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Summary

The magnetic field of the Sun is maintained by a hydromagnetic dynamo. In recent years,
observational evidence in support of the dynamo being of the Babcock-Leighton type has
accumulated. In this kind of dynamo models, the regeneration of the large scale dipole
field occurs through the decay of active regions on the solar surface. Hence, surface fields
play a central role on the global dynamo, as opposed to being a mere by-product of a
turbulent dynamo operating below the surface.

Most kinematic models of the solar cycle are formulated in terms of azimuthal aver-
ages. The critical role of the non-axisymmetric flows on the evolution of the magnetic
field is incorporated through the mean field coefficients. In particular, the effect of the
non-axisymmetric convective flows on the generation of magnetic field is parametrized
through a linear relationship between the mean poloidal field and the mean toroidal field
(the mean field α effect). On the intermediate scales, an example of non-axisymmetric
flows are the near-surface, converging flows towards active regions that have been de-
tected by helioseismology. These flows can provide a non-linear saturation mechanism
for the global dynamo and contribute to the modulation of the cycle strength.

The first study presented in this thesis is concerned with the effect of the inflows
on the evolution of a single bipolar magnetic region (BMR) and its contribution to the
global dipole field. The latter depends on the flux contents of the active region and its tilt
with respect to the East-West direction. We build a simple surface flux transport model
in which small magnetic flux concentrations are passively advected by the differential
rotation, random convective flows and the inflows. We find that flux cancellation leads to
a quick decrease in the strength of the inflows, which allows for the flux inside the active
region to disperse rather than clumping. The contribution of a BMR to the global dipole
decreases by a ∼ 30% compared to a no-inflows scenario, with little dependence on the
BMR’s tilt and the latitude of emergence in most cases. When the initial tilt of the BMR is
very close to zero, we find that the interplay between the inflows, the differential rotation
and the convective flows leads to an increase in the BMR’s tilt angle and its contribution
to the global dipole field.

In our second study, we investigate the global effect of the inflows on the scale of
a solar cycle. By using global surface flux transport simulations, we determine that the
strength and extension of the inflows have a large impact on the build-up of the global
dipole. Stronger (weaker) inflows lead to a weaker (stronger) axial dipole moment at
the end of the cycle. We also find that the reduction in the dipole moment at the end of
the cycle caused by the inflows is ∼ 9% stronger in stronger activity cycles. This is a
non-linear effect which may provide a means to saturating the global dynamo.

In the third study, we formulate a non-axisymmetric version of the Babcock-Leighton
dynamo. We then employ this model to infer observation-based latitude-longitude maps
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Summary

of the sub-surface azimuthal flux. We obtain that the non-axisymmetric structure of the
sub-surface azimuthal flux system is very weak (about 3% on average). By comparing the
inferred maps with the properties of the sunspot groups observed during cycle 23, we find
that the probability of emergence, per unit time and surface area, is a function of the ratio
between the amount of emerged flux and the amount of flux underlying the emergence
site.
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1 Introduction

The Sun is a magnetically active star, i.e., it shows a magnetic field that varies with time.
One conspicuous manifestation of the solar magnetism is the occurrence of sunspots.
These are dark spots that appear on the surface of the Sun as a consecuence of the emer-
gence of strong magnetic fields from beneath the surface. The phenomenon of sunspots
is cyclic, with a period of approximately eleven years. At the beginning of each cy-
cle, sunspots appear at a latitude of ∼ 30◦ on both hemispheres. Throughout the cycle, the
mean emergence latitude drifts towards the equator, and the rate of appearance of sunspots
increases, peaks and declines. The last stages of a magnetic activity cycle normally over-
lap with the first sunspots of the new cycle.

The Sun’s large scale magnetic field is thought to be maintained against Ohmic dis-
sipation by a hydromagnetic dynamo. Since the global field is largely axisymmetric,
quantitative models of the solar cycle are traditionally based on azimuthal averages of the
magnetic field and the plasma flows. The aim of this thesis is to study the implications of
relaxing the axial symmetry assumption for modeling the Sun’s global dynamo. The first
part of the thesis is dedicated to study the impact of the near-surface, converging flows
towards active regions (Gizon et al. 2001) on the large scale solar magnetic field. These
flows affect the surface transport of magnetic flux substantially, and may provide a mech-
anism for limiting the amplitude of the magnetic field generated by the global dynamo
(Cameron and Schüssler 2012). In the second part of the thesis, a method for inferring the
non-axisymmetric structure and evolution of the sub-surface magnetic flux from observa-
tions is provided. The relationship between the so inferred subsurface azimuthal flux and
the observed sunspots is then studied.

1.1 Historical overview
The appearance of sunspots on the solar disk was already known to ancient civilizations,
well before the telescopic era (e.g. Clark and Stephenson 1978, Wittmann and Xu 1988).
By contrast, the magnetic nature of the solar activity was only discovered one century ago.
In this section, we present an overview of the key findings that led to the development of
hydromagnetic dynamo models of the solar cycle.

1.1.1 The discovery of the sunspot cycle
The periodicity of the sunspot phenomenon was discovered by Schwabe (1844). Aiming
to detect the transit of a hypothetical planet inside the orbit of Mercury, he registered
daily observations of sunspots over 18 years (1826-1843), which led him to propose the
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1 Introduction

existence of a sunspot cycle having a period of about 10 years. Wolf (1861) compiled
past data from multiple observers, which allowed him to reconstruct the sunspot counts
back to the middle of the 18th century. To make the comparison of data sets recorded by
different observers easier, he introduced the relative sunspot number r, defined as

r = k(10g + n), (1.1)

where g and n are, respectively, the number of sunspot groups and individual sunspots,
and the calibration constant k is specific to each observer (for Wolf, k = 1). This definition
is still in use today, although r has been renamed to International Sunspot Number.

By the mid-1800s, observers became concerned with the latitudes at which sunspots
appeared. Carrington (1858) noticed a sudden jump on the average sunspot latitude im-
mediately after the activity minimum of 1856, from very low latitudes to two distinct belts
between 20 and 40◦ in both hemispheres, with some indication of an equatorward drift of
the active zones:

[T]hroughout the two years preceding the minimum ... the spots were
confined to an equatoreal belt ... [but] shortly after that epoch, ... two new
belts of disturbance abruptly commenced, the limits of which in both hemi-
spheres may be roughly set at between 20◦ and 40◦ ... The tendency at the
present time appears to be to contraction of the parallels.

Further observations (Carrington 1863, Spörer 1887) made the discovery of the lat-
itudinal drift of the activity belts unambiguous, and the phenomenon became known as
“Spörer’s Law of Zones". The rate of sunspot occurrence and the latitudinal drift of the
activity belts can be easily visualized in a butterfly diagram (Fig. 1.1).

1.1.2 The magnetic nature of solar activity
The early observational knowledge on the solar magnetic field can be credited to George
Ellery Hale and his team at Mount Wilson Observatory. The first breakthrough came in
1908. Hale (1908b) had observed a helical motion of the gas around sunspots, which led
him to postulate the existence of a sunspot magnetic field induced by the circulation of
electrically charged particles in the solar atmosphere.1 By measuring the Zeeman splitting
of magnetically sensitive lines in the spectrum of sunspots, he was able to estimate an
average sunspot magnetic field of 2600 to 2900 G (Hale 1908a).

Continued observations of sunspot magnetic fields led Hale et al. (1919) to propose
the existence of cycle-related laws governing the polarity of the spots (Fig. 1.2):

The present investigation should ultimately lead to the formulation of a
definite law of sun-spot polarities ... We already know that the preceding
and following spots of binary groups, with few exceptions, are of opposite
polarity, and that the corresponding spots of such groups in the Northern and
Southern hemispheres are also opposite in sign. Furthermore, the spots of the
present cycle are opposite in polarity to those of the last cycle.

1Hale’s explanation of the origin of the sunspot magnetic field required a charge separation that is not
present in the solar plasma. Additionally, the cyclonic motion observed by Hale is not a common feature of
sunspots. It was Biermann (1941) who first proposed that the strong magnetic field suppressed the convec-
tive heat transport, resulting in a temperature deficit that made the spots darker than their surroundings.
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1 Introduction

Figure 1.2: Sketch by Hale (1935) illustrating his polarity laws. The curves represent the
evolution of the mean emergence latitude over several cycles. The pairs of symbols rep-
resent the following (left) and leading (right) polarities of the sunspot groups. Reprinted
by permission from Macmillan Publishers Ltd: Nature 136, 703–705, copyright 1935.

In the same work, these authors also reported a systematic tilt of the axis of the bipolar
sunspot groups with respect to the East-West direction, now known as Joy’s law:

The following spot of the pair tends to appear farther from the equator
than the preceding spot, and the higher the latitude, the greater is the inclina-
tion of the axis to the equator.

The observation of a sunspot polarity reversal at the beginning of cycle 16 validated
Hale’s polarity laws, and established that the complete magnetic cycle had a period of
∼ 22 years (Hale and Nicholson 1925)

Thus, while the 11 1
2 -year interval correctly represents the periodic varia-

tion in the number or total area of sun-spots, the full sun-spot period, corre-
sponding to the interval between the successive appearances in high latitudes
of spots of the same magnetic polarity, is twice as long.

1.1.3 The Sun’s global magnetic field
In parallel with their research on the magnetism of sunspots, Hale’s team also directed
efforts towards detecting the much weaker global dipole field of the Sun. The existence of
such a field had been postulated on the basis of the resemblance of the coronal streamers
to the force lines of a magnetized sphere (Bigelow 1889). Schuster (1892) had put forward
that every large rotating body has a magnetic field. Aiming to test this hypothesis, Hale
(1913) confirmed the presence of a general solar magnetic field:

[I]t is probable that [the measured displacements of spectral lines] rep-
resent the Zeeman effect due to the sun’s general magnetic field ... [T]he
magnetic poles of the sun lie at or near the poles of rotation ... [and] the

12



1.1 Historical overview

polarity of the sun corresponds with that of the earth ... A first approximate
value for the vertical intensity of the sun’s general field at the poles is 50
gausses.

The next key clue to understanding the nature of the solar global magnetic field was
gathered by Harold D. Babcock and Horace W. Babcock when, in the context of their
program of systematic observations of the solar magnetic field, these authors reported, for
the first time, a reversal of the global dipole (Babcock and Babcock 1952, 1955, Babcock
and Livingston 1958, Babcock 1959):

The polarity of the high-latitude dipolar magnetic field of the sun was
opposite to that of the earth’s field from 1953 to 1957. About the middle
of 1957, the polarity of the magnetic field near the south heliographic pole
was reversed; reversal of the field near the north pole was not observed until
November, 1958. At present, the sun’s polar field is parallel to that of the
earth.

1.1.4 Early models of the solar cycle

The discovery of the Sun’s global field prompted the appearance of a number of theories
that tried to explain its origin. The earliest ideas suggested that the difference in mobili-
ties of ions and electrons could give rise to some electric charge separation which, owing
to the Sun’s rotation, would induce a magnetic field. This mechanism was shown to be
largely insufficient to explain the observed field (Brunt 1913). Other possibilities invoked
self-induced toroidal electric currents, arising from convective motions (Elsasser 1939) or
from a circulation of the solar material in meridional planes (Larmor 1919, 1934). These
and other hypotheses were considered and proved wrong by Cowling (1933, 1945). One
important result of his work, known as Cowling’s anti-dynamo theorem, is that a dynamo
cannot sustain an axisymmetric magnetic field (Cowling 1933). Cowling’s theorem im-
poses a strong constraint on astrophysical dynamo models, since the observed magnetic
fields are often almost axisymmetric on the larger scales.

The development of magnetohydrodynamics was crucial to advancing the understand-
ing of astrophysical dynamos. Alfvén (1942) showed that magnetic field lines are effec-
tively frozen into a perfectly conducting material. Based on this idea, Cowling (1946)
proposed that the field of sunspots most likely originated from a pre-existing subsurface
toroidal structure:

We are therefore led to the view that the field is not generated in situ, but
that it exists before the spot comes into being ... [One] possibility is that a
field exists below the surface, lines of force running as “girdles” round the
Sun’s axis, and a pair of spots arises when part of this field is convected to
the surface.

It was soon realized that such a toroidal field could be generated from the global
poloidal field in the presence of non-uniform rotation (Elsasser 1950, Bullard and Gell-
man 1954, Parker 1955). The main difficulty was then to produce a reversed global dipole

13



1 Introduction

Figure 1.3: Illustration of the generation of a poloidal component from a toroidal mag-
netic field by a cyclonic motion (α-effect). The thick arrows represent the magnetic field.
The greek letters ξ, η, and ζ denote, respectively, the meridional, azimuthal and vertical
directions. Figure from Parker (1955), courtesy of E. Parker. ©AAS. Reproduced with
permission.

from the subsurface toroidal field, bypassing the limitations imposed by Cowling’s theo-
rem. Two different mechanisms were proposed to solve this problem, each of which gave
rise to a whole family of models.

The first mechanism was proposed by Parker (1955) (Fig. 1.3). He postulated that
cyclonic motions, arising from the effect of the Coriolis force on convective flows, can
twist the toroidal field and produce small scale poloidal loops, which then coalesce into a
large scale poloidal field:

[O]ne result of the interaction of cyclonic fluid motions with the toroidal
field is to generate loops of flux in meridional planes. In the limit as the
number of cyclones becomes large, this produces no fields other than these
meridional loops ... [whose] gross result ... is a dipole field ... [which]
completes the problem of the generation of poloidal field from toroidal field.

This mechanism for the regeneration of the poloidal field (known as the “α-effect”) was
later incorporated into the formalism of mean field electrodynamics (Braginskii 1964,
Steenbeck et al. 1966, Steenbeck and Krause 1969), giving rise to the turbulent dynamo
paradigm.

The second mechanism was proposed by Babcock and Babcock (1955), and inte-
grated in a phenomenological model of the solar cycle in Babcock (1961) (Fig. 1.4). In
Babcock’s model, the toroidal field is amplified by the Sun’s differential rotation until
it becomes magnetically buoyant and rises, piercing through the surface and originating

14



1.1 Historical overview

Figure 1.4: Illustration of Babcock’s mechanism for the regeneration of the Sun’s global
poloidal field. Figure from Babcock (1961). ©AAS. Reproduced with permission.

tilted bipolar magnetic regions (BMRs). The surface decay of the BMRs causes the can-
cellation and reversal of the global poloidal field of the Sun, providing the seed for the
amplification of the next cycle’s reversed toroidal field:

We could speculate at this stage that the polar magnetic field is the re-
sult of a poleward migration of the f portions of disintegrating BMR’s in the
first few years of each sunspot cycle. If this were true, the main poloidal
field should reverse its polarity every 11 1

2 years, but out of phase with the
frequency-curve for sunspots. On this theory the residual p portions of BMR’s
should either be neutralized by merging of low-latitude fields of the north-
ern and southern hemispheres, or there should be evidences of a general
quadrupolar field.

The apparent migration of the polarities of the BMRs was later explained by Leighton
(1964) as result of the random motions caused by the surface convective flows, which he
parametrized as a diffusion process. Later, Leighton (1969) put forward a quantitative ver-
sion of Babcock’s model. These three papers provide the basis for the Babcock-Leighton
dynamo framework.
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1 Introduction

1.2 Elements of dynamo theory

1.2.1 The dynamo problem
The evolution of the magnetic field B in a conducting fluid is given by the magnetohydro-
dynamical (MHD) induction equation,

∂B
∂t

= ∇ × (u × B) − ∇ × (η∇ × B), (1.2)

where u is the velocity of the fluid and η is the magnetic diffusivity, defined as

η =
1
µ0σ

[cm2s−1]. (1.3)

In the above expression, σ is the electrical conductivity of the fluid and µ0 is the vacuum
magnetic permeability.

The first term on the right hand side of Eq. (1.2) describes the induction of magnetic
field by the plasma flows, while the second one represents the decay of the magnetic field
by means of the ohmic dissipation of the electric currents that support it. The relative
importance of the two terms is measured by the magnetic Reynolds number:

Rm =
ul
η
, (1.4)

where u is a typical value for the flow velocity, and l is a characteristic spatial scale.
The induction term of Eq. (1.2) can act to amplify the magnetic field and oppose

its resistive decay. A hydromagnetic dynamo is defined as a set of flows u capable of
maintaining a magnetic field against resistive decay through inductive action.

The full set of MHD equations is extremely difficult to solve in its most general form.
One common simplification of the dynamo problem consists in prescribing the flow field
u, rather than computing it self-consistently from the MHD equations. The so-called
kinematic approximation is justified when the magnetic energy is much smaller than the
kinetic energy of the plasma flows. In this regime, Eq. (1.2) becomes linear in B.

To examine the temporal behaviour of the solutions of Eq. (1.2) in the kinematic
regime, we consider the evolution of the eigenvectors of the linear operator acting on B
on the right hand side of the equation. Let Bλ be an eigenvector of the operator, and let λ
be the corresponding eigenvalue. From Eq. (1.2) we obtain:

∂Bλ

∂t
= λBλ. (1.5)

We allow the eigenvalues to be complex numbers, λ = λr + iλi. Integrating Eq. (1.5)
yields

Bλ = B0 exp[(λr + iλi)t]. (1.6)

Here, B0 is an integration constant which can be set by specifying initial conditions. The
imaginary part of the eigenvalue is the frequency of the possible oscillatory solutions,
while its real part is the growth rate of the magnetic field. Solutions for which λr ≥

0 correspond to dynamo action. By contrast, solutions with λr < 0 describe decaying
magnetic fields.

