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ABSTRACT

Context. According to time-distance helioseismology, information about internal fluid motions is encoded in the travel times of solar
waves. The inverse problem consists of inferring three-dimensional vector flows from a set of travel-time measurements. While only
few tests of the inversions have been done, it is known that the retrieval of the small-amplitude vertical flow velocities is problematic.
A thorough study of biases and noise has not been carried out in realistic conditions.
Aims. Here we investigate the potential of time-distance helioseismology to infer three-dimensional convective velocities in the
near-surface layers of the Sun. We developed a new subtractive optimally localised averaging (SOLA) code suitable for pipeline
pseudo-automatic processing. Compared to its predecessor, the code was improved by accounting for additional constraints in order
to get the right answer within a given noise level. The main aim of this study is to validate results obtained by our inversion code.
Methods. We simulate travel-time maps using a snapshot from a numerical simulation of solar convective flows, realistic Born travel-
time sensitivity kernels, and a realistic model of travel-time noise. These synthetic travel times are inverted for flows and the results
compared with the known input flow field. Additional constraints are implemented in the inversion: cross-talk minimization between
flow components and spatial localization of inversion coefficients.
Results. Using modes f , p1 through p4, we show that horizontal convective flow velocities can be inferred without bias, at a signal-to-
noise ratio greater than one in the top 3.5 Mm, provided that observations span at least four days. The vertical component of velocity
(vz), if it were to be weak, is more difficult to infer and is seriously affected by cross-talk from horizontal velocity components. We
emphasise that this cross-talk must be explicitly minimised in order to retrieve vz in the top 1 Mm. We also show that statistical
averaging over many different areas of the Sun allows for reliably measuring of average properties of all three flow components in the
top 5.5 Mm of the convection zone.
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1. Introduction

The sub-surface of the Sun is optically thick, preventing us
from directly observing the interior layers. Understanding the
properties of the plasma in these regions has consequences for
the theories of convection, stability of sunspots, the dynamics
of stratified convection, and others. Most current knowledge
about convection comes primarily from computational work
(e.g., Vögler et al. 2005; Benson et al. 2006; Rempel et al. 2009).
Helioseismic inversions of the sub-surface flows will play an im-
portant role in constraining these theories.

A powerful way of imaging the solar interior is via infer-
ences gathered from studying the statistics of the acoustic and
surface gravity waves at the surface. Solar pressure and surface
gravity modes are generated randomly by the vigorous turbu-
lence in the upper convection zone. These oscillations are ob-
served in the solar photosphere by measuring Doppler shifts
of photospheric absorption lines. Forward modelling allows us
to relate anomalies (like flows, thermal hot/cold spots etc.) to
changes in helioseismic observables.

� Figures 16–28 are available in electronic form at
http://www.aanda.org
�� On leave from Astronomical Institute, Academy of Sciences of
the Czech Republic, and Faculty of Mathematics and Physics, Charles
University in Prague.

The aim of helioseismic inversions is to reveal the structure
of the subsurface flows (rotation, meridional circulation, convec-
tion), magnetic fields, and to measure deviations in the plasma
state parameters (temperature, density, pressure) from a quiet
Sun average. In this paper, we focus on travel times (Duvall et al.
1993), i.e., quantities that emerge from fits to cross correlations
of observed signals. Time-distance helioseismology is used to
measure and interpret changes in travel times of seismic waves
caused by inhomogeneities in the structure of the Sun (see re-
view by Gizon et al. 2010). In recent years, time-distance helio-
seismology has been used to invert for near-surface flows (e.g.,
Gizon et al. 2000; Duvall & Gizon 2000; Zhao & Kosovichev
2004; Jackiewicz et al. 2008), for flows beneath sunspots (e.g.,
Duvall et al. 1996; Zhao et al. 2001; Couvidat et al. 2006;
Cameron et al. 2008; Gizon et al. 2009; Moradi et al. 2010) and
flows in their vicinity (Gizon et al. 2000), study the rotational
gradient at the base of the convection zone (e.g., Hanasoge &
Duvall 2009), etc.

Helioseismic inversions are performed using two principal
methods: the regularised least squares (RLS) and optimally lo-
calised averaging (OLA). The RLS method (in time-distance he-
lioseismology used for the first time by Kosovichev 1996) seeks
to find the models of the solar interior, which provide the best
least-squares fit to the measured travel-time maps, while reg-
ularising the solution (e.g., by requiring the smooth solution).
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The OLA method was developed for geoseismology (Backus &
Gilbert 1968, 1970). A form suitable for use in helioseismol-
ogy was devised by Pijpers & Thompson (1992), who formu-
lated the subtractive-OLA method. SOLA is based on explicitly
constructed spatially confined averaging kernels by taking linear
combination of sensitivity kernels, while simultaneously keep-
ing the error magnification small. The resulting coefficients are
then used to linearly combine the travel-time maps and obtain
the estimate for structure and magnitude of solar plasma per-
turbations. A SOLA-type inversion is the principal method dis-
cussed in the current paper. The SOLA has been used in time-
distance local helioseismology in the past by Jackiewicz et al.
(2007, 2008) who demonstrated the ability of SOLA inversions
to reveal the structure of the 3D internal flows. An efficient ap-
proach to solve fully consistent SOLA inversions was introduced
by Jackiewicz et al. (2011). In this paper we focus on inversions
for three-dimensional vector flows on supergranular scales in the
near-surface layers of the solar convection zone.

1.1. Validating helioseismic inversions

Two approaches have been used so far to validate time-distance
inversions. The first approach consists of generating synthetic
travel-time maps by convolving a (known) arbitrary frozen
flow field with travel-time sensitivity kernels and then testing
the inversion method using these synthetic travel times (e.g.,
Kosovichev & Duvall 1997). The second approach (Zhao et al.
2007, 2010) is to use evolving realistic numerical simulations of
three-dimensional radiative convection, where the helioseismic
waves are naturally excited by the convection.

The first approach is convenient, but may not represent a re-
alistic situation, in particular because the prescribed subsurface
structures are often too idealised. The second approach is prefer-
able, but is limited by computing resources: only simulations
of the very near-surface regions of the Sun are available today.
Both approaches have shown that inversions are generally able
to retrieve the horizontal components of velocity at supergran-
ulation scales in the quiet Sun. However, some problems have
been reported. For example, vertical velocities have been mea-
sured with the opposite sign near the surface (Zhao et al. 2007)
and the structure and sign of the flows around sunspots vary with
the inversion method used (see, e.g., Gizon et al. 2009; Moradi
et al. 2010).

