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Abstract
We show time-distance travel times
averaged over roughly ten thousand
supergranules. The statistical (realization)
noise in these measurements is substantially
smaller than the noise associated with a
single supergranule. By both forward
modeling and inversions we investigate the
range of flows that are compatible with
these travel times.
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The data & feature selection
• 68 hours of MDI/SOHO full-disk

Dopplergrams (Scherrer et al., 1995)
• Use time-distance helioseismology to

measure the f-mode divergence signal
(e.g. Duvall and Gizon, 2000)

• Identify supergranules in divergence
signal

• Average travel times (Duvall et al., 1993)
around centers of supergranules (see
Fig. 1)
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Measurement geometry
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Figure 1: Geometry for measuring travel times. The
offset from the center of the supergranule is x and
∆ = ‖r2 − r1‖. The travel times from r2 → r1 and r1 → r2

are measured. These times are averaged over all az-
imuths from the center of the supergranule and over
104 supergranules. – p. 4/18



F-mode travel times
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Figure 2: F-mode travel-time difference, δτ = τout − τin (
in seconds) as a function of offset, x, and distance, ∆.
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Noise Estimate
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Figure 3: Noise level, estimated from the scatter in the
data, in the travel-time differences shown in Figure 2,
as a function of offset, x, and distance, ∆.
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Example f-mode kernel
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Figure 4: Example of the sensitivity of f-mode travel-
time differences to flows in the +x̂ direction and for a
separation of ∆ = ‖r2−r1‖ = 13.1 Mm. The observation
points r1 and r2 are located at the black dots, (x, y) =

(±∆/2, 0).
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F-mode kernels
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Figure 5: Sensitivity of azimuthal averages of f-mode
travel-time differences to radial flows v = v(r)r̂, as a
function of distance from the center of the supergran-
ule, x, and the distance from the center of the super-
granule, r. This example is for ∆ = 13.1 Mm.
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A forward model
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Figure 6: Forward modeling to estimate the flow v(r)

that is compatible with the data. We search for a
flow of the form v(r) = rnJ1(kr)e−r/L where n, k, L are
free parameters. We find the best fit at (n, k, L) =

(0.4, 0.17 Mm−1, 13 Mm) (top panel). The bottom three
panels show the measured travel times (left), the
model travel times (middle), and residuals (right). In
the lower panels the units are seconds.
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RLS inversion
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Figure 7: RLS inversion for v(r) (red line in top panel).
Also shown is the forward modeling result (blue line in
top panel). The bottom panels shows the observed
travel times (left), the model travel times correspond-
ing to the RLS inversion result (middle), and the residu-
als (right). In the lower panels the units are seconds.
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RLS inversions for each ∆
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Figure 8: RLS inversions for v(r) at fixed ∆. At each dis-
tance a separate inversion is used to determine v(r),
using only the travel times measured at that ∆.
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P-mode travel times
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Figure 9: Travel-time differences, δτ = τout − τin, for
p modes, as functions of approximate lower turning
point, ∆/π, and offset, x from the supergranule center.
The heavy black line corresponds to rays that begin at
the center of the supergranule.
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P-mode Noise Estimate
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Figure 10: Noise level, estimated from the scatter in the
data, in the travel-time differences shown in Figure 9,
as a function of offset, x, and distance, ∆.
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Ray coverage
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Figure 11: A small sample, about 2%, of the ray paths
represented in Figure 9. Depth is z and horizontal dis-
tance from the center of the supergranule is r.
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A simple forward model
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Figure 12: An example forward model. The radial flow
(top left panel) is of the form vr = J1(kr)e−r/Le−z/D and
the vertical flow (top right panel) is determined from
mass conservation. The best fit to the data is found for
(k, L,D) = (.17 Mm−1, 19 Mm, 24 Mm). The lower panels
shows the data, model times, and residuals.
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Conclusions
• f-modes:

• even with RLS inversion, there is a
clear pattern in the residuals.

• multiple scattering effects ?
• significant depth dependence ?

• p-modes:
• only preliminary work so far
• The data promise to strongly constrain

the subsurface flow pattern
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Future work
• Ray theory inversions for the p-mode

data
• Treat full error covariance, currently only

the diagonal part of the covariance is
employed

• Inversions using Born approximation
kernels for p-mode and f-modes

• 2d (depth,radius) inversions of f-mode
data

• Joint inversion of p- and f-mode data
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