16



1.2 Elements of dynamo theory

1.2.2 Mean field electrodynamics
The development of mean field electrodynamics established a dynamo framework in
which turbulent flows play a central role. The main assumption is that the magnetic and
velocity fields can be decomposed into a mean part and a fluctuating part:

B = 〈B〉 + B′,
u = 〈u〉 + u′. (1.7)

The averaging operation can be in space, time or over an ensemble, as long as it satisfies
the Reynolds rules:

〈 f + g〉 = 〈 f 〉 + 〈g〉,
〈 f 〈g〉〉 = 〈 f 〉〈g〉, (1.8)
〈c〉 = c,

where f and g are functions of position and time and c is a constant. Solar dynamo models
mostly consider azimuthal averages.

By substituting Eqs. (1.7) in Eq. (1.2) and averaging we obtain an evolution equation
for the mean field:

∂〈B〉
∂t

= ∇ × (〈u〉 × 〈B〉 + ε − η∇ × 〈B〉) , (1.9)

where
ε = 〈u′ × B′〉 (1.10)

is the mean electromotive force (emf). Subtracting Eq. (1.9) from Eq. (1.2) yields an
evolution equation for the fluctuating part:

∂B′

∂t
= ∇ × (〈u〉 × B′ + u′ × 〈B〉 + G − η∇ × B′), (1.11)

where
G = u′ × B′ + 〈u′ × B′〉. (1.12)

Equation (1.11) establishes a linear relationship between 〈B〉 and B′, which implies a
linear relationship between 〈B〉 and ε. We can therefore expand

εi = αi j〈B〉 j + βi jk∂k〈B〉 j + · · · (1.13)

where summation over repeated indices is implied. The coefficients in Eq. (1.13) will
depend on the mean velocity field 〈u〉, the statistical properties of the fluctuating velocities
u′, and the diffusivity η.

To gain insight on the effect that fluctuating, turbulent motions can have on the mean
magnetic field 〈B〉 we consider the case of homogeneous, stationary, isotropic turbulence.
In that case, the emf can be written as (e.g., Charbonneau 2013)

ε = α〈B〉 + β∇ × 〈B〉, (1.14)

where α and β are scalars. Equation (1.9) then becomes

∂〈B〉
∂t

= ∇ × (〈u〉 × 〈B〉 + α〈B〉 − ηt∇ × 〈B〉) , (1.15)
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where ηt = η + β is a turbulent diffusivity. In the convection zone of the Sun, β � η,
which means that turbulence greatly enhances the diffusion rate of the mean field.

The term α〈B〉 acts as a source term for the mean field, and is responsible for the gen-
eration of poloidal field out of toroidal field in turbulent dynamo models (the turbulent
α-effect). Since this source term describes the effect on the mean field of a fundamentally
non-axisymmetric process (the coupling between the magnetic field and turbulent con-
vection in a rotating system) it allows to circumvent the constraint imposed by Cowling’s
theorem, thus making dynamo action possible.

Parker (1955) showed that an αΩ dynamo (in which the toroidal field is generated by
differential rotation and the poloidal field is generated by the α-effect) supports propa-
gating solutions (dynamo waves). The direction of propagation of such dynamo waves is
given by the Parker-Yoshimura rule (Yoshimura 1975):

s = α∇Ω × êφ (1.16)

where Ω denotes angular velocity and eφ is a unit vector pointing in the azimuthal di-
rection. In turbulent solar dynamo models, this dynamo waves explain the latitudinal
propagation of the latitude of emergence of sunspots over the cycle.

In more general cases, the αi j tensor may also provide an effective velocity term for
the mean field. By separating the symmetric and antisymmetric components of the tensor,
the emf can be written as

εi = α
sym.
i j B j + (γ × 〈B〉)i + · · · (1.17)

The effective mean-field velocity γ arising from the antisymmetric part of the αi j tensor
is called turbulent pumping.

1.2.3 Babcock-Leighton dynamos
The distinctive feature of Babcock-Leighton (BL) models is that the generation of poloidal
field from toroidal field is achieved through the decay of BMRs on the solar surface (Bab-
cock 1961, Leighton 1964, 1969). At the beginning of an activity cycle, the surface field
is strongly dipolar, and is mostly concentrated at the polar caps. This surface configura-
tion reflects the global dipole field, which is the main source of the internal toroidal field
generated by the differential rotation (Cameron and Schüssler 2015). Bipolar magnetic
regions, which originate from the toroidal field, show a systematic tilt with respect to the
East-West direction, the leading polarity (in the direction of rotation) being, on average,
closer to the equator than the following polarity (Joy’s law). Additionally, the sign of the
following polarity is opposite to the polar field at the beginning of the cycle. The surface
flows redistribute the magnetic flux of BMRs, which, owing to Joy’s and Hale’s laws,
results in a preferential transport of leading polarity flux across the equator. This leads to
a gradual cancellation of the global axial dipole and the build-up of a new, reversed global
dipole. After reaching a new activity minimum the process repeats itself, but all the polar-
ities are now reversed with respect to the previous activity cycle. The full magnetic cycle
spans approximately 22 years.

In recent years, observational evidence has accumulated in favor of the solar dynamo
being of the BL type. Surface flux transport (SFT) models describe the evolution of
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the surface magnetic flux as a passive transport by the observed surface flows (Leighton
1964, DeVore et al. 1984, Wang et al. 1989b). In particular, SFT models can reproduce
the strength of the polar fields at cycle minimum, which is the main source of net toroidal
flux in each hemisphere (Cameron and Schüssler 2015). The polar fields are also a good
precursor of the strength of the next activity cycle (e.g. Schrijver and Liu 2008, Wang
et al. 2009, Cameron et al. 2010, Upton and Hathaway 2014). Dasi-Espuig et al. (2010)
found a strong correlation between the cycle-averaged tilt angles observed during cycles
15 through 21 and the strength of the next cycle. Kitchatinov and Olemskoy (2011)
found that the aggregate contribution of active regions to the strength of the axial dipole
correlates with the strength of the global dipole field at cycle minimum, as inferred by the
A-index (Makarov and Tlatov 2000).

The BL mechanism can be incorporated in the mean-field formalism via an α-like
term concentrated near the solar surface. Since the mathematical structure of the equa-
tions is the same as in the case of the turbulent α-effect, latitudinally-propagating dynamo
solutions are in principle allowed. Joy’s law determines a positive (negative) α term in
the northern (southern) hemisphere. Equatorward propagation of dynamo waves then
requires, by Eq. (1.16), that the angular velocity of the plasma increases with depth. As-
suming such a negative radial shear, Leighton (1969) obtained equatorward-propagating
solutions2. However, the shear in the convection zone is manly latitudinal (Christensen-
Dalsgaard and Schou 1988). Additionally, a surface poleward meridional flow, not present
in Leighton’s original model, was detected (Howard 1979). These discoveries led to the
introduction of an alternative mechanism to explain the equatorward propagation of activ-
ity, namely a subsurface return meridional flow that could advect the toroidal field towards
the equator (Wang et al. 1991). Soon, more sophisticated 2D models, solving the axisym-
metric dynamo equations in a meridional plane, appeared (Durney 1995, Choudhuri et al.
1995). Dynamo models in which the meridional circulation is important are called flux
transport dynamo (FTD) models.

One important parameter in FTD models is the turbulent diffusivity in the convection
zone. In low-diffusivity (∼ 1 km2s−1), advection dominated models (e.g. Choudhuri et al.
1995, Durney 1995, Dikpati and Charbonneau 1999, Bonanno et al. 2002) the meridional
flow transports the poloidal field from the surface to the interior, where it is amplified
by the differential rotation. In high-diffusivity (∼ 100 km2s−1) models (Jiang et al. 2007,
Yeates et al. 2008), the downward transport of poloidal flux is dominated by turbulent
diffusion. In both types of model the cycle period is set by the strength of the return
flow. However, high-diffusivity models reproduce better some observed features of the
solar cycle, such as its dipolar parity (Chatterjee et al. 2004, Hotta and Yokoyama 2010),
the symmetry between the two hemispheres (Chatterjee and Choudhuri 2006, Goel and
Choudhuri 2009, Norton et al. 2014), and the strength of past cycles (Karak 2010).

The most recent update of the Leighton’s 1969 model has been proposed by Cameron
and Schüssler (2017). In this work, the authors consider the toroidal flux per unit colat-
itude as the variable representing the toroidal field in the convection zone. The updated
model includes the effect of several important recent results:

2Leighton (1969) also obtained equatorward-propagating solutions in a model without radial shear.
However, this was due to an error in his formulation, leading to unphysical solutions that violated ∇ ·B = 0
(Cameron and Schüssler 2017).
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• Cameron and Schüssler (2016) inferred an effective diffusivity of the toroidal field
in the range 150-450 km2s−1 from the properties of the declining phase of the activ-
ity cycles.

• The differential rotation in the convection zone is mainly latitudinal and maintains
the profile measured at the surface. There is a layer of negative radial shear near the
surface (the near-surface shear layer, NSSL, Thompson et al. 1996, Barekat et al.
2014).

• Near-surface downwards turbulent pumping removes the horizontal components of
the magnetic field from the NSSL. Additionally, it suppresses the diffusion of the
magnetic field through the solar surface. Downwards turbulent pumping has been
shown to be required to make FTD models compatible with the evolution of the
surface fields (Cameron et al. 2012). It also contributes to obtaining solutions with
a periodicity of ∼ 11 years in high-diffusivity FTD models, which otherwise yield
substantially shorter cycles (Karak and Cameron 2016).

1.2.4 Nonlinear saturation of the dynamo

Dynamo solutions of the induction equation in the kinematic approximation grow expo-
nentially with time. Therefore, at least one nonlinear feedback mechanism is needed to
stop the exponential growth when the field becomes sufficiently strong. In the solar dy-
namo, the magnetic field could in principle backreact on the differential rotation or on the
mechanism of regeneration of the poloidal field. The only observed dependence of the
rotation rate on the magnetic activity is the torsional oscillations (Howard and Labonte
1980, Zhao and Kosovichev 2004, Gizon 2004). However, these are too weak (a few
m/s) to have a significant impact on the generation of toroidal field. Possible nonlinear
feedback mechanisms that affect the generation of poloidal field are:

Alpha quenching. In the context of turbulent dynamos, once the energy of the toroidal
field becomes comparable to the kinetic energy of the turbulent motions (equipartition)
the Lorentz force can suppress the helical turbulent motions that give rise to the α-effect,
thus quenching the regeneration of the poloidal field.

Backreaction of the magnetic field on the tilt of rising flux tubes. In the BL frame-
work, a cyclic variation of Joy’s law can provide a nonlinear saturation mechanism. Such
a cyclic dependence of the tilt angle of active regions has been reported by Dasi-Espuig
et al. (2010). In BL models, it is often considered that the toroidal field is stored in a
stable overshoot layer below the convection zone in the form of flux tubes. A flux tube
can become buoyantly unstable and rise through the convection zone. During its rise the
Coriolis force twists the toroidal structure, which emerges with a tilt with respect to the E-
W direction. The strength of the toroidal field affects the efficiency of the Coriolis force,
thus making the tilt angle dependent on the field strength (e.g. D’Silva and Choudhuri
1993, Fan et al. 1994, Caligari et al. 1995, 1998). A possible way the strength of the flux
tubes could depend on the strength of the cycle is through thermal effects in the convec-
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tion zone. The stratification of the convection zone may be more stable in strong cycles,
resulting in flux tubes becoming unstable at higher field strengths (Işık 2015).

Inflows towards active regions. Large-scale, near-surface converging flows around ac-
tive regions were first reported by Gizon et al. (2001), and have been systematically ob-
served since then (Zhao and Kosovichev 2004, Gizon 2004, Gizon and Rempel 2008,
Švanda et al. 2008, González Hernández et al. 2010).

The inflows are possibly due to enhanced radiative surface cooling, caused by bright
magnetic elements in active regions (Spruit 2003). Pressure balance leads to a reduced
opacity inside the magnetic elements, which enhances radiative heat loss near the surface
(Spruit 1977). The colder gas is transported downwards by the convective downflows at
the intergranular lanes, leading to a temperature decrease beneath the active region. This
causes the pressure deficit in active regions that drives the converging flows.

The inflows were proposed as a possible nonlinear saturation mechanism for a Babcock-
Leighton dynamo by Cameron and Schüssler (2012). The converging flows limit the
latitudinal separation of the following and leading polarities of emerged BMRs (Jiang
et al. 2010). In strong cycles, the collective action of the inflows towards the activity
belts causes a greater reduction in the latitudinal separation of the polarities of individual
BMRs, which leads to a weaker global dipole at the end of the cycle. A second effect
is the enhancement of the cross-equatorial transport of preceding polarity flux by inflows
driven by low-latitude BMRs, which leads to a stronger global dipole at the end of the
cycle. This effect is more pronounced in weak cycles, where the emergence rate peaks
at lower latitudes than in strong cycles (Waldmeier effect). In strong cycles, the activity
peaks further away from the equator, and the first effect dominates.

1.3 Motivation and thesis outline
Ideally, the solar dynamo problem should be tackled through 3D, convective MHD sim-
ulations. Considerable effort has been and continues to be made in this direction (e.g.
Ghizaru et al. 2010, Käpylä et al. 2012, Nelson et al. 2013, 2014, Augustson et al. 2015,
Duarte et al. 2016, Hotta et al. 2016, Käpylä et al. 2016). However, the parameter regime
accesible by today’s computational capabilities is still very far from resolving the huge
range of spatial and temporal scales involved in the problem. For this reason, highly
parametrized models of the solar dynamo, such as the kinematic mean field models dis-
cussed in the above sections, remain useful to describe the evolution of the large scale
magnetic field and make contact with observations. These models are commonly based
on longitudinal averages of the magnetic field, and consider purely axisymmetric flows.
The main aim of the present thesis is to consider the effects of the departures from the
axial symmetry assumption on modeling the evolution of the global solar magnetic field.

This thesis is composed of three papers. In the first two papers we study the way
inflows towards active regions affect the surface transport of magnetic flux, and their
possible impact on the generation of global poloidal field. In Paper I (Ch. 2) we consider
the evolution of a single, isolated active region. An unsolved problem is how active
regions decay in the presence of strong converging flows (De Rosa and Schrijver 2006).
We show that the dispersal of surface flux due to random convective motions is enough to
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explain the decay of a BMR. Next, we carry out a parameter study to ascertain the way
inflows impact the contribution of an isolated BMR, emerging at different latitudes and
with different tilt angles, to the global dipole field. We also include a discussion on the
validity of the diffusion approximation to describe the surface decay of active regions.
In Paper II (Ch. 3) we include the inflows in global surface flux transport simulations
spanning several cycles. By means of a parameter study, we evaluate the way inflows with
different strengths and extensions influence the build-up of the global dipole. Finally,
we show that the inflows enhance the efficiency of the BL mechanism in weak cycles.
This result further supports the inflows as a non-linear feedback mechanism capable of
saturating the global solar dynamo.

In Paper III (Ch. 4) we study the non-axisymmetric structure of the toroidal field
that may arise from the (non-axisymmetric) emergence process. We extend the updated
Leighton model of Cameron and Schüssler (2017) to the non-axisymmetric case. We then
use synoptic magnetograms to build the poloidal source term. This allows us to produce
observation-based maps of the sub-surface toroidal flux system. We find that the structure
of the toroidal flux is largely axisymmetric. The maps of toroidal flux are then compared
to the observed properties of active regions, as given by the USAF/NOAA sunspot record.
Our main finding is that the probability of sunspot emergence is a function of the ratio
between the flux contents of the active region and the amount of toroidal flux lying directly
beneath the emergence site.

In Ch. 5 we provide a brief discussion and an outlook on the future work.
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2 Paper I. Surface Flux Transport
Simulations: Effect of Inflows
Toward Active Regions and Random
Velocities on the Sun’s Large Scale
Magnetic Field

Abstract

Aims We aim to determine the effect of converging flows on the evolution of a bipolar
magnetic region (BMR), and to investigate the role of these inflows in the generation of
poloidal flux. We also discuss whether the flux dispersal due to turbulent flows can be
described as a diffusion process.

Methods We developed a simple surface flux transport model based on point-like mag-
netic concentrations. We tracked the tilt angle, the magnetic flux and the axial dipole
moment of a BMR in simulations with and without inflows and compared the results.
To test the diffusion approximation, simulations of random walk dispersal of magnetic
features were compared against the predictions of the diffusion treatment.

