SPACEINN WP4 Helioseismology Deliverable D4.9 Report on local helioseismology working group meeting #1

Coordinated by the Max-Planck-Institut für Sonnensystemforschung (MPG)

The first SPACEINN local helioseismology working group meeting was held on 5 November 2013 (telecon).

Participants for the discussion (15 people):

MPG: A. C. Birch, R. Burston, R. Cameron, L. Gizon (Chair), E. Papini, J. Schou, H. Shunker, K. Nagashima (Minutes), KIS: M. Roth, G. Baumann, R. Salhab, IAC: E. Khomenko, CEA: A. S. Brun, NWRA: T. Felipe, HAO: M. Rempel

Purpose of the meeting:

To identify and collect simulation codes/results to make available to the helioseismology community through the web site.

Time	Session Titles	Session Goals		
(UTC+1)				
Morning Sessions				
9:00-9:30	1. Spherical-shell simulations of magnetoconvection (and rising flux?)	Which datasets $\xi(r, \theta, \phi, t)$ could be made available? What for?		
9:30-10:00	2. Numerical simulations of linear waves/modes in complex media	Make available codes and useful datasets. What needs improvement		
Evening Sessions				
16:30-17:00	3. Synthetic global-mode observations and observational & instrumental effects	What effects matter and should be included in models?		
17:00-17:30	4. Box simulations of compressible magnetoconvection	Make available useful (small) datasets.		

Meeting agenda:

Summary of the sessions:

Session 1. Spherical-shell simulations of magnetoconvection

Main goal: What datasets could be made available? What for?

We identified three anelastic simulations and one simulation with reduced sound speed:

MHD codes	contact person	Properties, Reference	
ASH	A.S. Brun (CEA)	3D anelastic HD and MHD simulations based on spherical	
(Anelastic		harmonics decomposition for horizontal part. Shell up to 0.98 Rsun,	
Spherical	Any of Sacha	full sphere (r=0) now possible.	
Harmonic)	Brun's 2-D or	References:	
simulation	3-D data are	• Miesch et al. 2000	
	available on	• Brun & Toomre 2002	
	demand, HD or	• Brun, Miesch & Toomre 2004: MHD version of ASH more	
	MHD.	relevant ref)	
		• Jouve & Brun 2009: flux emergence in fully developed	
		convection zone	
		• Pinto & Brun 2013: flux emergence in magnetized (dynamo)	
		fully developped convection zone	
		• Jouve, Aulanier, Brun 2013: flux emergence of omega loops	
		• Nelson et al. 2011, 2013a, b: self-consistent magnetic wreaths	
		and omega-loop generation in dynamo	
		What we need to think to implement dynamics to the simulations	
		(Suggested by A.S. Brun):	
		• Latitudinal dependence of emergence properties (timing,	
		strength)	
		• Radial (temporal evolution as it emerges) dependence of	
		emerging structure (is tilt already present at 10 Mm below the	
		surface for instance?)	
		• Correlate flux to MC flow perturbations (as in Svanda et al.	
		2008)	
M10			
MagiC	wicht (MPG)	Stellar simulation developed by planetary people	
	Arrailahilitari Ta	Wight 2002 Druging of the Forth and Dispetant Interior 122	
	Availability. 10	• Wicht 2002 Physics of the Earth and Planetary Interios 152,	
	be commined.	Casting and Wight 2012 Learning 210 428-442	
		• Gastine and Wicht 2012 Icarus 219 426 442	
MHD	Charbonneau	Global MHD simulation of convection zone (Anelastic simulation).	
EULAG	(Universite de	Reference:	
	Montreal)	• e.g. Cossette, Charbonneau, Smolarkiewicz 2013, ApJL 777	
	Availability: To	L29	
	be confirmed.		