The aim of this paper is to validate a particular implementa-
tion of SOLA inversions for time-distance helioseismology us-
ing a mixed approach: we take a snapshot from a large-box real-
istic simulation of solar convection (Ustyugov 2008) to generate
realistic travel-time maps by convolution with Born travel-time
sensitivity kernels. A realistic noise component is added to the
travel times. The travel-time maps are then inverted using a mul-
tichannel SOLA inversion and compared with the known flows.
This approach allows us to investigate various types of biases
in the results of the inversion and to develop a robust proce-
dure to minimise them. The most serious bias comes from the
natural correlations among the components of flows induced by
mass conservation that translate into a cross-talk between the
components of the inverted flow (as we shall see, this is impor-
tant when retrieving the vertical flow). Using realistic numerical
simulations of convective flow velocities as input is very useful
to set the acceptable level of random noise of the inverted flow
velocities. The use of travel times with realistic noise properties
is important in order to derive realistic estimates of the noise of
the inverted flow velocities.

2. Synthetic travel times

To construct synthetic travel times, we use a realistic hydrody-
namic simulation (Ustyugov 2008) of the solar convection. The
computational domain is a box 20 Mm in depth and 60 Mm in
each horizontal direction. The simulation provides us with a rea-
sonably realistic description of flows in the upper convection
zone u = (vx, vy, vz). Throughout this paper the spatial coordi-
nates are defined as

x = (r, z), (1)

where r is the horizontal position vector and z is the height.
We choose a snapshot (t = 500 min, see Fig. 16 in the

on-line supplement) of the above mentioned simulation for our
inversion tests. Following Duvall et al. (1997), we consider
different types of travel-time measurements between a surface
point at position r and a concentric annulus or quadrants in or-
der to measure travel times sensitive to flows in inward-outward
(denoted by “oi”), west-east (“we”), and north-south (“ns”) di-
rections. Travel-time maps are denoted by τa(r), where the su-
perscript a is an integer that uniquely refers to a particular com-
bination of choices in the data analysis: a type of geometry
(oi, we, or ns), annulus radius (from 7.3 Mm to 29.2 Mm ev-
ery 1.46 Mm), and a wave filter (here, ridge filters for one of
f , p1, p2, p3, or p4 modes). Thus, index a refers to one of
M = 3 × 16 × 5 = 240 possibilities. Additional information
describing the measurement procedure in time-distance helio-
seismology is given by Gizon & Birch (2005).

Travel-time maps (travel times as functions of position vec-
tor r) are generated by convolving the convection snapshot with
sensitivity kernels according to

τa(r) =
∫
�

Ka(r′ − r, z) · u(r′, z) d2r′ dz + na(r), (2)

where Ka = (Ka
x ,K

a
y ,K

a
z ) is a vector travel-time sensitivity ker-

nel (see, e.g., Fig. 17 in the on-line supplement), u is the velocity
vector of convecting flows, and the volume integral is taken over
the Sun. The noise component is denoted by na. The original hor-
izontal size of the simulation box of 60 Mm was too small for our
purpose. Since the simulated velocities are periodic in the hori-
zontal directions, we copied the simulation box 10 × 10 times.

Kernels are computed using the single-scattering Born
approximation (Birch & Gizon 2007) and depend on eigen-
modes of a background 1D standard solar model (Christensen-
Dalsgaard et al. 1996). The kernels are invariant under horizon-
tal translations; horizontal averages of these kernels for various
oscillation modes are displayed in Fig. 18 in the on-line supple-
ment to display their sensitivity in depth. All kernels used in this
study have sensitivities only in upper-most 10 Mm of the con-
vection zone.

Solar waves are excited by the action of turbulent convec-
tion in the Sun and therefore travel times are inherently noisy.
Following Gizon & Birch (2004), we use a realistic noise co-
variance matrix (see Fig. 19 in the on-line supplement),

Λab(r − r′) = E[na(r)nb(r′)], (3)

to generate realizations of the noise.
Each travel-time map has 400 × 400 pixels with spatial

sampling of 1.46 Mm, corresponding to the pixel size of a
Michelson-Doppler-Imager full-disc image (MDI, Scherrer et al.
1995). In total, we generate 240 different travel-time maps (one
for each index a, see, e.g., Fig. 1). These travel-time maps have
spatial power spectra that are similar to observed travel-time
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Fig. 1. Examples of synthetic travel-time maps used in this paper
(top row) and observed travel times from SOHO/MDI (bottom row).
Temporal length of observation is T = 6 h.
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Fig. 2. Comparison of azimuthally averaged spatial power spectra
|τ̄a(k)|2 of synthetic (solid) and observed (dashed) travel times displayed
in Fig. 1 as a function of k R�, where k is the horizontal wave-number
and R� is the radius of the Sun.

power spectra based on MDI data, as demonstrated in Fig. 2.
However, our synthetic travel times have weaker power at low
wave-numbers due to the complete lack of signal from the sim-
ulated convective velocities below k R� = 60 (only simulated
noise is present).

We check to ensure that point-to-annulus sensitivity ker-
nels and noise covariance matrices obey expected symmetries.
Furthermore, the sensitivity kernels and covariance matrices are
forced to decay smoothly to zero towards the edge of the compu-
tation box by multiplying with a smooth spatial function having
zeros far from the region of interest. In addition, we make sure
that the horizontal integral of each sensitivity kernel for vz is
zero at all depths. This is a consequence of symmetries associ-
ated with point-to-point kernels for vz, which are insensitive to
the mean value of vertical velocity (Birch & Gizon 2007).

3. Improved SOLA inversions

3.1. Real-space formulation

The inversion method we use here is an improved version of
the subtractive optimally localised averages (SOLA) method de-
scribed by Jackiewicz et al. (2007, 2008, 2011).

The SOLA algorithm describes how to optimally combine
a given set of travel time measurements to infer the underlying
properties of medium. In this paper, we wish to retrieve ṽinv

α (x0),
i.e., an estimate of the α-component of the flow velocity in the
neighbourhood of position x0 = (r0, z0) in the solar interior. In
practice, we search for a linear combination of the travel-time
measurements,

ṽinv
α (x0) =

∑
i,a

wαa (ri − r0; z0)τa(ri), (4)

where wαa (ri) are inversion weights to be determined. Combining
Eqs. (2) and (4), we have

ṽinv
α (x0) =

∫
�
Kα(r − r0, z; z0) · u(x) d2r dz

+
∑
i,a

wαa (ri − r0; z0)na(ri), (5)

where Kα = (Kαx ,Kαy ,Kαz ) is a vector averaging kernel with
components

Kαβ (r, z; z0) ≡
∑
i,a

wαa (ri; z0)Ka
β (r − ri, z). (6)

The expression d2r dz means d3x.
The expectation value of inverted velocity ṽinv

α (x0) may be
expanded as

E[ṽinv
α ] = vinv

α +
∑
β�α

vinv
α

(β), (7)

where

vinv
α

(β)(x0) ≡
∫
�
Kαβ (r − r0, z; z0)vβ(x) d2r dz, (8)

and vinv
α ≡ vinv

α
(α). The form of Eq. (7) will be useful later in this

paper to optimize the inversion. Notice that the second term on
the right side of (7) represents leakage of other flow components
into the inverted one. This cross-talk may be a significant source
of bias and needs to be studied.