Results We confirm the validity of the diffusion approximation to describe flux dispersal
on large scales. We find that the inflows enhance flux cancellation, but at the same time
affect the latitudinal separation of the polarities of the bipolar region. In most cases the
latitudinal separation is limited by the inflows, resulting in a reduction of the axial dipole
moment of the BMR. However, when the initial tilt angle of the BMR is small, the inflows
produce an increase in latitudinal separation that leads to an increase in the axial dipole
moment in spite of the enhanced flux destruction. This can give rise to a tilt of the BMR
even when the BMR was originally aligned parallel to the equator. 1

1This chapter reproduces the article Surface flux transport simulations: Effect of inflows toward ac-
tive regions and random velocities on the evolution of the Sun’s large-scale magnetic field by D. Martin-
Belda and R. H. Cameron, published in Astronomy & Astrophysics 586, A73 (2016), DOI 10.1051/0004-
6361/201527213. Reproduced with permission of Astronomy & Astrophysics, © ESO. Contributions:
D.M.B and R.C. designed the research. D.M.B carried out the research, analyzed the data and wrote the
paper.
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Regions and Random Velocities on the Sun’s Large Scale Magnetic Field

2.1 Introduction

Surface flux transport (SFT) simulations have been used with considerable success to
describe the evolution of the large-scale photospheric magnetic field (see, e.g. DeVore
et al. 1984, Wang et al. 1989a, Mackay et al. 2002b,a, Baumann et al. 2004). These
models are based on the asumption that the field at the surface is nearly radial (Solanki
1993, Martínez Pillet et al. 1997), and thus its evolution can be described by the radial
component of the MHD induction equation. The scalar quantity Br is advected by the
large-scale flows (differential rotation and meridional flow) and the variable patterns of
convection. The latter have the effect of dispersing the magnetic field, and have com-
monly been modeled as a Fickian diffusion process (Leighton 1964), although some au-
thors prefer a less parametrized treatment of the turbulent dispersal. In Schrijver (2001),
an SFT model based on discrete flux concentrations is used to simulate the evolution of
the surface field. Hathaway (2010) uses an observation-based, time-evolving spectrum
of spherical harmonics to produce random patterns of turbulent flows that advect mag-
netic concentrations. This approach recovers some of the observed characteristics of the
evolution of the photospheric field, such as the accumulation of flux in the network and
the dispersal on multiple scales. One of the questions we want to address in this work
is whether the effects of the turbulent dispersal on the large-scale, long-term evolution of
the surface field are appropriately captured by the diffusion approximation.

A second question concerns the systematic tilt of emerged bipolar magnetic regions
(BMRs), which plays a central role in the Babcock-Leighton dynamo mechanism. The
leading polarity of a BMR tends to emerge at lower latitudes than the trailing polarity
(Joy’s law), and the latter is opposite to the polarity of the polar field at the preceding
activity minimum (Hale’s law). The tilt angle is thought to be caused by the action of the
Coriolis force on rising flux ropes (see, e.g., Fan 2009), and provides a mechanism for
generating poloidal field from toroidal field (Charbonneau 2010). The latitudinal separa-
tion of the polarity patches favors the cross-equatorial transport of leading polarity, which
leads to the cancellation and eventual reversal of the polar fields. The nearly dipolar field
at the end of an activity cycle represents the poloidal flux from which the toroidal flux of
the next cycle is generated (Cameron and Schüssler 2015). Thus, a backreaction mech-
anism that affects the latitudinal separation of the polarities would limit the strength of
the polar fields and explain the observed cycle variability. Cameron and Schüssler (2012)
propose the converging flows toward active regions as a major candidate for this nonlin-
ear cycle modulation. These near-surface, large-scale flows toward sunspot groups and
active regions were first observed by Gizon et al. (2001). These flows have magnitudes of
∼50 m/s and can extend up to heliocentric angles of 30◦ around the active region center
(see, e.g., Haber et al. 2002, Gizon and Rempel 2008, González Hernández et al. 2010,
Gizon et al. 2010). De Rosa and Schrijver (2006) incorporated such inflows in their SFT
model (see Schrijver 2001) to study their effect on the evolution of an active region. In
their model they explicitly imposed a reduced diffusivity in regions of strong magnetic
field in addition to the inflows. They found that, even for comparatively weak inflows, the
inflows cause the magnetic concentrations to clump together and generate patterns that are
inconsistent with observations. Jiang et al. (2010) included a magnetic-field-dependent,
axisymmetric latitudinal perturbation of the meridional flow compatible with the inflows
in SFT simulations and found that this reduced the latitudinal separation of the polari-
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Figure 2.1: Left: Two concentrations of flux of different polarity (thick, vertical lines),
smoothed absolute value of the magnetic field of the separate concentrations (red and
blue Gaussian curves), and smoothed absolute value of the total magnetic field. Right:
Smoothed absolute value of the total magnetic field (black line) and inflow velocity profile
resulting from Equation (2.3) (purple line). We have assumed a flux of 4 × 1018 Mx for
the single concentrations.

ties of the emerged BMRs, thus limiting the buildup of magnetic field at the polar caps.
Cameron and Schüssler (2012) argue that this effect dominates in strong cycles, while in
weak cycles the perturbation of the meridional flow enhances cross-equatorial flux trans-
port and accelerates the reversal of the polar fields. The second question we investigate in
this paper is the way inflows affect the evolution of a decaying BMR and their impact on
the amount of poloidal flux generated.

2.2 Surface flux transport model
In our model, a magnetically active region is composed of a number N of point-like flux
concentrations representing the radial photospheric magnetic field. We approximate the
local solar surface as a plane domain centered at a latitude λ0 and an arbitrary longitude
that we take as 0. The flux concentrations are subject to advection by differential rotation
and convective flows, the latter of which we model as a two-dimensional random walk. If
two concentrations of opposite polarity approach each other within a distance of 1 Mm,
the pair cancels and we remove them from the simulation. We assume the differential
rotation profile determined by Snodgrass (1983):

ω(λ) = 13.38 − 2.30 sin2 λ − 1.62 sin4 λ [◦/day]. (2.1)

In this reference frame a solid body rotation translates into a uniform velocity field.
In one of the experiments described later, we include a meridional flow. The exact

form of this flow is not critical, since we are performing a local study. We use the form
from previous studies such as van Ballegooijen et al. (1998) or Baumann et al. (2004):

vλ(λ) = vm sin(2.4λ), (2.2)
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where vm = 11m/s.
De Rosa and Schrijver (2006) parametrize the inflows toward active regions in the

following way:
uin = a∇|B̂r|

b, (2.3)

where |B̂r| is the absolute value of the magnetic flux density, smoothed with a Gaussian
having a full width at half maximum of 15◦. In Fig. 2.1 we sketch the inflow profile
resulting from Equation (2.3) in the case of two close flux concentrations of opposite
polarity placed at the same latitude. Figure 2.1a shows the smoothed absolute value of
the magnetic fields of the two concentrations and the total smoothed unsigned magnetic
field. Figure 2.1b shows the inflow velocity profile, proportional to the gradient of the
smoothed absolute value of the magnetic field. In our simulations we use a FWHM of
15.5◦, and set b = 1. In this case, we can equivalently calculate the inflow velocity field
as the sum of the inflows driven by the single concentrations:

uin(ϕ, λ) =

N∑
i=1

usingle(ϕ − ϕi, λ − λi), (2.4)

where usingle(ϕ, λ) is the single-concentration inflow profile and (ϕi, λi) is the position of
the i−th concentration. The parameter a is chosen such that the initial aggregate inflow
velocity averaged over the 10% of the domain area with highest inflow velocities amounts
to ∼50m/s. We stress that we are not considering that the driving of such an extended
inflow by a single concentration is a physical process that actually occurs on the Sun. Our
aim is to reproduce a field of converging flows toward the BMR that is somewhat similar
to what is observed.

2.3 Recovering the diffusion limit

2.3.1 Preliminary discussion
When describing the dispersive effect of convective flows on the magnetic concentrations
as the Fickian diffusion of a continuous quantity (here the radial magnetic field), at least
two assumptions are made. The first one is that each of the magnetic field concentrations
performs an independent random walk, uncorrelated with the motion of all the other con-
centrations. The second one is that the random walk steps are small compared to the scale
of interest. We now examine these assumptions.

We consider a specific pattern of convective cells (a realization): The magnetic field
elements are advected toward the border of the cells, adopting a network-like arrange-
ment. In a different realization, a given magnetic element travels a different distance, in
a different direction, and takes a different time to reach the border of the cell. Repeating
this experiment over a large number of realizations, the statistically expected distribution
of magnetic elements at a certain time can be inferred. Similarly fragmentation and merg-
ing of flux concentrations strongly affect the correlations in particular realizations, but do
not affect the averaged distribution. When the length of the random walk steps is small
compared to the scale of interest, the evolution of the expectation value of the flux distri-
bution is approximated well by the diffusion of a continuous flux density. In the following
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sections we employ our SFT model to investigate whether random steps of the size of the
convective cells can be considered small enough to describe the dispersal of magnetic flux
on intermediate and large scales as a diffusion process.

2.3.2 Methods
In the limit of small random walk steps, the evolution of the expectation value of the
magnetic flux distribution can be described as the diffusion of a continuous quantity rep-
resenting the radial field with a diffusion coefficient η given by

η =
1
4

(∆l)2

∆t
(2.5)

(Leighton 1964). In what follows we consider the number density of concentrations.
Solving the diffusion equation shows that an initial Gaussian density distribution ρ(r, t0)
remains Gaussian at all times, and its standard deviation is given by

σ(t) =

√
2ηt + σ2

0, (2.6)

where σ0 is the standard deviation at t = 0.
In our experiment, we set up a patch of N = 8000 concentrations randomly placed

about the center of the domain according to a Gaussian density distribution with an
initial standard deviation of σ0 = 20 Mm. The concentrations undergo random walks
for 35 days. The experiment was carried out for two different random walk step sizes
(∆l = 500 km and ∆l = 20 Mm), corresponding to small, short-lived granules and large,
long-lived supergranules. To compare with the diffusion approximation, we consider ran-
dom walks corresponding to a fixed diffusion coefficient of η = 250 km2/s. This value is
similar to the ∼ 257 km2/s value reported by Jafarzadeh et al. (2014) from observations. It
is also in the range of diffusivities found in radiative MHD simulations by Cameron et al.
(2011), and compatible with the evolution of the large-scale fields (Cameron et al. 2010).
The time interval between random walk steps is different for granules and supergranules
and corresponds to different lifetimes. Equation 2.5 gives a lifetime of ∆t = 250 s ∼ 4 min
for the granule and ∆t = 4 · 105 s ∼ 4.5 days for the supergranule.

We now consider an annulus centered on the origin of coordinates of the domain.
The mean flux density ρ̄a in the annulus is calculated as the number of concentrations
enclosed within it divided by its surface area. If the annulus is sufficiently narrow, its
mean density can be directly compared with the diffusion prediction ρ(r̄, t), where r̄ is an
arbitrary point within the annulus. If the random walk steps are short enough, the two
quantities should be similar, provided that there are enough realizations or, equivalently,
the number of random walkers is very large. To better approach this limit, we average
over 1000 realizations of the experiment.

2.3.3 Results
Figure 2.2 shows the solution of the diffusion equation and the averaged number of flux
concentrations per unit area at times t = 0, t = 11.5 days, and t = 34.6 days. The agree-
ment is very good, and the point concentrations continue matching a Gaussian distribution
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Figure 2.2: Comparison between the density distribution resulting from the diffusion
equation (line plots) and the averaged number of concentrations per unit area in the sim-
ulations. The annuli used to count the concentrations are 2.5 Mm wide. Only one third of
the points have been plotted for better visualization.

over time. Fitting the data points from the simulations to Gaussian curves, we can com-
pare the spread of the distributions with the diffusion prediction (2.6). In Fig. 2.3 the
standard deviation of the distributions is plotted as a function of time. We see that in the
∆l = 500 km case, the spread matches the diffusion approximation fairly well, whereas
in the ∆l = 20 Mm case it is slightly lower than expected from a diffusion process. This
is because at this scale the random walk step cannot be considered small with respect
to the characteristic scale of the BMR. We also note that the larger discrepancy occurs
over the first days of evolution (when the size of the patch is closer to the size of the ran-
dom walk steps), while we normally are interested in substantially longer evolution times
when using SFT models. Moreover, the random walk does not seem to diverge from the
diffusion solution. Therefore, we conclude that the diffusion approximation can be safely
used when studying the mid- and long-term evolution of magnetic field distributions on
the length scales of a typical active region (tens of megameters) or larger, and it is the
appropriate treatment when we are interested in, e.g., the evolution of the polar field.
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Figure 2.3: Full width at half maximum of the averaged distribution of concentrations as
a function of time (symbols) compared to the spread of the equivalent diffusion process
(continuous line).

2.4 Evolution of a bipolar magnetic region

2.4.1 Setup

We now consider the effects of the inflows on an isolated BMR. Figure 2.4 shows the
initial configuration of our model of BMR for one of the experiments we carried out. The
flux concentrations are evenly distributed in two circular regions of opposite polarities,
each of which has a radius of 10 Mm and contains 1250 concentrations. The BMR is
placed at latitude λ0 with an initial tilt angle α0. To study the evolution of the BMR, we
track the changes of the longitudinal and latitudinal separations of the centers of gravity
of the two polarity patches, as well as the tilt angle, the total unsigned flux, and the axial
dipole moment. We ran 500 realizations of each experiment in order to reduce statistical
noise. The tilt angle is calculated as the angle between the negative half of the ϕ-axis and
the line connecting the two centers of gravity (the dipole axis); i.e.,

α = arctan
(
λ̄+ − λ̄−

ϕ̄− − ϕ̄+

)
, (2.7)
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Figure 2.4: Initial distribution of magnetic flux concentrations in one of the realizations
of the experiment with α0 = 7◦ and λ0 = 30◦. The red and blue colors represent opposite
polarities. The gray dashed line indicates the latitude of emergence. The solid green
line indicates an angle of 7◦ with respect to the longitudinal direction and approximately
bisects the BMR. The quiver plot represents the inflows.

where

ϕ̄± =
1

N±

N±∑
i=1

ϕ±i ; λ̄± =
1

N±

N±∑
i=1

λ±i . (2.8)

Here, ϕ±i and λ±i are the coordinates of the i-th concentration of the polarity indicated by
the superscript, and N± the total number of concentrations of each polarity.

The contribution of the bipolar region to the cancellation and build up of the polar
fields depends on its total flux and the latitudinal separation of the polarity patches. To
estimate this contribution we calculate the BMR’s axial dipole moment, defined as

Bp =

∫ 2π

0

∫ π

0
Br(ϕ, θ)Y0

1 sin θ dθdϕ, (2.9)

where θ is the colatitude, θ = π/2 − λ. In our discrete representation and in terms of the
latitude λ, the integral becomes

Bp =
φ0

R2
�

√
3

4π

N∑
i=1

pi sin(λi) (2.10)
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Figure 2.5: Positions and polarities of the magnetic flux concentrations shown in Fig.
2.4 after evolving for 17 days with inflows turned on. The two circles outline the initial
configuration of the BMR as shown in Fig. 2.4. From the initial 2500 concentrations,
only 480 remain.

where φ0 is the flux of one concentration, and pi the polarity (±1) of the i−th concen-
tration. Considering typical values for BMRs with moderate-to-strong magnetic fields,
we assume a total unsigned flux of Φ0 = 1022 Mx (see, e.g., Schrijver and Zwaan 2008),
which gives a single concentration magnetic flux or φ0 = 4 · 1018 Mx. Under diffusion
alone, the Sun’s axial dipole moment would decay on a time scale τd =

R2
�

η
(Leighton

1964). For a diffusion coefficient η = 250 km2/s, τd ∼ 30 years. In our plane domain ap-
proximation, the solar radius is infinite, so τd is infinite as well. Since Y0

1 does not depend
upon longitude, the axial dipole moment is expected to be conserved in the simulations
where only differential rotation and random walks are included. In a more realistic spher-
ical geometry, the axial dipole would decline on a time scale that is large compared to the
length (35 days) of our simulations.
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2.4.2 Results

Flux dispersal

The question we want to answer is how the inflows affect the dispersal of the magnetic
field. In Fig. 2.5 we see the distribution of the magnetic concentrations starting from that
shown in Fig. 2.4 after evolving for 17 days under the influence of differential rotation,
random walk, and inflows. The BMR has been sheared by the differential rotation, while
the random walk has dispersed the flux concentrations. At t = 17 days and in spite of the
inflows, the BMR spans close to 10◦ in the longitudinal direction and around 8◦ in the
latitudinal direction. The total flux decreases very rapidly owing to cancellation (see Fig.
2.7), especially in the first days, and the inflow velocity decays accordingly.

To compare the dispersive effect of the convective flows against the inflows, we begin
by considering the two separately. At time t, a concentration undergoing a random walk
alone is separated from its initial position by an average distance given by the diffusion
length, ld(t) = 2

√
ηt. We define a mean expansion velocity ūd(t) = ld(t)/t = 2

√
η/t. The

space- and time- averaged inflow velocity along such a path over a time t is given by

ūin(t) =
1

t ld(t)

∫ l0+ld(t)

l0

∫ t

0
uin[ϕ(l′), λ(l′), t′] · dl′dt′, (2.11)

where l′ denotes the distance from the starting position l0. To evaluate this integral, we
take the inflow velocity uin[ϕ(l), λ(l), t] from one realization of the experiment. We choose
the path ld along the ϕ axis for simplicity and perform the calculation for l0 = 0, 10 Mm,
and 20 Mm from the origin. Both ūd(t) and ūin(t) are plotted in Fig. 2.6.

