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Abstract

In time-distance helioseismology wave travel times are measured from the cross-correlation between Doppler velocities recorded at any two locations on the solar surface. All local helioseismology inferences rely
critically on the definition of travel time and its accuracy. We compare two different methods to extract the travel times from the noisy cross-correlation functions. The first method consists of fitting a 5-parameter
analytic function to the cross-correlation to obtain the phase travel time. The second method consists of linearizing the distance between the observed cross-correlation and a sliding reference cross-correlation
(the only parameter is the travel time). We find that the one-parameter fits are more robust with respect to noise. Using SOHO data from the MDI Structure Program for the years 1996 - 2003, we study in detail
the statistical properties of the noise associated with the travel-time measurements for the two different fitting methods.

1. INTRODUCTION

We implement two measurement techniques and compare them
for robustness to solar noise. The first method consists of fitting
a 5-parameter analytic function to the cross-correlation to obtain
the phase travel time (Kosovichev & Duvall 1997). The second
method consists of linearizing the distance between the observed
cross-correlation and a sliding reference cross-correlation, where
the only parameter is the travel time (Gizon & Birch 2004). This
last method is motivated by studies in geophysics (Zhao & Jordan
1998). Here we use a set of velocity maps recorded every minute
by the Michelson Doppler Imager (MDI) during the period 1996 -
2003 (SOHO/MDI Structure Program, Scherrer et al. 1995). This
long time series of observations enables us to study in detail the
statistical properties of the noise associated with the travel-time
measurements for the two different fitting methods.

2. DATA

The analyzed data consists of medium-l SOHO/MDI doppler-
grams. The data reduction has been described by Giles (2000).
Images are grouped into T = 72 h periods for de-trending of solar
rotation and supergranulation. Regions, spanning 100◦ in latitude
λ and longitude were tracked at the Carrington rotation rate for
the 72 h-period. The further processing included applying a high-
pass filter at 1.7 mHz to remove the supergranulation signal. We
then apply a filter to the data to remove the f-mode signal. Tem-
poral cross-correlations C(t) were obtained by a code developed
by Giles (2000) using pairs of points separated by an angular dis-
tance ∆ with orientation either north-south or east-west.

Figure 1: Left: North-south cross-covariances averaged over the
period from May to July 1996 as a function of time lag and dis-
tance ∆. Several ridges are visible in this plot. They correspond
to the different bounces of the wave packets at the surface before
reaching the distance ∆. The first ridge with smallest time lag cor-
responds to the direct arrival of a wave packet. The other ridges
correspond to wave packets that bounce off the surface once or
more before reaching the distance ∆. The signal-to-noise ratio
at large distances is less. Right: Cut through the top diagram at
∆ = 10.5◦. The solid and dotted lines mark the fit ranges for the
first and second bounces, respectively.

3. MEASURING TRAVEL TIMES

Here, we describe the two fitting techniques that are used to mea-
sure the travel times from the cross-covariances. We fit separately
the first bounce and second bounce travel times as indicated in
Fig. 2.

3.1 Gabor wavelet fitting
For each bounce, the cross-correlation can be approximated by a
Gabor wavelet (Kosovichev & Duvall 1997)

C(t) = A2 cos(ω0(t + tp))e−(t−tg)
2/2σ2

.

The five parameters are: A2: amplitude, ω0: frequency, tp: phase
travel time, tg: group travel time, and σ2: width of Gaussian en-
velope. The group travel time tg is given by the time lag of the
peak of the envelope. The phase travel time tp is defined as the
modulo 2π/ω0. In general tp can be determined with higher accu-
racy than tg. Note that the two branches of the cross-covariance
are fitted separately. The corresponding phase travel times are
denoted as tp+ for C(t > 0) and tp− for C(t < 0). In order to
fit individual cross-covariances initial guesses for all the parame-
ters are needed. Here we describe in detail the procedure that
we use to determine these guesses. We use the long-term av-
erage cross-covariance shown in Fig. 1 to obtain initial guesses.
As shown in Fig. 2 the guess for tp is important because of the
non-uniqueness of tp. The guess for tp is obtained iteratively. As
a first step all phase travel-time measurements that are more than
2π/ω0 away from the initial guess are removed. Secondly, the re-
maining measurements of tp are used to find the coefficients of a
fifth-order polynomial to the phase time-distance relation (Chou &
Duvall 2000). Thirdly, this fifth-order polynomial together with the
original guesses for A2, σ2, ω0 and tg are used as new guesses for
a further iteration of the Gabor-wavelet fit.

The procedure is repeated until the guesses converge. Figure
2 (right) shows phase travel-time measurements for the first and
second bounce after five iterations. Once final guesses have been
determined, the individual T = 72 h cross-covariances can be fit-
ted one at a time (see Fig. 2 for an example). Outliers in the
tp measurements may occur. By definition we call outliers mea-
surements that lie 3 s away from the mean. We investigate the
statistics of the travel-time measurements below.

Figure 2: The time-distance diagram with phase travel-time mea-
surements tp for the first (yellow) and second (red) bounce in
north-south data. T = 72 h, λ = 0◦. Left: Phase travel-time mea-
surements obtained by Gabor-wavelet fits with a rough guess for
tp. Right: Phase travel-time measurements obtained by Gabor-
wavelet fits with a guess for tp obtained after five steps of iterating
the relation tp(∆) by fifth-order polynomials.

