably
a difficult task.

The near field in Figure 7 still remains to be directly detected
in observations. One possible route toward this goal is to look
for statistically significant zero time lag cross-correlation signals
in the vicinity of these small magnetic elements. This follows
from the spatially stationary nature of the near-field modes;
they merely pulse at the frequency of the incident wave in a
thin envelop around the scatterer. However, it is unclear how to
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use this information in a productive manner; evidently a greater
understanding of these evanescent waves is needed.

The question relating to sunspot structure, as to whether one
can expect to be able to helioseismically discern a monolith from
a jelly fish, still shows promise, for it would appear that multiple
scattering, despite the presence of strong gravitational stratifi-
cation, still plays a major role. Our preliminary conclusions, de-
rived from Figures 3 and 4 echo those of Keppens et al. (1994),
who suggested that ensembles of flux tubes can absorb quite ef-
fectively, but not cause coherent phasing of the scattered waves.

This work represents a small first step toward comprehend-
ing the action of multiple scattering in stratified magnetized
environments. Much work remains to be done in terms of char-
acterizing and understanding the interactions of clusters of ran-
domly located flux tubes and the impact on mode line widths
and observations of scattering in plage.

The idea for this work occurred over conversations at the
CSPA, Monash University, where S.M.H. was a visiting aca-
demic in 2008. Much of the computation was performed on the
Stanford University solar group machines; thanks to Phil Scher-
rer for the use of these resources. Some part of this work was
accomplished while S.M.H. was at Stanford, he acknowledges
support from NASA grant HMI NAS5-02139.

APPENDIX A

THE T AND B MATRICES

The procedure outlined here is adapted from Kagemoto &
Yue (1986). In order to construct Til , we have the following
formula for each |m,m′| � 1, n:

(Til)cd = ei(m−m′)γil H
(1)
m−m′ (knRil) (A1)

for n � nP , where c = 3n + m′ + 2 and d = 3n + m + 2, and

(Til)cd = ei(m−m′)γil (−1)m
′−1Km−m′ (knRil) (A2)

for n > nP , where c, d are as above. The means of constructing
Bj are as follows. For every tuplet (|m| � 1, n) an incident wave
with the appropriate eigenfunction and radial behavior of unit
amplitude is chosen. If n � nP , the incident mode is propagating
and has a Jm(kp

n r) type horizontal behavior, whereas if n > nP ,
the horizontal part of the eigenfunction is given by Im(kJ

n r).
For each incident mode, the scattering into all other modes (at
constant frequency and m) is computed. Having thus computed
the amplitudes of all the scattered waves for each incident mode,
we fill up the matrix Bj as follows:

(Bj )cd = βm
n′,n, (A3)

where β is the scatter into the mode (m, n′) by incident wave
(m, n). The indices are c = 3n′ +m+2, d = 3n+m+2. We only

consider |m| � 1 since the tube is insensitive to other azimuthal
orders in this theory.

APPENDIX B

TRANSFORMATION OF THE INCIDENT WAVE FIELD

We use Graf’s addition formula (e.g., Abramowitz & Stegun
1964):

Jm

(
kp
n ri

)
eim(θi−γij ) =

∞∑
d=−∞

Jm+d

(
kp
n Rij

)
Jd

(
kp
n rj

)
eip(π−θj +γij ).

(B1)
An m = 0 wave seen at the axis center of tube i produces the
following components at flux tube l whose center is located at
distance Ril (the m = [−1, 0, 1] waves):

(J1(knRil)e
iγil J0(knRil)J−1(knRil)e

−iγil ). (B2)

Similarly m = ±1 waves seen at tube i produce at l

(J2(knRil)e
2iγil J1(knRil)e

iγil J0(knRil)), (B3)

(J0(knRil)J−1(knRil)e
−iγil J−2(knRil)e

−2iγil ), (B4)

respectively. Since in our theory, the tube is insensitive to
|m| > 1, we do not include these terms in the transformation.
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