AMaTeRAS	H. Hotta (Univ.	With reduced sound speed. (This has acoustic modes!)	
(AMR	Tokyo), M.	Not to the pole, up to 0.99Rsun, lmax~500, spherical shell, some	
Magnetohy	Rempel (HAO)	months?	
drodynamic		Reference:	
s code for	Availability:	• Hotta et al. 2012 A&A Vol. 539 A30	
Technique	Contact them if		
of RSS for	you need data.		
Astro- and			
Solar			
physics)			

Session 2. Numerical Simulations of linear waves/modes in complex media The available codes and datasets are listed below:

SPARC and Glass

SPARC: linear HD, plane-parallel geometry
Glass: HD, 3D spherical geometry - full sphere
Contact person: S. Hanasoge, E. Papini (MPG)
Reference: <u>http://www.mps.mpg.de/projects/seismo/sparc/</u>
Availability: SPARC codes can be downloaded from the website

SLiM code (Semi-spectral Linear MHD code)

Simulation of wave propagation through an inhomogeneous, magnetised solar atmosphere **Contact person:** R.Cameron, H. Schunker (MPG) **Reference:** <u>http://www.mps.mpg.de/projects/seismo/SpaceInn/MODEL/SLiM.html</u> Cameron et al. 2007 AN vol. 328, p.313 **Availability:** older version is available on the web. For newer version, ask Cameron for details.

IAC MHD Mancha code (current version)

2.5D/3D magnetohydrodynamical code with hyper diffusion algorithms and Cartesian grid written in Fortran 90 (see below for details).
Contact person: Felipe(NWRA), Khomenko(IAC)
Reference: <u>http://www.iac.es/proyecto/spia/</u>
Felipe, T., Khomenko, E., Collados, M., ApJ, 2010, Vol. 719, p. 357.

Availability: Contact the persons above.

The IAC MHD Mancha code is developed by T. Felipe, E. Khomenko and M. Collados at the Instituto 2.5D/3D de Astrofísica de Canarias. The current working version of the code ismagnetohydrodynamical code with hyper diffusion algorithms and Cartesian grid written in Fortran 90 (2.5D means that all vector quantities are in three dimensions, while the derivatives are only done in two dimensions). The code evolves in time non-linear perturbations to a given MHS equilibrium. Spatial discretization is based on a six-order center-difference scheme. The numerical solution of the system is advanced in time using an explicit fourth-order Runge-Kutta scheme. The boundary condition for waves includes a Perfectly Matching Layer (Berenger 1994) allowing to avoid spurious reflections from the boundaries. The code is fully MPI-parallelized using the distributed memory concept (domain decomposition). The Mancha code has been fully tested and extensively used on PowerPC 4 machines like MareNostrum/BSC. It reaches good scalability up to a high number of CPUs (e.g., 512 CPUs), if not including radiative transfer aspects. It is proprietary code. Descriptions of this code can be found in research article Felipe et al. 2010 (ApJ).

IAC MHD Mancha code (new version)

(see below for details)
Contact person: Felipe(NWRA), Khomenko(IAC)
Reference: <u>http://www.iac.es/proyecto/spia/</u>
Availability: Newer version available at the webapge within 1 year

The newer version of this code (currently under development) includes the treatment of non-ideal plasma effects by means of generalized Ohm's low, as well as calculation of radiative energy exchange term solving Radiative Transfer Equation. It solves quasi-MHD equations with some additional terms in the energy and induction equation that appear as a consequence of the presence of a large amount of neutral atoms in the solar atmosphere. Apart from the classical Ohmic term those additional terms are: Ambipolar diffusion term, Hall term and Biermann battery term. The neutral fraction is evolved in the code by means of Saha equation assuming instantaneous ionization equilibrium between the species. Such description is appropriate in the limit of strong collision coupling between the species. The description of the this non-MHD version of the code can be found in: Khomenko, E., Collados., M. The Astrophysical Journal, Volume 747, Issue 2, article id. 87. Currently, adaptive mesh refinement is being introduced in the code (PARAMESH package). They plan to make this version generally available at our web page within one year, approximately.

SAC code

Contact person: Sheffield group?