The mean expansion velocity decays as t−1/2, but it remains higher than the mean in-
flow velocity at all times and for different values of l0, most prominently during the first
days. The differential rotation also contributes to the escape of magnetic flux. The shear
flow velocity at λ = 32 ◦ is ∼14m/s, and it reaches ∼30 m/s at λ = 34◦. It is seen that the
turbulent dispersal and the differential rotation dominate the (decaying) inflows. We there-
fore do not observe the clumping reported by De Rosa and Schrijver (2006). A possible
cause for this discrepancy is the explicit additional damping of dispersal of large magnetic
field concentrations that these authors include in their model (see Schrijver 2001) and we
do not. This feature seeks to reproduce the reduced flux dispersal observed in areas of
large magnetic field. (In Schrijver and Martin 1990, the authors report a flux dispersal
characterized by a diffusion coefficient of ∼250 km2/s in areas surrounding the core of an
active region, while within the core region the diffusion coefficient is ∼110 km2/s).

We point out here that the inflows alone will have the effect of reducing the apparent
diffusivity in active regions. We can estimate this effect by considering the velocities in-
volved. Assuming a random walk step of 15 Mm and a diffusion coefficient of 250 km2/s,
equation (2.5) gives a travel time of ∼2.6 days. The concentrations travel with a velocity
of ∼67 m/s. A random walk with this travel time and characterized by a diffusion co-
efficient of 110 km2/s has a step size of ∼10 Mm and a travel velocity of ∼44 m/s. The
difference between travel velocities in the two cases is ∼ 23 m/s, a value comparable with
the averaged magnitude of the inflows.
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Figure 2.6: Thick black line: ūd(t) for the case under discussion (α0 = 7◦, λ0 = 30◦).
Colored lines: ūin(t) for 0 (red), 10 (green) and 20 Mm from the origin. Dashed lines:
Shear flow velocities at ∼ 12◦ (lower) and ∼ 14◦ polewards from the central latitude.

Dependence upon initial tilt

Figure 2.8 shows the tilt angle of the BMR and the axial dipole moment as given by
equation (2.10) for the case of a bipolar region placed at λ0 = 30◦ and initial tilt angles of
α0 = 0◦ (Fig. 2.8a), α0 = 7◦ (Fig. 2.8b), and α0 = −7◦ (Fig. 2.8c). We start by discussing
the α0 = 7◦ case. The longitudinal separation is initially greater than the separation in
latitude, and the shear flow causes it to increase faster than the latter. This causes the
dipole axis to rotate counter-clockwise, i.e., to decrease in tilt angle. When inflows are
switched on, the growth of the longitudinal and latitudinal separations is restricted in such
a way that the rotation of the dipole axis is slower, and flux cancellation is enhanced (see
Fig. 2.7). The latter is expected since the converging flows tend to bring concentrations
closer together, increasing the probability of pair cancellation.

As expected, the axial dipole moment remains constant when inflows are not present.
When inflows are present Bp decays until reaching an approximately constant value af-
ter ∼20-30 days, when the both the inflows-on and inflows-off plots essentially become
parallel. At this point the inflows are so weak that the subsequent evolution of the BMR
is dominated by the differential rotation and the random walk. It should be noted that
inflows restrict the growth of the latitudinal separation of polarities over time rather than
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Figure 2.7: Total unsigned flux of a BMR placed at λ0 = 30◦ with an initial tilt of α0 =

7◦. The black and green lines correspond to the simulations with and without inflows,
respectively. The error bars indicating realization noise are too small to be visible. The
enhanced flux destruction when inflows are present seen in the plot is very similar in all
the cases studied.

reducing it (see Jiang et al. 2010). The decrease in Bp is a consequence of how the latitu-
dinal separation and the enhanced flux destruction balance. In the case under discussion,
the inflows cause a decrease in axial dipole moment.

The tilt angle and axial dipole moment for the case of an initial tilt angle of −7◦

are presented in Fig. 2.8c. Now the trailing polarity is placed at a lower latitude than the
preceding patch, so the shear flow tends to make the angle increase towards more negative
values. When the inflows are included, the reduced latitudinal separation causes the tilt
angle to be less negative than in the case without inflows, i.e., the dipole axis rotates more
slowly. As before, flux destruction is enhanced by inflows, and the absolute value of the
axial dipole moment is reduced.

Figure 2.8a shows the same magnitudes for the 0◦ initial tilt angle. The longitudinal
separation is again restricted by the inflows, but the latitudinal separation increases with
time, which produces a clockwise rotation of the dipole axis. This behavior departs from
what could be expected from either diffusion, differential rotation or converging flows
acting in isolation. In Fig. 2.9 we provide a schematic explanation of this effect. The
differential rotation shears the BMR, and at the same time the inflows tend to bring the
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(b) α0 = 7◦
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(c) α0 = −7◦

Figure 2.8: Tilt angle and axial dipole moment of a BMR placed at λ0 = 30◦ with an
initial tilt of α0 = 0◦ (a), α0 = 7◦ (b), α0 = −7◦ (c). The black and green lines correspond
to the simulations with and without inflows respectively. The purple dashed lines in (a)
correspond to simulations where the meridional flow is included (error bars have not been
plotted for clarity). The error bars represent the standard error of the mean values and
indicate the realization noise. The errors for different times are correlated.
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(a) (b)

(c)

Figure 2.9: Schematic representation of the combined action of differential rotation and
inflows leading to the latitudinal separation of the polarity patches giving rise to a non-
zero axial dipole moment. The blue and red dots represent flux concentrations. The thin
black arrows indicate plasma flows. The black plus signs indicate the location of the
centers of gravity of each polarity. The thick green arrow outlines the dipole axis. (a).
The flux concentrations of the BMR emerge at different latitudes. (b) Differential rotation
shears the structure, and inflows tend to bring magnetic concentrations closer together.
The effect of the inflows on the outermost concentrations is weaker. (c) This displaces the
centroid of the polarity patches away from the central latitude, causing the dipole axis to
rotate.

innermost concentrations closer to the central latitude, while the outermost concentrations
are less affected. This displaces the centers of gravity of the polarity patches away from
the central latitude: the trailing polarity is shifted poleward and the preceding polarity
moves towards the equator. The rotation in the case considered here amounts to ∼1.3◦

over 35 days. When inflows are off, the axial dipole moment remains close to zero, as
expected from a BMR with no initial tilt. When inflows are present, however, there is an
increase in latitudinal separation, and consequently Bp also increases.

Using observed positions and tilt angles of active regions as input to an SFT model,
Cameron et al. (2010) were able to reproduce the main features of the open flux inferred
from the aa-index of geomagnetic variations during solar cycles 15 to 21. However,
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the authors need to scale the tilt angles by a factor of 0.7 to reduce the amount of flux
arriving at the poles and so match the observed amplitude of the open flux. The righthand
column of Fig. 2.8 shows that the axial dipole moment of the BMR is indeed substantially
decreased as a consequence of the inflows (except in the α0 = 0 case). The problem
of how inflows affect the axial dipole moment of complex active regions and sunspot
groups, rather than in an isolated BMR, has yet to be studied. Nevertheless, it is seen that
the inflows can provide the physical mechanism needed to justify this scaling of the tilt
angles.

Assuming the BMR emerges away from the equator, its contribution to the total axial
dipole moment of the Sun is proportional to sin θ and, under advection by the meridional
flow alone, declines on a time scale τ f = R�/vm ≈ 2 years (Wang and Sheeley 1991). This
characteristic time becomes infinite in our plain domain approximation. As a result, the
meridional flow does not have an appreciable effect on the axial dipole moment during
the first month of evolution of the BMR, when inflows are non-negligible. This is shown
in Fig. 2.8a, where the purple dashed lines represent the evolution of the corresponding
quantities in simulations including meridional flow. These do not show any appreciable
difference with the plots obtained in the simulations without meridional flow.

Dependence upon latitude of emergence

In Fig. 2.10 we present the same magnitudes as before for a BMR with an initial tilt
angle of 7◦ placed at λ0 = 0 (2.10a), λ0 = 15◦ (2.10b) and λ0 = 45◦ (2.10c). The case
λ0 = 30◦ is presented in Fig. 2.8b. In all four cases, the inflows restrict the latitudinal and
longitudinal separations of the centroids. This results in the tilt angle remaining roughly
constant for the BMR at the equator, in the cases both with and without inflows. For the
BMRs placed at higher latitudes, the tilt angle decreases over time; i.e., the dipole axis
rotates counter-clockwise, and the rotation is slower when the inflows are on. As before,
when inflows are switched on, the total unsigned flux decreases faster and the axial dipole
moment decays over time. The stronger shearing at higher latitudes causes the inflows to
decay faster, so the decrease in Bp is not as pronounced as at lower latitudes. Nevertheless,
this decrease is very similar in all four cases, so the dependence of the effect of inflows
upon the latitude of the BMR is not very strong.

2.5 Conclusion

In this study we used an SFT code to test the suitability of the diffusion treatment to de-
scribe the dispersal of magnetic flux by convective flows on the solar surface. The disper-
sal produced by the random walk is slightly lower than expected from a Fickian diffusion
process when the step size is comparable to the typical size of an active region. However
this discrepancy is not very important, even for lengths corresponding to the biggest and
longest-lived supergranules. We therefore conclude that the diffusion treatment is appro-
priate for describing the flux dispersal due to supergranulation when the scales of interest
resemble the size of a typical active region or higher.

We also investigated the role of the converging flows toward a BMR in its evolution
and their impact on the axial dipolar field. We saw that the differential rotation and the
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(b) λ0 = 15◦
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(c) λ0 = 45◦

Figure 2.10: Tilt angle, total unsigned flux, and poloidal flux for a BMR with an initial
tilt angle of 7◦ placed at λ0 = 0◦ (a), λ0 = 15◦ (b), and λ0 = 45◦ (c). The black and green
lines correspond to the simulations with and without inflows, respectively. The error bars
represent the standard error of the mean values and indicate the realization noise. The
errors for different times are correlated.
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2.5 Conclusion

dispersion by convective motions suffice to oppose the inflows, which decay very quickly
owing to flux cancellation. We pointed out that the inflows may cause the apparent re-
duced rate at which strong magnetic fields appear to diffuse. We have also seen that, in
most cases, the inflows limit the latitudinal separation of the polarities and enhance flux
cancellation, which lowers the contribution of the emerged BMR to the axial dipole mo-
ment. This is an important effect for generating the polar fields. However, when the initial
tilt angle is close to zero, the inflows increase the latitudinal separation of the polarities,
which gives rise to a positive tilt angle and generates an axial dipole moment. Finally, it
was shown that meridional flow does not have an appreciable influence on the early stages
of the evolution of an emerged BMR, when the inflows are not negligible.
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3 Paper II. Inflows Towards Active
Regions and the Modulation of the
Solar Cycle: a Parameter Study

Abstract

Aims We aim to investigate how converging flows towards active regions affect the
surface transport of magnetic flux, as well as their impact on the generation of the Sun’s
poloidal field. The inflows constitute a potential non-linear mechanism for the saturation
of the global dynamo and may contribute to the modulation of the solar cycle in the
Babcock-Leighton framework.

Methods We build a surface flux transport code incorporating a parametrized model of
the inflows and run simulations spanning several cycles. We carry out a parameter study
to assess how the strength and extension of the inflows affect the build-up of the global
dipole field. We also perform simulations with different levels of activity to investigate
the potential role of the inflows in the saturation of the global dynamo.

Results We find that the interaction of neighbouring active regions can lead to the oc-
casional formation of single-polarity magnetic flux clumps that are inconsistent with ob-
servations. We propose the darkening caused by pores in areas of high magnetic field
strength as a possible mechanism preventing this flux-clumping. We find that inflows
decrease the amplitude of the axial dipole moment by ∼ 30 %, relative to a no-inflows
scenario. Stronger (weaker) inflows lead to larger (smaller) reductions of the axial dipole
moment. The relative amplitude of the generated axial dipole is about 9% larger after
very weak cycles than after very strong cycles. This supports the idea that the inflows are
a non-linear mechanism that is capable of saturating the global dynamo and contributing
to the modulation of the solar cycle within the Babcock-Leighton framework. 1

1This chapter reproduces the article Inflows towards active regions and the modulation of the solar cy-
cle: A parameter study by D. Martin-Belda and R. H. Cameron, published in Astronomy & Astrophysics
597, A21 (2017), DOI 10.1051/0004-6361/201629061. Reproduced with permission of Astronomy & As-
trophysics,© ESO. Contributions: D.M.B and R.C. designed the research. D.M.B carried out the research,
analyzed the data and wrote the paper.
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3.1 Introduction

The magnetic activity of the Sun follows an 11-year cycle. At the time of minimum
activity, the surface magnetic field is concentrated at the polar caps and presents a strongly
dipolar configuration. As the cycle progresses, new magnetic flux erupts in the form of
bipolar magnetic regions (BMRs). The preceding polarity (relative to the Sun’s sense of
rotation) of the new BMRs tends to emerge closer to the equator (Joy’s law), and is of the
same sign as the polar field in the same hemisphere at the immediately previous activity
minimum (Hale’s law). The latitudinal separation of polarities favors the cross-equatorial
transport of preceding polarity flux, which causes the gradual cancellation and eventual
reversal of the polar fields. When the next activity minimum is reached, the global field
is again nearly dipolar and reversed with respect to the previous activity minimum. The
full magnetic cycle is therefore 22 years long. These activity cycles show pronounced
variability, both cycle to cycle and on longer time scales (for a review of the solar cycle,
see Hathaway 2015).

It has been shown that the strength of the polar fields at activity minima strongly cor-
relates with the amplitude of the subsequent cycle (see, for example, Schatten et al. 1978,
Choudhuri 2008, Wang and Sheeley 2009, Muñoz-Jaramillo et al. 2013). This is support-
ive of the Babcock-Leighton model of solar dynamo, in which the polar fields at activity
minima represent the poloidal field threading the Sun, from which the toroidal field of
the next cycle is generated, rather than being a secondary manifestation of a dynamo
mechanism operating below the surface (Cameron and Schüssler 2015). It follows that, in
this framework, an activity-related feedback mechanism affecting the surface transport of
magnetic flux could provide a means for saturating the dynamo by limiting the build-up
of the polar fields (and therefore the regeneration of the poloidal field) and possibly also
contribute to the observed variability of the cycle amplitude. One candidate for such a
mechanism are the near-surface, converging flows towards active regions (Cameron and
Schüssler 2012). These flows, first reported by Gizon et al. (2001), have magnitudes of
∼ 50 m s−1 and can extend up to 30 ◦ away from the center of the active region. The
inflows are possibly driven by the temperature gradient arising from the enhanced radia-
tive loss in areas of strongly concentrated magnetic field (Spruit 2003, Gizon and Rempel
2008).

The question of how these inflows affect the surface transport of magnetic flux and the
build-up of the polar fields has been addressed in a number of works. Their main effect
is the limitation of the latitudinal separation of the polarities of BMRs, which causes a
reduction of the global dipole with respect to a no-inflows scenario (Jiang et al. 2010).
This effect dominates in strong cycles, while in weaker cycles the inflows driven by low-
latitude BMRs mainly enhance the cross-equatorial transport of magnetic flux, resulting
in stronger polar fields. The inclusion of the inflows in surface flux transport simulations
improves the correlations of the amplitude of the global dipole with the inferred open
heliospheric flux in cycles 13 to 21 (Cameron and Schüssler 2012), but produces a weaker
match with the observed butterfly diagram and dipole reversal times in cycles 23 and 24
(Yeates 2014).

All the studies cited above modeled the inflows as an axisymmetric perturbation of
the meridional flow converging toward the activity belts. De Rosa and Schrijver (2006)
included a more realistic model of inflows in their surface flux transport model, but the
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3.2 Surface flux transport model

converging flows severely affected the dispersal of magnetic flux in their simulations,
leading to unrealistic clumping of magnetic flux despite the diffusion by supergranules.
In a recent work (Martin-Belda and Cameron 2016), we studied the impact of the inflows
in the evolution of an isolated BMR, and showed that turbulent diffusion and differential
rotation are sufficiently strong to counteract the converging flows, which decline quickly
owing to flux cancellation. A probable reason for the discrepancy with the aforementioned
study is the additional damping of the turbulent diffusivity inside active regions, which
these authors included to match observations. We argued that the inflows alone can cause
this effect.

In this work we continue studying the effect of the inflows on the surface transport of
magnetic flux. Our main question is the impact that realistic, non axisymmetric inflows
may have on the generation of the large-scale poloidal field. As mentioned above, this
could provide a non-linear saturation mechanism for the global dynamo and contribute to
the solar cycle variability. A second problem concerns whether our previous result on the
dispersal of flux against converging flows holds in global simulations. To address these
questions, we incorporated two non-axisymmetric parametrizations of the inflows in a
surface flux transport model. The paper is structured as follows: we first introduce our
model (Sect. 3.2); then, we examine a case with inflows whose strength and extension are
compatible with observations (Sect. 3.3); next, we carry out a parameter study to test how
these two magnitudes, as well as the activity level, may affect the build-up of the global
magnetic dipole at activity minima (Sect. 3.4); finally, the results are summarized and
briefly discussed (Sect. 3.5).

