SPACEINN WP4 Helioseismology Deliverable D4.10 Report on local helioseismology working group meeting #2 Coordinated by Max-Planck-Institut für Sonnensystemforschung (MPG)

The second SPACEINN local helioseismology working group meeting was held at Max-Planck-Institut für Sonnensystemforschung in Göttingen, Germany, on 4 September, 2014.

Purpose of the SPACEINN local helioseismology working group meeting:

One of the goals of SPACEINN WP4 project is to collect all available information about sources of systematic effects, some of which are known to a few instrument scientists or experts in data analysis, but not accessible to the broader community. This group meeting is for presentations and discussions for known systematics.

Programme:

SPACEINN local helioseismology working group meeting: Systematics

September 4,	2014						
9:00 - 9:30	Sylvain Korzennik	What can we learn about the solar subsurface large					
	(Harvard-Smithsonian	scale flows from accurate high-degree modes					
	Center for Astrophysics)	frequencies?					
9:30 - 10:00	Thomas L. Duvall Jr.	A new time-distance measurement of meridional					
	(MPG)	circulation that is not susceptible to center-to-limb					
		effects					
10:00 - 10:40	Coffee break						
10:40 - 11:00	Timothy Larson	Medium-degree analysis of Mount Wilson data					
	(Stanford University)						
11:00 - 11:20	Kaori Nagashima (MPG)	SDO/HMI multi-height velocity measurements					
11:20 - 11:40	Vincent Böning (KIS)	Extension to spherical geometry: sensitivity kernels					
		for flows in time-distance helioseismology					
11:40 - 12:00	Ariane Schad (KIS)	Distortion of global mode eigenfunctions					

Chair: Kaori Nagashima(MPG)

Some photos of the meeting

At the beginning, the chair is explaining the purpose of the meeting.

T. Duvall is giving a talk.

T. Larson is giving a talk.

Participants:

Antia, H.M. (Tata Institute of Fundamental Research) Appourchaux, Thierry (UPS IAS) Ayukov, Sergey (Moscow State University) Baker, David M. (MPG) Barekat, Atefeh (MPG) Ball, Warrick (Georg-August-Universität Göttingen) Baturin, Vladimir (Moscow State University) Baudin, Frédéric (UPS IAS) Bhattacharya, Jishnu (Tata Institute of Fundamental Research) Birch, Aaron (MPG) Bogart, Richard (Stanford University) Böning, Vincent (KIS) Brandenburg, Axel (NORDITA) Braun, Douglas (NorthWest Research Associates) Broomhall, Anne-Marie (University of Warwick) Cally, Paul (Monash University) Cameron, Robert (MPG) Davies, Guy (University of Birmingham) Duvall, Jr., Thomas L. (MPG) Fleck, Bernhard (ESA) Fournier, Damien (Georg-August- Universität Göttingen) Gangadharan, Vigeesh (KIS) Garcia, Rafael A.(CEA) Gizon, Laurent (MPG) Glogowski, Kolja (KIS) Hanasoge, Shravan (Tata Institute of Fundamental Research) Hill, Frank (AURA NSO) Holzwarth, Volkmar (KIS) Howe, Rachel (University of Birmingham) Ilonidis, Stathis (Stanford University) Kiefer, René (KIS) Komm, Rudolf (AURA NSO) Korzennik, Sylvain (Harvard-Smithsonian Center for Astrophysics) Küker, Manfred (Leibniz Institute for Astrophysics Potsdam) Langfellner, Jan (Georg-August- Universität Göttingen/MPG) Larson, Timothy (Stanford University)