We search for inversion weights wα so that the vector aver-
aging kernel Kα(r − r0, z; z0) resembles a user-supplied target
T α(r− r0, z; z0). Because we wish to invert for the α-component
of the flow, we choose the target with components:

T αβ (r − r0, z; z0) = T (r − r0, z; z0)δαβ, (9)
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Table 1. Notations.

Symbol Meaning Formula
vα(x) α-component of flow velocity at x (from the simulation)
v

tgt
α (x0) α-component of flow velocity at position x0 targeted by the inversion

∫
� T (r − r0, z; z0)vα(x) d2r dz

vinv
α

(β)(x0) contribution of the β-component of flow velocity to the inverted α-component of flow velocity
∫
� K

α
β (r − r0, z; z0)vβ(x) d2r dz

ṽinv
α (x0) inverted α-component of flow velocity (contains a noise component)

∑
i,a w

α
a (ri − r0; z0)τa(ri) =

∑
β v

inv
α

(β) + noise

whereT (r−r0, z; z0) is a function that peaks around x0 = (r0, z0),
diminishes rapidly away from that point, and has unit integral.
δαβ is a Kronecker δ. Throughout this paper, we choose a simple
Gaussian

T (r, z; z0) =
(4 ln 2)3/2

π3/2s2
h sz

exp

⎡⎢⎢⎢⎢⎣−4 ln 2

s2
h

‖r‖2 −
4 ln 2

s2
z

(z − z0)2

⎤⎥⎥⎥⎥⎦, (10)

where sh and sz are full widths at half maximum (FWHM) of the
Gaussian in horizontal and vertical directions respectively.

A successful inversion will return a value of vinv
α (x0) close to

the target velocity

v
tgt
α (x0) ≡

∫
�
T (r − r0, z; z0)vα(x) d2r dz, (11)

and cross-talk velocities vinv
α

(β)(x0) close to zero for β � α.
A list of the notations used for the various flow velocities

referred to in the inversion procedure is given in Table 1.
The problem to be solved to obtain the wα belongs to the

class of constrained regularised optimisations. The terms to be
regularised are the following:

– The misfit, i.e., how far the averaging kernel is from the de-
sired target function,

χ2(wα; z0) =
∫
�
[Kαα (r, z; z0) − T (r, z; z0)]2 d2r dz, (12)

where Kαα is an implicit function of the weights wα.
– The cross-talk quantifying the leakage of the signal from

other flow components into the inverted one,

XT (wα; z0) =
∑
β�α

∫
�
[Kαβ (r, z; z0)]2 d2r dz. (13)

– The variance of ṽinv
α , which corresponds to the root-mean-

square of noise-related fluctuations in inferred velocities. We
refer to this quantity as predicted error hereafter,

σ2
α(w

α; z0) =
∑
i, j,a,b

wαa (ri; z0)Λab(ri − r j)wαb (r j; z0). (14)

– The ad hoc term quantifying the spread of the weights in
space around r0,

S (wα; z0) =
∑
a,i

[wαa (ri; z0)]2. (15)

The regularisation based on S ensures that weights decrease
towards the edge of the horizontal domain in order to enforce
the spatial locality of the inversion and to prevent the weights
from oscillating in the spatial domain.

In practice, we search for the weights wα that minimise the cost
function

Fα(wα) =
∫
�
[Kαα (r, z; z0) − T (r, z; z0)]2 d2r dz

+ ν
∑
β�α

∫
�

[Kαβ (r, z; z0)]2 d2r dz + ε
∑
a,i

[wαa (ri; z0)]2

+ μ
∑

i, j,a,b

wαa (ri; z0)Λab(ri − r j)wαb (r j; z0). (16)

Trade-off parameters μ, ν, and ε balance these terms. The strat-
egy to be employed in order to set these values will be described
in Sect. 3.3.

The inversion is subject to constraints
∫
�

d2r dzKαβ (r, z; z0) = δαβ for all β, (17)

in order to scale the amplitude of the inverted flow ũinv appropri-
ately.

By taking derivative of (16) with constraint (17) added with
respect to the weights, the problem can be cast into a linear in-
verse problem, as explained by Pijpers & Thompson (1992) or
Jackiewicz et al. (2011). In real space, the matrix to be inverted
has (N2M+P)2 � (107)2 elements, where N = 200 is the number
of grid points in one horizontal direction, P = 3 is the number of
physical unknowns (three velocity components), and M = 240
as already defined earlier.

3.2. Fourier-space (multichannel) formulation

The full problem written in real space is intractable to be solved
using nowadays computers, because the matrix to be inverted is
too large. Jackiewicz et al. (2011) found a solution to this prob-
lem by transforming to spatial Fourier space, where the inverse
problem decouples as a consequence of the horizontal translation
invariance of the sensitivity kernels. Thus, instead of a big linear
inverse problem (inverting matrix having (107)2 elements), we
solve 40 000 small linear inverse problems (inverting matrices
having 2402 elements) in wave-vector space. This approach is
called a multichannel inversion (Jensen et al. 1998). Here we
summarise results of Jackiewicz et al. (2011) for the sake of
completeness.

Following Jackiewicz et al. (2011), we use the following def-
inition of the Fourier transform, such that any function f (r) and
its 2D spatial Fourier transform f̄ (k) are related according to

f (r) = h2
k

∑
k

f̄ (k) exp (ik · r), (18)

f̄ (k) =
h2

x

(2π)2

∑
r

f (r) exp (−ik · r), (19)

where hx = 1.46 Mm and hk = 0.022 rad/Mm are the grid spac-
ings in the real and Fourier domains respectively.
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For each non-vanishing wave-vector k = (kx, ky), the vector
of weights W(k) = [w̄α1 (k) w̄α2 (k) . . . w̄αM(k)]T is the solution to
the matrix equation,

h2
k N2 A(k)W(k) = T (k) for k � 0. (20)

Each matrix A(k) has M × M elements Aab given by

Aab(k) = (2π)2

+∞∫
−∞

dzK̄a∗
α (k, z)K̄b

α(k, z)

+(2π)2ν
∑
β�α

+∞∫
−∞

dzK̄a∗
β (k, z)K̄b

β (k, z)

+μΛ̄ab(k) + εδab. (21)

The vector T (k) = [t̄1(k) t̄2(k) . . . t̄M(k)]T has M elements t̄a
given by

t̄a(k; z0) = (2π)2

+∞∫
−∞

dz K̄a∗
α (k, z)T̄ (k, z; z0). (22)

In addition, the matrix equation for the case k = 0 is[
h4

kN2A(0) C
CT 0

] [
W(0)

L

]
=

[
h2

k T (0)
Uα/(h2

kN2)

]
, (23)

where C is an M × P matrix with elements

Caβ =

∫
�

d2r dz Ka
β (r, z), (24)

L is a 1 × P vector of Lagrange multipliers, and the vector Uα is
a 1 × P unit vector with components uαβ = δαβ.