3.2 Surface flux transport model

3.2.1 Surface flux transport equation

The evolution of the magnetic field on the solar surface is governed by the radial compo-
nent of the induction equation (DeVore et al. 1984):

∂Br

∂t
= −

1
R� sin θ

[
∂(Bruθ sin θ)

∂θ
+
∂(Bruφ)
∂φ

]
+

η

R2
�

[
1

sin θ
∂

∂θ

(
sin θ

∂Br

∂θ

)
+

1
sin2 θ

∂2Br

∂φ2

]
(3.1)

+ S (θ, φ, t),

where φ and θ denote solar longitude and colatitude, respectively. The first term on the
right hand side represents the advection of magnetic flux by the surface flows, which
include differential rotation, meridional flow, and inflows towards active regions:

uθ = vm(θ) + wθ(θ, φ) (3.2)
uφ = R� sin θΩ(θ) + wφ(θ, φ). (3.3)

Here, vm is the velocity of the meridional flow, Ω(θ) is the angular velocity of the differ-
ential rotation and wφ and wθ are the components in spherical coordinates of the inflows.
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Figure 3.1: Br (orange line) and ξ f (dashed, blue line) as a function of Br. The dashed
vertical line indicates Br = 50 G.

We adopt the differential rotation profile from Snodgrass (1983):

Ω(θ) = 13.38 − 2.30 cos2 θ − 1.62 cos4 θ [◦/day]. (3.4)

Following van Ballegooijen et al. (1998), we model the meridional flow as

vm(λ) =

11 sin(2.4λ) [m/s] if |λ| < λ0;
0 if |λ| ≥ λ0,

(3.5)

where λ denotes solar latitude and λ0 = 75◦.
The second term on the right hand side of Eq. (3.1) describes the flux dispersal by

convective flows as a random walk/diffusion process (Leighton 1964). We choose η =

250 km2/s, a value in agreement with observations (Schrijver and Martin 1990, Jafarzadeh
et al. 2014) and consistent with the evolution of the large scale fields (Cameron et al.
2010).

The term S (θ, φ, t) describes the emergence of new active regions, and is described
in detail in Baumann et al. (2004). The synthetic activity cycles in our simulations are
13 years long, with a two-year overlap between cycles, so the time distance between
consecutive cycle minima is 11 years. The activity level (the number of new BMRs per
day) is governed by a Gaussian function whose height peaks halfway into the the cycle.
At the beginning of the cycle, the BMRs emerge at a mean latitude of 40◦ with a standard
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Figure 3.2: Model of inflows towards an activity complex formed by several emerged
BMRs. The color scale encodes the strength of the magnetic field Br in Gauss and satu-
rates at 250 G. Red and blue indicate opposite polarities. The values of the parameters in
Eq. (3.7) are a = 1.8 · 108 m2G−1s−1 and FWHM = 15◦.

deviation of 10◦. These values decrease linearly and reach a mean latitude of 5◦ and a
standard deviation of 5◦ at the end of the cycle. We do not consider active longitudes in
this study, so the random distribution is uniform in φ. Following van Ballegooijen et al.
(1998), we represent a BMR by two circular patches of opposite polarity. The magnetic
field of each patch is given by:

Br(θ, φ) = Bmax

(
δ

δ0

)2

exp
{
−

2[1 − cos β±(θ, φ)]
δ2

0

}
, (3.6)

where β± is the heliocentric angle between the center of the (±) polarity patch and the
surface point (θ, φ); δ denotes the angular size of the BMR and δ0 = 4◦. The size of
the BMRs follows a distribution n(δ) ∝ δ4. This distribution was derived by Schrijver
and Harvey (1994) from observations for BMRs with sizes ranging from 3.5◦ to 10◦.
BMRs smaller than 3.5◦ cannot be well resolved in our simulations, so they are assumed
to diffuse without interacting with the rest of the flux until they reach this size. The
maximum field strength upon emergence, Bmax, is adjusted so the total flux input per
cycle is ∼ 8.9 · 1024 Mx (Schrijver and Harvey 1994).

3.2.2 Parametrization of the inflows
We test two different models of inflows. The first one is based upon the parametrization
of Cameron and Schüssler (2012),

w = a∇
( cos λ
cos 30◦

|B̂r|

)
, (3.7)
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where |B̂r| is the absolute value of the magnetic field smoothed with a Gaussian. Ad-
justing the full width at half maximum (FWHM) of the Gaussian allows us to control
the extension of the inflows. We note that the gradient of the smoothed magnetic field
generally decreases with increasing width of the Gaussian. Hence, for a fixed value of
a, wider inflows are weaker. The factor cos λ/ cos 30◦ is introduced to quench unrealisti-
cally strong poleward flows arising from the gradient of the polar fields. Figure 3.2 shows
the inflows around an activity complex for our reference values a = 1.8 · 108 m2/G s and
FWHM = 15◦. The value of a is chosen so that the peak inflow velocity around an iso-
lated BMR of size 10◦ is ∼ 50 m/s, in agreement with observations. Hereafter we refer to
this parametrization as the B−parametrization.

The second parametrization of the inflows is motivated by the results of Vögler (2005).
The author’s radiative MHD simulations suggest that the relation between the average
magnetic field in an active region and the integrated radiation flux is non-monotonic,
peaking at about ∼ 200 G. For stronger average fields, the formation of dark pores reduces
the radiation output. This can effectively reduce the radiative cooling in active regions,
and thus limit the strength of the inflows. We attempt to capture this effect by substituting
Br in Eq. (3.7) with the angle integrated radiation flux normalized to the quiet-sun value
(which we denote by f ), taken from the left panel of Fig. 2 in Vögler (2005),

w = ξa∇
( cos λ
cos 30◦

f̂
)
. (3.8)

The prefactor ξ = 6.3 · 104 was adjusted such that the peak inflow velocity around an
isolated, 10◦−sized BMR is ∼ 50 m/s for our reference values of a and the FWHM. This
parametrization is referred to as f− parametrization in the remainder of the paper. The
f− parametrization produces weaker inflow velocities in regions of strong magnetic field.
However, since the slope of f is steeper than the slope of B between 0 and 50 G (see
Fig. 3.1), the contribution to the inflows of areas with fields lower than 50 G value to the
inflows will be stronger than in the B− case.

One of the problems we address in this paper is the suppression of magnetic flux
dispersal in the presence of inflows found by De Rosa and Schrijver (2006). These authors
parametrize the inflows in the following way:

w = a∇|Br|
b (3.9)

This parametrization (with b = 1) is the same as ours except for the geometric factor
that is similar to the one introduced in Cameron and Schüssler (2012) to prevent strong
inflows near the poles.

3.2.3 Numerical treatment
To integrate Eq. (3.1), we developed a surface flux transport code. The equation is ex-
pressed in terms of x = cos θ. We calculate the x−derivative in the advection term with
a fourth-order centered finite differences scheme. The derivative in the φ direction is
calculated in Fourier space. We use a fourth-order Runge-Kutta scheme to advance the
advection terms in time. The diffusion term in the x−direction is treated with a Crank-
Nicolson scheme. We treat the φ−diffusion term by computing the exact solution of the
diffusion equation for the Fourier components of Br.
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Figure 3.3: Time series showing the evolution of a long-standing, single-polarity magnetic
flux clump. Time progresses from left to right and from top to bottom. The color scale
indicates the magnetic field strength in Gauss and saturates at 350 G. The arrows represent
the strength and direction of the inflows.

We validated the code by reproducing the results for the reference case of the study
by Baumann et al. (2004).

Calculating the inflows requires smoothing the absolute value of the magnetic field
(or the normalized radiation flux, in the f− parametrization) with a Gaussian of given
FWHM every time step. The result of this operation is identical to diffusing |Br| (or f )
with a given diffusion coefficient ηs for a time interval ∆t′, related to the FWHM of the
smoothing Gaussian through

FWHM = 4
√

∆t′ ηs ln 2. (3.10)

We emphasize that the time t′ in Eq. (3.10) is different to the simulation time t. The diffu-
sion of |Br| or f is a mathematical resource that we employ to compute the inflows every
time step, and is therefore unrelated to the diffusion term in Eq. (3.1), which describes
the physical surface diffusion of Br by the convective flows.

The numerical integration of the diffusion equation for |Br| or f is performed in a
number n of time steps that must be large enough for the implicit scheme to produce
a reasonably accurate solution and avoid Gibbs oscillations, which lead to instabilities
in the simulation. The number n should also be as small as possible to minimize the
computational cost. We tested two different approaches to matching this compromise.
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The straightforward solution is to use time steps of equal size δt′ = ∆t′/n. By a process of
trial and error, we find that n = 50 satisfies the required conditions. The second approach
relies on the fact that the time steps need to be shorter when the gradient of the function
to diffuse is steeper. Since the steepest gradients are reduced as the diffusion progresses,
taking time steps of increasing size enables us to reduce n. If we allow every time step be
longer than the preceding one by a factor γ, then

δt′ =
∆t′

1 + γ + γ2 + . . . + γn−1 =
1 − γ
1 − γn ∆t′, (3.11)

where δt′ is now the size of the first step. We find that the combination γ = 1.7 and
n = 8 satisfies the above requirements and leads to results that are consistent with the first
approach.

Figure 3.2 shows an example of inflows towards an area of strong magnetic field.

3.3 Reference case

3.3.1 Setup
We first study the impact of the inflows on the amplitude of the polar fields for our refer-
ence values, a = 1.8 · 108 m2/G s and FWHM = 15◦. We ran three sets of simulations:
without inflows, with inflows, and with an axisymmetric perturbation of the meridional
flow calculated as the azimuthal average of the inflows. The latter is done for comparison
with Cameron and Schüssler (2012). While our treatment is not equivalent to the one in
the cited study, the calibration factors ensure that the axisymmetric inflows in both studies
have similar strengths. To reduce the statistical noise arising from the random positioning
of the sources, we ran 20 realizations for each set of parameters. Each realization spans
55 years.

The initial configuration of the magnetic field is chosen such that the rate of poleward
flux transport by the meridional flow and the rate of equatorward transport by turbulent
diffusion are approximately equal, vmBr ≈ (η/R�)∂Br/∂θ, which corresponds to a situation
of activity minimum (see van Ballegooijen et al. 1998). Combining this with equation
(3.5) yields

Br(λ) =

sign(λ)B0 exp[−a0(cos(πλ/λ0) + 1)] if |λ| < λ0;
sign(λ)B0 if |λ| ≥ λ0,

(3.12)

where a0 = vmR�λ0/θη. B0 is chosen in each simulation by requiring that the strength of
the polar fields at activity minima remains approximately constant from cycle to cycle.

3.3.2 Flux dispersal
Regarding the surface transport of magnetic flux, one of the main questions is how the
magnetic flux contained in active regions that are surrounded by inflows spreads. De Rosa
and Schrijver (2006) found that including the inflows in surface flux transport simulations
led to a suppression of the flux dispersal by convective flows, resulting in the formation
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of magnetic flux clumps that are incompatible with observations. In Martin-Belda and
Cameron (2016), we showed that, in the case of an isolated magnetic region, flux cancel-
lation in the first days after emergence causes a decrease in the strength of the inflows, so
that turbulent diffusion and the shearing caused by the differential rotation are sufficient to
explain the flux dispersal. However, the interaction between neighbouring active regions
can result in the formation of polarity-imbalanced magnetic patches. In such cases, flux
cancellation no longer decreases the inflow strength. In our simulations, this leads to the
occasional formation of highly concentrated, single-polarity flux clumps which can last
for years. This is much longer than the typical decay time of active regions, which ranges
from days to weeks (see, e.g., Schrijver and Zwaan 2008). By contrast, the flux clumping
discussed in De Rosa and Schrijver (2006) possibly arises owing to the additional reduc-
tion of the diffusivity inside active regions that was included by these authors in their
model. By reducing the diffusivity in active regions, these authors sought to account for
the observed reduction of the flux dispersal in the core of active regions (Schrijver and
Martin 1990). In Martin-Belda and Cameron (2016), we argued that the inflows alone
would have a similar effect.

Figure 3.3 shows the formation and evolution of one such long-lasting polarity clump.
The first panel shows an active region complex that consists of two large patches of mag-
netic flux, drawing strong inflows, and a BMR to the left of it. Some of the negative
polarity of the BMR is attracted towards the active complex by the inflows, and cancels
part of the complex’s positive flux. The positive patch of the BMR, further away from
the complex, is less affected and diffuses away rapidly. This causes a flux imbalance in
the complex (we emphasize that magnetic flux is still conserved globally), leading to the
formation of the single-polarity feature (top-middle). The persistent inflows further con-
centrate its flux, until an approximate equilibrium between diffusion and the inflows is
reached. As the patch is advected towards higher latitudes, the shear that is caused by the
differential rotation, the partial cancellation with the polar field, and the artificial decrease
of the inflow strength that is caused by the prefactor cos λ/ cos 30◦ of our parametrization
lead to the dispersal of the single-polarity patch.

The formation and evolution of single-polarity features in simulations using the f−
parametrization is essentially parallel to the one described for the B− parametrization, but
the magnetic field is substantially less concentrated. This is demonstrated in Fig. 3.4,
which represents the peak magnetic field of the single-polarity patch as a function of time
in both parametrizations. An initial concentration of the magnetic field takes place in ap-
proximately the first two months of evolution. This is followed by a dip, possibly caused
by the assimilation of positive polarity flux from a decaying BMR, much in the same way
the single-polarity feature formed by mainly assimilating one of the polarities of a BMR.
A plateau phase follows, in which the average magnetic field of the single-polarity fea-
ture, which we may estimate as ∼ Br,max/2, is ∼ 300 G in the B− parametrization case and
∼ 150 G in the f− parametrization (although a slightly increasing trend can be seen in
the B− parametrization case). This phase lasts slightly longer than a year, after which the
feature begins to decay owing to the reasons stated above.

The lower concentration of magnetic flux in the long-standing clumps in the f− pa-
rametrization suggests that a less idealized parametrization of this mechanism may solve
the clumping problem completely.
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Figure 3.4: Maximum field strength of the single-polarity patch under discussion. The
orange and dashed, blue lines correspond respectively to the B− and the f− parametriza-
tions of the inflows.

3.3.3 Evolution of the axial dipole moment

To evaluate the impact of the inflows on the reversal and regeneration of the large-scale
poloidal field we study the evolution of the axial dipole moment of the surface field, which
is defined as:

DM =

√
3

4π

∫ 2π

0

∫ π

0
Br(φ, θ) cos θ sin θ dθdφ. (3.13)

Figure 3.5 shows the evolution of the axial dipole moment in three simulations (with-
out inflows, with azimuthally averaged inflows and with full inflows) using the B− pa-
rametrization of the inflows. The set of sources is identical in all three realizations. The
dipole amplitude is larger in the run without inflows than in the runs with inflows and with
azimuthally averaged inflows. In the case of non axisymmetric inflows, DM is generally
lower than in the case with averaged inflows, although values can occasionally be higher
owing to statistical fluctuations. Averaging the peak values of the dipole moment over 20
realizations yields the following average axial dipole amplitudes:
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Figure 3.5: Evolution of the axial dipole moment in one realization with the B− para-
metrization of the inflows. The (dashed) green, (dotted) purple and black lines corre-
spond to simulations without inflows, with azimuthally averaged inflows and with non-
axisymmetric inflows, respectively. Otherwise, the setup of all three simulations is iden-
tical.

〈DM〉 = 3.27 ± 0.02 G (No inflows);
〈DM〉 = 2.54 ± 0.02 G (Averaged inflows);
〈DM〉 = 2.27 ± 0.02 G (Non-axisymmetric inflows).

The amplitude of the axial dipole moment in the case with azimuthally averaged in-
flows is, on average, ∼ 22% lower than in the case without inflows. In the case of
non-axisymmetric inflows, the average amplitude is ∼ 30% lower.

The average dipole peak strength obtained from the simulations using the f− parame-
trization is ∼ 3% lower than in the B− case:

〈DM〉 = 2.20 ± 0.02 G (Non-axisymmetric, f− parametrization).

The slight difference is due to the stronger contribution of fields up to 50 G in this parame-
trization (see Sec. 3.2.2), which causes a greater restriction of the latitudinal separation
of polarities than in the B− case.
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Figure 3.6: Average amplitude of the axial dipole moment (〈DM〉) relative to the no-
inflows case (〈DM,0〉) as a function of the FWHM. The red square symbol indicates the
reference case. The error bars indicate a deviation of 1σ from the mean.

The small difference between the average axial dipole moment in the B− and f− cases
suggests that the occasional single-polarity clumps do not have a significant impact on the
amplitude of the global dipole moment. This is because the single-polarity features occur
only very occasionally, so the amount of flux that would have crossed the equator, had the
feature been allowed to disperse, is much smaller than the total flux crossing the equator
over the cycle. For this reason, we proceed by performing a parameter study of our inflow
model using only the B−parametrization.

3.4 Parameter study

3.4.1 Inflow parameters

To understand the way the two parameters of our model influence the build-up of the
axial dipole, we compared the strength of the dipole that results from simulations with
and without inflows. The FWHM of the inflows was varied over the range 12 ◦ to 25 ◦,
while keeping a to its reference value of 1.8 · 108 m2G−1s−1. Similarly, a was varied from
2 · 107 to 3 · 108 m2G−1s−1 with fixed FWHM = 15 ◦. We ran 20 realizations for each
combination of parameters.
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Figure 3.7: Average amplitude of the axial dipole moment (〈DM〉) relative to the no-
inflows case (〈DM,0〉) as a function of the multiplicative parameter a in Eq. (3.7). The red
square symbol indicates the reference case. The error bars indicate a deviation of 1σ from
the mean.

