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Abstract

Quantitative helio- and asteroseismology require extremely
precise measurements of the frequencies, amplitudes, and
lifetimes of the global modes of stellar oscillation. Unfor-
tunately continuous observations are rarely available. The
Fourier analysis of such gapped time series is not straightfor-
ward. In the Fourier domain, the signal is convolved with the
Fourier transform of the observation window. This implies,
in particular, that Fourier amplitudes at different frequencies
are correlated. We have derived and implemented maximum
likelihood estimators of stellar oscillation parameters, which
explicitly take such frequency correlations into account. Us-
ing Monte-Carlo simulations of stochastically excited solar-
like oscillations, we find that our new fitting method retrieves
oscillation parameters with less bias and greater precision.

1. Introduction

In Fourier space, the observed signal, ŷi = ŷ(ωi), is given
by the convolution of the observation window function, ŵj,
with the unconvolved signal x̂j (see Fig. 1). For a section of
the observed signal starting at frequency ωq and ending at
frequency ωq+M−1 we have

yi =

M+2p−1∑
j=0

Wijxj i = 0, 1 . . . , M − 1, (1)

where yi = ŷq+i with i = 0, 1, . . . ,M − 1, xi = x̂q−p+i with
i = 0, 1, . . . ,M + 2p − 1, and the Wij = ŵi−j+p are the ele-
ments of an M × (M + 2p) rectangular window matrix with
rank M . The integer p refers to the cutoff frequency ωp be-
yond which the observation window is assumed to have no
significant power. Assuming that the unconvolved signal is
stationary in the time domain, the xj are M + 2p indepen-
dent complex random variables in the Fourier domain. The
M observed yi, however, are correlated because of the con-
volution with the observation window, according to Eq. (1).

Figure 1: Schematic illustration of the convolution of the un-
convolved signal (top right) with the observation window (top
left) to obtain the observed signal (bottom). For simplicity,
only the power of the different quantities is shown.

2. The old fitting method

Stellar oscillation parameters are estimated by maximizing
the joint probability density function (pdf) of the random vec-
tor y, evaluated at the observed sample data. So far, this joint
pdf is often estimated to be the product of the pdf’s of the yi,
as if the frequency bins were uncorrelated (see e.g. Ander-
son et al. 1990). This assumption is not strictly correct when
there are gaps in the data.

3. The new fitting method

Our improved fitting method is closely related to the work of
Gabriel (1994). The data correlations are explicitly taken into
account. It can be shown that the joint pdf of the observed
signal y = (y0, y1, . . . , yM )T is then

py(y) =
exp(−‖C†(y −Wd)‖2)

πM (det Λ)2
. (2)

•C† is the Moore-Penrose generalized inverse of C = WD

•D = diag(σ0, σ1, . . . , σM+2p−1), where σi is the standard
deviation of the stochastic component of the signal at fre-
quency νi

• Λ = diag(λ0, λ1, . . . , λM ), where the λi are the singular val-
ues of the matrix C

• d = (d0, d1, . . . , dM+2p−1)
T describes the deterministic

component of the unconvolved signal
This expression for the joint pdf, which takes into account the
effect of the correlations in the observed data, leads to cor-
rect maximum likelihood estimators, as we now show using
simulated data.

4. Monte-Carlo simulations

An observed time series is a realisation of a random pro-
cess, either because of noise and/or the stochastic nature of
stellar oscillations. Here we wish to test the maximum likeli-
hood estimator derived above by fitting many realizations of
the same random process to reconstruct the distributions of
the inferred parameters and conclude about the bias and the
dispersion of the estimator.
In the next section, we consider 1000 realisations of a single
mode of solar-like oscillation on top of a white noise back-
ground. In section 6, we consider a pure sine wave (in the
time domain) plus white noise (500 realisations). To simu-
late the observations, the unconvolved data are convolved
with a fixed observation window function (power shown in
Figure 2). It is a typical window for a single ground-based
site and a total observation duration T = 16 days; it has a
main periodicity of 24 hours, a duty cycle of 30%, and some
randomness in the end time of each observation block.

