Gandorfer, Achim
Achim Gandorfer
Phone: +49 551 384 979-397
Feller, Alex
Alex Feller
Phone: +49 551 384 979-121
Noort, Michiel
Michiel van Noort
Phone: +49 551 384 979-423
Solanki, Sami
Sami Solanki
Phone: +49 551 384 979-552
+49 551 384 979-325
Links: Homepage

IMPRS - How to apply

SLAM Projects

Open PhD Project: SLAM Instrumentation

Working at the forefront of solar instrumentation

The MPS is one of the leading institutes worldwide in building instruments for solar research, both for ground based observatories as well as for balloon and space-borne missions.

Scientists and engineers of MPS conceive new observing methods and develop novel instruments of highest technological complexity. These instruments are built in house, tested, calibrated, and used at the best solar observatories in the world, or delivered to NASA and ESA to be launched to space.

MPS has the leadership of the largest solar observatory ever to leave the ground, the 1m Sunrise solar observatory, which floats in the stratosphere on a giant helium balloon, looking onto the solar surface with an accuracy never achieved before.

MPS also leads the development and later scientific exploitation of a solar space telescope for detailed studies of the magnetic fields on the solar surface, which will fly onboard the ESA/NASA mission “Solar Orbiter”, which will explore new ground, going very close to the Sun and flying over its uncharted poles.

Do you want to contribute to these missions at the forefront of technological feasibility?

Flying over the poles of the Sun with Solar Orbiter

The flight model of the Polarimetric and Helioseismic Imagerfor Solar Orbiter during ground testing at MPS. Zoom Image
The flight model of the Polarimetric and Helioseismic Imagerfor Solar Orbiter during ground testing at MPS.

You could, for example, help in the ground calibration and in the preparation of the science phase of one of the major instruments of the upcoming Solar Orbiter space mission - the first mission ever to leave the ecliptic plane with optical instrumentation on board. The Polarimetric and Helioseismic Imager (PHI) is an imaging spectro-polarimeter which provides both full-disk and high resolution vector-magetograms, Dopplergrams and continuum images of the Sun. It has been developed by an international consortium lead by MPS. After assembly and testing at MPS the PHI instrument has been recently integrated to the Solar Orbiter spacecraft. It is scheduled for launch in 2019. Together with world leading experts the ground calibration of PHI has to be completed and the science phase has to be prepared. Your tasks could consist in assisting the analysis of the ground calibration data, the reconciliation of the ground reference and the flight models of the PHI instrument or participating in the development of the software tools simulating the PHI instrument, the science observations and data analysis procedures.

Solar Orbiter will be launched during the PhD project. The successful PhD student will get a head start for the exciting science phase when the data arrive!

Flying High: Deciphering the Secrets of the Sun with Sunrise III

<span>The Sunrise-II observatory shortly before launch in June 2013.</span> Zoom Image
The Sunrise-II observatory shortly before launch in June 2013.

Two successful flights of the Sunrise balloon-borne observatory (2009 and 2013) led to a plethora of new findings, published in more than 90 refereed scientific journal articles and in several PhD theses. The excellence of these missions was evaluated positively by multiple, highly-ranked panels, so that a re-flight of Sunrise is the logical consequence. Forseeen for a launch in 2021, Sunrise III will again benefit from the unique observing conditions in the stratosphere at an altitude of ~37 km, free from almost any atmospheric disturbances and with access to the ultra-violet regime of the solar spectrum.

The on-board scientific payload will be completely revamped to the most advanced solar instrumentation ever leaving the ground: The absence of atmospheric refraction and the access to the ultra-violet spectral region (300-400 nm) allows for multi-line spectropolarimetric measurements, offering an unprecedented combination of polarimetric accuracy, and spatial, temporal and height resolution. A multi-line UV spectropolarimeter, a multi-line visible spectropolarimeter, an imaging polarimeter and multi-waveband slit-jaw camera systems will compose an instrument suite allowing for the detailed investigation of small-scale structures and highly-dynamic events from the deepest layers of the photosphere up to the upper chromosphere. In particular the UV polarimeter will explore a region of the spectrum whole polarimetric properties are poorly known. Many discoveries are expected.

In an international team led by MPS, with prestigious solar institutes in Europe, Japan, and the U.S., you will be part of this instrument development. Your tasks span from the simulation of the instrument performance using results from magneto-hydrodynamic simulations over the actual design and fabrication of the instrument to the recording and analysis of data from laboratory measurements and test campaigns at ground-based solar facilities.

A revolutionary hyperspectral imager for Solar physics

A hyperspectral imager is a dispersion based instrument that records spatial (imaging) and spectral information strictly simultaneously. At MPS we are developing a prototype of such an imager based on microlenses. Fabrication of the microlens array is underway, but once completed, needs to be tested and characterized. Once the prototype is completed, construction of a multi-segment instrument will commence that aims for a field-of-view of 15x15 arcseconds, large enough to image elementary solar structures. This instrument is designed to allow for image restoration of spectra and is thus particularly well suited for ground based observing.

In this PhD project, you characterize the new prototype instrument and learn how to observe with an instrument of this type, of which no other instrument currently exists at any solar telescope. The new data will access a new regime in the domains of time cadence and signal-to-noise, yielding access to a thus far unexplored region of parameter space.

loading content