Figure 3.6 shows the variation of the average dipole peak amplitude with the FWHM
of the smoothing Gaussian. For all the values of the FWHM, the average amplitude of the
axial dipole moment decreases relative to their no-inflows counterpart. This is due to the
quenching of the contribution of the BMRs to the global dipole induced by the inflows,
which is determined by the magnetic flux of the BMR and the latitudinal separation of
the polarities (Martin-Belda and Cameron 2016). The inflows enhance the cancellation of
opposite polarity flux and limit the latitudinal separation of the polarities, which results in
a reduction of this contribution. With decreasing FWHM, the stronger and more localized
inflows further enhance these effects, resulting in a larger reduction of the axial dipole
moment. The axial dipole moment ratio varies from ∼ 60% to ∼ 80% in the range of
FWHM under consideration.

Figure 3.7 shows the average peak amplitude of the axial dipole moment as a function
of the multiplicative parameter a in Eqs. (3.7) and (3.8). For a = 2 · 107 m2G−1s−1, the
average peak amplitude of the axial dipole is only slightly smaller than in the no-inflows
case. Larger values of a render stronger inflows, and the amplitude of the dipole conse-
quently decreases. For the strongest inflows that we considered (a = 3 ·108 m2G−1s−1), the
amplitude of the axial dipole moment is ∼ 50% weaker than in the case without inflows.
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Figure 3.8: Average amplitude of the axial dipole moment (〈DM〉) relative to the cor-
responding no-inflows case (〈DM,0〉) as a function of the cycle strength. The symbols
indicate the chosen values for the activity level, relative to the activity of the reference
case (indicated with the red square symbol). The error bars indicate a deviation of 1σ
from the mean.

3.4.2 Activity level

We ran simulations with an activity level, defined as the number of active regions per 11-
year cycle, ranging from 0.2 to 1.5 times that of the reference case. The dependence of the
average peak amplitude of the axial dipole moment (relative to the no-inflows scenario)
with activity is shown in Fig. 3.8. The ratio of dipole moments decreases with the activity
level by about a 9% over the whole activity range. This is because, in strong cycles, owing
to the larger number of active regions, the collectively driven inflows have a stronger
impact on the latitudinal separation of the polarities of individual BMRs. This decrease
in the relative amplitude of the axial dipole moment with activity implies that, in the
Babcock-Leighton framework, the generation of the poloidal field is more efficient in
weak cycles than in strong ones. This constitutes a non-linearity, which may saturate the
dynamo and possibly contribute to the modulation of the solar magnetic cycle.

There is a second way inflows can affect the build-up of the axial dipole, namely,
enhanced cross-equatorial transport of flux owing to inflows driven by low-latitude active
regions. This effect is less pronounced in strong cycles than in weak ones, since the former
peak earlier than the latter (Waldmeier rule) and, as a consequence, the inflows during the
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maxima of strong cycles are further away from the equator. Since all our simulations peak
halfway into the cycle, and thus do not include the Waldmeier effect, the influence of the
activity level on the build-up of the axial dipole may be even more pronounced than found
here.

3.5 Conclusion

We used a surface flux transport code to study the role of near-surface, converging flows
towards active regions on the surface transport of magnetic flux and the build-up of an
axial dipole at cycle minima. The inflows have been proposed as one possible non-linear
mechanism behind the saturation of the global dynamo in the Babcock-Leighton frame-
work (Cameron and Schüssler 2012). We stress that other mechanisms, such as alpha-
quenching (Ruediger and Kichatinov 1993) or cycle-dependent thermal perturbations of
the overshoot region affecting the stability of the flux tubes and, as a consequence, the tilt
angle of the emerging flux tubes (Işık 2015), have also been proposed. Here we concen-
trate on the inflows, but we do not mean to suggest that in this paper we exclude other
possibilities.

We first studied the evolution of the surface flux in a case with inflows that have
strengths and extensions similar to those observed on the Sun. In Martin-Belda and
Cameron (2016), we found that the strength of the inflows driven by an isolated BMR
decays owing to the cancellation of opposite-polarity flux over approximately the first
30 days of evolution. Differential rotation and turbulent diffusion are strong enough to
ensure the flux dispersal. However, as seen in Sect. 3.3.2, interaction between neigh-
bouring active regions can occasionally give rise to large single-polarity concentrations.
In these cases, a mechanism other than flux cancellation may be required to weaken the
inflows and allow for the dispersal of the single-polarity clump. One possibility is that
the darkening caused by the formation of pores in areas of strong magnetic field leads to
a reduction in the cooling beneath the active region, rendering the inflows weaker. We ex-
plored this possibility in our simulations and saw that, although the clumping persists, the
magnetic field of these features is substantially lower than in the simulations where the
effect of pore-darkening is not considered. This result suggests that this mechanism may
be operating in the Sun, although less idealized models of inflows may be necessary to
fully account for the clumping problem. In any case, the occasional occurrence of single-
polarity clumps in the simulations does not have a significant impact on the amplitude of
the global dipole.

We also performed a parameter study in which we varied the strength and extension
of the inflows and the activity of the cycles. In general, inflows decrease the axial dipole
moment at the end of the cycle. This is due to the relative decrease in latitudinal separation
of the polarities of BMRs caused by the inflows. Stronger (weaker) inflows lead to larger
(smaller) reductions of the axial dipole moment.

Our main finding is that inflows with characteristics that are similar to those observed
can reduce the axial dipole moment at the end of the cycle by ∼ 30% with respect to the
case without inflows in cycles of moderate activity. This ratio varies by ∼ 9% from very
weak cycles to very strong cycles, which supports the notion of inflows being a potential
non-linear mechanism capable of limiting the field amplification in a Babcock-Leighton
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dynamo and contributing to the modulation of the solar cycle.
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4 Paper III. Evolution of the Sun’s
Toroidal Field and the Flux
Emergence Process

Abstract
Aims We aim to infer the sub-surface distribution of the Sun’s non-axisymmetric az-
imuthal magnetic flux from observable quantities, such as the surface magnetic field and
the large scale plasma flows.

Methods We build a kinematic flux transport model of the solar dynamo based on the
Babcock-Leighton framework. We construct the source term for the poloidal field using
SOLIS magnetograms spanning three solar cycles. Based on this source we calculate the
azimuthal flux below the surface. The flux transport model has two free parameters which
we constrain using sunspot observations from cycle 22. We compare the model results
with observations from cycle 23.

Results The structure of the azimuthal field is mainly axisymmetric. The departures
from axisymmetry represent, on average, ∼ 3% of the total azimuthal flux. Owing to its
relative weakness, the non-axisymmetric structure of the azimuthal field does not have a
significant impact on where the emergences appear or on the amount of flux contained in
them. We find that the probability of emergence is a function of the ratio between the flux
content of an active region and the underlying azimuthal flux. 1

4.1 Introduction
The magnetic activity of the Sun and other stars is a manifestation of their internal mag-
netic field, which is thought to be sustained by a hydromagnetic dynamo. In the case of
the Sun, it is generally thought that the differential rotation in the convection zone gen-
erates the toroidal magnetic field out of the poloidal field, but where exactly this field is

1This chapter reproduces the article Evolution of the Sun’s non-axisymmetric toroidal field by D. Martin-
Belda and R. H. Cameron, published in Astronomy & Astrophysics 603, A53 (2017), DOI 10.1051/0004-
6361/201730509. Reproduced with permission of Astronomy & Astrophysics, © ESO. Contributions:
D.M.B and R.C. designed the research. D.M.B carried out the research, analyzed the data and wrote the
paper.
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amplified and stored is still an open question (see, e.g., Charbonneau 2010). The mech-
anism for the regeneration of the poloidal field from the azimuthal component is less
agreed upon, with modeling approaches falling mainly into two categories: the turbulent
dynamo models and the Babcock-Leighton models.

In Babcock-Leighton models (Babcock 1961, Leighton 1969), the poloidal field is re-
generated by the surface transport of the magnetic flux of decaying active regions. Newly
emerged bipolar magnetic regions (BMRs) show a systematic tilt with respect to the E-W
direction, with the preceding polarity (in the Sun’s sense of rotation) appearing closer to
the equator than the trailing polarity (Joy’s law). In addition, the preceding polarity of a
BMR emerging in a given hemisphere tends to be of the same sign as the polar field in that
hemisphere at the beginning of the ongoing activity cycle (Hale’s law). This facilitates
the cross-equatorial transport of preceding polarity flux, and leads to the cancellation of
the polar fields and the build-up of a new, reversed axial dipole, which is the source of
azimuthal field for the new activity cycle.

Babcock-Leighton models have gained substantial support in recent years. Dasi-
Espuig et al. (2010) found a strong correlation between the strength of a Babcock-Leighton
type source term in a given cycle, calculated from the observed tilt angle of active regions,
and the strength of the next cycle. Kitchatinov and Olemskoy (2011) found that the aggre-
gate contribution of active regions to the poloidal field during one cycle and the strength
of the global dipole at the end of the same cycle (as inferred from the AA index) also
correlate closely. Wang et al. (2009) showed that the build-up of the polar fields during
cycles 20 through 23 is consistent with the passive transport of magnetic flux by the ob-
served surface flows. On the theoretical side, Cameron and Schüssler (2015) showed that
the main source of net azimuthal flux in each hemisphere is the winding up of poloidal
flux that is connected to the polar fields at the surface.

One of the key features of dynamo models is the formulation of the poloidal source
term as a function of the azimuthal field. One often considered possibility in Babcock-
Leighton flux transport models is that magnetic flux tubes are stored in an overshoot
region at the base of the convection zone. These develop a magnetic buoyancy instability
and rise through the convection zone to emerge at the surface in the form of BMRs. For a
review on this topic, see, e.g., Fan (2009).

Alternatively, 3D numerical calculations indicate that persistent, coherent azimuthal
magnetic structures can arise in a turbulent convection zone, owing to turbulent intermit-
tency (Brown et al. 2010, Nelson et al. 2013, 2014). Moreover, the transport of magnetic
flux to the surface can be achieved by means of convective upflows, which might be at
least as relevant as magnetic buoyancy.

In this work we consider the evolution of the radially integrated azimuthal flux density
as a function of longitude and latitude. Our aim is to infer the distribution and evolution
of the sub-surface azimuthal flux from observable quantities in order to gain insight on its
relation with the observed properties of active regions. To do so, we construct a model of
the magnetic flux transport in the Sun, based on the Babcock-Leighton framework. The
poloidal field source term is determined by observational data (synoptic magnetograms).
The paper is structured as follows: in Sec. 4.2 we introduce and calibrate our model; in
Sec. 4.3 we present and discuss our results; and in Sec. 4.4 we briefly summarize our
conclusions. In the appendices we derive the equation for the evolution of the azimuthal
flux density and other supplementary quantities in our model.
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Figure 4.1: Initial condition of the simulations. Top left: Synoptic magnetogram cor-
responding to CR 1625. Top right: Synoptic magnetogram corresponding to CR 1625,
remapped to an equiangular grid and resampled to the highest angular degree order, l,
used to compute the potential field extrapolation. Bottom left: Radial integral of the az-
imuthal field across the convection zone, bφ, extrapolated from the surface field. Bottom
right: Radial integral of the θ component of the magnetic field across the convection zone,
bθ, extrapolated from the surface field. Red and blue indicate opposite polarities in all the
maps.

4.2 Methods

4.2.1 Model

We consider a mean field approach based on horizontal averages,

B j = 〈B j〉 + B′j, (4.1)

where j = {r, θ, φ},

〈B j〉(θ, φ) =

∫ θ+δ

θ−δ

∫ φ+δ

φ−δ
B j sin θ′ dφ′dθ′∫ θ+δ

θ−δ

∫ φ+δ

φ−δ
sin θ′ dφ′dθ′

, (4.2)

and δ is the scale over which the average is performed. Using δ ∼ 2 − 3◦ is enough to
ensure some scale separation with respect to the larger turbulence correlation lengths at
the surface (those of supergranulation). In the remainder of the paper we drop the angle
brackets for clarity, and refer to the j-th component of the averaged magnetic field by B j.

Our model consists of two two-dimensional domains in the (φ, θ) plane, representing
the surface of the Sun and the convection zone, respectively. The evolution of the surface
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magnetic field, assumed to be radial, is governed by the surface flux transport equation
(DeVore et al. 1984):

∂Br

∂t
= −ΩR�(θ)

∂Br

∂φ
−

1
R� sin θ

∂

∂θ
[uM(θ)Br sin θ]

+
ηH

R2
�

[
1

sin θ
∂

∂θ

(
sin θ

∂Br

∂θ

)
+

1
sin2 θ

∂2Br

∂φ2

]
+ S (θ, φ, t), (4.3)

where ΩR� is the differential rotation, uM is the meridional flow and ηH is the surface
diffusivity associated to the convective flows. The emergence of new flux is described by
the source term S (θ, φ, t).

The first term in Eq. (4.3) describes the transport of the surface field by the solar dif-
ferential rotation. We use the differential rotation profile inferred by correlation tracking
of magnetic features by Hathaway and Rightmire (2011):

ΩR�(θ) = 14.437 − 1.48 cos2 θ − 2.99 cos4 θ [◦/day]. (4.4)

The second term in Eq. (4.3) corresponds to the surface meridional flow. Following
van Ballegooijen et al. (1998), we model the meridional flow as:

uM = −11 cos(2θ) [ms−1]. (4.5)

This expression captures the main characteristics of the observed meridional flow (see
Hathaway and Rightmire 2011).

The third term in Eq. (4.3) describes the dispersal of magnetic flux on the surface by
means of random convective flows modeled as a diffusion process (see Leighton 1964,
Martin-Belda and Cameron 2016). We use a surface diffusivity of ηH = 250 km2s−1, as
indicated by observations (Schrijver and Martin 1990, Jafarzadeh et al. 2014).

The source term S (θ, φ, t) represents new emergences, and is built from synoptic mag-
netograms (see Sec. 4.2.2).

The azimuthal field in the convection zone is represented in our model by the az-
imuthal flux per unit colatitude, i.e.:

bφ =

∫ R�

Rb

Bφrdr. (4.6)

In the above expression, Rb refers to the bottom of the convection zone and R� is the solar
radius.

Following Cameron and Schüssler (2017), we make the following assumptions re-
garding the plasma flows and the structure of the internal magnetic field of the Sun:

1. The magnetic field is purely radial in the near-surface shear layer (NSSL), owing to
strong downwards turbulent pumping.

2. The magnetic field does not penetrate the radiative interior.

3. The poloidal field does not penetrate the tachocline. This assumption of the model
is partly justified by Spruit (2011), who noted that the tachocline cannot support
large shear stresses, which would be present if the poloidal field did penetrate the
tachocline.
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4. The radial shear is negligible in the region between the tachocline and the NSSL.
This is based on helioseismic inference of the rotation rate in the deep interior and
the NSSL (Christensen-Dalsgaard and Schou 1988).

To derive an evolution equation for bφ, we integrate the azimuthal component of the in-
duction equation in radius. The resulting equation reads (see Appendix 4.A):

∂bφ
∂t

= R2
�ΩR� sin θ Br

+ bθ sin θ
dΩ

dθ

∣∣∣∣∣
RNSSL

+
∂(bθ sin θ)

∂θ
ΩRNSSL

+
η0

R2
�

[
1

sin θ
∂

∂θ

(
sin θ

∂bφ
∂θ

)
+ 2

cos θ
sin2 θ

∂bθ
∂φ
−

bφ
sin2 θ

+
1

sin2 θ

∂2bφ
∂φ2

]
−

1
R�

∂(ūbφ)
∂θ

+ S φ(θ, φ, t), (4.7)

where ΩRNSSL is the differential rotation at the bottom of the NSSL, ū is an effective return
meridional flow, η0 is the effective diffusivity of the azimuthal field, S φ(θ, φ, t) is a source
term associated to flux emergence, and

bθ =

∫ RNSSL

RT

Bθr dr. (4.8)

In the above expression, RT refers to the top of the tachocline and RNSSL refers to the
bottom of the NSSL. The quantity bθ is calculated in terms of bφ and Br in Appendix 4.B.

The first three terms in Eq. (4.7) describe the generation of azimuthal flux by differ-
ential rotation and the azimuthal flux transport. Here, Br is the radial field at the surface,
which is constrained by observation and evolves according to Eq. (4.3). The radially inte-
grated θ-component of the magnetic field, bθ, can be obtained in terms of bφ and Br from
the solenoidality condition ∇·B = 0 (see Appendix 4.B). The differential rotation profile is
evaluated at the bottom of the NSSL. The analysis of helioseismic data by Barekat et al.
(2014) suggests that the radial shear in this layer is independent of latitude. Following
these authors, we adopt

ΩRNSSL(θ) = ΩR�(θ) + 0.53 [◦/day]. (4.9)

The fourth term of Eq. (4.7) describes the turbulent diffusion of azimuthal flux. Fol-
lowing Cameron and Schüssler (2016), we assumed the following form for the diffusivity
in the derivation of Eq. (4.7):

η(r) = η0
r2

R2
�

, (4.10)

where η0 is a free parameter of our model. Cameron and Schüssler (2016) used the prop-
erties of the decay phase of the sunspot cycles to estimate η0 ∼ 150 − 450 km2s−1.

The fifth term corresponds to the advection of the azimuthal flux by an effective equa-
torward flow, which we model as

ū = u0 cos(2θ) [ms−1], (4.11)
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Figure 4.2: Number of emergences (N) as a function of the normalized underlying az-
imuthal flux density (b(Norm.)