Figure 2: Square root
of the power spectrum
of the observation win-
dow used for the Monte-
Carlo simulations.

5. Solar-like oscillations

In this example, we consider one mode of solar-like os-
cillation with a FWHM of 3.2 µHz, some degree of asym-
metry, a signal-to-noise ratio of 6 (defined in the power
spectrum). The window is as defined above. Fig-
ure 3 shows the power of one realization, the old fit
(blue), the new fit (red), and the expectation value of
the power spectrum (green). In this particular case,
the new fit is significantly better than the old one.

Figure 3: Realisation of a power spectrum of a solar-like os-
cillation mode with the corresponding fit with the new fitting
method (red) and the old one (black). The green line shows
the expectation value. The top panel shows the signal of an
uninterrupted time series, the bottom panel shows the ob-
served signal after the convolution with the observation win-
dow (T = 16 days, 30% duty cycle).

Figure 4: Distributions of the mode parameters for a set of
1000 realisations with S/N = 6. The red line corresponds to
the new fitting method, the black one shows the results with
the old method, the green line indicates the input parameter
(window: T = 16 days, 30% duty cycle).

Using 1000 such realisations, we can study the distributions
of the inferred parameters (Fig. 4). The new fit is clearly su-
perior. Estimates are less biased, the dispersion on the fre-
quency estimate is divided by two compared to the old fitting
method, and the number of outliers for linewidth, amplitude
and noise estimates goes down.

6. Deterministic oscillations

Here we consider the case of a pure sine wave (in the time
domain) plus white noise (500 realisations). We find that
the estimators for all the mode parameters (frequency, am-
plitude, phase, noise level) are unbiased and have nearly the
same dispersion for both the old and the new fitting methods
(see Fig. 5). The new fitting method does not provide any
significant improvement, regardless of the signal-to-noise ra-
tio.
It is worth mentioning that the mode frequency can be mea-
sured with very high precision, even for low signal-to-noise
ratios. In Figure 5, for example, the frequency dispersion is
smaller than 1/T by a factor of 5 (’super-resolution’) and it
is comparable with a theoretical estimate for the error of the
frequency (Cuypers 1987).

Figure 5: Left: Distribution of inferred frequencies in the case
of a deterministic harmonic signal plus a white noise back-
ground (500 realisations). The signal to noise ratio is 21.
Right: The median and the dispersion of the frequency es-
timates is plotted as a function of signal-to-noise ratio. The
dashed line represents the theoretical estimate for the fre-
quency error (Cuypers 1987). [red: new method, black: old
method, green: input mode frequency; observation window:
T = 16 days, 30% duty cycle].

Figure 6: Example fit (red) to one particular realization
(black) in complex Fourier space. (window function: T =
16 days, 30% duty cycle).

7. Conclusions

For solar-like oscillations, our improved fitting method in
Fourier space, which takes the correlations of the data into
account, provides less biased and more accurate estimates,
especially when the signal-to-noise ratio is low and the ob-
servation window has large gaps (here: T = 16 days, 30%
duty cycle). In that particular case, the frequency uncertainty
is decreased by a factor of two with respect to the old fit-
ting method and parameters like the mode amplitude and the
mode linewidth are significantly less biased.
For the case of a deterministic sinusoidal oscillation on top of
a white noise background, the old and new fitting are equiv-
alent. We confirm that the frequency can be retrieved with a
precision which is much better than 1/T (’super-resolution’).

8. Future Applications

Our new fitting method could be applied to stars exhibiting
solar-like oscillations. α Cen A might be a suitable target for
which excellent data already exists (e.g. Butler et al. 2004).
A revised table of oscillation parameters with more precise
mode frequencies will enable us to verify and to extend the
mode identification of the detected modes.
We intend to apply the new fitting method to BiSON data.
The duty cycle of the BiSON observations is in the range of
60-80%. Therefore, an analysis of the data taking into ac-
count the effects of the gaps properly will lead to more pre-
cise measurements of the global modes of solar oscillations.
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