Leibacher, John (AURA NSO) Lindsey, Charles (NorthWest Research Associates) Löptien, Björn (Georg-August- Universität Göttingen/MPG) Losada, Illa (NORDITA) Moradi, Hamed (Monash University) Nagashima, Kaori (MPG) Papini, Emanuele (MPG) Patrón, Jesús (IAC) Przybylski, Damien (Monash University) Rabello Soares, Maria-Cristina (Universidade Federal de Minas Gerais) Reinhold, Timo (Georg-August- Universität Göttingen) Rhodes, Edward (University of Southern California) Rijs, Carlos (Monash University) Roth, Markus (KIS) Rüdiger, Günther (Leibniz Institute for Astrophysics Potsdam) Schad, Ariane (KIS) Scherrer, Phil (Stanford University) Schou, Jesper (MPG) Schunker, Hannah (MPG) Sekii, Takashi (National Astronomical Observatory of Japan) Shelyag, Sergiy (Monash University) Singh, Nishant K. (NORDITA) Sreenivasan, Katepalli (New York University Polytechnic School of Engineering) Suarez Sola, Igor (AURA/NSO) Svanda, Michal (Astronomical Institute, Academy of Sciences of the Czech Republic) Thompson, Michael (UCAR/HAO) Tripathy, Sushanta C. (AURA/NSO) Turck-Chièze, Sylvaine (CEA) Vorontsov, Sergei (Queen Mary University of London) Warnecke, Jörn (MPG) Wisniewska, Aneta (KIS) Zhao, Junwei (Stanford University)

Outcome of the meeting:

Based on the talks of the meeting and the personal discussions between the participants of the meeting, we have set up a website where anyone can access information about sources of systematic effects of observation datasets related to helioseismology analysis. We will keep collecting the information and will update the information when needed. (The final version of this website will become a part of Deliverable D4.13 "Report on systematic effects")

The website about the systematics:

http://www2.mps.mpg.de/projects/seismo/SpaceInn/systematics.html

Link to this webpage is available from the "Observations" button on SPACEINN WP4 Local Helioseismology top page.

Screenshot of the website:

Appendix

Presentations at the meeting

1. Sylvain Korzennik	What can we learn about the solar subsurface large						
(Harvard-Smithsonian Center	scale flows from accurate high-degree modes						
for Astrophysics)	frequencies?						
2. Thomas L. Duvall Jr.	A new time-distance measurement of meridional						
(MPG)	circulation that is not susceptible to center-to-limb						
	effects						
3. Timothy Larson	Medium-degree analysis of Mount Wilson data						
(Stanford University)							
4. Kaori Nagashima (MPG)	SDO/HMI multi-height velocity measurements						
5. Vincent Böning (KIS)	Extension to spherical geometry: sensitivity kernels						
	for flows in time-distance helioseismology						
6. Ariane Schad (KIS)	Distortion of global mode eigenfunctions						
7. Richard Bogart *	HMI Local Helioseismology Data: Status and						
(Stanford University)	Prospects						

* Richard Bogart was a participant of the meeting, and we discussed with him about the systematics. Here we attached his document about the systematics as well.

1. Sylvain Korzennik

		The End			
The End					
				10) (10) 10) (10) (10) 10) (10) (10) (10) (10) (10) (10) (10) (
S.G. Korzennik (CfA)	What Ca	ın We Learn from Hi	igh-Degree Modes?	≣ । < ∄ । E Sep 2014	≁) Q (∿ 21 / 21

2. Thomas L. Duvall Jr.

Examples of ray paths for measuring meridional circulation (left); expected travel-time differences for a single radial cell model (right) $\delta \tau \equiv \tau^+ - \tau^- = -2 \int_{\Gamma_0} \frac{\mathbf{u} \cdot \hat{\mathbf{n}}}{c^2} ds$ = 45.0% Time-distance measurements of meridional circulation using pairs of points at equal center-tolimb angle Δ = 19.2° 2.0 - 10.0 Tom Duvall 1.5 s දී 1.0 Deep Chakraborty 22.8 Tim Larsen 0.5 re 2.2: A great cir eral sampl e fractional radius, ating in the convect thes to r = 0.71 R, 45.0 0.0 0 30 60 90 λ (°)

Analysis steps:

Polynomial fit to travel time vs. azimuth

- 1) each HMI image is put onto a longitude-sin(latitude) cooordinate system (Tim)
- 2) Spherical harmonics computed for I<=300 (Tim)
- 3) Images reconstructed on azimuth-heliocentric angle coordinate system for 1 year. This involves putting b0 back in. (Tom, Deep, Tim, Shukur)
- 4) Filtering is done only as a 1st difference in time. (Tom)
- 5) Cross correlations for each day for different lags in azimuth and at the different heliocentric angles separately.
- 6) Average correlations over 1 year.
- 7) Travel times computed using the Gizon-Birch method. A separate reference cross correlation is computed for each heliocentric angle.
- 8) Travel time differences are computed for oppositely directed waves.
- 9) Symmetric and antisymmetric components about the central meridian to separate rotation and meridional circulation.