φ, i ). The different curves correspond to different choices of the
free parameters. Continuous black line: u0 = 3 m s−1 and η0 = 100 km2s−1. Dashed
blue line: u0 = 5 m s−1 and η0 = 400 km2s−1. Dashed red line: u0 = 1 m s−1 and
η0 = 25 km2s−1. Continuous green line: u0 = 6 m s−1 and η0 = 600 km2s−1.

where u0 is a free parameter of the model. This flow can correspond to a return meridional
flow (Wang et al. 1991, Durney 1995) or equatorward pumping (Guerrero and de Gouveia
Dal Pino 2008).

The solenoidality condition requires that the surface magnetic field connects to the
sub-surface field. Hence, a source term in Eq. (4.7) is needed to ensure the connectivity
of the surface field sources to the field in the convection zone. In order to calculate
S φ(θ, φ, t), we extrapolate the surface sources downward via a potential field solution (see
Sec. 4.2.2).

Our model, therefore, consists of: (a) a two-dimensional domain representing the
surface of the Sun, in which the (radial) surface field evolves according to Eq. (4.3); (b) a
two-dimensional domain representing the convection zone, in which the radial integral of
the azimuthal magnetic field evolves according to Eq. (4.7); and (c) the coupling of both
domains through the emergences, represented by the source terms, and the solenoidality
condition.

4.2.2 Treatment of the source terms

The source term in Eq. (4.3), which represents the emergence of flux on the solar sur-
face, was calculated using SOLIS synoptic magnetograms. Let Bn

r be the radial magnetic
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Figure 4.3: Distribution of the quantity ξ =
∑

c Nc|bφ, c|
/∑

c Nc/|bφ, c| as a function of the
parameters u0 and η0. Each circle represents a run. The size of each circle is propor-
tional to the quantity ξ, which measures the adjustment of the run to our requirement
that the simulated azimuthal flux lies underneath the observed active regions. For better
visualization, we also encode the value of ξ in the colour of the circles.

field corresponding to carrington rotation (CR) n, as given by the corresponding synoptic
magnetogram. The field associated with emergences during CR n is computed as

∆Br(θ, φ, tn) = Bn
r − B̃n

r , (4.12)

where B̃n
r is the magnetic field from the previous magnetogram evolved for one rotation

using Eq. (4.3). This expression is related to the surface source term S (θ, φ, t) through

∆Br(θ, φ, tn) =

∫ tn

tn−1
S (θ, φ, t) dt. (4.13)

In practice, we add ∆Br to the simulated surface field every carrington rotation. The
synoptic magnetograms are corrected by multiplying the positive values by a factor such
that the resulting net magnetic flux on the surface is zero. Apart from describing flux
emergences, the surface source term also corrects for the errors of the SFT model and
errors in individual synoptic magnetograms.

The surface field Br must connect with the field in the convection zone so that ∇·B = 0
is maintained. The connectivity of the surface sources with the subsurface field is achieved
through the source term in Eq. (4.7), which we calculate by performing a downwards
potential field extrapolation of ∆Br(θ, φ, tn). Let ∆Bφ(θ, φ, tn) be the azimuthal component
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Figure 4.4: Surface field (Br), azimuthal flux density (bφ) and its non-axisymmetric com-
ponent (b′φ), for CR 1987 (close to the middle of cycle 23) and CR 2060 (near the end of
that cycle). Red and blue represent opposite polarities. The squares on the top and middle
rows represent observed emergence sites, extracted from the USAF/NOAA sunspot group
database.

of the extrapolated field, and ∆bφ =
∫ R�

Rb
∆Bφr dr. The source term in Eq. (4.7), S φ(θ, φ, tn),

is related to ∆bφ(θ, φ, tn) through

∆bφ(θ, φ, tn) =

∫ tn

tn−1
S φ(θ, φ, t) dt. (4.14)

The extrapolated ∆bφ is added to the simulated bφ every rotation, at the same time ∆Br is
added to the surface field.

The potential field extrapolation of ∆Br(θ, φ, tn) is more easily done using spherical
harmonics, for which it is convenient to remap the synoptic magnetograms onto a grid
equally spaced in θ, rather than in cos θ. The remapping prevents large errors near the
poles, which arise from the poorer spatial resolution of the synoptic magnetograms at
high latitudes. A discussion of this problem can be found in Tóth et al. (2011).
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The value of the magnetic field at each point of the new equiangular grid is interpo-
lated linearly from the magnetogram (old grid). The magnetic field at the poles is not
known, which makes it appropriate to perform the interpolation in Fourier space by ex-
panding

Br(θ, φ, tn) =
∑

m

am(θ, tn)eimφ. (4.15)

At the poles, regularity of Br translates into the following boundary conditions for am:

∂a0(θ, tn)
∂θ

∣∣∣∣∣
θ=0,π

= 0; (4.16)

am,0(θ = 0, π; tn) = 0. (4.17)

The value of the Fourier coefficient at point of colatitude θ∗ of the new grid is given
by:

am(θ∗, tn) = am(θ−, tn) +
am(θ+, tn) − am(θ−, tn)

θ+ − θ−
(θ∗ − θ−), (4.18)

where θ− and θ+ are the points of the old grid adjacent to θ∗ in the θ direction. For the
points of the new grid that are located between the north pole and the northernmost grid
point of the old grid, θ+

0 , Eqs. (4.16) and (4.17) lead to:

a0(θ∗, tn) = a0(θ+
0 , t

n); (4.19)

am,0(θ∗, tn) =
am,0(θ+

0 , t
n)

θ+
0

θ∗. (4.20)

For grid points between the southernmost point of the old grid, θ−0 , and the south pole, we
have:

a0(θ∗, tn) = a0(θ−0 , t
n); (4.21)

am,0(θ∗, tn) = am,0(θ−0 , t
n) −

am,0(θ−0 , t
n)

π − θ−0
(θ∗ − θ−0 ). (4.22)

Since the maximum angular order of the spherical harmonic analysis is limited by an
anti-aliasing condition, the decomposition of Br in spherical harmonics has the effect of
slightly smoothing the magnetograms (see the top row of Fig. 4.1).

4.2.3 Setup and calibration
The initial condition of the simulations was computed as a potential field extrapolation of
the first magnetogram of the series. This was taken at CR 1625, which corresponds to the
end of cycle 20 in March, 1975. Figure 4.1 shows the raw magnetogram, the remapped
version used to build the surface field source, and the extrapolated bφ and bθ. The sign
of bφ indicates the direction of the integrated azimuthal field. In our chosen coordinate
system, a positive value of bφ corresponds to azimuthal field pointing in the sense of
rotation of the Sun. The sign of bθ is predominantly negative, which reflects the sign
of the axial dipole at this cycle minimum. The irregularities of bθ near the north pole
are probably related to the noise of the magnetogram, and diffuse very quickly once the
simulation starts.
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Figure 4.5: Non-axisymmetric component of the azimuthal flux underlying each emer-
gence in cycle 23 (b′φ, i) versus its axisymmetric component (〈bφ, i〉). The emergences are
represented by green points. The black line represents the average of b′φ, i over all emer-
gences inside bins of 2 · 1021 Mx deg−1 width. The error bars denote the standard error of
the mean.

To calibrate the model, we required that the simulated azimuthal flux lie radially below
the active regions observed on the Sun during cycle 22. We ran simulations with different
values of the free parameters for cycles 21, 22 and 23. The strength of the return flow,
u, was varied between 1 and 6 m s−1, and the diffusivity η0 was varied between 25 and
600 km2s−1. The simulations were let run for cycle 21 for initialization. The active region
data (latitude, longitude and area) was extracted from the USAF/NOAA sunspot group
database. We evaluate the azimuthal flux density underlying every emergence location,
bφ, i = bφ(λi, φi), as close in time as possible, but always prior, to the time of observed
maximum area of the active region (here the index i runs over the emergences). In the
case of backside emergences, there can be a significant delay between these two times
(as large as half a rotation). Note, however, that the change in azimuthal flux density
on time scales shorter than one rotation is, in most cases, small as the non-axisymmetric
component represents less than 3% of the total azimuthal flux density on average.

Figure 4.2 shows a few examples of the distribution of emergences according to their
underlying azimuthal flux density for various combinations of parameters. Different val-
ues of η0 give rise to different global magnitudes of the azimuthal flux density so, for
easier comparison, we normalized bφ, i to its maximum value in each simulation. The
emergences were grouped in bins of width 4 · 10−2 to reduce noise. The two peaks in the
distribution of the active regions reflect the equatorial antisymmetry of the azimuthal flux.
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Figure 4.6: Excess azimuthal flux density above the azimuthal mean underlying each
emergence in cycle 23 (b′φ, i/sign(〈bφ, i〉)) versus the area of the emergence (Ai). The
emergences are represented by green points. The black line represents the average of
b′φ, i/sign(〈bφ, i〉) over all emergences inside area bins of width 100 µHem. The error bars
denote the standard error of the mean.

In cycle 22, the underlying azimuthal flux is mainly positive in the northern hemisphere
and negative in the southern hemisphere. The case with u0 = 3 m s−1 and η0 = 100 km s−2

(black line) corresponds best to the requirement that the simulated azimuthal flux be pref-
erentially located underneath the emergences. In the other three cases, the two-peak
structure is not so conspicuous, and there are more emergences where there is little or
no simulated azimuthal flux.

To find the parameter combinations that yield two well-separated peaks, we consid-
ered the quantity

ξ =

∑
c Nc|bφ, c|∑

c Nc/|bφ, c|
, (4.23)

where c runs through the bφ, i bins and bφ, c is the mid-point of each bin. The value of ξ will
be bigger for the simulations where the emergences occur farther away from the places
where bφ ∼ 0. Figure 4.3 shows the value of ξ for all test runs carried out. We find that the
combination u = 3 m s−1 and η0 = 100 km2s−1 maximizes ξ. These parameters are close to
the range found by Cameron and Schüssler (2017) for the operation of the solar dynamo
in an updated Leighton model. We proceed to the analysis of the data from cycle 23 using
the azimuthal flux density maps generated in the simulation using the above parameter
values.
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4.3 Results for cycle 23

4.3.1 Angular distribution and evolution of azimuthal flux
Our analysis, which integrates the azimuthal field in the radial direction, allows us to infer
the latitudinal and longitudinal structure of the sub-surface field from the observed surface
field and large scale flows.

The top row of Fig. 4.4 shows the observed surface field near the activity maximum
of Cycle 23 (CR 1987) and towards the end of that cycle (CR 2060). Squares indicate the
emergence sites from the USAF/NOAA sunspot record. Some of the emergences do not
seem to correspond to strong concentrations of magnetic field in the magnetograms, and
some features in the magnetograms do not have a counterpart in the active region record.
A possible cause for the mismatch in the first case could be the loss of information in the
low-resolution magnetograms. In the second case, one possibility is that small sunspot
groups that emerged on the far side of the Sun lacked spots when the region rotated onto
the visible side. In this case, the flux content of the active regions is still present in the
synoptic magnetogram, and therefore included in the source term.

The middle row of 4.4 shows the inferred maps of azimuthal flux density. The mag-
netic activity sits mainly on top of the azimuthal flux system. The azimuthal flux corre-
sponding to CR 1987 presents a structure that is strongly axisymmetric and antisymmetric
about the equator. The strongest concentration of azimuthal flux occurs at ∼ 15◦ of lat-
itude in both hemispheres. At CR 2060, most of the azimuthal flux has diffused and
cancelled across the equator, and a new azimuthal flux system of opposite polarity, corre-
sponding to the new cycle, has begun to develop at higher latitudes from the winding-up
of the reversed poloidal field.

The bottom row of Fig. 4.4 shows the non-axisymmetric part of the integrated az-
imuthal field, calculated as b′φ = bφ − 〈bφ〉, where 〈bφ〉 is the azimuthal mean of bφ. The
magnitude of b′φ represents, on average, ∼ 3% of the total azimuthal flux density. This
non-axisymmetric structure arises from the emergence process (which is the only non-
axisymmetric ingredient of our model), and tends to diffuse away towards the end of the
cycle, when the number of emergences is smaller.

4.3.2 Impact of the non-axisymmetric structure on the emergence
process

In order to investigate whether the non-axisymmetric structure of the azimuthal flux in-
fluences the emergence process, we consider the deviation of the azimuthal flux density
underlying each active region from the azimuthally averaged azimuthal flux density at the
latitude of emergence, 〈bφ, i〉. The result is shown in Fig. 4.5. As seen in Sec. 4.2.3,
the bipolar distribution of events reflects the strong antisymmetry of the azimuthal field
about the equator. The active regions for which 〈bφ, i〉 < 0 are mainly located in the north
hemisphere, while those with 〈bφ, i〉 > 0 correspond to the south hemisphere.

An influence of the non-axisymmetric structure of the azimuthal flux on the triggering
of the emergence process would lead to a non-zero average value of b′φ, i in each hemi-
sphere. For example, if emergences at a given latitude tended to occur at longitudes
where the azimuthal flux density is above the azimuthal mean, averaging b′φ, i over all the
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Figure 4.7: Emerged magnetic flux (Φi) versus underlying azimuthal flux density for
the active regions recorded over cycle 23. Each green point represents an emergence.
The stripes in the background indicate azimuthal flux density ranges. The area of the
emergences is represented on the right-hand-side vertical axis.

emergences for which 〈bφ, i〉 > 0 would yield a positive value. In the other hemisphere,
the average b′φ, i would be smaller than zero. Computing these averages yields

b̄′φ, i(〈bφ, i〉 < 0) = (0.1 ± 1.7) ·1019Mx deg−1;

b̄′φ, i(〈bφ, i〉 > 0) = (−4.5 ± 1.4) ·1019Mx deg−1.

The average value of b′φ, i in each hemisphere results very close to zero, in relative terms.
Therefore, we do not find a significant correlation between the location of the emergence
events and the departures from axisymmetry of the sub-surface azimuthal flux.

Next, we consider the possible influence of the non-axisymmetric structure on the
active region areas. Figure 4.6 shows the excess of azimuthal flux density above the
azimuthal average beneath each active region, b′φ, i/sign(〈bφ, i〉), versus the active region
area, Ai. Again, there is no significant deviation from zero, which suggests that the in-
ferred non-axisymmetric structure of the sub-surface azimuthal flux is unrelated to the
area of the emerged active region.

4.3.3 Relationship between azimuthal and emerged flux

Here we study the relationship between the flux contained in an active region and the
azimuthal flux density underneath the emergence site. Figure 4.7 shows the flux of each
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Figure 4.8: Probability of emergence per unit time, per unit area and per flux ratio bin
(P) as a function of the ratio between the emerged flux and the azimuthal flux underlying
the emergence site (r). The different colours correspond to the ranges of azimuthal flux
density represented in Fig. 4.7. The numbers in the legend refer to the mid points of the
azimuthal flux ranges. The stripes in the background indicate flux ratio bins of width 0.1.

active region in the sunspot group record at the time of maximum development, Φi, ver-
sus the unsigned underlying azimuthal flux density, |bφ, i|. Since we used SOLIS syn-
optic magnetograms to feed our simulations, we want to compare with fluxes compara-
ble to those from SOLIS. The flux contained in each active region was calculated from
its sunspot group area (obtained from the USAF/NOAA sunspot database) by using the
cross-calibration factors in Table 2 of Muñoz-Jaramillo et al. (2015). The resulting re-
lationship is Φi [Mx] = 1.44 · 1019Ai [µHem]. A factor 1/2 is introduced to account for
the fact that the two polarities of the active region are part of a single Ω-shaped magnetic
structure that crosses the solar surface twice.

Using the emergences shown in Fig. 4.7 we estimate the probability of emergence
as a function of the ratio between the flux content of the emerged active region and the
azimuthal flux available within one degree colatitude directly beneath it,

ri =
Φi

2
∫

1 deg
bφ, i dθ

. (4.24)

To do so, we bin the data according to the ratio ri (with bins of size 0.1) and the under-
lying azimuthal flux density, bφ, i (with bins of size 2.8 · 1021 Mx deg−1). We thus obtain
the number of emergences in each (ri, bφ, i) bin. These are converted to a probability of
emergence per unit area and unit time as a function of r by dividing the number of emer-
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Figure 4.9: Ratio of the emerged flux to the underlying azimuthal flux (ri) versus the
azimuthal flux density beneath the emergence location for the active regions recorded
during cycle 23. Each green point represents an emergence. The stripes in the background
indicate azimuthal flux ranges. The two continuous curves separate ephemeral regions
(below the lower curve), medium-sized regions (between the two curves) and large active
regions (above the upper curve) by their flux content, according to Table 5.1 of Schrijver
and Zwaan (2008). These fluxes have been converted from fluxes as given by Kitt Peak
magnetograms to fluxes as given by SOLIS magnetograms by using the cross-calibration
constants in Muñoz-Jaramillo et al. (2015).

gences in each bφ, i bin by the cycle-averaged area of the subsurface domain covered by
the corresponding azimuthal flux density range, and the duration of cycle 23. The result-
ing probability distributions are plotted in Fig. 4.8. Each coloured line corresponds to a
different azimuthal flux density range. The distributions decrease rapidly for flux ratios
greater than 0.4, suggesting that emergences whose flux comprises more than 40% of the
azimuthal flux available underneath the emergence site are rare events.