3.2 One-parameter fit
Another approach of determining one-way travel-time measure-
ments is to compare the observed cross-correlations with a sliding
reference model Cref. The reference cross-correlations are ob-
tained by averaging the cross-correlation functions over 90 days
(Fig. 1, left). The reference cross-covariance is shifted in time un-
til it best resembles the data (Gizon & Birch 2002). The travel time
is defined by:

τ± =

∑
i∓f (±ti)Ċref(ti)[C(ti)− Cref(ti)]∑

i f (±ti)[Ċref(ti)]
2

.

The window function f (t) selects the ridge of interest in the time-
distance diagram. We denote by τ+ the travel time for waves that
move away from the starting location and by τ− the travel time for
waves that move in the opposite direction. For each λ and ∆ we
obtain a measurement of τ+ and τ−. We note, in this procedure
no fitting algorithm is involved. Therefore, convergence problems
cannot occur. A travel-time measurement is always obtained.

4. COMPARISON OF THE TWO TECHNIQUES

Here we consider the travel-time differences. In the case of
Gabor-wavelet fits these are given by tp+ − tp−. In the case of
the one-parameter fits these are τ+ − τ−. We compare the two
measurement techniques. Both methods are affected by noise in
the cross-covariances. We study the sensitivity of the two meth-
ods to this noise. Figure 3 shows travel-time shifts measured at
the equator as a function of distance in north-south data. In gen-
eral the two methods agree well. However, the Gabor-wavelet
fitting produces outliers, even more frequently at large distances
where the signal-to-noise ratio is worse. There the one-parameter
fit still delivers results. We compare the distributions of travel-time
shifts for all latitudes λ; once for distances ∆ smaller than 24◦ and
once for distances ∆ larger than 24◦ for one observing period of
length T = 72 h, cf. Fig. 4. The binning in the histograms is 10 s.
There are 9667 travel-time measurements for ∆ < 24◦ and 8036
measurements for ∆ > 24◦. We find in general for both methods
a broader distribution for the larger distances. This is expected
due to the fading signal with greater distances (cf. Fig. 1, left).
Comparing the two measurement techniques the distribution for
the Gabor-wavelet fit is always broader than the distribution for
the one-parameter fit. The distribution of the one-parameter fit is
Gaussian (Gizon & Birch 2004), whereas the distribution of the
Gabor-wavelet fits has flat tails which shows that the distribution
is not Gaussian.

Figure 3: Travel-time dif-
ferences at the equator
for north-south data as
a function of distance ∆.
Shown are results of the
two measurement tech-
niques Gabor-wavelet fit
(grey) and one-parameter
fit (black). Both mea-
surements are obtained
from the same cross-
correlations. The observa-
tion time is 72 h.

All the measurements in the flat tails are suspected to be wrong.
We note, that the Gabor-wavelet fit produces a non negligible
amount of outliers. The number of outliers are indicated by arrows
in the histograms. The relative number of outliers for ∆ < 24◦ is
3.3%. The relative number of outliers for ∆ > 24◦ is 9.2%. There
are no outliers with the one-parameter fit.

Figure 4: Histograms for travel-time shifts measured by the
Gabor-wavelet fit (grey) and the one-parameter fit (black) applied
to north-south data; T = 72 h. Left: Measurements for distances
lower than 24◦. The total number of measurements is 9667. Right:
Measurements for distances larger than 24◦. The total number
of measurements is 8036. In both cases the number of outliers
produced by the Gabor-wavelet fit are indicated by arrows at the
bins -300 s and 300 s, resp. The total number of outliers is 327 for
∆ < 24◦ and 741 for ∆ > 24◦.

The signal-to-noise ratio in the cross-covariances varies strongly
as a function of latitude λ and distance ∆. This is mirrored in
the travel-time measurements. Their standard deviation is also
a function of λ and ∆ (cf., Fig. 5). The standard deviation is
lowest ±20◦ around the equator, i.e. λ = 0◦, and at distances
around ∆ = 10◦. Towards higher latitudes and towards smaller
and greater distances the noise is stronger. This result is compa-
rable with results obtained by Giles (2000). In general, the one-
parameter fit results in a lower variance of the measurements.

Figure 5: Standard deviation of east-west (left) and north-south
(right) travel-time differences as a function of distance ∆ at the
equator (top) and as a function of latitude λ at distance 10◦ (bot-
tom). The travel-time differences were obtained using a Gabor-
wavelet fit (grey) and the one-parameter fit (black) for T = 72 h.
Outliers in the Gabor-wavelet fits were removed. The results were
binned over 2.4◦ degrees on the axes.

5. CONCLUSIONS

In general both methods agree well. The definition of travel time
according to Gizon & Birch (2004) is robust to noise, because no
fitting algorithm is involved. The distribution of the measurements
is Gaussian in that case. The Gabor-wavelet fitting is not as robust
and provides a non-Gaussian distribution of travel-time measure-
ments. The variance of the measurements is a function of latitude
and distance with a minimum at travel-distances around ∆ = 10◦

and latitudes ±20◦ around the equator. This finding agrees with
the results obtained by Giles (2000). After removing the outliers
returned by the Gabor-wavelet fits we find that the noise in the
travel times is similar for both measurement methods. A full de-
scription of this work is given by Roth et al. (2007).
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