Solutions to the N − 1 Eq. (20) and the Eq. (23) give Fourier
components of the weights, w̄αa (k). By taking an inverse Fourier
transform we obtain wαa (r). Equation (4) then gives an estimate
of the α-component of the flow, ṽinv

α .
The difference between the above equations and those

in Jackiewicz et al. (2011) arises from additional constraint
terms (13) and (15).

3.3. Picking trade-off parameters

Trade-off parameters μ, ν, and ε control the balance between var-
ious terms in the cost-function (16).

In practice, during the inversion for each flow component, we
compute a grid of solutions by varying all three trade-off param-
eters. For each solution on this grid, we compute the misfit (12),
predicted error of results (14), amount of cross-talk (13), and the
spatial power of weights (15). All four quantities can be com-
puted in spatial Fourier domain.

Standard optimisation methods to achieve optimality, such as
L-curve analysis (see, e.g., Hansen 1998; Jackiewicz et al. 2008),
are not particularly useful to our problem. The elbow of the L-
curve, which is considered an optimal point in parameter space,
was located where the predicted noise level was very large. We
therefore developed our own strategy of selecting values for the
trade-off parameters.

We start with parameter μ, which controls the trade-off be-
tween the misfit and random error. We select μ such that the
noise level of the inverted quantity is less than some target value,
chosen by the user, depending on the problem at hand. For ex-
ample, one may choose a target noise level of 20 m/s to invert

Table 2. Predicted inversion errors and the expected magnitude of the
velocities at the three different depths discussed throughout this paper.

Depth [Mm] 1 3.5 5.5
FWHM sh [Mm] 15 15 15
FWHM sz [Mm] 1.1 2.2 3.5

T = 4 days

Noise σx [m s−1] 14 20 28
Inverted signal 〈vinv

x
2〉1/2h [m s−1] 35 20 13

Targeted signal 〈vtgt
x

2〉1/2h [m s−1] 40 25 20

Noise σz [m s−1] 3 13 133
Inverted signal 〈vinv

z
2〉1/2h [m s−1] 5 5 5

Targeted signal 〈vtgt
z

2〉1/2h [m s−1] 5 7 7

104 × T = 6 h
Noise σx [m s−1] 7 9 7
Inverted signal 〈vinv

x
2〉1/2h [m s−1] 41 25 19

Targeted signal 〈vtgt
x

2〉1/2h [m s−1] 40 25 20

Noise σz [m s−1] 2 2 1
Inverted signal 〈vinv

z
2〉1/2h [m s−1] 5 6 4

Targeted signal 〈vtgt
z

2〉1/2h [m s−1] 5 7 7

Notes. Presented results are for inversions with cross-talk minimised
and for two discussed cases: (1) inversion using travel-time maps aver-
aged over few days and (2) averaging over many realisations of similar
flow structure, each averaged over a short time (here we assume 104 re-
alisations, each averaged over 6 h).

for horizontal flows in supergranules. A much lower noise level
will be required to invert for the vertical component of the flow
(Duvall & Birch 2010). The example noise levels σα are given
in Table 2, where we give the predicted inversion error for ṽinv

x
and ṽinv

z and the root-mean-square of the flow averaged with the
target function (vtgt

x and vtgt
z ) and averaged with the resulting aver-

aging kernel (vinv
x and vinv

z ). It may be that this selection of μ leads
to an averaging kernel which does not resemble the desired tar-
get function at all, in which case one would have to allow for a
coarser spatial resolution.

For the given μ, we then choose ν so that the degree of cross-
talk is less than 10−5 Mm−3. We observe that this constraint
places the following upper bound on the magnitude of the cross-
talk terms:

max

∣∣∣∣∣∣
∑
β�α
Kαβ (r, z; z0)

∣∣∣∣∣∣
max |Kαα (r, z; z0)|

< 0.05. (25)

The parameter ε controls the degree of spatial confinement of
the inversion weights and has an impact on the misfit and error
as well. If ε is too large, the weights will be highly localised in
space around the central point, but a large misfit will result.

For the particular cases that we study here, we find that local-
isation of weights is accomplished when S < 2 × 10−3 km2 s−2.
The impact of this regularisation term is illustrated in Fig. 3. For
the case shown, weights are confined to within a disc of radius
∼50 Mm.

3.4. The code

The code implementing the above described procedure is writ-
ten in Matlab. Matlab provides a compromise between compu-
tational efficiency and the availability of higher-level software
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Fig. 3. Example inversion weights wx
a(x, y) for 1 Mm depth and effect of the minimisation of the spread S . A strong regularisation ε confines the

inversion weights in the spatial domain (bottom row, ε = 100.5) compared to the case ε = 0 (top row). The cut at y = 0 (horizontal black line) is
displayed on the right-hand-side panel, where the values of wx

a(x, y = 0) were scaled by wx
a(x = 0, y = 0).

constructs that make the code lucid, modular, and easy to mod-
ify. Matlab-based code may be compiled into binary-executable
form suitable for pipeline pseudo-automatic processing. The in-
put is a text file, in which the user specifies all relevant parame-
ters including the kernels to be used in the inversion and the set
of trade-off parameters to be investigated. This allows for the de-
velopment of user interfaces such as the web-based or graphical
interface, which can serve as the user front-end of the inversion
code.

The code is parallel and scales linearly with number of par-
allel jobs. The execution is fast, e.g., a set of inversions for one
flow component involving 240 kernels, 200× 200 spatial points,
and a grid of 200 trade-off parameter values takes around 6 h us-
ing 48 Opteron-2.3 GHz CPUs. When many CPUs are involved,
the extensive input-output load becomes a bottle-neck and af-
fects the total processing time.