Summary

- Big question: is there sufficient s/n to make progress? Not sure.
- Big question: have we really gotten away from center-to-limb systematic errors? Don't know yet.

3. Tim Larson

Medium-I Analysis of Mount Wilson Data

tim larson tplarson@sun.stanford.edu Stephen Pinkerton, Ed Rhodes USC Jesper Schou MPS

MWO data before MDI

Types of Data

- Filters: Na (mostly) or K (1997)
- Cameras
 - JPL: 1024x1024, 1987-1991
 - PANASONIC: 512x512, 1992-1994, 2007-2009
 - JPL-TALK: 1024x1024, 1994-2007
 - TALKTRONICS: 1024x1024, 2002 (testing)
- Intensity: 1990, 1993-94, 2002

P-angle Drift

- Ring diagram analysis reveals "washing machine" effect
- Auto-correlation with averaged images throughout the day indicates value of 0.018 degrees/hour
- Cross-correlations with MDI indicates value of 0.012 degrees/hour

4. Kaori Nagashima

5. Vincent Böning

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

Introduction	Sanity Check	Validation of Method	Deep Meridional Flow Kernels	Summary	Introduction	Sanity Check	Validation of Method	Deep Meridional Flow Kernels	Summary
How to	calculate E	Born Kernels?			How to	calculate E	Born Kernels?		
• L E	lsing general r irch and Gizo • Solve zero wave equat • Via Green's • Find expres • Find travel- $\delta \tau_{diff} = \int \mathbf{K}$	recipe of Gizon and in (2007) = BG200 and first order dampe- tion. as functions, using Mo ssion for perturbed cr- time difference shift $\mathbf{\zeta} \cdot \mathbf{v} \mathrm{d}^3 r$.	Birch (2002), and for fl 7. ed and stochastically drive del S eigenfunctions. oss-correlation. as a function of flow:	n	• L	Using general r Birch and Gizo • Solve zero wave equat • Via Green's • Find expres • Find travel- $\delta \tau_{diff} = \int \mathbf{K}$ And how to do	recipe of Gizon and (2007) = BG200 and first order dampe- tion. as functions, using Mo- ssion for perturbed cr- time difference shift $(\mathbf{v} \mathbf{v} d^3 r)$. a spherical?	Birch (2002), and for fl 17. ed and stochastically driver odel S eigenfunctions. ross-correlation. as a function of flow:	ows

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flow

Introduction	Sanity Check	validation of Method	Deep Meridional Flow Kernels	Summary	Introduction	Sanity Check	Validation of Method	Deep Meridional Flow Kernels	Summary
How to	calculate B	orn Kernels?			Sanity	Check: The	Cartesian Limit		
• L E	 lsing general residues and Gizon Solve zero a wave equati Via Green's Find express Find travel- δτ_{diff} = ∫ K 	ecipe of Gizon and 1 (2007) = BG2007 and first order damper fon. functions, using More sion for perturbed cross time difference shift a $\cdot \mathbf{v} d^3 r$.	Birch (2002), and for flo 7. d and stochastically driven del S eigenfunctions. pss-correlation. as a function of flow:	ows 1					
\rightarrow A	 And how to do First attemp Expand Gree Find a form Validate the 	spherical? ots by Roth, Gizon & en's functions in sph ula that can actually e method.	Birch (2006). erical harmonics. be calculated numerically.						
HELAS VI/ SOH	D-28/ SPACEINN: Spher	rical Born Kernels for Flows	V	(incent Böning	HELAS VI/ SO	HO-28/ SPACEINN: Sphe	erical Born Kernels for Flows	N and a second	/incent Böning

Sanity Check: The Cartesian Limit

Horizontal integrals: $K_{\phi} = K_x$, sensitivity for zonal flows. From Cartesian BG2007 code (solid) and from spherical code (dashed).