Reference: Shelyag et al. 2008 A&A Vol. 486, p.655, Shelyag et al. 2009 Vol. 501, p.735

Pencil code Reference: <u>http://pencil-code.nordita.org/</u> Availability: open, extendable code

Artificial helisoseismology data by Thomas Hartlep

Numerical simulations of helioseismic oscillations in a 3D full sphere Sun. Several datasets with different setups are available. **Contact person:** Thomas Hartlep **Reference:** <u>http://sun.stanford.edu/~thartlep/Site/Artificial_Data/Artificial_Data.html</u> **Availability:** Datasets are downloadable from the website

Artificial helisoseismology data by Konstantin Parchevsky

3Dsimulation of acoustic waves in the solar upper convection zone. Need to check the status. **Contact person:** Konstantin Parchevsky **Reference:** e.g., Parchevsky & Kosovichev 2007 ApJ Vol. 666, p.547

Session 3. Synthetic global-mode observations and observational effects Main goal: Survey of general interest. What effects matter and should be included in models?

Observational effects identified

- 1. Point spread functions
- 2. Wavelength filters
- 3. Map scale and remapping
- 4. Line formation heights, phase changes with height as a function of center to limb distance

Proposed solution: Artificial Dopplergrams

Simulate observations including all instrumental effects and mode physics

Session 4. Box simulations of compressible magnetoconvection Main goal: Select and make available useful datasets

We listed up the box simulations and checked their properties as well as availability.

Code	Description (data size, property	Notes	Reference, data
	etc.)		availability, and
			any comments
MURaM	http://www.mps.mpg.de/projects/sol	for helioseismology study,	Reference:
	ar-mhd/muram_site/index.html	- full resolution needed?	Vögler et al 2005 A&A
	What is already available @MPG:	(300km in horizontal,	Vol. 429 p. 335.
	• Lots of snapshots	100km in vertical)	
	• shorter time series (smaller	- longer time series	Datasets will be open
	box, 1-2hr, high-cadence)	needed (usually only	on the website.
		limited slices are <u>saved</u>)	
	Mathias's data examples:		Currently no well-
	• 50Mm wide,16Mm deep, 24-		prepared documents
	48hr		for users.
	• Sunspot data: 75Mm wide,		
	9Mm deep, 24hr		
	• Another sunspot data: 100Mm		
	wide, 18Mm deep, 60hr		
	• QS data: 100Mm wide, 18Mm		
	deep, 30hr		
	• Biggest data: 200Mm		
	wide, 50Mm deep,		
	10days? w/ 192km		
	resolution		
STAGGER	http://stainr.pa.msu.adu/~bob/data	Need to clarify boundary	References:
SIIIGGLI	html	condition issue ?	e g Stein et al 2009
	 Some datacubes are available 		AIPC Vol 1094 n 764
	online		Stein et al 2009 ASPC
	 Datacubes available @MPG: 		Vol 416 n 421
	96 Mm x 96 Mm x 20 Mm \sim 5 hr		Stein 2012 LRSP Vol 9
	(calculation itself in total		no.4
	~24hr). Quiet Sun (but with		
	weak magnetic field)		The newest datacube
			has no updated
			reference?

Bifrost	Stellar atmosphere simulation from	Not yet used for	References:
(Oslo)	the convection zone to the upper	helioseismology	Gudikson et al. 2011,
	atmosphere (corona).	analyses?	A&A Vol. 531, p.154
	Included non LTE	Mainly used for spicules	
	Small box region.	or chromosphere studies.	
CO5BOLD	http://www.astro.uu.se/~bf/co5bold_		References:
	main.html		Nutto, Steiner, Roth
	3D radiative hydrodynamics		2012 A&A Vol. 542,
	simulations for several temperature		L30
	stars, including 5700K stars (Sun).		Freytag et al. 2012
			JCoPH Vol.231, p.919
	Typical property: 5Mm (horizontal),		
	2Mm (vertical), up to ~0.5Mm above		
	the surface		
Student in	large-scale convection, cartesian	not yet published	
Yokoyama-s	(quite impressive)	(Contact person: Mr. H.	
an's group		Iijima in Dr. Yokoyama's	
in Univ.		group in Univ. Tokyo)	
Tokyo			
Pencil Code	http://pencil-code.nordita.org/		Codes are open to
	radiative transfer is also		public.
	implemented.		To know the
			know-how it takes
			time though.

Outcome of the meeting

Following the discussions we made at this meeting, the selected data sets were made available under the 'Simulated Data' webpage in the SPACEINN local helioseismology website: <u>http://www.mps.mpg.de/projects/seismo/SpaceInn/SimData/index.html</u>. (See Deliverable D4.8)