4. Inversion for horizontal flow

We applied the above-described method to known synthetic
travel times in order to validate the set-up and the performance
of the inversion procedure. We focus first on the horizontal flow
components, i.e., α = x or α = y. We compare two principal
quantities: (1) the flow map that is obtained by convolving the
known velocity field with the target function (vtgt

α ), i.e., the best-
case inversion scenario, and (2) the flow map actually resulting
from the inversion (ṽinv

α ). In this manner, we may investigate in
detail different sources of bias in the results.

The simulation convolved with the target function gives us
v

tgt
α , from which we estimate the expected magnitude of the flow

that we want to invert for (see Table 2). This places limits on
the required noise level of the inversion so that the results have
signal-to-noise ratios larger than 1. Requirements on the targeted
error level fix the trade-off parameter μ.

The choice of the target function depends on the discretion
and needs of the user. Here we focus on layers in the top few
Mm, in particular on depths −z0 = 1, 3.5, and 5.5 Mm. This set-
up was selected because similar flow inversions were also per-
formed and discussed by Jackiewicz et al. (2008), which makes
it possible to compare the results of both methods. As discussed
in the preceding sections, the outcome of the inversion is a set
of weights wαa (r), which are used to combine the travel-time
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Fig. 4. The cut through the x = y = 0 point of the averaging kernel
(solid) and the respective target function (dashed) for vx inversion with
minimised cross-talk, using travel times averaged over 4 days, at three
discussed depths (1, 3.5, and 5.5 Mm).

maps in order to obtain estimates of velocity ṽinv
x (r) and ṽinv

y (r).
Example weights for ṽinv

x are displayed in Fig. 3.
All components of the averaging kernels K x

β (r, z; z0) are
shown in Figs. 20–22. We also show comparisons between in-
versions when the cross-talk is minimised and not minimised.
The minimisation of the cross-talk with ν = 100 is very effi-
cient. However, for depths of 3.5 and 5.5 Mm the minimisation
of the cross-talk introduces some small artefacts in the inversion
averaging kernel K x

x , which are a small price to pay.
Figure 4 shows vertical cuts through the target functions and

the averaging kernels when the cross-talk is minimised. Except
for the target depth of 5.5 Mm, the depth dependences of the
averaging kernels K x

x resemble that of the target functions. The
near-surface inversion at 1 Mm is dominated by the f -mode.
The inversion at 3.5 Mm has equal contributions from f and p1,
with opposite signs, as shown in Fig. 23 in the on-line supple-
ment, where we plot the contribution of individual modes to the
averaging kernels K x

x as a function of depth.
The validation of the vx inversion is demonstrated in Fig. 5.

Here we plot the desired vtgt
x at three different depths and the

inverted vinv
x without noise contributions. These two are very

close for the depths 1 and 3.5 Mm. The differences between vtgt
x

and vinv
x at depth 5.5 Mm are caused by an imperfect averaging
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Fig. 5. Comparison of inverted vx with input
data. Top-row panels show the input flow field
convolved with the target function and the av-
eraging kernel respectively. Bottom rows show
inversion results in cases when cross-talk is ig-
nored (left) and minimised (right). Random er-
rors of the inversion are given in Table 2.
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Fig. 6. Inversion biases for vx at 1 Mm depth.
Left: noiseless vinv

x with cross-talk minimised
versus the ideal vtgt

x . The departure from slope
unity (grey dashed line) is due to an imperfect
match between K and T . Right: noisy ṽinv

x ver-
sus noiseless vinv

x . The results are plotted in two
cases: when the cross-talk is ignored (grey ×)
and minimised (black +). The linear fit to the
black crosses coincides with the dashed line of
slope unity. The black dotted lines represent the
predicted error of 14 m s−1, which is consistent
with the observed scatter of the black crosses.

kernel. When the random noise is added to the solution (bot-
tom row of Fig. 5), we see that the inversions for vx at 1 Mm
and 3.5 Mm are still very good, while the inverted vx at depth
5.5 Mm is dominated by noise. Minimising cross-talk does not
improve the quality of the solution in this case.

In order to quantify the inversion biases, we compare directly
the expected and inverted values for a set of spatial locations.
We select points separated by 7.5 Mm in each horizontal coor-
dinate. This sampling interval is equal to the half of the horizon-
tal FWHM of the target function (thus the points are somewhat

independent). In addition, to avoid possible edge effects, we cut
the outer part of the horizontal plane so that only the central
200× 200 pixel patch is kept. The scatter plots comparing vari-
ous inversion components are displayed in Fig. 6 for the depth of
1 Mm, the plots for the depth of 3.5 Mm are qualitatively similar.
We estimate that for the depth of 1 Mm, the imperfect averaging
kernel leads to an average underestimation of the horizontal flow
components by some 20% (Fig. 6 left). Furthermore we note that
in the case of the inversion for the horizontal flow components,
the bias caused by the cross-talk is not important and the random
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Fig. 7. The azimuthally-averaged power spectra of various components of the vx inversions using travel times averaged over 4 days. For reference,
we plot the power spectrum of vinv

x (thick grey solid line). We plot also the power spectrum of ṽinv
x (solid line) and the power spectrum of the noise

(i.e., the power spectrum of ṽinv
x − vinv

x ; dashed line) for the inversion where the cross-talk is minimised (black) and ignored (grey).

Table 3. Correlation analysis of various inversion components using
synthetic travel times averaged over 4 days.

Crosstalk ignored
Depth [Mm] 1 3.5 5.5
corr(vinv

x , ṽ
inv
x ) 0.93 0.75 0.54

slope(vinv
x , ṽ

inv
x ) 1.03 1.04 1.17

SNR(ṽinv
x ) 2.63 1.10 0.54

corr(vinv
z , ṽ

inv
z ) −0.63 −0.02 0.06

slope(vinv
z , ṽ

inv
z ) −1.98 −0.07 1.67

SNR(ṽinv
z ) 2.01 0.42 0.04

Improved inversion, cross-talk minimised
Depth [Mm] 1 3.5 5.5
corr(vinv

x , ṽ
inv
x ) 0.92 0.73 0.51

slope(vinv
x , ṽ

inv
x ) 1.02 1.05 1.29

SNR(ṽinv
x ) 2.40 1.03 0.46

corr(vinv
z , ṽ

inv
z ) 0.82 0.31 0.05

slope(vinv
z , ṽ

inv
z ) 0.92 0.91 1.41

SNR(ṽinv
z ) 1.67 0.35 0.03

noise level corresponds to the predicted value (Fig. 6 right). The
results for the depth 3.5 Mm are similar, while the results for the
depth 5.5 Mm are dominated by the random noise.