Introduction	Sanity	/ Check Validation of Metho	Deep Meridion	al Flow Kernels	Summary	Introdu	iction Sani	ty Check Validation of	Method	Deep Meridion	al Flow Kernels	Summary
How big is the sensitivity to the return flow? ($\Delta = 42 \deg$) How big is the sensitivity to the return										urn flow	\sim ($\Delta = 42$	2 deg)
• Kernel integrated over Hartlep et al. (2013) meridional flow profile.					• Kernel integrated over Hartlep et al. (2013) meridional flow profile.							
K	ernel	δau for $r/R_{\odot} \leq 0.79$	% of total δau	ray kernels	*		Kernel	$\delta \tau$ for $r/R_{\odot} \leq 0$.	79 % of	total $\delta \tau$	ray kernels *	
unf	iltered	-0.446 s	10.4 %	pprox 20 %			unfiltered	-0.446 s	10).4 %	pprox 20 %	
δ1	= 50	-0.489 s	13.4 %				$\delta I = 50$	-0.489 s	13	3.4 %		
δΙ	= 20	-0.467 s	14.8 %				$\delta I = 20$	-0.467 s	14	1.8 %		
pha	ase-sp.	-0.503 s	11.4 %				phase-sp.	-0.503 s	11	L.4 %		
	Ta	able: * Ray kernel value fr	rom Hartlep et al. (2013).		Table: * Ray kernel value from Hartlep et al. (2013).						
							• Divide δ	au by $pprox$ 25 to get realis	tic numbers	: $\delta \tau_{<0.79} \approx$	0.02 s!	
						• The sensitivity is always concentrated in the upper convection zone.						
						Ray and Born kernel values are quite different. Is that a problem?						
							,		4			
HELAS VI/ SOI	HO-28/ SPAC	CEINN: Spherical Born Kernels for Flo	ws	V	incent Boning	HELAS	VI/ SOHO-28/ SPA	ACEINN: Spherical Born Kernels	or Flows		Vin	cent Böning

How big is the sensitivity to the return flow? $(\Delta = 42 \text{ deg})$	Summary
• Kernel integrated over Hartlep et al. (2013) meridional flow profile. $\begin{array}{c c c c c c c c c c c c c c c c c c c $	 We can adequately calculate spherical Born kernels: Results from Cartesian geometry (BG2007) reproduced. ✓ Effect of meridional flow correctly modelled (Hartlep et al., 2013).
 ⇒ Low-pass filtering in I gives the strongest relative sensitivity to return flow. ⇒ Phase-speed filtered kernels are best localised at the target depth. HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows 	HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

Introduction Sanity Check Validation of Method Deep Meridional Flow Kernels Summary	Introduction Sanity Check Validation of Method Deep Meridional Flow Kernels Summary							
Summary	Summary							
 We can adequately calculate spherical Born kernels: Results from Cartesian geometry (BG2007) reproduced. Effect of meridional flow correctly modelled (Hartlep et al., 2013). Example kernels for meridional flow measurements: 10-15% of the total sensitivity is due to the return flow for a standard meridional flow profile. Ray and Born kernels have different sensitivity to return flow by a factor of 2. Low-pass filtering in I gives the strongest relative sensitivity to return flow. Phase-speed filtered kernels are best localised at target depth. 	 We can adequately calculate spherical Born kernels: ✓ Results from Cartesian geometry (BG2007) reproduced. ✓ Effect of meridional flow correctly modelled (Hartlep et al., 2013). Example kernels for meridional flow measurements: 10-15% of the total sensitivity is due to the return flow for a standard meridional flow profile. Ray and Born kernels have different sensitivity to return flow by a factor of 2. Low-pass filtering in I gives the strongest relative sensitivity to return flow. Phase-speed filtered kernels are best localised at target depth. 							