The probability distributions shown in Fig. 4.8 seem to converge as we consider
stronger azimuthal flux ranges. For the upper end of azimuthal flux ranges the proba-
bility of emergence is very similar. The lower probabilities obtained for emergences with
smaller underlying azimuthal fluxes are due to a detection bias. To illustrate this, we plot
the flux ratio of the emergences as a function of the underlying azimuthal flux density
(Fig. 4.9). The two curves separate ephemeral, medium and large active regions. Active
regions lying closer to the lower curve have a lifetime of days, while the lifetime of those
closer to the upper curve approaches weeks. Many smaller active regions will not appear
in the USAF/NOAA sunspot catalog, either because they emerge and decay on the back-
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side of the Sun or because they do not have enough flux to form spots or pores. Thus,
the probability distributions corresponding to lower azimuthal density fluxes (indicated
by dashed lines in Fig. 4.8) are substantially affected by this detection bias. The fact that
the less affected distributions (corresponding to larger amounts of underlying azimuthal
flux) seem to converge suggests that the probability of emergence is a function of the ratio
of the emerged flux and the azimuthal flux underlying the emergence site.

4.4 Summary and conclusion
We have provided a non-axisymmetric model of the magnetic flux transport in the Sun,
based on the Babcock-Leighton dynamo framework. Using synoptic magnetograms as an
input, we inferred the latitudinal and longitudinal distribution of azimuthal flux (per unit
colatitude) and its evolution over three cycles.

We calibrated our model by requiring that the azimuthal flux in Cycle 22 in our sim-
ulations lied mainly radially underneath the activity belts. This led to a return meridional
flow (and/or latitudinal pumping) having an amplitude of u0 = 3 ms−1 and an effective
diffusivity for the azimuthal field of η0 = 100 km2s−1. These values are in the range found
by Cameron and Schüssler (2017) for the operation of the solar dynamo.

The azimuthal flux system is highly axisymmetric and antisymmetric about the equa-
tor. The departures from axisymmetry represent, on average, approximately 3% of the
azimuthal flux at a given location. We found that the non-axisymmetric structure does
not have a significant impact on the location of the emergences or their observed proper-
ties. We also found that the probability of emergence is a function of the ratio of the flux
content of the emerged active region and the underlying azimuthal flux.
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Appendix

4.A The radial integral of the φ component of the induc-
tion equation

We derive the evolution equation for the azimuthal flux per unit colatitude,

bφ =

∫ R�

Rb

Bφr dr, (4.25)

under the assumptions specified in Sec. 4.2.1.
The φ component of the induction equation in spherical coordinates, (r, θ, φ), can be

written as follows:

r
∂Bφ

∂t
=
∂

∂r
(ruφBr − rurBφ) −

∂

∂θ
(uθBφ − uφBθ)

−
1

sin θ
∂η

∂r
∂Br

∂φ
+
∂

∂r

[
η
∂

∂r
(rBφ)

]
+
η

r

[
1

sin θ
∂

∂θ

(
sin θ

∂Bφ

∂θ

)
+

1
sin2 θ

∂2Bφ

∂φ2

+
2

sin θ
∂Br

∂φ
+

2 cos θ
sin2 θ

∂Bθ

∂φ
−

Bφ

sin2 θ

]
, (4.26)

where we have assumed η = η(r).
The first row of Eq. (4.26) includes the advection and shear terms. Integrating the

shear terms radially, we obtain

∂bφ
∂t

∣∣∣∣∣∣
shear

=

∫ R�

Rb

∂

∂r
(ruφBr) dr +

∫ R�

Rb

∂

∂θ
(uφBθ) dr

=
[
ruφBr

]R�

Rb
+
∂

∂θ

∫ R�

Rb

uφBθ dr

= R2
�ΩR� sin θBr|R� +

∂

∂θ

∫ R�

Rb

rΩ sin θBθ dr. (4.27)

In the above equation, Br|Rb vanishes since we assume that the magnetic field does not
penetrate the radiative interior. With Bθ = 0 in the NSSL, we can change the upper limit
of integration of the integral in Eq. (4.27) to RNSSL. The lower limit can be changed to
the top of the tachocline, RT, since there is no poloidal field in the convection zone part
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of the tachocline. In the new integration domain, Ω depends only on θ, so we can move it
outside of the integral. This yields

∂bφ
∂t

∣∣∣∣∣∣
shear

= R2
�ΩR� sin θBr|R�

+
∂

∂θ

(
ΩRNSSL sin θ

∫ RNSSL

RT

rBθ dr
)

= R2
�ΩR� sin θBr|R�

+ bθ sin θ
dΩ

dθ

∣∣∣∣∣
RNSSL

+
∂(bθ sin θ)

∂θ
ΩRNSSL , (4.28)

where we have defined

bθ =

∫ RNSSL

RT

Bθr dr. (4.29)

The radial integral of the radial advection term in Eq. (4.26),
∫ R�

Rb
∂(urBφ)/∂r dr, van-

ishes since both ur and Bφ vanish at Rb and R�. Integrating the latitudinal advection term
yields

∂bφ
∂t

∣∣∣∣∣∣
adv.

= −

∫ R�

Rb

∂

∂θ
(uθBφ) dr

= −
∂

∂θ

∫ R�

Rb

uθBφ dr

= −
∂

∂θ

[
ūR

R�

∫ R�

Rb

rBφ dr
]

= −
1

R�

∂(ūbφ)
∂θ

, (4.30)

where ū is a weighted average of the meridional flow over the convection zone,

ū(θ) = R�

(
uθ(r, θ)

r

)
. (4.31)

The diffusion term in Eq. (4.26) reads:

r
∂Bφ

∂t

∣∣∣∣∣∣
diff.

= −
1

sin θ
∂η

∂r
∂Br

∂φ
+
∂

∂r

[
η
∂

∂r
(rBφ)

]
+
η

r

[
1

sin θ
∂

∂θ

(
sin θ

∂Bφ

∂θ

)
+

1
sin2 θ

∂2Bφ

∂φ2

+
2

sin θ
∂Br

∂φ
+

2 cos θ
sin2 θ

∂Bθ

∂φ
−

Bφ

sin2 θ

]
. (4.32)

The integral of the radial part,
∫ R�

Rb

∂
∂r

[
η ∂
∂r (rBφ)

]
dr, vanishes since there is no diffusive

flux transport across the boundaries. Following results of Cameron and Schüssler (2016),
we assume an effective diffusivity of azimuthal flux

η(r) = η0
r2

R2
�

. (4.33)
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4.B Calculation of bθ

Substituting the above expression in Eq. (4.32) and integrating the rest of the diffusion
terms leads to:

∂bφ
∂t

∣∣∣∣∣∣
diff.

=
η0

R2
�

[
1

sin θ
∂

∂θ

(
sin θ

∂bφ
∂θ

)
+ 2

cos θ
sin2 θ

∂bθ
∂φ
−

bφ
sin2 θ

+
1

sin2 θ

∂2bφ
∂φ2

]
. (4.34)

Combining Eqs. (4.28), (4.30), and (4.34), and introducing the source term that is
necessary to ensure connectivity with the surface sources, we obtain the final form of the
equation:

∂bφ
∂t

= R2
�ΩR� sin θ Br

+ bθ sin θ
dΩ

dθ

∣∣∣∣∣
RNSSL

+
∂(bθ sin θ)
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+
η0

R2
�

[
1

sin θ
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(
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∂bφ
∂θ
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+ 2

cos θ
sin2 θ

∂bθ
∂φ
−

bφ
sin2 θ

+
1

sin2 θ

∂2bφ
∂φ2

]
−

1
R�

∂(ūbφ)
∂θ

+ S φ(θ, φ, t). (4.35)

To simplify the notation and keep consistency with Eq. (4.3), we write Br instead of Br|R�
to refer to the radial field at the surface.

4.B Calculation of bθ
The quantity bθ can be calculated in terms of bφ and Br|R� from the solenoidality condition,
∇ · B = 0. Writing the divergence operator in spherical coordinates leads to

r
∂(Bθ sin θ)

∂θ
= − sin θ

∂(r2Br)
∂r

− r
∂Bφ

∂φ
. (4.36)

Integrating over the convection zone and using the definitions (4.25) and (4.29) we obtain

∂(bθ sin θ)
∂θ

= − sin θ[r2Br]
R�
Rb
−
∂bφ
∂φ

= − sin θR2
�Br|R� −

∂bφ
∂φ

, (4.37)

where we have used Br|Rb = 0 and Bθ|Rb<r<RT = Bθ|RNSSL<r<R� = 0. Integrating now in θ
yields

bθ = −
1

sin θ

(∫ θ

0
sin θ′R2

�Br dθ′ +
∫ θ

0

∂bφ
∂φ

dθ′
)
, (4.38)

where, again, Br denotes now the surface field.
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5 Conclusions and future work

In this thesis, we considered the non-axisymmetric transport of magnetic flux in the Sun,
with a focus on its role on the global dynamo. In the fisrt two papers (Chs. 2 and 3),
we studied the way the near-surface, converging flows around active regions, which are
non-axisymmetric, affect the build-up of the global axial dipole moment, defined as

DM =

√
3

4π

∫ 2π

0

∫ π

0
Br(φ, θ) cos θ sin θ dθdφ, (5.1)

where Br is the surface magnetic field, assumed to be purely radial. The axial dipole
moment at the end of a given cycle is a good precursor of the strength of the next cycle
(Upton and Hathaway 2014).

The contribution of a single BMR to the global axial dipole in the presence of surface
diffusion and a meridional flow was studied by Wang and Sheeley (1991). This contribu-
tion evolves on a time scale of years, and depends strongly on the speed of the meridional
flow and latitude of emergence. An axially symmetric azimuthal flow has no impact on
DM, so these authors do not consider differential rotation. In the presence of inflows,
however, it is necessary to include the differential rotation in the analysis of the surface
transport of flux. We found that the axial dipole moment of a BMR normally decreases
with respect to its initial value over the first month of evolution. When the orientation of
the BMR is sufficiently close to the E-W direction, the interplay between the inflows, the
differential rotation and the diffusion leads to an increased contribution to the global axial
dipole (Martin-Belda and Cameron 2016).

We also studied the way inflows affect the axial dipole moment over a full cycle. The
aggregate action of the inflows decreases the axial dipole moment at the end of a cycle,
compared to a no-inflows scenario. The magnitude of this decrease depends on the activity
level: the stronger the cycle, the larger the reduction. This dependence can provide a
saturation mechanism for the global dynamo (Martin-Belda and Cameron 2017a).

In the third paper, we used a flux-transport model based on the updated BL model of
Cameron and Schüssler (2017) to infer maps of the sub-surface toroidal flux density from
synoptic magnetrograms. The non-axisymmetric structure arising from the emergence
process is, on average, weak compared to the axisymmetric part. Owing to its weakness,
it plays a negligible role on the flux emergence process. We found that the probability
of emergence per unit surface area and per unit time is a function of the ratio between
the BMR’s flux contents and the amount of toroidal flux underlying the emergence site
(Martin-Belda and Cameron 2017b).

In future work, the model of Spruit (2003) for the inflows can be tested. The in-
flows could be reproduced by using radiative MHD simulations of near-surface magneto-
convection. A parameter study could help in understanding the way the inflows respond
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to strong magnetic fields. A parametrization of the inflows based on this study could
possibly solve the clumping problem discussed in Ch. 3.

Another possible line of work is to construct an FTD model of the solar dynamo
combining the results presented in this thesis. Including the inflows towards active regions
requires that the treatment of the surface transport of magnetic flux be non-axisymmetric.
The departures from axial symmetry in the toroidal flux system are, however, small. An
axisymmetric treatment of the evolution of the toroidal field would thus be a good first
approximation. Both domains would be coupled by a poloidal source term based on the
probabilities of emergence per unit time and unit surface area inferred from observations
in Ch. 4. By running simulations spanning many cycles, we could ascertain the relative
importance of the inflows and the BMR tilt scattering in the modulation of the solar cycle.

A third possibility is to construct a fully non-axisymmetric dynamo model to study
the effects of varying the transport parameters and the emergence rate. This may help to
determine if the departures from axial symmetry play a more important role on the global
dynamos in other solar-like stars.

78



Bibliography

H. Alfvén. Existence of Electromagnetic-Hydrodynamic Waves. Nature, 150:405–406,
October 1942. doi:10.1038/150405d0.

K. Augustson, A. S. Brun, M. Miesch, and J. Toomre. Grand Minima and Equatorward
Propagation in a Cycling Stellar Convective Dynamo. ApJ, 809:149, August 2015.
doi:10.1088/0004-637X/809/2/149.

H. D. Babcock. The Sun’s Polar Magnetic Field. ApJ, 130:364, September 1959.
doi:10.1086/146726.

H. D. Babcock and W. C. Livingston. Changes in the Sun’s Polar Magnetic Field. Science,
127:1058, May 1958.

H. W. Babcock. The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle. ApJ,
133:572, March 1961. doi:10.1086/147060.

H. W. Babcock and H. D. Babcock. Mapping the Magnetic Fields of the Sun. PASP, 64:
282, December 1952. doi:10.1086/126495.

H. W. Babcock and H. D. Babcock. The Sun’s Magnetic Field, 1952-1954. ApJ, 121:349,
March 1955. doi:10.1086/145994.

A. Barekat, J. Schou, and L. Gizon. The radial gradient of the near-surface shear layer of
the Sun. A&A, 570:L12, October 2014. doi:10.1051/0004-6361/201424839.

I. Baumann, D. Schmitt, M. Schüssler, and S. K. Solanki. Evolution of the large-scale
magnetic field on the solar surface: A parameter study. A&A, 426:1075–1091, Novem-
ber 2004. doi:10.1051/0004-6361:20048024.

L. Biermann. Der gegenwärtige Stand der Theorie konvektiver Sonnenmodelle. Viertel-
jahresschrift der Astronomischen Gesellschaft, 76:194–200, 1941.

F. H. Bigelow. The solar corona. Smithsonian Institute, Washington, 1889.

A. Bonanno, D. Elstner, G. Rüdiger, and G. Belvedere. Parity properties of an
advection-dominated solar alpha 2 Omega-dynamo. A&A, 390:673–680, August 2002.
doi:10.1051/0004-6361:20020590.

S. I. Braginskii. Self-excitation of a magnetic field during the motion of a highly conduct-
ing fluid. Zh. Eksperim. i. Teor. Fiz., Vol: 47, September 1964.

79

http://dx.doi.org/10.1038/150405d0
http://dx.doi.org/10.1088/0004-637X/809/2/149
http://dx.doi.org/10.1086/146726
http://dx.doi.org/10.1086/147060
http://dx.doi.org/10.1086/126495
http://dx.doi.org/10.1086/145994
http://dx.doi.org/10.1051/0004-6361/201424839
http://dx.doi.org/10.1051/0004-6361:20048024
http://dx.doi.org/10.1051/0004-6361:20020590


Bibliography

B. P. Brown, M. K. Browning, A. S. Brun, M. S. Miesch, and J. Toomre. Persis-
tent Magnetic Wreaths in a Rapidly Rotating Sun. ApJ, 711:424–438, March 2010.
doi:10.1088/0004-637X/711/1/424.

D. Brunt. The General Magnetic Field of the Sun. Astronomische Nachrichten, 196:169,
October 1913. doi:10.1002/asna.19131961302.

E. Bullard and H. Gellman. Homogeneous Dynamos and Terrestrial Magnetism. Philo-
sophical Transactions of the Royal Society of London Series A, 247:213–278, Novem-
ber 1954. doi:10.1098/rsta.1954.0018.

P. Caligari, F. Moreno-Insertis, and M. Schussler. Emerging flux tubes in the solar con-
vection zone. 1: Asymmetry, tilt, and emergence latitude. ApJ, 441:886–902, March
1995. doi:10.1086/175410.

P. Caligari, M. Schüssler, and F. Moreno-Insertis. Emerging Flux Tubes in the Solar
Convection Zone. II. The Influence of Initial Conditions. ApJ, 502:481–492, July 1998.
doi:10.1086/305875.

R. H. Cameron and M. Schüssler. Are the strengths of solar cycles determined by
converging flows towards the activity belts? A&A, 548:A57, December 2012.
doi:10.1051/0004-6361/201219914.

R. H. Cameron and M. Schüssler. The crucial role of surface magnetic fields for the solar
dynamo. Science, 347:1333–1335, March 2015. doi:10.1126/science.1261470.

R. H. Cameron and M. Schüssler. The turbulent diffusion of toroidal magnetic flux as
inferred from properties of the sunspot butterfly diagram. A&A, 591:A46, June 2016.
doi:10.1051/0004-6361/201527284.

R. H. Cameron and M. Schüssler. An update of Leighton’s solar dynamo model. A&A,
599:A52, March 2017. doi:10.1051/0004-6361/201629746.

R. H. Cameron, J. Jiang, D. Schmitt, and M. Schüssler. Surface Flux Transport Modeling
for Solar Cycles 15-21: Effects of Cycle-Dependent Tilt Angles of Sunspot Groups.
ApJ, 719:264–270, August 2010. doi:10.1088/0004-637X/719/1/264.

R. H. Cameron, A. Vögler, and M. Schüssler. Decay of a simulated mixed-polarity
magnetic field in the solar surface layers. A&A, 533:A86, September 2011.
doi:10.1051/0004-6361/201116974.
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