The noise domination of vx inversion at depth of 5.5 Mm is
evident from the plot of the azimuthally averaged power spectra
of the random noise and of the signal as a function of k R� (Fig. 7
right). For comparison, similar plots for the depths 1 Mm and
3.5 Mm are given also in Fig. 7, where the power spectrum of the
signal is well above the random noise near supergranular spatial
scales. The decrease in power of the signal at low kR� in Fig. 7 is
because the convection simulation does not contain these scales.

We showed that it is possible to retrieve vx and vy in the top
3.5 Mm without noticeable bias and within the predicted noise
level of ∼25 m/s (for observing time T = 4 days) with 240 differ-
ent travel-time measurements for ridges f to p4. In Table 3, we
summarise our findings. We state the statistical quantities (cor-
relation coefficient and the slope of the linear fit) comparing ṽinv

α
and the corresponding vinv

α . We also show the signal-to-noise ra-
tio of the inverted ṽinv

α .
The cross-talk is unimportant in inversions for the horizontal

flow components. The cross-talk could come only from vz, which
is weak. We estimate that the influence of the cross-talk is less
than 5%. The inversion at 5.5 Mm is already dominated by noise.
If we drop the requirement on horizontal resolution, inversions
at a depth of 5.5 Mm are also possible (e.g., with a FWHM of
sh = 25 Mm).

It is possible to perform inversions with less temporal aver-
aging, but to obtain a reasonable signal-to-noise ratio, we would
have to relax the demand on the match between the averaging
kernel and the target function. Typically, this leads to side-lobes
in the averaging kernel (especially in the z-direction), which
may make interpretation of the results more difficult. Another
possibility would be to include a larger number of independent
travel-time measurements (and therefore more sensitivity ker-
nels). These issues are being worked on.

5. Inversion for vertical flow

5.1. Specificity of inversions for vertical flow

Inversions for vz require a different methodology because sen-
sitivity kernels Ka

z have zero horizontal integrals at each depth
(and therefore zero total integral) implying (see Eq.(6))

+∞∫
−∞

d2rK z
z (r, z′; z0) = 0, for all z′. (26)

Consequently, with measurements discussed here, it is impos-
sible to retrieve horizontal average 〈vz〉 of vertical flow and we
may only invert for fluctuations vz − 〈vz〉. Equation (26) implies

∫
�

d2r dz′ K z
β(r, z′; z0) = 0 for β = z (27)

and thus Eq. (17) cannot be written for α = z. This implies in
turn that the matrix Eq. (23) for k = 0 may not be written either.

5.2. Ignoring k=0

A solution to this issue is simply to replace Eq. (23) by

w̄z
a(0) ≡ 0 for all a. (28)

Since the averaging kernel K z
z must have zero integral, the av-

eraging kernel will be offset by a small negative constant away
from the central peak. Luckily, regularization by the term (15)
will ensure that the averaging kernel will drop to zero at the
edge of the inversion box. However, this solution is not quite
satisfactory, because we do not have very much control over this
extended negative surrounding sidelobe.
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5.3. Target function with zero mean

It is more elegant to select a target function T (r − r0, z; z0) with
vanishing horizontal integral at each depth. If this target func-
tion is to peak around x0 = (r0, z0), then this peak must be com-
pensated by negative side-lobes in horizontal directions. These
side-lobes have to be constructed in such a way that they do not
lead to significant biases. We suggest to choose

T (r, z; z0) = H(r)

√
4 ln 2
√
πsz

exp

[
−4 ln 2

s2
z

(z − z0)2

]
, (29)

where

H(r) =
4 ln 2

πs2
h

exp

⎡⎢⎢⎢⎢⎣−4 ln 2

s2
h

‖r‖2
⎤⎥⎥⎥⎥⎦

−1
c

4 ln 2
π(nsh)2

exp

⎡⎢⎢⎢⎢⎢⎣− 4 ln 2
(nsh)2

(
‖r‖ − sh

2
√

2 ln 2

)2⎤⎥⎥⎥⎥⎥⎦· (30)

The constant

c = exp

(
− 1

2n2

)
+

√
π

2n2

[
1 + erf

(
1

n
√

2

)]
(31)

ensures that the horizontal integral of T is zero. The horizontal
part of the target function is constructed from a Gaussian peaked
at r0 = 0, from which a wide surrounding Gaussian annulus is
subtracted. The free parameter n balances the width of a side-
lobe compared to the width of the central peak.

The inversion is performed for each k � 0 with this new
target function, together with w̄z

a(k = 0) = 0.

5.4. Both target functions provide similar answers

We compared the results obtained using the two target functions
proposed above and found two conclusions.

The two solutions described above provide results which are
very close (see, e.g., Fig. 24). However, the solution with the tar-
get function having zero horizontal average is elegant and pro-
vides more control over the solution averaging kernel.

By comparing the results obtained with various sizes of the
negative annulus surrounding the central peak we found that the
bias in the inverted flow caused by this negative sidelobe is neg-
ligible if n > 3 in Eq. (30).

The results presented in the following sections are obtained
using the first formalism.

5.5. Validation of vertical flow inversion

As is evident already, inversions for vertical flow are not as
seamless as in the case of horizontal components. This is mostly
because the vertical flow is much weaker on supergranular scales
than the horizontal flow. As shown in Table 2, the expected rms
of the vertical flow in the top layers is of the order of 5 m s−1.
Therefore, the predicted noise of the inverted vz has to be set to a
much smaller value than for the horizontal velocities. As a result,
the match between the desired target function and the resulting
averaging kernel will have to be poorer.

Furthermore, it is absolutely crucial to minimise the cross-
talk to avoid the leakage of the large horizontal velocities into
the small inferred vertical velocity. Even an apparently negligi-
ble cross-talk averaging kernel could in the end cause a signif-
icant bias in the results. Minimising the cross-talk is especially
important because of the natural correlations between the verti-
cal and horizontal flow components in the mass-conserving flow
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Fig. 9. The cut through the x = y = 0 point of the averaging kernel
(solid) and the respective target function (dashed) for vz inversion using
travel times averaged over 4 days. Compare with Fig. 4.

of the supergranules (see Fig. 8). In the upper layers, horizontal
outflows are associated with upflows. The structure of the cross-
talk averaging kernel K z

x as shown in the top half of Fig. 10 in
the case when cross-talk is not minimised then implies a negative
bias in vz due to vinv

z
(x) and vinv

z
(y).

Figure 9 shows vertical cuts through the target functions and
the averaging kernels when the cross-talk is minimised. The av-
eraging kernels K z

z for the inversions at depth 3.5 and 5.5 Mm
have sidelobes towards the surface. All components of the av-
eraging kernel K z

β(r, z; z0) for vz are displayed in Fig. 10 (and
Figs. 25, 26), again comparing the cases when the cross-talk is
and is not minimised. The action of the cross-talk minimisation
term is very efficient.