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

Introduction	Sanity Check	Validation of Method	Deep Meridional Flow Kernels	Summary	Introduction	Sanity Check	Validation of Method	Deep Meridional Flow Kernels	Summary
Referen	ces								
• 2 • k • C • C • C • C • C • C • C • C • C	Chao et al. (201 Cholikov et al. (Duvall & Hanas Duvall et al. (201 Chao et al. (201 Gizon and Birch Birch and Gizon Roth, Gizon & E Hartlep et al. (2 Rempel (2006) Gizon and Birch	 (2014) (2014) (2013) (214) (214) (2002) (2002) (2007, BG2007) (2007, BG2007) (2007, BG2007) (2004) 							
HELAS VI/ SOH	O-28/ SPACEINN: Spheri	cal Born Kernels for Flows		Vincent Böning	HELAS VI/ SOHC	0-28/ SPACEINN: Spher	ical Born Kernels for Flows	Vii	ncent Böning

Sanity Check: The Cartesian Limit

6. Ariane Schad

Evaluation of the method

- How can we evaluate the method and the reliability of the result?
- > analysis of simulated acoustic wave fields
- > comparison of flow measurements from different methods: here for rotation!

Thank you for your attention!	
Thanks to Markus Roth, Kiepenheuer-Institut für Sonnenphysik, Freiburg Jens Timmer, University of Freiburg, Freiburg Center for Data analysis and modeling MDI data & leakage matrix Jesper Schou, MDI & HMI team, MPS Göttingen Tim Larson, MDI & HMI team, Stanford University	
29.01.2015 15	5

7. Richard Bogart

	Local Helioseismology Data Products						
	series	module	cadence (sec/rec)	size (MB/rec)	Description		
HMI Local Helioseismology Data:	hmi.V_avg120	datavg	396000	60	1/3 rotation averages of Dopplergrams with orbital velocity removed, for detrending		
Status and Dugar acts	hmi.rdVtrack_fd05	mtrack	12	18			
Status and Prospects	hmi.rdVtrack_fd15	mtrack	340	472	mosaics of tracked mapped data cubes from data in series		
	hmi.rdVtrack_fd30	mtrack	2500	1000	hmi.V_45s		
	hmi.tdVtrack_synopHC	mtrack	993	250			
Dishand Damut	hmi.rdVpspec_fd05	pspec3	12	12	morning of the neuror spectra of the tracked tiles in the		
Richard Bogart	hmi.rdVpspec_fd15	pspec3	340	324	series hmi.rdVtrack_fd*, with 1-to-1 mapping of most		
	hmi.rdVpspec_fd30	pspec3	2500	648	parameters		
	hmi.rdVavgpspec_fd15	datavg	8400	324	mosaics of full-rotation averages of power spectra of		
Company I Interneties	hmi.rdVavgpspec_fd30	datavg	34400	648	tracked tiles in series hmi.rdVpspec_fd*		
Stanford University	hmi.rdVfitsf_fd05	ringfitf	12	0.02			
	hmi.rdVfitsf_fd15	ringfitf	340	0.09	mosaics of the "fast" ("dynamics") fits to the power spectra in series hmi.rdVpspec fd*		
	hmi.rdVfitsf_fd30	ringfitf	2500	0.2			
	hmi.rdVfitsc_fd05	ringfitc	12	0.1			
	hmi.rdVfitsc_fd15	ringfitc	2500	0.7	mosaics of the "slow" ("structure") fits to the power spectra in series hmi.rdVpspec_fd*		
	hmi.rdVfitsc_fd30	ringfitc	10000	0.9			
	hmi.tdVtimes_synopHC	travel_times	993	22	mosaics of travel time fits to the data in series hmi.tdVtrack_synopHC		
	hmi.rdVflows_fd15_frame	rdvinv	98000	2.25	flow inversions of the fits in all records for a given		
	hmi.rdVflows_fd30_frame	rdvinv	196000	0.57	analysis time in series hmi.rdVfitsf_fd*		
	hmi.tdVinvrt_synopHC	invert_td_hr	248	П	flow and sound-speed inversions of the travel time fits in in series hmi.tdVtimes_synopHC		
HELAS VI / SOHO 28 / SPACEINN, MPS, Göttingen, I September 2014							