The validation of the vz inversion is demonstrated in Fig. 11.
Here we plot vtgt

z at three different depths and the inverted vinv
z

without noise contributions. These two are very similiar at the
depth of 1 Mm. Small differences between vtgt

z and vinv
z caused by

an imperfect averaging kernel are visible at the depth of 3.5 Mm,
become more significant at depth 5.5 Mm. When random noise
is added to the solution (bottom row of Fig. 11), we see that
the inversion for vertical flow is possible at 1 Mm depth only if
cross-talk is minimised. Inversions at depths 3.5 and 5.5 Mm are
buried in random noise, where minimising cross-talk does not
help. The magnitude of cross-talk at a depth 1 Mm is much larger
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Inversion with no cross-talk regularisation
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Fig. 10. All components of the averaging kernel for vz inversion at 1 Mm depth with a FWHM of sz = 1.1 Mm and sh = 15 Mm. Bottom row:
with cross-talk minimised, top row: cross-talk is ignored. The cross-talk is presented in the form of K z

x and K z
y averaging kernel components.

Random error of the results is 3 m s−1 when assuming data averaged over 4 days. Over-plotted contours, which are also marked on the colour bar
for reference, denote the following: half-maximum of the kernel (white), half-maximum of the target function (black), and by grey lines ±5% of
the maximum value of the kernel (solid and dotted, respectively).
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Fig. 11. Comparison of inverted vz with input
data, compare with Fig. 5. 〈vz〉 = 11 m s−1.

Fig. 12. All components of the vz inversion at 1 Mm depth. Top row with the cross-talk ignored, bottom row with the cross-talk minimised. We
demonstrate that if cross-talk is not addressed, horizontal components will leak into the inverted vz and cause a bias.

than that of the vertical flow; further, cross-talk is highly anti-
correlated with the vertical flow, which makes the correlation
coefficient between vtgt

z and ṽinv
z close to −1. Note that a similarly

high anti-correlation was measured by Zhao et al. (2007).
All components vinv

z
(β) and the random noise component in

the inversion for vz at 1 Mm depth are displayed in Fig. 12. We
see in the top row that the leakage of the horizontal components

(vinv
z

(x) and vinv
z

(y)) covers up completely the weak signal of the
vertical flow when the cross-talk is not minimised.

Biases in the vz inversion at a depth of 1 Mm may be quan-
tified by directly comparing expected and inverted values for a
set of spatial locations in the horizontal plane (Fig. 13), as in the
case of the vx inversion (Sect. 4). The imperfect averaging ker-
nel in this case does not cause any significant bias (Fig. 13 left).
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ṽ inv

z with XT
noise
v inv
z

10
1

10
2

10
3

10
2

10
4

10
6

10
8

10
10

10
12

kR�
S

pe
ct

ra
l d

en
si

ty

z
0
 = −5.5 Mm
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Fig. 14. The azimuthally-averaged power spectra of various components of the vz inversions using travel times averaged over 4 days. Compare
with Fig. 7 for vx inversions. Notice that in the case of ṽinv

z containing the cross-talk at 1 Mm depth, the excess in power around kR� ∼ 150 is not
caused by the random noise, but by the bias coming from the cross-talk (not plotted separately). In the other two cases the random noise is a main
cause why these inversions are not possible.

The vz inversion is not sensitive to the horizontally averaged ver-
tical flow 〈vz〉, which is therefore subtracted from vtgt

z in the cor-
responding plot. The effect of minimising cross-talk is shown
in Fig. 13 left. The inverted ṽinv

z is anti-correlated with vinv
z ex-

pected from the inversion due to the leakage of the horizontal
mass-conserving flow components into the vertical one.

Meaningful inversions for the vertical flow are possible in
shallow near-subsurface layers of the convection zone only when
the cross-talk between the vertical and the horizontal compo-
nents is minimised. Vertical flow inversions on supergranular
horizontal scales at depths greater than ∼1 Mm performed us-
ing f to p4 modes and travel time maps averaged over 4 days are
dominated by random noise and the signal of the vertical flow
may not therefore be inferred at all (see summary in Table 3).
This fact is also demonstrated in Fig. 14, where we plot power
spectra of individual inversion components as a function of the
spatial scale. At depths larger than 1 Mm, the power of the sig-
nal is much less than the power of the random noise regardless
of the spatial scale.

6. Beating the noise: statistical averaging

As demonstrated in previous sections, it is very difficult to have
a meaningful inversion for solar flows on supergranular scales
averaged over a short time, even in the shallow near-subsurface
layers of the solar convection zone. The signal is overwhelmed
by random noise. It is not feasible to average over longer times,
because the expected lifetime of convection on supergranular
scales is on the order of a day. By averaging over longer time,

a significant portion of the scientifically useful information
would be lost.

It seems feasible to solve the issue by averaging over many
realisations of similar flow structures each averaged over short
time (therefore noisy). This concept was already used by other
authors (e.g., Duvall et al. 2006). As an example we note the
possibility to measure the flows in many individual supergran-
ules and to average over this sample in order to obtain the typical
flow structure in an “average supergranule”, similar to Duvall &
Birch (2010). The predicted error in the results after averaging
scales as 1/

√
N , where N is the size of the ensemble of inde-

pendent flow realisations. This scaling law allows us to relax the
noise constraint on the inversion and therefore regularise more
strongly about the misfit and cross-talk terms. See Table 2 for
required random error of inversions results.

For instance, let us assume that we average over 104 in-
dependent inverted flows, each obtained by considering travel-
time maps averaged over 6 h. Individual flow maps are noisy
and therefore contain little useful information about underlying
flows. This selection allows us to relax the constraint on the es-
timated error level by a factor of a 100 and therefore obtain a
much better fit to the target function (see Fig. 27). With this set-
up, the validation displayed in Fig. 15 shows almost perfect cor-
respondence between expected utgt and inverted ũinv flows in the
top 5.5 Mm of the convection zone. Inversion for vz at 5.5 Mm
with a FWHM of sh = 15 Mm is an exception, because the se-
lected target function cannot be matched by the averaging ker-
nel. Different inversions for vz at this depth are possible with
greater averaging, e.g., with sh = 25 Mm. It is still crucial to
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Fig. 15. Comparison at three depths of sta-
tistical averages of velocity-vector over many
flow realisations. The horizontal flow is dis-
played by arrows while the vertical flow is
colour-coded. The reference arrow indicates
100 m s−1, the random errors of the inversions
are given in Table 2. Compare to Figs. 5 and 11.

minimise cross-talk in the case of vz inversions to retrieve the
correct answer. Power spectra of inversion components at all dis-
cussed depths are displayed in Fig. 28.

7. Conclusions

We improved and validated an inversion algorithm based on a
SOLA inversion approach. The formalism, algorithm and the
code is universal and can, in principle, be used to invert for any
quantity describing inhomogeneities in the solar plasma, pro-
vided that the corresponding sensitivity kernels are available.
The code is also ready to be used for application to real measure-
ments. It will become part of the helioseismic pipeline running
at German Data Center for SDO. We plan to use it to analyse all
available SOHO/MDI and SDO/HMI data in order to routinely
provide a tomographic image of the structure of the solar upper
convection zone.

The code is absolutely scalable allowing to include more
independent measurements (and therefore more sensitivity ker-
nels) in order to further refine the precision of the results. Thanks
to the decoupling, the problem will still be solvable even using
nowadays computers.

We improved the inversions by introducing additional terms
that allow to control and minimise some sources of bias in the
results. Most importantly, we minimise the cross-talk between
individual flow components, which is crucial especially for vz

inversions. In principle, the formalism allows to minimise cross-
talk between any selected quantities during the general inver-
sion. The validation performed here silently assumes that the
sensitivity kernels and noise covariance matrices are perfect. For
the validation of the method and the code it is important if the
sensitivity kernels and noise covariance matrices are solar-like.
This allows us to study different sources of biases we may expect
in the Sun. It is also very important that the sensitivity kernels
used in the inversion contain all the details of the travel-time
measurements, including the instrumental function affecting the
solar oscillation power spectrum.

We found that by considering f to p4 frequency-averaged
modes and supergranular spatial scales it is possible to perform
reliable and trustworthy flow inversions of the travel-time maps
averaged over a few days in the top 3.5 Mm layer of the con-
vection zone in the case of horizontal vx and vy components, and
in the top 1 Mm in the case of vertical vz component. Based
on our experiment, we expect that using travel-time maps aver-
aged over 4 days, it is possible to measure 3D velocities as weak
as 10 m s−1 at the surface and horizontal velocities having am-
plitude 20 m s−1 in the top 5 Mm. We estimate, that using the
travel-times averaged over 1 day, it should still be possible to
measure all components of the supergranular flow at the surface
and its horizontal components in the top 5 Mm. The cross-talk
minimisation is crucial in order to measure the correct vertical
velocity. Its presence in the results may explain the opposite sign
of the vertical flow inversion discovered by Zhao et al. (2007).
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By considering many flow realisations and statistical averag-
ing we might go deeper in the convection zone to learn about the
horizontal flow components and perform vertical flow inversions
for the top few Mm depths.
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Fig. 16. Slices through the x and z components of the simulated flow u at depths 1 Mm, 3.5 Mm, and 5.5 Mm.
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Fig. 18. Horizontal averages of sensitivity kernels may serve useful when estimating
which depths are easier to target. The trend for each mode/ridge was obtained by taking∫

Ka
x (r; z)d2 r and averaging over all as within the given mode.

Fig. 19. An example noise-covariance matrix for f -mode travel times averaged over 6 h. In this
plot, a stands for the combination of the f -mode, oi geometry, and annulus radius of 7.3 Mm,
b stands for the combination of f -mode, we geometry, and annulus radius of 8.8 Mm.
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Inversion with no cross-talk regularisation
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Fig. 20. All components of the averaging kernel for vx inversion at 1 Mm depth with a FWHM of sz = 1.1 Mm and sh = 15 Mm. Bottom row:
with cross-talk minimised, top row: cross-talk is ignored. Random error of the results is 14 m s−1 when assuming data averaged over 4 days. Over-
plotted contours, which are also marked on the colour bar for reference, denote the following: half-maximum of the kernel (white), half-maximum
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Inversion with no cross-talk regularisation
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Fig. 21. All components of the averaging kernel for vx inversion at 3.5 Mm depth with a FWHM of sz = 2.2 Mm and sh = 15 Mm. Random error
of the results is 20 m s−1 when assuming data averaged over 4 days. For details see Fig. 20.
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Inversion with no cross-talk regularisation
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Fig. 22. All components of the averaging kernel for vx inversion at 5.5 Mm depth with a FWHM of sz = 3.5 Mm and sh = 15 Mm. Random error
of the results is 28 m s−1 when assuming data averaged over 4 days. For details see Fig. 20.
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Fig. 23. The contributions of particular modes
to the horizontally averaged averaging kernel
for vx inversions using travel times averaged
over 4 days for depths 1 and 3.5 Mm. We
do not display the inversion for the depth of
5.5 Mm, because it is heavily dominated by
noise.

−150 −100 −50 0 50 100 150
−20

−10

0

x 10
−5

x [Mm]

A
ve

ra
gi

ng
 k

er
ne

l [
M

m
−

3 ]

 

 

T 1
T 2
Kz

z,1

Kz
z,2

Fig. 24. To solve the peculiarity of the vz inversion, we introduced two formalisms in Sect. 5.1.
Here we plot performance of those. In black, the magnified section a y = 0 and z = z0 of
different target functions are displayed, one with removed mean (1) and one constructed with
negative side-lobes (2). The resulting averaging kernels are also plotted. It is evident that the
resulting averaging kernels are qualitatively very similar even when different formalisms were
used to compute them.
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Inversion with no cross-talk regularisation
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Fig. 25. All components of the averaging kernel for vz inversion at 3.5 Mm depth with a FWHM of sz = 2.2 Mm and sh = 15 Mm. Random error
of the results is 13 m s−1 when assuming data averaged over 4 days. For details see Fig. 20.
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Fig. 26. All components of the averaging kernel for vz inversion at 5.5 Mm depth with a FWHM of sz = 3.5 Mm and sh = 15 Mm. Random error
of the results is 133 m s−1 when assuming data averaged over 4 days. For details see Fig. 20.
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Fig. 27. The cut through the x = y = 0 point of
the averaging kernel (solid) and the respective
target function (dashed) for the vx (left) and vz
(right) inversions using averaging over many
flow realisations plotted along with the cor-
responding target functions at three discussed
depths (1 Mm in blue, 3.5 Mm in green, and
5.5 Mm in red). Compare to Figs. 4 and 9
where the resemblance of the target functions
is worse. The random error of the results is
given in Table 2.
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Fig. 28. The azimuthally-averaged power spectra of the vz inversion components at depths of 1, 3.5 and 5.5 Mm for averaging over many flow
representations. For reference, we plot the power spectrum of vinv

z using the black solid line. Then we plot the power spectrum of ṽinv
z (solid line)

and power spectrum of the noise (i.e., the power spectrum of ṽinv
z − vinv

z ; dashed line) for the inversion where the cross-talk is minimised (blue) and
ignored (red). Compare to Fig. 14.
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